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1 Introduction

In the present paper we further explore the eclectic flavor picture in the framework of
orbifold compactifications of string theory. The eclectic flavor symmetry is the maximal
discrete symmetry that can arise from the nontrivial combination of traditional flavor
symmetry and modular flavor symmetry [1]. In this approach, the benefits of finite mod-
ular symmetries, uncovered by ref. [2] and further developed for example in refs. [3–6],
are merged with the appeal of traditional flavor symmetries (see e.g. [7]), possibly im-
proving [8] their predictability [9]. Up to now the detailed analysis has concentrated on
two-dimensional orbifolded tori where the complex structure modulus U is fixed geometri-
cally to allow for the specific orbifold twist of the torus [10, 11]. Aspects of the embedding
of the two-tori into six-dimensional compactified space have been discussed in ref. [12] and
have shown to be especially relevant for the discussion of R-symmetries. To capture the full
eclectic picture one has to consider also those orbifolded tori, where the complex structure
modulus is not fixed. This will certainly lead to a richer eclectic structure, as modular
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transformations now act nontrivially on both, the Kähler modulus T and the complex
structure modulus U . As a first step in this analysis, we consider the T2/Z2 orbifold that
allows the full action of SL(2,Z)T and SL(2,Z)U . This captures all the qualitative aspects
of the eclectic flavor picture and can be used as building block for the general discussion
in the six-dimensional case.

Flavor symmetries of the T2/Z2 orbifold strongly depend on the values of the moduli.
First, we discuss in section 2 the case for generic values of both T and U that gives rise
to the traditional flavor symmetry (which leaves the moduli invariant). This leads to
the traditional flavor group (D8 × D8)/Z2 ∼= [32, 49], see ref. [13]. The numbers [32, 49]
correspond to a unique identifier, assigned by the computer program GAP [14], where the
first number (32) gives the order of the group. The finite modular group of the T2/Z2
orbifold is derived in section 3 and turns out to be [144, 115], the multiplicative closure
of mirror symmetry and the S3 × S3 finite modular groups arising from SL(2,Z)T and
SL(2,Z)U . If we further include a CP-like modular transformation [3, 10, 11, 15], this
group is enhanced to [288, 880]. Thus, by combining the traditional flavor group and the
finite modular group we are led to an eclectic flavor group with maximally 2304 elements
(without CP) and 4608 elements (including CP).

Typically, only a subgroup of the eclectic flavor group is linearly realized and its size
depends on the values of the moduli. This leads to an enhancement of the traditional flavor
group (D8 × D8)/Z2 at specific points and hypersurfaces in moduli space: the so-called
mechanism of local flavor unification, which is discussed in section 4. There are two specific
configurations of the T2/Z2 orbifold that deserve special attention: the raviolo (at 〈U〉 = i,
see figure 1) and the tetrahedron (at 〈U〉 = exp

(
πi
3

)
, see figure 5). There, we observe a

further enhancement of the unified flavor symmetry. The largest linearly realized group is
found at 〈T 〉 = 〈U〉 = exp

(
πi
3

)
and turns out to be [1152, 157463], which includes mirror

symmetry and CP . The landscape of unified flavor symmetries (with CP) is illustrated in
figure 7. Even for an orbifold as simple as T2/Z2 we find amazingly large flavor groups.
In section 5 we shall summarize our results and give an outlook on future research tasks.
These should include a full implementation of the automorphy factors (in the spirit of
refs. [12, 16]) and a road-map towards an embedding in the six-dimensional case. Some
technical results are relegated to three appendices.

2 Flavor from outer automorphisms of the ZZZ2 space group

In order to specify the two-dimensional T2/Z2 orbifold, we first define the geometrical space
group S. The space group consists of elements g = (θk, e n) ∈ S, with k ∈ {0, 1}, that act
on the coordinates y ∈ R2 of the extra dimensions as

y
g7→ g y := θk y + e n , (2.1)

where the Z2 twist θ is given by θ = −12 and n = (n1, n2)T ∈ Z2 are called winding
numbers. One can easily see from eq. (2.1) that two space group elements multiply as(

θk, e n
) (
θk
′
, e n′

)
=
(
θk+k′ , e n+ θke n′

)
. (2.2)
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φ(1,0)

φ(1,1)φ(0,1)

φ(0,0)

φ(1,0)

φ(1,1)φ(0,1)

φ(0,0)

e1

e2

⇔

Figure 1. The T2/Z2 orbifold. Left: the two-torus T2 is defined by a two-dimensional lattice,
spanned by the vectors e1 and e2. The Z2 orbifold twist θ = −12 maps the fundamental domain
of T2 to the fundamental domain of the orbifold, depicted in yellow. The orbifold action y 7→
θk y + e n has four inequivalent fixed points, indicated by blue bullets. Localized at these fixed
points, there are four (left-chiral) twisted strings (φ(0,0), φ(1,0), φ(0,1), φ(1,1)). The boundaries of the
yellow fundamental domain are identified according to the arrows. Right: after identifying the
boundaries of the fundamental domain, the T2/Z2 orbifold has a pillow-like shape with the four
fixed points at the corners of the pillow (or raviolo).

The 2 × 2 matrix e (called the geometrical vielbein) consists of two columns e1 and e2.
These vectors have to be linearly independent, so that they span a two-dimensional lattice
that defines a two-torus T2. Then, the T2/Z2 orbifold O is defined as a quotient space

O := R2

S
, where y ∼ y′ if there exists g ∈ S such that y′ = g y , (2.3)

i.e. points y, y′ ∈ R2 in extra dimensions are identified if they are related by the orbifold
action with some space group element g ∈ S. This yields a reduced fundamental domain
of the orbifold, see figure 1.

Closed strings on O are defined by boundary conditions for the string world-sheet
degrees of freedom [17–19], with world-sheet coordinates τ and σ. Concentrating on the
world-sheet bosons y(τ, σ) that describe two extra spatial dimensions y, a boundary con-
dition for a closed string is given by

y(τ, σ + 1) = g y(τ, σ) = θky(τ, σ) + e n , (2.4)

where g = (θk, e n) ∈ S with k ∈ {0, 1} is the so-called constructing element of the string.
In fact, inequivalent strings correspond not only to constructing elements g ∈ S but to
their conjugacy classes [g] := {f−1 g f | f ∈ S}, since y(τ, σ) and f y(τ, σ) are identified
on the orbifold for all f ∈ S. If k = 0 in eq. (2.4), the string is called untwisted and lives
in the bulk of the orbifold. In this case, it can still wind around the two-torus depending
on its winding numbers n ∈ Z2. If k = 1, the string is called a twisted string. Then,
its center of mass is given by the fixed point yg of g ∈ S. In more detail, yg denotes the
solution of the fixed point equation g yg = θ yg + e n = yg. For g = (θ, e n) ∈ S, it reads
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yg = 1
2 e n. Furthermore, the internal momentum of a twisted string vanishes such that a

twisted string stays localized at its fixed point yg.
For the T2/Z2 orbifold, there are four conjugacy classes of twisted strings with con-

structing elements g = (θ, e n) = (θ, n1 e1 + n2 e2) ∈ S. They are given by

[
(
θ, n1 e1 + n2 e2

)
] =

{(
θ, (n1 + 2ñ1) e1 + (n2 + 2ñ2) e2

)
∈ S | ñ1, ñ2 ∈ Z

}
. (2.5)

Hence, winding numbers n1 and n2 of twisted strings are only defined modulo two and we
can choose n1, n2 ∈ {0, 1}. We denote the four twisted matter fields associated with the
four conjugacy classes of twisted strings by φ(n1,n2), i.e.

φ(n1,n2) ⇔ [
(
θ, n1 e1 + n2 e2

)
] for n1, n2 ∈ {0, 1} . (2.6)

Moreover, the matter field φ(n1,n2) is localized at the fixed point yg = 1
2(n1e1 +n2e2) in O,

as illustrated in figure 1.
Discrete flavor symmetries of the effective four-dimensional field theory from strings

on orbifolds find their origin in the outer automorphisms of the so-called Narain space
group [10, 11]. Since the Narain construction of strings on orbifolds is rather technical, we
refer here only to a short discussion in appendix A and to the literature [20–22]. Still, one
can gain some insights by considering the outer automorphisms of the geometrical space
group S (instead of the Narain space group). An outer automorphism of S is given by a
transformation h = (σ, e t) 6∈ S, such that

g
h7−→ h−1 g h

!
∈ S for all g ∈ S , (2.7)

see e.g. ref. [11] for a similar discussion in the case of a T2/Z3 orbifold.
For the T2/Z2 orbifold, the outer automorphisms of the geometrical Z2 space group

that leave the moduli unaltered are generated by two translations,

h1 :=
(
12,

1
2 e1

)
and h2 :=

(
12,

1
2 e2

)
. (2.8)

In the absence of nontrivial discrete Wilson lines [19], they give rise to symmetries of the
full string construction, see appendix A for the corresponding Narain construction. Then,
one is interested in the action ρ4(h) of a (geometrical) transformation h 6∈ S on the four
twisted matter fields 

φ(0,0)
φ(1,0)
φ(0,1)
φ(1,1)

 h7−→ ρ4(h)


φ(0,0)
φ(1,0)
φ(0,1)
φ(1,1)

 . (2.9)

On the level of constructing elements, one already realizes that, for example, the translation
h1 acts as

(θ, n1 e1 + n2 e2) h17−→
(
12,
−1
2 e1

)
(θ, n1 e1 + n2 e2)

(
12,

1
2 e1

)
(2.10a)

= (θ, (n1 − 1) e1 + n2 e2) . (2.10b)
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Hence, the transformation h1 interchanges φ(0,n2) and φ(1,n2) for n2 ∈ {0, 1}, see figure 2.
Similarly, one can show that h2 exchanges the twisted matter fields φ(n1,0) and φ(n1,1)
for n1 ∈ {0, 1}. This geometrical intuition can be confirmed by a direct computation on
twisted string states (see appendix A). We thus find

ρ4(h1) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 and ρ4(h2) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (2.11)

These transformations generate a Z2 × Z2 Abelian flavor symmetry.
In addition, there are string selection rules restricting the ability of strings on orbifolds

to join and split [23]. The associated symmetry can be determined in two ways: i) as the
Abelianization of the space group S [24], or ii) as additional outer automorphisms of the
Narain space group. Combined with the geometrical transformations h1 and h2, which
exchange orbifold fixed points pairwise, these string selection rules yield a non-Abelian
flavor symmetry as follows: in the T2/Z2 orbifold, the string selection rules give rise to a
Z2 × Z2 × Z2 symmetry, under which twisted matter fields transform as

φ(n1,n2)
h37−→ (−1)n1 φ(n1,n2) ⇒ ρ4(h3) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , (2.12a)

φ(n1,n2)
h47−→ (−1)n2 φ(n1,n2) ⇒ ρ4(h4) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (2.12b)

φ(n1,n2)
h57−→ −φ(n1,n2) ⇒ ρ4(h5) =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.12c)

Here, h3 and h4 are connected to the Z2×Z2 space group selection rule for twisted strings,
while h5 is associated with the Z2 point group selection rule. Then, as first shown in
ref. [13], the full traditional flavor group (without R-symmetry) of the T2/Z2 orbifold, at
a generic point in moduli space, is generated by the transformations (2.11) and (2.12),
resulting in

(D8 ×D8)
Z2

∼= [32, 49] . (2.13)

Here, D8 ∼= [8, 3] denotes the dihedral group of order 8 (sometimes also called D4 using a
different naming convention). Furthermore, the first D8 factor in eq. (2.13) is generated
by h1 and h3. This D8 is associated with the e1 direction of the orbifold, cf. ref. [25]. The
second D8 in eq. (2.13) is generated by h2 and h4 and is associated with e2. Note that
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e1φ(1,0)

φ(1,1)φ(0,1)

φ(0,0)

e2

(a) Transformation h1 =
(
12, 1

2 e1
)
.

e1φ(1,0)

φ(1,1)φ(0,1)

φ(0,0)

e2

(b) Transformation h2 =
(
12, 1

2 e2
)
.

Figure 2. Actions of the outer automorphisms h1 and h2 of the T2/Z2 orbifold space group on the
four twisted matter fields (φ(0,0), φ(1,0), φ(0,1), φ(1,1)). (a) Under the geometrical translation h1 :=(
12,

1
2 e1

)
, matter fields get interchanged as φ(0,n2) ↔ φ(1,n2) for n2 ∈ {0, 1}. (b) The geometrical

translation h2 :=
(
12,

1
2 e2

)
interchanges matter fields as φ(n1,0) ↔ φ(n1,1) for n1 ∈ {0, 1}.

the transformation h5 in eq. (2.12c), linked to the point group selection rule, is not an
independent generator of the traditional flavor group eq. (2.13) as it can be written as

ρ4(h5) =
(
ρ4(h1) ρ4(h3)

)2 =
(
ρ4(h2) ρ4(h4)

)2
. (2.14)

This identity gives rise to the Z2 quotient in eq. (2.13). Moreover, the four twisted matter
fields (φ(0,0), φ(1,0), φ(0,1), φ(1,1))T build a four-dimensional, irreducible, and faithful repre-
sentation of the traditional flavor group eq. (2.13).

Even though we have discussed the origin of the traditional flavor symmetry (D8 ×
D8)/Z2 based on the outer automorphisms of the geometrical Z2 space group, the results
can be confirmed using the full Narain approach, see appendices A and B. Even more, the
full Narain space group and its outer automorphisms reveal a common origin of all discrete
symmetries for strings on orbifolds, giving rise to the eclectic flavor symmetry that consists
of traditional flavor, modular, CP and R-symmetries. In the next section, we will analyze
in detail the modular symmetries and their finite modular groups that arise in the T2/Z2
orbifold.

3 Flavor from modular symmetries

In general, the deformations of a two-dimensional torus used to compactify a string the-
ory can be parameterized by a complex structure modulus U and a Kähler modulus T .
The complex structure modulus U can be interpreted geometrically as the shape of the
torus, while the Kähler modulus T gives the overall size of the torus and the value of the
anti-symmetric B-field background. Moreover, a toroidal compactification exhibits several
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symmetries that act nontrivially on these moduli (see e.g. ref. [11]):

U
ĈS7−→ − 1

U
and T

ĈS7−→ T , (3.1a)

U
ĈT7−→ U + 1 and T

ĈT7−→ T , (3.1b)

U
K̂S7−→ U and T

K̂S7−→ − 1
T
, (3.1c)

U
K̂T7−→ U and T

K̂T7−→ T + 1 . (3.1d)

These transformations are actually not defined on the level of the moduli but on the level
of outer automorphisms of the Narain space group, see appendix A.2. Then, ĈS and
ĈT generate a modular group SL(2,Z)U associated with the complex structure modulus
U , while K̂S and K̂T are the generators of another factor SL(2,Z)T associated with the
Kähler modulus T . Note that the two factors of SL(2,Z) share a common element: C :=
(ĈS)2 = (K̂S)2. Even though C acts trivially on both moduli, it can in principle still act
nontrivially on matter fields, see refs. [8, 11] (and also ref. [26]). In addition, there are two
special transformations

U
M̂7−→ T and T

M̂7−→ U , (3.2a)

U
Σ̂∗7−→ −Ū and T

Σ̂∗7−→ −T̄ . (3.2b)

The former is the origin of the so-called mirror symmetry that interchanges SL(2,Z)U and
SL(2,Z)T , while the latter induces a CP-like transformation, see refs. [10, 15] and [3].

In principle, performing an orbifold of a torus can stabilize some moduli geometrically.
Consequently, some of the symmetry transformations generated by eqs. (3.1) and (3.2)
can be broken by the orbifolding. For example, in the case of a T2/Z3 orbifold sector the
U modulus needs to be stabilized, e.g. at 〈U〉 = exp

(
2πi
3

)
, and the unbroken modular

symmetry after Z3 orbifolding is generated by K̂S, K̂T, the R-symmetry ĈS ĈT and the
CP-like transformation K̂∗ := ĈS ĈT ĈS Σ̂∗ (i.e. by those modular transformations that
leave 〈U〉 = exp

(
2πi
3

)
invariant). In contrast, the T2/Z2 orbifold with θ = −12 is equipped

with both moduli: the complex structure modulus U and the Kähler modulus T . Each of
them remains associated with its own unbroken modular group, SL(2,Z)U and SL(2,Z)T
for U and T , respectively. Moreover, the transformations (3.2) remain symmetries after
the torus has been modded out by the Z2 orbifold action θ = −12. Hence, the T2/Z2
orbifold gives a simple example of a string setup with multiple modular symmetries (see
e.g. ref. [27]), with the extension by mirror symmetry eq. (3.2a) that interchanges both
moduli.

As shown in refs. [12, 16], the modular group SL(2,Z)U of the complex structure mod-
ulus acts geometrically on the compact dimensions. In particular, the SL(2,Z)U generators
ĈS and ĈT act on the T2 basis vectors ei according to

e1
ĈS−→ e′1 = −e2 , e2

ĈS−→ e′2 = e1 , and e1
ĈT−→ e′1 = e1 , e2

ĈT−→ e′2 = e1 + e2 . (3.3)
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This can be confirmed easily by e.g. considering each two-dimensional vector ei as a complex
number, i.e. e1, e2 ∈ C, and setting U = e2

e1
, see ref. [28]. Then, eq. (3.3) reproduces

eqs. (3.1a) and (3.1b).
Next, we are interested in the action of SL(2,Z)U on the four twisted matter fields

φ(n1,n2), i.e. for γU ∈ SL(2,Z)U we want to identify ρ4(γU ) defined as


φ(0,0)
φ(1,0)
φ(0,1)
φ(1,1)

 γU7−→


φ′(0,0)
φ′(1,0)
φ′(0,1)
φ′(1,1)

 = ρ4(γU )


φ(0,0)
φ(1,0)
φ(0,1)
φ(1,1)

 , (3.4)

without taking the automorphy factors (cU U + dU )nU of γU with modular weight nU into
account. Then, one can use the geometrical SL(2,Z)U transformations (3.3) as illustrated
in figure 3 in order to obtain the matrix representations of the modular S and T transfor-
mations, given by ĈS and ĈT, for the four twisted matter fields φ(n1,n2). The results read

ρ4(ĈS) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 and ρ4(ĈT) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (3.5)

One can check that these representation matrices ρ4(ĈS) and ρ4(ĈT) generate a so-called
finite modular group S3 ∼= [6, 1]: even though the symmetry is SL(2,Z)U , twisted matter
fields transform under SL(2,Z)U in unitary representations of S3. We denote this factor
by SU3 as it is associated with the complex structure modulus U .

Also the mirror symmetry M̂ has a non-trivial action on twisted matter fields. It turns
out that it can be represented by the matrix

ρ4(M̂) = 1√
2


0 0 −1 1
0 0 1 1
1 −1 0 0
−1 −1 0 0

 , (3.6)

see appendix A.4. Interestingly, one can verify easily that(
ρ4(M̂)

)2
= −14 . (3.7)

Hence, ρ4(M̂) is of order 4. Moreover, eq. (3.7) shows that, although M̂2 acts trivially on
the moduli, it acts nontrivially on twisted matter fields: in fact, (ρ4(M̂))2 acts like the
traditional flavor transformation ρ4(h5) = −14 associated with the point group selection
rule, see eq. (2.12c). Consequently, the finite modular group can not be disentangled from
the traditional flavor group completely: the element M̂2 belongs to both groups. The
situation is similar to the T2/Z3 orbifold, where the modular S transformation squared
equals a traditional flavor transformation: (ĈS)2 = (K̂S)2 = C from ∆(54), see ref. [11].
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Then, we can translate the finite modular group SU3 of the complex structure modulus
U to the one of the Kähler modulus T . Using eq. (A.13) from appendix A.2, we obtain

ρ4(K̂S) := ρ4(M̂) ρ4(ĈS) ρ4(M̂)−1 = 1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 , (3.8a)

ρ4(K̂T) := ρ4(M̂) ρ4(ĈT) ρ4(M̂)−1 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (3.8b)

see ref. [29]. We denote the resulting finite modular group associated with the Kähler
modulus T by ST3 .

The final transformation from the list of generators given in eqs. (3.1) and (3.2) is the
CP-like transformation Σ̂∗. It acts on twisted matter fields as

φ(0,0)
φ(1,0)
φ(0,1)
φ(1,1)

 Σ̂∗7−→


φ̄(0,0)
φ̄(1,0)
φ̄(0,1)
φ̄(1,1)

 , (3.9)

where we suppress the spacetime dependencies. Hence, if one considers CP-like transforma-
tions, it is beneficial to extend the 4×4 representation matrices to 8×8 matrices acting on
the eight-dimensional vector (Φ, Φ̄)T of twisted matter fields Φ := (φ(0,0), φ(1,0), φ(0,1), φ(1,1))T

and their CP-partners.
In summary, the matrices ρ4(K̂S), ρ4(K̂T), ρ4(ĈS) and ρ4(ĈT) generate the finite

modular group
ST3 × SU3 (3.10)

of order 6 × 6 = 36. Combined with the Z4 mirror element ρ4(M̂), we obtain the finite
modular group without CP (

ST3 × SU3
)
o ZM̂4 ∼= [144, 115] , (3.11)

which is of order 36 × 4 = 144. We observe, as a side remark, that this finite modular
group is related to the group of outer automorphisms of the traditional flavor group,

Out
(
(D8 ×D8)/Z2

) ∼= [72, 40] ∼= [144, 115]/Z2 , (3.12)

where the Z2 on the right-hand side is generated by M̂2. Moreover, by including CP we
get [288, 880] ∼= [144, 115] × Z2, which is the maximal finite modular group of the T2/Z2
orbifold.

Next, we combine the finite modular group with the traditional flavor group (D8 ×
D8)/Z2 and construct the eclectic flavor group Geclectic. The traditional flavor group is
a normal subgroup of Geclectic, as expected from the general framework of eclectic flavor
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φ(1,1)

e2

φ(0,1)

φ′
(0,0)

= φ(0,0)

φ′
(1,0)

= φ(0,1)

φ′
(0,1)

= φ(1,0)
e′2 = e1

φ′
(1,1)

= φ(1,1)

e′1 = −e2

(a) Modular S transformation.

φ′
(0,0)

= φ(0,0) φ′
(1,0)

= φ(1,0)

e′1 = e1

φ(0,1) φ′
(0,1)

= φ(1,1)

φ′
(1,1)

= φ(0,1)

e′2 = e1 + e2e2

(b) Modular T transformation.

Figure 3. The action of the SL(2,Z)U generators ĈS (a) and ĈT (b) associated with the complex
structure modulus U on the T2/Z2 orbifold. From the action of the SL(2,Z)U generators on the T2

basis, eq. (3.3), the original (yellow) fundamental domain of the orbifold is mapped to an equivalent
but different (blue) region. Hence, twisted matter fields φ(n1,n2) get interchanged according to
eqs. (3.4) and (3.5).

groups [1]. However, since (D8 ×D8)/Z2 and the finite modular group share the common
element (ρ4(M̂))2 = ρ4(h5), the eclectic flavor group is not a semi-direct product of these
two factors. In the case without CP , the finite modular group is (ST3 ×SU3 )oZM̂4 and Geclectic
turns out to be of order 2304. This order can be understood easily since (144×32)/2 = 2304
using the fact that (ρ4(M̂))2 belongs to both factors. As a side remark, note that all
finite groups of order 2304 have been classified in ref. [30]. In appendix C we examine the
representation ρ4 of twisted matter fields with respect to Geclectic and its various subgroups.
In addition, if we include CP , the eclectic flavor group gets enhanced further to a group of
order 4608.

4 Local flavor unification

As discussed in section 2, for generic values of the moduli, the traditional flavor symmetry
of the T2/Z2 orbifold is (D8×D8)/Z2 ∼= [32, 49], cf. eq. (2.13), associated with the discrete
symmetries of the theory that do not affect the moduli.

On the other hand, as explained in section 3, omitting the CP-like transformation Σ̂∗ in
a first step, the finite modular group of the T2/Z2 orbifold is (ST3 ×SU3 )oZM̂4 ∼= [144, 115].
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This group can be constructed by the order 4 generator ρ4(M̂) associated with the mirror
transformation M̂ , see eq. (3.6), and the ST3 × SU3 finite modular transformations arising
from SL(2,Z)T and SL(2,Z)U . These modular symmetries are, in general, independent of
the traditional flavor symmetry because traditional flavor transformations act trivially on
the moduli T and U . In contrast, modular transformations act by definition nontrivially
on these moduli. We assume now that the moduli are fixed at some vacuum expectation
values (vevs) (〈T 〉, 〈U〉), see e.g. ref. [31]. Then, we have to distinguish between two cases:
first, there are modular transformations that do not leave the moduli vevs invariant. They
are broken spontaneously. Second, some modular transformations may leave the moduli
vevs invariant. They build the so-called stabilizer subgroup

H(〈T 〉,〈U〉) :=
〈
γ | γ ∈ Ξ with γ(〈T 〉) = 〈T 〉 and γ(〈U〉) = 〈U〉

〉
, (4.1)

which depends on the moduli vevs 〈T 〉 and 〈U〉. By definition, H(〈T 〉,〈U〉) is a subgroup of
Ξ = Oη̂(2, 2,Z)/Z2, see eq. (B.6). As detailed in appendix B, Ξ is given by the full modu-
lar group Oη̂(2, 2,Z) defined in eq. (A.9) divided by the Z2 point group, where Oη̂(2, 2,Z)
comprises SL(2,Z)T , SL(2,Z)U , the mirror transformation M̂ , and the CP-like transfor-
mation Σ̂∗. If the stabilizer subgroup at a special point in moduli space is nontrivial, i.e.
H(〈T 〉,〈U〉) 6= {1}, then its elements remain unbroken by the vevs. Due to their trivial action
on the moduli vevs and nontrivial action on matter fields, these unbroken transformations
enhance the traditional flavor group to a so-called unified flavor group

D8 ×D8
Z2

∪H(〈T 〉,〈U〉) , (4.2)

which results from the multiplicative closure of the universal traditional flavor group and
the stabilizer subgroup H(〈T 〉,〈U〉).

Thus, given the representation of the elements of the traditional flavor group in the
field basis, determining the unified flavor group at the point (〈T 〉, 〈U〉) requires to know
the matrix representation ρ(γ) associated with the action of the element γ of the stabilizer
subgroup H(〈T 〉,〈U〉) on the orbifold matter fields Φ. For the four twisted matter fields
of the T2/Z2 orbifold, ρ(γ) can be built from the ρ4 representation matrices given in
eqs. (3.5), (3.6) and (3.8).

However, since string matter fields carry (fractional) modular weights (nT , nU ) of
SL(2,Z)T and SL(2,Z)U , the matrix representation ρ(γ) of a modular transformation γ

at the point (〈T 〉, 〈U〉) in moduli space is accompanied by so-called automorphy factors of
the form (cT 〈T 〉 + dT )nT (cU 〈U〉 + dU )nU , where cT , dT , cU , dU are integers parametrizing
the transformation γ ∈ H(〈T 〉,〈U〉). As discussed in ref. [12], these automorphy factors eval-
uated at the vevs (〈T 〉, 〈U〉) are discrete phases. This fact can i) change the order of the
flavor symmetry associated with γ, and/or ii) reveal that γ acts as a discrete R-symmetry,
which in general promotes the unified flavor group at (〈T 〉, 〈U〉) to a non-Abelian discrete
R-symmetry of N = 1 supersymmetry [32]. However, for the sake of clarity and simplicity,
we ignore the automorphy factors in the following. Hence, hereafter we shall provide the
actual groups of the unified flavor symmetries only in cases where the automorphy factors
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do not affect the results, but shall give in all cases the generators of the corresponding sta-
bilizer subgroups. The subtleties about the consequences of the automorphy factors as well
as their relevance in six-dimensional orbifolds shall be discussed in detail later in ref. [33].

A first example of a unified flavor symmetry arises at 〈T 〉 = 〈U〉 with generic vev. This
is a two-dimensional hypersurface in four-dimensional (real) moduli space. At these points,
the mirror symmetry transformation M̂ , acting on the moduli as T M̂←→ U , generates a Z2
stabilizer subgroup. Considering the representation ρ4(M̂) of M̂ for twisted matter fields,
eq. (3.6), one finds that the traditional flavor group

[32, 49] ∼= (D8 ×D8)/Z2 enhances to [64, 257] at 〈T 〉 = 〈U〉 . (4.3)

Note that, although the order of ρ4(M̂) is 4, the order of the flavor group is enhanced only
by a factor of 2 because (ρ4(M̂))2 = −14 is also included in the traditional flavor group,
cf. eq. (3.7).

Mirror symmetry M̂ helps to simplify the study of unified flavor symmetries at special
points in moduli space. We know that the mirror transformation M̂ maps

U
M̂←→ T , K̂S

M̂←→ ĈS and K̂T
M̂←→ ĈT , (4.4)

cf. eq. (A.13) in appendix A.2. Since M̂ is a symmetry of the theory, there is an equivalence
between the unbroken modular symmetry at the point (T, U) = (〈T 〉, 〈U〉) in moduli space
and its mirror dual at the point (T, U) = (〈U〉, 〈T 〉). This implies that the stabilizer
subgroups satisfy the isomorphism

H(T=〈T 〉, U=〈U〉) ∼= H(T=〈U〉, U=〈T 〉) , (4.5)

using M̂ γ M̂−1 ∈ H(T=〈U〉, U=〈T 〉) for all γ ∈ H(T=〈T 〉, U=〈U〉) and M̂ h M̂−1 ∈ (D8×D8)/Z2
for all h ∈ (D8×D8)/Z2. Consequently, the associated unified flavor symmetries, resulting
from combining these stabilizer subgroups with the universal traditional flavor group, as
prescribed by eq. (4.2), are isomorphic too. This implies that mirror symmetry M̂ halves
the fundamental domain in the full moduli space and we must not explore both isomorphic
cases eq. (4.5) independently. Thus, we shall explore only those symmetry enhanced points
and hypersurfaces in moduli space that are associated with a geometric interpretation of
U . Then, for each case of 〈U〉, we identify the symmetry enhanced points in the T -moduli
space. Hence, we can restrict ourselves to four special cases:

i) the generic T2/Z2 orbifold with generic vev 〈U〉,

ii) the tetrahedron with 〈U〉 = e
πi
3 ,

iii) the raviolo with 〈U〉 = i, and

iv) T2/Z2 orbifolds with CP-enhancement.

In the following, we will discuss these four cases in detail, restricting to points of the
fundamental domain in moduli space.
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Im T

Re T
−0.5 0 0.5

1

K̂TK̂S

K̂S

〈U〉 = generic

(a) U fixed at a generic value 〈U〉 6= i, e
πi
3 .

Im U

Re U
−0.5 0 0.5

1

ĈTĈS

ĈS

〈T 〉 = generic

(b) T fixed at a generic value 〈T 〉 6= i, e
πi
3 .

Figure 4. Generators of nontrivial stabilizer subgroups at special points in moduli space. (a) For
generic 〈U〉, only at 〈T 〉 = i (square) and 〈T 〉 = e

πi
3 (bullet) the stabilizer subgroup is nontrivial.

The corresponding stabilizer subgroups are H(i,〈U〉) = 〈K̂S〉 ∼= Z2 and H(
e

πi
3 ,〈U〉

) = 〈K̂TK̂S〉 ∼= Z3.
(b) For generic 〈T 〉, the results are equivalent due to mirror symmetry M̂ , which exchanges T ↔ U ,
K̂T ↔ ĈT and K̂S ↔ ĈS.

4.1 The generic TTT2/ZZZ2 orbifold

Let us consider first the case of a generic vev 〈U〉 of the complex structure modulus U .
In this case, CP is broken by the generic vev of U . Furthermore, as shown in figure 4a,
there are only two inequivalent special values of the Kähler modulus T associated with a
nontrivial stabilizer modular subgroup: 〈T 〉 = i and 〈T 〉 = e

πi
3 . At these points, we see

that the Kähler modulus is invariant under the transformations

at 〈T 〉 = i : 〈T 〉 K̂S−→ − 1
〈T 〉

= 〈T 〉 , (4.6a)

at 〈T 〉 = e
πi
3 : 〈T 〉 K̂T−→ 〈T 〉+ 1 K̂S−→ − 1

〈T 〉
+ 1 = 〈T 〉 , (4.6b)

and 〈U〉 is not affected, cf. eq. (3.1). The corresponding stabilizer subgroups are

at 〈T 〉 = i : H(i,〈U〉) =
〈
K̂S|(K̂S)2 ∼ 1

〉 ∼= Z2 , (4.7a)

at 〈T 〉 = e
πi
3 : H(

e
πi
3 ,〈U〉

) =
〈
K̂TK̂S|(K̂TK̂S)3 = 1

〉 ∼= Z3 . (4.7b)
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Note that (K̂S)2 is a trivial element of all stabilizer subgroups because the stabilizer sub-
group is defined up to point group transformations (see the discussion around eq. (4.1))
and (K̂S)2 = (ĈS)2 = −14 is equivalent to the Z2 point group generator Θ̂ = −14. It is
easy to confirm the mirror duals of eqs. (4.7), as shown in figure 4b for generic 〈T 〉.

To exemplify the enhancement of the traditional flavor symmetry to unified flavor
groups, let us focus on the hypersurface 〈T 〉 = e

πi
3 for generic 〈U〉. We use the ρ4 repre-

sentation of K̂T and K̂S given in eqs. (3.8), where (ρ4(K̂S))2 = 14, together with those of
the generators of the traditional flavor group, eqs. (2.11) and eqs. (2.12). In this way, we
find that the nontrivial stabilizer subgroup enhances

(D8 ×D8)/Z2 to [96, 204] at 〈U〉 = generic, 〈T 〉 = e
πi
3 . (4.8)

As intuitively expected, the order is 3 times as large as the order of the original group
(D8 × D8)/Z2 ∼= [32, 49] because of the nontrivial Z3 factor introduced by the stabilizer.
Due to mirror symmetry, this unified flavor symmetry is isomorphic to the resulting unified
flavor symmetry at 〈U〉 = e

πi
3 for generic 〈T 〉.

After this first case, we can now proceed to study the more complex cases of the T2/Z2
orbifold adopting the shapes of a tetrahedron and a raviolo, where the CP-like modular
transformation Σ̂∗ plays an important role.

4.2 The tetrahedron with 〈U〉 = e
πi
3

Setting 〈U〉 = e
πi
3 leads to the T2/Z2 illustrated in figure 5. On the left, we see the

corresponding two-dimensional torus lattice spanned by e1 and e2 of equal length and
enclosing an angle of π

3 . Modding out a Z2 symmetry of the two-torus reduces the funda-
mental domain to the yellow region, whose boundaries are identified as the arrows indicate.
These identifications allow for the fundamental domain of the T2/Z2 orbifold to adopt the
shape of the tetrahedron displayed on the right of the figure. The corners of the tetrahe-
dron correspond to the four fixed points of the orbifold, where the twisted matter fields
(φ(0,0), φ(1,0), φ(0,1), φ(1,1))T are localized.

The generic flavor symmetry group of the tetrahedron can be found by considering the
stabilizer subgroup at 〈U〉 = e

πi
3 for generic 〈T 〉,

H(
〈T 〉,e

πi
3
) =

〈
ĈTĈS

〉 ∼= Z3 , (4.9)

which corresponds to the mirror dual of eq. (4.7b). In this case, the unified flavor group
is constructed by the generators of the traditional flavor group and ĈTĈS. The resulting
unified flavor group is [96, 204], as in the dual scenario given in eq. (4.8).

Since the stabilizer generator ĈTĈS is now a symmetry everywhere in Kähler moduli
space, it is displayed in the fundamental domain (yellow area) of figure 6a. If we now
consider the CP-like transformation Σ̂∗, for particular values of 〈T 〉, the flavor group of
the tetrahedron is enhanced further. These enhancements occur at the points 〈T 〉 along
the curve λT of figure 6a, which is the boundary of the fundamental domain in T moduli
space. The orientation of the curve λT is indicated by bold arrows. It will be used later in
section 4.4.
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e1

φ(1,1)

φ(0,0)

φ(0,1)

φ(1,0)

e2

φ(1,1)

φ(0,0)

φ(1,0)

⇐⇒
φ(0,1)

Figure 5. The T2/Z2 orbifold with 〈U〉 = e
πi
3 . Identifying the arrows indicated on the boundaries

of the fundamental domain of the orbifold yields a tetrahedron, whose vertex corners correspond
to the four fixed points of the orbifold, where twisted matter fields φ(n1,n2) are localized.

For example, at the points of the curve λT with Re〈T 〉 = 1
2 and Im〈T 〉 >

√
3

2 we find
the CP-like transformation K̂TĈSΣ̂∗. It acts on the moduli as

〈T 〉 K̂T−→ 〈T 〉+ 1 ĈS−→ 〈T 〉+ 1 Σ̂∗−→ −〈T̄ 〉+ 1 = 〈T 〉 ,

〈U〉 K̂T−→ 〈U〉 ĈS−→ − 1
〈U〉

Σ̂∗−→ 1
〈Ū〉

= 〈U〉 .
(4.10)

Hence, it belongs to the stabilizer subgroup

H( 1
2 +i Im〈T 〉, e

πi
3
) =

〈
ĈTĈS, K̂TĈSΣ̂∗

〉
, with Im〈T 〉 >

√
3

2 . (4.11)

Using the representations of the involved modular transformations, given in eqs. (3.5), (3.8)
and (3.9), leads to the unified flavor group [192, 1494], which is known as SW4 and can be
associated with all pure rotations of a four-dimensional cube [34]. In contrast to ref. [13],
we realize the SW4 symmetry only if both moduli T and U take special values. The same
enhancement results for 〈T 〉 = eiϕ with π

3 < ϕ < π
2 , where, as indicated in figure 6a, the

stabilizer subgroup H(
eiϕ,e

πi
3
) is generated by ĈTĈS and K̂SĈSΣ̂∗.

Another interesting example is the maximally symmetric point 〈T 〉 = 〈U〉 = e
πi
3 .

There, in addition to ĈTĈS, also the mirror transformation M̂ and the CP-like transfor-
mation

〈T 〉 ĈT−→ 〈T 〉 K̂T−→ 〈T 〉+ 1 Σ̂∗−→ −〈T̄ 〉+ 1 = 〈T 〉 ,

〈U〉 ĈT−→ 〈U〉+ 1 K̂T−→ 〈U〉+ 1 Σ̂∗−→ −〈Ū〉+ 1 = 〈U〉
(4.12)

build the stabilizer subgroup

H(
e
πi
3 ,e

πi
3
) =

〈
ĈTĈS, ĈTK̂TΣ̂∗, M̂

〉
, (4.13)

as displayed in figure 6a. Using the representations of these generators acting on twisted
matter fields, including eq. (3.6), we find that the generic flavor symmetry of the tetra-
hedron [96, 204] is enhanced to the unified flavor group [1152, 157463]. This corresponds
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Im T

Re T
−0.5 0 0.5

1

λT

ĈTĈS

ĈTĈS, ĈTK̂TΣ̂∗, M̂

ĈTĈS, ĈSΣ̂∗, K̂S

ĈTĈS, K̂TĈSΣ̂∗

ĈTĈS, K̂SĈSΣ̂∗

ĈTĈS, ĈSΣ̂∗

〈U〉 = eπi/3

(a) T2/Z2 with 〈U〉 = e
πi
3 .

Im T

Re T
−0.5 0 0.5

1

λT

ĈS

K̂TK̂S, K̂SΣ̂∗, ĈS

Σ̂∗, ĈS, M̂

K̂TΣ̂∗, ĈS

K̂SΣ̂∗, ĈS

Σ̂∗, ĈS

〈U〉 = i

(b) T2/Z2 with 〈U〉 = i.

Figure 6. Generators of the stabilizer subgroups H(〈T 〉,〈U〉) at different points 〈T 〉 of the funda-
mental domain of SL(2,Z)T for two special vevs 〈U〉 of the complex structure modulus. These
elements enhance the traditional flavor symmetry to various unified flavor groups.

to the largest enhancement of the traditional flavor group in the T2/Z2 orbifold, including
mirror symmetry and CP . We observe that even in the simplest case of a T2/Z2 orbifold,
the flavor symmetry can be very large.

Other nontrivial stabilizer subgroup generators are displayed along the curve λT of
figure 6a.

4.3 The raviolo with 〈U〉 = i

Fixing the complex structure modulus to 〈U〉 = i amounts to setting |e1| = |e2| with an
angle of π

2 between them. This corresponds to a toroidal lattice whose basis vectors are
orthogonal and have equal length. In this case, the T2/Z2 orbifold takes the shape of a
raviolo, similar to the one depicted in figure 1, but whose edges are perpendicular and all
have the same length.

The stabilizer subgroup for generic 〈T 〉 and 〈U〉 = i is dual to the one given in eq. (4.7a):
it is generated by ĈS. Note that at 〈U〉 = i the transformation ĈS gives rise to a π

2 rotation
in the compact dimensions. Hence, ĈS is a discrete remnant of the higher-dimensional
Lorentz symmetry. Thus, it generates an R-symmetry. In figure 6b, this universal generator
of the stabilizer subgroups is displayed in the fundamental domain in the T moduli space
(yellow area). Similarly to the previous case, taking into account the CP-like transformation
Σ̂∗, further enhancements arise from the elements of the stabilizer subgroups shown in
figure 6b at the points 〈T 〉 along the curve λT .
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4.4 TTT2/ZZZ2 orbifolds with CP-enhancement

In figure 7, we display the landscape of all nontrivial stabilizers that contain CP-like gen-
erators. To do so, we use the straightened curves λT and λU as the axes in figure 7. To
be specific, the curve λT is defined as the boundary of the fundamental domain of the ST3
modular symmetry in figure 6, where the orientation is illustrated by the bold arrows. Its
mirror dual λU is defined analogously in the U -modulus plane. Hence, the horizontal λT
axis must be interpreted as follows:

• between the leftmost point and λT = i, λT corresponds to ∞ > Im〈T 〉 ≥ 1 and
Re〈T 〉 = 0,

• for λT between i and e
πi
3 , the curve λT describes 〈T 〉 = eiϕ with π

2 > ϕ > π
3 , and

• between λT = e
πi
3 and the rightmost point, the curve λT is associated with

√
3

2 ≤
Im〈T 〉 <∞ and Re〈T 〉 = 1

2 .

Similarly, the dual vertical axis λU has to be read bottom-up, exchanging 〈T 〉 in the
previous description by 〈U〉. The color schema is such that points with values closer to
〈T 〉 → i∞ (〈U〉 → i∞) are more yellow (blue). Large imaginary values of both 〈T 〉 and
〈U〉 yield the green texture.

We observe that the results presented in figures 6a and 6b are reproduced in figure 7
along the upper and lower horizontal lines, respectively. Mirror symmetry maps the lower
(upper) horizontal line to the left (right) vertical line, where the stabilizer generators
coincide after performing the transformations ĈS

M̂←→ K̂S and ĈT
M̂←→ K̂T.

The diagonal in figure 7 describes all special points in moduli space at which 〈T 〉 = 〈U〉
is satisfied. We note that there are different enhancements depending on the particular
values of the moduli. For example, for 〈T 〉 = 〈U〉 = ix with x > 1, the stabilizer subgroup
is H(ix,ix) = 〈Σ̂∗, M̂〉, as displayed on the lower left panel of the figure. As a final example,
consider the area λT < i and i < λU < e

πi
3 in figure 7, i.e. the middle left panel (equivalently

defined by 〈T 〉 = ix with x > 1 and 〈U〉 = eiϕ for π
2 > ϕ > π

3 ). In this case, the stabilizer
subgroup is generated by the CP-like transformation ĈSΣ̂∗. In summary, we obtain all
nontrivial stabilizers that involve CP-enhancement and illustrate them in figure 7.

5 Conclusions and outlook

We have seen that modular transformations of the T2/Z2 orbifold lead to an exceedingly
rich eclectic structure. From the traditional flavor symmetry D8 × D8/Z2 ∼= [32, 49], we
obtain an eclectic flavor group with as many as 4608 elements. We also observe large
flavor groups that are linearly realized at specific regions in T - and U -moduli space, the
largest being [1152, 157463] at 〈T 〉 = 〈U〉 = exp

(
πi
3

)
. For reasons of clarity and simplicity,

the discussion in the present paper has concentrated on group theoretical studies of finite
modular groups and we have not yet included a full implementation of the automorphy
factors of SL(2,Z)T and SL(2,Z)U . Future work [33] will include this along the lines
explained in refs. [12, 16] for the T2/Z3 orbifold. As discussed in ref. [12], the automorphy
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S

•

Ĉ
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,
K̂

S
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∗
,
K̂

S
Ĉ
T

Σ̂
∗
,
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S

K̂
T

K̂
S
,
K̂

S
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∗

K̂
T

K̂
S
,
Ĉ
S
K̂

S
Σ̂
∗

K̂
T

K̂
S
,
Ĉ
T

K̂
S
Σ̂
∗

Σ̂∗

Σ̂∗

Σ̂
∗,

ˆ
M

ĈSΣ̂∗

ĈTΣ̂∗

K̂SΣ̂∗

K̂SĈSΣ̂∗

ĈSK̂SΣ̂∗

K̂
S
Ĉ S

Σ̂
∗,

ˆ
M

ĈTK̂SΣ̂∗

K̂TΣ̂∗

K̂TĈSΣ̂∗

ĈTK̂TΣ̂∗

K̂TĈTΣ̂∗

Ĉ T
K̂

T
Σ̂
∗,

ˆ
M

Figure 7. Generators of the stabilizers H(〈T 〉,〈U〉) for 〈T 〉 ∈ λT and 〈U〉 ∈ λU . The axes λT and λU

correspond to the curves on the boundaries of the two-dimensional fundamental domains of T and
U , see e.g. figure 6 for λT . The diagonal depicts the hypersurface where 〈U〉 = 〈T 〉 on the curves
λT and λU . The stabilizers above and below the diagonal are related by mirror symmetry M̂ .

factors lead to discrete phases. These give rise to discrete R-symmetries that complete
the full eclectic structure. Together with the results presented in this paper, this will be
a crucial step towards a discussion of orbifolds with six compact extra dimensions. The
general case in D = 6 will be too difficult to be analyzed in detail. Using our D = 2 building
blocks we can simplify the discussion and consider elliptic fibrations of the D = 6 case with
various D = 2 sublattice rotations. In a further step we would then have to consider specific
string models that could successfully describe the flavor structure of quarks and leptons
and make contact with available botton-up constructions [7]. The predictions of the model
will crucially depend on the value of the moduli that potentially break flavor and CP in a
desirable way. Thus, the ultimate step in realistic model building will be a discussion of
moduli stabilization. We think it is premature to discuss this mechanism at the moment,
as the process of moduli stabilization will crucially depend on the specific models under
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consideration. So we rather first would like to construct models that have a chance for a
realistic description of flavor for some values of the moduli and relegate the discussion of
moduli stabilization to future work.
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A Narain lattice

In this appendix, we give a brief discussion on the Narain space group of our T2/Z2 orbifold,
its outer automorphisms and their actions on the twisted matter fields that are localized
at the fixed points of the T2/Z2 orbifold.

A.1 Orbifolds defined by the Narain space group

The string y(τ, σ) can be split into right- and left-moving degrees of freedom yR and yL,
respectively, where (

y

ỹ

)
= 1√

2

(
12 12
−12 12

) (
yR
yL

)
, (A.1)

and ỹ denotes the so-called dual string coordinate. Then, one defines Narain coordinates
Y and compactifies them on a Narain torus, i.e.

Y :=
(
yR
yL

)
where Y ∼ Y + EN and EN ∈ Γ , (A.2)

Here, the integer vector N = (n1, n2,m1,m2)T ∈ Z4 gives the winding numbers (n1, n2)
and the Kaluza-Klein numbers (m1,m2). In addition, E is a 4 × 4 vielbein matrix, the
so-called Narain vielbein (given for example in refs. [10, 11], changing B to −B). To ensure
two-dimensional worldsheet modular invariance, the Narain vielbein has to span an even,
integer, self-dual lattice with metric η = diag(−1,−1, 1, 1) of signature (2, 2): the so-called
Narain lattice Γ. In a second step, one can mod out the Narain lattice by a ZK rotational
symmetry, generated by the Narain twist

Θ =
(
θR 0
0 θL

)
where ΘK = 14 and ΘΓ = Γ . (A.3)

Hence, one defines an orbifold in the Narain formulation of string theory as

Y 7→ g Y := Θk Y + EN ∼ Y , (A.4)

where g = (Θk, E N) is an element of the so-called Narain space group SNarain. The
orbifold is called symmetric if the Narain twist Θ acts identically on right- and left-movers,
i.e. θ := θR = θL.
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A.2 Outer automorphisms of the ZZZ2 Narain space group

Discrete symmetries of the four-dimensional effective theory obtained from orbifold com-
pactifications are associated with the outer automorphisms of the Narain space group
SNarain. In analogy to the definition in eq. (2.7) for the geometrical space group, an outer
automorphism of SNarain is defined as a mapping from SNarain to itself. In more detail, a
transformation h =

(
Σ, E T

)
6∈ SNarain is an outer automorphism of SNarain if

g
h7−→ h−1 g h

!
∈ SNarain , (A.5)

for all g =
(
Θk, E N

)
∈ SNarain. In addition, Σ has to preserve the Narain metric

ΣTηΣ = η . (A.6)

Next, we translate the Narain space group and its outer automorphisms into the lattice
basis, in which we denote all quantities in general by a hat. For example, eq. (A.5) reads
in the lattice basis

ĝ
ĥ7−→ ĥ−1 ĝ ĥ

!
∈ ŜNarain , (A.7)

where

ĝ :=
(
E−1, 0

) (
Θk, E N

) (
E, 0

)
=
(
Θ̂k, N

)
∈ ŜNarain and (A.8a)

ĥ :=
(
E−1, 0

) (
Σ, E T

) (
E, 0

)
=
(
Σ̂, T

)
6∈ ŜNarain . (A.8b)

Here, we have defined Θ̂ := E−1ΘE and Σ̂ := E−1ΣE. Furthermore, due to eq. (A.6)
we have to impose Σ̂ ∈ Oη̂(2, 2,Z), where the group Oη̂(2, 2,Z) of “rotational” outer
automorphisms of the Narain lattice Γ is defined as

Oη̂(2, 2,Z) :=
〈
Σ̂ | Σ̂ ∈ GL(4,Z) with Σ̂Tη̂ Σ̂ = η̂

〉
, (A.9)

using the Narain metric in the lattice basis

η̂ := ETη E =
(

0 12
12 0

)
. (A.10)

As discussed in detail in ref. [11], the group Oη̂(2, 2,Z) contains the generators

K̂S :=
(

0 ε

ε 0

)
and K̂T :=

(
12 0
ε 12

)
, with ε :=

(
0 1
−1 0

)
, (A.11a)

ĈS :=
(
−ε 0
0 −ε

)
and ĈT :=

(
γ 0
0 γ−T

)
, with γ :=

(
1 −1
0 1

)
. (A.11b)

Note that, compared to refs. [8, 11] we redefined K̂S, K̂T and ĈS. K̂S and K̂T generate
SL(2,Z)T of the Kähler modulus T , while ĈS and ĈT generate SL(2,Z)U of the complex
structure modulus U . Moreover, the group Oη̂(2, 2,Z) contains two additional generators,
given by

Σ̂∗ :=


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 and M̂ :=


0 0 −1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 . (A.12)
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The first generator Σ̂∗ gives rise to a CP-like transformation, while M̂ generates a mirror
symmetry, i.e. T M̂←→ U and

M̂ ĈS M̂
−1 = K̂S and M̂ ĈT M̂

−1 = K̂T . (A.13)

In order to identify the transformation of the moduli T and U under Oη̂(2, 2,Z), one
can consider the generalized metric H, defined by

H(T, U) := ETE . (A.14)

Under a modular transformation the Narain vielbein transforms as E 7→ E Σ̂−1 for Σ̂ ∈
Oη̂(2, 2,Z). Consequently, we obtain that the generalized metric transforms as

H(T, U) Σ̂7−→ H(T ′, U ′) = Σ̂−TH(T, U) Σ̂−1 . (A.15)

In this way, one can prove the transformations of the moduli, given in eqs. (3.1) and (3.2),
under the Oη̂(2, 2,Z) transformations listed in eqs. (A.11) and (A.12).

For the (symmetric) T2/Z2 orbifold under consideration, the Narain twist is given by
Θ = Θ̂ = −14. Hence, all outer automorphisms of the Narain lattice generated by the
elements listed in eqs. (A.11) and (A.12) are also outer automorphisms of the Z2 Narain
space group. In addition, eq. (A.5) yields translational outer automorphisms ĥ =

(
14, T

)
6∈

ŜNarain that have to satisfy(
Θ̂, N

) ĥ7−→
(
14,−T

) (
Θ̂, N

) (
14, T

)
=
(
Θ̂, N − (14 − Θ̂)T

) !
∈ ŜNarain . (A.16)

Thus, we obtain the condition (14 − Θ̂)T ∈ Z4 on Narain translations with T /∈ Z4. For
Θ̂ = −14 we find that the solutions of this condition can be generated by (cf. appendix B)

T1 = 1
2


1
0
0
0

 , T2 = 1
2


0
1
0
0

 , T3 = 1
2


0
0
1
0

 and T4 = 1
2


0
0
0
1

 . (A.17)

A.3 Transformation of ZZZ2 twisted strings

From eq. (A.16) we find that Narain translations ĥi =
(
14, Ti

)
6∈ ŜNarain with Ti given in

eq. (A.17) act on the constructing elements
(
Θ̂, N

)
∈ ŜNarain of Z2 twisted matter fields

φ(n1,n2) as (
Θ̂, N

) ĥi7−→
(
Θ̂, N − 2Ti

)
∈ ŜNarain , (A.18)

using Θ̂Ti = −Ti. Note that winding numbers (n1, n2) and KK numbers (m1,m2) of
Z2 twisted strings with N = (n1, n2,m1,m2)T are defined modulo 2 (by considering the
conjugacy classes [ĝ] of constructing elements ĝ ∈ ŜNarain). Consequently, eq. (A.18) shows
that ĥ1 and ĥ2 increase the winding number n1 and n2 by one unit, respectively. This
confirms the geometrical intuition, illustrated in figure 2: ĥ1 interchanges the twisted
matter fields φ(0,n2) and φ(1,n2), while ĥ2 interchanges φ(n1,0) and φ(n1,1). On the other
hand, ĥ3 and ĥ4 act only on the KK numbers m1 and m2 of the twisted strings. Hence,
each twisted matter field φ(n1,n2) is mapped by ĥ3 and ĥ4 to itself, possibly times a phase. In
summary, these considerations show that the Narain automorphism ĥi =

(
14, Ti

)
gives rise

to a representation ρ4(hi), for i = 1, . . . , 4, as displayed in eqs. (2.11), (2.12a) and (2.12b).
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A.4 Details on mirror symmetry

Let us consider the constructing elements ĝ =
(
Θ̂, N

)
∈ ŜNarain of Z2 twisted strings with

N = (n1, n2,m1,m2)T and n1, n2,m1,m2 ∈ {0, 1}. These 16 elements are associated with
four twisted matter fields φ(n1,n2) as follows:

φ(n1,n2) ↔ ĝ =
(
Θ̂, N

)
with N = (n1, n2,m1,m2)T and m1,m2 ∈ {0, 1} . (A.19)

Then, according to eq. (A.7) mirror symmetry M̂ acts as(
Θ̂, N

) M̂7−→
(
Θ̂, M̂−1N

)
∈ ŜNarain , (A.20)

where we used M̂−1 Θ̂ M̂ = Θ̂ for the Z2 Narain twist Θ̂ = −14, and M̂ is given in
eq. (A.12). Hence, we obtain

n1
n2
m1
m2

 M̂7−→


0 0 −1 0
0 1 0 0
−1 0 0 0
0 0 0 1



n1
n2
m1
m2

 =


−m1
n2
−n1
m2

 . (A.21)

Using the correspondence between constructing elements of the Narain space group and
the twisted matter fields stated in eq. (A.19), we get

φ(0,0)
M̂7−→ α11 φ(0,0) + α12 φ(1,0) , (A.22a)

φ(1,0)
M̂7−→ α21 φ(0,0) + α22 φ(1,0) , (A.22b)

φ(0,1)
M̂7−→ α33 φ(0,1) + α34 φ(1,1) , (A.22c)

φ(1,1)
M̂7−→ α43 φ(0,1) + α44 φ(1,1) , (A.22d)

with unknown coefficients αij . Similar to eq. (2.9), this defines the matrix representation
of the mirror transformation M̂ on twisted matter fields

ρ̃4(M̂) :=


α11 α12 0 0
α21 α22 0 0
0 0 α33 α34
0 0 α43 α44

 , (A.23)

where we have used the notation ρ̃4(M̂) (i.e. with a tilde) as it will be redefined at the end
of this section.

Moreover, one can analyze the group of outer automorphisms of ŜNarain, especially
concerning the translations Ti, i = 1, . . . , 4, given in eq. (A.17) and mirror symmetry
M̂ , i.e. (

M̂, 0
) (
14, T1

) (
M̂−1, 0

)
=
(
14,−T3

)
, (A.24a)(

M̂, 0
) (
14, T2

) (
M̂−1, 0

)
=
(
14, T2

)
, (A.24b)(

M̂, 0
) (
14, T3

) (
M̂−1, 0

)
=
(
14,−T1

)
, (A.24c)(

M̂, 0
) (
14, T4

) (
M̂−1, 0

)
=
(
14, T4

)
, (A.24d)
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where Ti are defined up to integers such that −Ti ∼ Ti. Let us embed these equations into
their action on twisted matter fields

ρ̃4(M̂) ρ4(h1) ρ̃4(M̂)−1 = ρ4(h3) , (A.25a)
ρ̃4(M̂) ρ4(h2) ρ̃4(M̂)−1 = ρ4(h2) , (A.25b)
ρ̃4(M̂) ρ4(h3) ρ̃4(M̂)−1 = ρ4(h1) , (A.25c)
ρ̃4(M̂) ρ4(h4) ρ̃4(M̂)−1 = ρ4(h4) . (A.25d)

This fixes all unknowns αij except for α11,

ρ̃4(M̂) = α11


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 , (A.26)

and we obtain a representation of mirror transformation that is of order two by setting
α11 = 1√

2 . However, in order to disentangle the two finite modular groups (associated
with the Kähler modulus and the complex structure modulus) we have decided to redefine
ρ̃4(M̂) according to

ρ4(M̂) := ρ̃4(M̂) ρ4(h1) ρ4(h2) ρ4(h3) ρ4(h4) = 1√
2


0 0 −1 1
0 0 1 1
1 −1 0 0
−1 −1 0 0

 , (A.27)

as stated in eq. (3.6) in section 3. This redefinition is possible, since each transformation
hi associated with ρ4(hi) in eq. (A.27) belongs to the traditional flavor symmetry that
does not affect the moduli and, hence, is valid everywhere in moduli space. Further, the
redefinition eq. (A.27) does not alter the physics of the theory because ρ4(hi) is a symmetry
transformation. Additional details will be given in ref. [33].

B How to classify the outer automorphisms of a space group

The group of outer automorphisms Out(ŜNarain) of a Narain space group ŜNarain is the key
to uncover all discrete symmetries resulting from the orbifold compactification encoded
in ŜNarain. Interestingly, there exists a general algebraic construction of Out(S) for any
kind of space group S due to Lutowski, see refs. [35, 36]. In this appendix, we briefly
demonstrate its application to the Narain space group of the T2/Z2 orbifold in order to
confirm the results presented in appendix A.2.

The Z2 Narain space group of our T2/Z2 orbifold is defined as

ŜNarain =
〈(
14, N

)
,
(
Θ̂, 0

)
| N ∈ Z4, Θ̂ = −14

〉
(B.1)

in the lattice basis. Then, Lutowski’s algorithm states that Out(ŜNarain) is given by two
factor groups, denoted by Ξ and H1(P̂ ,Z4). These groups combine semi-directly in the
same way as the lattice and the point group combine to define ŜNarain, i.e.

Out(ŜNarain) = Ξ n H1(P̂ ,Z4) . (B.2)

– 23 –



J
H
E
P
0
2
(
2
0
2
1
)
0
1
8

The constituents of Out(ŜNarain) are the so-called stabilizer Ξ of the space group and the
first cohomology group H1(P̂ ,Z4), where P̂ is the Narain point group in the lattice basis
(P̂ =

〈
Θ̂
〉

= {±14} ∼= Z2 in our case). Therefore, one can write an outer automorphism as
ĥ =

(
Σ̂, T

)
6∈ ŜNarain with a rotational part Σ̂ and a translational part T that acts as

(
Θ̂k, N

) ĥ7−→
(
Σ̂, T

)−1 (Θ̂k, N
) (

Σ̂, T
)
∈ ŜNarain (B.3)

for all
(
Θ̂k, N

)
∈ ŜNarain. By applying Lutowski’s algorithm, one observes that H1(P̂ ,Z4)

accounts for pure translations. In detail, one finds

H1(P̂ ,Z4) =
〈
Ti | i = 1, 2, 3, 4

〉
/Z4 ∼= (Z2)4 , (B.4)

see eq. (A.17). The four generators of this group Ti correspond exactly to the transforma-
tions ĥi introduced earlier as the geometrical translations for i = 1, 2 and the space group
selection rule for i = 3, 4. Acting on the twisted strings of the Z2 orbifold, these outer
automorphisms give rise to the traditional flavor symmetry.

The other factor of Out(ŜNarain) in eq. (B.2) is the stabilizer Ξ, which is governed by
the explicit form of the space group. In general, an element of Ξ might admit both, a
rotational part Σ̂ and a translational part s(Σ̂) such that a general element is given by a
so-called roto-translation

(
Σ̂, s(Σ̂)

)
. Since the Z2 point group P̂ =

〈
Θ̂
〉
considered here

acts as a pure rotation on the Narain lattice, we can set s(Σ̂) = 0 and the algorithm finds
the stabilizer group to be

GL(4,Z)/
〈
Θ̂
〉
. (B.5)

However, we have to impose the physical condition (related to level-matching) that the
rotation Σ̂ has to preserve the Narain metric in the lattice basis η̂, given in eq. (A.10).
This means that Σ̂Tη̂Σ̂ = η̂ has to hold. As defined in eq. (A.9), these rotations form the
subgroup Oη̂(2, 2,Z) of GL(4,Z). Therefore, the stabilizer group Ξ of the Z2 Narain space
group is given by

Ξ ∼= Oη̂(2, 2,Z)/
〈
Θ̂
〉
. (B.6)

Its set of elements is generated by K̂S, K̂T, ĈS, ĈT, Σ̂∗ and M̂ , as listed in eqs. (A.11)
and (A.12), modulo point group transformations with Θ̂ = −14. This class of outer
automorphisms of the Narain space group generates the group of modular transformations
of our T2/Z2 compactification background.

Finally, with the semi-direct product being mediated by the Narain version of the
group law in eq. (2.2), the outer automorphisms of the Narain space group reads

Out(ŜNarain) =
〈(

Σ̂, 0
)
,
(
14, Ti

)
| Σ̂ ∈

{
K̂S, K̂T, ĈS, ĈT, Σ̂∗, M̂

}
, i = 1, . . . , 4

〉
/ŜNarain .

(B.7)

C Irreducible representations of twisted matter fields

The four twisted matter fields (φ(0,0), φ(1,0), φ(0,1), φ(1,1))T are localized at the four fixed
points of the T2/Z2 orbifold. They transform under both, the traditional flavor symmetry

– 24 –



J
H
E
P
0
2
(
2
0
2
1
)
0
1
8

(D8 × D8)/Z2 ∼= [32, 49], where they transform as an irreducible 4, and also under the
modular symmetries discussed in section 3. There, it was found that twisted matter fields
do not transform faithfully under SL(2,Z)T and SL(2,Z)U but in a four-dimensional unitary
representation ρ4 of the respective finite modular groups ST3 and SU3 . Moreover, this
representation turns out to be reducible. In detail, by studying the characters of the
representation matrices one can show that the four-dimensional representation decomposes
i) into irreducible representations of each S3 factor as

4 = 2⊕ 1⊕ 1 (C.1)

and ii) into irreducible representations of ST3 × SU3 as

4 = (2,1)⊕ (1,2) . (C.2)

Moreover, including mirror symmetry, ST3 × SU3 is enhanced to [144, 115] (cf. eq. (3.11)),
where the four twisted matter fields build an irreducible representation 4. These decom-
positions can be made explicit by the following orthogonal basis change B:

φ1
φ2
φ3
φ4

 := B


φ(0,0)
φ(1,0)
φ(0,1)
φ(1,1)

 , where B :=


0 −1√

3
−1√

3
−1√

3
1 0 0 0
0 −2√

6
1√
6

1√
6

0 0 1√
2
−1√

2

 . (C.3)

In this basis, the matrix representations, eqs. (3.5)–(3.8), of modular transformations of
the four twisted matter fields φn are given by ρ′4(γ) = B ρ4(γ)B−1. They take the follow-
ing form

ρ′4(K̂S) =


−1
2

−
√

3
2 0 0

−
√

3
2

1
2 0 0

0 0 1 0
0 0 0 1

 , ρ′4(K̂T) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , (C.4a)

ρ′4(ĈS) =


1 0 0 0
0 1 0 0
0 0 −1

2
−
√

3
2

0 0 −
√

3
2

1
2

 , ρ′4(ĈT) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (C.4b)

where we indicate the 2 × 2 block structure by horizontal and vertical lines, cf. ref. [37].
This proves the (2,1) ⊕ (1,2) block structure with respect to ST3 × SU3 . Furthermore, in
this basis it is easy to see that the mirror transformation M̂ interchanges ST3 and SU3 , i.e.

ρ′4(M̂) =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 . (C.4c)

Finally, the irreducible representations in which the twisted matter fields transform under
various components of the eclectic flavor symmetry are summarized in table 1.
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finite modular symmetry traditional flavor symmetry
ST3 SU3 ST3 × SU3 (ST3 × SU3 ) o ZM̂4 (D8 ×D8)/Z2

2⊕ 1⊕ 1 2⊕ 1⊕ 1 (2,1)⊕ (1,2) 4 4

Table 1. Irreducible representations of twisted matter fields (φ(0,0), φ(1,0), φ(0,1), φ(1,1))T with re-
spect to the various flavor symmetries (in the absence of string oscillator excitations).
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