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1 Introduction

There are diverse area laws in different branches of physics. The prototype is originated
from black hole physics where the thermal entropy of a black hole is proportional to the
area of its event horizon [1, 2]. This unusual property of black hole has stimulated varies
modern idea of theoretical physics.

In the context of quantum field theory (QFT), people have already noticed a similar
area law for geometric entanglement entropy [3–6] several decades ago. One could find the
details in the review paper [7]. Its connection to gravity has been established by the work
of Ryu and Takayanagi [8], in which they proposed that the entanglement entropy of a
CFT is equal to the area of a minimal surface in the bulk AdS spacetime.

In this paper, we present a new area law in general higher dimensional CFTs (d > 2)
following the work [9]. In that work, the author argued that (m)-type CCF [10, 11] of
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OPE block may obey area law from the analytic continuation of (m−1, 1)-type CCF. Just
like entanglement entropy of continues QFT, it is divergent. The leading term obeys area
law whose coefficient depends on the energy scale. In the sub-leading terms, cutoff inde-
pendent information can be extracted, usually, this is encoded in a logarithmic divergent
term. However, the logarithmic structure turns out to be much more richer than entangle-
ment entropy. We summarize the area law and logarithmic behaviour schematically in the
following formula

〈QA[O1] · · ·QA[Om]〉c = γ
Rd−2

εd−2 + · · ·+ pq logq R
ε

+ pq−1 logq−1 R

ε
+ · · · . (1.1)

In this equation, QA[O] is an OPE block associated with a primary operator O. We will
review the definition of OPE block in the following section. The subscript A denotes the
spacetime region where the OPE block lives in. The quantity R is the typical size of region
A. The small positive parameter ε is a UV cutoff. The constant γ is cutoff dependent,
therefore it is not physical. The integer q is the maximal power of the logarithmic terms
in the CCF whose coefficient pd is non-zero. The exact value of q may depend on the OPE
block and the spacetime dimension. According to the value of q, we classify the logarithmic
behaviour of (m)-type CCFs. We will detail its value in the following sections. When the
positive value m ≤ 3, we find that q may be in the region

0 ≤ q ≤ 2. (1.2)

The · · · terms in the formula are the possible sub-leading terms which are cutoff dependent.
Therefore we will not be careful about their exact forms. The physical information is
encoded in the coefficient pq. We establish a UV/IR relation to extract the coefficient pq
based on the analytic continuation of conformal block.

This paper is organised as follows. We begin by introducing OPE block and CCF
used in this work in section 2. In section 3 we will derive the area law and logarithmic
behaviour of (m)-type CCF. We classify different CCFs according to the maximal power q
of the logarithmic term in the CCFs. At the same time, we obtain a UV/IR relation which
is useful to extract the cutoff independent coefficient pd. We compute several examples
in the following section. In section 5, we discuss an “inconsistency” problem and solve it
partly. Section 6 contains some concluding remarks in this work.

2 Setup

2.1 OPE block

In CFTs, operators are classified into (quasi-)primary operators O and their descendants
∂µ∂ν · · · O. A general primary operator is characterized by two quantum numbers, confor-
mal weight ∆ and spin J . Under a global conformal transformation x → x′, a primary
operator1 transforms as

O(x)→ |∂x
′

∂x
|−∆/dO(x). (2.1)

1We use scalar field as an example.
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where |∂x′/∂x| is the Jacobian of the conformal transformation of the coordinates, ∆ is
the conformal weight of the primary operator and d is the spacetime dimension. Operator
product expansion(OPE) of two separated primary scalar operators Oi(x1)Oj(x2) is to
expand it in a local complete basis around at a suitable point

Oi(x1)Oj(x2) =
∑
k

Cijk|x12|∆k−∆i−∆j (Ok(x2) + · · · ), (2.2)

where · · · are descendants of the primary operator Ok. Its form is fixed by global conformal
symmetry, therefore it just contains kinematic information of the CFT. The summation
is over all possible parimary operators in the CFT. The constants Cijk are called OPE
coefficients which is related to the three point function of the primary operators. They
are the only dynamical parameters in the theory. The constants ∆i,∆j ,∆k are conformal
weights of the corresponding primary operators. The distance of the two points x1 and x2
is denoted as |x12|. By collecting all kinematic terms in the summation, we can rewrite the
OPE (2.2) as

Oi(x1)Oj(x2) = |x12|−∆i−∆j
∑
k

CijkQ
ij
k (x1, x2). (2.3)

The objects Qijk (x1, x2) are called OPE blocks [12–14]. They are non-local operators in
the CFT and depend on the position of external operators x1 and x2. The upper index i
and j show that it also depends on the quantum number of the external operators Oi and
Oj . It is easy to see that the OPE block has dimension zero. Under a global conformal
transformation x→ x′, an OPE block Qijk (x1, x2) will transform as

Qijk (x1, x2)→ f(x′1, x′2)Qijk (x′1, x′2). (2.4)

The explicit form of f(x′1, x′2) is not important in this work. When the two external
operators are the same, we have f(x′1, x′2) = 1 and the OPE block will be invariant under
global conformal transformations. One can also show that the OPE block is independent
of the external operator in this special case. We will relabel such kind of OPE block as

QA[Ok] = Qiik (x1, x2). (2.5)

The subscript A denotes the region determined by the two points x1 and x2 where the two
external operators insert into. The operator in the square bracket reflects the fact that
the OPE block is generated by the primary operator Ok. We omit the information of i
since this OPE block is insensitive to the external operators. We will classify the primary
operators Ok into conserved currents J and non-conserved operators O. A general primary
operator obeys the following unitary bound [15]2{

∆ ≥ J + d− 2, J ≥ 1,
∆ ≥ d−2

2 , J = 0.

A conserved current J with spin J(J ≥ 1) will satisfy ∆ = J + d − 2. All other primary
operators are non-conserved operators. Correspondingly, the OPE block (2.5) generated

2The operators in this work are symmetric and traceless. We will also not discuss fermion operators.
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by a conserved current J will be called a type-J OPE block. On the other hand, the OPE
block (2.5) generated by a non-conserved operator O will be called a type-O OPE block.

When the two external operators are time-like separated, the region A is a causal
diamond. The two operators are at the sharp corner of the diamond A. We can use
conformal transformations to fix

x1 = (1, ~xA), x2 = (−1, ~xA), (2.6)

then the causal diamond A intersects t = 0 slice with a unit ball ΣA

ΣA = {(0, ~x)|(~x− ~xA)2 ≤ 1}. (2.7)

The center of the ball is ~xA. The boundary of ΣA is a unit sphere S. In the context of geo-
metric entanglement entropy, the surface S is an entanglement surface which separates the
ball ΣA and its complement. The leading term of the entanglement entropy is proportional
to the area of the surface S in general higher dimensions (d > 2). There is a conformal
Killing vector K which preserves the diamond A

Kµ = 1
2(1− (~x− ~xA)2 − t2,−2t~x) (2.8)

and it is null on the boundary of the diamond A. It generates a modular flow of the
diamond A. Any type-O OPE block corresponds to the point pair (2.6) or the unit ball
ΣA (2.7) is [16]

QA[Oµ1···µJ ] = cOµ1···µJ

∫
A
ddxKµ1 · · ·KµJ |K|∆−d−JOµ1···µJ , (2.9)

where the primary operator Oµ1···µJ is non-conserved

∂µ1Oµ1···µJ 6= 0. (2.10)

It has dimension ∆ and spin J . When the operator is a conserved current

∂µ1Jµ1···µJ = 0, (2.11)

the corresponding type-J OPE block is

QA[Jµ1···µJ ] = cJµ1···µJ

∫
ΣA

dd−1~x(K0)J−1J0···0. (2.12)

It can be obtained from (2.9) by using conservation law (2.11) and reducing it to a lower
d − 1 dimensional integral. The coefficient cJµ1···µJ

is also redefined at the same time.
In (2.9) and (2.12), the coefficients cOµ1···µJ

and cJµ1···µJ
are free parameters, we set them

to be 1.
A very special type-J OPE block is the modular Hamiltonian [17, 18] of the region ΣA,

HA = 2π
∫

ΣA
dd−1~xK0T00 = 2π

∫
ΣA

dd−1~x
1− (~x− ~xA)2

2 T00(0, ~x). (2.13)
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The modular Hamiltonian is the logarithm of the reduced density matrix ρA

HA = − log ρA. (2.14)

It plays a central role in the context of entanglement entropy,

SA = −trAρA log ρA = trAe−HAHA. (2.15)

More generally, Rényi entanglement entropy

S
(n)
A = 1

1− n log trAρnA (2.16)

has been shown to satisfy an area law generally

S
(n)
A = γ

A
εd−2 + · · · , (2.17)

where A is the area of the entanglement surface S and ε is a UV cutoff. The constant γ is
cutoff dependent. The subleading terms · · · contain a logarithmic term in even dimensions

S
(n)
A = γ

A
εd−2 + · · ·+ p1(n) log R

ε
+ · · · , (2.18)

where we have inserted back the radius R. The area A is related to the radius R through
the power law

A ∼ Rd−2. (2.19)

The coefficient p1(n) encodes useful information of the CFT. It is easy to show that the
CCF of the modular Hamiltonian HA satisfies a similar area law in even dimensions,

〈Hm
A 〉c = γ̃

A
εd−2 + · · ·+ p̃

(m)
1 log R

ε
+ · · · , m ≥ 1. (2.20)

The coefficient p̃(m)
1 is determined from p1(n) by

p̃
(m)
1 = (−1)m∂mn (1− n)p1(n)|n→1. (2.21)

We will introduce the definition of the CCF in the following subsection.

2.2 Deformed reduced density matrix and connected correlation function

Reduced density matrix of a subregion A is obtained by tracing out the degree of freedom
in its complement

ρA = trĀρ (2.22)

where ρ is the density matrix of the system. It can also be written as an exponential
operator formally (2.14)

ρA = e−HA . (2.23)

For a causal diamond A, HA is a type-J OPE block. Therefore it is natural to define a
deformed reduced density matrix [11] by replacing the modular Hamiltonian with a general
OPE block QA

ρA = e−µQA , (2.24)
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where we still use ρA to label deformed reduced density matrix. The constant µ is an inde-
pendent constant. In the “first law of thermodynamics” [9] associated with the deformed
reduced density matrix, it may be regarded as a chemical potential which is dual to the
OPE block QA. The OPE block QA can also be a linear superposition of multiple OPE
blocks. We don’t restrict the OPE block in (2.24) to be type-J. A subtle problem is that
the spectrum of QA is not always non-negative, therefore the deformed reduced density
matrix may not be well defined in general. However, as we will show below, it is still a
useful formal tool to generate CCFs.

We define a formal generator of the (m)-type CCF through the logarithm of the vacuum
expectation value of the deformed reduced density matrix,

TA(µ) = log〈e−µQA〉. (2.25)

Then the so-called (m)-type CCF of the OPE block QA[O] is defined as

〈QA[O]m〉c = (−1)m∂
mTA(µ)
∂µm

∣∣
µ→0 (2.26)

The first few orders are

〈QA[O]2〉c = 〈QA[O]2〉 − 〈QA[O]〉2,
〈QA[O]3〉c = 〈QA[O]3〉 − 3〈QA[O]2〉〈QA[O]〉+ 2〈QA[O]〉3. (2.27)

When there are multiple space-like separated regions, one can define a general Y -type CCF
with the Young diagram

Y = (m1,m2, · · · ), m1 ≥ m2 ≥ · · · ≥ 1. (2.28)

The OPE block generated from the operator O is an eigenvector of the Casimir operator
of the conformal group with the eigenvalue C = ∆(∆− d)− J(J + d− 2). Combining with
the boundary behaviour when x1 → x2 for the OPE block, any (m, 1)-type CCF will be
proportional to a conformal block

〈QA[O]mQB[O]〉c = D[O]G∆,J(z), (2.29)

where B is another causal diamond, z denotes the cross ratios corresponding to the two
diamonds A and B. The OPE blocks can be different in (2.29), we write the general
result as

〈QA[O1] · · ·QA[Om]QB[O]〉c = D[O1,O2, · · · ,Om,O]G∆,J(z). (2.30)

The coefficient D characterizes the large distance behaviour of (m, 1)-type CCF. The ref-
erences to discuss conformal block are [19, 20]. In this work, we just need the diagonal
limit of the conformal block [21].
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3 Area law and logarithmic behaviour

Motivated by the area law of Rényi entanglement entropy (2.18), or equivalently, the area
law of the (m)-type CCF of the modular Hamiltonian (2.20), we are interested in the
divergent behaviour of the (m)-type CCF of OPE blocks

〈QA[O1] · · ·QA[Om]〉c. (3.1)

When the OPE block is the modular Hamiltonian, we should reproduce the area law of
modular Hamiltonian (2.20). Therefore it is natural to conjecture that (3.1) also obeys an
area law for general OPE blocks. In the subleading terms, one may also read out cutoff
independent information. It turns out that the structure is much more richer,

〈QA[O1] · · ·QA[Om]〉c = γ
Rd−2

εd−2 + · · ·+ pq logq R
ε

+ pq−1 logq−1 R

ε
+ · · · . (3.2)

As discussed in the introduction, the maximal power of log R
ε is q. We will call q the degree

of the (m)-type CCF (3.1). For example, the degree q is one for the CCF of the modular
Hamiltonian (2.20) or (2.18) in even dimensions. In this paper, we will restrict the integer
m ≤ 3, then the degree may satisfy 0 ≤ q ≤ 2. More explicitly,

q =
{

1, 2, d = even
0, 1, d = odd

(3.3)

We will use the degree q to distinguish CCFs (3.1). In the following, we will discuss the
logarithmic behaviour in detail.

In even dimensions, as (3.3), we could distinguish two classes according to the loga-
rithmic behaviour in the subleading terms.

1. Class I. The degree of the (m)-type CCF is 1. We can write (3.2) more explicitly as

〈QA[O1] · · ·QA[Om]〉c = γ[O1, · · · ,Om]R
d−2

εd−2 + · · ·+ pe1[O1, · · · ,Om] log R
ε

+ · · · ,
(3.4)

where we detail the dependence of the primary operator Oi for the coefficients γ and
p1. The upper index e in p1 indicates that the spacetime dimension is even. The well
known example is the CCF of the modular Hamiltonians (2.20), or equivalently (2.18).
For simplicity, we set the spacetime dimension d = 4. There are many discussions
on the structure (2.18) or (2.20). We will argue the structure (2.20) in the following
way. We’d like to make use of the conclusion (2.30) by moving one OPE block to a
separated region B, then the left hand side of (3.4) becomes a (m− 1, 1)-type CCF

〈Hm−1
A HB〉c = D[Tµ1ν1 , · · · , Tµmνm ]G4,2(z). (3.5)

We can choose the region B as the causal diamond of a unit ball ΣB whose radius
is R′.

ΣB = {(0, ~x)|~x2 ≤ R′2}. (3.6)
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The center of the ball is origin. Therefore the unique cross ratio of ΣA and ΣB is3

z = 4R′

x2
A − (1−R′)2 . (3.7)

The conformal block G4,2(z) is well defined for 0 < z < 1, which is exactly the case
that A and B are space-like separated. Now we move the diamond B to A, then the
(m− 1, 1)-type CCF becomes an (m)-type CCF. Roughly speaking

〈Hm
A 〉c = limB→A〈Hm−1

A HB〉c. (3.8)

The limit B → A is subtle, we first move xA → 0 and then take the limit R′ → 1,

r = 0, R′ = 1− ε, ε→ 0. (3.9)

The cross ratio z approaches −∞ by

z = −4(1− ε)
ε2

, ε→ 0. (3.10)

In this limit, the conformal block G4,2(z) becomes divergent

G4,2(z)→ γ̃
R2

ε2
+ · · · − 120 log R

ε
+ · · · . (3.11)

We have inserted back the radius R in the expression. The leading term is propor-
tional to area of the surface S. As B approaches A, the (m−1, 1)-type CCF becomes
a (m)-type CCF

〈Hm
A 〉c = γ

R2

ε2
+ · · ·+ pe1[Tµ1ν1 , · · · , Tµmνm ] log R

ε
+ · · · (3.12)

with
pe1[Tµ1ν1 , · · · , Tµmνm ] = −120D[Tµ1ν1 , · · · , Tµmνm ]. (3.13)

If the coefficient D is finite in (3.13), then (3.12) is exactly the same as (2.20). The
equation (3.13) is a typical UV/IR relation for modular Hamiltonian in the sense
of [9]. The left hand side is the cutoff independent coefficient as B and A coincides
(UV) while D characterizes the leading order behaviour of CCF when two regions
are far away to each other (IR). The constant −120 is from the conformal block
associated with the stress tensor in four dimensions. Therefore it is a kinematic
term which is totally fixed by conformal symmetry. Note the constant γ is cutoff
dependent, therefore it may depend on the energy scale we choose.

The discussion on modular Hamiltonian may extend to other OPE blocks. Interest-
ingly, we find that a conformal block G∆,J(z) in even dimensions has either degree
q = 1 or q = 2

G∆,J(z) ∼

 γ̃R
d−2

εd−2 + · · ·+ E[∆, J ] log R
ε + · · · , ∆ = J + d− 2,

γ̃R
d−2

εd−2 + · · ·+ E[∆, J ] log2 R
ε + · · · ,∆ > J + d− 2,

(3.14)

3Usually, there are two cross ratios for two balls. However, ΣA and ΣB are located at the same time
t = 0 which reduce the number of independent of cross ratio to one.
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where the constant E[∆, J ] is determined by quantum numbers of the primary op-
erator. When all the primary operators are conserved currents, ∆ = J + d − 2, we
conclude that the (m)-type CCF of type-J OPE blocks may has degree q = 1 with

pe1[O1, · · · ,Om] = E[Om]D[O1, · · · ,Om], (3.15)

where we have replaced the quantum numbers in E function by the primary operator.
Some remarks are shown as follows.

(a) Cyclic identity. For a general (m)-type CCF of the type-J OPE block (3.4), we
have different ways to uplift (m)-type to (m − 1, 1) type. However, the cutoff
independent coefficient should be equal since they lead to the same CCF. For
example, m = 3, the coefficients pe1 should satisfy the following cyclic identity

pe1[O2,O3,O1] = pe1[O3,O1,O2] = pe1[O1,O2,O3]. (3.16)

(b) The function E[O] can be read out from the conformal block G∆,J corresponding
to the primary operator O. For conserved currents, we find

E[O] =



12, ∆ = 3, J = 1,

−120, ∆ = 4, J = 2,

840, ∆ = 5, J = 3,

· · ·

(3.17)

(c) The constant γ also depends on the way to uplift (m)-type CCF to (m − 1, 1)
type. Since it is cutoff dependent, we don’t expect they are equal to each other,

γ[O2, · · · ,Om,O1] 6= γ[O1,O3, · · · ,Om,O2] 6= · · · 6= γ[O1, · · · ,Om−1,Om].
(3.18)

2. Class II. For this class, the degree q = 2,

〈QA[O1] · · ·QA[Om]〉c =

γ
Rd−2

εd−2 + · · ·+ pe2[O1, · · · ,Om] log2 R

ε
+ pe1[O1, · · · ,Om] log R

ε
+ · · · .

(3.19)

Therefore the coefficient pe2 is cutoff independent while pe1 is not. As Class I, we can
read UV/IR relation

pe2[O1, · · · ,Om−1,Om] = E[Om]D[O1, · · · ,Om−1,Om]. (3.20)

The coefficient pe2 should also satisfy a cyclic property as (3.16),

pe2[O2,O3,O1] = pe2[O3,O1,O2] = pe2[O1,O2,O3]. (3.21)
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We read E[O] from the conformal block G∆,J(z) for non-conserved operators, several
examples are shown below

E[O] =



−22∆−1Γ( ∆−1
2 )Γ( ∆+1

2 )
πΓ( ∆−2

2 )2 , ∆ > 1, J = 0,
22∆−1Γ( ∆

2 )Γ( ∆+2
2 )

πΓ( ∆−3
2 )Γ( ∆+1

2 )
, ∆ > 3, J = 1,

−4∆−1(∆−2)Γ( ∆−3
2 )Γ( ∆+3

2 )
πΓ( ∆−4

2 )Γ( ∆+2
2 )

, ∆ > 4, J = 2,

· · ·

(3.22)

There are some constraints on the conformal weight. For scalar primary operator, the
unitary bound in four dimensions will constrain ∆ ≥ 1. We notice that the function
E[O] becomes divergent when ∆ = 1. On the other hand, when ∆ = 2, the function
E[O] is zero. Therefore we should be careful with the two special points. Since
the physical coefficient is the product of E and D, see (3.20), we cannot make the
conclusion that pe2 is divergent for ∆ = 1 and zero for ∆ = 2 since it also depends on
the behaviour of the function D near the two special points. When the non-conserved
operators have spin J ≥ 1, the unitary condition constrains

∆ > J + 2 (3.23)

for CFT4. This is the inequality at the second and third line of E[O]. We also note
that as ∆ → J + 2, E[O] actually approaches zero. If the function D is finite in
this limit, (3.20) implies that pe2 is zero for ∆ = J + 2. Then pe1 becomes cutoff
independent, which is consistent with the conclusion in Class I.

In odd dimensions, the logarithmic behaviour is a bit different, however, we could still
distinguish two classes according to the degree q. It turns out that the maximal degree q
is 1 in odd dimensions. We discuss them briefly in the following as it is parallel to even
dimensions.

1. Class O. In this class, the degree q = 0,

〈QA[O1] · · ·QA[Om]〉c = γ
Rd−2

εd−2 + · · ·+ po0[O1, · · · ,Om]. (3.24)

There is no logarithmic divergence in this case. The upper index in po0 denotes that
the spacetime dimension is odd.

2. Class I’. In this class, the degree q = 1,

〈QA[O1] · · ·QA[Om]〉c = γ
Rd−2

εd−2 + · · ·+ po1[O1, · · · ,Om] log R
ε

+ · · · . (3.25)
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We can also find the corresponding UV/IR relations. For example, in three dimen-
sions, the function E[O] is

E[O] =



−22∆−1(∆−1)Γ(∆− 1
2 )√

πΓ(∆−1) , ∆ > 1
2 , J = 0.

2∆+1∆Γ(∆− 1
2 )

Γ( ∆−2
2 )Γ( ∆+1

2 )
, ∆ > 2, J = 1,

−22∆−1(∆2−1)Γ(∆− 1
2 )√

π(∆−2)2∆Γ(∆−3) , ∆ > 3, J = 2,

· · ·

(3.26)

4 Examples

In this section, we will use several examples to check the results in the previous section.
We will set spacetime dimension d = 4 from now on.

4.1 Class I

Type-J OPE block is

QA[Jµ1···µJ ] =
∫

ΣA
d3~x(K0)J−1J0···0 = 1

2J−1

∫
ΣA

dd−1~x(1− (~x− ~xA)2)J−1J0···0. (4.1)

4.1.1 (2)-type

We will consider conserved currents with lower spin J ≤ 2.

1. Spin 1 current. We will use two methods to compute the CCF

〈QA[Jµ]2〉c = :
∫

ΣA
d3~x

∫
ΣA

d3~x′〈J0(~x)J0(~x′)〉c : . (4.2)

The symbol : : means that one should remove the divergence from the two operators
attach to each other [10]. This requires a way of regularization. In the following, we
will omit the symbol : :.

(a) We transform the coordinates to spherical coordinates

~x = r~ω, ~ω2 = 1, (4.3)
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then

〈QA[Jµ]2〉c

=
∫

ΣA
r2drd~ω

∫
ΣA

r′2dr′d~ω′
CJI00(x− x′)
|~x− ~x′|6

= −CJ
∫

ΣA
r2drd~ω

∫
ΣA

r′2dr′d~ω′
1

(r2 + r′2 − 2rr′~ω · ~ω′)3

= −CJS2S1

∫ 1

0
r2dr

∫ 1

0
r′2dr′

∫ π

0
sin θdθ 1

(r2 + r′2 − 2rr′ cos θ)3

= −CJ(4π)× (2π)
∫ 1

0
dr

∫ 1

0
dr′

2r2r′2(r2 + r′2)
(r − r′)4(r + r′)4

= −8π2CJ

∫ 1−ε

0
dr

2r2

3(r2 − 1)3

= π2

3 CJ

(
R2

ε2
− R

ε
− log R

ε
+ · · ·

)
. (4.4)

At the first step, we make use of the two point function of the spin 1 current

〈Jµ(x)Jν(x′)〉 = CJIµν(x− x′)
|x− x′|2∆ , (4.5)

where the symmetric tensor is

Iµν(x) = ηµν − 2nµ(x)nν(x), nµ = xµ
|x|
. (4.6)

The constant CJ defines the normalization of the current Jµ. At the time slice
t = 0, we have n0 = 0 and I00 = η00. At the third line, we define the angle θ
between the two vectors ~ω and ~ω′,

~ω · ~ω′ = cos θ. (4.7)

The factor Sn is the area of the unit n-sphere Sn,

Sn = 2π
n+1

2

Γ(n+1
2 )

. (4.8)

The integrand at the fourth line has poles at

r = r′. (4.9)

According to the regularization method in [10], we can just ignore those poles.
These poles are from the two currents Jµ(x) and Jν(x′) attach to each other.
We expect they can be removed.4 At the fifth line, the integrand is also diver-
gent for r → 1. Therefore we insert a small positive ε into the upper bound

4In appendix A, we study carefully the pole structure around the point r = r′ and find that they have no
contribution to the logarithmic divergence. Therefore they don’t affect the cutoff independent coefficient.
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of the integration. The small parameter ε characterizes the distance to the en-
tanglement surface, therefore it is a UV cutoff. At the last step, we insert back
the radius R = 1 to balance the dimension. The term in · · · is an unimportant
constant. Now we can extract the cutoff independent coefficient

pe1[Jµ,Jν ] = −π
2

3 CJ . (4.10)

(b) Now we can also compute the same CCF (4.2) by uplifting the (2)-type CCF to
(1, 1)-type, namely

〈QA[Jµ]2〉c
uplift−→ 〈QA[Jµ]QB[Jν ]〉c (4.11)

The (1, 1)-type CCF is easy to compute as we just need to fix the leading order
coefficient D[Jµ,Jν ] when A and B are far apart.

〈QA[Jµ]QB[Jν ]〉c

=
∫

ΣA
r2drd~ω

∫
ΣB

r′2dr′d~ω′
CJI00(x− x′)
|~x+ ~xA − ~x′|6

≈ −CJ
∫

ΣA
r2drd~ω

∫
ΣB

r′2dr′d~ω′
1
x6
A

= −CJ
(4π

3

)2
× 1

26 z
3

= −π
2

36CJz
3. (4.12)

At the first step, we insert back the center of ΣA. The center of ΣB is assumed
to be 0. At the second step, we use the assumption that A and B are far away
to each other, xA → ∞. At the third step, we rewrite xA in terms of the cross
ratio

z = 4
x2
A

. (4.13)

We read out the value
D[Jµ,Jν ] = −π

2

36CJ . (4.14)

Then we use the UV/IR relation (3.15) and the function E[J ] = 12 for spin 1
current to obtain

pe1[Jµ,Jν ] = −π
2

36CJ × 12 = −π
2

3 CJ . (4.15)

As we expect, the coefficients (4.10) and (4.15) are the same. It is also easy to check
that the coefficient γ are not the same for the two methods. Since γ has no cutoff
independent meaning, it depends on the regularization. One can redefine the cutoff
such that they are the same.

2. Spin 2 current. As spin 1 current, we use two ways to regularize the integral.
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(a) The first method is to regularize the integral directly, we need the two point
function for spin 2 current

〈Tµν(x)Tρσ(x′)〉 = CT
Iµν,ρσ(x− x′)
|x− x′|2∆ , (4.16)

where
Iµν,ρσ(x) = 1

2(Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x))− 1
4ηµνηρσ. (4.17)

At the time slice t = 0, we find

I00,00 = 3
4 . (4.18)

Then

〈QA[Tµν ]2〉c

= 1
4 ×

3
4CT

∫
ΣA

r2drd~ω

∫
ΣA

r′2dr′d~ω′
(1− r2)(1− r′2)

(r2 + r′2 − 2rr′~ω · ~ω′)4

= 3
16S2S1CT

∫ 1

0
dr

∫ 1

0
dr′

2r2(1− r2)r′2(1− r′2)(r2 + 3r′2)(r′2 + 3r2)
3(r2 − r′2)6

= π2

40CT

(
R2

ε2
− R

ε
− log R

ε
+ · · ·

)
. (4.19)

We read
pe1[Tµν , Tρσ] = −π

2

40CT . (4.20)

(b) We can also compute (1, 1)-type CCF firstly,

〈QA[TµνQB[Tρσ]〉c

≈ 1
4 ×

3
4CT

∫
ΣA

r2drd~ω

∫
ΣA

r′2dr′d~ω′(1− r2)(1− r′2) 1
x8
A

= π2

4800CT z
4. (4.21)

Therefore we get

D[Tµν , Tρσ] = π2

4800CT . (4.22)

Combining with E[Tµν ] = −120 for the stress tensor and the UV/IR relation,

pe1[Tµν , Tρσ] = π2

4800CT × (−120) = −π
2

40CT . (4.23)

Again, we find the cutoff independent coefficients (4.20) and (4.23) are equal. We
note that 〈QA[Tµν ]2〉c is related to the universal property of Rényi entanglement
entropy by [22]. Transforming to the notation of that paper, we have

〈QA[Tµν ]2〉c = 〈H2
τ 〉 = − 1

2π2S
′
q=1 = − 1

2π2

(
−Vol(Hd−1)π

d/2+1Γ(d/2)(d− 1)
(d+ 1)! CT

)
|d=4

= −π
2

40CT log R
ε
. (4.24)
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In the equation above, we just include the cutoff independent term. It is consistent
with (4.20) and (4.23). Note this is also an independent check for the method of
regularization. In the integral (4.19), there will be poles when the two stress tensors
attach to each other, their effects have been discussed in appendix A. Since they do
not appear in the context of Rényi entanglement entropy, it is fine to remove these
effects through our regularization.

4.1.2 (3)-type

We will consider the following two examples.

1. Spin 1-1-2. In this case, the three point function is [23]

〈Tµν(x1)Jσ(x2)Jρ(x3)〉 = Iσα(x21)Iρβ(x31)tµναβ(X23)
xd12x

d
13x

d−2
23

, (4.25)

where

tµνσρ(X) = ah1
µν(X̂)ησρ + bh1

µν(X̂)h1
σρ(X̂) + c h2

µνσρ(X̂) + eh3
µνσρ (4.26)

with

h1
µν(X̂) = X̂µX̂ν −

1
d
ηµν , X̂µ = Xµ√

X2
,

h2
µνσρ(X̂) = X̂µX̂σηνρ + X̂νX̂ρηµσ + X̂µX̂ρηνσ + X̂νX̂σηµρ −

4
d
X̂µX̂νησρ

−4
d
X̂σX̂ρηµν + 4

d2 ηµνησρ,

h3
µνσρ = ηµσηνρ + ηµρηνσ −

2
d
ηµνησρ. (4.27)

The tensors h1
µν , h

2
µνσρ, h

3
µνσρ are traceless

ηµνh1
µν = 0, ηµνh2

µνσρ = 0, ηµνh3
µνσρ = 0 (4.28)

due to the traceless condition of stress tensor. The variable

(X23)µ = (x21)µ
x2

21
− (x31)µ

x2
31

, X2
23 = x2

23
x2

21x
2
31
. (4.29)

The Ward identity from conservation of the currents or stress tensor leads to

da− 2b+ 2(d− 2)c = 0, b− d(d− 2)e = 0. (4.30)

Only two of the constants are independent. In four dimensions,

e = 1
8b, c = 1

2b− a. (4.31)

We only need the component

〈T00(x1)J0(x2)J0(x3)〉 = I0α(x21)I0β(x31)t00αβ(X23)
xd12x

d
13x

d−2
23

= t0000(X23)
x4

12x
4
13x

2
23
. (4.32)
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We notice

h1
00(X̂) = 1

4 , h2
0000(X̂) = 1

4 , h3
0000 = 3

2 . (4.33)

Then

〈T00(x1)J0(x2)J0(x3)〉=
−1

4a+ 1
16b+

1
4c+

3
2e

x4
12x

4
13x

2
23

= 3b−4a
8

1
x4

12x
4
13x

2
23
≡CTJJ

1
x4

12x
4
13x

2
23
,

(4.34)
where we defined a compact constant CTJJ which is a linear combination of a and b.
Now we can use three different methods to extract the logarithmic term in the CCF
of the OPE blocks.

(a) We can regularize the integral directly

〈QA[Tµν ]QA[Jσ]2〉c

= 1
2CTJJ

∫
ΣA

d3~x1

∫
ΣA

d3~x2

∫
ΣA

d3~x3(1− ~x2
1) 1
|~x1 − ~x2|4|~x1 − ~x3|4|~x2 − ~x3|2

= 1
2CTJJ

∫ 1

0
r2

1(1− r2
1)dr1

∫ 1

0
r2

2dr2

∫ 1

0
r2

3dr3 I3(2, 2, 1)

= 8π3CTJJ

∫ 1−ε

0
dr1

r2
1

(1− r2
1)3

= π3

2 CTJJ

(
R2

ε2
− R

ε
− log R

ε
+ · · ·

)
. (4.35)

At the second line, we have defined a surface integral I3(2, 2, 1) whose details
are discussed in the appendix B.1. Roughly speaking, the integral I3(2, 2, 1) has
the structure

I3(2, 2, 1) = f̃2,2,1 + g̃2,2,1 log r1 + r2
|r1 − r2|

+ h̃2,2,1 log r1 + r3
|r1 − r3|

+ ĩ2,2,1 log r2 + r3
|r2 − r3|

(4.36)
where the functions f̃ , h̃, g̃, ĩ are rational functions of r1, r2, r3. Therefore the
definite integral becomes elementary. The integrand at the third line has pole
r1 = 1 therefore we insert a small positive UV cutoff ε. The logarithmic term is
indeed has degree 1,

pe1[Tµν ,Jσ,Jρ] = −π
3

2 CTJJ . (4.37)

(b) We can compute the following (2, 1)-type CCF firstly,

〈QB[Tµν ]QA[Jσ]2〉c

= 1
2CTJJ

∫
ΣB
d3~x1

∫
ΣA
d3~x2

∫
ΣA
d3~x3(1−~x2

1) 1
|~x1−~x2+~xA|4|~x1−~x3+~xA|4|~x2−~x3|2

,

(4.38)
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then we can extract the D function by taking the limit xA →∞,

D[Jσ,Jρ, Tµν ]

= 1
2CTJJ ×

1
28

∫
ΣB

d3~x1

∫
ΣA

d3~x2

∫
ΣA

d3~x3(1− ~x2
1) 1
|~x2 − ~x3|2

= 1
29CTJJ ×

2
15(4π)2(2π)

∫ 1

0
r2

2dr2

∫ 1

0
r2

3dr3

∫ π

0
sin θdθ 1

r2
2 + r2

3 − 2r2r3 cos θ

= π3

120CTJJ
∫ 1

0
dr2

∫ 1

0
dr3r2r3(log(r2 + r3)− log |r2 − r3|)

= π3

240CTJJ . (4.39)

Therefore, using the UV/IR relation we extract the logarithmic term

pe1[Jσ,Jρ, Tµν ] = −120× π3

240CTJJ = −π
3

2 CTJJ . (4.40)

(c) We can also compute another (2, 1)-type CCF,

〈QA[Tµν ]QA[Jσ]QB[Jρ]〉c

= 1
2CTJJ

∫
ΣA
d3~x1

∫
ΣA
d3~x2

∫
ΣB
d3~x3(1−~x2

1) 1
|~x1−~x2|4|~x1−~x3+~xA|4|~x2−~x3+~xA|2

,

(4.41)

and read out the large xA behaviour

D[Tµν ,Jσ,Jρ]

= 1
2CTJJ ×

1
26

∫
ΣA

d3~x1

∫
ΣA

d3~x2

∫
ΣB

d3~x3(1− ~x2
1) 1
|~x1 − ~x2|4

= 1
27CTJJ ×

4π
3 (4π)(2π)

∫ 1

0
r2

1dr1

∫ 1

0
r2

2dr2

∫ π

0
sin θdθ (1− r2

1)
(r2

1 + r2
2 − 2r1r2 cos θ)2

= −π
3

24CTJJ . (4.42)

Now we can extract the logarithmic term

pe1[Tµν ,Jσ,Jρ] = 12×
(
−π

3

24CTJJ

)
= −π

3

2 CTJJ . (4.43)

Interestingly, the three results (4.37), (4.40) and (4.43) are equal to each other. This
is also the first example that the cyclic identity for pe1 has been checked.

2. Spin 2-2-2. The three point function of the stress tensor is

〈Tµν(x1)Tσρ(x2)Tαβ(x3)〉 = Iµν,µ′ν′(x13)Iσρ,σ′ρ′(x23)tµ′ν′σ′ρ′αβ(X12)
x2d

13x
2d
23

, (4.44)

The structure of tµνσραβ(X) could be found in [24]. There are three independent
coefficients A,B, C in the three point function of stress tensor. In this paper, we just
need the component

〈T00(x1)T00(x2)T00(x3)〉c = CTTT

xd13x
d
23x

d
12

(4.45)
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with

CTTT = −2(4− 5d+ 2d2)A+ dB + 2(5d− 4)C
4d2 , (4.46)

We can use two different methods to extract the logarithmic term.

(a) The first method is to compute the logarithmic term directly,

〈QA[Tµν ]3〉c

= 1
8CTTT

∫
ΣA

d3~x1

∫
ΣA

d3~x2

∫
ΣA

d3~x3(1− ~x2
1)(1− ~x2

2)(1− ~x2
3)

1
|~x1 − ~x2|4|~x1 − ~x3|4|~x2 − ~x3|4

= 1
8CTTT

∫ 1

0
r2

1(1− r2
1)dr1

∫ 1

0
r2

2(1− r2
2)dr2

∫ 1

0
r2

3(1− r2
3)dr3I3(2, 2, 2)

= −π
3

12CTTT

(
R2

ε2
− R

ε
− log R

ε
+ · · ·

)
. (4.47)

As previous example, we define the integral I3(2, 2, 2) in appendix B.1. We also
insert a small ε in the integral of r1 at the last step. From the result, we read

pe1[Tµν , Tρσ, Tαβ ] = π3

12CTTT . (4.48)

(b) The second method is to use UV/IR relation. We first read the coefficient D in
the large xA limit,

D[Tµν , Tρσ, Tαβ ]

= 1
8× 28CTTT

∫
ΣA

d3~x1

∫
ΣA

d3~x2

∫
ΣA

d3~x3(1− ~x2
1)(1− ~x2

2)(1− ~x2
3) 1
|~x1 − ~x2|4

= 1
211CTTTS

2
2S1

2
15

∫ 1

0
dr1(1− r2

1)r2
1

∫ 1

0
dr2(1− r2

2)r2
2∫ π

0
sin θdθ 1

(r2
1 + r2

2 − 2r1r2 cos θ)2

= − π3

1440CTTT . (4.49)

Therefore

pe1[Tµν , Tσρ, Tαβ ] = (−120)×
(
− π3

1440CTTT

)
= π3

12CTTT . (4.50)

The cutoff independent term is the same for different methods. We also check that
the result can be mapped to the second derivative of Rényi entanglement entropy [25],

〈QA[Tµν ]3〉c = 〈H3
τ 〉c = 3

8π3S
′′
q=1. (4.51)

– 18 –



J
H
E
P
0
2
(
2
0
2
1
)
1
1
0

4.2 Class II

A Type-O OPE operator is

QA[Oµ1···µJ ] =
∫
A
ddxKµ1 · · ·KµJ |K|∆−J−dOµ1···µJ . (4.52)

We change the coordinates to

t = ζ − ζ̄
2 , ~x = ζ + ζ̄

2 ~ω, ~ω2 = 1. (4.53)

The metric of Minkowski spacetime becomes

ds2 = dζdζ̄ + (ζ + ζ̄)2

4 d~ω2, −1 < ζ, ζ̄ < 1. (4.54)

The new metric (4.54) covers the diamond A twice, then

ddx =
(1

2

)d
|ζ + ζ̄|d−2dζdζ̄d~ω. (4.55)

Then the Type-O OPE becomes

QA[Oµ1···µJ ]

= 1
2∆−J

∫
D2
dζdζ̄|ζ + ζ̄|d−2(1− ζ2)

∆−J−d
2 (1− ζ̄2)

∆−J−d
2

∫
Sd−2

dd−2~ωKµ1 · · ·KµJOµ1···µJ

= 2J−∆
∫
D2
d2µJ

∫
Sd−2

d~ωKµ1 · · ·KµJOµ1···µJ . (4.56)

The measure
d2µJ = dζdζ̄|ζ + ζ̄|d−2(1− ζ2)

∆−J−d
2 (1− ζ̄2)

∆−J−d
2 . (4.57)

The subscript J is used to label the spin J in the measure. The dimension is understood
as d = 4 in this expression. The region D2 is a square with

− 1 < ζ, ζ̄ < 1. (4.58)

Some integrals used in the following has been discussed in appendix B.2.

4.2.1 (2)-type

1. Spin 0.

〈QA[O]2〉c

= 2−2∆
∫
D2
d2µ0

∫
D2
d2µ′0

∫
S2
d~ω

∫
S2
d~ω′

NO
|x− x′|2∆

= 2−2∆S2S1

∫
D2
d2µ0

∫
D2
d2µ′0

∫ π

0
sin θdθ NO

(a+ b cos θ)∆ (4.59)

where we define

(x− x′)2 = a+ b ω · ω′ (4.60)
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with
a = ζζ̄ + ζ ′ζ̄ ′ + 1

2(ζ − ζ̄)(ζ ′ − ζ̄ ′), b = −1
2(ζ + ζ̄)(ζ ′ + ζ̄ ′). (4.61)

The angular between ~ω and ~ω′ is denoted as θ. The regularization of (4.59) is not
easy for general ∆. However, we can compute several examples. For ∆ = 4,

〈QA[O]2〉c

= π2

48NO
∫
D2
dζdζ̄

∫
D2
dζ ′dζ̄ ′

(3a2 + b2)(ζ + ζ̄)2(ζ ′ + ζ̄ ′)2

(a2 − b2)3

= π2

6 NO
∫ 1−ε

−1+ε
dζ ′

∫ 1−ε

−1+ε
dζ̄ ′

(ζ ′ + ζ̄ ′)2

(1− ζ ′2)2(1− ζ̄ ′2)

= π2

12NO

(
R2

ε2
− R

ε
− log2 R

ε
+ · · ·

)
. (4.62)

At the first step, we integrate the angular part. At the second step, we integrate ζ, ζ̄
part, the integrand becomes singular for

ζ = ±1 and ζ̄ = ±1, (4.63)

therefore we insert a small UV cutoff ε into the integral. Then the final result obeys
area law and there is a logarithmic term with degree 2. The · · · term includes a
logarithmic term with power 1 and a constant. Therefore, the cutoff independent
information is

pe2[O,O] = −π
2

12NO, ∆ = 4. (4.64)

The method can be extended to other even conformal weight, for example,

pe2[O,O] = − π2

720NO, ∆ = 6. (4.65)

Now we’d like to use UV/IR relation to obtain this result.

〈QA[O]QB[O]〉c

=
∫
A
ddx

∫
A
ddx′|K|∆−d|K ′|∆−d NO

|x− x′|2∆

≈ 2−2∆S2
2

∫
D2
d2µ0

∫
D2
d2µ′0

NO

x2∆
A

= 2−2∆ × 16π2 × NO
22∆ z

∆(H0)2

= D[O,O]z∆, (4.66)

where

D[O,O] =
π2Γ(∆

2 − 1)4Γ(∆
2 )4

4Γ(∆)2Γ(∆− 1)2 NO. (4.67)

Note at the second step, we use the approximation that A and B are far apart and only
extract the leading order behaviour. At the third step, H0 is defined in appendix B.2.
Therefore we can use UV/IR relation

pe2[O,O] = E[O]D[O,O] = −
4π2(∆− 1)Γ(∆− 2)2Γ(∆

2 )4

Γ(∆)2Γ(∆− 1)2 NO. (4.68)
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The coefficient (4.68) matches with (4.64) and (4.65) for ∆ = 4 and 6, correspond-
ingly. Interestingly, we obtain the general coefficient pe2[O,O] from UV/IR relation.
This result is not easy to find if we regularize (4.59) directly. There are two special
points for the coefficient (4.68).

(a) ∆ = 1. In this case, the conformal weight satisfies the unitary bound for scalar
operator, pe2[O,O] = 0. One may need to study the coefficient pe1[O,O] to find
the cutoff independent information.

(b) ∆ = 2. In this case, the coefficient pe2[O,O] → ∞. We don’t find a way to
understand this phenomenon.

2. Spin 1. The CCF is

〈QA[Oµ]QB[Oν ]〉c

=22−2∆NOµ

∫
D2
d2µ1

∫
D2
d2µ′1

∫
S2
d~ω

∫
S2
d~ω′

Kµ(x)Iµν(x− x′)Kν(x′)
|x− x′|2∆ , (4.69)

where

Kµ(x)Iµν(x− x′)Kν(x′) = K ·K ′ − 2
(x− x′)2K ·N K ′ ·N. (4.70)

We parameterize

(x− x′)2 = a+ b ~ω · ~ω′ + e ~ω · ~xA + f ~ω′ · ~xA + ~x2
A,

K ·K ′ = a1 + b1 ~ω · ~ω′,
K ·N = a2 + b2 ~ω · ~ω′ + e2 ~ω · ~xA,
K ′ ·N = a3 + b3 ~ω · ~ω′ + e3 ~ω

′ · ~xA, (4.71)

where the coefficients are

e = ζ + ζ̄, f = −(ζ ′ + ζ̄ ′),

a1 = −1
4

(
1− 1

2(ζ2 + ζ̄2)
)(

1− 1
2(ζ ′2 + ζ̄ ′2)

)
, b1 = 1

16(ζ2 − ζ̄2)(ζ ′2 − ζ̄ ′2),

a2 = −1
4

(
1− 1

2(ζ2 + ζ̄2)
)

(ζ − ζ̄ − ζ ′ + ζ̄ ′)− 1
8(ζ − ζ̄)(ζ + ζ̄)2,

a3 = −1
4

(
1− 1

2(ζ ′2 + ζ̄ ′2)
)

(ζ − ζ̄ − ζ ′ + ζ̄ ′) + 1
8(ζ ′ − ζ̄ ′)(ζ ′ + ζ̄ ′)2,

b2 = 1
8
(
ζ2 − ζ̄2

)
(ζ ′ + ζ̄ ′), b3 = −1

8(ζ ′2 − ζ̄ ′2)(ζ + ζ̄),

e2 = −1
4
(
ζ2 − ζ̄2

)
, e3 = −1

4(ζ ′2 − ζ̄ ′2). (4.72)

The coefficients a, b can be found in (4.61). When A and B are far away to each
other, the leading term is

〈QA[Oµ]QB[Oν ]〉c

≈ 22−2∆NOµ

∫
D2
d2µ1

∫
D2
d2µ′1

∫
S2
d~ω

∫
S2
d~ω′

(a1 + b1~ω · ~ω′)− 2e2e3 ~ω · ~̂xA~ω′ · ~̂xA
22∆ z∆

= 22−4∆S2
2NOµ

∫
D2
d2µ1

∫
D2
d2µ′1 a1z

∆. (4.73)
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Note at the second step, we define the unit vector in the direction of ~xA as ~̂xA. After
some efforts, we find

D[Oµ,Oν ] = −
23−4∆π4∆Γ(∆−3

2 )2Γ(∆+1
2 )2

Γ(∆
2 )Γ(1 + ∆

2 )3
NOµ , ∆ > 3. (4.74)

Therefore

pe2[Oµ,Oν ] = E[Oµ]D[Oµ,Oν ] = −
41−∆π3∆Γ(∆−3

2 )Γ( δ+1
2 )

Γ(∆
2 + 1)2

NOµ , ∆ > 3. (4.75)

We could check this formula (4.75) by computing

〈QA[Oµ]2〉c (4.76)

for special values of ∆. For example,

〈QA[Oµ]2〉c = π2

90NOµ

(
R2

ε2
− R

ε
− log2 R

ε
+ · · ·

)
, ∆ = 5. (4.77)

The cutoff independent term matches with the general formulae (4.75).

3. Spin 2. Like previous example, we find

〈QA[Oµν ]QB[Oρσ]〉c

=24−2∆NOµν

∫
D2
d2µ2

∫
D2
d2µ′2

∫
S2
d~ω

∫
S2
d~ω′

(KµIµρK
′ρ)2 − 1

4K
2K ′2

|x− x′|2∆ .
(4.78)

From the leading behaviour when A and B are far away,

D[Oµν ,Oρσ]

= 24−4∆NOµν

∫
D2
d2µ2

∫
D2
d2µ′2

∫
S2
d~ω

∫
S2
d~ω′
[
(a1 + b1~ω · ~ω′ − 2e2e3 ~ω · ~̂xA~ω′ · ~̂xA)2

−1
4K

2K ′2
]

=
3π64−2∆∆2csc2 π∆

2 Γ(∆
2 − 1)2

Γ(3− ∆
2 )2Γ(∆−3

2 )2Γ(∆+3
2 )2

NOµν , ∆ > 4. (4.79)

The cutoff independent term is

pe2[Oµν ,Oρσ] = E[Oµν ]D[Oµν ,Oρσ]

= −
3π2(∆− 2)∆2Γ(∆

2 − 2)2Γ(∆
2 − 1)2

64Γ(∆− 4)Γ(∆ + 2) NOµν , ∆ > 4.
(4.80)

The formula could be checked for special values of ∆. For example,

pe2[Oµν ,Oρσ] = − 3π2

2240NOµν . (4.81)
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4.2.2 (3)-type

We consider the following CCF

〈QA[O1]QA[O2]QA[O3]〉c

= C123

∫
A
d4x1

∫
A
d4x2

∫
A
d4x3

|K(x1)|∆1−4|K(x2)|∆2−4|K(x3)|∆3−4

x
∆12,3
12 x

∆23,1
23 x

∆13,2
13

,
(4.82)

where ∆ij,k = ∆i+∆j−∆k. We will use UV/IR relation to find the correlators. Assuming
A and B are far away, then

〈QA[O1]QA[O2]QB[O3]〉c

≈ C123

∫
A
d4x1

∫
A
d4x2

∫
B
d4x3

|K(x1)|∆1−4|K(x2)|∆2−4|K(x3)|∆3−4

x
∆12,3
12 x2∆3

A

=
C123Γ(∆3

2 − 1)2Γ(∆3
2 )2

2∆1+∆2+∆3+3Γ(∆3)Γ(∆3 − 1)S
2
2S1

∫
D2
d2µ0

∫
D2
d2µ′0

∫ π

0
dθ

sin θ

(a+ b cos θ)
∆12,3

2

z∆3 .

(4.83)

Therefore

D[O1,O2,O3] =
4C123π

3Γ(∆3
2 − 1)2Γ(∆3

2 )2

2∆1+∆2+∆3Γ(∆3)Γ(∆3 − 1)

∫
D2
dζdζ̄(ζ + ζ̄)2

∫
D2
dζ ′dζ̄ ′(ζ ′ + ζ̄ ′)2

×(1− ζ2)
∆1−4

2 (1− ζ̄2)
∆1−4

2 (1− ζ ′2)
∆2−4

2 (1− ζ̄ ′2)
∆2−4

2

∫ π

0
dθ

sin θ

(a+ b cos θ)
∆12,3

2

.

(4.84)

A close result is not easy to obtain. However, we could find the result case by case, for
example

D[O1,O2,O3] =



− π3

384C123, ∆1 = ∆2 = ∆3 = 4,
π3

174182400C123, ∆1 = 4,∆2 = 6,∆3 = 8,
π3

4976640C123, ∆1 = 4,∆2 = 8,∆3 = 6,
π3

82944C123, ∆1 = 6,∆2 = 8,∆3 = 4,
· · ·

(4.85)

Then

pe2[O1,O2,O3] =



π3

8 C123, ∆1 = ∆2 = ∆3 = 4,
− π3

1728C123, ∆1 = 4,∆2 = 6,∆3 = 8,
− π3

1728C123, ∆1 = 4,∆2 = 8,∆3 = 6,
− π3

1728C123, ∆1 = 6,∆2 = 8,∆3 = 4,
· · ·

(4.86)

Note the last three coefficients are equal which is a consequence of the consistency condi-
tion (3.21). We will close this section with some comments on the coefficient pe2.
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1. For general conformal weights, we have

pe2[O1,O2,O3] = −24−∆1−∆2−∆3π3C123

∫
D2
dζdζ̄(ζ + ζ̄)2

∫
D2
dζ ′dζ̄ ′(ζ ′ + ζ̄ ′)2

×(1− ζ2)
∆1−4

2 (1− ζ̄2)
∆1−4

2 (1− ζ ′2)
∆2−4

2 (1− ζ̄ ′2)
∆2−4

2

∫ π

0
dθ

sin θ

(a+ b cos θ)
∆12,3

2

,

(4.87)

We don’t find an obvious way to prove the cyclic property (3.21) from this expression.
It would be quite interesting to check the cyclic property for (4.87).

2. In the special case, ∆1 + ∆2 = ∆3, or equivalently, ∆12,3 = 0, we observe that

pe2[O1,O2,O3] = −25−∆1−∆2−∆3π3C123

∫
D2
dζdζ̄(ζ + ζ̄)2

∫
D2
dζ ′dζ̄ ′(ζ ′ + ζ̄ ′)2

×(1− ζ2)
∆1−4

2 (1− ζ̄2)
∆1−4

2 (1− ζ ′2)
∆2−4

2 (1− ζ̄ ′2)
∆2−4

2

= −π
3

2
Γ(∆1

2 − 1)2Γ(∆1
2 )2Γ(∆2

2 − 1)2Γ(∆2
2 )2

Γ(∆1)Γ(∆1 − 1)Γ(∆2)Γ(∆2 − 1) C123. (4.88)

5 Discussion

In the previous section, we have examined the area law of (m)-type CCF when all the OPE
blocks are the same type. However, we avoid the following CCF

〈QA[O](· · · )QA[J ]〉c, (5.1)

whereQA[O] is a type-O OPE block while QA[J ] is a type-J OPE block. Let’s set spacetime
dimension to be even and m = 3. According to the method of analytic continuation, we
could move either the type-O OPE block or the type-J OPE block to region B, in the first
case, we find

〈QA[Õ]QA[J ]QB[O]〉c = D[Õ,J ,O]G∆,J(z), (5.2)

where ∆ is the conformal weight of the primary operator O and J is its spin. In the second
case, we find

〈QA[O]QA[Õ]QB[J ]〉c = D[O, Õ,J ]G∆′,J ′(z), (5.3)

where ∆′ is the conformal weight of the primary conserved current J and J ′ is its spin.
From analytic continuation of (5.2), we find a (3)-type CCF with degree q = 2,

pe2[Õ,J ,O] = E[O]D[Õ,J ,O]. (5.4)

At the same time, from analytic continuation of (5.3), we find a (3)-type CCF with degree
q = 1,

pe1[O, Õ,J ] = E[J ]D[O, Õ,J ]. (5.5)

However, the cutoff independent structure should be the same while (5.4) contrasts
with (5.5) since they predict rather different logarithmic behaviour. This ‘incompatibility’
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is based on our implicit assumption that the D function is finite. Actually, as we will show
in the following two examples, the D function in (5.5) has the following behaviour,

D[O, Õ,J ] = Dlog[O, Õ,J ] log R
ε

+ finite terms. (5.6)

The finite terms are cutoff dependent which have no contribution to the degree q of the
CCF. The logarithmic term increases the degree of the CCF by 1, therefore the CCF (5.3)
has the same degree q = 2 as (5.2). Instead of (5.5), there should be a modified UV/IR
relation

pe2[O, Õ,J ] = E[J ]Dlog[O, Õ,J ]. (5.7)

With this modified relation, the two coefficients (5.4) and (5.7) should be equal to each
other

pe2[Õ,J ,O] = pe2[O, Õ,J ]. (5.8)

In other words, they still obey the cyclic identity. We will use two explicit examples to
check this point.

1. The first CCF we’d like to discuss is

〈QA[Tµν ]QA[O]QA[O]〉c, (5.9)

where Tµν is the stress tensor and O is a spinless primary operator. The three point
function [23]

〈Tµν(x1)O(x2)O(x3)〉 = a
h1
µν(X̂23)

xd12x
2∆−d
23 xd13

(5.10)

is fixed up to a theory dependent coefficient a. We just need the 00 component, it is
easy to find

(X̂23)0(X̂23)0 = x2
21x

2
31

x2
23

((x21)0
x2

21
− (x31)0

x2
31

)2
. (5.11)

Therefore

〈QA[Tµν ]QA[O]QB [O]〉c

≈ az∆

21+2∆

∫
ΣA

d3~x1(1−~x2
1)
∫
A

d4x2|K(x2)|
∆−4

2

∫
B

d4x3|K(x3)|
∆−4

2

t22
−t22+(~x2−~x1)2 + 1

4

(−t22+(~x2−~x1)2)2

=
π2−∆−2Γ(∆

2 −1)2Γ(∆
2 )2

Γ(∆)Γ(∆−1) az∆
∫

ΣA

d3~x1(1−~x2
1)
∫
A

d4x2|K(x2)|
∆−4

2

t22
−t22+(~x2−~x1)2 + 1

4

(−t22+(~x2−~x1)2)2

=
π32−2∆+1Γ(∆

2 −1)2Γ(∆
2 )2

Γ(∆)Γ(∆−1) az∆
∫ 1

0
dr1r

2
1(1−r2

1)
∫
D2
d2µ0

∫ π

0
dθ

sinθ
(r2

1 +ζζ̄−r1(ζ+ζ̄)cosθ)2

×
[

1
4 + (ζ−ζ̄)2

4(r2
1 +ζζ̄−r1(ζ+ζ̄)cosθ)

]
=
π32−2∆−1Γ(∆

2 −1)2Γ(∆
2 )2

Γ(∆)Γ(∆−1) az∆
∫ 1

−1
dr1r

2
1(1−r2

1)
∫
D2
d2µ0

r4
1−2ζζ̄r2

1 +ζζ̄(ζ−ζ̄)2

(r1+ζ)2(r1−ζ)2(r1+ζ̄)2(r1−ζ̄)2

= −
π543−2∆Γ(∆

2 −1)4

∆(∆−2)Γ(∆−3
2 )Γ(∆−1

2 )2Γ(∆+1
2 )

az∆, ∆> 2. (5.12)
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The region ∆ > 2 is from the convergence of the integral. We obtain

pe2[Tµν ,O,O] =
25−2∆π4Γ(∆

2 − 1)2

∆(∆− 2)Γ(∆−3
2 )Γ(∆−1

2 )
a, ∆ > 2. (5.13)

As we discussed, we can also compute another CCF

〈QA[O]2QB[Tµν ]〉c

≈ az4

29

∫
ΣB

d3~x1(1− ~x2
1)
∫
A
d4x2|K(x2)|

∆−4
2

∫
A
d4x3|K(x3)|

∆−4
2

t223
x2

23
+ 1

4

x2∆−4
23

≡ D[O,O, Tµν ]z4. (5.14)

We have defined
D[O,O, Tµν ] =

π3a

23+2∆ × 15

∫
D2
d2µ0

∫
D2
d2µ′0

∫ π

0
dθ

sin θ
(a+ b cos θ)∆−2

[1
4 + (ζ − ζ̄ − ζ ′ + ζ̄ ′)2

4(a+ b cos θ)

]
.

(5.15)

The integral is not easy, therefore we just compute several examples. Let’s set ∆ = 4.
Interestingly, we find a logarithmic divergent coefficient D,

D[O,O, Tµν ] = − π3

3840a
(

log R
ε

+ · · ·
)

(5.16)

where · · · is a cutoff dependent constant. We can read the coefficient

Dlog[O,O, Tµν ] = − π3

3840a. (5.17)

Now if we take the limit B → A, the conformal block of the stress tensor will con-
tribute one logarithmic divergence as usual. However, since the coefficient D also
has a logarithmic divergence with degree one, there will be a logarithmic term with
degree 2 in the final result. Using the modified UV/IR relation, we get

pe2[O,O, Tµν ] = E[Tµν ]Dlog[O,O, Tµν ] = π3

32a. (5.18)

This is consistent with (5.13) for ∆ = 4. We could check the logarithmic divergence
behaviour for other conformal weights, for example,

D[O,O, Tµν ] =


− π3a

138240 log R
ε + · · · , ∆ = 6,

− π3a
4147200 log R

ε + · · · , ∆ = 8,
· · ·

(5.19)

Therefore

pe2[O,O, Tµν ] =


π3

1152a, ∆ = 6,
π3

34560a, ∆ = 8,
· · ·

(5.20)

All the results (5.20) are consistent with (5.13).
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2. The second CCF we’d like to discuss is

〈QA[Tµν ]QA[Tσρ]QA[O]〉c, (5.21)

where Tµν , Tσρ are stress tensor and O is a spin 0 primary operator with conformal
weight ∆. The three point function is [23]

〈Tµν(x1)Tσρ(x2)O(x3)〉c = Iµν,αβ(x13)Iσρ,γδ(x23)tαβγδ(X12)
x2d−∆

12 x∆
23x

∆
13

, (5.22)

with
tαβγδ(X) = ah1

αβ(X̂)h1
γδ(X̂) + b h2

αβγδ(X̂) + c h3
αβγδ. (5.23)

The tensors h1
µν , h

2
µνσρ, h

3
µνσρ can be found in (4.27). The conservation of stress tensor

leads to two linear relations between a, b, c

a+ 4b− 1
2(d−∆)(d− 1)(a+ 4b)− d∆b = 0,

a+ 4b+ d(d−∆)b+ d(2d−∆)c = 0. (5.24)

There is an overall constant for the three point function 〈TTO〉. In four dimensions,
we find

b = 10− 3∆
4(∆− 10)a, c = 3∆2 − 24∆ + 40

4(∆− 8)(∆− 10)a. (5.25)

We need the component

〈T00(x1)T00(x2)O(x3)〉c = ϕ(y)
x2d−∆

12 x∆
23x

∆
13
, (5.26)

where the function ϕ is

ϕ(y) = a

(1
d

+ y

)2
+ 4b

[ 1
d2 + 2

d
y + y(1 + 2y)

]
+ 2c

[
(1 + 2y)2 − 1

d

]
(5.27)

with
y = t23x

2
12

x2
13x

2
23
. (5.28)

Note the time component of x1 and x2 is 0 for (5.26). Therefore

〈QA[Tµν ]QA[Tσρ]QB[O]〉c

≈ z∆

23∆+2

∫
d3~x1(1− ~x2

1)
∫
d3~x2(1− ~x2

2)
∫
D2
d2µ0

∫
S2
d~ω3

ϕ(y = 0)
x4−∆

12
. (5.29)

We could read

D[Tµν ,Tσρ,O] =
1

23∆+2H0S
2
2S1

∫ 1

0
dr1r

2
1(1−r2

1)
∫ 1

0
dr2r

2
2(1−r2

2)
∫ π

0
sinθdθ ϕ(y= 0)

(r2
1 +r2

2−2r1r2 cosθ)4−∆
2
.

(5.30)
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The integral is finite for general ∆ > 3. After some efforts, we find

pe2[Tµν , Tσρ,O] = E[O]D[Tµν , Tσρ,O] = − 4π3a

(∆ + 2)∆(∆− 2)(∆− 8)(∆− 10) . (5.31)

We can also compute the following CCF,

〈QA[Tσρ]QA[O]QB[Tµν ]〉c

≈ z4

2∆+10

∫
d3~x1

∫
d3~x2

∫
D2
d2µ0

∫
S2
d~ω3(1− ~x2

1)(1− ~x2
2)ϕ(y)
x∆

23
. (5.32)

The D constant is

D[Tσρ,O, Tµν ]

= 1
2∆+9 × 15S

2
2S1

∫ 1

0
dr2r

2
2(1− r2

2)
∫
D2
d2µ0

∫ π

0
sin θdθ ϕ(y)

(r2
2 + ζζ̄ − r2(ζ + ζ̄) cos θ)

∆
2
,

(5.33)

where the function

y = (ζ − ζ̄)2

4(r2
2 + ζζ̄ − r2(ζ + ζ̄) cos θ)

. (5.34)

The integral (5.33) is not easy, we choose ∆ = 4, then

D[Tσρ,O, Tµν ] = π3a

34560 log R
ε

+ · · · . (5.35)

It is divergent, therefore the cutoff independent coefficient is pe2,

pe2[Tσρ,O, Tµν ] = E[Tµν ]Dlog[Tσρ,O, Tµν ] = −π
3a

288 . (5.36)

The result is consistent with (5.31) for ∆ = 4. We can also calculate other examples,

D[Tσρ,O, Tµν ] =


π3a

46800 log R
ε + · · · , ∆ = 6,

π3a
403200 log R

ε + · · · , ∆ = 12,

· · · .

(5.37)

They are all divergent with a logarithmic term. Then

pe2[Tσρ,O, Tµν ] =


−π3a

384 , ∆ = 6,

− π3a
3360 , ∆ = 12,

· · · .

(5.38)

The result (5.38) matches with (5.31), correspondingly.
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6 Conclusion

In this paper, we calculate the divergent behaviour of (m)-type CCF of OPE blocks. Due
to the complexity of the integrals, we only tackle the case for m = 2 and 3. We classify
the OPE blocks to type-J and type-O, according to the primary operator in the definition
of OPE block. The logarithmic behaviour has been discussed for varies (m)-type CCFs.
In even/odd dimensions, we could identify two classes of (m)-type CCF according to the
degree q.

We establish a formula which is to relate (m)-type CCF to (m − 1, 1)-type CCF, we
call it UV/IR relation. Schematically, it has the simple form

p ∼ E ×D, (6.1)

where p is the cutoff independent coefficient in (m)-type CCF. The coefficient D is the
coefficient before conformal block for (m−1, 1)-type CCF. The coefficients p and D encode
useful information of the CFT. On the other hand, the coefficient E is completely fixed by
conformal symmetry, which is a kinematic term. We check the UV/IR relation (6.1) for
various examples, in all cases, the cyclic property of p is always valid, see (3.16) or (3.21).

When the OPE blocks belong to different types in (m)-type CCF, the UV/IR relation
should be modified to

p ∼ E ×Dlog (6.2)

where Dlog is the coefficient before the logarithmic term in the corresponding D function.
Note the (m−1, 1)-type CCF is not always convergent, it may contain logarithmic divergent
term in the D coefficient. This is a generalization of the conclusion in [11] where the author
considered (m−1, 1)-type CCF of type-J OPE blocks in two dimensions. However, we could
still obtain cutoff independent coefficient from the logarithmic term in the D coefficient.
The cyclic identity is still valid after replacing D by its cutoff independent part Dlog.

In all the examples we compute in this work, we always find q ≤ 2. Since we just
consider the cases m ≤ 3, it is not clear whether q could be larger than 2 or not for general
m. If the coefficient D is always finite, then the degree q must be less than or equal to 2.
However, since we find a (2, 1)-type CCF which shows logarithmic behaviour, it would be
quite interesting to explore higher (m)-type CCFs.

Higher (m)-type CCF of OPE blocks is also very important to understand the deformed
reduced density matrix ρA = e−µQA[O], a formal exponential non-local operator defined
in [11]. This operator is similar to “Wilson loop” [26, 27] formally. When the OPE block
QA[O] has a lower bound, it is likely that we could read cutoff independent information
from the logarithm of the vacuum expectation value of deformed reduced density matrix

log〈e−µQA[O]〉. (6.3)

A naive continuation from conformal block shows that this quantity (6.3) also obeys area
law [9]. Since conformal block is fixed by conformal invariance, the area law of (6.3) is
protected by conformal symmetry. We’d like to study this point in the future.
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A Singularity

When two operators attach to each other, there could be singularities. In this appendix,
we will show that these singularities does not affect the cutoff independent coefficient using
explicit examples. In (4.4), at the fourth line, the singularities are at r = r′, we’d like to
examine the singular behaviour carefully. The typical integral is

I1 =
∫ 1

0
dr

∫ 1

0
dr′

r2r′2(r2 + r′2)
(r − r′)4(r + r′)4 . (A.1)

We could separate the singularity by replacing the integral by

I1 =
∫ 1

0
dr(
∫ r−ε

0
dr′ +

∫ 1

r+ε
dr′) r2r′2(r2 + r′2)

(r − r′)4(r + r′)4 =
∫ 1

0
dr

r2

12ε3 + I ′1. (A.2)

The integral I ′1 is the one used at the fifth line of (4.4). The first term on the right hand
side of (A.2) is the effect of the singularity, it has been removed from the regularization
method in the context. It is easy to find

I1 = 1
36ε3 + I ′1, (A.3)

there is no extra logarithmic term. Therefore we conclude that the terms that have been
removed do not affect the cutoff indepdendent coefficient. In the same way, the singularity
in (4.19) is also r = r′, the relevant integral is

I2 =
∫ 1

0
dr

∫ 1

0
dr′

r2(1− r2)r′2(1− r′2)(r2 + 3r′2)(r′2 + 3r2)
(r2 − r′2)6

=
∫ 1

0
dr

[
r2(1− r2)2

10ε5 + r2(1− r2)
2ε3

]
+ I ′2

= 4
525ε5 −

1
15ε3 + I ′2. (A.4)

It is obvious that the singularity does not affect the cutoff independent coefficient.

B Integrals

B.1 Surface S2

The typical integrals used in this paper is

In(αij) =
n∏
i=1

∫
S2
d2~ωi

∏
i<j

|~xi − ~xj |−2αij , n ≥ 2. (B.1)

where ~xi = ri~ωi. The integrand only depends on the angle between vectors ~ωi and ~ωj . The
constants αij are assumed to be real. If some of them are positive, then the integral has
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poles. We assume r1 > r2 > r3 to avoid the pole and this doesn’t lose any information of
the integral. For n = 2, the integral is elementary. In this paper, we need the result for
n = 3. We expand the function |~xi − ~xj |−2αij in terms of Legendre function of the first
kind

|~xi − ~xj |−2αij =
∞∑
`=0

f`(ri, rj , αij)P`(cosψij) (B.2)

with
cosψij = cos θi cos θj + sin θi sin θj cos(φi − φj). (B.3)

The function f` is

f`(ri, rj , αij) = 2`+ 1
2

∫ 1

−1
dxP`(x)(r2

i + r2
j − 2rirjx)−αij

= −e−iπαij
(2`+ 1)(z2

ij − 1)−
αij−1

2

(2rirj)αijΓ(αij)
Q
αij−1
` (zij)

= −e−iπαij 2`+ 1
Γ(αij)

(r2
i − r2

j )1−αij

2rirj
Q
αij−1
` (zij). (B.4)

At the first line, we used the orthogonal relation of Legendre function of the first kind∫ 1

−1
P`(x)P`′(x)dx = 2

2`+ 1δ`,`
′ . (B.5)

At the second step, we used the integral formula [28]∫ 1

−1
dxP`(x)(z − x)−µ−1 = 2e−iπµ

Γ(1 + µ)(z2 − 1)−
µ
2Qµ` (z). (B.6)

The parameter zij = r2
i+r2

j

2rirj . Since Legendre function of the first kind can be expanded into
spherical harmonics

P`(cosψij) = 4π
2`+ 1

∑̀
m=−`

Y`m(θi, φi)Y ∗`m(θj , φj), (B.7)

Using the orthogonal relation of spherical harmonics∫ π

0
sin θdθ

∫ 2π

0
dφY`m(θ, φ)Y ∗`′m′(θ, φ) = δ`,`′δm,m′ , (B.8)

the integral for n = 3 becomes

I3(α12, α13, α23)

=
∞∑
`=0

(4π)3

(2`+ 1)2 f`(r1, r2, α12)f`(r1, r3, α13)f`(r2, r3, α23)

=− 8π3e−iπ(α12+α13+α23)

Γ(α12)Γ(α13)Γ(α23)
(r2

1 − r2
2)1−α12(r2

1 − r2
3)1−α13(r2

2 − r2
3)1−α23

r2
1r

2
2r

2
3

J(α12, α13, α23).

(B.9)
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The problem is reduced to an infinite sum of triple products of associate Legendre Polyno-
mials of the second kind5

J(α12, α13, α23) =
∞∑
`=0

(2`+ 1)Qα12−1
` (z12)Qα13−1

` (z13)Qα23−1
` (z23). (B.11)

While the infinite sum of the triple product of Legendre Polynomials of first kind has been
found long time ago [29], we don’t find a close formula for general α12, α13, α23. Fortunately,
we just need the result for special value of α12, α13, α23. With some efforts, the general
structure of J is as follows for positive integer α12, α13, α23

J(α12, α13, α23) = fα12,α13,α23 + gα12,α13,α23 log r1 + r2
|r1 − r2|

+ hα12,α13,α23 log r1 + r3
|r1 − r3|

+ iα12,α13,α23 log r2 + r3
|r2 − r3|

,
(B.12)

where f, g, h, i are rational functions of r1, r2, r3. Several examples are

f1,1,1 = 0,

g1,1,1 = 4r1r2r
2
3

(r2
1−r2

3)(r2
2−r2

3)
,

h1,1,1 = g1,1,1(r2↔ r3),
i1,1,1 = g1,1,1(r1↔ r3), (B.13)

f2,2,1 = 32r2
1r

2
2r

2
3[(r4

1 +r2
2r

2
3)(r2

2 +r2
3)−4r2

1(r4
2−r2

2r
2
3 +r4

3)]
15(r2

1−r2
2)2(r2

1−r2
3)2(r2

2−r2
3)2 ,

g2,2,1 = 16r1(r1−r2)r2(r1+r2)r4
3(5r2

1r
2
2−r2

1r
2
3 +r2

2r
2
3−5r4

3)
15(r2

1−r2
2)3(r2

3−r2
2)3 ,

h2,2,1 = g2,2,1(r2↔ r3),

i2,2,1 = 4r2
1r2r3(15(r8

1 +r4
2r

4
3)+10r2

1(r4
1 +r2

2r
2
3)(r2

2 +r2
3−r4

1(r4
2 +68r2

2r
2
3 +r4

3))
15(r2

1−r2
2)3(r2

1−r2
3)3 , (B.14)

f2,2,2 = − 8r2
1r

2
2r

2
3

105(r2
1−r2

2)3(r2
1−r2

3)3(r2
2−r2

3)3 [113(r8
2r

4
3 +r4

2r
8
3 +r8

1r
4
2 +r4

1r
8
2 +r4

1r
8
3 +r8

1r
4
3)

−34(r6
1r

6
2 +r6

1r
6
3 +r6

2r
6
3 +r8

1r
2
2r

6
3 +r2

1r
8
2r

2
3 +r2

1r
2
2r

8
3)−350(r6

1r
4
2r

2
3 +r4

1r
6
2r

2
3 +r6

1r
2
2r

4
3

+r2
1r

6
2r

4
3 +r4

1r
2
2r

6
3 +r2

1r
4
2r

6
3)+1626r4

1r
4
2r

4
3],

g2,2,2 = 16r1r2(r2
1−r2

2)r4
3

105(r2
1−r2

2)4(r2
2−r2

3)4 [35(r4
1r

4
2 +r8

3)+14(r4
1r

2
2r

2
3 +r2

1r
4
2r

2
3 +r2

1r
6
3 +r2

2r
6
3)

−r4
3(r4

1 +r4
2)−124r2

1r
2
2r

4
3],

h2,2,2 = g2,2,2(r2↔ r3),
i2,2,2 = g2,2,2(r1↔ r3). (B.15)
5In general, the three variables z12, z13, z23 are not related to each other. In our case, they are con-

strainted by the identity
z2

12 + z2
13 + z2

23 − 1 − 2z12z13z23 = 0. (B.10)
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B.2 Square D2

The first integral we will use is
HJ =

∫
D2
d2µJ . (B.16)

The measure d2µJ has been defined in (4.57). The square D2 is parameterized by two
coordintes ζ and ζ̄

− 1 < ζ, ζ̄ < 1. (B.17)

By changing the variables ζ, ζ̄ to ξ, ξ̄

ξ = 1 + ζ

2 , ξ̄ = 1− ζ̄
2 , (B.18)

the integral becomes a standard Selberg integral

HJ = 22+d−2+2(∆−d−J)
∫ 1

0
dξ

∫ 1

0
dξ̄ |ξ − ξ̄|d−2(ξ(1− ξ)ξ̄(1− ξ̄))

∆−d−J
2

= 22∆−d−2JSel2
(

1 + ∆− d− J
2 , 1 + ∆− d− J

2 ,
d− 2

2

)
. (B.19)

Selberg integral is defined as [30, 31]

Seln(α, β, γ) =
n∏
i=1

∫ 1

0
dξi

n∏
i=1

ξα−1(1− ξ)β−1 ∏
1≤i<j≤n

|ξi − ξj |2γ

=
n−1∏
j=0

Γ(α+ jγ)Γ(β + jγ)Γ(1 + (j + 1)γ)
Γ(α+ β + (n+ j − 1)γ)Γ(1 + γ) . (B.20)

Therefore

HJ =
22∆−d−2JΓ(d− 1)Γ(∆−J)

2 )2Γ(∆−d−J+2
2 )2

Γ(d2)Γ(∆− J)Γ(∆− J − d
2 + 1)

. (B.21)

In four dimensions, it is

HJ =
22∆−2J−3Γ(∆−J−2

2 )2Γ(∆−J
2 )2

Γ(∆− J − 1)Γ(∆) . (B.22)
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