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1 Introduction

In this paper, we continue our study of string theory in the background discussed in [1]
that interpolates between linear dilaton background in the UV to AdS3 in the IR. From
the UV perspective such backgrounds can be realized as the near horizon geometry of k
Neveu-Schwarz fivebranes (NS5) with some fluxes turned on that breaks spacetime Lorentz
invariance. The bulk geometry is a certain two-dimensional vacua of Little String Theory
(LST) with p � 1 fundamental strings (F1). While the short distance behavior of such a
theory is governed by the underlying LST, at long distances the spacetime theory flows to
a CFT2 dual to string theory in AdS3. Here the background can be visualized as the near
horizon geometry of the F1 strings in the linear dilaton background. Such backgrounds can
also be derived by performing a series of T-duality shift T-duality (TsT) on pure AdS3×S1

background [2–5].
As has been argued in the literature [1, 6–8], such backgrounds are closely related

to double trace TT , JT and TJ deformation of a two-dimensional CFT [7, 9–12]. The
deformed theory is non-local in the sense that the short distance physics is not governed by
a local fixed point and the density of states at high energies exhibits a Hegedorn growth [4].
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In this note, we aim to discuss about the entanglement properties of such string theory
models through the lenses of holography. It has been discussed in [1, 13] that there is a
certain regime in the parameter space, where the bulk geometry is free from pathologies
namely closed timelike curves (CTC’s) and naked singularities. In this paper we restrict
ourselves to that particular regime in the parameter space where the dual geometry is
smooth. The particular theory we are going to investigate is non-local and non-Lorentz
invariant. So we expect that the entanglement entropy will exhibit features of non-locality
and non-Lorentz invariance. We explore the minimum size of the entangling region (non-
locality scale) and the effect of non-Lorentz invariance on this non-locality scale. We also
investigate the dependence of the of the UV cutoff on the entropic c-function and comment
on its monotonicity property and its divergence as the Renormalization Group (RG) scale
reaches the non-locality scale of the theory.

Entanglement entropy in holographic systems are computed using the conjecture of
Ryu and Takayanagi [14]. Similar analysis of holographic entanglement entropy has been
carried out in the literature. Entanglement entropy for non-local field theories such as
non-commutative Yang-Mills theory and related models was done in [15–17]. The case of
pure µTT deformation was discussed in [18, 19]. Even the case including the ε+JT and
ε−TJ deformation was discussed in [20] for the case when ε+ = ε−. One might consider the
goal of this paper as simply extending the results of [20] to the case when ε+ and ε− take
on general values which exhibits more intricate behaviors. Specifically, the time coordinate
no longer decouple in the minimal area surface determining the Ryu-Takayanagi surface,
and requires a careful treatment. The analysis at the technical level is essentially similar
to what was reported in [15–20]. By studying the dependence of parameters µ, ε+, and ε−,
we are able to offer more thorough explanation of the features found in [20]. For instance,
we find a curious relation between entanglement entropy and the thermodynamic entropy
for (µ, ε+, ε−) deformed system discussed in [4].

Let us elaborate on the counting of parameters. When ε± deformations are activated,
our system is no longer Lorentz invariant. As such, the entanglement entropy depends on
spatial as well as temporal size (∆T,∆X) of the entanglement region A as is illustrated
in figure 2 below. Our system respects invariance with respect to translation in T and
X. So we have a space of four parameters (ε+, ε−,∆T,∆X). This space can be grouped
into orbits of Lorentz boost. One natural way of parameterizing this equivance class is to
restrict to ε+ = ε− but also turn on ∆T which was not considered in [19]. Alternatively,
one could set ∆T = 0 and consider ε+ and ε− to be unconstrained. For technical reasons,
we find that a third way of parameterizing the three parameter family, namely constraining
the momentum conjugate to shift in T to zero, to be convenient. We will mostly present our
analysis in this third parameterization. In principle, one can translate between the three
prescriptions listed in this paragraph via a simple boost. Unfortunately, this procedure
turns out to be rather cumbersome to implement in practice. This is mostly an issue of
computational complexity and not a fundamental one.

Finally, we compare our holographic results to those computed from perturbative field
theory calculation of a CFT2 deformed by general linear combination of double trace TT ,
JT , and TJ operators. Although double trace TT , JT , and TJ deformation of CFT2, is
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related but different from the theory we considered in section 3, we see that perturbatively
in the coupling we do obtain similar structure in both cases: holographic and field theoretic.

The paper is organized as follows. In section 2, we give a brief review of the holographic
background discussed in [1, 4] and its construction. In section 3, we discuss in details the
holographic entanglement entropy, and the entropic c-function and the effect of non-locality
and non-Lorentz invariance in these observables. In section 4, we perform a perturbative
field theory calculation to analyze the leading correction to entanglement entropy of a CFT2
deformed by a general linear combination of double trace TT , JT and TJ and compare our
results to those obtained in section 3 via holography. In section 5, we discuss our findings
and propose possible avenues to future directions.

2 The holographic background

Let us begin by considering type II string theory on R1,4 × S1 × T 4 with a stack of k NS5
branes wrapping S1 × T 4 and p F1 strings stretched along the S1 [21]. As is often done
in Little String Theory (LST), the decoupled theory on the NS5 branes are obtained by
setting the asymptotic string coupling g∞ → 0 and focusing at distances of the order g∞ls
from the NS5 branes where ls is the string length [22]. This is equivalent to dropping the 1
in the NS5 brane harmonic function. The resulting background geometry and the dilaton1

are given by [6]

ds2

l2s
= kdγdγ

l2s
R2 + e−2φ

+ kdφ2 + kds2
S3 + ds2

T 4 ,

e2Φ = vk

p

e−2φ

l2s
R2 + e−2φ

,

(2.1)

where φ is the radial direction that runs from −∞ to∞, γ and γ are the lightcone directions
transverse to the radial direction φ and have periodicities

γ ∼ γ + 2π, γ = γ + 2π , (2.2)

respectively, ds2
T 4 and ds2

S3 are respectively the metric on the T 4 and S3 and v is related
to the volume of T 4 as VT 4 = (2π)4l4sv. In our convention, the coordinates γ, γ, φ are
dimensionless. The lightcone coordinates γ, γ and related to the spacelike and timelike
coordinates X and T as

Rγ = Γ = X + T, Rγ = Γ = X − T . (2.3)

The coordinates X,T has dimension of length. The X coordinate has periodicity 2πR
which can be sent to ∞ without changing the form of the background fields.

The background (2.1) interpolates between AdS3 in the IR (i.e. φ → −∞) and flat
spacetime in the UV (i.e. φ→∞). The radius of AdS3 in the IR is given by Rads =

√
kls.

For the supergravity approximation to be trustable, we consider k � 1. From the point of
1Note that there is also a Kalb-Ramond three form H field that we do not write explicitly in (2.1).
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view of the NS5 branes and the F1 strings that form the background, this RG flow stated
above can be viewed as interpolating from the near horizon geometry of the NS5 branes in
the UV to the near horizon geometry of the NS5+F1 system in the IR [23].

It has been argued in [6, 23] that such a background can be visualized as a single trace
µTT deformation of string theory in AdS3 × S3 × T 4 with only the NS-NS flux turned
on with

µ = l2s . (2.4)

A dimensionless coupling λ can be then be defined2

λ = µ

R2 . (2.5)

We further focus on the U(1) associated with one of the S1 in T 4 and perform the
single trace ε+JT + ε−TJ deformation. This system was studied in [1, 4, 24]. Let us
recall the explicit form of the type II ten-dimensional supergravity background presented
as eq. (4.9) of [4]3

ds2

l2s
= kh

(
dγ + 2ε−√

k
dy

)(
dγ + 2ε+√

k
dy

)
+ kdφ2 + dy2 + ds2

T 3 + kds2
S3 ,

e2Φ = vk

p
e−2φh ,

(2.6)

with
h(φ)−1 = α′

R2 − 4ε+ε− + e−2φ = λ− 4ε+ε− + e−2φ , (2.7)

and
ε± = ε±

R
(2.8)

are dimensionless [4]. The dimensionless coordinate y parametrizes the chosen S1 from
T 4. The ε± deformations break Lorentz invariance. The residual isometries of the back-
ground (2.6) are constant shifts along the γ, γ, and y directions.

This background (2.6) can be constructed by starting with pure λ deformed sys-
tem (2.1) and acting with one of three chains of duality transformations enumerated in
eq. (4.5)–(4.8) of [4]. At zero temperature and for U(1) in T 4, three distinct duality chains
lead to the same background (2.6), but this is a bit of an accident. It should be cautioned
that in less trivial cases such as at finite temperature or if the U(1) is embedded in S3,
different duality chains in eq. (4.5)–(4.8) of [4] leads to different backgrounds with different
physical interpretation.

For the computation of the holographic entanglement entropy in section 3, it would be
convenient to work in the large R to avoid dealing with finite size effects. We can therefore
rescale the (γ, γ) coordinates as well as the background fields as follows

Γ = Rγ, Γ = Rγ, H−1 = R2h−1 = µ− 4ε+ε− + µe−2φ+2φ0 , φ0 = log
(
R

ls

)
. (2.9)

2This definition of µ is consistent with [4, 24]. What we call λ here was referred to as λ̂ in [1].
3Note that what we call h−1 here was called h−1 − 4ε+ε− in [4].

– 4 –



J
H
E
P
0
2
(
2
0
2
1
)
0
9
6

-2 -1 1 2

ε+μ

-2

-1

1

2

ε-μ

Figure 1. (ε+, ε−) parameter space. The bound (2.11) is illustrated in red. The second bound
of (2.12) is illustrated in blue. The two bounds coincide at ε+ = ε− = √µ/2 and ε+ = ε− = −√µ/2.

Then the background (2.6) take the following form with no explicit reference to R which
we can take to be infinite.

ds2

l2s
= kH

(
dΓ + 2ε−√

k
dy

)(
dΓ + 2ε+√

k
dy

)
+ kdφ2 + dy2 + ds2

T 3 + kds2
S3 ,

e2Φ = vk

p
e−2φ+2φ0µH(φ) .

(2.10)

As has been discussed in [1, 13], the background (2.10) is smooth when

µ− (ε+ + ε−)2 ≥ 0 . (2.11)

When the inequality (2.11) is violated, the background geometry contains CTC in the X
cycle. Strictly speaking, this bound can be ignored when X is non-compact, but we will
mention it here in order to help in visualizing the parameter space. Because choosing X
breaks Lorentz invariance, the bound (2.11) is not invariant under Lorentz boost. Aside
from (2.11), there are two other weaker inequalities that must be satisfied.

µ ≥ 0, µ− 4ε+ε− ≥ 0 . (2.12)

The condition µ > 0 stems from the requirement that the spectrum for ε+ = ε− = 0
is regular in the UV. (See however [13, 21] for discussions on violating this bound.) The
condition µ−4ε+ε− = 0 stems from the requirement that the y cycle be spacelike [1]. These
conditions are weaker than (2.11) but the second condition touches (2.11) at one point.
The parameter space consisting of (ε+, ε−) and the bounds (2.11) and (2.12) is illustrated
in figure 1.

In the following section, we investigate the holographic entanglement entropy and
the entropic c-function in the background (2.10) in the regime in the parameter space
where (2.12) is satisfied.
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3 Holographic entanglement entropy and the c-function

Our goal in this section is to interpret (2.10) as a holographic realization of a non-local
field theory in 1 + 1 dimensions parameterized by T and X. In a Lorentz invariant field
theory one, in general, is interested in computing the entanglement entropy of a connected
interval of size L aligned along the X-axis (i.e. at fixed T ). Any other spacelike interval
on the (X,T ) plane of proper length L can be brought to this form by Lorentz boost.
Without loss of generality, the X-axis then can be divided into a connected region A for
X in the range −L/2 < X < L/2 and its complement A. Let us consider the boundary
field theory in the vacuum state |0〉 with the density matrix ρ given by ρ = |0〉〈0| satisfying
ρ2 = ρ. The reduced density matrix, ρA, is obtained by tracing over the Hilbert space in
region A i.e. ρA = TrAρ. Then the entanglement entropy of A relative to its complement
is given by the Von-Neumann entropy associated with the reduced density matrix ρA. The
entanglement entropy then takes the form

S = −TrA(ρA log ρA) . (3.1)

In the particular theory we are interested in, Lorentz invariance is explicitly broken
by the ε± deformations, thus the entanglement entropy depends on the alignment of the
spacelike interval A on the (X,T ) plane.

The aim of this section is to compute the entanglement entropy using the Ryu-
Takayanagi prescription.(See [25] for a comprehensive review of this subject.) In the par-
ticular type II example4 (2.10) under consideration, the holographic entanglement entropy
is given by the area (in Planck units) of the extremal eight-dimensional surface that wraps
the T 4 × S3 and anchored at points P and Q on the boundary (i.e. the (X,T ) plane at
φ→∞). The extremal surface that one needs to calculate is effectively a one-dimensional
curve in three dimensions parameterized by T , X, and φ. In the discussion that follows
we will refer to this curve as the RT curve. The RT curve, as stated above, is anchored
on the boundary at two chosen points P = (−∆X/2,−∆T/2) and Q = (∆X/2,∆T/2)
on the (X,T ) plane (see figure 2). We will frequently refer to ∆X as L, but it should be
understood that ∆T may be non-zero in many instances throughout this paper. The points
P,Q are assumed to be spacelike separated and the entangling region A (the blue curve in
figure 2) is a one-dimensional connected interval between P and Q that lies on a Cauchy
slice5 passing through P and Q. Similarly A (the green curve in figure 2) is the complement
of A on the chosen Cauchy slice. The analysis closely parallels the analysis of entanglement
entropy in non-commutative and dipole theories and warped CFT [15–17, 26, 27].

One might worry that the RT surface could exhibit some non-trivial y dependence.
However, since we expect the boundary of this surface to be at specified points P and Q
with φ = ∞ for all y and the fact that our system is isometric under translation in y,

4Note that the type II background we are interested in is not asymptotically AdS, but one can still apply
the Ryu-Takayanagi prescription without any ambiguity because the classical gravity in the bulk is still
described by Einstein’s gravity.

5Here, we define the Cauchy slice in terms of the causal structure of the bulk geometry (3.2). Using this
criteria, the fixed T curve is Cauchy when condition (2.11) is satisfied.

– 6 –



J
H
E
P
0
2
(
2
0
2
1
)
0
9
6

T

X

P

φ

∆ΤA

Q

∆Χ

Figure 2. The U-shaped red curve in the figure is the schematic illustration of the Ryu-Takayanagi
surface anchored at points P and Q on the boundary. The points P and Q are spacelike separated
on the X,T plane. The curve in blue is the interval A and its complement A is the curve in green.

one expects the RT surface to maintain the invariance under shift in y. A more thorough
argument that y independent embedding is sufficient will be provided in appendix A.

To proceed, then, it is convenient to dimensionally reduce on y, T 3, and S3, so that
the problem reduces to a geodesic problem in 2 + 1-dimensions for a path beginning and
ending on P and Q at φ =∞. As stated above, the RT surface is invariant under the shift
symmetry in the y direction. This would imply that upon dimensional reduction along
the y direction, it would be uncharged under the U(1) gauge symmetry. Thus one can
conclude that from the 2 + 1-dimensional point of view, the RT surface is independent of
the Kaluza-Klein gauge fields.

To facilitate the dimensional reduction along y, it is useful to write (2.10) in the form

ds2

l2s
= −kH(1 +H(ε+ + ε−)2)

1 + 4ε+ε−H
dT 2 −

2kH2(ε2
+ − ε2

−)
1 + 4ε+ε−H

dTdX + kH(1−H(ε+ − ε−)2)
1 + 4ε+ε−H

dX2

+ (1 + 4ε+ε−H)
(
dy +

√
kH(ε+ − ε−)
1 + 4ε+ε−H

dT +
√
kH(ε+ + ε−)
1 + 4ε+ε−H

dX

)2

+ kdφ2 + dy2 + ds2
T 3 + kds2

S3 ,

e2Φ = vk

p
e−2φ+2φ0µH(φ) .

(3.2)

We see that when ε2
+− ε2

− 6= 0, the metric in the (T,X) space is not diagonal. This means
that the RT surface needs to be parameterized in terms of the embedding

T (X), φ(X) . (3.3)

– 7 –
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Thus following the Ryu-Takayanagi prescription, the holographic entanglement entropy is
obtained by minimizing the action functional

S = 1
4G10

∫
Σ
d8σe−2(Φ−Φ∞)√Gind , (3.4)

where G10 is the ten-dimensional Newton constant in flat space given by

G10 = 8π6g2
∞l

8
s , (3.5)

with eΦ∞ = g∞ as the string coupling6 in the asymptotically Minkowski space, Σ is the
co-dimension two extremal surface with local coordinates σi, i = {1, · · · , 8} and Gind is the
determinant of the induced metric on Σ. Since Σ wraps S3 × T 4, one can write

S = g2
∞pVS3VT 4

4vkG10

∫ L/2

−L/2
dX
√
klsL(T (X), φ(X)) = pk

∫ L/2

−L/2
dX L(T (X), φ(X)) , (3.6)

where VS3 and VT 4 are respectively the volume of the S3 and T 4 given by

VS3 = 2π2k3/2l3s , VT 4 = (2π)4vl4s , (3.7)

and

L =
√

1 + 4ε+ε−H

e−2φ+2φ0µH

(
−H(1 +H(ε+ + ε−)2)

1 + 4ε+ε−H
T ′(X)2 (3.8)

−
2H2(ε2

+ − ε2
−)

1 + 4ε+ε−H
T ′(X) + H(1−H(ε+ − ε−)2)

1 + 4ε+ε−H
+ φ′(X)2

)1/2

.

This is one of our main intermediate results which encodes all of the relevant physics. The
rest of our holographic discussion can be simply be considered as mathematical analysis of
this action. Let us also comment that (3.8) restricted to ε+ = ε− = ε/2 is equivalent to
eq. (3.8) of [20].

The next step is to find the surface that extremizes this action (3.8). Mathematically,
the problem is an extremization of two fields T (X) and φ(X) of single variable X. The
minimization problem leads to a second order differential equation for each of the fields.
The fact that we have two fields rather than one makes this problem more intricate than
the usual setup. However, one can take advantage of various symmetries to significantly
reduce the scope of the problem. Specifically, our setup involves translation invariance with
respect to T and X. This gives rise to two integrals of motion

c1 = ∂L
∂T ′

, (3.9)

c2 = ∂L
∂T ′

T ′ + ∂L
∂φ′

φ′ − L , (3.10)

6Note that g∞ in (3.5) can be replaced by g−∞ = vk/p, the value of the dilaton in the AdS3 region, and
eφ∞ in (3.4) be replaced by eφ−∞ without changing the value of the action (3.4).
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where T ′ and φ′ are respectively the derivatives of T and φ with respect to X. These
two integrals of motion encodes the two degrees of freedom associated with the separation
between P and Q in T and X coordinates.

The constants c1 and c2 can, in principle, take any real value. However, it is convenient
to consider the case c1 = 0 which leads to significant simplification. Let us therefore
consider that case in some detail. Setting c1 = 0 in (3.9) one finds

T ′(X) = −
(ε2

+ − ε2
−)e2φ−2φ0

µ+ (µ+ (ε+ − ε−)2)e2φ−2φ0
, (3.11)

which further reduces to T ′(X) = 0 for ε2
+ = ε2

− and so it seems like the right case to
consider, although it would be interesting to contemplate the significance of other values
of c1.

To proceed further, it is convenient to use the parametrization

U(X) = eφ−φ0 . (3.12)

Substituting (3.11) in (3.10) one obtains

c2 = − U3√1 + U2
√
µ+ (µ− 4ε+ε−)U2

√
µ
√
µ+ (µ+ (ε+ − ε−)2)U2

√
U4 + {1 + (µ+ (ε+ − ε−)2)U2}U ′2

. (3.13)

Next we choose the boundary condition that the RT surface must satisfy U(X = 0) = U0
and U ′(X = 0) = 0. Plugging this in (3.13) gives

c2 = −
U0
√

1 + U2
0

√
µ+ (µ− 4ε+ε−)U2

0
√
µ
√
µ+ (µ+ (ε+ − ε−)2)U2

0

. (3.14)

Equating (3.13) and (3.14), one can solve for U ′(X). One can use the U ′(X) thus obtained
and (3.11) to write

L(U0) ≡ ∆X(U0) = 2
∫ ∞
U0

dU
1
U ′

,

∆T (U0) = 2
∫ ∞
U0

dU
T ′

U ′
.

(3.15)

The actual entanglement entropy and related quantities such as the entanglement c-
function can be computed, at least in principle, using numerical techniques. The behavior
for generic U0 is rather complicated and does not appear to be presentable in simple
compact form. The behavior in the small and large U0 limit, however, appears to allow
some analytic treatment. Let us explore few more issues which can be inferred regarding
this limit.

3.1 Small and large U0 expansion of L

When U0 � 1 i.e. when the RT surface probes the IR AdS3 regime of the full geometry,
one obtains

L ≡ ∆X = 2ls
U0

+O(U0) ,

∆T = 0 +O(U0) .
(3.16)
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Lmin =
1

2

π μ + (ε+ - ε-)2
U0

L(U0)

Figure 3. L(U0) vs. U0 for the case c1 = 0. Since µ is the only scale in the theory, one can express
ε± in terms of √µ. To generate this numerical plot we have used ε+ = 0.35√µ, ε− = 0.17√µ.

On the other hand when U0 � 1, i.e. when the RT surface probes the UV linear dilaton
regime of the geometry, one obtains

L ≡ ∆X = Lmin +
√
µ+ (ε+ − ε−)2(µ− 2ε−ε+)

U2
0 (µ− 4ε−ε+)

+O
(
1/U4

0

)
,

∆T = Tmin +O
(
1/U2

0

)
.

(3.17)

where the non-locality scale in space, Lmin, and in time Tmin (for c1 = 0) are respectively
given by

Lmin = 1
2π
√
µ+ (ε+ − ε−)2 ,

Tmin = −
π
(
ε2

+ − ε2
−
)

2
√
µ+ (ε+ − ε−)2 .

(3.18)

Figure 3 shows a numerical plot of L(U0) as a function of U0. As L→∞, U0 → 0 i.e. the
bottom of the RT surface probes the AdS3 regime of the geometry. Here the entanglement
entropy is dominated by the AdS3 regime of the geometry. As L decreases U0 grows and
diverges as L approaches Lmin. Here the entanglement entropy is dominated by the linear
dilaton regime of the geometry.

When ε± is set to zero, (3.18) reduce to

Lmin = π

2
√
µ , Tmin = 0 , (3.19)

and is interpretable as the minimal length probable by the entanglement entropy which
was found in [18]. Our expression is a generalization of that for non-vanishing ε± except
that we are restricting our attention to the case where c1, the momentum conjugate to
translation in T , is set to zero.

One thing that can be done is to utilize Lorentz boost with boost parameter α which
transforms

L′min = Lmin coshα+ Tmin sinhα , (3.20)
T ′min = Lmin sinhα+ Tmin coshα , (3.21)
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ε′+ = exp(−α)ε+ , (3.22)
ε′− = exp(α)ε− . (3.23)

This transformation rule can be inferred from the action of boost on (2.10). One can then
chose α such that T ′min = 0 and arrive at the formula

L′min = π

2

√
µ(µ− 4ε′+ε′−)
µ− (ε′+ + ε′−)2 . (3.24)

We can drop the prime and interpret this expression as the size of the smallest region for
which the entanglement entropy can be computed with Tmin = 0.

Let us make some comments about the results obtained so far.

1. Unlike in the case of (warped) CFT [26–28], there are no direct relation between
entanglement entropy and the thermal entropy e.g. eq. (3.7) of [26] based on (warped)
conformal symmetry (that we are aware of as of now).

2. In light of the comment above, it is interesting that Lmin found in (3.18) is in agree-
ment with βH found in eq. (3.25) of [4] for the grand canonical ensemble.

3. It is also interesting that L′min found in (3.24) appears to depend on βH for the fixed
charge ensemble also discussed in eq. (3.36) of [4].

4. The sub-leading term in large U0 expansion of L in (3.17) diverges when µ−4ε+ε− =
0. This is a Lorentz invariant condition associated with the appearance of closed time
like loop in the y coordinate [1, 13]. When restricted to a subset of the (ε+, ε−) space
parameterized by ε+ = ε− = ε/2, this corresponds to the special point µ − ε2 = 0
where the Lmin was found to jump discontinuously by a factor of 2 in [20]. For the
case that X coordinate is non-compact, we are not bounded by (2.11), and so we can
access all points along µ − 4ε+ε− = 0. We find a discontinuity by a factor of 2 for
Lmin on all of these points.

3.2 The entanglement entropy

The entanglement entropy (3.4) is an UV divergent quantity. The integral in (3.4) is
regulated by introducing a radial cutoff at U = Umax.

One useful diagnostic of our analysis is to take the AdS3 limit by setting µ, ε+, and
ε− to zero keeping u = U/

√
µ and umax = Umax/

√
µ fixed. The dimension of u is length

inverse. In this limit, the background (2.10) becomes

ds2

l2s
= ku2dΓdΓ + kdu2

u2 + dy2 + ds2
T 3 + kds2

S3 (3.25)

and the Ryu-Takayanagi entanglement entropy comes out as

S = 6kp
3 log

(
umax
u0

)
+ subleading

= c

3 log
(
L

LΛ

)
+ subleading ,

(3.26)
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AdS3

AdS3

Linear Dilaton

(a) (b)

Boundary

Figure 4. Schematic illustration of Ryu-Takayanagi surface in background (2.10). In (a), we
illustrate the case where µ, ε+, and ε− are all set to zero. In (b), we illustrate the configuration for
large L in red, and the configuration with small L in green. Because of the cutoff dependence of S(L),
large L behavior of (a) and (b) are not identical. This difference goes away for cutoff independent
quantity such as c(L). The non-trivial embedding in the T coordinate that we illustrated in figure 2
is projected out in illustration (b).

where L = √µ/U0 = 1/u0 and LΛ = 1/umax. Terms indicated as subleading are suppressed
by u0/umax. The central charge c = 6kp is the central charge of the IR CFT. This is in
perfect agreement with the central charge of the CFT in k NS5 + p F1 system. See figure 4a
for a schematic illustration of this configuration. This of course is a standard result.

A slightly different limit is to take L � √µ or U0 � 1 which gives rise to the Ryu-
Takayanagi surface probing the AdS3 region as well as the linear dilaton region as is
illustrated in red in figure 4b. In this regime, we find that the entanglement entropy with
large fixed cutoff Umax � 1 leads to

S = c

6

[√
µ− 4ε+ε−

µ
U2

max + µ− 2ε+ε−√
µ(µ− 4ε+ε−)

log
(
U2

max

)
− log

(
U2

0

)
+O(U0

0 )
]
. (3.27)

Details for obtaining this result is somewhat technical, and so we will postpone it to the
appendix B. The presence of the terms quadratic in Umax and the modification of the
coefficient of the term proportional to log(U2

max) is the consequence of the existence of the
linear dilaton region modifying the cutoff dependence of the area of the Ryu-Takayanagi
surface.

Finally, we should examine the U0 � 1 limit where L − Lmin becomes small. This is
the configuration illustrated in figure 4b in green. We will show in the appendix that the
leading contribution in this regime is

S = c

6

[√
µ− 4ε+ε−

µ
U2

max + µ− 2ε+ε−√
µ(µ− 4ε+ε−)

log
(
U2

max
U2

0

)
+O(U0

0 )
]
. (3.28)

Just like in the small U0 limit, this expression drops all the terms which vanishes in the
Umax →∞ limit. We are also keeping only terms which are dominant in the large U0 limit.
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Lmin

L

S(L)-SΛ

Figure 5. S(L)−SΛ vs. L plot for the case c1 = 0. This quantity is independent of the cutoff and
asymptotes to −∞ as L→ Lmin. To generate this plot we have chosen ε+ = 0.35√µ, ε− = 0.17√µ.

What we see from (3.27) and (3.28) is that the pattern of divergence in the Umax →∞
is the same in both extremes. This suggests that we define

SΛ = c

6

[√
µ− 4ε+ε−

µ
U2

max + µ− 2ε+ε−√
µ(µ− 4ε+ε−)

log
(
U2

max
ξ

)]
. (3.29)

and plot/compute
S(L)− SΛ . (3.30)

Here, ξ is some arbitrary, dimensionless parameter which we might as well set to 1. Other
values of ξ will simply lead to additive shift in SΛ and this dependence can be interpreted
as a kind of scheme dependence. We will therefore set ξ = 1 from now on. Also note
that a logarithm of U2

max is well defined since Umax is a dimensionless parameter in our
convention.

With these considerations, we illustrate in figure 5 the numerical plot of S(L)−SΛ using
the relation between L and U0 computed previously and illustrated in figure 3. Using (3.16)
and (3.27), we can infer that for large L,

S(L)− SΛ = c

3 log
(
L
√
µ

)
+O(L0) , (3.31)

and that near L = Lmin,

S(L)− SΛ = c

6

√
µ(µ− 4ε+ε−) log

(
L− Lmin√

µ

)
+O((L− Lmin)0) . (3.32)

3.3 Casini-Huerta c-function

The Casini-Huerta c-function, also known as the entropic c-function, defined for a two-
dimensional Lorentz invariant QFT connecting two fixed points on the RG flow, is given by

c(L) = 3L∂S(L)
∂L

. (3.33)

Although the entanglement entropy depends on the UV cutoff, for a local, Lorentz invariant
QFT connecting two fixed points, the c-function (3.33) is independent of the UV cutoff
and monotonically decreases from the UV central charge cUV to the IR central charge cIR.
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Lmin

c

L

c(L)

Figure 6. c(L) vs. L plot for the case c1 = 0. The c-function is independent of the UV cutoff of
the theory. To generate this plot we have chosen ε± to be of the form ε+ = 0.35√µ, ε− = 0.17√µ.
The location and pole and its residue as can easily be read off from (3.34) matches exactly with
the numerics.

The theory we are interested in is non-local in the sense that the short distance physics
is not governed by a fixed point, but flows to a fixed point at long distances. Since the
c-function (3.33) defined above is not exactly applicable to the kind of theories we are
interested in, there is no reason to believe that all the universal properties discussed above
should hold. A numerical evolution of c(L) in the particular theory we are interested in
confirms the following interesting properties:

1. As stated earlier that the O((L−Lmin)0) terms in (3.28) are independent of the UV
cutoff. Thus c(L), defined in (3.33), is independent of the UV cutoff, exactly like in
a local Lorentz invariant QFT.

2. c(L) is monotonically decreasing from the UV to the IR (i.e. c′(L) < 0). Like a local
QFT, at large L, c(L) approaches the central charge of the IR CFT, c = 6kp, but
unlike a local QFT, at short distances c(L) diverges as L approaches Lmin:

c(L) = c

2

[
µ− 2ε+ε−√
µ(µ− 4ε+ε−)

( 1
L− Lmin

)
+O((L− Lmin)0)

]
. (3.34)

This divergence is due to the non-local nature of the LST in the UV. When restricted
to ε+ = ε−, the position of the pole and the residue is equivalent to that which was
found in [20].

3. Another useful diagnostic is the expansion of S(L, µ, ε+, ε−) or c(L, µ, ε+, ε−) for
small values of µ, ε+, and ε− at fixed L. It was demonstrated in [18] that for
ε+ = ε− = 0, contribution from the expansion in µ at the linear order vanishes. We
can generalize this observation to dependence on ε+ and ε−. It is manifest that the
Lagrangian (3.8) is even under the exchange (ε+, ε−) ↔ (−ε+,−ε−). From this, it
follows that terms linear in ε+ and ε− must also vanish. This feature is reproduced
in the field theory analysis we will present in section 4.

Entropic c-function with properties similar to the above have been earlier reported in [18–
20]. Figure 6 shows a numerical plot of c(L) as a function of L for the case c1 = 0.
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4 Perturbative field theory analysis

In this section, we are going to perform perturbative field theory calculation in a CFT2
with a global U(1) symmetry deformed by a general linear combination of double trace
TT , JT , and TJ . We will then match the perturbative result obtained in this section to
those obtained from the string theory analysis in the previous section. Strictly speaking
the theory discussed in the previous section is different (single trace vs. double trace) from
µTT + ε+JT + ε−TJ deformation of a CFT2. That the entanglement entropy and the
c-function of the two theories are different can be inferred from [29]. However, as has been
discussed in several works, the two theories have a lot in common. In this section, we
report some qualitative match between the two theories of the order µ, ε± correction of the
entanglement entropy.

We split the field theory calculation in two subsection. In section 4.1, we perform a
model independent computation of the entanglement entropy in conformal perturbation
theory and properties of conformal field theories flowing [28]. In section 4.2, we specify
a concrete system consisting of N free complex fermions and approach the entanglement
entropy as the limit of Rényi entropy as the index is sent to 1. Similar perturbative
calculation has been done in [18, 30, 31]. We will analyze the leading dependence on
µ, ε+, and ε− and show that both approaches leads to the same result that agrees with
the holographic analysis of the previous section. On one hand, this can be viewed as
a consistency test between conformal techniques and the approach involving the replica
trick.7 Another reason for studying the approach based on Rényi entropy is that it is
an open question if one can perform holographic Rényi entropy computation in the bulk
following [32] and check whether it structurally agrees with the results in section 4.2.

4.1 Generic CFT2 deformed by µTT + ε+JT + ε−TJ

In this subsection, we would like to calculate the first order correction to the entanglement
entropy between a connected interval A of size L and its complement A in a generic CFT2
with a global U(1) symmetry, deformed by a general linear combination of TT , JT and
TJ . We have in mind to perform conformal perturbation theory to calculate the first order
correction to the entanglement entropy. Here we follow techniques discussed in [33] to
calculate perturbative entanglement entropy.8 Let us consider a CFT2 on R2 deformed by
the irrelevant operators

O(µ, ε±) = µ

∫
d2z (TT )CFT + ε+

∫
d2z (JT )CFT + ε−

∫
d2z (TJ)CFT , (4.1)

where CFT in the suffix of the operators on the right hand side of (4.1) implies that these
are operators in the undeformed CFT2. We will eventually drop this suffix.

In order to perform conformal perturbation theory, we will assume µ, ε± to be small
and that the operators TT , JT and TJ are operators of the undeformed CFT2. At the

7The conformal perturbation theory analysis in section 4.1 does not rely on any aspects of the replica
trick.

8Note that in [33], the perturbation considered is a deformation be a relevant operator. Generalization
of their story to the case of irrelevant deformations is straight forward.
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level of the action, A, the deformation is given by

A(µ, ε±) = ACFT +O(µ, ε±) . (4.2)

For small µ, ε±, the Taylor expansion of the entanglement entropy, S(µ, ε±), at first order
in the couplings µ, ε± takes the following form:

S(µ, ε±) = S(0) + µ
∂S

∂µ

∣∣∣∣
µ,ε±=0

+ ε+
∂S

∂ε+

∣∣∣∣
µ,ε±=0

+ ε−
∂S

∂ε−

∣∣∣∣
µ,ε±=0

+ higher order terms .
(4.3)

Let us consider the CFT2 prepared in its vacuum state |0〉 and with density matrix
given by ρ = |0〉〈0|. The reduced density matrix of A obtained by tracing over the states
in the Hilbert space living in A is given by ρA = TrAρ. Then the modular Hamiltonian K
of the system, is defined by

K = − ln ρA . (4.4)

The Taylor expansion of the modular Hamiltonian at first order in the couplings µ, ε± takes
the form

K(µ, ε±) = K(0) + µ
∂K

∂µ

∣∣∣∣
µ,ε±=0

+ ε+
∂K

∂ε+

∣∣∣∣
µ,ε±=0

+ ε−
∂K

∂ε−

∣∣∣∣
µ,ε±=0

+ higher order terms .
(4.5)

In terms of the modular Hamiltonian K, the entanglement entropy can be expressed as

S = −TrAρA ln ρA = 〈0|K(µ, ε±)|0〉 = 〈K(µ, ε±)〉

∼
∫

[Dφ]K(µ, ε±)e−ACFT−O(µ,ε±) ,
(4.6)

where ACFT is the action of the undeformed CFT2. Now substituting (4.5) and (4.1)
in (4.6) and keeping terms up to first order in µ, ε±, one obtains

S = 〈K(0)〉+ µ

〈
∂K

∂µ

∣∣∣∣
µ,ε±=0

〉
+ ε+

〈
∂K

∂ε+

∣∣∣∣
µ,ε±=0

〉
+ ε−

〈
∂K

∂ε−

∣∣∣∣
µ,ε±=0

〉

− µ
∫
d2z 〈K(0)TT (z, z)〉 − ε+

∫
d2z 〈K(0)JT (z, z)〉 − ε−

∫
d2z 〈K(0)TJ(z, z)〉

+ higher order terms .
(4.7)

Again, we have the following relation

TrA(ρA) = TrA(e−K) = 1 . (4.8)

This implies

0 = ∂

∂µ
TrA(e−K(µ,ε±)) = −TrA

(
∂K(µ, ε±)

∂µ
e−K(µ,ε±)

)
=
〈
∂K(µ, ε±)

∂µ

〉
. (4.9)
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Similarly 〈
∂K(µ, ε±)

∂ε±

〉
= 0 . (4.10)

Substituting (4.9), (4.10) in (4.7) one obtains

S = S(0)−µ
∫
d2z 〈K(0)TT (z, z)〉−ε+

∫
d2z 〈K(0)JT (z, z)〉−ε−

∫
d2z 〈K(0)TJ(z, z)〉

+ higher order terms . (4.11)

All that remains to be calculated are the three CFT correlation functions in (4.11).
To compute the correlators, let us choose the entangling interval of size L to lie along the
special x-axis from (−L/2, 0) to (L/2, 0). In that case the modular Hamiltonian in a CFT2
on R2 can be expressed as [28, 34]

K(0) = −2π
∫
dx

1
L

(
x− L

2

)(
x+ L

2

)
T00 = −π

∫
dx

(
x2 − L2

4

)
L

(T + T ) , (4.12)

where T00 = (T + T )/2 is the time component of the stress tensor. Thus

〈K(0)TT (z)〉 = −π
∫
dx

(
x2 − L2

4

)
L

〈(
T (x, y) + T (x, y)

)
T (z)T (z)

〉
= 0 . (4.13)

Similarly one can argue,

〈K(0)JT (z)〉 = 〈K(0)TJ(z)〉 = 0 . (4.14)

To prove the above result we have used the fact that for a CFT2 on R2

〈T 〉 = 〈T 〉 = 〈J〉 = 〈J〉 = 0 , (4.15)

and that the two point function of an holomorphic and an anti-holomorphic operator
vanishes.

Thus, the first order correction to the entanglement entropy upon deformation by a
general linear combination of TT , JT and TJ vanishes. This is in agreement with the
result from the string theory calculation in the previous section. At first order in µ, ε±,
there could be contributions coming from the contact terms of the form 〈TT 〉, 〈JT 〉 and
〈TJ〉. Such terms are not universal because these depend on the choice of coordinates in
the space of theories [35]. We are not interested in computing such contact terms. The
first non-trivial correction to the entanglement entropy comes at second order in µ, ε±.

4.2 N free complex fermions deformed by µTT + ε+JT + ε−TJ

In this subsection, we wish to compute the nth Rényi entropy of a system of N complex
fermions using the replica trick. We will adapt the twist field approach to calculate the
Rényi entropy. Finally we will analytically continue the replica index n → 1 to compute
the entanglement entropy. We will closely follow the approach undertaken in [18].
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Let us start with a brief review of the replica method of computing the entanglement
entropy. The nth Rényi entropy between a connected interval of size L and its complement
in a local QFT is given by

Rn = 1
1− n ln TrAρ

n
A . (4.16)

As par the replica trick, the entanglement entropy of the above configuration is obtained
by analytically continuing n→ 1:

S = lim
n→0

Rn = − d

dn
TrAρ

n
A

∣∣∣
n=1

= −TrAρA ln ρA . (4.17)

It has been shown in [36] that if the QFT under inspection is a CFT2, then TrAρ
n
A can

be expressed as the two point function of the lowest dimensional Zn twist operators (also
known as spin fields) Sn, inserted at the boundary points of the interval A:

TrAρ
n
A = 〈Sn(u)Sn(v)〉 , (4.18)

where L = |u − v|. The twist operators are primary fields of the Virasoro algebra with
scaling dimension

∆(Sn) = c

24

(
n− 1

n

)
, (4.19)

where c is the central charge of the CFT2. From conformal invariance, one can write

〈Sn(u)Sn(v)〉 = 1
|u− v|4∆(Sn) . (4.20)

Plugging (4.20) in (4.16), (4.17), (4.18), one obtains

S = c

3 ln L
a
, (4.21)

where a is the UV cutoff of the theory.
In the discussion that follows, we are going to construct the twist operators in the free

CFT consisting of N complex fermions and eventually calculate the leading correction to
the entanglement entropy due to deformation by a general linear combination of TT , JT
and TJ .

4.2.1 System of N complex fermions

Next, let us consider a free CFT2 of central charge N consisting N free fermions ψα

where α ∈ {1, · · · , N}. Their anti-holomorphic counterparts are denoted by ψ
α. Next

to implement the replica trick, we consider n copies of the above mentioned CFT2. In
the replicated theory, the free fermions are labeled by ψαi , ψ

α
i where i ∈ {1, · · · , n} is the

replica index. Due to anti-commuting property of the fermions, ψαi ’s satisfy the following
periodicity condition

ψαi+n = (−1)n−1ψαi . (4.22)

The replicated theory has a Zn symmetry that cyclically permutes the n copies. Let T be
the generator of this Zn symmetry. The action of T on the fermions ψαi is given by

T : ψαi → ψαi+1 . (4.23)
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The action of Zn on the fermions ψαi is not diagonal. To diagonalize the action let us
consider the discrete Fourier transform of the fermions

ψ̃αk = 1√
n

n∑
j=1

ψαj e
2πi

j(k− 1
2 (n−1))
n , k ∈ {0, 1, · · · , n− 1} . (4.24)

It is easy to check that

T : ψ̃αk → ψ̃αk e
−2πi(k−

1
2 (n−1))
n . (4.25)

In the basis that diagonalizes the action of Zn, the total twist operator for the individual
(fixed α) fermions is given by

Sαn =
n−1∏
k=0

sαk , (4.26)

where sαk is the twist operator that implement the transformation (4.25). The total Zn
twist operator (spin field) is obtained taking the product of all the twist field Sαn over all
the N fermions

Sn =
N∏
α=1

Sαn . (4.27)

To construct the twist operators sαk let us bosonize the fermions ψ̃αj as

ψ̃αj = eiH
α
j , (4.28)

where Hα
j are bosons normalized such that their OPE is given by

H(z)H(w) = − ln(z − w) . (4.29)

Thus, from (4.25), one can read off the twist field sαk in terms of the bosonic field Hα
k as

sαk = e
i
n(k− 1

2 (n−1))Hα
k . (4.30)

The scaling dimension of sαk is given by

∆(sαk ) = 1
2n2

(
k − 1

2(n− 1)
)
. (4.31)

Thus, the scaling dimension of the total twist field, Sαn , is given by

∆(Sαn ) =
n−1∑
j=0

∆(sαj ) = 1
24

(
n− 1

n

)
. (4.32)

The scaling dimension of the total spin field, Sn, is given by

∆n =
N∑
α=1

∆(Sαn ) = N

24

(
n− 1

n

)
. (4.33)

This is in perfect agreement with (4.19) with c = N .
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4.2.2 Order µ correction to Rényi entropy

Since the order µ correction to entanglement entropy has already been calculated in [18],
we will be very brief and often quote results from [18]. The deformation of the product of
n free CFT2’s that we focus next is given by

δL = µ
n∑
l=1

TlT l , (4.34)

where Tl and T l are the holomorphic and anti-holomorphic components of the stress tensor
of the lth CFT2.

Due to this deformation, the leading correction to the total spin field Sn two point
function in conformal perturbation theory is given by

〈Sn(x)Sn(0)〉 = 1
|x|4∆n

− µ
n∑
l=1

∫
d2z 〈Sn(x)Sn(0)Tl(z)T l(z)〉cft +O(µ2) . (4.35)

In a conformal field theory the three point function 〈Sn(x)Sn(0)Tl(z)T l(z)〉cft is fixed up
to some constant:

n∑
l=1
〈Sn(x)Sn(0)Tl(z)T l(z)〉cft = Cn

|z|4|z − x|4|x|4(∆n−1) . (4.36)

where the constant Cn as calculated in eq. (4.15) [18] is given by

Cn = ∆2
n = N2

242

(
n− 1

n

)2
. (4.37)

Plugging (4.36) and (4.37) in (4.35), the order µ correction to the two point function
of spin fields Sn is given by

δ〈Sn(x)Sn(0)〉 ∼ µ
∫
d2z

∆2
n

|z|4|z − x|4|x|4(∆n−1) ∼ µ
∆2
n

|x|4∆n+2 ln(|x|Λ) , (4.38)

where Λ is the UV cutoff of the theory.
From (4.38), (4.35) and (4.16), one can easily calculate the order µ correction to the

Rényi entropy. The entanglement entropy is calculated by smoothly analytically continuing
the Rényi index n→ 1. As it turns out that

lim
n→1

∆n = 0 . (4.39)

This implies that the order µ correction to the entanglement entropy vanishes. This is what
was concluded in section 4.1. The same was also observed in the holographic calculation in
section 3 although there the theory is different but closely related to the one discussed here.

There could be order µ corrections to the entanglement entropy coming from the
contact terms of the form

n∑
l=1

Tl(z)T (z)Sn(0) = Anδ
2(z)∂∂Sn(0) , (4.40)

where the coefficient An is not determined by the standard CFT data. Such contact terms
are not universal and depends on the choice of coordinates in the space of theories. We are
not interested in computing such non-universal pieces.
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4.2.3 Order ε± correction to Rényi entropy

Computation of the order ε± correction to the Rényi entropy using the twist field approach
would be a simple extension of the techniques discussed above. Here we will focus on the
ε+ correction to the Rényi entropy, switching the chiralities one can easily obtain the order
ε− correction as well.

The deformation of the free fermion theory that we would like to investigate is

δL = ε+

n∑
l=1

JlT l , (4.41)

where Jl and J l are the holomorphic and anti-holomorphic components of the global U(1)
current of the lth CFT2.

The order ε+ correction to the two point function of the spin field Sn are given by

〈Sn(x)Sn(y)〉 = 1
|x|4∆n

− ε+

n∑
l=1

∫
d2z 〈Sn(x)Sn(y)Jl(z)T l(z)〉cft +O(ε2

+) . (4.42)

By conformal invariance of undeformed theory, one can fix the three point function
in (4.42) up to a constant:

n∑
l=1
〈Sn(x)Sn(y)Jl(z)T l(z)〉cft = Dn

(z − x)(z − x)2(y − z)(y − z)2|x− y|4(∆n−1)(x− y)
.

(4.43)

where Dn is a constant to be determined below.
To determine Dn, it is convenient to express the operator

∑n
l=1 JlT l in terms of the

fermions ψ, ψ:
n∑
l=1

JlT l =
n∑
l=1

N∑
α,β=1

ψ∗αl ψαl ψ
∗β
l ∂ψ

β
l . (4.44)

In terms of the Fourier variables ψ̃ (4.24), the operator
∑n
l=1 JlT l takes the form

n∑
l=1

JlT l =
n−1∑

k1,···k4=0

N∑
α,β=1

ψ̃∗αk1 ψ̃
α
k2ψ̃
∗β
k3 ∂ψ̃

β

k4δk1−k2+k3−k4,0 . (4.45)

Plugging (4.45) in (4.42) one finds that the only terms with k1 = k2 and k3 = k4 contribute
to the three point function. Imposing this restriction, (4.45) can be expressed as JtotT tot,
where Jtot =

∑
l Jl and T tot =

∑
l T l. To compute the constant term Dn in (4.43) let us

investigate the OPE of Jtot(z) with Sn(0):

Jtot(z)Sn(0) =
n−1∑
l=0

N∑
α=1

Jαl (z)
n−1∏
k=0

N∏
β=1

sβk(0) =
n−1∑
l=0

N∑
α=1

Jαl (z)
n−1∏
k=0

N∏
β=1

eiqkH
β
k

(0). (4.46)

Next we use the fact the Jαk = ψ̃∗αk ψ̃αk ∼ i∂Hα
k , and the standard OPE

J(z)eikH(0) = i∂H(z)eikH(0) ∼ ke
ikH(0)

z
, (4.47)
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to write

Jtot(z)Sn(0) ∼
n−1∑
l=0

N∑
α=1

ql
z

n−1∏
k=0

N∏
β=1

eiqkH
β
k

(0) ∼ N
(
n−1∑
l=0

ql

)
Sn(0)
z

= 0 , (4.48)

where

qk = 1
n

(
k − (n− 1)

2

)
, with

n−1∑
k=0

qk = 0 . (4.49)

That Jtot(z)Sn(0) OPE is non-singular implies that Dn = 0. Thus the order ε+ correction
to the nth Rényi entropy and hence the entanglement entropy is zero. Changing the
chiralities one can immediately conclude that order ε− correction to Rényi entropy is zero
as well. This is also what was concluded in section 4.1. In the holographic calculation in
section 3, there are no order ε± correction to the entanglement entropy. Lets stress the
fact once again that the theory considered in section 3 is similar but different compared to
the one we study here.

Like in the case of TT deformation one may consider the contact terms term contri-
bution at order ε±. By dimensional analysis, one can consider the following contact term
for the JT case

n∑
l=1

Jl(z)T (z)Sn(0) = Bnδ
2(z)∂Sn(0) . (4.50)

As before the constant Bn is not determined by the CFT data. Such contact terms are
not universal and depends on the choice of coordinates in the space of theories. We are
not interested in computing such non-universal contribution to the entanglement entropy.
Switching the chiralities one can also calculate the contact term contribution for the case
of TJ deformation.

5 Discussion

In this article, we computed the entanglement entropy for holographic NS5-F1 CFT de-
formed by single trace µTT , ε+JT , and ε−TJ for a generic value of (µ, ε+, ε−) for which
the background is non-singular using the Ryu-Takayanagi method. We are working in
type IIB string theory and the holographic dual of the CFT is AdS3 × S3 × T 4. We took
the holomorphic U(1) currents J and J to be the one associated with the U(1) isometry
of one of the S1 in T 4. The background is given by (2.10). One concrete result is the
Lagrangian (3.8) which is extremized by the Ryu-Takayanagi surface.

One immediate consequence of turning on ε+ and ε− is that our system is no longer
Lorentz invariant. Another novel feature which arises in considering generic values for ε+
and ε− is that the embedding into time coordinate do not decouple in (3.8). As such, we
are required to solve for two fields as a function of single variables satisfying a non-linear
second order ordinary differential equation. The fact that the system is invariant under
translation in T and X coordinates, however, allows the embedding surface to be expressed
in terms of an integral expression that depends on two integration constants ∆T and ∆X
characterizing the endpoints of the entanglement region in (T,X) space-time.

– 22 –



J
H
E
P
0
2
(
2
0
2
1
)
0
9
6

The dependence on ∆T can be exchanged with the dependence on momentum conju-
gate to the T coordinate which we called c1 in (3.9). Algebraically, the geodesic equation
inferred from (3.8) simplified tremendously if we set c1 to zero. Strictly speaking, restrict-
ing to c1 = 0 does not lead to any loss in generality of solutions if we use Lorentz boost as a
solution generating transformation. However, the procedure of identifying the appropriate
boost so that one recovers the entanglement entropy as a function of (∆X,∆T ) at fixed
(µ, ε+, ε−) will be complicated.9 See e.g. (3.20)–(3.23).

Focusing on the case of c1 = 0, we explored various properties of the entanglement
entropy S(L) and the closely related Casini-Huerta c-function (3.33). Some of our results
include the minimum probable scale (Lmin, Tmin) given in (3.18), and the large L and
L ∼ Lmin behavior of S(L) and c(L). These results are presented in (3.31), (3.32), (3.34),
and figure 6. We recover the CFT-like behavior in the large L limit. For non-vanishing ε±,
this turns out to be somewhat non-trivial since the coefficient of logarithmic terms in (3.27)
and (3.28) are not the same. However, the Lagrangian (3.8) turns out to be smart enough
to make this work out.

It is curious that the minimal probable length (3.18) is precisely the inverse Hagedorn
temperature computed in [4] for the grand canonical ensemble. It should be stressed
that (3.18) is computed at c1 = 0, but it would be interesting if this agreement can be
shown to be more than just an accident.

Another interesting observation is that the behavior of entanglement entropy jumps
when µ − 4ε+ε− = 0. For the case of ε+ = ε− = √µ/2 and ε+ = ε− = −√µ/2, a
discontinuity by a factor of 2 in Lmin was discussed in [20]. The pathology of these points
can be seen by looking at the coefficient of the next to leading order term in the expansion
with respect to U−1

0 in (3.17) which diverges when µ − 4ε+ε− vanishes. By setting µ −
4ε+ε− = 0 first, one obtains a modified yet finite L(U0) where the leading term Lmin in
the large U0 expansion is different from (3.17) by a factor of 2. The condition µ−4ε+ε− =
0 can be seen to be connected to the appearance of closed time like curve along the y
direction (3.2) as was first observed in [1].

Finally, we discussed the leading behavior in small µ, ε+, and ε− expansion of S(L)
and c(L) at fixed L. When µ = ε+ = ε− = 0, one expects the CFT result (3.31). For
ε+ = ε− = 0, it was previously shown that the term linear in µ vanishes. Here, we can
infer from the discrete symmetry (ε+, ε−) ↔ (−ε+,−ε−) of (3.8) that the terms linear in
ε+ and ε− must also vanish. We then confirmed this general behavior using field theory
arguments. One analysis invoked conformal perturbation theory (4.13) and (4.14), and
another used the replica method (4.48). In the construction of section 3, the discrete
symmetry (ε+, ε−)↔ (−ε+,−ε−) is a reflection of charge conjugation symmetry (J, J)↔
(−J,−J) of the undeformed CFT. The argument in section 4.2 is slightly stronger in that
it depends on weaker assumption cL = cR. At higher order in µ, ε+, ε−, one expects to find
more intricate dependence on the nature of undeformed CFT which might be interesting
to explore.

9In order to compute the entanglement entropy for a given value of (ε+, ε−,∆X,∆T ), one must scan
over the boosts of Ryu-Takayanagi surface for (ε+, ε−,∆X) with c1 = 0 and numerically search for the one
corresponding to the desired (ε+, ε−,∆X,∆T ).
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It is interesting to ask, what would be the entanglement entropy of a QFT2 with a
mass parameter m in the presence of µTT + ε+JT + ε−TJ deformation. In general, this
would be a difficult problem to solve but the holographic entanglement entropy of a half
line is obtained by introducing an IR radial cutoff Umin and calculating the length of a line
labeled by U starting at the UV cutoff surface at U = Umax and ending at the IR cutoff
surface at U = Umin at a fixed spacial coordinate X and temporal coordinate T [14, 18].
This gives

S = c

6

∫ Umax

Umin

dU

U

(
µ+ (µ− 4ε+ε−)U2

µ

)
= c

6

[
log

(
ζ

LΛ

)
+ 1

2(µ− 4ε+ε−)
(

1
L2

Λ
− 1
ζ2

)]
,

(5.1)

where ζ = √µ/Umin is the correlation length of the boundary theory related to the mass
parameter by ζ = 1/m. It would be interesting to reproduce the above result from pertur-
bative field theory calculation.

Another interesting issue to explore is the strong subadditivity inequalities and the
entanglement involving disconnected intervales. We leave this issue for future work.10

We will conclude by commenting that the setup used to compute the Ryu-Takayanagi
surface can easily be adopted to compute the expectation value of a Wilson loop like
operator using the method of [37]. For the NS5-F1 background, we will refer to the D1-
brane11 worldvolume as computing the Wilson loop. Such a probe inserts a quark on the
S-dual D5 worldvolume. As such, perhaps the nomenclature “Wilson loop” is not entirely
appropriate but we will follow the terminology adopted in [38] where the expectation value
of this Wilson loop like operator was computed for the case of pure TT deformation.
Even though ε± deformation mixes T and X coordinates in (3.2), the fact that the D1
worldvolume is extended in the T direction makes the embedding problem effectively that
of a line (X,U) plane. Even with the ε± deformation included, we find essentially the
same features as the pure TT case, so we will be brief here. For large L, the potential
is insensitive to the deformation. As L is reduced, there is a Lmin at which the minimal
surface jumps to a new branch. That Lmin can be shown to be given by

Lmin = π
√
µ+ (ε+ − ε+)2 , (5.2)

which once again is the same as the Hagedorn scale for the grand canonical ensemble
computed in [4].
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z

X

θ

y

Figure 7. Ryu-Takayanagi surface parametrized as a function X(θ, y) in red. The y direction is
periodic. The fact that the Ryu-Takayanagi surface is extended in the y direction is implied. Here,
z = e−φ+φ0 and z = 0 is the boundary.

A y independence of Ryu-Takayanagi embedding surface

In this appendix, we will explain in more detail why the Ryu-Takayanagi embedding surface
illustrated in figure 2. Without loss of generality, the embedding surface can be parame-
terized by two functions

X(φ, y), T (φ, y) , (A.1)

but this form is somewhat inconvenient since the embedding is double valued as a function
of φ and because the boundary is at φ =∞. Let us therefore introduce a different parameter

θ = tan−1 X

z
, (A.2)

where
z ≡ 1

U
= e−φ−φ0 , (A.3)

so that z = 0 is the boundary (see figure 7).
We can then parameterize the Ryu-Takayanagi surface via

X(θ, y), T (θ, y) . (A.4)

The area minimization will give rise to two non-linear, partial, second order differential
equation for X and T as a function of θ and y.

To this equation, we will impose the boundary condition that at

X(θ = 0, y) = ∆X
2 , X(θ = π, y) = −∆X

2 , T (θ = 0, y) = ∆T
2 , T (θ = π, y) = −∆T

2 ,

(A.5)
where the boundary condition is chosen to be independent of y. The reason for imposing
such y independent boundary condition is that otherwise, points P and Q corresponding
to the endpoints of the entangling region A illustrated in figure 2 will get smeared.
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Since the area minimization equation is second order, solution satisfying boundary
condition (A.5) is unique. On the other hand, because the system is invariant under
translation in y, an ansatz that X(θ, y) and T (θ, y) is independent of y is a consistent
ansatz. In other words, the solution with the ansatz that X and T depend only on θ will
solve the full equation of motion, and the boundary condition (A.5) is consistent with this
ansatz. The solution obtained by the y independent ansatz must therefore be the unique
solution specified by the boundary condition (A.5). This is the justification for considering
the y independent embeddings in section 3.

One could have imposed a boundary condition with y dependence instead of (A.5).
The surface constructed from such a boundary condition corresponds to some different
observable. It would be interesting if a sensible interpretation for such an object can be
identified.

B Asymptotic analysis of entanglement entropy

In this appendix, we will describe the derivation of asymptotic behavior (3.27) and (3.28)
which in turn leads to (3.32) and (3.34). The starting point is solving (3.13) and (3.14) for
U ′(x) and substituting into (3.8) leading to a somewhat complicated expression.

dX

dU
L = F (U,U0, µ, ε+, ε−) , (B.1)

and that

S = c

3

∫ Umax

U0
F (U,U0, µ, ε+, ε−) . (B.2)

When ε± = 0, F reduces to

F (U,U0) =
√

(1 + U2)3

U2 + U4 − U2
0 − U4

0
. (B.3)

For non-vanishing ε±, F is rather complicated but the can be expanded in large U as

Fdiv =
√
µ− 4ε+ε−

µ
U + µ− 2ε+ε−√

µ(µ− 4ε+ε−)
U−1 . (B.4)

One can then chose to compute instead

S′ = Sfin + Sdiv , (B.5)

with

Sfin = c

3

∫ ∞
U0

dU (F (U,U0, µ, ε+, ε−)− Fdiv) , (B.6)

Sdiv = c

3

∫ Umax

U0
dU Fdiv . (B.7)
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The difference between S and S′ goes to zero in the limit Umax → ∞. It is also manifest
that Sfin is finite. Sdiv, on the other hand, can be written in terms of SΛ introduced
in (3.29) as

Sdiv = SΛ −
c

6

√
µ− 4ε+ε−

µ
U2

0 −
c

3
µ− 2ε+ε−√
µ(µ− 4ε+ε−)

logU0 . (B.8)

All that remains now is to compute Sfin as an expansion in large U0 and small U0 limits.
For the large U0 expansion, it is convenient to set U = U0z, expand the integrand of Sfin
for large U0, and compute do the z integral term by term. This leads to

Sfin = c

6

(√
µ− 4ε+ε−

µ
U2

0 +O(U0
0 )
)
, (B.9)

where O(U0
0 ) term is complicated but finite, and does not include any log(U0) term. This

then implies (3.28).
The analysis for small U0 is a bit more subtle. Naively changing variables U = U0z and

expanding the integrand leads to a coefficient at order U0
0 which diverges. This is indicating

that there is a non-trivial dependence on log(U0). The coefficient of this dependence can
be isolated as follows. The integrand of Sfin in the small U0 limit can be shown to have
the form

F (U,U0, µ, ε+, ε−)− Fdiv =
[(

1− µ− 2ε+ε−√
µ(µ− 4ε+ε−)

)
1
U

+O(U0)
]

+O(U0) . (B.10)

This means that the integral over U in (B.6) has a logarithmic contribution from the small
U region with coefficient

Sfin = c

3

(
µ− 2ε+ε−√
µ(µ− 4ε+ε−)

− 1
)

log(U0) +O(U0
0 ) , (B.11)

from which (3.28) follows. We have confirmed these asymptotic behaviors numerically.
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