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1 Introduction

Jackiw-Teitelboim (JT) gravity [1–4] features prominently in classical and quantum grav-

ity as a convenient toy model to elucidate conceptual problems while keeping the technical

ones at a bare minimum. Examples include implementing ’t Hooft’s brick wall proposal [5],

Cardyology attempts [6], noncommutative geometry [7], holographic renormalization and

thermodynamics [8], the attractor mechanism [9], constant dilaton holography [10, 11], the

JT/SYK correspondence [12] (for reviews see [13–15]), relations to random matrix mod-

els [16, 17], T T̄ -deformations [18, 19], traversable wormholes [20], holographic complex-

ity [21], constructions of the Hartle-Hawking wavefunction [22, 23] and implementations

of the island proposal to resolve the black information loss problem [24–29]. See [30] for a

review on further aspects of two-dimensional (2d) dilaton gravity, including numerous gen-

eralizations of JT gravity, like the Callan-Giddings-Harvey-Strominger (CGHS) model [31].

None of these generalizations so far gave up the assumption of (pseudo-)Riemannian met-

rics (or a corresponding Cartan formulation).

For applications or toy models of non-relativistic holography it is of interest to con-

sider singular limits of JT gravity to, say, Carrollian or Galilean spacetimes. The main

purpose of our work is to show how this is done and to discuss some aspects of these new

models, including boundary actions and boundary conditions. Among other applications

our construction allows to address questions such as “Is there a Newton-Cartan version

of 2d dilaton gravity?” or “What is the Schwarzian analogue for the AdS-Carroll limit of

JT gravity?”.

The urge to look for theories beyond the Riemann-Cartan setup is partly motivated

by the relation of Carrollian symmetries to null surfaces, like horizons or null infinity

in flat space, and partly by applications of non-relativistic theories in condensed matter

physics. Eventually, some of our models may serve as gravity duals for examples of non-

or ultra-relativistic holography in the spirit of the JT/SYK correspondence, and many of

the questions addressed and issues raised in this context could potentially be transposed

to models introduced in our work.

In several ways this work mirrors investigations of Chern-Simons theories in 2 + 1

dimensions based on Lie algebras beyond the semi-simple case, started in [32, 33] for

Poincaré and (A)dS and extended to Galilei [34, 35] and beyond [36–39] and to higher

spins [40].

This paper is organized as follows. In section 2 we review general aspects of the

formulation of 2d gravity as a gauge theory of BF-type. In section 3 we take singular limits

of JT gravity, among other things to Galilean and Carrollian theories that we generalize

to Newton-Cartan and Carroll dilaton gravity; we also show that there is a light cone

theory that does not require any limit. In section 4 we focus on the subclass of metric BF

theories and their limits. In section 5 we discuss boundary actions and how to perform

a Hamiltonian reduction from the action for a particle moving on a group manifold to

a Schwarzian-like action by imposing certain constraints. In section 6 we discuss two

examples for such boundary actions, first for JT and then for AdS-Carroll2 gravity. In

section 7 we conclude with a discussion of possible applications and generalizations.
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Notation. When applicable, upper (lower) signs in equations refer to the Euclidean

(Lorentzian) case.

Note added. Shortly after our work [41] appeared on the arXiv. Where applicable, our

results agree with each other.

2 2d gauge theories of gravity

JT gravity in its first order formulation [42, 43] is a specific BF theory based on the Lie

algebra so(2, 1), which features an invariant metric. Some of its limits may lead to Lie

algebras without metric. Since these subtleties will be relevant for the remaining work, we

set the stage by providing a rather detailed reminder of BF theories.

We follow [44] where further details are provided (see also the review [45]; especially

relevant is section 6 on Schwarz type topological gauge theories).

2.1 BF theories

BF theory is defined by the bulk action

IBF[X ∗, A] =
k

2π

∫
M2

L BF[X ∗, A] (2.1a)

L BF[X ∗, A] = X ∗F = XK

(
dAK +

1

2
c K
IJ AI ∧AJ

)
(2.1b)

where k is a dimensionless coupling constant, X ∗ = XIE
I is a scalar transforming in the

coadjoint representation and the Lie algebra valued one-form A = AIµeI dx
µ is a gauge

field with curvature two-form F ≡ dA + 1
2 [A,A]. The structure constants c K

IJ of a Lie

algebra g are defined by [eI , eJ ] = c K
IJ eK (with the dual g∗ with basis EI given by

EI(eJ) = δIJ). For X,Y ∈ g and Y ∈ g∗ the adjoint and coadjoint actions are given by

adXY = [X,Y ] and ad∗XY(·) = −Y(adX ·), respectively. Equivalently, in a basis this reads

adeIeJ = [eI , eJ ] = c K
IJ eK and ad∗eIE

J = −c J
IK EK .

The definition of BF theory does not require a trace or invariant metric. This is

different from gauge theories of, e.g., Chern-Simons or Yang-Mills type that are based on Lie

algebras with an invariant metric. The gauge transformations are given by δλX ∗ = ad∗λX ∗

and δλA = −(dλ+ [A, λ]) (and hence δλF = adλF = [λ, F ]), or explicitly,

δλXI = c K
IJ λJXK δλA

I = − dλI − c I
JK AJλK (2.2)

and leave invariant the action (2.1). Varying it leads to the equations of motion

F I = dAI +
1

2
c I
JK AJ ∧AK = 0 dXI + c K

IJ AJXK = 0 . (2.3)

An interesting subclass of BF theories is obtained when the gauge algebra is given

by a metric or (regular) quadratic Lie algebra. This means that the Lie algebra admits

an invariant metric 〈·, ·〉 : g × g → R that is a non-degenerate, symmetric, ad-invariant

bilinear form (in the following we will often omit the comma; by ad-invariance we mean

– 3 –
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〈[z, x], y〉+〈x, [z, y]〉 = 0 for all Lie algebra elements x, y, z ∈ g). Since it is non-degenerate,

we can use this metric to identify elements of the dual g∗ with elements of the Lie algebra g

via 〈X , ·〉 = X ∗(·), or more explicitly XI = gIJXJ (where gIJ = 〈eI , eJ〉 and gIJgJK = δIK).

The Lagrangian for metric BF theory is given by

L mBF[X , A] = 〈X , F 〉 = gLKX
L

(
dAK +

1

2
c K
IJ AI ∧AJ

)
(2.4)

with equations of motion

F = 0 dX + [A,X ] = 0 . (2.5)

As the coadjoint and adjoint representations are isomorphic we rewrite the transformation

δλX = adλX = [λ,X ]. The standard example of metric BF theories are given by simple Lie

algebras where one can use the matrix trace to write L mBF = tr(XF ). There indeed exist

Lie algebras beyond the semisimple ones that admit an invariant metric, e.g., one notable

example is the 2 + 1 dimensional Poincaré algebra. There exists a structure theorem that

helps to understand them [46] (see also [47]) which has also been used to find generalizations

for the Galilei and Carrollian cases which we will encounter below [39]. We provide an

overview of all Lie algebras of low dimension that admit an invariant metric in appendix A.

2.2 Geometric interpretation

Up until now the BF theory (2.1), or metric BF theory (2.4), defines a (topological) gauge

theory based on a gauge algebra g without any geometrical meaning. In this subsection we

clarify how the fields appearing in these actions acquire a geometric interpretation upon

introducing additional structure in the form of a Klein pair. To this end it is convenient

to introduce the notion of kinematical spacetime.

As is well-known, (A)dS and Minkowski space, and quotients thereof, are the only

Lorentzian manifolds that are both homogeneous and isotropic. In n spacetime dimen-

sions this implies the existence of n(n + 1)/2 Killing vectors. From this follows that one

can describe these spacetimes, without introducing a metric, as the homogeneous spaces

G/SO(n−1, 1) with G = SO(n−1, 2) for AdS, G = SO(n, 1) for dS, and G = ISO(n−1, 1)

for Minkowski, respectively. In addition to being homogeneous, all these spacetimes are

also isotropic. By this we mean that the symmetry group contains SO(n−1) as a subgroup

and splits into representations thereof.

More generally, one can ask the question which other homogeneous and isotropic

spaces, i.e., kinematical spacetimes, of dimensions n exist. This question, studied first

in [48] and answered exhaustively in [49], boils down to a classification of so-called Klein

pairs (g, h) with h an n(n− 1)/2 dimensional subalgebra of the n(n+ 1)/2 dimensional Lie

algebra g that together determine the respective kinematical spacetimes. Note that most

of these spacetimes do not exhibit a metric of Lorentzian or Euclidean signature but can be

classified according to the existence of an ultra-relativistic Carrollian or a non-relativistic

Galilean structure. The former consists of a degenerate metric whose kernel is spanned by

a single vector field. A Galilean structure, on the other hand, is defined by a degenerate
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co-metric whose kernel is spanned by a nowhere vanishing one-form. One can furthermore

define, in most cases, a distinguished connection on these spacetimes and classify these

spacetimes according to the curvature of this connection.1 For more details we refer the

reader to [49]. We emphasize again that the choice of subalgebra h is important as space-

times with isomorphic symmetry algebra g can have vastly different geometric properties

depending on the choice of h. We will encounter examples illustrating this fact throughout

this work.

Returning to the problem at hand, we denote the three generators of g in 1 + 1 dimen-

sions as g = {H, P, B} and use the convention that h is always spanned by the generator

denoted by B. Expanding the Lie algebra-valued one-form of a BF theory based on this

algebra as

A = τH + eP + ωB (2.6)

we can now interpret the field associated to H (P) as temporal (spatial) zweibein component.

The field ω is the gauge field of the internal symmetry transformation, i.e., the dualized

spin-connection associated to local Lorentz transformations in the relativistic case. The

Klein pair thus provides a map from the a priori abstract gauge field to geometric data.

3 Limits of JT gravity

To set the stage we briefly review the well-known (A)dS JT gravity case in BF formulation.

Next we define a novel BF theory on the light cone, which is based on the same simple Lie

algebra, but the underlying spacetimes differ due to different geometric interpretations of

the gauge connection components. Then we discuss and provide the kinematical limits of

(A)dS JT gravity.

3.1 AdS and dS BF theory

The AdS (Λ̂ < 0) and dS (Λ̂ > 0) BF theories can be written in a covariant fashion where

we use Pa = (P0, P1) = (H, P). They are based on the Lie algebra

[B, Pa] = −ε b
a Pb [Pa, Pb] = −Λ̂εabB (3.1)

where ε01 = 1 and we raise and lower with ηab = diag(1, −1) in the Lorentzian and

ηab = δab = diag(1, 1) in the Euclidean case. The most general invariant metric is

〈B, B〉 = µ 〈Pa, Pb〉 = µΛ̂ηab (3.2)

where µ 6= 0 is an overall proportionality factor.

The Lie algebras for positive and negative Λ̂ are isomorphic. It is the choice which

generator is part of the spin-connection and which is part of the vielbein that provides the

distinction between these two cases. As discussed in the previous section, assuming that B

spans the subalgebra h, the Klein pair dictates the form

A = ωB + eaPa X = XB +XaPa (3.3)

1For non-homogeneous Carrollian or Galilean spacetimes there does not exists a preferred connection,

like the Levi-Civita connection in the case of Lorentzian geometries [50–52].
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AdS2 H

P

B

dS2 H
P

B

Figure 1. Penrose diagrams for AdS2 (left) and dS2 (right).

of the gauge field and the coadjoint scalar. Together with the metric (3.2) this allows us

to write the Lagrangian for (A)dS-JT gravity as

LJT = X

(
dω − Λ̂

2
ea ∧ ebεab

)
+Xa

(
dea + ε b

a ω ∧ eb
)

(3.4)

where we rescaled Λ̂Xa → Xa for convenience. The fields Xa enforce the 2d torsion

constraint for the zweibein ea. Upon solving this for the spin connection ω and plugging

it into the action, one is left with the well-known second-order action for JT gravity with

X being the dilaton field.

As a reminder the Penrose diagrams of (A)dS2 are depicted in figure 1, where the

transformations generated by translations H, P and boosts B are indicated.

For later purposes we discuss now briefly how to arrive at arbitrary dilaton gravity

models starting from JT. The JT Lagrangian (3.4) has as most general Lorentz invari-

ant generalization that preserves the Palatini condition of vanishing on-shell torsion the

Lagrangian

Ldil = X
(
dω + V (X) ea ∧ ebεab

)
+Xa

(
dea + ε b

a ω ∧ eb
)
. (3.5)

that depends on an arbitrary function of the dilaton field, V (X). (Dropping the Palatini

condition further generalizes V (X) → V (X, XaXa).) Thus, JT naturally generalizes to

generic dilaton gravity models. The same is true for its various limits studied below.

3.2 BF on the light cone

In addition to the well-known homogeneous spaces and their BF theories mentioned in

the previous subsection there exists another homogeneous space based on the symmetry

algebra sl(2, R) which is the light cone of three dimensional Minkowski space seen as 2d

manifold. The homogeneous space of the light cone is based on the following algebra, see,

e.g., [49]

[B, H] = −B [B, P] = H [H, P] = −P (3.6)

and invariant metric

〈B, P〉 = µ 〈H, H〉 = µ . (3.7)

The Lie algebra is, for any dimension, isomorphic to the one of de Sitter spacetime [49] (in

1 + 1 dimensions also to the one of anti-de Sitter). However due to the different choice of

– 6 –
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LC2

HH

P
B

Figure 2. Two-dimensional future light cone of three-dimensional Minkowski space with vertex

removed. Topologically, this is a strip like (A)dS2.

subalgebra h, the corresponding homogeneous spaces differ. In particular, the light cone

is a Carrollian spacetime, i.e., one can define an invariant Carrollian structure on this

spacetime; see [49] for the explicit construction.

In a sense the light cone is in between AdS2 (which has timelike asymptotic boundaries)

and dS2 (which has spacelike asymptotic boundaries). Instead of a Penrose diagram we

just depict the light cone itself in figure 2, together with the geometric interpretation of

the three generators.

The light cone theory has the Lagrangian

LLC = 〈X , F 〉 = XH
(
dτ + ω ∧ e

)
+XP

(
de− τ ∧ e

)
+X

(
dω − ω ∧ τ

)
(3.8)

where we used

X = XP B +XH H +X P A = ω B + τH + eP . (3.9)

This Lagrangian is equivalent to the JT Lagrangian, but the interpretation is different

since ‘boosts’ generated by B act differently in these two theories (see figures 1 and 2).

3.3 Kinematical limits of BF theories

As discussed in section 2.1 BF theories allow for a gauge invariant action, irrespective of

the existence of an invariant metric on the Lie algebra. This means we can take limits

without compromising the well-definedness of the action and theory. Before we show this

we introduce an additional generator M into our theory such that the nonzero commutators

are given by

[B, H] = ∓Ĉ2P [B, P] = ĉ2H + αM [H, P] = −Λ̂B . (3.10)

The upper (lower) sign specifies that the theory is Euclidean (Lorentzian) in case this

distinction is applicable and Λ̂ is the cosmological constant which is (negative) positive

for (A)dS spacetimes. Each of the flat (Λ̂ → 0), Galilean (ĉ = 1
c → 0)2 or Carrollian

(Ĉ → 0) limits leads again to a well-defined Lie algebra; for a visualization of these limits

2The inverse speed of light ĉ is introduced so that all contractions involve parameters tending to zero.
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3
(Anti-)de Sitter

3
Poincaré

3(A)dS-Galilei3

3
(A)dS-Carroll

3
Galilei

3
Para-Galilei

3
Carroll

3
Static

0← Λ̂

ĉ
=

1c
→

0

0← Ĉ

Figure 3. Kinematical limits of (anti-)de Sitter: non-relativistic/Galilean (ĉ = 1
c → 0); flat

(Λ̂→ 0); ultra-relativistic/Carrollian (Ĉ → 0). Arrows with two lines imply there are two different

limits, depending on the sign of the cosmological constant.

see figure 3. To reduce clutter, the central extension M was dropped in this diagram and

the Euclidean cases and the light cone algebra of the previous section, that does not follow

from any limit, are not represented in this diagram.

The new generator M for ĉ 6= 0 is a trivial central extension that before taking any

limits could be eliminated by a shift of H, which shows that the starting point is actually

the direct sum sl(2,R) ⊕ u(1). However, it becomes a nontrivial central extension in the

Galilean limit ĉ → 0. We refer to the centrally extended Galilean algebra with nonzero

Λ̂ as the extended (A)dS-Galilei algebra (also sometimes referred to as the Newton-Hooke

algebra). Sending Λ̂→ 0 leads to the centrally extended Galilean algebra, better known as

the Bargmann algebra. We could have added a similar central extension on the right hand

side of each of the other brackets leading to centrally extended Carrollian and Poincaré

algebras.

The contracted action, equations of motion and gauge symmetries are well defined as

long as the Lie algebra contraction is well defined. We have summarized further possibly

interesting algebras that do not follow from a kinematical limit, like Lifshitz, Schrödinger

and 1/c expanded Poincaré in appendix B.

We now construct the limits of the action, equations of motion, and gauge transfor-

mations explicitly and study their Lorentzian, Galilean and Carrollian invariants. The

coadjoint scalar X ∗ and the gauge connection A are parametrized as

X ∗ = XB∗ +XHH
∗ +XPP

∗ +XMM
∗ A = ωB + eaPa +mM = ωB + τH + eP +mM (3.11)

where the dual basis is defined by

B∗(B) = 1 H∗(H) = 1 P∗(P) = 1 M∗(M) = 1 . (3.12)

– 8 –
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The Lagrangian is given by

L [X ∗, A] = XF (B) +XHF (H) +XPF (P) +XMF (M) (3.13)

with curvature

F = F (B)B + F (H)H + F (P)P + F (M)M (3.14a)

= (dω − Λ̂τ ∧ e)B + (dτ + ĉ2ω ∧ e)H + (de∓ Ĉ2ω ∧ τ)P + (dm+ αω ∧ e)M . (3.14b)

The action is invariant under the gauge transformations parametrized by λ = λBB+ λHH+

λPP + λMM,

δλA =
[
− dλB + Λ̂(τλP − eλH)

]
B +

[
− dλH − ĉ2(ωλP − eλB)

]
H

+
[
− dλP ± Ĉ2(ωλH − τλB)

]
P +

[
− dλM − α(ωλP − eλB)

]
M (3.15a)

δλX ∗ =
[
∓Ĉ2XPλ

H + (αXM + ĉ2XH)λ
P
]
B∗ +

[
±Ĉ2XPλ

B − Λ̂XλP
]
H∗

+
[
Λ̂XλH − (αXM + ĉ2XH)λ

B
]
P∗ . (3.15b)

All contraction parameters have positive exponent and consequently the limits are well-

defined. The equations of motion of (3.13) are F = 0 and

dX ∗ + ad∗AX ∗ =
[
dX ∓ Ĉ2XPτ + (αXM + ĉ2XH)e

]
B∗ +

[
dXH ± Ĉ2XPω − Λ̂Xe

]
H∗

+
[
dXP + Λ̂Xτ − (αXM + ĉ2XH)ω

]
P∗ + dXM M

∗ = 0 . (3.16)

Since they provide us with additional geometric information, we first investigate the

invariants of the local boosts

δλBτ = ĉ2λBe δλBe = ∓Ĉ2λBτ . (3.17)

Expectedly, these transformations are independent of curvature, as evident from their inde-

pendence of the parameter Λ̂. Without taking any limit neither τ nor e is invariant, which is

familiar from Lorentzian geometry where no distinguished invariant vector field or one-form

exists. In the Galilean limit ĉ→ 0 we get the invariant ‘clock one-form’ τ . In the Carrollian

limit the spatial zweibein component e is invariant. Only in the Lorentzian/Euclidean case

we can define the invariant Lorentzian/Euclidean non-degenerate metric

g = ∓τ2 + e2 . (3.18)

This is a manifestation of the fact that we are looking beyond Lorentzian geometries, and

it justifies our claim to define Galilean and Carrollian gravitational theories. Additionally

this shows that theories based on the same algebra can be geometrically different, but are

connected via dualities upon exchanging, e.g., time and space as in the case of Galilei and

Carroll. This should be viewed as a local statement, since globally the spatial direction

may be compact and the time direction non-compact.

– 9 –
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We will study the equations of motion of the Lagrangian (3.13) for the special cases

ĉ = 0 or Ĉ = 0. When ĉ and Ĉ are both nonzero the equations setting the H and

P curvatures equal to zero are the zero torsion conditions in the Cartan description of

Euclidean/Lorentzian geometries. The zero torsion equations can be solved for ω. The

abelian curvature of ω, i.e., dω, is then either set equal to the volume form (for Λ̂ 6= 0)

or to zero (for Λ̂ = 0), corresponding to the usual 1+1 dimensional maximally symmetric

Euclidean/Lorentzian spaces. There is also a zero curvature abelian gauge field, namely

m− α
ĉ2
τ .

When Ĉ = 0 we are dealing with the following curvature equations

dτ + ĉ2ω ∧ e = 0 (3.19a)

de = 0 (3.19b)

dm+ αω ∧ e = 0 (3.19c)

dω − Λ̂τ ∧ e = 0 (3.19d)

which correspond to a constant curvature 2-dimensional Carrollian geometry with a zero

curvature U(1) gauge field on it that is given by m − α
ĉ2
τ . The fact that de = 0 can be

interpreted as vanishing extrinsic curvature. To see this, one evaluates the 2-form de on

the two vectors that are dual to the 1-forms τ and e. This leads to an expression involving

the Lie derivative of the Carrollian metric ee along the vector v that spans the kernel

of ee (see [53, 54] for a general discussion of 2-dimensional Carrollian geometries). The

vanishing of de = 0 can also be rephrased as saying that the intrinsic torsion is zero [55].

Unlike in the Lorentzian case, for Carrollian geometries we cannot solve for ω in terms

of the vielbeine (and possibly the m connection), since the curvature equations do not

fix the vielbein component of ω along e, which is thus an independent field. This is not

uncommon for Carrollian geometries. For example in [56] the undetermined components

of ω were shown to correspond to Lagrange multipliers enforcing the constraint that the

extrinsic curvature vanishes. In our setting the vanishing of the extrinsic curvature results

from varying XP in the Lagrangian. The role of ω is to ensure that the curvatures are

Carroll boost invariant.

We next consider the case ĉ = 0, setting Ĉ = α = 1 without loss of generality. In this

case the F = 0 equations of motion read

dτ = 0 (3.20a)

de∓ ω ∧ τ = 0 (3.20b)

dm+ ω ∧ e = 0 (3.20c)

dω − Λ̂τ ∧ e = 0 . (3.20d)

We interpret these equations in the language of Newton-Cartan (NC) geometry. The second

and third equation are the curvature constraints imposed to be able to fully solve for the

boost connection ω in terms of the NC fields τ , e and m [57]. The remaining two equations

fix the NC geometry. The top equation states that the clock one-form τ is closed and so

these Newton-Cartan spaces admit absolute time (provided there are no closed time circles
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so that τ is exact). The last equation fixes the boost curvature which can be viewed as the

1+1 dimensional version of the equation for NC gravity. It is interesting to point out that in

2d we can formulate a Lagrangian theory of NC gravity (coupled to scalars) whereas in 2+1

dimensions the Chern-Simons formulation of NC gravity requires an additional connection

related to a generator that is not contained within the Bargmann algebra [34, 36, 37]. The

1 + 1 dimensional case with nonzero Λ̂ is based on the extended (A)dS Galilei algebra, also

called (extended) Newton-Hooke algebra, which in 1 + 1 dimensions admits an invariant

metric. The case with Λ̂ = 0 leads to the Bargmann algebra which does not admit an

invariant metric.

3.4 Newton-Cartan dilaton gravity and Carroll dilaton gravity

The Lagrangian (3.13) with all contraction parameters set to unity is identical to the

Lagrangian of the JT model (3.4), after removing the u(1) field M by a redefinition of the

generator H. As discussed above, the Lagrangian (3.13) with ĉ = 0 defines a NC geometry.

It is then fair to ask what is the NC version of more generic dilaton gravity (3.5) (or its

torsionful generalization below that equation)?

We propose that this generalization is given by the NC dilaton gravity Lagrangian

LNCdil = X dω + V (X, XH) τ ∧ e+XH dτ +XP (de∓ ω ∧ τ) +XM (dm+ ω ∧ e) . (3.21)

where V (X, XH) ∝ X for the NC limit of JT and an arbitrary function more generally.

The ∓ signs in front of ω in the third term can be exchanged by a field redefinition, so

they do not denote a distinction between a Lorentzian or Euclidean version of NC dilaton

gravity. We nevertheless keep them to show they do not matter.

Only two of the curvature equations (3.20) change, but we nevertheless display all for

convenience on the left hand side below, together with the remaining half of the equations

of motion on the right hand side.

dτ + ∂XHV (X, XH) τ ∧ e = 0 dXH ± ωXP + e V (X, XH) = 0 (3.22a)

de∓ ω ∧ τ = 0 dXP − ωXM − τ V (X, XH) = 0 (3.22b)

dm+ ω ∧ e = 0 dXM = 0 (3.22c)

dω + ∂XV (X, XH) τ ∧ e = 0 dX ∓XP τ +XM e = 0 (3.22d)

The first equation on the left only changes if V does depend on XH and implies that torsion

no longer vanishes, i.e., the NC clock 1-form no longer locally is given by τ = dt, in general.

Thus, if one requires NC dilaton gravity to maintain torsionlessness the potential V should

depend on X only, just like in (3.5). The last equation on the left controls the curvature of

the geometry. For functions V that are non-linear in X the curvature is not constant. The

equations on the right hand side are the NC version of the dilaton equations of motion.

As in ordinary dilaton gravity (see, e.g., [58]) there is a ‘constant dilaton’ and a ‘linear

dilaton’ sector.

constant dilaton : XM = 0 = XP X = Xc XH = Xc
H (3.23)

linear dilaton : XM = const. X = X(t, x) XP, H = XP, H(t, x) (3.24)
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The constants Xc and Xc
H are determined as roots of the potential, V (Xc, Xc

H) = 0. As in

ordinary dilaton gravity, curvature is constant for constant dilaton solutions; by contrast,

torsion does not vanish but is also constant for general constant dilaton solutions

∗ dω = −∂XV (X, XH) ∗ dτ = −∂XHV (X, XH) . (3.25)

We defined our orientation by ∗(τ ∧ e) = 1.

The Lagrangian (3.21) is invariant under a non-linear modification of the symme-

tries (3.15)

δτ = − dλH − ∂XHV (τλP − eλH) δXH = XPλ
B + V λP (3.26a)

δe = − dλP ± ωλH ∓ τλB δXP = −V λH −XMλ
B (3.26b)

δm = − dλM − ωλP + eλB δXM = 0 (3.26c)

δω = − dλB − ∂XV (τλP − eλH) δX = ∓XPλ
H +XMλ

P . (3.26d)

Choosing a field-dependent parametrization of the gauge transformations, λ = ξ ·A+λBB+

λMM, where ξ is a 2d vector field, establishes that gauge transformations reduce on-shell to

diffeomorphisms generated by ξ, Galilean boosts λB, and u(1) transformations λM.

The general solution of NC dilaton gravity in the linear dilaton sector is obtained as

follows [for simplicity we restrict to the torsionless case V = V (X)]. First we solve the

clock 1-form equation dτ = 0 by τ = dt, which partly gauge fixes diffeomorphisms. Next,

we gauge fix boost invariance by demanding e = K(t, x) dx. Most of the remaining diffeo-

morphism invariance is fixed by setting K(t, x) = 1. Finally, there is another abelian gauge

symmetry generated by λM that we exploit to fix the mass 1-form as m = Φ(t, x) dt, where

Φ is interpreted as Newton potential. At this stage the residual gauge transformations are

trivial coordinate shifts, t → t + t0 and x → x + x0, and time-dependent shifts generated

by u(1) transformations with λM = f(t) and boosts accompanied by compensating spatial

diffeomorphisms with λB = ∓∂tξx(t) = g(t). The latter two can be used to fix to zero

integration functions encountered below.

Our 1-forms read

τ = dt e = dx m = Φ(t, x) dt ω = ∂xΦ(t, x) dt . (3.27)

The result (3.27) solves all the equations of motion on the left side of (3.22) provided the

Newton potential Φ obeys the second order partial differential equation

∂2
xΦ(t, x) =

dV (X)

dX
(3.28)

If V = const. we are back to the NC case with cosmological constant and obtain the

expected confining potential, Φ ∝ x, after setting to zero all integration functions by

residual gauge fixing.

The right half of the equations of motion (3.22) is solved as follows. The penultimate

one trivially yields XM = −1/m0 = const. The other three equations combined yield the

non-linear (Casimir) relation

XMXH ±
1

2
X2

P = w(X) w(X) :=

∫ X

V (y) dy . (3.29)
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The last equation of motion on the right (3.22) integrates to X = x/m0 + x0(t) where

ẋ0(t) = ±XP(t). We exploit now the residual gauge transformation generated by λB =

∓∂tξx(t) = g(t) to gauge fix XP = 0, yielding ∂XΦ = V when plugged into the second

equation of motion on the right (3.22). Integrating this equation yields Φ = w(X) +

Φ0(t), where the integration function Φ0 can be gauge fixed to zero with our remaining

residual gauge transformation generated by λM = f(t). Finally, the relation (3.29) can be

solved for XH.

Our solution

X =
x

m0
XM = −1 XP = 0 XH = −m0w(X) (3.30)

shows that the label ‘linear dilaton sector’ is indeed justified, as the dilaton is linear in the

spatial coordinate x. It contains one relevant constant of motion, m0, related to the mass

of the solution. In the chosen gauge the Newton potential

Φ(X) = w(X) (3.31)

depends only on the spatial coordinate x and, via X, also on the mass parameter m0.

To give one example we choose V (X) = 1/X2, obtaining the solution above with

Φ(x) = −m0

x
(3.32)

which is just the Newton-potential in three spatial dimensions for an object of mass m0.

This shows that one can obtain higher-dimensional Newton potentials by choosing V (X)

suitably, which is again identical to how things work in usual 2d dilaton gravity.

Along the same lines we also propose general Carrollian dilaton gravity

LCar-dil = X dω + V (X, XP) τ ∧ e+XH (dτ + ω ∧ e) +XP de . (3.33)

Here we eliminated the u(1) field by a redefinition of H. The X-dependence of the new

potential term V determines the curvature of the geometry with linear X-dependence

corresponding to constant curvature. A non-trivial XP-dependence on the other hand

leads to non-vanishing de and thus controls the extrinsic curvature or intrinsic torsion of

the geometry as discussed in section 3.3. The discussion of equations of motion, constant

and linear dilaton sectors is analogous to the NC case above.

constant dilaton : XH = 0 X = Xc XP = Xc
P (3.34)

linear dilaton : XH = XH(t, x) X = X(t, x) XP, H = XP, H(t, x) (3.35)

The constants Xc and Xc
P are again determined as roots of the potential, V (Xc, Xc

P) = 0,

and curvature is again constant in the constant dilaton sector, ∗ dω = −∂XV (the same is

true for ∗ de = −∂XPV ).
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4 Metric BF theories and their limits

For metric BF theories we demand the existence of an invariant metric on the gauge

algebra. In that case taking limits, especially of the invariant metric of the Lie algebra, is

more subtle since the contracted Lie algebras do not necessarily inherit the non-degeneracy

of the metric. Since many interesting theories are based on metric Lie algebras and this

additional structure plays a rôle for our setup of boundary conditions, we explain first

when the limit has the chance to lead to another metric BF theory. Then we show how the

algebras and limits can be generalized to also obtain Poincaré, Carrollian and Galilean BF

theories and observe the relation of the latter to NC theory. Before discussing boundary

conditions in the next section we provide a summary of the various theories we have unveiled

at the end of this section.

4.1 Metrics and limits

Starting point is the decomposed (A)dS algebra (3.1)

[B, H] = ∓Ĉ2P [B, P] = ĉ2H [H, P] = −Λ̂B (4.1)

with the invariant metric

〈B, B〉 = ±µĉ2Ĉ2 〈H, H〉 = ±µĈ2Λ̂ 〈P, P〉 = µĉ2Λ̂ (4.2)

parametrized such that any limit of the Lie algebra is well defined on the level of the Lie

algebra and metric. Taking either the flat (Λ̂ → 0), Galilean (ĉ = 1
c → 0) or Carrollian

(Ĉ → 0) limit of (4.2) leads to a degenerate metric. In case we want to end up with a

metric BF theory there exists a necessary condition

dim g = dim [g, g] + dimZ(g) (4.3)

for the existence of a metric on a Lie algebra g where Z(g) is the center of the Lie algebra

(see, e.g., section 3.2 in [39]). As long as we do not take any limit, the center is trivial and

3 = 3 + 0. However, taking any limit reduces dim [g, g] by one without adding any element

to the center, i.e., 3 6= 2+0 and no invariant metric is possible. The addition of a nontrivial

central element adds one element to the dimension of the Lie algebra (on the left hand side),

but two on the right hand side, balancing the equation again, 3 + 1 = (2 + 1) + (0 + 1).

In the following sections we show that the addition of central extensions is also sufficient

to equip the Lie algebras and theories with an invariant metric and show how these theories

can be obtained from a limit. Another option to obtain algebras with a non-degenerate

invariant metric is based on so called coadjoint Lie algebras as discussed in appendix C.

4.2 Flat space dilaton gravity

A metric BF formulation for the Poincaré algebra is only possible when the algebra is

suitably centrally extended. We show now how to obtain the resulting theory as a limit of

(A)dS at the level of the action.
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We start with the (A)dS algebra (3.1) and add an additional generator M such that the

algebra is given by

[B, Pa] = −ε b
a Pb [Pa, Pb] = εab(−Λ̂B + M) . (4.4)

At this point M is still a trivial central extension, but it is introduced such that after the

flat limit Λ̂ → 0 it is nontrivial and leads to an invariant metric for (centrally extended)

Poincaré. The well-defined limit on the Lie algebra implies upon substitution of the fields

a limit of the equations of motion.

It remains to show that we can also take the limit at the level of the action, for which

we introduce the shifted invariant metric (cf. (3.2))

〈B, B〉 =
µ+ µ2

Λ̂
〈Pa, Pb〉 = µηab (4.5a)

〈M, M〉 = µ2Λ̂ 〈B, M〉 = µ2 (4.5b)

where we used µ 7→ µ

Λ̂
. We now take the flat limit Λ̂→ 0, assuming χ = (µ+µ2)/Λ̂ remains

finite, yielding

[B, Pa] = −ε b
a Pb [Pa, Pb] = εabM (4.6)

with invariant metric

〈Pa, Pb〉 = µηab 〈B, M〉 = −µ 〈B, B〉 = χ . (4.7)

This is the (non-semisimple) extended Poincaré algebra with non-degenerate metric for

µ 6= 0. This means we can write down a metric BF theory (2.4), which yields the CGHS

model [31] in the formulation of Cangemi and Jackiw [59] (see also [60, 61]).

The algebra (4.6) has a higher dimensional generalization, called Maxwell alge-

bra, which emerges in the study of particles in classical homogeneous electromagnetic

fields [62, 63]. This is also true for the extended Poincaré (Euclidean) algebra which arise

when considering a charged particle in 1+1 dimensions in a constant electric (magnetic)

field. From the point of view of metric Lie algebras the Maxwell algebra is the natural

metric generalization of Poincaré [39].

The Carrollian and Galilean limits can be done analogously to the flat limit above.

They lead to (A)dS Carroll and (A)dS Galilei theories, respectively, and are related to the

CGHS model via geometric dualities as summarized in table 1.

4.3 Summary

We have summarized interesting homogeneous spaces and Lie algebras in table 1, which is

best read together with figure 3.

The table starts by providing the necessary information to construct the theories based

on the simple Lie algebras sl(2,R) ' so(2, 1) ' so(1, 2) and so(3). They encompass the

well known (A)dS BF theories, their Euclidean cousins and the light cone BF theory of

section 3.2. Table 1 makes explicit that all, but the sphere, are based on the same Lie
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Limit
Homogeneous space

(→ 0)
Nonzero commutation relations

ND?
Invariant metric

Sphere so(3) IX [B, H] = −P [B, P] = H [H, P] = −B 3 〈B, B〉 = µ 〈H, H〉 = µ 〈P, P〉 = µ

de Sitter (dS) so(2, 1) VIII [B, H] = P [B, P] = H [H, P] = −B 3 〈B, B〉 = −µ 〈H, H〉 = −µ 〈P, P〉 = µ

Hyperbolic so(2, 1) VIII [B, H] = −P [B, P] = H [H, P] = B 3 〈B, B〉 = µ 〈H, H〉 = −µ 〈P, P〉 = −µ
Anti-de Sitter (AdS) so(1, 2) VIII [B, H] = P [B, P] = H [H, P] = B 3 〈B, B〉 = −µ 〈H, H〉 = µ 〈P, P〉 = −µ
Light cone sl(2,R) VIII [B, H] = −B [B, P] = H [H, P] = −P 3 〈B, P〉 = µ 〈H, H〉 = µ

Euclidean Λ̂ iso(2) VII0 [B, H] = −P [B, P] = H 7 〈B, B〉 = µ

Extended Euclidean Λ̂ iso(2)c VIIc0 [B, H] = −P [B, P] = H [H, P] = M 3 〈B, B〉 = χ 〈H, H〉 = µ 〈P, P〉 = µ 〈B, M〉 = −µ
dS-Carroll Ĉ iso(2) VII0 [B, P] = H [H, P] = −B 7 〈P, P〉 = µ

Extended dS-Carroll Ĉ iso(2)c VIIc0 [B, H] = M [B, P] = H [H, P] = −B 3 〈B, B〉 = µ 〈H, H〉 = µ 〈P, P〉 = χ 〈P, M〉 = −µ
AdS-Galilei ĉ iso(2) VII0 [B, H] = P [H, P] = B 7 〈H, H〉 = µ

Extended AdS-Galilei ĉ iso(2)c VIIc0 [B, H] = P [B, P] = M [H, P] = B 3 〈B, B〉 = µ 〈H, H〉 = χ 〈P, P〉 = µ 〈H, M〉 = −µ
Poincaré Λ̂ iso(1, 1) VI0 [B, H] = P [B, P] = H 7 〈B, B〉 = −µ
Extended Poincaré Λ̂ iso(1, 1)c VIc0 [B, H] = P [B, P] = H [H, P] = M 3 〈B, B〉 = χ 〈H, H〉 = −µ 〈P, P〉 = µ 〈B, M〉 = µ

AdS-Carroll Ĉ iso(1, 1) VI0 [B, P] = H [H, P] = B 7 〈P, P〉 = −µ
Extended AdS-Carroll Ĉ iso(1, 1)c VIc0 [B, H] = M [B, P] = H [H, P] = B 3 〈B, B〉 = µ 〈H, H〉 = −µ 〈P, P〉 = χ 〈P, M〉 = µ

dS-Galilei ĉ iso(1, 1) VI0 [B, H] = P [H, P] = −B 7 〈H, H〉 = −µ
Extended dS-Galilei ĉ iso(1, 1)c VIc0 [B, H] = P [B, P] = M [H, P] = −B 3 〈B, B〉 = µ 〈H, H〉 = χ 〈P, P〉 = −µ 〈H, M〉 = µ

Carroll Ĉ, Λ̂ Heisenberg II [B, P] = H 7 〈B, B〉 = χB 〈B, P〉 = χBP 〈P, P〉 = χP

〈H, H〉 = µ 〈B, Z〉 = −µ 〈P, M〉 = −µ
Doubly extended Carroll Ĉ, Λ̂ Heisenbergcc IIcc [B, H] = M [B, P] = H [H, P] = Z 3

〈B, B〉 = χB 〈B, P〉 = χBP 〈P, P〉 = χP

Galilei ĉ, Λ̂ Heisenberg II [B, H] = P 7 〈B, B〉 = χB 〈B, H〉 = χBH 〈H, H〉 = χH

〈P, P〉 = µ 〈B, Z〉 = µ 〈H, M〉 = −µ
Doubly extended Galilei ĉ, Λ̂ Heisenbergcc IIcc [B, H] = P [B, P] = M [H, P] = Z 3

〈B, B〉 = χB 〈B, H〉 = χBH 〈H, H〉 = χH

Para-Galilei ĉ, Ĉ Heisenberg II [H, P] = B 7 〈H, H〉 = χH 〈H, P〉 = χHP 〈P, P〉 = χP

〈B, B〉 = µ 〈H, Z〉 = −µ 〈P, M〉 = µ
Doubly extended para-Galilei ĉ, Ĉ Heisenbergcc IIcc [B, H] = M [B, P] = Z [H, P] = B 3

〈H, H〉 = χH 〈H, P〉 = χHP 〈P, P〉 = χP

〈B, B〉 = µB 〈H, H〉 = µH 〈P, P〉 = µP
Static ĉ, Ĉ, Λ̂ Abelian I 3

〈B, H〉 = χBH 〈B, P〉 = χBP 〈H, P〉 = χHP

Table 1. Overview of homogeneous spaces/Klein pairs (g, B), underlying Lie algebras g and their

invariant metric (‘ND?’ indicates Non-Degeneracy). The real Lie algebras are indicated by their

names and according to Bianchi’s classification [64, 65]. Superscripts c denote nontrivial central

extensions. Rows in red are Lorentzian versions of the previous row, rows in green (blue) are

centrally extended once (twice) and arise as limits of sl(2,R) ⊕ u(1) (sl(2,R) ⊕ u(1) ⊕ u(1)), see

section 4.2.

algebra; however, they differ as homogeneous spaces (under the additional assumption

that we disallow an exchange of time and space) and therefore in their geometric and

physical interpretation, as described in section 2.2.

Taking either one of the flat/Carrollian/Galilean limits of the (A)dS theory we arrive

at Poincaré/(A)dS Carrollian/(A)dS Galilean theories. These BF theories are based on Lie

algebras that do not admit an invariant metric, see section 3.3. They allow for one nontriv-

ial central extension that renders the invariant metric non-degenerate. These (centrally)

extended theories can also be obtained from a limit, shown in section 4.2.

Taking a second limit, e.g., first the flat and then the Carrollian, leads to the Car-

roll, Galilei and para-Galilei theories. For these theories doubly centrally extending leads

from a degenerate to a non-degenerate invariant metric. Using the procedure described

in section 4.2 one can show that all the theories below the first horizontal dividing line

can be obtained by contraction and taking quotients starting from the parent theory

sl(2,R) ⊕ u(1) ⊕ u(1). The two u(1)’s correspond to central extensions that are trivial

before taking limits but become non-trivial afterwards. Nevertheless, the theory still de-

scribes a standard NC/Carroll structure since the additional field associated to the u(1)

generator Z, introduced in order to have a non-degenerate metric, decouples on-shell.
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Taking all three limits leads to the static case, yielding an abelian algebra, which always

allows for an invariant metric, and fulfills the necessary condition (4.3) since 3 = 0 + 3.

For the static and the para-Galilei case the group action of the boosts on the homogeneous

space is trivial, i.e., they do not act at all and leave points unaltered. It is then natural to

quotient by them, leading to an Aristotelian algebra that is abelian in 1+1 dimensions.

Most of our theories arise from limits of centrally extended (A)dS, but there are further

interesting spaces on which one can base Lifshitz, Schrödinger, 1/c expanded Poincaré, and

coadjoint theories, that we discuss in appendix B and C. Yet another generalization are

theories based on the remaining kinematical homogeneous spaces that do not follow from

a limit (we do not discuss the cases of torsional Galilean and S17-S20 of table 1 in [49]).

5 Boundary actions of kinematical BF theories

In this section we discuss boundary actions associated with the kinematical BF theories

introduced in the previous sections, restricted to metric BF theories.

5.1 Particle on group manifold

In the case of Chern-Simons theories in three dimensions it is well-known that these theories

reduce to Wess-Zumino-Witten (WZW) models on manifolds with boundaries [66, 67]. In a

similar way, it can be shown that BF theories with a particular choice of boundary condition

reduce to the action of a particle on the group manifold of the chosen gauge group.

The variation of the action of a metric BF theory (2.4) on a manifold with bound-

ary reads

δI =

∫
M

(〈δX , F 〉 − 〈dX + [A,X ], δA〉) +

∫
∂M
〈X , δA〉 . (5.1)

A possible choice of boundary conditions is to take Dirichlet boundary conditions on A.

With this choice no further boundary term is needed for a well-defined variational principle

and the theory is topological without any dynamics on the boundary. If we are to interpret

the connection components as zweibein and spin-connection for a gravitational theory,

putting Dirichlet boundary conditions on all components of A is in general too strict.3

Instead of Dirichlet boundary conditions we impose

X df |∂M = A|∂M . (5.2)

Note that we implicitly used the invariant metric here in order to write both X and A

as elements of the Lie algebra. The one-form df is assumed to be fixed on the bound-

ary [13, 17, 68, 69].4 Imposing this boundary condition requires the addition of a boundary

term to (2.4) such that the full action reads

I[A,X ] =

∫
M
〈X , F 〉 − 1

2

∫
∂M

df〈X ,X〉 . (5.3)

3This is related to the imposition of either Dirichlet or Neumann conditions on the metric (and not both).
4In [69] this boundary condition was interpreted as a Yang-Mills theory with a position-dependent

coupling constant that is localized near the boundary.
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The integrand of the boundary term is recognized as the quadratic Casimir

C = 〈X ,X〉 . (5.4)

that is conserved on-shell using the right hand side of (2.5).

We introduce a coordinate system (ρ, t) with t being the coordinate along the bound-

ary that is located at ρ → ∞. We assume that the homogeneous space on which the

gravitational theory is defined has only one boundary component, the topology of which

can be either a circle or a line.

Starting from (5.3) one can integrate out the dilaton field enforcing the constraint

F = 0 which is solved locally by

A = g̃−1 dg̃ (5.5)

where g̃ are elements of the gauge group of the BF theory. In order to simplify the discussion

we assume that close to the boundary the group element g̃ factorizes

g̃ = g(t)b(ρ) . (5.6)

Using the boundary condition (5.2) and assuming the orientation (ρ, t), the action (5.3)

becomes

I[g] = −1

2

∫
∂M

dt(∂tf)−1〈g−1∂tg, g
−1∂tg〉 (5.7)

which is the action for a particle moving on the group manifold of G. The gauge modes

g thus become physical at the boundary due to the explicit breaking of gauge invariance

by the boundary condition (5.2). This action is invariant under two copies of the global

symmetry group, i.e., under the transformation

g 7→ h̃gh with constant h̃, h ∈ G (5.8)

with corresponding left and right charges Q̃ and Q

Q̃Ã = (∂tf)−1〈Ã, ∂tgg−1〉 QA = (∂tf)−1〈A, g−1∂tg〉 Ã, A ∈ g (5.9)

where Ã and A are the Lie algebra generators of the corresponding group elements h̃ and

h, respectively. The right charges have the Poisson bracket

{QA, QB} = Q[A,B] (5.10)

with a similar expression for the left charges. Note, however, that the left transformations

h̃ correspond to a redundancy in our reduction (5.5) and should therefore be thought of as

being gauged, i.e., all the left charges should be set to zero on-shell. This requirement is

extrinsic to the action (5.7) and is a consequence of arriving at this action from a 2d bulk

action.5 Taken together, the above action is the one-dimensional equivalent to the WZW

action appearing at the boundary of a CS theory in three dimensions.

5Compare this to the three dimensional cases [70, 71] where the two-dimensional boundary actions also

inherit a gauge symmetry corresponding to the global symmetry group.
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In deriving the action we have only used the boundary condition (5.2) which can be

imposed for any metric BF theory. But this is not the end of the story as ultimately we want

to interpret these BF theories as (non- or ultra-relativistic) theories of gravity where one

might impose additional asymptotic boundary conditions on the metric or, equivalently, on

vielbein and spin-connection. In other words, we are looking for a (Hamiltonian) reduction

of the boundary action (5.7).

5.2 Hamiltonian reduction of boundary action

For many applications we are not interested in the loosest set of boundary conditions, but

rather impose (physically or geometrically motivated) restrictions on the fields. A famous

example is the Drinfeld-Sokolov reduction of the sl(2,R) current algebra to the Virasoro

algebra, which applied to AdS3 gravity yields Brown-Henneaux boundary conditions [72].

For AdS3 gravity several inequivalent boundary conditions were identified, e.g., [72–75].

From the point of view of the boundary WZW model these boundary conditions act as

current constraints [76]. Following this procedure one finds the Alekseev-Shatashvili action

as boundary theory for AdS3 with Brown-Henneaux boundary conditions [70] or the BMS3

geometric action [71] for the boundary conditions of [77] on three-dimensional flat space.

Both of these theories have a flavor of hydrodynamics in the sense that their dynamics is

nothing but the conservation of the stress-energy tensor (or its Carrollian analogue in the

flat space case). As reviewed below, the Schwarzian action for AdS2 can be understood in

a similar way.

Boundary conditions on spin-connection and vielbein translate to conditions on the

gauge-connection A and by the flatness condition (5.5) to constraints on g−1∂tg. Assum-

ing that the boundary conditions are consistent with the algebraic structure of the particle

action, we can view the former as constraints on the right charges QA.6 The structure of

the algebra puts restrictions on the set of possible consistent constraints and thus possible

boundary conditions. In what follows we make some specific assumptions about the bound-

ary conditions that could be (and for some applications have to be) relaxed; however, they

will be useful for the two examples that we provide in section 6.

Let QA be the set of right charges of the action (5.7) based on the Lie algebra g. A

generic constraint compatible with the algebra structure on g−1∂tg has the form

Φγ ≡ 〈γ, g−1∂tg〉 − 〈γ,K〉 = 0 γ,K ∈ g . (5.11)

The constraint thus sets the charge Qγ on-shell to some value determined by the fixed

algebra element K. (By fixed we imply that K has vanishing Poisson brackets with all

functions on phase space; we assume the same for γ).

Using the Poisson bracket for the right charges (5.10) we calculate the Poisson bracket

of the constraints

(∂tf)−1{Φγ1 ,Φγ2} = Φ[γ1,γ2] + 〈[γ1, γ2],K〉 . (5.12)

6In the case of WZW models based on simple algebras, the question of consistent sets of constraints has

been analyzed in detail in [78].
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We note first that a new constraint is generated on the right hand side of (5.12) unless

all the generators belong to a subalgebra, i.e., γ1, γ2 ∈ Γ where [Γ,Γ] ⊂ Γ. The nature of the

constraints is now determined by the second term. If K ∈ Γ⊥ or the subalgebra is abelian,

the constraints are first-class.7 First-class constraints are the hallmark of gauge symmetry

in a system and require additional constraints in the form of gauge-fixing conditions that

render the first-class constraints second-class. For the type of boundary conditions we are

currently interested in, we do not want to introduce (further) gauge symmetries. Therefore,

we demand that the system in (5.12) be second-class.

This means we have found a way to determine consistent boundary conditions com-

patible with the algebraic structure of the boundary action (5.7) by looking for even-

dimensional non-abelian subalgebras Γ of the gauge algebra g. The constant element K is

subsequently chosen such that 〈K,Γ〉 6= 0.

In summary, boundary conditions on the fields of the BF theory compatible with the

universal boundary condition (5.2) lead to the action (5.7) together with a system of second

class constraints. The latter can be solved directly in the action [79].

In the above we spelled out a purely algebraic way to arrive at consistent bound-

ary condition for a metric BF theory. This is usually not the way boundary conditions

for gravitational theories are conceived. Rather, one starts from a bulk perspective and

chooses boundary conditions such that they allow an interesting class of bulk geometries

as solutions. This is indeed the case for the BF theory on AdS2, i.e., the JT model in

the second order perspective, and we will see below that these boundary conditions satisfy

the above criteria. But the purely algebraic point of view presented here allows also to

find boundary conditions for BF theories with Carrollian/Galilean interpretation where the

geometric picture is often not as clear as in the relativistic case. In the next section we

apply this procedure to two examples.

6 Schwarzian-like theories

In this section we consider metric BF theories based on the various (1+1)-dimensional

kinematical algebras and look for boundary conditions, as discussed in the previous section,

that reduce the particle action (5.7) to Schwarzian-like actions.

To show how our proposal in section 5 works, we first review the construction of the

Schwarzian action for a BF theory based on the symmetry algebra of Euclidean AdS2

in section 6.1. The main new example is the construction of the boundary action for

(extended) AdS-Carroll2 in section 6.2. Other kinematical algebras where our procedure

does not work without modifications are briefly mentioned in section 6.3.

6.1 Euclidean AdS2/Hyperbolic plane

The discussion in section 5.2 instructs to look for two-dimensional non-abelian subalgebras

of the Euclidean AdS algebra. In the H, B, P basis there is no obvious choice, but changing

7We use here the standard terminology to refer to constraints whose Poisson brackets vanish on-shell as

first class. Constraints with Poisson brackets that do not vanish on the constraint surface are called second

class. From this follows immediately that second class constraints come always in even numbers.
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to the L+, L0, L− basis

L+ = B + H L− = B− H L0 = P (6.1)

with commutation relations explicitly given by (D.1), we find the two choices Γ = {L+, L0, }
and Γ = {L−, L0}. Taking the latter pair (the other one leads to the same conclusions upon

redefinition of the radial coordinate) we find from (5.12) that the fixed element K has to

be proportional to L+ in order to have non-zero inner product with L−. It can be shifted

by elements of L0 and L− although the latter element has no influence on the constraints.

Choosing K = α+L+ + α0L0 with α+ 6= 0 the constraints (5.11) read

φ− = 〈L−, g−1∂tg〉 − 2α+ φ0 = 〈L0, g
−1∂tg〉+ α0 (6.2)

which yields

g−1∂tg|0 = α0 g−1∂tg|+ = α+ . (6.3)

Assuming that the radial dependence of the connection (6.4) is completely captured by the

group element b = exp(ρ L0), these constraints reduce to those implied by the well-known

boundary conditions for the connection on Euclidean AdS2 (hyperbolic in table 1) for some

particular choice of α0 and α+, that is ultimately inconsequential for the reduced action.

In the first order formulation these boundary conditions in the highest-weight gauge (cf.,

e.g., [68, 80]) are given by

At = eρL+ + L(t)e−ρL− Aρ = P (6.4)

with the generators (4.1) and the cosmological constant set to unity. In the second order

formulation these boundary conditions translate to the metric

ds2 = dρ2 +
1

4

(
eρ − L(t)e−ρ

)2
dt2 (6.5)

where L(t) is an arbitrary function and the dilaton field has the asymptotic behavior

X = eρX̄ +O(e−ρ) . (6.6)

We have therefore reconstructed the above boundary conditions on AdS2 out of the alge-

braic considerations of section 5.2.

Under gauge transformations generated by 1
2 λL+ + λ0L0 + λ−L− preserving the form

of At, the field L(t) transforms with an infinitesimal Schwarzian derivative,

δλL(t) = λL′ + 2λ′L+ λ′′′ (6.7)

which corresponds to the transformation of a stress tensor under infinitesimal conformal

transformations. The zero-mode of the function L is related to the mass of spacetime [80].

We turn now to the derivation of the boundary action that follows from the particle

action (5.7) upon introducing the constraints implied by the above boundary conditions.

Using Gauss parametrization8 for the t-dependent group element

g = eyL+ey
0L0ey

−L− (6.8)

8This parametrization is valid for SO(2, 1) = PSL(2,R) = SL(2,R)/{±1} which is the group for which

globally AdS2 is single valued in the first order formulation.
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the two constraints (6.3) lead to two algebraic equations that can be solved in terms of the

field y. Plugging the solutions into the action (5.7) yields

I[y] =
1

2

∫
dt(∂tf)−1{y, t} . (6.9)

where {·, ·} denotes the Schwarzian derivative. Using the boundary condition (5.2) we can

further relate ∂tf to the leading order of the dilaton so that we find

I[y] = X̄

∫
dt {y, t} (6.10)

thus reproducing the Schwarzian action. The action is invariant under the finite PSL(2,R)

transformations

y 7→ ay + b

cy + d
ad− bc = 1 (6.11)

that correspond to group multiplication from the left, h̃ in (5.8). As argued in section 6,

this transformation should be thought of as a gauge symmetry.

In terms of the group elements g the function L(t) reads

L(t) = −{y, t}
2

. (6.12)

Since the equation of motion of the Schwarzian action is just

∂t{y, t} = 0 (6.13)

we see, as in the higher-dimensional cases mentioned in section 5.1, that the Schwarzian

action just encodes mass conservation.

In deriving the action (6.10) we have not assumed anything about the topology of the

boundary. This is therefore the appropriate result if the boundary is taken to be a line,

i.e., the zero temperature result since the boundary coordinate corresponds to Euclidean

time. The finite temperature result is obtained if the boundary is taken to be a circle with

periodicity t ∼ t+ β. Going once around the circle, the group element g has to obey

g(t+ β) = g(t) (6.14)

in order to be single-valued. It is straightforward to see that this identification can be

achieved by the field redefinition

y = tan

(
πh(t)

β

)
(6.15)

under which the Schwarzian action reads

I[h] = X̄

∫
dt

(
{h, t}+

2π2

β2
(h′)2

)
. (6.16)

From the point of view taken in this section, all homogeneous spaces based on the alge-

bra sl(2,R) can be equipped with the above boundary conditions that lead to a Schwarzian

action on the respective boundaries, modulo possible subtleties concerning the topology of

the bulk spacetime; see e.g., [81] for the dS2 case.9

9While the case of the two-dimensional light cone of section 3.2 has not been worked out in detail, it is

highly suggestive in light of the results [82, 83].
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6.2 AdS-Carroll2

We turn our attention to a non-Lorentzian spacetime. As apparent from table 1, the alge-

bra of extended AdS-Carroll (AdSC) is isomorphic to the centrally-extended 2d Poincaré

algebra. The interpretation of the generators, however, when viewed as a homogeneous

space is different. We expand the (co)adjoint vector X and gauge field as

X = X0H + ZP +XB +X1M A = e0H + e1P + ωB + Y M (6.17)

where the components of the former are labelled such that X0 enforces the torsion con-

straint for e0 and so forth. In contrast to the (Euclidean) AdS2 case above, boundary

condition for this spacetime have not been discussed in the literature. We therefore turn

to the algebraic algorithm presented in section 5.2 in order to look for consist boundary

conditions.

From the form of the algebra presented in table 1 it is unclear whether a two-

dimensional non-abelian algebra exists, but after the basis change

L± = H± B (6.18)

one finds two subalgebras spanned by {L+, P} and {L−, P} respectively. We choose the

latter as the subalgebra the generators of which are imposed as constraints (the former

leads again to identical conclusions upon redefinition of the radial coordinate). The fixed

element K in (5.11) is then required to be of the form K = L+ +γM M, with γM arbitrary such

that 〈L−,K〉 is non-zero and the constraints associated to P and L− become second-class.

This translates to boundary conditions reminiscent of highest-weight gauge

A = (eρL+ + L(t)e−ρL− + T (t)P1 + γMM) dt+ dρ P1 (6.19a)

X = eρ X̄ L+ +O(1) (6.19b)

where the radial dependence is captured by the group element b = exp(ρ P), and the form of

the dilaton field follows from the universal boundary condition (5.2) where we set ∂tf = X̄.

Under gauge transformations with generator λ = λ+L+ + λ−L− + λPP + λMM that

preserve the form of A in (6.19) the state-dependent functions transform as

δT = λ+T ′ + λ′+T − λ′′+ δL = λ+L′ + 2Lλ′+ −
1

2
(λ′MT + λ′′M) . (6.20)

This transformation law is the hallmark of twisted warped symmetry. Both central charge

and u(1) level are zero so that the only non-trivial cocycle is the twist, κ = 1 in the

conventions of [84, 85]. The fact that the symmetry algebra iso(1, 1)c is naturally related to

warped Virasoro symmetries was also found in the work [38] that studied three-dimensional

Chern-Simons theory based on two copies of iso(1, 1)c and uncovered a warped Virasoro

symmetry as asymptotic symmetry algebra. We therefore expect the boundary action to

be related to some version of the warped Schwarzian action of [85] at these specific values

of the central charges. We will find this expectation confirmed below.
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In order to obtain some geometric insight into the boundary condition, we can recover

from (6.19) the zweibein

e0 = (eρ +Me−ρ) dt e1 = T dt+ dρ (6.21)

and thus the Carrollian structure

q = (T dt+ dρ )2 n =
1

eρ +Me−ρ
(∂t − T ∂ρ) (6.22)

where q is the degenerate metric and n denotes the vector field lying in its kernel. This

AdSC spacetime can be regarded as a null surface embedded in three-dimensional AdS

space. More precisely, starting from Poincaré patch coordinates in three dimensions

ds2 = dρ2 − eρ dx+ dx− (6.23)

the null-surface x− = 0 has induced degenerate metric and normal vector of the form

q = dρ2 n = e−ρ∂+ (6.24)

coinciding with (6.22) in the case T = M = 0 which one may regard as the vacuum

configurations of (6.19). The boundary of the null-surface is obtained in the limit ρ→∞.

The boundary coordinate t of the BF theory is subsequently interpreted as a null-coordinate

along the boundary of AdS3.

We address one more interesting feature of the AdSC geometry (6.22). When ap-

proaching the boundary ρ→∞, the degenerate metric q diverges while the vector n goes

to zero. But upon introducing the boundary defining function Ω = e−ρ and rescaling both

quantities by the conformal factor q → Ω2q, n→ Ω−1n, one finds that the pull-back of the

AdSC structure to the boundary Ω = 0 yields

q = 0 n = ∂t . (6.25)

Since Ω is defined only up to a non-vanishing factor, one finds as the boundary structure

of AdSC spacetimes a conformal class of vectors together with the zero metric. This is

precisely the same boundary structure as 2d asymptotically flat spacetimes. So not only

share these geometries the same local symmetry group, i.e., the Poincaré group, but also

the same conformal boundary structure.

We turn now to the boundary action that can be obtained from the above boundary

conditions. Parametrizing the group element as

g = eyL+ eφ−L− eφPP ezZ (6.26)

the current constraints implied by (6.19)

g−1∂tg|+ = 1 g−1∂tg|M = γM (6.27)

allow to solve φ−, φP algebraically in terms of y, z due to the second-class nature of the

constraints. Plugging the solutions into the action (6.9) leads to

I = X̄

∫
dt
(
z′(log y′)′ − z′′ + γM (log y′)′

)
. (6.28)
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We recognize this as a form of the twisted warped action of [85, 86].10 In the parametriza-

tion (6.26), the two free functions in the connection (6.19) are given by

T = −(log y′)′ L =
1

2

(
z′(log y′)′ − z′′ − γM(log y′)′

)
(6.29)

and the equations of motion are equivalent to their conservation

∂tT = ∂tL = 0 . (6.30)

Finally, this action is invariant under the finite transformations

y 7→ a+ y c z 7→ z + d+ b y (6.31)

that correspond to the global symmetry group of AdSC, i.e., ISO(1, 1)c. As in the

Schwarzian case discussed above, these transformations should be interpreted as gauge

transformation arising due to the redundancy in the reduction.

As a final comment we remind the reader that the AdSC theory discussed here exhibits

the same algebra as dS-Galilei and 2d Minkowski space. Consequently, the boundary con-

ditions (6.19) are a priori also applicable to those theories albeit with different geometrical

interpretation of generators and free fields. Indeed, the work [86] found essentially the

same action, but with complex fields, as boundary action in the case of (Euclidean) flat

space and found an explicit relation to a scaling limit of the effective action of the complex

SYK model.

6.3 Other kinematical algebras

In the last two sections we constructed boundary actions for hyperbolic space/Euclidean

AdS2 and AdS-Carroll2 as representatives for all kinematical spacetimes based on so(2, 1)

and iso(1, 1)c. Disregarding the sphere and the static spacetime it remains to discuss

spacetimes with symmetry algebras iso(2)c and Heisenbergcc, i.e., spacetimes in the second

and fourth block of table 1, in order to cover all kinematical algebras with invariant metric.

According to the algorithm of section 5.2 we should look for even-dimensional non-

commutative subalgebras that we can use to write down boundary conditions that reduce

the dynamics of the point particle action (5.7). Starting with the doubly extended Heisen-

berg algebra that corresponds to e.g., flat Carroll spacetime, we find that the form of the

algebra does not allow for any such subalgebra. The algebra is nilpotent from which follows

that all two-dimensional subalgebras are abelian. Furthermore, the center of the algebra is

two-dimensional so that any four-dimensional subalgebra necessarily contains an element

that commutes with all of its remaining generators. Boundary conditions that derive from

the algebraic structure and act by restricting the charges Q (5.9) will therefore lead to

first-class constraints and gauge symmetry in the boundary action.

In the case of the algebra iso(2)c corresponding to e.g., AdS-Galilei, it is straightfor-

ward to show that no two-dimensional non-abelian subalgebra exists unless one allows the

algebra, and thus the fields, to become complex.

10Upon redefining y = eiu this result agrees with the zero-temperature version of [41].

– 25 –



J
H
E
P
0
2
(
2
0
2
1
)
1
3
4

This means that the procedure in section 5 needs to be modified to construct boundary

actions for these examples. The simplest ‘modification’ is to not enforce any constraints

at all, i.e., to stick with the most general boundary conditions. In this case the boundary

action is always given by (5.7).

We leave the construction of alternative boundary actions for these cases for future

work.

7 Applications and generalizations

The main conclusion of our work is that it is done — in particular, we have provided

answers to the questions posed in the introduction: there is a NC version of 2d dilaton

gravity, discussed in section 3.4; the Schwarzian analogue for the AdS-Carroll2 limit of JT

gravity is the twisted warped action, discussed in section 6.2.

Rather than summarizing our results in past tense, we address potential applications

of various limits of JT gravity and their dilaton generalizations in section 7.1, and point

out some interesting and viable generalizations in section 7.2.

7.1 Selected applications

Without claiming to be complete, here is a list of selected applications of our results, listed

by order of appearance:

• Light cone theory. The light cone Lagrangian (3.8) was easy enough to construct,

but the physical interpretation of the latter remains to be explored. As advertised

in [39] the light cone theory might be interesting in relation to asymptotically flat

spacetimes in three dimensions; cf. [83] for the four-dimensional case. Thus, likely ap-

plications of (3.8) are in the context of three-dimensional asymptotically flat gravity.

Moreover, it could be interesting to study a dilaton gravity-inspired generalization of

the light cone theory, analogous to (3.5).

• Newton-Cartan dilaton gravity. The NC dilaton gravity action (3.21) has the

same status for NC gravity as generic dilaton gravity (3.5) (or its torsionful gener-

alization below that equation) for Riemann-Cartan gravity. While we have shown

numerous similarities — the existence of constant and linear dilaton sectors, the

exact solubility of the equations of motion, the possibility to accommodate higher-

dimensional gravity models — we have provided only one example. Given the vast

literature of ordinary 2d dilaton gravity (see the table in [58] for a selected list of

models) it seems likely that there are several interesting NC dilaton gravity models

waiting to be applied.

• Carroll dilaton gravity. We were slightly less explicit concerning Carroll dilaton

gravity (3.33), but clearly the same techniques that we used to study NC dilaton

gravity can be applied there. Similar remarks concerning applications as in the

previous item apply to this case, with the additional interesting option to explore the

relationship to other field theories on null manifolds, see, e.g., [87, 88].
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• The rest. We were even less explicit regarding several other entries in table 1, largely

because we do not have a good proposal for applications of, say, the para-Galilei or

the static case. Nevertheless, such applications may exist, and if they do, again the

same techniques as for NC dilaton gravity can be applied to construct and solve

JT-like and dilaton gravity-like models that build upon these homogeneous spaces.

• Boundary actions. The loosest set of boundary conditions for any BF-type model

always leads to a boundary action describing a particle on a group manifold (5.7).

Since for many gravity-inspired applications something like Brown-Henneaux bound-

ary conditions is preferred, it will be rewarding to apply the Hamiltonian reduction of

the boundary action described in section 5.2 to other models of interest. Such appli-

cations will be analogous to the example of AdS-Carroll2 we provided in section 6.2,

which led to a twisted warped action (6.28).

• Lifshitz, Schrödinger et al. The theories mentioned in appendices B, C also lead

to BF theories, and thus there will be ‘dilaton gravity’ versions thereof, analogous to

section 3.4. Some of these models may be useful for applications in the context of

Lifshitz or Schrödinger holography.

Besides the rather direct applications above there are also several exciting potential

applications that will require — in some cases substantial — further input (here we order

the items by likelihood of substantial progress):

• JT/SYK-like correspondences. Possibly the largest set of potential applications

is to generalize the JT/SYK correspondence to interesting limiting cases. The fact

that our models emerge from a limit of JT suggests that one can also implement a

similar limit on the dual quantum mechanics model. A concrete example realizing this

expectation is the flat space/cSYK correspondence discussed in [86]. Of course, taking

limits is just the first step in a much bigger picture. Many of the developments in the

JT/SYK correspondence associated with chaos, relation to random matrix models,

applications to quantum gravity, etc. (see [13–15] for reviews) could be transposed to

these limiting cases. We are convinced that this route can lead to numerous exciting

discoveries in the near future.

• Relation to three-dimensional models. There is a long-term relationship be-

tween three- and two-dimensional gravity, since the latter arises by dimensional re-

duction of the former. But the relation is deeper than that. Also at a technical level

there are numerous similarities, particular in the respective gauge theoretic formu-

lations as Chern-Simons and BF-theories — both are topological gauge theories of

Schwarz type and can feature non-trivial edge modes, depending on the boundary

conditions. For metric BF theories the relation should be straightforward, since the

operations of holographic reduction of three-dimensional Chern-Simons to 2d WZW

at the boundary commutes with dimensional reduction and yields a corresponding

holographic reduction of 2d BF to a corresponding boundary theory, see, e.g., [13].

Indeed many of the findings and tools used for 2 + 1 dimensional Chern-Simons, like,
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e.g., in [89–92], can be applied to BF theories. However, for WZW models without

invariant metric the situation is not well understood in general; for example WZW

models based on Lie algebras admit a Sugawara construction only when possessing

an invariant metric [93, 94]. As rôle model we point here to a recent example by

Chaturvedi, Papadimitriou, Song and Yu [95] (see also refs. therein), who discussed

the dimensional reduction of AdS3 Einstein gravity with Compére-Song-Strominger

boundary conditions [73], both on the gravity side and the SYK-side. Analogous

applications and relations to higher-dimensional limiting theories should exist for the

various limits of JT discussed in our work.

• Thermodynamics and Cardyology. Theories without light cone may have a hard

time of defining black hole-like entities. Nevertheless, some of these theories do feature

highly entropic objects corresponding to finite temperature states, see e.g. [40, 96],

and regardless of their geometric interpretation it is of interest to understand their

entropy and, whenever possible, provide a Cardy-inspired microstate counting. A

first step in this direction could be a thermodynamical analysis starting with the free

energy derived from the on-shell action, analogous to 2d dilaton gravity [8].

• Quantization and holography. Quantization of 2d NC dilaton gravity seems a fea-

sible endeavor, due to the quantum integrability of BF-theories (see the review [45]),

and might provide an interesting avenue to Galilean and Carrollian quantum gravity

and holography. While this leads to various puzzles, like is there something like an

information loss problem in any of these theories?, we emphasize that quantizing all

our models is possible and could lead to unexpected insights.

• Minkowski and AdS-Carroll. As homogeneous spaces Minkowski and AdS-

Carroll are both based on the Poincaré algebra and are connected via an exchange of

boosts and spatial translations, a relationship that is true in any dimension [49]. The

findings of section 6.2 suggest that there might be a deeper relationship that remains

to be explored. Two observations triggered our interest: 1.) Since the cosmologi-

cal constant, that gives AdS its ‘boxlike’ properties, is still nonzero for AdS-Carroll

it might inherit similar advantageous holographic features. 2.) Recent works on

celestial amplitudes (for a review see [97]) are based on boost eigenstates, rather

than the more conventional momentum eigenstates. This therefore mirrors the above

described exchange.

• Relation to JT deformations of JT? The limits of JT gravity that we considered

break/deform Lorentz symmetries and typically introduce an extra u(1). Also Guica’s

JT deformations [98] break/deform Lorentz symmetries and require an extra u(1).

Given that the more standard T T̄ -deformations upon dimensional reduction have

a nice interpretation in terms of flow equations in 2d dilaton gravity [99–101], we

speculate that a similar relationship could hold between JT deformations and certain

limits of JT gravity. Addressing this last point would require a better understanding

of the second and third item in this list.
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Most likely there are further potential applications that are missing in our lists above,

but let us move on to our final point, generalizations.

7.2 Selected generalizations

Here is a list of five classes of generalizations that we consider promising and viable:

• More general boundary conditions. The algorithm explained in section 5.2

imposed a number of assumptions. In particular, K and γ in the constraint (5.11)

were assumed to be state-independent, and the constraint algebra (5.12) was enforced

to be second class. Neither of these assumptions is mandatory, so by relaxing either

of them it is possible to construct a whole menagerie of new boundary conditions.

A full classification of all possibilities could be worthwhile, for novel applications

and for purely theoretical reasons, to get a better understanding of the landscape of

boundary conditions.

• Additional topological fields. Our focus was on gravity variables, zweibein and

connection, but for some applications it can be of interest to add non-abelian gauge

fields. Such a generalization is straightforward in the BF-formulation and will lead to

new conserved charges and additional boundary degrees of freedom, but will maintain

the topological nature of the theory.

• Supersymmetry and/or higher spins. A variant of the previous item is to include

supersymmetry and consider various limits of 2d supergravity theories and their

boundary actions (see [102] and refs. therein). Similarly, one can extend to higher

spin gravity (along the lines of [68, 103]) and take various limits analogous to the

present work. In all these generalizations one would still keep the topological nature

of the underlying theory.

• Non-linear gauge symmetries. Chern-Simons models in 3d are rigid, i.e., their

most general consistent deformation (in the sense of Barnich and Henneaux [104]) is

another Chern-Simons model with the same number of gauge symmetries. A similar

story applies to 2d BF theories, but with an interesting extension: the most general

consistent deformation of 2d BF is a non-linear gauge theory [105] known as Poisson-

sigma model (PSM) [106]. The Poisson-sigma model Lagrangian

LPSM[XI , AI ] = XI dAI +
1

2
P IJ(XK)AI ∧AJ (7.1)

features again scalars XI and connection 1-forms AI and is first order in deriva-

tives, just like BF theories, but the interpretation of the XI is now as target

space coordinates spanning a Poisson manifold. The main new ingredient is an

arbitrary Poisson-tensor P IJ = −P JI , subject to the non-linear Jacobi identities

P IL∂LP
JK + cycl(I, J,K) = 0. In this languages, BF theories (with or without

metric) are merely special cases of PSMs with linear Poisson tensor, and the limits

we have taken can be rephrased as corresponding limits of the Poisson tensor. Se-

cretly, we have already introduced specific PSMs when providing the action for 2d
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dilaton gravity (3.5), NC dilaton gravity (3.21) [see particularly the non-linear gauge

symmetries (3.26)] and Carroll dilaton gravity (3.33). In order to construct bound-

ary actions for all these models it will be necessary to understand how this can be

done in generic PSMs, which is why this particular generalization seems eminently

worthwhile.

• Adding matter. Topological gauge theories like BF or PSM have numerous techni-

cal advantages, but miss an important aspect of physics, namely locally propagating

physical degrees of freedom. A possible compromise between the conflicting desires

of keeping the model simple and physically rich is to couple BF theories (or PSMs) to

matter degrees of freedom. Some consequences of such a coupling are reviewed in the

context of 2d dilaton gravity in [30]. While ambitious, it could pay off to add matter

to theories like NC or Carroll dilaton gravity and address some questions concerning

1-loop effects, backreactions, etc.

While further generalizations not envisaged here are conceivable, the lists above provide

already a plethora of possibilities for future research.
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discussions. We want to thank José Figueroa-O’Farrill for valuable advice concerning

metric Lie algebras.

DG was supported by the Austrian Science Fund (FWF), projects P 30822-N27 and

P 32581-N27. During the start of this project the research of SP was supported by the

ERC Advanced Grant “High-Spin-Grav” and by FNRS-Belgium (Convention FRFC PDR

T.1025.14 and Convention IISN 4.4503.15). SP was supported by the Leverhulme Trust

Research Project Grant (RPG-2019-218) “What is Non-Relativistic Quantum Gravity and

is it Holographic?”. The work of JH is supported by the Royal Society University Research

Fellowship “Non-Lorentzian Geometry in Holography” (grant number UF160197). JS was

supported by the Erwin-Schrödinger fellowship J-4135 of the Austrian Science Fund (FWF)

and by the NSF grant 1707938.

A Metric Lie algebras of low dimension

We summarize low-dimensional real Lie algebras that admit an invariant metric (see,

e.g., [107] for a review). The Roman numerals refer to the name of specific Lie algebras

according to Bianchi’s classification [64, 65], cf., our summary table 1.

dim(g) = 1 and dim(g) = 2. For one and two dimensional Lie algebras solely the

abelian Lie algebras admit an invariant metric.

dim(g) = 3. Three dimensional Lie algebras that admit an invariant metric are either

abelian (denoted by Bianchi as I) or simple and amount to three distinct cases in total.

The simple one is either sl(2,R) ' so(2, 1) ' so(1, 2) ' su(1, 1) ' VII, which correspond

– 30 –



J
H
E
P
0
2
(
2
0
2
1
)
1
3
4

to the (A)dS and light cone cases or so(3) ' su(2) ' IX leading to the sphere (or Euclidean

de Sitter), see table 1.

dim(g) = 4. There exist five metric Lie algebras of dimension four. One of them is

the abelian Lie algebra. Additionally, there are the trivial central extensions of the two

simple three dimensional cases R× sl(2,R) and R× so(3,R). They serve in this work as a

starting point for contractions to the remaining two metric solvable algebras given by the

(centrally) extended Euclidean iso(2)c = VIIc0 or Poincaré algebra iso(1, 1)c = VIc0 (which

are isomorphic to their (A)dS-Carrollian and (A)dS-Galilean cousins, cf., table 1). The

centrally extended Poincaré algebra is also known as Maxwell or Boidol algebra and the

Euclidean case is sometimes referred to as oscillator algebra.

dim(g) = 5. For five dimensional Lie algebras there are six Lie algebras that admit an

invariant metric, five of which are trivial central extensions of the four dimensional ones.

The remaining unique indecomposable metric Lie algebra is Heisenbergcc ' IIcc of our

table 1 and underlies the doubly extended Carrollian and Galilean theories.

dim(g) > 5. Beyond dimension five one can use the classifications of metric Lie algebras

that have been obtained for signature (n, 1) [108] (see also section 4 in [109]), (n, 2) [110]

and (n, 3) [111]. Kinematical Lie algebras and their relation to metric Lie algebras in any

dimension have also been studied in [39]. The higher-dimensional algebras do not play any

rôle in the present work.

B Lifshitz, Schrödinger and 1/c expanded BF theories

Here we provide all the necessary data to construct Lifshitz, Schrödinger and 1/c expanded

BF theories. None of them (even with central extensions taken into account) lead to metric

BF theories.

The Lifshitz algebra is spanned by dilatations (D), time (H) and space (P) translations

[D, H] = zH [D, P] = P (B.1a)

with the most general (degenerate) invariant bilinear form given by

〈D, D〉 = χ . (B.2)

This algebra has no nontrivial central extensions.

For z = 2 this algebra can be enhanced to the Schrödinger algebra by adding mass M

and special conformal transformations C,

[B, P] = M [D, H] = 2 H (B.3a)

[D, P] = P [D, B] = −B (B.3b)

[C, P] = B [C, D] = 2 C . (B.3c)

This algebra has the same bilinear form as the Lifshitz case, but admits one central exten-

sion [H, C] = Z. Even including this central extension leaves the bilinear form degenerate.
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The nonzero commutation relations of the 1/c expanded Poincaré algebra (till level 1)

are given by [112]

[B, H] = P [B, P] = H(1) [B, H(1)] = P(1) [B(1), H] = P(1) (B.4)

with the most general degenerate invariant bilinear form

〈B, B〉 = χB 〈B, H〉 = χBH 〈H, H〉 = χH (B.5a)

〈B, B(1)〉 = χBB(1) 〈H, B(1)〉 = χHB(1) 〈B(1), B(1)〉 = χB(1) . (B.5b)

These algebras appear in the context of Lie algebra expansions (see, e.g., [113–115]) which

have recently found applications in the context of general relativity. The notation can be

explained as follows. Take the Cartan connection 1-form, say

A = Bω + τH + eP + · · · (B.6)

where the dots denote possibly other elements in the Lie algebra. When the 1-forms τ , e

etc. depend on the speed of light (as is the case for the Poincaré algebra) we can assume

that the c dependence is analytic so that we can Taylor expand

τ =
∞∑
n=0

τ(n)c
−2n (B.7)

where we assume only even powers of c−1. Substituting this expansion into the Cartan

connection and defining a Lie algebra generator for each τ(n) we end up with the Lie algebra

elements H(n) = Hc−2n (and analog for the remaining generators). Since the structure

constants can also depend on c−2 it is possible that the bracket of a level n with a level m

generator gives a generator of a level that is strictly larger than m + n. The terms with

superscript (1) denote generators of next to leading order (‘level 1’). The level 0 algebra,

where one quotients out all Lie algebra elements of level bigger than 0 is again the Galilei

algebra. The algebra (B.4) is the algebra where all levels n > 1 have been modded out.

The 1/c expanded algebra in 1+1 dimensions allows for 6 nontrivial central extensions

M, Z1 to Z5

[B, H] = P [B, P] = H(1) [B, H(1)] = P(1) + Z1 [B(1), H] = P(1) + Z2 (B.8a)

[H, P] = M [H, P(1)] = Z3 [P, H(1)] = −Z3 [B, B(1)] = Z4 (B.8b)

[B, P(1)] = Z6 [P, B(1)] = −Z6 . (B.8c)

A necessary condition for a non-degenerate invariant metric would be to only add two

central extensions to (B.4), cf., (4.3). We have checked that the addition of M and any of

the other central extensions does not lead to such a non-degenerate invariant metric.

C Coadjoint theories and their limits

For completeness we briefly mention another class of theories where the invariant metric

stays, basically by construction, non-degenerate under limits. These theories have the dis-

tinctive feature that the algebraic structure generalizes to generic dimension (see, e.g., [39]).
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They are based on so called coadjoint Lie algebras, which are a subcase of the already

mentioned double extension [46]. Given a Lie algebra g they are defined on the vector space

direct sum g+̇g∗ (spanned by eα and e∗α, respectively) by the commutation relations

[eα, eβ ] = c γ
αβ eγ [eα, e

∗β ] = −c β
αγ e∗γ [e∗α, e∗β ] = 0 (C.1)

and the invariant metric

〈eα, eβ〉 = hαβ 〈eα, e∗β〉 = δβα (C.2)

which is non-degenerate due to the second term. The other part of the invariant metric

hαβ is some arbitrary (possibly degenerate or zero) invariant symmetric bilinear form on

g. The extension of g by g∗ is not central in general.

We discuss all limits and theories at once. Starting with (A)dS this means that addi-

tionally to commutation relations (4.1) we have the nonzero commutators

[B, H∗] = −ĉ2P∗ [B, P∗] = ±Ĉ2H∗ (C.3a)

[H, B∗] = Λ̂P∗ [H, P∗] = ∓Ĉ2B∗ (C.3b)

[P, B∗] = −Λ̂H∗ [P, H∗] = ĉ2B∗ (C.3c)

and in addition to the invariant metric (4.2), which corresponds to the hαβ part described

above, we have by construction

〈B, B∗〉 = 1 〈H, H∗〉 = 1 〈P, P∗〉 = 1 . (C.4)

As already discussed, the part of the invariant metric given by (4.2) is degenerate under

limits; it is (C.4) that guarantees the existence of the non-degenerate invariant metric. The

limit of the algebra g induces the limits of g∗, which are well defined by construction (a

fact that generalizes under certain circumstances to double extensions [116]).

Having provided the Lie algebra and the invariant metric it is now an easy exercise to

write down the action by just inserting into the Lagrangian (2.4). There are two curious

features of the BF theories based on coadjoint Lie algebras. First, the existence of the

algebras and their invariant metric is not constrained to 1+1 dimensions and as such these

are the algebras that are interesting candidates for generalization to higher dimension (see

section 7 of [39] for details). Second, a comment in relation to 2+1 dimensions and Chern-

Simons theories: the coadjoint Lie algebras are precisely the ones that can be written

as 2 + 1 dimensional BF theories, see, e.g., section 6.2.2. [45]. In particular, the three-

dimensional Poincaré algebra can be regarded as the coadjoint algebra of so(3) so that its

Chern-Simons theory can be equivalently regarded as a (2+1)-dimensional BF theory of

so(3). For further recent works based on these algebras we refer to [117–119].

D Matrix representations

We collect in this appendix matrix representations that are useful in the calculations of

section 5. In the following, let X
(n)
ij denote the n×n matrix with entry 1 in the slot ij and

zero everywhere else.
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The sl(2,R) basis L+, L−, L0 with commutation relations

[Lm, Ln] = (m− n)Lm+n m,n = −1, 0, 1 (D.1)

used in the calculation of section 6.1 is conveniently represented as

L+ = X
(2)
21 L− = −X(2)

12 L0 =
1

2
(X

(2)
11 −X

(2)
22 ) (D.2)

The invariant bilinear in this basis is given by

〈L+, L−〉 = 2 〈L0, L0〉 = −1 . (D.3)

The AdSC algebra in the basis L+, L−, P, M used in section 6.2 with commutation rela-

tions

[L±, P] = ±L± [L+, L−] = −2M (D.4)

can be represented by

L+ = X
(3)
12 L− = X

(3)
23 P = X

(3)
22 M+ = −2X

(3)
13 . (D.5)

The invariant bilinear form in this basis is given by

〈L+, L−〉 = 2 〈P, M〉 = 1 . (D.6)

Finally, the doubly extended Heisenberg algebra has the matrix representation

B = X
(5)
12 −X

(5)
35 P = X

(5)
13 +X

(5)
25 Z = −X(5)

14 M = 2X
(5)
15 H = X

(5)
23 +X

(5)
34 . (D.7)
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boundary conditions, JHEP 10 (2017) 203 [arXiv:1708.08471] [INSPIRE].

[81] J. Cotler, K. Jensen and A. Maloney, Low-dimensional de Sitter quantum gravity, JHEP 06

(2020) 048 [arXiv:1905.03780] [INSPIRE].

[82] S. Carlip, The dynamics of supertranslations and superrotations in 2 + 1 dimensions, Class.

Quant. Grav. 35 (2018) 014001 [arXiv:1608.05088] [INSPIRE].

[83] K. Nguyen and J. Salzer, The Effective Action of Superrotation Modes, arXiv:2008.03321

[INSPIRE].

– 38 –

http://dx.doi.org/10.1023/A:1015357132699
https://doi.org/10.1007/BF01217730
https://doi.org/10.1007/BF01217730
https://inspirehep.net/search?p=find+doi%20%2210.1007%2FBF01217730%22
https://doi.org/10.1016/0550-3213(89)90436-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB326%2C108%22
https://doi.org/10.1007/JHEP05(2018)083
https://arxiv.org/abs/1802.01562
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.01562
https://doi.org/10.1007/JHEP04(2020)186
https://arxiv.org/abs/1912.12285
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.12285
https://doi.org/10.1007/JHEP02(2019)079
https://doi.org/10.1007/JHEP02(2019)079
https://arxiv.org/abs/1808.03263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.03263
https://doi.org/10.1007/JHEP02(2020)125
https://doi.org/10.1007/JHEP02(2020)125
https://arxiv.org/abs/1912.08207
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.08207
https://doi.org/10.1007/BF01211590
https://doi.org/10.1007/BF01211590
https://inspirehep.net/search?p=find+doi%20%2210.1007%2FBF01211590%22
https://doi.org/10.1007/JHEP05(2013)152
https://doi.org/10.1007/JHEP05(2013)152
https://arxiv.org/abs/1303.2662
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.2662
https://doi.org/10.1007/JHEP08(2013)044
https://arxiv.org/abs/1303.3296
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.3296
https://doi.org/10.1007/JHEP10(2016)023
https://arxiv.org/abs/1608.01308
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.01308
https://doi.org/10.1088/0264-9381/12/12/012
https://doi.org/10.1088/0264-9381/12/12/012
https://arxiv.org/abs/gr-qc/9506019
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9506019
https://doi.org/10.1088/0264-9381/24/5/F01
https://arxiv.org/abs/gr-qc/0610130
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0610130
https://arxiv.org/abs/hep-th/9112068
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9112068
https://doi.org/10.1007/JHEP10(2017)203
https://arxiv.org/abs/1708.08471
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.08471
https://doi.org/10.1007/JHEP06(2020)048
https://doi.org/10.1007/JHEP06(2020)048
https://arxiv.org/abs/1905.03780
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.03780
https://doi.org/10.1088/1361-6382/aa9809
https://doi.org/10.1088/1361-6382/aa9809
https://arxiv.org/abs/1608.05088
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05088
https://arxiv.org/abs/2008.03321
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.03321


J
H
E
P
0
2
(
2
0
2
1
)
1
3
4

[84] H. Afshar, S. Detournay, D. Grumiller and B. Oblak, Near-Horizon Geometry and Warped

Conformal Symmetry, JHEP 03 (2016) 187 [arXiv:1512.08233] [INSPIRE].

[85] H.R. Afshar, Warped Schwarzian theory, JHEP 02 (2020) 126 [arXiv:1908.08089]

[INSPIRE].
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