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1 Introduction

There are diverse area laws in different branches of physics. The prototype is originated
from black hole physics where the thermal entropy of a black hole is proportional to the
area of its event horizon [1, 2]. This unusual property of black hole has stimulated varies
modern idea of theoretical physics.

In the context of quantum field theory (QFT), people have already noticed a similar
area law for geometric entanglement entropy [3-6] several decades ago. One could find the
details in the review paper [7]. Its connection to gravity has been established by the work
of Ryu and Takayanagi [8], in which they proposed that the entanglement entropy of a
CFT is equal to the area of a minimal surface in the bulk AdS spacetime.

In this paper, we present a new area law in general higher dimensional CFTs (d > 2)
following the work [9]. In that work, the author argued that (m)-type CCF [10, 11] of



OPE block may obey area law from the analytic continuation of (m — 1,1)-type CCF. Just
like entanglement entropy of continues QFT, it is divergent. The leading term obeys area
law whose coefficient depends on the energy scale. In the sub-leading terms, cutoff inde-
pendent information can be extracted, usually, this is encoded in a logarithmic divergent
term. However, the logarithmic structure turns out to be much more richer than entangle-
ment entropy. We summarize the area law and logarithmic behaviour schematically in the
following formula

d—2 R 1 R
<QA[01} . QA[Om]>c = ’)’Gdj + - —I—pqlogq ? +pq_1 logq_ ? —+ e (11)

In this equation, Q4[] is an OPE block associated with a primary operator O. We will
review the definition of OPE block in the following section. The subscript A denotes the
spacetime region where the OPE block lives in. The quantity R is the typical size of region
A. The small positive parameter € is a UV cutoff. The constant ~ is cutoff dependent,
therefore it is not physical. The integer ¢ is the maximal power of the logarithmic terms
in the CCF whose coefficient pg is non-zero. The exact value of ¢ may depend on the OPE
block and the spacetime dimension. According to the value of ¢, we classify the logarithmic
behaviour of (m)-type CCFs. We will detail its value in the following sections. When the
positive value m < 3, we find that ¢ may be in the region

0<q<2. (1.2)

The - - - terms in the formula are the possible sub-leading terms which are cutoff dependent.
Therefore we will not be careful about their exact forms. The physical information is
encoded in the coefficient p,. We establish a UV/IR relation to extract the coefficient p,
based on the analytic continuation of conformal block.

This paper is organised as follows. We begin by introducing OPE block and CCF
used in this work in section 2. In section 3 we will derive the area law and logarithmic
behaviour of (m)-type CCF. We classify different CCFs according to the maximal power ¢
of the logarithmic term in the CCFs. At the same time, we obtain a UV /IR relation which
is useful to extract the cutoff independent coefficient py. We compute several examples
in the following section. In section 5, we discuss an “inconsistency” problem and solve it
partly. Section 6 contains some concluding remarks in this work.

2 Setup

2.1 OPE block

In CFTs, operators are classified into (quasi-)primary operators O and their descendants
0,0, - -- O. A general primary operator is characterized by two quantum numbers, confor-
mal weight A and spin J. Under a global conformal transformation x — 2/, a primary
opelrator1 transforms as

O(x) — \%Z/\_A/d(’)(x). (2.1)

1'We use scalar field as an example.



where |02’ /0z| is the Jacobian of the conformal transformation of the coordinates, A is
the conformal weight of the primary operator and d is the spacetime dimension. Operator
product expansion(OPE) of two separated primary scalar operators O;(z1)0;(x2) is to
expand it in a local complete basis around at a suitable point

Oi(21)0j(w2) =Y Cijklawra 2729 (Op(za) + - -+), (2.2)
k

where - - - are descendants of the primary operator Q. Its form is fixed by global conformal
symmetry, therefore it just contains kinematic information of the CFT. The summation
is over all possible parimary operators in the CFT. The constants Cjj; are called OPE
coefficients which is related to the three point function of the primary operators. They
are the only dynamical parameters in the theory. The constants A;, A;, Ay are conformal
weights of the corresponding primary operators. The distance of the two points z1 and xo
is denoted as |x12|. By collecting all kinematic terms in the summation, we can rewrite the
OPE (2.2) as

Oi(21)0;(x2) = |w12| 272" Ci@QY (w1, 22). (2.3)
k

The objects Q? (z1,x2) are called OPE blocks [12-14]. They are non-local operators in
the CFT and depend on the position of external operators ;1 and zs. The upper index 4
and j show that it also depends on the quantum number of the external operators O; and
Oj. It is easy to see that the OPE block has dimension zero. Under a global conformal
transformation x — 2/, an OPE block Q?g (z1,x2) will transform as

QY (x1,22) — f(a}, 2h) QY (), zh). (2.4)

The explicit form of f(x},x5) is not important in this work. When the two external
operators are the same, we have f(x},z%) = 1 and the OPE block will be invariant under
global conformal transformations. One can also show that the OPE block is independent
of the external operator in this special case. We will relabel such kind of OPE block as

QO] = QF (x1, 2). (2.5)

The subscript A denotes the region determined by the two points 1 and xo where the two
external operators insert into. The operator in the square bracket reflects the fact that
the OPE block is generated by the primary operator Q. We omit the information of ¢
since this OPE block is insensitive to the external operators. We will classify the primary
operators O, into conserved currents 7 and non-conserved operators O. A general primary
operator obeys the following unitary bound [15]?

A>J+d-2,  J>1,
A> 2 J =0.

A conserved current J with spin J(J > 1) will satisfy A = J 4+ d — 2. All other primary
operators are non-conserved operators. Correspondingly, the OPE block (2.5) generated

2The operators in this work are symmetric and traceless. We will also not discuss fermion operators.



by a conserved current 7 will be called a type-J OPE block. On the other hand, the OPE
block (2.5) generated by a non-conserved operator O will be called a type-O OPE block.

When the two external operators are time-like separated, the region A is a causal
diamond. The two operators are at the sharp corner of the diamond A. We can use
conformal transformations to fix

I = (17fz4)7 T2 = (_17'%:4)7 (26)
then the causal diamond A intersects ¢t = 0 slice with a unit ball 34
Ya ={(0,D)(F - Za)® <1} (2.7)

The center of the ball is 4. The boundary of 3 4 is a unit sphere S. In the context of geo-
metric entanglement entropy, the surface .S is an entanglement surface which separates the
ball ¥ 4 and its complement. The leading term of the entanglement entropy is proportional
to the area of the surface S in general higher dimensions (d > 2). There is a conformal
Killing vector K which preserves the diamond A

1
KM = 5(1 — (% —20)% — 12, —2t7) (2.8)

and it is null on the boundary of the diamond A. It generates a modular flow of the
diamond A. Any type-O OPE block corresponds to the point pair (2.6) or the unit ball
Y4 (2.7) is [16]

QalOuyps] =co,, .., /A KM KM KA 0,0, (2.9)
where the primary operator O, ..., is non-conserved
0" O,y # 0. (2.10)
It has dimension A and spin J. When the operator is a conserved current
M Ty =0, (2.11)
the corresponding type-J OPE block is

QAlTur s = €Ty, /E A (KO .o (2.12)

It can be obtained from (2.9) by using conservation law (2.11) and reducing it to a lower
d — 1 dimensional integral. The coefficient ¢ Ty ooy is also redefined at the same time.
In (2.9) and (2.12), the coefficients co
to be 1.

A very special type-J OPE block is the modular Hamiltonian [17, 18] of the region ¥ 4,

P and Cuy oo, BTE free parameters, we set them

1— (f— _’A)Q

5 Too(0, 7). (2.13)

Hy=2n / A FKOTyy = 27 / 4417
4 5

A



The modular Hamiltonian is the logarithm of the reduced density matrix pa
Hj = —logpa. (2.14)
It plays a central role in the context of entanglement entropy,
Sy = —trapalogpa =trqe HaAH,. (2.15)
More generally, Rényi entanglement entropy

n 1 7
s = - logtrap (2.16)

has been shown to satisfy an area law generally

n A

where A is the area of the entanglement surface S and € is a UV cutoff. The constant - is
cutoff dependent. The subleading terms - - - contain a logarithmic term in even dimensions

n A R
S1(4):fy€d72++p1(n)logz—|—7 (218)

where we have inserted back the radius R. The area A is related to the radius R through
the power law

A~ R2 (2.19)

The coefficient p;(n) encodes useful information of the CFT. It is easy to show that the
CCF of the modular Hamiltonian H 4 satisfies a similar area law in even dimensions,

A . R
(Hf)e =g+ +5" log =+, m>1. (2.20)

The coefficient ﬁgm) is determined from p;(n) by

A" = (=10 (L — n)p1(n) s (2.21)
We will introduce the definition of the CCF in the following subsection.

2.2 Deformed reduced density matrix and connected correlation function

Reduced density matrix of a subregion A is obtained by tracing out the degree of freedom
in its complement

pa =trip (2.22)

where p is the density matrix of the system. It can also be written as an exponential
operator formally (2.14)
pa = e Ha, (2.23)

For a causal diamond A, H4 is a type-J OPE block. Therefore it is natural to define a
deformed reduced density matrix [11] by replacing the modular Hamiltonian with a general
OPE block Q4

pa = e H@a, (2.24)



where we still use pa to label deformed reduced density matrix. The constant y is an inde-
pendent constant. In the “first law of thermodynamics” [9] associated with the deformed
reduced density matrix, it may be regarded as a chemical potential which is dual to the
OPE block Q4. The OPE block @4 can also be a linear superposition of multiple OPE
blocks. We don’t restrict the OPE block in (2.24) to be type-J. A subtle problem is that
the spectrum of @4 is not always non-negative, therefore the deformed reduced density
matrix may not be well defined in general. However, as we will show below, it is still a
useful formal tool to generate CCFs.

We define a formal generator of the (m)-type CCF through the logarithm of the vacuum
expectation value of the deformed reduced density matrix,

Ta(p) = log(e H@4). (2.25)

Then the so-called (m)-type CCF of the OPE block Q4[O] is defined as

@0, = (T 220
The first few orders are
(Qa[O)e = (Q4[O%) = (Q4[O])?,
(Qa[O1%)e = (Qa[O]?) — 3(QA[O*){(Q[O]) +2(Q4[0])*. (2.27)

When there are multiple space-like separated regions, one can define a general Y-type CCF
with the Young diagram

Y:(m1,m2,-~), my > mo > -+ > 1. (2.28)

The OPE block generated from the operator O is an eigenvector of the Casimir operator
of the conformal group with the eigenvalue C' = A(A —d) — J(J +d —2). Combining with
the boundary behaviour when x; — x5 for the OPE block, any (m,1)-type CCF will be
proportional to a conformal block

(Qa[01"Q3[0])c = D[O]GA (2), (2.29)

where B is another causal diamond, z denotes the cross ratios corresponding to the two
diamonds A and B. The OPE blocks can be different in (2.29), we write the general
result as

(QalO1] - Qa[On]QB[O])c = D[01,03, -+, Om, OlGa (7). (2.30)

The coefficient D characterizes the large distance behaviour of (m, 1)-type CCF. The ref-
erences to discuss conformal block are [19, 20]. In this work, we just need the diagonal
limit of the conformal block [21].



3 Area law and logarithmic behaviour

Motivated by the area law of Rényi entanglement entropy (2.18), or equivalently, the area
law of the (m)-type CCF of the modular Hamiltonian (2.20), we are interested in the
divergent behaviour of the (m)-type CCF of OPE blocks

When the OPE block is the modular Hamiltonian, we should reproduce the area law of
modular Hamiltonian (2.20). Therefore it is natural to conjecture that (3.1) also obeys an
area law for general OPE blocks. In the subleading terms, one may also read out cutoff
independent information. It turns out that the structure is much more richer,

d—2 R L R
(Qa[O1] - Qa[On])e = giprasy + - + pglog? ;. + pg—1log?” " +oee (3.2)

As discussed in the introduction, the maximal power of log % is ¢. We will call g the degree
of the (m)-type CCF (3.1). For example, the degree ¢ is one for the CCF of the modular
Hamiltonian (2.20) or (2.18) in even dimensions. In this paper, we will restrict the integer
m < 3, then the degree may satisfy 0 < g < 2. More explicitly,

_ {1,2, d = even (3.3)

10,1, d=odd

We will use the degree ¢ to distinguish CCFs (3.1). In the following, we will discuss the
logarithmic behaviour in detail.

In even dimensions, as (3.3), we could distinguish two classes according to the loga-
rithmic behaviour in the subleading terms.

1. Class I. The degree of the (m)-type CCF is 1. We can write (3.2) more explicitly as
R—2 R
(@AI01]+ QalOnl)e = O, - Ol gy + -+ 1[O1, -+, Ol log 4+

(3.4)

where we detail the dependence of the primary operator O; for the coefficients v and
p1. The upper index e in p; indicates that the spacetime dimension is even. The well
known example is the CCF of the modular Hamiltonians (2.20), or equivalently (2.18).
For simplicity, we set the spacetime dimension d = 4. There are many discussions
on the structure (2.18) or (2.20). We will argue the structure (2.20) in the following
way. We’d like to make use of the conclusion (2.30) by moving one OPE block to a
separated region B, then the left hand side of (3.4) becomes a (m — 1, 1)-type CCF

<H$_1HB>C = D[Tuwlv T aTumvm]G4,2(Z)- (3-5)
We can choose the region B as the causal diamond of a unit ball X5 whose radius

is R'.
g = {(0,7)]7? < R"*}. (3.6)



The center of the ball is origin. Therefore the unique cross ratio of ¥4 and Xp is®

4R’

TR AR

(3.7)

The conformal block G42(2) is well defined for 0 < z < 1, which is exactly the case
that A and B are space-like separated. Now we move the diamond B to A, then the
(m — 1,1)-type CCF becomes an (m)-type CCF. Roughly speaking

<H1T>c = hmB%A<qunilHB>c- (38)
The limit B — A is subtle, we first move x4 — 0 and then take the limit R’ — 1,
r=0, R=1l-¢ €e—=0 (3.9)

The cross ratio z approaches —oco by

e — 0. (3.10)

In this limit, the conformal block G4 2(z) becomes divergent

2
G4,2(Z) —>’?R—2+~--—12010g§+~-- . (3.11)
€ €

We have inserted back the radius R in the expression. The leading term is propor-
tional to area of the surface S. As B approaches A, the (m —1,1)-type CCF becomes
a (m)-type CCF

m R ; R
(Hf')e = '767 +o +p1[T,Uf1V17 T 7THme] log? + - (3.12)

with
p? [Tmuu T vTuml/m] = _120D[Tu11m T 7T,Umem:|' (3-13)

If the coefficient D is finite in (3.13), then (3.12) is exactly the same as (2.20). The
equation (3.13) is a typical UV/IR relation for modular Hamiltonian in the sense
of [9]. The left hand side is the cutoff independent coefficient as B and A coincides
(UV) while D characterizes the leading order behaviour of CCF when two regions
are far away to each other (IR). The constant —120 is from the conformal block
associated with the stress tensor in four dimensions. Therefore it is a kinematic
term which is totally fixed by conformal symmetry. Note the constant v is cutoff
dependent, therefore it may depend on the energy scale we choose.

The discussion on modular Hamiltonian may extend to other OPE blocks. Interest-
ingly, we find that a conformal block G ;(2) in even dimensions has either degree
g=1lorqg=2

S 4+ E[A g A=J+d-2,
FEZ + A+ BIAJlog? B A>T +d -2,

Ga,(z) ~ { (3.14)

3Usually, there are two cross ratios for two balls. However, ¥4 and Ep are located at the same time
t = 0 which reduce the number of independent of cross ratio to one.



where the constant E[A, J] is determined by quantum numbers of the primary op-
erator. When all the primary operators are conserved currents, A = J +d — 2, we
conclude that the (m)-type CCF of type-J OPE blocks may has degree ¢ = 1 with

pi[ol,"‘ >Om] = E[Om]D[Olv 7Om]7 (3‘15)

where we have replaced the quantum numbers in F function by the primary operator.
Some remarks are shown as follows.

(a) Cyclic identity. For a general (m)-type CCF of the type-J OPE block (3.4), we
have different ways to uplift (m)-type to (m — 1,1) type. However, the cutoff
independent coefficient should be equal since they lead to the same CCF. For
example, m = 3, the coeflicients p§ should satisfy the following cyclic identity

P02, 03,01] = p§[O3, 01, O3] = p§[O1, 02, O3]. (3.16)

(b) The function E[O] can be read out from the conformal block G o ; corresponding
to the primary operator O. For conserved currents, we find

12, A=3J=1,
120, A=4,J=2,

E[0] = (3.17)
840, A=5,J=3,

(¢) The constant v also depends on the way to uplift (m)-type CCF to (m — 1,1)
type. Since it is cutoff dependent, we don’t expect they are equal to each other,

7[027‘ t 70777,701] 7é /}/[017037 T 7Om702] 7é T 7é /}/[017 U 7Om—170m]-
(3.18)

2. Class II. For this class, the degree g = 2,

(QalO1] - Qa[Om])e =
i R R (3.19)
Ygmg + o+ 05O+ Onllog? = 4 p{[O1, -+, O] log — + -+

Therefore the coefficient p§ is cutoff independent while p{ is not. As Class I, we can
read UV/IR relation

pg[ola o 7Om717 Om] = E[Om]D[Ola T 7Omfla Om] (320)
The coefficient p§ should also satisfy a cyclic property as (3.16),

p5(02,03,01] = p5(03, 01, O3] = p5[O01, 02, O3]. (3.21)



We read E[O] from the conformal block G'a s(2) for non-conserved operators, several
examples are shown below

_2Ar(ARhr(A

Lo As1, J=0,
2A-10(3)r(252) _
o) = e A>3 J=1 (3.22)
-faarazras) _
R . A4, J=2

There are some constraints on the conformal weight. For scalar primary operator, the
unitary bound in four dimensions will constrain A > 1. We notice that the function
E[O] becomes divergent when A = 1. On the other hand, when A = 2, the function
E[O] is zero. Therefore we should be careful with the two special points. Since
the physical coefficient is the product of E and D, see (3.20), we cannot make the
conclusion that p§ is divergent for A = 1 and zero for A = 2 since it also depends on
the behaviour of the function D near the two special points. When the non-conserved
operators have spin J > 1, the unitary condition constrains

A>J+2 (3.23)

for CFTy. This is the inequality at the second and third line of E[O]. We also note
that as A — J 4 2, E[O] actually approaches zero. If the function D is finite in
this limit, (3.20) implies that p§ is zero for A = J 4+ 2. Then p{ becomes cutoff
independent, which is consistent with the conclusion in Class 1.

In odd dimensions, the logarithmic behaviour is a bit different, however, we could still
distinguish two classes according to the degree ¢. It turns out that the maximal degree ¢
is 1 in odd dimensions. We discuss them briefly in the following as it is parallel to even
dimensions.

1. Class O. In this class, the degree ¢ = 0,

d—2
(QalO1] - QulOnl)e =75+ + 15O, -+, Oml. (3.24)

There is no logarithmic divergence in this case. The upper index in pg denotes that
the spacetime dimension is odd.

2. Class I. In this class, the degree ¢ = 1,

d—2
(QalO1] -+ QalOnml)e =7 + - +1i[O1, -+, Ol logg ey (3.25)

~10 -



We can also find the corresponding UV/IR relations. For example, in three dimen-

sions, the function E[O)] is

2227 (A-1I(A-3)

1
RS A>3,
2AHIAT(A- 1)
i) - | TG’ Ao
[ ]_ 22A71(A2—1)F(A—%) A
T /A(A_2)2AT(A_3) ’ >3,

4 Examples

(3.26)

In this section, we will use several examples to check the results in the previous section.

We will set spacetime dimension d = 4 from now on.

4.1 Class 1

Type-J OPE block is

- _ 1
Q) = [ PHE) " oo = 575

XA

4.1.1 (2)-type

We will consider conserved currents with lower spin J < 2.

A2 — (7 - 70)%)" o0

1. Spin 1 current. We will use two methods to compute the CCF

<QAwm%c:5éAffA%d%ﬂmxmjaﬂ»a.

(4.1)

(4.2)

The symbol : : means that one should remove the divergence from the two operators
attach to each other [10]. This requires a way of regularization. In the following, we
will omit the symbol : :.

(a) We transform the coordinates to spherical coordinates

T=rg, &*=1, (4.3)

- 11 -



then

(QalTu)?)e
— / rzdrddi/ r2dr’ dw ’—CJIOO(x_x)
YA Y4 |7 — x/|6
1
2 — /2 /
= — drd dr'dw’
CJ/EAT rw/ZAr r w(r2+r’2—2r7"@’-6’)3

1 1 7r 1
j— 2 2 i
_ —CJSQSl/ - dr/ W dT// Smeda(r2+r'2—2rr’0089)3
2 /2 2

= —Cy(dm) x /dr/d’QTTT+T)

(r—r")4(r 4+ )4

1—e
— _8r2 TN
2 R*> R R

:30J<62—6—10g6+--->- (44)

At the first step, we make use of the two point function of the spin 1 current

(Tu(@)Tula)) = W (15)

where the symmetric tensor is

x
IMV(‘T) = Nuv — QNM(:C)nV(x), ny, = E‘]

(4.6)

The constant C; defines the normalization of the current J,. At the time slice
t = 0, we have ng = 0 and Iyp = 1g9. At the third line, we define the angle 6
between the two vectors & and &',

&&= cosb. (4.7)
The factor S,, is the area of the unit n-sphere S™,

27rnT+1
Sn:I‘(L‘H)' (4.8)
2

The integrand at the fourth line has poles at
r=r. (4.9)

According to the regularization method in [10], we can just ignore those poles.
These poles are from the two currents J,(x) and J,(z) attach to each other.
We expect they can be removed.? At the fifth line, the integrand is also diver-
gent for r — 1. Therefore we insert a small positive € into the upper bound

4In appendix A, we study carefully the pole structure around the point » = 7’ and find that they have no
contribution to the logarithmic divergence. Therefore they don’t affect the cutoff independent coefficient.

- 12 —



of the integration. The small parameter e characterizes the distance to the en-
tanglement surface, therefore it is a UV cutoff. At the last step, we insert back
the radius R = 1 to balance the dimension. The term in --- is an unimportant
constant. Now we can extract the cutoff independent coefficient

7.‘_2
PilTu ] = 50 (4.10)

(b) Now we can also compute the same CCF (4.2) by uplifting the (2)-type CCF to
(1,1)-type, namely

(QalT)e BB (QalT) QBT ). (4.11)

The (1, 1)-type CCF is easy to compute as we just need to fix the leading order
coefficient D[J,,, J,] when A and B are far apart.

<QA[\7,U,]QB[\71/]>C
= / r2drda / r2dr’ duw’ M
Sa S5 |Z+ Zq — 2|6

-1
—CJ/ r2drdc§/ T'er’dw’—ﬁ,
YA Yp Ty

Q

(4.12)

At the first step, we insert back the center of ¥ 4. The center of Y p is assumed
to be 0. At the second step, we use the assumption that A and B are far away
to each other, x4 — oco. At the third step, we rewrite x4 in terms of the cross
ratio

4

Z = 5.
2
o\

(4.13)

We read out the value )

T

D[j,uaju] = _%C(]- (414)
Then we use the UV/IR relation (3.15) and the function E[J] = 12 for spin 1
current to obtain

e 2 72
PilTu Tl = —35Cr x 12 = ==-Cy. (4.15)

As we expect, the coefficients (4.10) and (4.15) are the same. It is also easy to check
that the coefficient v are not the same for the two methods. Since  has no cutoff
independent meaning, it depends on the regularization. One can redefine the cutoff
such that they are the same.

2. Spin 2 current. As spin 1 current, we use two ways to regularize the integral.

~13 -



(a) The first method is to regularize the integral directly, we need the two point
function for spin 2 current

Luw,po(z — ')

(Ty (x)Tpo (")) = Cr—"—si—s (4.16)
|z — 2|
where 1 1
L po(z) = i(lup(x)luo(x) + Lo (%) Lp(x)) — me’?po- (4.17)
At the time slice t = 0, we find
3
100700 = Z (418)
Then
<QA[T;W]2>C
1 3 2 - P TQ)(l - le)
= - X - drd dr'd
4 % 4CT/2AT " w/EAr raw (r2 472 = 2rr'@ - )4
3 1 Lo 2r2(1 — r2)r2(1 — 72) (72 4 3r2)(r'? + 372)
= ESgSlCT/ dr A dr 307 — 1720
2 R> R R
_ T _log— ... |, 4.1
4OCT<62 € 8 € + (4.19)
We read
2
p? [T,uuanU] = _EOT- (4.20)
(b) We can also compute (1,1)-type CCF firstly,
<QA [Tul/QB [Tpo'] >c
1 1
A - X BCT/ TQdeLD’/ r2dr'dd' (1 — ) (1 — TIQ)Ta
4 4 Y4 Sa x5
_ T ot (4.21)
T 4800 77 '
Therefore we get
2
T
DT, T, =-——Cr. 4.22

Combining with E[T},,] = —120 for the stress tensor and the UV/IR relation,
2 2

e T v
pl[T,UV7 pO’] = mC’T X (—120) = —ECT (423)

Again, we find the cutoff independent coefficients (4.20) and (4.23) are equal. We
note that (Qa[T).]%)c is related to the universal property of Rényi entanglement
entropy by [22]. Transforming to the notation of that paper, we have

72H1(d/2)(d — Do
d+ 1) T | la=1

1 1
<QA[T/W]2>C = <H3> = _277#5;:1 = 53 (—Vol(Hd_l)

2 R
= —— log —. 4.24
4OCT 0g — (4.24)
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In the equation above, we just include the cutoff independent term. It is consistent
with (4.20) and (4.23). Note this is also an independent check for the method of
regularization. In the integral (4.19), there will be poles when the two stress tensors
attach to each other, their effects have been discussed in appendix A. Since they do
not appear in the context of Rényi entanglement entropy, it is fine to remove these
effects through our regularization.

4.1.2 (3)-type
We will consider the following two examples.
1. Spin 1-1-2. In this case, the three point function is [23]

Iy (221)1p5(231 )t uwas (X23)

<Tuu(x1)ja(x2>jp(x3>> == d d d—2 ) (4‘25)
T12T13%23
where
tuvop(X) = ahpy, (X)ep + bhly, (X)he,(X) + ¢ h2 0 (X) + ehdyq, (4.26)
with
. I 1 . X
hflw(X) = XpuXy — gnuw Xy = \/%7
~ PN A A A A A A 4 o A
hiyap(X) = XpuXoMp + Xo Xpnuo + XpuXpnue + Xov Xonpp — d 1 XuTop
45 4 4
“d o XpMuw + ?nuvnop:
2
hil/ap = NuoMvp T NupMve — amwncf;r (4.27)
The tensors hllw, hfwgp, hiwp are traceless
" hy, =0, nMR,., =0, nh,., =0 (4.28)
due to the traceless condition of stress tensor. The variable
(T21)p  (231)n 2 3
(Xa3)p = - v X3 = 5o (4.29)
! 3 3 323
The Ward identity from conservation of the currents or stress tensor leads to
da—2b+2(d—2)c=0, b—d(d—2)e=0. (4.30)
Only two of the constants are independent. In four dimensions,
1 1
e= gb, c= §b —a. (4.31)
We only need the component
Toa(xa1)lpg(x31)t X t X
(Too (1) To (9) To (x33)) = 00 (%21) o (31)t000s(X23) _ toooo(X23) (4.32)

d—2 I 4.2
I‘fz”«"ilsxzrs L12T13%723
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We notice

N 1 N 1 3
hcl)o(X) =, h%noo(X) = hgooo =5 (4.33)
4 4 2
Then
1 1 1.,3
—sa++zb+7c+s5e¢ 3b—4a 1 1
(Too(z1)To(22) Jo(23)) = —2—10 24— 2" = =Crgs—4—71 5>
x%ﬂ%ﬁ%z 8 x%zﬁﬂ%zs x%zﬁ:ﬂ%z

(4.34)
where we defined a compact constant Cr77 which is a linear combination of a and b.
Now we can use three different methods to extract the logarithmic term in the CCF
of the OPE blocks.

(a) We can regularize the integral directly

<QA[T,W/]QA[jU]2>c
1 1
= -C /d3j‘/d3f Byl -] =—=g——=F——=
9 TIJJg e 1 4 2 S 3( 1)|x1—x2|4]a§1—JU3|4]$2—CC32
1 1 1 1
= §CTJJ/ r%(l—r%)drl/ T%dTg/ ridrs I3(2,2,1)
0 0 0
3C l—ed T%
= 57'Cros |, A
3 R?> R R
- T log— 4. |, 4.
5 Crag ( o~ ~log—+ (4.35)

At the second line, we have defined a surface integral I3(2,2,1) whose details
are discussed in the appendix B.1. Roughly speaking, the integral I3(2,2,1) has
the structure

; ~ rn+re 5 rt+r3 T2 + 13
I5(2,2,1) = fo21 + G221 log T + h2,2,1 log T —ral + 2,21 log Tra =73l
(4.36)

where the functions f,h,§,7 are rational functions of 71,79, 3. Therefore the
definite integral becomes elementary. The integrand at the third line has pole
r1 = 1 therefore we insert a small positive UV cutoff €. The logarithmic term is

indeed has degree 1,
3

7
p?[TMV7jO'7jp] = _ECTJJ- (4.37)
(b) We can compute the following (2, 1)-type CCF firstly,

(@B[Tu]QalTs]%).

1 1
_ oy /d3fl/ Bz [ sai-2)—— -
2Crag [ A 4 | ) e T — T4 Fal T

(4.38)
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then we can extract the D function by taking the limit 4 — oo,

[jovjpa ,uu
1
= 7CT‘_7‘_7 X — / d3 / dBfQ dgfl?g(l - f%)_,i_,z
S |72 — T3]
C X 2(4 2(2 )/ radr /lrzdr /Wsinﬁde !
= —(4m)* (27
T 7 15 0 2 2 0 3 5 0 73 + 13 — 2rors cos
3 1
= mCTJJ/ drg/o drsrors(log(re + r3) — log |re — r3|)
3
= ) 4.
510CT77 (4.39)
Therefore, using the UV/IR relation we extract the logarithmic term
73 73
PilTo, Tpy Tyw] = =120 x a10Cr99 =—5Crag- (4.40)

(c) We can also compute another (2, 1)-type CCF,
(QalT11Qa[T6]QB[Tp])e

1 1
_1a /d3f/ By [ Pri-2)——
A ST ST S 3 1)I:cl—:L‘z!‘*lm—x3+a3A\4!:c2—x3+xAl2’

(4.41)

and read out the large x4 behaviour

[ MV7\70')\.7/)
1
= —C X / 37 / d37. A3z i Y
TIT s 3(1— )|1,1 AT
Am (1-rf)
= C’ —(4m)(2 / 2d / 2d / 0do 1
P - 3 (Um)@m) j, ridry j ) radra sin (r? + 13 — 2r1ry cos 6)2
3
=-——C 4.42
Tog T (4.42)
Now we can extract the logarithmic term
3 3
P11 T, Ty Tp) = 12 % (—MCTM> = —?CTJJ. (4.43)

Interestingly, the three results (4.37), (4.40) and (4.43) are equal to each other. This
is also the first example that the cyclic identity for p{ has been checked.

. Spin 2-2-2. The three point function of the stress tensor is
I ’(x13)Iap0'p ($23)tu’u’a’p’aB(X12)

<THV(5U1)TUP($2)T&3($3)> = R 2d-.2d ) (4'44)
L13%23

The structure of ¢,,5,03(X) could be found in [24]. There are three independent
coefficients A, B, C in the three point function of stress tensor. In this paper, we just
need the component

Crrr

(Too(21)Too(22)Too(23)) e = (4.45)

d d .d
L13T23%19
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with
—2(4 — 5d + 2d*) A + dB + 2(5d — 4)C

C = 4.46
TTT 12 ; (4.46)
We can use two different methods to extract the logarithmic term.
(a) The first method is to compute the logarithmic term directly,
(QalTw)?)e
1
— chTT/ d3f1/ By [ B — )1 - B)(1 - )
8 Sa Sa Sa
1
|1 — ol 4T — T[Ty — Tt
1 1 1 1
= gCTTT/ ri(1 —r%)drl/ r3(1 —r%)drg/ r3(1 —r3)dr33(2,2,2)
0 0 0
73 R?> R R
=-c T e, 4.47
R @ e (447)

As previous example, we define the integral I3(2,2,2) in appendix B.1. We also
insert a small € in the integral of r1 at the last step. From the result, we read

3
7
Py [Tuua Ty, Taﬁ] = ECTTT- (4.48)

(b) The second method is to use UV/IR relation. We first read the coefficient D in
the large x 4 limit,

D[Tuua Tpaa Taﬁ]

1 1
= C d3*/ B>z Eis(1-2)1-3)(1 - 72)——
g x 98 “TTT /ZA 1 - ) - T3(1 — Z7)( 73)( 933)|fl — 7,
1 2e 2 (! N 2\ 2
prd ﬁCTTTSQSlE 0 drl(l - 7’1)7’1 0 er(]. - T2)T2
7T 1
in 6d6
/0 St (r? + 12 — 211719 cos 0)2
3
= ——0 . 4.49
1440 T (4.49)
Therefore
. 3 3
pl[TM,,,TUp,TaB] = (—120) x —mCTTT = ECTTT. (4.50)

The cutoff independent term is the same for different methods. We also check that
the result can be mapped to the second derivative of Rényi entanglement entropy [25],

<QA[TMV]3>C = <H;-3>c = 8% (/1/:1- (4.51)
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4.2 Class II
A Type-O OPE operator is

QulOyn)] = / N A ) SO (4.52)

hS

We change the coordinates to

¢ 4
€T =

C+C. o
9 5

t= @ =1. (4.53)

The metric of Minkowski spacetime becomes

ds? = d¢d¢ + S ZC)dez, —1<(C<1. (4.54)

The new metric (4.54) covers the diamond A twice, then

d
dlx = @) ¢ + ¢|92d¢dCds. (4.55)

Then the Type-O OPE becomes

QalO0u;.y]
= a7 /D Gl + (1 - )T - )t /S ATRGR K O,
_g/-A /D Py /S L AGK KR, (4.56)
The measure
2y = dGdC|C + (|21 - ) TE - )T (4.57)

The subscript J is used to label the spin J in the measure. The dimension is understood
as d = 4 in this expression. The region D? is a square with

—-1<¢(,C<1. (4.58)
Some integrals used in the following has been discussed in appendix B.2.

4.2.1 (2)-type

1. Spin 0.
(QalO1)e
=27 M/ d%/ dzuO/Sde SQd /PA
= 27228,5; /D . d? 1o /D i d? g /0 sin&d&wj)v(fw (4.59)
where we define
(-2 =a+bw (4.60)
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with ) 1 ) )
a=CC+¢+ < (C O =, b=—§(C+C)(C'+C')' (4.61)

The angular between & and ' is denoted as 6. The regularization of (4.59) is not
easy for general A. However, we can compute several examples. For A = 4,

(Qa[O]%).

_ - ;= (30 +6)(C+ O + ()
_ ENO/ dcde /D2 dc'de i

O e R (S O &
=% NO/HG d /He A pa—om

2 R? R » R
() 4o

At the first step, we integrate the angular part. At the second step, we integrate ¢, ¢

part, the integrand becomes singular for
(=41 and (=41, (4.63)

therefore we insert a small UV cutoff € into the integral. Then the final result obeys
area law and there is a logarithmic term with degree 2. The --- term includes a
logarithmic term with power 1 and a constant. Therefore, the cutoff independent

information is 2

ps[0,0] = —EN@, A =4 (4.64)

The method can be extended to other even conformal weight, for example,
2

S - T N, A = 6. 4.
$l0.0] = — 2 No, A=6 (4:65)
Now we’d like to use UV/IR relation to obtain this result.
(QalO]QB[O]).

No
/dd /dd /‘K|A d’K,|A d‘ /|2A
N,
" =27 @2 2 2 1 Vo
~ 2 Sz/@gd Mo/md Momm
No
= 2728 X 167% X —~ P z5(Hp)?
= D[0,0]22, (4.66)
where o A e A
A (A)2T(A — 1)

Note at the second step, we use the approximation that A and B are far apart and only

D[0,0] = No. (4.67)

extract the leading order behaviour. At the third step, Hy is defined in appendix B.2.
Therefore we can use UV/IR relation

Ar3(A - 1)T(A - 2)T(£)*

p3[0, 0] = E[0]D[0, 0] = — [(A)2D(A —1)2

No. (4.68)
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The coefficient (4.68) matches with (4.64) and (4.65) for A = 4 and 6, correspond-
ingly. Interestingly, we obtain the general coefficient p§[O, O] from UV/IR relation.
This result is not easy to find if we regularize (4.59) directly. There are two special
points for the coefficient (4.68).

(a) A =1. In this case, the conformal weight satisfies the unitary bound for scalar
operator, p5[O, O] = 0. One may need to study the coefficient p§[O, O] to find
the cutoff independent information.

(b) A = 2. In this case, the coefficient p§[O, O] — oo. We don’t find a way to
understand this phenomenon.

. Spin 1. The CCF is

(Qal0L]QB[OL])c
—92-2A N, / d%/ d2u1/ di 52d~/ ()f;v(_ﬂf;;A)K”( )7 (4.69)
where
KWQ@LWQE—xUKWQﬂ):l{-K”—(xjiﬂQK?JVlﬂ-Aﬁ (4.70)

We parameterize
(z—2) =a+b3-F+ed - Tat+fd Fatad,
K-K’:a1+b1c3-c3’,
K‘N:a2+b25-wl+egﬁ'fA,
K’-N:a3+b3c3-c3’+egc3’-f,4, (4.71)

where the coeflicients are

e=C+¢, f==(+0),
m=-1(1-5@+®) (1-52+), =@ -2,
1 1 - _ _ 1 _ _
a =3 (1= 5@ +3) €=+ 8- - D+
a5 = =1 (1= 57 +0H) (€= =+ 8+ 5= O+ P
b= (<2 &) +0), by = —5(¢7 = )¢+ ),
1), es=—3(? =), (472)

The coefficients a,b can be found in (4.61). When A and B are far away to each
other, the leading term is

(Qal0,]QB[O])e

b3 — 2 A
%22_2ANOM/IDQd2“1/ID)2d2“/1/Sde SQdQ/(a1+ 16 - @ 222263w Tad - Ta A

= 22’4A822N(9H /]]])2 d? /]]])2 d?ply aq 22, (4.73)
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Note at the second step, we define the unit vector in the direction of Z4 as 7 4. After
some efforts, we find

23_4AW4AF(¥)2F(%)2

I(2)r(1+4)3

D[0,,0,] = — No,, A>3 (4.74)

Therefore

AATAD(BFT (S
2

P3[0u, O] = E[04]D[0,,0,] = — NERSy No,, A>3. (4.75)
We could check this formula (4.75) by computing
(QalOu)e (4.76)
for special values of A. For example,
(QuOP)e = T No, (RQ B e ) S A=5 @)
90 € € €

The cutoff independent term matches with the general formulae (4.75).

. Spin 2. Like previous example, we find

<QA[OMV]QB[OPU]>C
~ B (KM, K'P)? — LK2K"2 (4.78)
=24 2AN@W/2d2,u2/2d2p'2/2dw de’ 1P — /2A4
D D S 5 |z — /|

From the leading behaviour when A and B are far away,

D[Ouwopo]
_ 24’4AN(9W/ d%/ d%/ d(f;/ 4 [(al 0@ @ — 2eses & Fad - Fa)?
D2 D2 S2 S2
_1K2K/2:|
1
3 64—2AA2 2@1—\ A 1 2
_ T s (g 1) No,,, A>4. (4.79)

NERESNE=IETE=E
The cutoff independent term is

pg[ow, Opa] = E[OW]D[Oum Opcr]
2(A — 2VA2L(A _ 921 (A _ 1)2 4.80
_ 3r(A-2)A’T(S - 2P°T(5 - 1) No . A>4 (4.80)
640 (A — )T (A +2) o

The formula could be checked for special values of A. For example,

372

PS5 [Ouw Opa] = - 9240

No,,. (4.81)
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4.2.2 (3)-type
We consider the following CCF

(Qal01]Q4[0:]Q A[O3])

Aq1—4 Ao—4 Az—4
oo K )| K ()22 K (25) 29 (4.82)
—0123/d$1/d$2/d Al2,3 A231 A132 ’
Tig Loz T3

where Ay = Aj+Aj — Ay, We will use UV/IR relation to find the correlators. Assuming
A and B are far away, then

(Qal01]QA[0:2]QB[Os]).

A1 4 Ao—4 Az—4
(z K(x K(z
Nclgg/ d xl/ d4$2/ d4 1 | ‘ A(1223)|2A3 ’ ( 5)|

LA

0123F(% — )2F Ag 2 2 sin 6 A-
= 2A1+A2+A3+3F(A3) A3 _ 1 5251/ d MO/ d MO/ dg A123 270

(a+bcosh)
(4.83)
Therefore
401237 (42 — 1)21(52)?
D[O1, 0y, 03] = 2 / dcdc( / dc'd
[ 17 27 3] 2A1+A2+A3F(A3) A3_1 C C C+< C C < +C)
A4 o A4 sin 6
(1= (-3 (- ) -
(a+bcosh) ™2
(4.84)
A close result is not easy to obtain. However, we could find the result case by case, for
example
*%01237 Ay = A= A3 =4,
3
mCIQi‘}; Al = 47 AQ = 67 A3 = 87
3
D[01,02,05] = § 1o7e515C123, A1 =4,A, =8,A3 =6, (4.85)
3
59011 C123, A1 =6,Ay =8, A3 =4,
Then

7r8736'].23) A]_ = AQ e A3 — 4’
_#;801237 Al = 47 AQ - 67 A?) = 87
_#;801237 Al = 67 AQ - 87 A3 = 47

Note the last three coefficients are equal which is a consequence of the consistency condi-
tion (3.21). We will close this section with some comments on the coefficient p§.
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1. For general conformal weights, we have

P5[01, 09, 03] = =217 82783730y / d¢d¢(¢ +¢)? / d¢'d¢' (¢ +¢')?
D2 D2 ]
(1= - - ) - e
O (a+bcosh) 2
(4.87)

We don’t find an obvious way to prove the cyclic property (3.21) from this expression.
It would be quite interesting to check the cyclic property for (4.87).

2. In the special case, A; + Ay = Ag, or equivalently, Az 3 = 0, we observe that
P5[01, 02, O3] = —27H178e=Bard 0y / , dCdc(¢+¢)? / ,dcdc'(¢' +¢')?
D D
x(1- )™ (1-3) T (- 1=
1 2

0123. (4.88)

5 Discussion

In the previous section, we have examined the area law of (m)-type CCF when all the OPE
blocks are the same type. However, we avoid the following CCF

(QalO](--)QalT e, (5.1)

where Q 4[O] is a type-O OPE block while Q 4]7] is a type-J OPE block. Let’s set spacetime
dimension to be even and m = 3. According to the method of analytic continuation, we
could move either the type-O OPE block or the type-J OPE block to region B, in the first
case, we find

(Qa[0]Q4[TQB[O). = D[O, J,0)Ga ;(2), (5.2)

where A is the conformal weight of the primary operator O and J is its spin. In the second
case, we find

(Q4]0]Q4[0)Q5[T])e = D[0,0, T|Gar 5 (2), (5.3)

where A’ is the conformal weight of the primary conserved current J and J’ is its spin.
From analytic continuation of (5.2), we find a (3)-type CCF with degree ¢ = 2,

p5[0, T, 0] = E[O|D[O, T, 0. (5.4)

At the same time, from analytic continuation of (5.3), we find a (3)-type CCF with degree
q=1
pi[0,0,J] = E[J]D[0, 0, J]. (5.5)

However, the cutoff independent structure should be the same while (5.4) contrasts
with (5.5) since they predict rather different logarithmic behaviour. This ‘incompatibility’
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is based on our implicit assumption that the D function is finite. Actually, as we will show
in the following two examples, the D function in (5.5) has the following behaviour,

D[0,0,J] = D10, 0, J] 10g§ + finite terms. (5.6)

The finite terms are cutoff dependent which have no contribution to the degree ¢ of the
CCF. The logarithmic term increases the degree of the CCF by 1, therefore the CCF (5.3)
has the same degree ¢ = 2 as (5.2). Instead of (5.5), there should be a modified UV/IR
relation

50,0, J] = E[J) D10, O, J]. (5.7)

With this modified relation, the two coefficients (5.4) and (5.7) should be equal to each
other

5[0, T, 0] = p5[0, 0, J]. (5.8)

In other words, they still obey the cyclic identity. We will use two explicit examples to
check this point.

1. The first CCF we’d like to discuss is

(Qa[T1]Q4[0]Qa[O])e, (5.9)

where T),,, is the stress tensor and O is a spinless primary operator. The three point
function [23]
hl,(X23)
(Th (21)O(22)O(x3)) = C’JW (5.10)
afywyy “afy

is fixed up to a theory dependent coefficient a. We just need the 00 component, it is
easy to find

X o adwd ((wa)o  (w31)o)
(X23)0(X23)0 = —=5 5 — 35 . (5.11)
23 91 3,

Therefore

<QA[T/,U/]QA[O]QB [O]>c

£2 1
az® 4 —t24(T2— x1)2+7

3z = x z 2
m/z A’z (1— xl)/d x2|K(x2)\ /d 3] K ( 3)| (24 (T2 —71)2)°

2

t5
m2A(S-1PT(5)° 4 po G EE
= az 3z (1- i d'z K(z2)| 7 ——
D(AN(A-1) / 112 / M T @y

B 7.‘.3272A+1F(%_1) (%) 1 ) sin®
N T(A)T (A 1> as | drri(i=r /Dzd“O/ (PP +CC—r1(C+0)cosh)?

%

32 2A— 1F(A 1 21‘\
[ NEAVIRPAN
543 QAF(% 1
1

A(A=2)D(873)D(551)20 (254

2 rd—20Cr3+¢C(C -0
dT17”1 (1=r) /2d MO(7“1-5-()2(7“1—02(7“14_5)2(“_C_)Q

az®, A>2. (5.12)

SIE }
4 4(7“1+C§ 1 C—i—C )cosh)
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The region A > 2 is from the convergence of the integral. We obtain

2572A 4I‘é_12
TG -DT o Ass (5.13)

A(A =2)P(5F)0 (35

pg [T;w, Oa O] =

As we discussed, we can also compute another CCF

<QA [O} 2QB [Tuu] > c

2
t23

az? A—4 —4 72 +4
~ % [ Bz 1—:32/d4xKx T/d4xKx gt =
5 )y, 1( 1) B 2| K (72)] 2 3| K (3)] e
= D[0,0,T,,)2*. (5.14)
We have defined
D0, 0, TW] =
i in 0 1 (=¢=¢+()
d2 / a0 sin {
23+2A><15 D2 MO/ o (a+bcosh)r—2 i 4(a+ bcosh)

(5.15)

The integral is not easy, therefore we just compute several examples. Let’s set A = 4.
Interestingly, we find a logarithmic divergent coefficient D,

D[0,0,T,) Gl (1 R, > (5.16)
= — allog—+--- )
Pl = 800 %% e
where - - - is a cutoff dependent constant. We can read the coefficient
3
D]Og[('), O, T:U'V] = —Ma. (517)

Now if we take the limit B — A, the conformal block of the stress tensor will con-
tribute one logarithmic divergence as usual. However, since the coefficient D also
has a logarithmic divergence with degree one, there will be a logarithmic term with
degree 2 in the final result. Using the modified UV/IR relation, we get

3

p5(0,0,T,] = E[T)|Diog [0, 0,T,,] = 3% (5.18)
This is consistent with (5.13) for A = 4. We could check the logarithmic divergence

behaviour for other conformal Weights for example,

138240 log +- A =6,
D[0,0,T,)] = { — gt log & - A =8, (5.19)

Therefore
4 A=6
1152 % )

p3[0,0,T,] = A =8, (5.20)

3
T
34560

All the results (5.20) are consistent with (5.13).
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2. The second CCF we’d like to discuss is

<QA[T/W]QA [Tap]QA[ODc» (5.21)

where T),,,T,,, are stress tensor and O is a spin 0 primary operator with conformal
weight A. The three point function is [23]

(T (21)T5p(22)O(23))c = I“V’Q'B(xm)gzp Xs(mg);aﬁw(Xu), (5.22)

L12 I239313

with
taprs(X) = ahlg(X)h5(X) +b hig,s(X) + ¢ hl g (5.23)
The tensors huw h? o ps hiw , can be found in (4.27). The conservation of stress tensor

leads to two linear relations between a, b, ¢

o+ 4b— %(d—A)(d— 1)(a + 4b) — dAb = 0,

a+4b+d(d—A)b+d(2d — A)c = 0. (5.24)

There is an overall constant for the three point function (I'70). In four dimensions,
we find

10 — 3A 3A2% — 24A + 40
= — = . 2
RTINSO R T TN T (5:25)
We need the component
(Tyo(a1) Ton(2)Oa3)). = —ad— (5.26)
00(z1)Zoo (22 3 2D A A :
T12 337713

where the function ¢ is

1 2 1 2 1
=al-= 4b 142 2¢ | (1+2y)% — = 5.27
©(y) a(d+y> + [d? dy+y( + y)]Jr 0{( + 2y) d} (5.27)
with
12
- 39512 (5.28)
v13755

Note the time component of z; and x2 is 0 for (5.26). Therefore

(Qa[TwQalT5p)QB[O)).

~ [z 1-22) [ Bz -2 [ & s =0 599
~ 93A+2 1 1 2 2) Jo Ho A .

We could read
D[Tuw Tapa O] =

1 2 ! 2 2y [! 2 o [T p(y=0)
3T+2H05251/ drlrl(l—rl)/ dr2r2(1—r2)/ sinfd6 =
2 0 0 0 (r?+713—2r1rocosf)?™ 2

(5.30)
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The integral is finite for general A > 3. After some efforts, we find

4m3a
(A+2)A(A —2)(A —-8)(A—-10)°

pg [T;wa Tapa O] = E[O]D[Tuua Tam O] = - (5'31)

We can also compute the following CCF,

<QA [TUP]QA [O] QB [T,uVDc

a 3= 3 2 - =2 N
~ W/d xl/d # /DQd “O/sa a1 -HEL )

The D constant is

D[T5,,0,T,]
= 7A+91 S35 /1 dror3(1 — r%)/ d?uo /7T sin 6d6 — #() — =,
2 x 15 0 D2 0 (13 + (¢ —ra(C + () cos )2
(5.33)
where the function
_ A2
4(r3 + (¢ —r2(¢ + ¢) cosb)
The integral (5.33) is not easy, we choose A =4, then
D[T,,,O,T, ]—ilo i (5.35)
o Tl = 34560 08 ¢ ' '
It is divergent, therefore the cutoff independent coefficient is p$,
. ma
25 T6p, O, Tp] = E[TM,}]Dlog[Tgp, 0,1, = 583" (5.36)

The result is consistent with (5.31) for A = 4. We can also calculate other examples,

73 R _
Toz00 log ¢ + -+, A =6,
D[T,p, 0, )] = § j=aslog & 4. A =12 (5.37)

They are all divergent with a logarithmic term. Then

_ma
384>

_7%a
3360°

A =6,

P5(Top, O, Ty] = A =12, (5.38)

The result (5.38) matches with (5.31), correspondingly.
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6 Conclusion

In this paper, we calculate the divergent behaviour of (m)-type CCF of OPE blocks. Due
to the complexity of the integrals, we only tackle the case for m = 2 and 3. We classify
the OPE blocks to type-J and type-O, according to the primary operator in the definition
of OPE block. The logarithmic behaviour has been discussed for varies (m)-type CCFs.
In even/odd dimensions, we could identify two classes of (m)-type CCF according to the
degree q.

We establish a formula which is to relate (m)-type CCF to (m — 1,1)-type CCF, we
call it UV/IR relation. Schematically, it has the simple form

p~FE XD, (6.1)

where p is the cutoff independent coefficient in (m)-type CCF. The coefficient D is the
coefficient before conformal block for (m —1,1)-type CCF. The coefficients p and D encode
useful information of the CFT. On the other hand, the coefficient F is completely fixed by
conformal symmetry, which is a kinematic term. We check the UV/IR relation (6.1) for
various examples, in all cases, the cyclic property of p is always valid, see (3.16) or (3.21).

When the OPE blocks belong to different types in (m)-type CCF, the UV/IR relation
should be modified to

D~ E x Dlog (6.2)

where Dy, is the coefficient before the logarithmic term in the corresponding D function.
Note the (m—1, 1)-type CCF is not always convergent, it may contain logarithmic divergent
term in the D coefficient. This is a generalization of the conclusion in [11] where the author
considered (m—1, 1)-type CCF of type-J OPE blocks in two dimensions. However, we could
still obtain cutoff independent coefficient from the logarithmic term in the D coefficient.
The cyclic identity is still valid after replacing D by its cutoff independent part Djg.

In all the examples we compute in this work, we always find ¢ < 2. Since we just
consider the cases m < 3, it is not clear whether ¢ could be larger than 2 or not for general
m. If the coeflicient D is always finite, then the degree ¢ must be less than or equal to 2.
However, since we find a (2, 1)-type CCF which shows logarithmic behaviour, it would be
quite interesting to explore higher (m)-type CCFs.

Higher (m)-type CCF of OPE blocks is also very important to understand the deformed
reduced density matrix pq = e HQalOl g formal exponential non-local operator defined
n [11]. This operator is similar to “Wilson loop” [26, 27] formally. When the OPE block
Q4[O] has a lower bound, it is likely that we could read cutoff independent information
from the logarithm of the vacuum expectation value of deformed reduced density matrix

log(e HQ4l0ly (6.3)

A naive continuation from conformal block shows that this quantity (6.3) also obeys area
law [9]. Since conformal block is fixed by conformal invariance, the area law of (6.3) is
protected by conformal symmetry. We’d like to study this point in the future.
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A Singularity

When two operators attach to each other, there could be singularities. In this appendix,
we will show that these singularities does not affect the cutoff independent coefficient using
explicit examples. In (4.4), at the fourth line, the singularities are at r =/, we’d like to
examine the singular behaviour carefully. The typical integral is

2/2 12
n= /dr/d'””’“”) (A1)

(r —r")4(r 4+ )%

We could separate the singularity by replacing the integral by

1 r—e 1 7’27“'2(7'2—1—7’/2
L=/ d dr’ dr’ /d I A2
! /0 T(/() rt e T)(r—r)(r—i—r r123+ L (A-2)

The integral I is the one used at the fifth line of (4.4). The first term on the right hand
side of (A.2) is the effect of the singularity, it has been removed from the regularization
method in the context. It is easy to find

there is no extra logarithmic term. Therefore we conclude that the terms that have been
removed do not affect the cutoff indepdendent coefficient. In the same way, the singularity
in (4.19) is also » = 7/, the relevant integral is

2 r2)r2(1 — r2)(r? + 3r") (r"? + 312)
IQ / dT/ d ! (1"2 — 7"2)6
(1=r2)?  r*(1-1?) /
:/0 dr[ i R
4 T

- 47
5956 1563 1 2

It is obvious that the singularity does not affect the cutoff independent coefficient.

B Integrals

B.1 Surface S?
The typical integrals used in this paper is
(i) H/ d?a; H % — @72, n>2. (B.1)
1<j

where &; = r;<J;. The integrand only depends on the angle between vectors &; and ;. The
constants «;; are assumed to be real. If some of them are positive, then the integral has
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poles. We assume r; > ro > r3 to avoid the pole and this doesn’t lose any information of
the integral. For n = 2, the integral is elementary. In this paper, we need the result for
n = 3. We expand the function |#; — #;| 2% in terms of Legendre function of the first
kind

|7 — fj‘_Qaij — Zfe(% 75, ij) Py(cos ¥ij) (B.2)
/=0
with
cos 1;j = cos B; cos 0 + sin 6; sin 0 cos(¢; — ¢;). (B.3)
The function fy is
2+ 1 o
folrisrj, aij) = — /_ dzPy(z )(T?Jr?"? —QW’jm) ”
O VG k) R I
= —c¢ Q" (2i5)

(QTZT]) K F(O‘w)

— 2041 (r ( ?)lia” agj—1
_ Zﬂ'a’l 1, B4
e Ty 2nm Q" (2ij)- (B.4)

At the first line, we used the orthogonal relation of Legendre function of the first kind

1 2
Py(z) Py (x)dx = dppr. B.5
| Pl@Pelayin = = (B.5)
At the second step, we used the integral formula [28]
1 2eITH b
dePy(z)(z —x) P = ——— (22— 1)72Q4(2). B.6
[ dePa)(z =) = S (- 7Rl ) (B.6)
2 2
The parameter z;; = 5 r . Since Legendre function of the first kind can be expanded into
spherical harmonics
47
PE(COSQM]') 2£+1 Z }/Zm 17¢Z)Yv€m( J’¢]) (B7)

Using the orthogonal relation of spherical harmonics

27
/ S 0d0 | doYim (6, 8)Ysi (8, 8) = 6006 (B.8)
0
the integral for n = 3 becomes

I3(an2, a3, ao3)

00 (47‘(‘)3
=> mfz(m 72, 12) fo(r1, 73, 013) fo(ra, 73, 23)
=0

87r36—i7r(0c12+0é13+a23) (T% _ 7«%)1—0112 (T‘% _ T?Q))l—am (T% _ r%)l—an

=— J(a2, a3, ao3).
F(alg)r(am)r(agg) T%T%T% ( 12 13 23)
(B.9)
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The problem is reduced to an infinite sum of triple products of associate Legendre Polyno-
mials of the second kind®

[e.9]

J(an2, a3, a3) = > (20 + 1)Q0 (212) Q7 (213) Q0 ™ (203).- (B.11)
=0

While the infinite sum of the triple product of Legendre Polynomials of first kind has been
found long time ago [29], we don’t find a close formula for general a2, a3, ag3. Fortunately,
we just need the result for special value of a9, a3, as3. With some efforts, the general
structure of J is as follows for positive integer a9, 13, o

1+ 79 r1+ 173
J(a127 13, a23) = fa12,a13,a23 + goqz,oqg,oczg 10g — + hOé1270¢1370¢23 log I
|71 — 1o |71 — 73]
(B.12)
) o+ 173
+ la1z,013,003 10 [r2 — 73]’
where f, g, h,i are rational functions of 71,79, 73. Several examples are
fii1 =0,
47“17“21%
gi11 = )
)

hii1 = gi11(r2 4> r3),

11,1 = g1,1,1(r1 > 73), (B.13)
s BRI (30— 4r3 8 e o)

> 157132 (F =133 13
P 16T1(T1—7‘2)1"2(1"1—{—7"2)7“3(57“% % T‘3—|—T‘27°3 5r3)
- 15(rf —r3)3(r3—r3)? ’

hop1 = g2.2.1(r24>73),

) 4r2rors(15(r§4+-r373) +10r2 (r +r3r2) (r3 +73 —ri (r3 +6873r3 +13))

1221 = 1502 720372 —r2)3 , (B.14)

(ri—r3)3(ri—r3)
8r%r§r§
= — 113(r5rs +rarS +r8rs+rirS +rirs +r¥r
f2,.2.2 105(2 =23 (=2 (=123 5 [113(rar3+15 S+rirg+riry+riri+riry)
2 4

—34(7“17“2 —i—rlrg +T2r3 +r1r2r3 +T1T2T3 +r%r§r§)

+r1 r2r3 +r1 7"2 7“3 —1—7"1 T 7"3) + 16261”‘117"37%]

350(7”1 To 1“3 —H“l 7‘2 7’3 —1—7“1 5T

167179 (7‘% r%)r%

422, 24 2 2.6
9222 = 105(2—13)i(r2—r2)1 [35(7”17’2+7"3)+14(T1T2T3+T17’27"3+T17“3+T27"3)
—r3(ri4rs)—124r2r2r3],
ha22 = g2.22(r2 <> 73),
Z'27272 = g2,272(7“1 <—>7’3). (B15)

5Tn general, the three variables zi2, z13, 223 are not related to each other. In our case, they are con-
strainted by the identity
Z%Z + 2%3 + 253 — 1 — 2219213223 = 0. (B.lO)
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B.2 Square D?

The first integral we will use is
Hj;= / d2u J-
DZ

(B.16)

The measure d?u; has been defined in (4.57). The square D? is parameterized by two

coordintes ¢ and ¢
—1<¢ <1

By changing the variables ¢, to &, &

,_.
+
N

l\DI
BEat

the integral becomes a standard Selberg integral

A—d—J

1 1 _ _ _ _
HJZQ%%QH@ﬂF”/tE/CEK—ﬂw%ﬂl—Qﬂl—O)2
0 0
:2mﬂky%b(L+A—d—Jl+A—d—Jc#&).

2 ’ 2 2
Selberg integral is defined as [30, 31]

n 1 n
seb(a.p.) = 11 [[as]leta-0" T le-g

1<i<j<n

_II (o +jy)T(B + )T+ (5 + 1))
Tla+B+n+j—-)yT(A+y)

Therefore

22A7d72JF(d _ 1)F(A;J))2F(A—d;]+2)2

Hy= T(HI(A = J)I(A—J -4+ 1)

In four dimensions, it is
22A_2J_3F(A7572)2F(¥)2
N'A—-J-1I'(A)

Hjy =

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)
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