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1 Introduction

Maximally supersymmetric Yang-Mills and supergravity theories have garnered especial
interest ever since it was shown that they emerge from the low energy limit of superstring
theory, which allowed the first one-loop calculation of four-point amplitudes in each [1]. In
the decades following, higher-loop N = 4 SYM four-point amplitudes were calculated [2–8]
in terms of planar and nonplanar scalar integrals through the use of generalized unitar-
ity [9, 10]. The infrared divergences of these massless integrals were dimensionally regulated
in D = 4 − 2ε dimensions, and Laurent expansions in ε of the planar two- and three-loop
integrals [11, 12] were used to obtain explicit expressions for planar (leading in the 1/N ex-
pansion) N = 4 SYM four-point amplitudes [13, 14]. Using these results, together with the
well-studied structure of infrared divergences of gauge theories [15, 16], Bern, Dixon, and
Smirnov proposed their celebrated all-loop-orders ansatz for (maximally-helicity-violating)
planar n-point amplitudes [14], whose validity for n = 4 and 5 follows from dual confor-
mal invariance of the planar theory [17, 18]. Progress on the evaluation of nonplanar two-
and three-loop integrals has taken longer [19–22], but these results have allowed explicit
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expressions for the full (nonplanar) N = 4 SYM four-point amplitude at two [23, 24] and,
more recently, three [25] loops. These expressions were verified to be consistent with the
expected (nonplanar) infrared divergence structure through three loops [26–35].

Higher-loop four-point amplitudes of N = 8 supergravity, a theory believed to be
ultraviolet finite to a high loop order (see ref. [36] and references therein), have also been
calculated in terms of planar and nonplanar integrals [3, 4, 7, 37]. Again using Laurent
expansions of the planar and nonplanar integrals, explicit expressions for the integrated
N = 8 supergravity four-point amplitudes have been obtained at two [38–40] and, more
recently, three [41] loops.

Relations between supergravity and subleading-color SYM amplitudes and their IR
divergences were explored in refs. [23, 24, 40, 42–44]. Exact relations between N = 4
SYM and N = 8 supergravity four-point amplitudes were established at one- and two-
loop levels [23], but attempts at finding relations at three loops and beyond were generally
unsuccessful.

Scattering amplitudes often exhibit dramatic simplification in the high-energy (or
Regge) limit s � −t. The known structure of infrared divergences of gauge theory
amplitudes [14–16, 26–35] simplifies at high energies, giving rise to leading and sublead-
ing logarithmic behavior [45–48]. Moreover, an effective Hamiltonian approach based on
Balitsky-Fadin-Kuraev-Lipatov theory was used to compute IR-finite large logarithmic be-
havior (NLL and NNLL) in the Regge limit [49–52]. The Regge limit of the N = 4 SYM
four-point amplitude was examined in refs. [25, 50, 53–58].

The high-energy limit of gravity amplitudes is in some ways even simpler than gauge
theory amplitudes [59–67]. The high-energy behavior of N = 8 supergravity amplitudes
has been studied in refs. [40, 41, 68–74], and recently, eikonal exponentiation in impact
parameter space has been used to obtain an exact all-loop-orders expression for the high-
energy limit of the N = 8 supergravity four-point amplitude [75, 76].

In this paper, we examine in detail the structure of the Regge limit of the (nonplanar)
N = 4 SYM four-point amplitude. We begin by developing a basis of color factors Cik
suitable for the Regge limit of the amplitude at any loop order, and then calculate explicitly
the coefficients of the amplitude in that basis through three-loop order using the Regge
limit of the full amplitude previously calculated by Henn and Mistlberger [25]. We compute
these coefficients exactly at one loop, through O(ε2) at two loops, and through O(ε0) at
three loops, verifying that the IR-divergent pieces are consistent with (the Regge limit of)
the expected infrared divergence structure as determined in refs. [14–16, 26–35, 45–50],
including a contribution from the three-loop correction to the dipole formula [35, 50]. We
also verify consistency1 with the IR-finite NLL and NNLL predictions of Caron-Huot et
al. [49, 50]. Finally we use these results to motivate the conjecture of an all-orders relation
between one of the coefficients and the Regge limit of the N = 8 supergravity four-point
amplitude.

Color-ordered n-gluon amplitudes (i.e. the coefficients of the amplitude in a trace
basis) of an SU(N) gauge theory are not independent but obey relations derived from

1The authors of ref. [50] also reported consistency of their results with ref. [25].
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group theory [1, 77–82]. For four-gluon amplitudes, there are 3` − 1 independent color-
ordered amplitudes at ` ≥ 2 loops (with two at tree level, and three at one loop). In the
Regge limit, each of these is reduced by one. Inspired by refs. [46, 48–50], we define a set
of color factors Cik by

C00 = f̃a4a1ef̃a2a3e ,

Cii = (Ts−u)iC00 , i ≥ 1
Ci1 = [T2

t , · · · , [T2
t , [T2

t ,T2
s−u]] · · · ]C00 , i ≥ 2

Ci,i−1 = [T2
s−u, · · · , [T2

s−u, [T2
t ,T2

s−u]] · · · ]C00 , i ≥ 2 (1.1)

where T2
t and T2

s−u are operators (cf. eq. (4.7)) that act on the tree-level t-channel color
factor C00 to generate higher-loop color factors. Each color factor Cik in eq. (1.1) contains
exactly i operators T2

t or T2
s−u with k factors of T2

s−u. These color factors have well-defined
signature (either + or −) under the crossing symmetry operation that exchanges external
legs 2 and 3 (i.e., s↔ u). As we will see in section 5, this basis is particularly well-suited
to describe the IR divergences of the amplitude in the Regge limit.

Having defined the Regge basis of color factors, we write the N = 4 SYM four-point
amplitude in the Regge limit as

A = A
(0)
1

∞∑
`=0

ã`
∑̀
i=0

∑
k

B
(`)
ik N

`−iCik (1.2)

where ã is the loop expansion parameter, and the range of k is

k =



0, when i = 0,
1, when i = 1,
1, 2, when i = 2,
1, i− 1, i, when i ≥ 3.

(1.3)

By using the decomposition of the color factors Cik into a trace basis, the coefficients
B

(`)
ik can be expressed as linear combinations of color-ordered amplitudes. By Bose symme-

try of the full amplitude, the coefficients B(`)
ik will have the same signature under crossing

symmetry as their associated color factors Cik, which has implications [50] for the reality
properties of B(`)

ik , as we will see in this paper.
By examining the Regge limit of the structure of IR divergences for N = 4 SYM theory,

we determine that the B(`)
ik are polynomials of order `− k in L ≡ log |s/t| − 1

2 iπ. Thus the
leading logarithmic (LL) behavior of the amplitude at ` loops is entirely contained in the
coefficient B(`)

00 , with the other coefficients contributing to subleading logarithmic behavior.
The full amplitude A can be factored into an infrared-divergent prefactor times an

infrared-finite hard function H, whose coefficients in the Regge basis of color factors are
denoted h

(`)
ik , analogous to eq. (1.2). Using the Regge limit of the N = 4 SYM color-

ordered amplitudes given in ref. [25], we compute the IR-finite coefficients h(`)
ik exactly at

one loop, through O(ε2) at two loops, and through O(ε0) at three loops. The NLL and
NNLL contributions to h(`)

ik are verified to agree with the predictions of refs. [49, 50].

– 3 –



J
H
E
P
0
2
(
2
0
2
1
)
0
4
4

Finally, using our results through three loops, we observe that one of the coefficients,
B

(`)
`` , which contains no log |s/t| dependence, is equal (up to a sign) to the Regge limit of

the `-loop N = 8 supergravity four-point amplitude. At one and two loops, this equality
follows from the exact relations presented in ref. [23]. Moreover, this relation is consistent
with the leading IR divergences of the amplitudes for all `. We therefore conjecture that
this SYM-supergravity relation holds to all loop orders in the Regge limit.

This paper is structured as follows. We review the group theory constraints on four-
gluon amplitudes in section 2, and the Regge limits of the tree-level and one-loop N = 4
SYM amplitudes in section 3. In section 4, we develop a basis of color factors Cik suitable for
the Regge limit of the N = 4 SYM amplitude at any loop order. We then obtain expressions
(through three loops) for the coefficients B(`)

ik in this basis as linear combinations of color-
ordered amplitudes (and for all loops for B(`)

`` ). In section 5, after reviewing the structure
of (the Regge limit of) the infrared divergences of the N = 4 SYM amplitude through
three loops, we compute the infrared-finite hard function using the results of ref. [25]. In
section 6, we review the Regge limit of the N = 8 supergravity four-graviton amplitude,
and conjecture its equivalence to B(`)

`` . In section 7, we offer some concluding remarks.

2 Group-theory constraints on four-point amplitudes

In this section, we briefly review the group-theory constraints on the `-loop color-ordered
four-gluon amplitudes in an SU(N) gauge theory that were derived in ref. [80]. These will
play an important role in the following sections when we define a new basis of color factors
for four-gluon amplitudes in the Regge limit.

The color-ordered amplitudes of a gauge theory are the coefficients of the full am-
plitude in a basis using traces of generators T a in the fundamental representation of the
gauge group.2 Color-ordered amplitudes have the advantage of being individually gauge-
invariant. Four-gluon amplitudes of SU(N) gauge theories can be expressed in terms of a
six-dimensional basis c[λ] of single and double traces [78]

c[1] = Tr(T a1T a2T a3T a4) + Tr(T a1T a4T a3T a2), c[4] = Tr(T a1T a3) Tr(T a2T a4),
c[2] = Tr(T a1T a2T a4T a3) + Tr(T a1T a3T a4T a2), c[5] = Tr(T a1T a4) Tr(T a2T a3), (2.1)
c[3] = Tr(T a1T a4T a2T a3) + Tr(T a1T a3T a2T a4), c[6] = Tr(T a1T a2) Tr(T a3T a4).

All other possible trace terms vanish in SU(N) since Tr(T a) = 0. The `-loop color-
ordered amplitudes can be further decomposed [2] in powers of N as

A(`) =
3∑

λ=1

b
`
2 c∑

k=0
N `−2kA

(`,2k)
λ

 c[λ] +
6∑

λ=4

b
`−1

2 c∑
k=0

N `−2k−1A
(`,2k+1)
λ

 c[λ] (2.2)

where A
(`,0)
λ are leading-order-in-N (planar) amplitudes, and A

(`,k)
λ , k = 1, · · · , `, are

subleading-order, yielding (3`+3) color-ordered amplitudes at ` loops. The 1/N expansion
2Our conventions are Tr(T aT b) = δab so that [T a, T b] = i

√
2fabcT c and fabc = (−i/

√
2) Tr([T a, T b]T c).
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in eq. (2.2) suggests an enlargement of the trace basis to an extended (3`+ 3)-dimensional
trace basis t(`)λ , defined by

t
(`)
1+6k = N `−2k c[1] , t

(`)
4+6k = N `−2k−1 c[4] ,

t
(`)
2+6k = N `−2k c[2] , t

(`)
5+6k = N `−2k−1 c[5] , (2.3)

t
(`)
3+6k = N `−2k c[3] , t

(`)
6+6k = N `−2k−1 c[6] ,

in terms of which eq. (2.2) becomes

A(`) =
3`+3∑
λ=1

A
(`)
λ t

(`)
λ , where A

(`)
λ+6k =

A
(`,2k)
λ , λ = 1, 2, 3 ,

A
(`,2k+1)
λ , λ = 4, 5, 6 .

(2.4)

The (3` + 3) components A(`)
λ are not independent but are related by various group-

theory constraints. These constraints can be conveniently expressed [80] in terms of a set
of null vectors in the space spanned by t

(`)
λ . Each `-loop null vector r(`)

λ gives rise to a
linear constraint on the components A(`)

λ , namely

0 =
3`+3∑
λ=1

r
(`)
λ A

(`)
λ . (2.5)

At tree level, the single null vector

r(0) = (1, 1, 1) (2.6)

corresponds to the constraint [1, 77]

0 = A
(0)
1 +A

(0)
2 +A

(0)
3 . (2.7)

At one loop, there are three null vectors

r(1) =


(6, 6, 6, −1, −1, −1),
(0, 0, 0, 1, −2, 1),
(0, 0, 0, 1, 0, −1).

(2.8)

The corresponding constraints imply that the three one-loop subleading-color ampli-
tudes are equal and proportional to the sum of leading-color amplitudes [78]

A
(1)
4 = A

(1)
5 = A

(1)
6 = 2(A(1)

1 +A
(1)
2 +A

(1)
3 ) . (2.9)

There are exactly four null vectors for every loop level two and above [80]. The four
null vectors at two loops are

r(2) =


(6, 6, 6, −1, −1, −1, 0, 0, 0),
(0, 0, 0, 1, −2, 1, 1, −2, 1),
(0, 0, 0, 1, 0, −1, 1, 0, −1),
(0, 0, 0, 0, 0, 0, 1, 1, 1),

(2.10)
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which give rise to four two-loop group-theory relations [79]. Consequently, the two-loop
amplitude may be written in terms of five independent components A(2)

1 , A
(2)
2 , A

(2)
3 , A

(2)
7 ,

A
(2)
9 , with the four remaining color-ordered amplitudes given by

A
(2)
4 = 2

(
A

(2)
1 +A

(2)
2 +A

(2)
3

)
−A(2)

7 ,

A
(2)
5 = 2

(
A

(2)
1 +A

(2)
2 +A

(2)
3

)
+A

(2)
7 +A

(2)
9 ,

A
(2)
6 = 2

(
A

(2)
1 +A

(2)
2 +A

(2)
3

)
−A(2)

9 ,

A
(2)
8 = −A(2)

7 −A
(2)
9 . (2.11)

The four null vectors at three loops are

r(3) =


(6, 6, 6, −1, −1, −1, 2, 2, 2, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 6, 6, 6, −1, −1, −1),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, −2, 1),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, −1).

(2.12)

As a result, the three-loop amplitude can be written in terms of eight independent com-
ponents A(3)

1 , A
(3)
2 , A

(3)
3 , A

(3)
4 , A

(3)
6 , A

(3)
7 , A

(3)
8 , A(3)

9 , with the four remaining color-ordered
amplitudes given by

A
(3)
5 = 6

(
A

(3)
1 +A

(3)
2 +A

(3)
3

)
−A(3)

4 −A
(3)
6 + 2

(
A

(3)
7 +A

(3)
8 +A

(3)
9

)
,

A
(3)
10 = 2

(
A

(3)
7 +A

(3)
8 +A

(3)
9

)
,

A
(3)
11 = 2

(
A

(3)
7 +A

(3)
8 +A

(3)
9

)
,

A
(3)
12 = 2

(
A

(3)
7 +A

(3)
8 +A

(3)
9

)
. (2.13)

For all even loop levels beyond two (` = 2m + 2), the four null vectors are given by
prepending 6m zeros to each of the two-loop null vectors (2.10), which give rise to the
constraints

A
(`)
3`−2 = 2

(
A

(`)
3`−5 +A

(`)
3`−4 +A

(`)
3`−3

)
−A(`)

3`+1 ,

A
(`)
3`−1 = 2

(
A

(`)
3`−5 +A

(`)
3`−4 +A

(`)
3`−3

)
+A

(`)
3`+1 +A

(`)
3`+3 ,

A
(`)
3` = 2

(
A

(`)
3`−5 +A

(`)
3`−4 +A

(`)
3`−3

)
−A(`)

3`+3 , for even ` ≥ 2

A
(`)
3`+2 = −A(`)

3`+1 −A
(`)
3`+3 . (2.14)

For all odd loop levels beyond three (` = 2m + 3), the four null vectors are given
by prepending 6m zeros to each of the three-loop null vectors (2.12) giving rise to the
constraints

A
(`)
3`−4 = 6

(
A

(`)
3`−8+A(`)

3`−7+A(`)
3`−6

)
−A(`)

3`−5−A
(`)
3`−3+2

(
A

(`)
3`−2+A(`)

3`−1+A(`)
3`

)
,

A
(`)
3`+1 = 2

(
A

(`)
3`−2+A(`)

3`−1+A(`)
3`

)
,

A
(`)
3`+2 = 2

(
A

(`)
3`−2+A(`)

3`−1+A(`)
3`

)
, for odd `≥ 3

A
(`)
3`+3 = 2

(
A

(`)
3`−2+A(`)

3`−1+A(`)
3`

)
. (2.15)
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Using eq. (2.4), these constraints can be rewritten in terms of the color-ordered amplitudes
A

(`,k)
λ , in which case it becomes evident that they involve only the two or three most-

subleading-color amplitudes (i.e., subleading in the 1/N expansion).

3 Regge limit of the N = 4 four-point amplitude

In this section, we briefly review the Regge limit of the N = 4 four-point amplitude at tree
and one-loop level to establish conventions and prepare for the generalization to higher
loops in subsequent sections.

The tree-level four-gluon amplitude is

A(0) =
3∑

λ=1
A

(0)
λ t

(0)
λ (3.1)

with color-ordered amplitudes3

A
(0)
1 = −g2µ2ε 4K

st
, A

(0)
2 = −g2µ2ε 4K

su
, A

(0)
3 = −g2µ2ε 4K

tu
. (3.2)

The polarization-dependent factor K is defined in eq. (7.4.42) of ref. [83] and the
Mandelstam variables are

s = (k1 + k2)2, t = (k1 + k4)2, u = (k1 + k3)2 . (3.3)

The components in eq. (3.2) manifestly obey eq. (2.7) by virtue of massless momentum
conservation s+ t+ u = 0.

In the Regge limit s � −t (so that u ≈ −s), one has A(0)
2 � A

(0)
1 and A(0)

3 ≈ −A(0)
1

so that
A(0) −→

s�−t
A

(0)
1 C00 (3.4)

where we define
C00 ≡ t(0)

1 − t
(0)
3 . (3.5)

It is straightforward (using the conventions of footnote 2) to show that C00 corresponds to
the tree-level t-channel color factor

C00 = f̃a4a1ef̃a2a3e (3.6)

where f̃abc ≡ i
√

2fabc.
We digress slightly to discuss the behavior of the tree-level amplitude under crossing

symmetry which exchanges external legs 2 and 3. From their definitions, we can see that
the trace basis color factors (2.3) obey

t
(`)
1+3j ↔ t

(`)
3+3j , t

(`)
2+3j → t

(`)
2+3j (3.7)

3Anticipating the need to dimensionally regularize loop amplitudes, we take the spacetime dimension
as D = 4 − 2ε. Choosing g to be a dimensionless parameter, the coupling constant in D dimensions is
gD = gµε, where µ is a renormalization scale.
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under a2 ↔ a3 and thus the color factor (3.5) is odd: C00 → −C00. In the Regge limit,
u ≈ −s, so the Mandelstam variables transform under k2 ↔ k3 as

s→ −s, t→ t (3.8)

while the factor K is invariant under all permutations of external legs. Thus the tree-level
color-ordered amplitude A(0)

1 is also odd: A(0)
1 → −A(0)

1 . The full tree-level amplitude (3.4),
being the product of two odd objects, is thus invariant, as expected from Bose symmetry.

Next, we turn to the one-loop N = 4 SYM four-gluon amplitude [3]

A(1) = −ig4µ2ε(4K)
[
I(1)(s, t) c(1)

1234 + I(1)(u, s) c(1)
1243 + I(1)(t, u) c(1)

1324

]
(3.9)

where [84]

I(1)(s, t) = µ2ε
∫

d4−2εp

(2π)4−2ε
1

p2(p− k1)2(p− k1 − k2)2(p+ k4)2

= i

8π2
(4πe−γ)εr(ε)

stε2

[(
µ2

−s

)ε
F

(
ε, 1 + s

t

)
+
(
µ2

−t

)ε
F

(
ε, 1 + t

s

)]
(3.10)

with

F (ε, z) ≡ 2F1(1,−ε, 1− ε, z) ,

r(ε) ≡ eγεΓ(1 + ε)Γ2(1− ε)
Γ(1− 2ε) = 1− 1

2ζ2ε
2 − 7

3ζ3ε
3 − 47

16ζ4ε
4 + · · · . (3.11)

The one-loop color factors c(1)
1234 ≡ f̃ ea1bf̃ ba2cf̃ ca3df̃da4e, etc. can be written in the trace

basis as

c
(1)
1234 = t

(1)
1 + 2

(
t
(1)
4 + t

(1)
5 + t

(1)
6

)
,

c
(1)
1243 = t

(1)
2 + 2

(
t
(1)
4 + t

(1)
5 + t

(1)
6

)
,

c
(1)
1324 = t

(1)
3 + 2

(
t
(1)
4 + t

(1)
5 + t

(1)
6

)
. (3.12)

Inserting these into eq. (3.9), we obtain one-loop color-ordered amplitudes

A
(1)
1 = A

(0)
1 ã

1
ε2

[
−
(
eiπx

)ε
F

(
ε, 1− 1

x

)
− F (ε, 1− x)

]
,

A
(1)
2 = A

(0)
1 ã

1
ε2

(
x

1− x

)[
−
(
eiπx

)ε
F

(
ε,
−x

1− x

)
−
(

x

1− x

)ε
F (ε, x)

]
,

A
(1)
3 = A

(0)
1 ã

1
ε2

( 1
1− x

)[
F

(
ε,

1
1− x

)
+
(

x

1− x

)ε
F

(
ε,

1
x

)]
,

A
(1)
4 = A

(1)
5 = A

(1)
6 = 2

(
A

(1)
1 +A

(1)
2 +A

(1)
3

)
, (3.13)

where we define the dimensionless parameters

ã ≡ g2

8π2
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)

(
4πµ2

−t

)ε
,

x ≡ −t
s
. (3.14)
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We analytically continue to positive s using −s = e−iπs, so that (−t)/(−s) = eiπx.
To take the Regge limit, one expands the hypergeometric functions in x, keeping only

the O(x0) term

A
(1)
1 = A

(0)
1 ã

[
− 2
ε2
− log x+ iπ

ε
+ f1(ε)

]
+O(x) ,

A
(1)
2 = O(x) ,

A
(1)
3 = A

(0)
1 ã

[ 2
ε2

+ log x
ε
− f1(ε)

]
+O(x) ,

A
(1)
4 = A

(1)
5 = A

(1)
6 = A

(0)
1 ã

[−2πi
ε

]
+O(x) (3.15)

where

f1(ε) ≡ 2
ε2
− ψ(−ε)− π cot(πε)− γ

=
∞∑
m=0

[2 + (−1)m]ζm+2ε
m . (3.16)

Two- and higher-loop amplitudes for N = 4 four-gluon amplitudes are known in terms
of linear combinations of planar and nonplanar integrals [2–8]. The two-loop planar in-
tegrals were evaluated in Laurent expansions through O(ε2), and the three-loop planar
integrals through O(ε0), in ref. [14]. More recently, the Laurent expansions of the corre-
sponding nonplanar integrals have been evaluated to the same accuracy [19–22]. Using
these, the color-ordered four-point amplitudes through three loops have been evaluated in
ref. [25] with results given in ancillary files. We have used these results to derive the Regge
limits of these amplitudes. As at tree level and one loop, the color-ordered amplitude A(`)

2
is suppressed relative to the other color-ordered amplitudes, and this holds to all orders.4

Once we have developed a suitable basis of higher-loop color factors in section 4, and dis-
cussed the infrared divergent structure of the higher-loop amplitudes in section 5, we will
be able to present our results in a compact way.

4 Regge basis of color factors

As noted in section 2, the `-loop color-ordered amplitudes A(`)
λ , coefficients in the extended

trace basis t(`)λ with λ = 1, · · · , 3`+3, are not independent due to group-theory constraints.
Moreover, A(`)

2 is suppressed in the Regge limit relative to the other color-ordered ampli-
tudes, so taking into account the group-theory constraints, there remain in the Regge limit
one independent amplitude at tree level, two independent amplitudes at one loop, and
3`− 2 independent amplitudes for ` ≥ 2.

In this section, we develop an alternative basis Cik of color factors that will be useful for
characterizing independent amplitudes in the Regge limit. In particular, the color factors
Cik are chosen to have definite signature under the exchange of external legs 2 and 3. We

4This is because A(`)
2 is leading in the large-N (planar) limit, and the BDS ansatz [14] expresses the

all-orders planar amplitude in terms of the tree-level and one-loop amplitude.
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then express the coefficients B(`)
ik of the `-loop amplitude in this basis as linear combinations

of the color-ordered amplitudes A(`)
λ .

First, let’s count the number of independent even and odd signature amplitudes. As
noted in section 3, the exchange of legs 2 and 3 acts on the 3`+ 3 elements of the extended
trace basis (2.3) according to eq. (3.7), so one can form linear combinations with 2` + 2
even elements t(`)1+3j + t

(`)
3+3j and t

(`)
2+3j , and ` + 1 odd elements t(`)1+3j − t

(`)
3+3j . The null

vectors that correspond to group-theory constraints can also be chosen to have definite
signature. The tree-level null vector (2.6) is even, there are two even and one odd one-loop
null vectors (2.8), and for two loops and above, there are three even and one odd null
vectors, cf. eqs. (2.10) and (2.12). In the Regge limit, the coefficient of t(`)2 is suppressed,
eliminating one more even element. The upshot is that there remain in the Regge limit one
odd independent amplitude at tree level, one odd and one even independent amplitude at
one loop, and ` odd and 2`− 2 even independent amplitudes for ` ≥ 2. Our choice of basis
must reflect this.

The Regge basis of color factors Cik will be built from operators acting on the odd
tree-level color factor C00 given by eq. (3.5). In the color-space formalism introduced in
refs. [15, 85, 86], the color operator Ti acts on a color factor by inserting a generator in
the adjoint representation of SU(N) on the ith external leg, specifically (Ta

i )bc = 1√
2 f̃

bac,
while acting as the identity on all the other external legs. Color conservation implies that

4∑
i=1

Ti = 0 (4.1)

when acting on a four-point amplitude [15].
Applying the operator Ti · Tj ≡

∑
a Ta

iTa
j to a given color factor acts to attach a

rung between external legs i and j. For example, the operators T1 · T2 and T1 · T3
convert the tree-level t-channel color factor C00 to a one-loop box and crossed box color
factor, respectively, but C00 is an eigenstate of T1 ·T4, since f̃daef̃ ebg f̃gcd = Nf̃abc. More
precisely,

T1 ·T2C00 = −1
2c

(1)
1234 , T1 ·T3C00 = 1

2c
(1)
1342 , T1 ·T4C00 = −1

2NC00 . (4.2)

Also
(T2

i )bc = 1
2 f̃

badf̃dac = Nδbc (4.3)

for any i, so that eq. (4.1) implies

T3 ·T4 = T1 ·T2, T2 ·T4 = T1 ·T3, T2 ·T3 = T1 ·T4 . (4.4)

Next, following refs. [45, 46, 87], we define color operators associated with color flow
in each channel

Ts = T1 + T2, Tu = T1 + T3, Tt = T1 + T4 (4.5)

with color conservation (4.1) implying T2
s + T2

t + T2
u = 4N . Finally we define [50]

T2
s−u ≡

1
2
(
T2
s −T2

u

)
. (4.6)
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A key observation is that the operators

T2
t = 2N + 2T1 ·T4 = −2(T1 ·T2 + T1 ·T3),

T2
s−u = T1 ·T2 −T1 ·T3 (4.7)

are even and odd, respectively, under the exchange of external legs 2 and 3 (which implies
s↔ u and t→ t).

4.1 One-loop basis

At one loop, we have one independent odd amplitude and one independent even amplitude.
Recalling that both C00 and T2

s−u are odd under 2↔ 3, and defining

C11 ≡ T2
s−uC00 (4.8)

we form a one-loop basis of color factors {NC00, C11} whose elements have signature {−,+}.
Their components in the one-loop trace basis t(1)

λ

NC00 = (1, 0, −1, 0, 0, 0),

C11 = (−1
2 , 0, −1

2 , −2, −2, −2),
(4.9)

can be obtained by using eqs. (3.12) and (4.2). Expressing the amplitude in this one-loop
basis

A(1) = A
(0)
1 ã

[
B

(1)
00 NC00 +B

(1)
11 C11

]
(4.10)

we obtain

A
(0)
1 ã B

(1)
00 = 1

2
(
A

(1)
1 −A

(1)
3

)
,

A
(0)
1 ã B

(1)
11 = −

(
A

(1)
1 +A

(1)
3

)
. (4.11)

The coefficients B(1)
00 and B

(1)
11 inherit the same signature under crossing symmetry

(which takes A(1)
1 ↔ A

(1)
3 ) as their associated color factors, leaving the whole amplitude

Bose symmetric.
Using eq. (3.15) in eq. (4.11), we obtain

B
(1)
00 = − 2

ε2
+ L

ε
+ f1(ε) ,

B
(1)
11 = iπ

ε
(4.12)

where we define [50]
L ≡ − log x− 1

2 iπ . (4.13)

Note that L is the Regge limit of the even-signature combination of logarithms

−1
2

[
log

(−t
−s

)
+ log

(−t
−u

)]
= −1

2

[
log

(
eiπx

)
+ log

(
x

1− x

)]
−→
x→0

L .

As noted in ref. [50], when expressed in terms of the natural variable L, the coefficients of
odd-signature color factors are real, whereas the coefficients of even-signature color factors
are imaginary. We will see this at higher loops as well.
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4.2 Two-loop basis

At two loops, we have two independent odd amplitudes and two independent even ampli-
tudes. Thus, to the previous two color factors, we add two more

C21 = [T2
t ,T2

s−u]C00 ,

C22 = (T2
s−u)2C00 , (4.14)

to form a two-loop basis of color factors {N2C00, NC11, C21, C22} whose elements have
signature {−,+,+,−}. In order to obtain explicit expressions for these color factors, it is
convenient to express the operators T2

t and T2
s−u as matrices5

T2
t =



N 0 0 0 0 −1
0 2N 0 1 0 1
0 0 N −1 0 0
0 2 0 2N 0 0
−2 0 −2 0 0 0

0 2 0 0 0 2N


, T2

s−u =



−N
2 0 0 0 −1 −1

2

0 0 0 −1
2 0 1

2

0 0 N
2

1
2 1 0

0 1 2 N 0 0
−1 0 1 0 0 0
−2 −1 0 0 0 −N


(4.15)

in the original six-dimensional trace basis (2.1). Using these, we can obtain the components
of the elements of the two-loop basis in the extended trace basis t(2)

λ

N2C00 = (1, 0, −1, 0, 0, 0, 0, 0, 0),

NC11 = (−1
2 , 0, −1

2 , −2, −2, −2, 0, 0, 0),

C21 = (0, 0, 0, −2, 4, −2, 2, −4, 2),

C22 = (1
4 0, −1

4 , −3, 0, 3, 3, 0, −3).

(4.16)

Expressing the amplitude in this two-loop basis

A(2) = A
(0)
1 ã2

[
B

(2)
00 N

2C00 +B
(2)
11 NC11 +B

(2)
21 C21 +B

(2)
22 C22

]
(4.17)

we obtain6

A
(0)
1 ã2 B

(2)
00 = 1

2
(
A

(2)
1 −A

(2)
3

)
− 1

24
(
A

(2)
7 −A

(2)
9

)
,

A
(0)
1 ã2 B

(2)
11 = −

(
A

(2)
1 +A

(2)
3

)
,

A
(0)
1 ã2 B

(2)
21 = 1

4
(
A

(2)
7 +A

(2)
9

)
,

A
(0)
1 ã2 B

(2)
22 = 1

6
(
A

(2)
7 −A

(2)
9

)
. (4.18)

5The matrices given here, which also appear in appendix C of ref. [50], are the transpose of those in
ref. [80]. This is because here we take these matrices to act to the right on the color factors, whereas in
ref. [80] the matrices acted to the left.

6It is easiest to obtain these results (and similarly at higher loops) by expressing t
(2)
λ in terms of an

enlarged basis consisting of {N2C00, NC11, C21, C22} together with t(2)
2 and the two-loop null vectors (2.10).

The coefficients of t(2)
2 and the null vectors will automatically vanish by virtue of A(2)

2 = 0 and the group
theory constraints (2.11).
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As we saw previously, the coefficients B(2)
ik inherit the same signature under crossing sym-

metry (which takes A(2)
1 ↔ A

(2)
3 , and A(2)

7 ↔ A
(2)
9 ) as their associated color factors, leaving

the whole amplitude Bose symmetric. We will use eq. (4.18) in section 5 to compute the
Laurent expansions of B(2)

ik through O(ε2).

4.3 Three-loop basis

At three loops, we have three independent odd amplitudes and four independent even
amplitudes. To the previous four color factors, we add three more

C31 = [T2
t , [T2

t ,T2
s−u]]C00 ,

C32 = [T2
s−u, [T2

t ,T2
s−u]]C00 ,

C33 = (Ts−u)3C00 , (4.19)

to form a three-loop basis of color factors {N3C00, N
2C11, NC21, NC22, C31, C32, C33} whose

elements have signature {−,+,+,−,+,−,+}. The elements of the three-loop basis have
components in the extended trace basis t(3)

λ given by

N3C00 = (1, 0, −1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

N2C11 = (−1
2 , 0, −1

2 , −2, −2, −2, 0, 0, 0, 0, 0, 0),

NC21 = (0, 0, 0, −2, 4, −2, 2, −4, 2, 0, 0, 0),

NC22 = (1
4 , 0, −1

4 , −3, 0, 3, 3, 0, −3, 0, 0, 0),

C31 = (0, 0, 0, −2, −4, −2, 2, −8, 2, −8, −8, −8),

C32 = (0, 0, 0, −1, 0, 1, −5, 0, 5, 0, 0, 0),

C33 = (−1
8 0, −1

8 , −
7
2 , −

1
2 , −

7
2 , −3, 3, −3, −6, −6, −6).

(4.20)

Expressing the amplitude in this three-loop basis

A(3) =A
(0)
1 ã3

[
B

(3)
00 N

3C00+B(3)
11 N

2C11+B(3)
21 NC21+B(3)

22 NC22+B(3)
31 C31+B(3)

32 C32+B(3)
33 C33

]
(4.21)

we may derive

A
(0)
1 ã3 B

(3)
00 = 1

2
(
A

(3)
1 −A

(3)
3

)
+ 5

144
(
A

(3)
4 −A

(3)
6

)
− 1

144
(
A

(3)
7 −A

(3)
9

)
,

A
(0)
1 ã3 B

(3)
11 = −13

12
(
A

(3)
1 +A

(3)
3

)
+ 1

48
(
A

(3)
4 +A

(3)
6

)
+ 1

48
(
A

(3)
7 +A

(3)
9

)
,

A
(0)
1 ã3 B

(3)
21 = 3

4
(
A

(3)
1 +A

(3)
3

)
− 3

16
(
A

(3)
4 +A

(3)
6

)
+ 5

16
(
A

(3)
7 +A

(3)
9

)
+ 1

4A
(3)
8 ,

A
(0)
1 ã3 B

(3)
22 = − 5

36
(
A

(3)
4 −A

(3)
6

)
+ 1

36
(
A

(3)
7 −A

(3)
9

)
,

A
(0)
1 ã3 B

(3)
31 = −1

4
(
A

(3)
1 +A

(3)
3

)
+ 1

16
(
A

(3)
4 +A

(3)
6

)
− 3

16
(
A

(3)
7 +A

(3)
9

)
− 1

4A
(3)
8 ,

A
(0)
1 ã3 B

(3)
32 = − 1

12
(
A

(3)
4 −A

(3)
6

)
− 1

12
(
A

(3)
7 −A

(3)
9

)
,

A
(0)
1 ã3 B

(3)
33 = 1

3
(
A

(3)
1 +A

(3)
3

)
− 1

12
(
A

(3)
4 +A

(3)
6

)
− 1

12
(
A

(3)
7 +A

(3)
9

)
. (4.22)
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We will use these expressions in section 5 to compute the Laurent expansions of B(3)
ik

through O(ε0).

4.4 Higher-loop basis

For each additional loop, the number of independent odd amplitudes increases by one and
the number of independent even amplitudes increases by two. Thus to obtain the `-loop
basis for independent amplitudes we add to the (` − 1)-loop basis three additional color
factors

C`1 = [T2
t , · · · , [T2

t , [T2
t ,T2

s−u]] · · · ]C00 ,

C`,`−1 = [T2
s−u, · · · , [T2

s−u, [T2
t ,T2

s−u]] · · · ]C00 ,

C`` = (Ts−u)`C00 , (4.23)

where each color factor contains exactly ` operators T2. The operator C`k contains k
factors of T2

s−u and thus has odd signature if k is even, and even signature if k is odd.
Thus C`1 has even signature, and C`,`−1 and C`` have opposite signatures, as required.
This choice of basis is motivated by the Regge limit of the structure of IR divergences as
studied in refs. [46, 48–50].

The `-loop amplitude can then be expressed in this basis as

A(`) = A
(0)
1 ã`

∑̀
i=0

∑
k

B
(`)
ik N

`−iCik (4.24)

where the range of k is

k =



0, when i = 0,
1, when i = 1,
1, 2, when i = 2,
1, i− 1, i, when i ≥ 3.

(4.25)

Using eq. (4.15), the `-loop Regge color factors C`k can be expressed in terms of t(`)λ , and the
coefficients B(`)

ik obtained as linear combinations of the `-loop color-ordered amplitudes A(`)
λ .

The expressions for B(`)
ik grow increasingly complicated at higher loops, but the general

expression for one of them, B(`)
`` , can be easily guessed from explicit results (obtained

through ` = 9). The expressions differ depending on whether ` is even or odd. In the
former case,

A
(0)
1 ã`B

(`)
`` = 1

2 · 3`/2
(
A

(`)
3`+1 −A

(`)
3`+3

)
= 1

2 · 3`/2
(
A

(`,`)
1 −A(`,`)

3

)
, for even ` . (4.26)

In the latter case, we have

A
(0)
1 ã B

(1)
11 = −

(
A

(1)
1 +A

(1)
3

)
= −

(
A

(1,0)
1 +A

(1,0)
3

)
(4.27)
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for ` = 1, and for odd ` > 1, we have

A
(0)
1 ã`B

(`)
`` = 1

3(`−1)/2

[(
A

(`)
3`−8+A(`)

3`−6

)
− 1

4
(
A

(`)
3`−5+A(`)

3`−3+A(`)
3`−2+A(`)

3`

)]
(4.28)

= 1
3(`−1)/2

[(
A

(`,`−3)
1 +A(`,`−3)

3

)
− 1

4
(
A

(`,`−2)
4 +A(`,`−2)

6 +A(`,`−1)
1 +A(`,`−1)

3

)]
,

for odd `> 1

where we have expressed these in terms of color-ordered amplitudes in both the
(3`+ 3)-dimensional extended trace basis (2.2) and also the original six-dimensional trace
basis (2.4).

In refs. [23, 56], we showed that the leading IR divergence of the color-ordered am-
plitude A(`,k) is 1/ε2`−k, with planar amplitudes A(`,0)

λ having the most severe 1/ε2` diver-
gences, and the most-subleading-color amplitudes A(`,`)

λ having at most a 1/ε` divergence.
At the end of section 5, we will show that B(`)

`` also has at most a 1/ε` divergence. For even
`, this is manifest from eq. (4.26), where B(`)

`` is expressed in terms of color-ordered ampli-
tudes that are most-subleading in the 1/N expansion. For odd `, however, eq. (4.28) shows
that this is not the case, so the 1/ε` behavior of B(`)

`` requires some intricate cancellations
of the more severe IR divergences appearing in A(`,`−3)

λ , A(`,`−2)
λ , and A(`,`−1)

λ .

5 IR-divergence structure of the N = 4 SYM amplitude

In this section we first briefly review the known structure of infrared divergences of the
N = 4 SYM four-point amplitude through three loops [14–16, 26–35, 45–50], focusing in
particular on the Regge limit. We then take the Regge limit of known results for the four-
point amplitude at one, two, and three loops [25] to confirm the expected IR divergences
and to extract the IR-finite part of the amplitude in this limit, writing the result in terms of
the Regge basis of color factors introduced in section 4. Finally we compare these to results
obtained via an effective Hamiltonian approach based on Balitsky-Fadin-Kuraev-Lipatov
theory in refs. [49, 50].

The amplitude may be factored into jet, soft, and hard functions [16, 26, 27]

A
(
sij
µ2

)
= J

(
Q2

µ2

)
S
(
sij
Q2 ,

Q2

µ2

)
H
(
sij
Q2 ,

Q2

µ2

)
(5.1)

where the factors J and S characterize the long-distance IR-divergent behavior, and H,
which is IR-finite, characterizes the short-distance behavior. Here sij = (ki + kj)2, µ is the
renormalization scale, and Q is an arbitrary factorization scale that serves to separate the
long- and short-distance behavior. Since we are interested in the Regge limit s � −t, we
choose the factorization scale as Q2 = −t in this paper.

Because N = 4 SYM theory is conformally invariant, the jet function may be explicitly
evaluated as [14]

J

(−t
µ2

)
= exp

[
−
∞∑
`=1

ã`N `

(
γ(`)

2(`ε)2 + G
(`)
0
`ε

)]
(5.2)
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where γ(`) and G(`)
0 are the coefficients of the cusp and collinear anomalous dimensions

γ(`) = {4,−4ζ2, 22ζ4, · · · } , G(`)
0 =

{
0,−ζ3, 4ζ5 + 10

3 ζ2ζ3, · · ·
}
. (5.3)

The soft function S depends on the coefficients Γ(`) of the anomalous dimension ma-
trix [16]. The one-loop anomalous dimension matrix is [26, 27]

Γ(1) = 1
N

4∑
i=1

4∑
j 6=i

Ti ·Tj log
(
Q2

−sij

)

= 4
N

[
log

( −t
e−iπs

)
T1 ·T2 + log

(−t
−u

)
T1 ·T3

]
(5.4)

which simplifies in the Regge limit to

Γ(1) = 4
N

[
log

(
eiπx

)
T1 ·T2 + log(x) T1 ·T3

]
= 2
N

[
LT2

t + iπT2
s−u

]
(5.5)

where in the last line we used eqs. (4.7) and (4.13). On the assumption that the matrices
Γ(`) commute with one another, one may explicitly evaluate S for N = 4 SYM theory
as7 [56]

S = exp
[ ∞∑
`=1

ã`N `Γ(`)

2`ε

]
. (5.6)

Commutativity is guaranteed if we assume the anomalous dimension matrix is given
by the dipole formula [29–34]

Γ(`)
dipole = 1

4γ
(`)Γ(1) (5.7)

which is valid through two loops [26, 27], but receives corrections at three [35] and four [49]
loops. If the dipole formula were valid for all loops, then using eqs. (5.5) and (5.7) in
eq. (5.6), one finds that the Regge limit of the soft function can be written in the compact
form [45, 46]

Sdipole = exp
[
K
(
LT2

t + iπT2
s−u

)]
(5.8)

where

K ≡
∞∑
`=1

N `−1γ(`)

4`ε ã` = ã

ε

(
1− 1

2ζ2Nã+ 11
6 ζ4N

2ã2 + · · ·
)
. (5.9)

The three-loop correction to the dipole formula [35] persists in the Regge limit, and
has the effect of modifying eq. (5.8) to [50]

S = exp
[
K
(
LT2

t + iπT2
s−u

)
+Q

(3)
∆

]
+O(ã4) (5.10)

7The expressions for eqs. (5.2) and (5.6) differ slightly from those in ref. [56] in that we are using ã
rather than a = (g2N/8π2)

(
4πe−γ)ε as our loop expansion parameter. This only affects the form of the

infrared-finite hard function H.
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where

Q
(3)
∆ = 4

3ε ã
3∆(3)

∆(3) = 1
4 iπ (ζ3L+11ζ4) [T2

t , [T2
t ,T2

s−u]]+ 1
4 (ζ5−4ζ2ζ3) [T2

s−u, [T2
t ,T2

s−u]]− 1
4 (ζ5+2ζ2ζ3)W

W = 1
2

{
fabef cde

[
{Ta

t ,Td
t }
(
{Tb

s−u,Tc
s−u}+{Tb

s+u,Tc
s+u}

)
+ {Ta

s−u,Td
s−u}{Tb

s+u,Tc
s+u}

]
− 5

8N
2T2

t

}
. (5.11)

Since the operators in the exponent of eq. (5.10) do not commute with one another, it
is useful [46] to employ a variant of Campbell-Baker-Haussdorf known as the Zassenhaus
formula

eK(X+Y ) = eKX eKY e−(1/2)K2[X,Y ] e(1/6)K3([X,[X,Y ]]+2[Y,[X,Y ]]) +O(K4) (5.12)

to write

S = exp
[
KLT2

t

]
exp

[
iπKT2

s−u

]
exp

[
− iπ2 LK

2[T2
t ,T2

s−u]
]

(5.13)

× exp
[
iπ

6 K
3L2[T2

t , [T2
t ,T2

s−u]]− π2

3 K
3L[T2

s−u, [T2
t ,T2

s−u]] + 4
3ε ã

3∆(3)
]

+O(ã4)

Putting all the pieces together, we write the Regge limit of the amplitude through
O(ã3) as

A= exp
[
−
∞∑
`=1

ã`N `

(
γ(`)

2(`ε)2 +G
(`)
0
`ε

)]
exp

[
KLT2

t

]
exp

[
iπKT2

s−u

]
exp

[
− iπ2 LK

2[T2
t ,T2

s−u]
]

×exp
[
iπ

6 K
3L2[T2

t , [T2
t ,T2

s−u]]−π
2

3 K
3L[T2

s−u, [T2
t ,T2

s−u]]+ 4
3ε ã

3∆(3)
]
H+O(ã4)

(5.14)

This equation exhibits all of the IR-divergent contributions to the amplitude through three
loops, with the IR-finite part encoded in the hard function H. To obtain H, we need to
compare eq. (5.14) with known expressions for the amplitude at one, two, and three loops.
This we now proceed to do.

5.1 Reduced amplitude

Expanding eq. (5.14) in powers of the loop expansion parameter ã, it is apparent that the
first exponential term in eq. (5.14) is responsible for the most IR-divergent terms in the
Laurent expansion at ` loops, starting with an O(1/ε2`) term. It is also apparent that the
second exponential term in eq. (5.14) is responsible for the leading log behavior, causing A(`)

to go as log` |s/t| at ` loops, and leading to Reggeization [45, 46]. The amplitude, however,
also has an intricate structure of subleading logarithms, to which the remaining terms in
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eq. (5.14) contribute. To isolate this subleading logarithmic behavior, it is useful [49, 50]
to define a reduced amplitude by factoring off the first two exponential terms:

Â ≡ J−1 exp
[
−KLT2

t

]
A . (5.15)

The removal of J implies that the leading Laurent coefficient of Â at ` loops will be
1/ε` rather than 1/ε2`. The removal of eKLT2

t implies that the leading logarithmic behavior
of Â at ` loops will be log`−1 |s/t|.

Note that the reduced amplitude (5.15) is almost, but not quite the same as, the
reduced amplitude defined in refs. [49, 50], which multiplies A by a factor J−1 exp[−αgLT2

t ]
rather than J−1 exp[−KLT2

t ], where αg is the Regge trajectory. The difference α̂g = αg−K
vanishes at one-loop order (because we are expanding in ã rather than a) and is IR-finite
at two loops [50].

Using eq. (5.14) we may write the reduced amplitude (5.15) as

Â = exp
[
iπKT2

s−u

]
exp

[
−1

2 iπLK
2[T2

t ,T2
s−u]

]
(5.16)

× exp
[
iπ

6 K
3L2[T2

t , [T2
t ,T2

s−u]]− π2

3 K
3L[T2

s−u, [T2
t ,T2

s−u]] + 4
3ε ã

3∆(3)
]
H+O(ã4) .

We then expand this in powers of ã, using eq. (5.9), to obtain

Â=A(0)+
[
ã

(
iπ

ε
T2
s−u

)
A(0)+H(1)

]

+
[
ã2
(
− iπζ2

2ε NT2
s−u−

π2

2ε2 (T2
s−u)2− iπ

2ε2L[T2
t ,T2

s−u]
)
A(0)+ã

(
iπ

ε
T2
s−u

)
H(1)+H(2)

]

+
[
ã3
(11iπζ4

6ε N2T2
s−u+π2ζ2

2ε2 N(T2
s−u)2− iπ

3

6ε3 (T2
s−u)3+ iπζ2

2ε2 LN [T2
t ,T2

s−u]

+ iπ

6ε3L
2[T2

t , [T2
t ,T2

s−u]]− π2

3ε3L[T2
s−u, [T2

t ,T2
s−u]]+ π2

2ε3LT2
s−u[T2

t ,T2
s−u]+ 4

3ε∆(3)
)
A(0)

+ã2
(
− iπζ2

2ε NT2
s−u−

π2

2ε2 (T2
s−u)2− iπ

2ε2L[T2
t ,T2

s−u]
)
H(1)+ã

(
iπ

ε
T2
s−u

)
H(2)+H(3)

]
+O(ã4) (5.17)

where we denote the loop expansion of the hard function as

H = A(0) +H(1) +H(2) +H(3) + · · · (5.18)

We now consider the amplitude at each order in ã.

5.2 One loop

The O(ã) term of eq. (5.17) is

Â(1) = ã

(
iπ

ε
T2
s−u

)
A(0) +H(1) . (5.19)
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Recalling that A(0) = A
(0)
1 C00 and C11 = T2

s−uC00, this can be expressed in the Regge
color factor basis as

Â(1) = A
(0)
1 ã

[
h

(1)
00 NC00 +

(
iπ

ε
+ h

(1)
11

)
C11

]
(5.20)

where we define

H(1) = A
(0)
1 ã

[
h

(1)
00 NC00 + h

(1)
11 C11

]
. (5.21)

Using the exact (all orders in ε) one-loop amplitude from eqs. (4.10) and (4.12), one
obtains the exact one-loop reduced amplitude

Â(1) = A
(0)
1 ã

[
f1(ε)NC00 + iπ

ε
C11

]
. (5.22)

Comparing eqs. (5.20) and (5.22), we obtain the one-loop IR-finite contributions to all
orders in ε:

h
(1)
00 = f1(ε) = 1

2π
2 + ζ3ε+ 1

30π
4ε2 + ζ5ε

3 + 1
315π

6ε4 + · · · ,

h
(1)
11 = 0. (5.23)

5.3 Two loops

Next, we consider the O(ã2) term in eq. (5.17)

Â(2) = ã2

iπ
− 1

12π
2+h(1)

00
ε

NT2
s−u+iπ

(
− L

2ε2
)

[T2
t ,T2

s−u]+
(
− π

2

2ε2

)
(T2

s−u)2

A(0)+H(2) .

(5.24)

All of the terms in this equation can be expressed in terms of the Regge color factor
basis

Â(2) = A
(0)
1 ã2

[
B̂

(2)
00 N

2C00 + B̂
(2)
11 NC11 + B̂

(2)
21 C21 + B̂

(2)
22 C22

]
,

H(2) = A
(0)
1 ã2

[
h

(2)
00 N

2C00 + h
(2)
11 NC11 + h

(2)
21 C21 + h

(2)
22 C22

]
(5.25)

where, using eq. (5.23), we have

B̂
(2)
00 = h

(2)
00 ,

B̂
(2)
11 = iπ

( 5
12π

2

ε
+ ζ3 + 1

30π
4ε+ ζ5ε

2 + · · ·
)

+ h
(2)
11 ,

B̂
(2)
21 = iπ

(
− L

2ε2
)

+ h
(2)
21 ,

B̂
(2)
22 = − π

2

2ε2 + h
(2)
22 . (5.26)

To determine the two-loop IR-finite contributions h(2)
ik , we use the ancillary files of Henn

and Mistlberger [25] to extract8 the Regge limit of the two-loop color-ordered amplitudes
8In ref. [25], s is taken to be negative. To convert their results to our conventions, we use the map

sHM = u, tHM = t, uHM = s.
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A
(2)
λ through O(ε2), then use eqs. (4.15) and (5.15) to derive the corresponding reduced

amplitudes Â(2)
λ , and finally use eq. (4.18) to determine B̂(2)

ik to O(ε2). In doing so, we
recover precisely the IR-divergent terms of eq. (5.26) together with the following IR-finite
coefficients through O(ε2):

h
(2)
00 =−1

2ζ3L+ 7
360π

4−
( 1

45π
4L+ 39

2 ζ5+ 5
12π

2ζ3

)
ε

+
(41

2 ζ5L+ 3
2π

2ζ3L−
47
2 ζ

2
3−

19
168π

6
)
ε2+O(ε3) ,

h
(2)
11 = iπ

[
−1

2ζ3−
1
45π

4ε+
(41

2 ζ5+ 3
2π

2ζ3

)
ε2
]
+O(ε3) ,

h
(2)
21 = iπ

[
−3ζ3−

(
9ζ3L+ 13

36π
4
)
ε−
( 3

20π
4L+152ζ5+ 28

3 π
2ζ3

)
ε2
]
+O(ε3) ,

h
(2)
22 = 3π2ζ3ε+

1
20π

6ε2+O(ε3) . (5.27)

The coefficients of all the L-dependent terms of h(2)
00 and h(2)

21 are consistent9 with the
NLL prediction (4.32) of ref. [50]. Also, h(2)

22 is consistent with the NNLL prediction (4.33)
of ref. [50], which in fact allows it to be computed to all orders in ε, viz.

h
(2)
22 = π2

2ε2

[
1− Γ2(1− 2ε)Γ(1 + 2ε)

Γ(1− ε)Γ2(1 + ε)Γ(1− 3ε)

]
. (5.28)

5.4 Three loops

Finally we consider the O(ã3) term in eq. (5.17). Most of the terms can be immediately
written in terms of the three-loop Regge color basis, with the exception of T2

s−u[T2
t ,T2

s−u]
and also W which appears in ∆(3). Using eq. (4.15) and eq. (4.20), we may determine that

T2
s−u[T2

t ,T2
s−u]C00 = − 1

12N
3C00 + 1

3N(T2
s−u)2C00 + [T2

s−u[T2
t ,T2

s−u]]C00 . (5.29)

Using the matrix representation of W given in eq. (C.8) of ref. [50], we find the
components of WC00 in the extended three-loop trace basis

WC00 = (0, 0, 0,−1, 0, 1, 13, 0,−13, 0, 0, 0) . (5.30)

Then using eq. (4.20) we can express it in terms of the three-loop Regge color factor
basis

WC00 = −1
4N

3C00 +N(T2
s−u)2C00 − 2[T2

s−u[T2
t ,T2

s−u]]C00 . (5.31)

9Because we are expanding in ã rather than a, the values of the Regge trajectory coefficients α̂(`)
g differ

from eqs. (D.1) and (D.2) of ref. [50]. In particular, α̂(1)
g vanishes in our case, as noted in that reference.
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We thus obtain for the three-loop amplitude

Â(3) = ã3
[(
− π2

24ε3L−
iπ

12εh
(2)
21 + 1

12ε (ζ5+2ζ2ζ3)
)
N3 (5.32)

+
(11iπζ4

6ε − iπζ2
2ε h

(1)
00 + iπ

ε
h

(2)
00

)
N2T2

s−u+
(
iπζ2
2ε2 L−

iπ

2ε2Lh
(1)
00

)
N [T2

t ,T2
s−u]

+
(
π2ζ2
2ε2 −

π2

2ε2h
(1)
00 + iπ

ε
h

(2)
11 + π2

6ε3L+ iπ

3εh
(2)
21 −

1
3ε (ζ5+2ζ2ζ3)

)
N(T2

s−u)2

+
(
iπ

6ε3L
2+ iπ

3ε (ζ3L+11ζ4)
)

[T2
t , [T2

t ,T2
s−u]]

+
(
π2

6ε3L+ iπ

ε
h

(2)
21 + 1

ε
ζ5

)
[T2

s−u, [T2
t ,T2

s−u]]+
(
− iπ

3

6ε3 + iπ

ε
h

(2)
22

)
(T2

s−u)3
]
A(0)+H(3)

where we have boxed all the terms that come from the three-loop dipole correction term
∆(3). Expressing the amplitude in the three-loop Regge color factor basis

Â(3) =A
(0)
1 ã3

[
B̂

(3)
00 N

3C00+B̂(3)
11 N

2C11+B̂(3)
21 NC21+B̂(3)

22 NC22+B̂(3)
31 C31+B̂(3)

32 C32+B̂(3)
33 C33

]
,

H(3) =A
(0)
1 ã3

[
h

(3)
00 N

3C00+h(3)
11 N

2C11+h(3)
21 NC21+h(3)

22 NC22+h(3)
31 C31+h(3)

32 C32+h(3)
33 C33

]
(5.33)

and using eqs. (5.23) and (5.27) we obtain

B̂
(3)
00 =

(
− π2

24ε3L+
−2

9π
2ζ3 + 1

12ζ5

ε
− 3

4π
2ζ3L−

13
432π

6
)

+ h
(3)
00 ,

B̂
(3)
11 = iπ

(
− 1

540π
4 − 1

2ζ3L

ε
− 1

45π
4L− 39

2 ζ5 −
1
2π

2ζ3

)
+ h

(3)
11 ,

B̂
(3)
21 = iπ

(
− π

2

6ε2L−
ζ3
2εL−

1
60π

4L

)
+ h

(3)
21 ,

B̂
(3)
22 =

(
π2

6ε3L−
π4

6ε2 +
8
9π

2ζ3 − 1
3ζ5

ε
+ 3π2ζ3L+ 17

135π
6
)

+ h
(3)
22 ,

B̂
(3)
31 = iπ

(
1

6ε3L
2 +

1
3ζ3L+ 11

270π
4

ε

)
+ h

(3)
31 ,

B̂
(3)
32 =

(
π2

6ε3L+ 3π2ζ3 + ζ5
ε

+ 9π2ζ3L+ 13
36π

6
)

+ h
(3)
32 ,

B̂
(3)
33 = iπ

(
− π

2

6ε3 + 3π2ζ3

)
+ h

(3)
33 . (5.34)

Once again, to determine the IR-finite contributions h(3)
ik , we use the ancillary files

of Henn and Mistlberger [25] to extract the Regge limit of the three-loop color-ordered
amplitudes A(3)

λ through O(ε0), then use eq. (5.15) to derive the corresponding reduced
amplitudes Â(3)

λ , and finally use eq. (4.22) to determine B̂(3)
ik to O(ε0). In doing so, we
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recover precisely the IR-divergent terms of eq. (5.34) together with the IR-finite coefficients
at O(ε0):

h
(3)
00 = 2ζ5L−

11
36π

2ζ3L−
65ζ2

3
36 −

1397π6

102060 +O(ε) ,

h
(3)
11 = iπ

(
2ζ5 −

5π2ζ3
36

)
+O(ε) ,

h
(3)
21 = iπ

(
π4

60L+ 2ζ5 −
13π2ζ3

6

)
+O(ε) ,

h
(3)
22 = 4

3π
2ζ3L−

ζ2
3
3 + 565π6

6804 +O(ε) ,

h
(3)
31 = iπ

(
−11ζ3

3 L2 − 29π4

90 L− 65ζ5
6 + 5π2ζ3

12

)
+O(ε) ,

h
(3)
32 = 10

3 π
2ζ3L+ ζ2

3 + 32π6

567 +O(ε) ,

h
(3)
33 = iπ

(
2π2ζ3

3

)
+O(ε) . (5.35)

The coefficient of L2 of h(3)
31 matches the NLL prediction (4.42) of ref. [50], and the

coefficients of L of h(3)
00 , h

(3)
22 , and h

(3)
32 match10 the NNLL prediction (4.44) of ref. [50].

5.5 All loop results

We wish to characterize the logarithmic dependence of each coefficient B(`)
ik in the expansion

A(`) = A
(0)
1 ã`

∑̀
i=0

∑
k

B
(`)
ik N

`−iCik . (5.36)

In the IR-divergent prefactors in eq. (5.14), we observe that each power of L requires
the presence of a factor of T2

t . The Regge color factor Cik contains i−k factors of T2
t , and

N `−i can correspond to ` − i additional factors of T2
t (since T2

t acting on C00 produces a
factor of N). Hence we anticipate that B(`)

ik can contain up to `− k powers of L, that is

B
(`)
ik ∼ L

`−k + lower logarithmic terms. (5.37)

Thus B(`)
00 alone contributes at leading log (LL) order, B(`)

i1 starts at NLL, B(`)
i2 at

NNLL, etc. We cannot make this argument completely rigorous, because a priori we have
no knowledge of the L dependence of the hard function H, but the explicit results through
three loops presented earlier are in accord with our expectations. (The L dependence of the
reduced amplitude coefficients B̂(`)

ik is sometimes milder than eq. (5.37) because we have
stripped off some of the logarithms in eq. (5.15).)

By eq. (5.37), the coefficient B(`)
`` should have no logarithmic dependence whatsoever.

In fact, the only term in eq. (5.14) that contributes to B(`)
`` is

A ∼ exp
[
iπã

ε
T2
s−u

]
H (5.38)

10See footnote 9. Also, D(1)
g = 1

4Nr(ε)f1(ε) since we are expanding in ã rather than a.

– 22 –



J
H
E
P
0
2
(
2
0
2
1
)
0
4
4

hence
A(`) ∼ 1

`!

(
iπã

ε
T2
s−u

)`
A(0) + contributions from H(2),H(3), · · · (5.39)

and thus
B

(`)
`` = 1

`!

(
iπ

ε

)`
+O(ε3−`) (5.40)

where the O(ε3−`) corrections come from H(2), H(3), · · · . This is consistent with the explicit
one-, two-, and three-loop results11 (4.12), (5.26), (5.28), (5.34), and (5.35)

B
(1)
11 = iπ

ε
,

B
(2)
22 =

(
− π

2

2ε2

)
Γ2(1− 2ε)Γ(1 + 2ε)

Γ(1− ε)Γ2(1 + ε)Γ(1− 3ε) ,

B
(3)
33 = iπ

(
− π

2

6ε3 + 11π2ζ3
3

)
+O(ε) . (5.41)

In section 6, we will observe that the coefficients B(`)
`` are closely related to the N = 8

supergravity four-point amplitude in the Regge limit.

6 SYM/supergravity relation in the Regge limit

In this section, we review the Regge limit of the N = 8 four-point amplitude. This will
allow us to make an all-loop-orders conjecture between the N = 4 SYM and N = 8
supergravity four-point amplitudes in the Regge limit.

The tree-level four-graviton amplitude is12 [3]

M(0) = 8πGµ2ε 16KK̃
stu

, (6.1)

where K is defined as in eq. (3.2). The one-loop N = 8 supergravity four-graviton ampli-
tude is [3]

M(1) = −i(8πG)2µ2ε(16KK̃)
[
I(1)(s, t) + I(1)(u, s) + I(1)(t, u)

]
=M(0)

(
− 8πiG stu

[
I(1)(s, t) + I(1)(u, s) + I(1)(t, u)

] )
(6.2)

which, using the expression of I(1) given in eq. (3.10) becomes

M(1) =M(0)η̃
1
ε2

[
(x− 1)

(
eiπx

)ε
F

(
ε, 1− 1

x

)
+ (x− 1)F (ε, 1− x) (6.3)

− x
(
eiπx

)ε
F

(
ε,
−x

1− x

)
− x

(
x

1− x

)ε
F (ε, x)

+ F

(
ε,

1
1− x

)
+
(

x

1− x

)ε
F

(
ε,

1
x

)]
11Note that B(`)

`` = B̂
(`)
`` because the prefactors in eq. (5.15) cannot contribute to this coefficient.

12In this paper, we take G to be the four-dimensional Newton’s constant, with GD = Gµ2ε its counterpart
in D = 4− 2ε dimensions.
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where we define the dimensionless parameter13

η̃ ≡ Gs

π

Γ2(1− ε)Γ(1 + ε)
Γ(1− 2ε)

(
4πµ2

−t

)ε
. (6.4)

Writing the all-orders amplitude as

M =M(0)
[
1 +

∞∑
`=1

η̃`M (`)
]

(6.5)

we see that eq. (6.3) simplifies dramatically in the Regge limit x→ 0 to

M (1) = − iπ

ε
+O(x) . (6.6)

Using eikonal exponentiation in impact parameter space, the authors of refs. [75, 76]
showed that the Regge limit of the `-loop four-graviton amplitude is given to all orders in
ε by

M (`) = 1
`!

(
− iπ

ε

)`
G(`)(ε) +O(x) (6.7)

where

G(`)(ε) = Γ`(1− 2ε)Γ(1 + `ε)
Γ`−1(1− ε)Γ`(1 + ε)Γ(1− (`+ 1)ε)

= 1− 1
3`
(
2`2 + 3`− 5

)
ζ3ε

3 +O(ε4). (6.8)

In particular, eq. (6.7) gives (in the Regge limit)

M (1) = − iπ

ε
+O(x) ,

M (2) =
(
− π

2

2ε2

)
Γ2(1− 2ε)Γ(1 + 2ε)

Γ(1− ε)Γ2(1 + ε)Γ(1− 3ε) +O(x) ,

M (3) = iπ

(
π2

6ε3 −
11π2ζ3

3 − 11π6

180 ε
)

+O(ε2) +O(x) . (6.9)

We observe that (up to signs) these are precisely the one-, two-, and three-loop values
of the coefficients B(`)

`` of the N = 4 SYM four-gluon amplitude given in eq. (5.41):

B
(1)
11 = −M (1) +O(x) , B

(2)
22 = M (2) +O(x) , B

(3)
33 = −M (3) +O(ε) +O(x) (6.10)

where the one- and two-loop relations hold to all orders in ε, and the three-loop relation
holds to the accuracy of the N = 4 SYM calculation. This motivates the all-loop-orders
conjecture:

B
(`)
`` = (−1)`M (`) +O(x) (6.11)

relating the Regge limits of the N = 8 supergravity amplitude and the N = 4 SYM ampli-
tude. Comparing the leading infrared-divergent contribution (5.40) with eq. (6.7) confirms

13Related by η̃ = αGs/(−t)ε to αG defined in refs. [75, 76].
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that eq. (6.11) is valid for any ` to at least the first three orders in the Laurent expansion
in ε. Based on all this, we conjecture that eq. (6.11) holds to all orders in ε for any `.

We can express the SYM/supergravity relation (6.11) directly in terms of color-ordered
amplitudes using eqs. (4.26)–(4.28)

M (1) = A
(1,0)
1 +A(1,0)

3

A
(0)
1 ã

+O(x) , `= 1 ,

M (`) =
1
2

(
A

(`,`)
1 −A(`,`)

3

)
3`/2 ·A(0)

1 ã`
+O(x) , even ` ,

M (`) =
−
(
A

(`,`−3)
1 +A(`,`−3)

3

)
+ 1

4

(
A

(`,`−2)
4 +A(`,`−2)

6 +A(`,`−1)
1 +A(`,`−1)

3

)
3(`−1)/2 ·A(0)

1 ã`
+O(x) , odd `> 1 .

(6.12)

The validity of eq. (6.12) for ` = 1 and ` = 2 is not really surprising since they are the
Regge limits of more general exact relations. The one-loop relation is the Regge limit of
the exact one-loop relation [1, 23]

M(1)

M(0)η̃
= (1− x)

(
A

(1,0)
1 +A

(1,0)
2 +A

(1,0)
3

)
A

(0)
1 ã

(6.13)

and the ` = 2 relation is the Regge limit of the more general exact two-loop relation [23]

M(2)

M(0)η̃2 =
(1− x

6

) [(1− x)A(2,2)
1 + xA

(2,2)
2 −A(2,2)

3

]
A

(0)
1 ã2

(6.14)

where we have expressed both relations using the notation of the current paper. Both
eqs. (6.13) and (6.14) are proved by expressing the amplitudes in terms of planar and non-
planar integrals [2, 3, 23]. Although previous attempts at finding exact SYM/supergravity
relations beyond two loops were not successful, there may nevertheless exist exact relations
of which eq. (6.12) is the Regge limit.

7 Conclusions

We presented in this paper an all-loop-order basis of color factors Cik suitable for writing
the Regge limit of the N = 4 SYM four-gluon amplitude. These color factors have well-
defined signature under crossing symmetry u ↔ s; specifically, Cik has negative/positive
signature for k even/odd.

We found that the coefficients B(`)
ik of the Regge limit of the N = 4 SYM amplitude in

this basis are polynomials of order `−k in L = log |s/t|− 1
2 iπ. Thus B

(`)
00 alone contributes

at leading log (LL) order, B(`)
i1 starts at NLL, B(`)

i2 at NNLL, etc. The coefficients of color
factors with negative/positive signature are real/imaginary respectively (when expressed
in terms of L), as shown on general grounds in ref. [50]. Using results from ref. [25], we
computed these coefficients explicitly through three-loop order, verifying consistency with
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all the expected IR divergences [14–16, 26–35, 45–50], as well as with certain IR-finite NLL
and NNLL predictions [49, 50].

Based on our explicit results, we conjectured an all-loop-orders equivalence (up to
sign) between the coefficients B(`)

`` and the Regge limit of the `-loop N = 8 supergravity
four-point amplitude. This equivalence was proven to be valid to all orders in ε at one
and two loops, through O(ε0) at three loops, and for the first three terms in the Laurent
expansion in ε at ` loops.

Naturally, it would be nice to establish the validity of the conjectured SYM/super-
gravity relation more generally, perhaps via an eikonal exponentiation approach [75, 76],
or via known representations of these amplitudes in terms of planar and nonplanar inte-
grals [2–7, 7, 8, 37].

It would also be interesting to know if the SYM/supergravity relations for ` > 2 are
the Regge limits of more general exact SYM/supergravity relations, as is the case for ` = 1
and ` = 2.

Finally, it would be intriguing to discover all-orders-in-ε expressions for the other
coefficients B(`)

ik of the Regge basis of color factors.
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