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1 Introduction

Scattering amplitudes are the heart of any perturbative prediction for collider physics.
The increase in luminosity and precision on the experimental side is driving the theoretical
effort to match such results. This means calculations are being pushed towards higher loop
order and higher multiplicities. While there exist many methods to compute scattering
amplitudes that work in principle, practical implementations often run into complexity and
performance bottlenecks. More efficient alternative methods to calculate matrix elements
are an important driver of practical progress in the quest for precision predictions, as they
bring more complex calculations within operational reach.

In recent years, significant progress has been made in the computation of two-loop am-
plitudes with five massless external legs [1–11], especially by means of generalised unitarity
methods [12–21]. Calculations such as these are performed numerically to circumvent prac-
tical bottlenecks in intermediate stages of the analytical calculation. Despite the success of
these methods, numerical routines can still require up to several minutes to be executed at
every given phase-space point. For any phenomenological application to be feasible, it is
crucial to find a more efficient evaluation path. This is done by reconstructing reasonably
compact analytical expression from a finite number of numerical evaluations.

Analytical expressions for the planar two-loop five-parton amplitudes were obtained
in ref. [1] by means of a modified Newton method over finite-fields [22]. We show that by
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analysing the singularity structure of the coefficients and performing the reconstruction in
terms of spinor-helicity variables as proposed in ref. [23] the obtained analytical expressions
are more compact, faster to evaluate and numerically more stable. This is achieved while
reducing the number of required numerical samples by about an order of magnitude.

In the following sections, we briefly review the original calculation to introduce the spe-
cific quantities under consideration, then review the spinor-helicity reconstruction strategy,
and analyse the algebraic complexity of both reconstruction and final results. Lastly, we
consider the numerical stability of the results for phenomenological applications.

1.1 Summary of the original calculation

The original calculation in ref. [1] was performed via numerical D-dimensional generalised
unitarity in the leading-colour approximation, more precisely in the limit of large number
of colours Nc while keeping the ratio to the number of flavours Nf fixed.

The full amplitudes A are stripped of their dependence on the gauge-group factors by
colour-ordering decompositions [24, 25] in terms of color-ordered sub-amplitudes A. Their
expansion in terms of the bare QCD coupling α0 reads

A = g3
0

(
A(0) + α0

4πNcA(1) +
(
α0
4π

)2
N2
cA(2) +O(α3

0)
)
, (1.1)

where A(n) is a n-loop amplitude. Each loop amplitude can be further expanded in the
ratio Nf/Nc as

A(1) = A(1)[N0
f ] + Nf

Nc
A(1)[N1

f ] , (1.2)

A(2) = A(2)[N0
f ] + Nf

Nc
A(2)[N1

f ] +
(
Nf

Nc

)2
A(2)[N2

f ] . (1.3)

Bare quantities are related to renormalised ones through the running of the QCD
coupling αs(µ), whose relation to the bare coupling α0 is given by the β-function

α0µ
2ε
0 Sε = αsµ

2ε
(

1− β0
ε

αs
4π +

(
β2

0
ε2
− β1

ε

)(
αs
4π

)2
+O

(
α3
s

))
. (1.4)

with Sε = (4π)εe−εγE . This, in turn, leads to the renormalised amplitude

AR = S
− 3

2
ε g3

s

(
A(0)
R + αs

4πNcA(1)
R +

(
αs
4π

)2
N2
cA

(2)
R +O(α3

s)
)
. (1.5)

The ε-pole dependence of an n-loop amplitude is determined by lower-loop amplitudes
and well known universal factors [26–29]

A(1)
R = I(1)

[n] (ε)A
(0)
R +O(ε0) , (1.6)

A(2)
R = I(2)

[n] (ε)A
(0)
R + I(1)

[n] (ε)A
(1)
R +O(ε0) . (1.7)

The latter equation can be rearranged to obtain the definition of the so-called finite re-
mainders, which contain the genuine two-loop information

R(2) = A(2)
R − I(1)

[n]A
(1)
R − I(2)

[n]A
(0)
R +O(ε) . (1.8)
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These finite remainders can be expressed as sum of products of rational coefficients ri
and special transcendental functions hi such as pentagon functions [30, 31]

R(2) =
∑
i

rihi . (1.9)

Eq. (1.8) and (1.9) are valid term by term in the Nf/Nc expansion of eq. (1.3). The rational
coefficients ri are the subject of the present study.

2 Spinor-helicity remainders

We make use of the strategies introduced in ref. [23] to construct spinorial expressions for
all 740 function coefficients of the two-loop five-parton finite remainders (see eq. (1.9)).
These are labelled by particle content, helicity, position in the Nf/Nc expansion, and by
a numerical index. For simplicity’s sake, we will refer to them by single generic index
i. Explicit examples of what is achievable with this type of reconstruction are given in
section A of the appendix. The full results can be found in the supplementary material,
which can be imported into Mathematica and evaluated with S@M [32].

2.1 Reconstruction strategy

The finite-field reconstruction originally employed in ref. [1] requires to choose a minimal
set of linearly independent invariants. This minimal set was either momentum twistor
parameters [33], or a combination of Mandelstam variables, sij = 2Pi · Pj , and Gram
determinants, tr5(ijkl) = tr(γ5PiPjPkPl). In the case of our input expressions the choice
for the five-point amplitudes was

{s12, s23, s34, s45, s15, tr5(1234)}. (2.1)

To uncover the simpler expressions, we relax this condition and instead consider an over-
complete (in a linear sense) set of spinor variables,1 which for the current application can
be taken to be

~v = { 〈12〉, 〈13〉, 〈14〉, 〈15〉, 〈23〉, 〈24〉, 〈25〉, 〈34〉, 〈35〉, 〈45〉,
[12], [13], [14], [15], [23], [24], [25], [34], [35], [45],

〈1|2 + 3|1], 〈1|2 + 5|1], 〈2|1 + 3|2], 〈2|1 + 5|2], 〈3|1 + 2|3],
〈3|1 + 5|3], 〈4|1 + 2|4], 〈4|1 + 5|4], 〈5|1 + 2|5], 〈5|1 + 4|5] } .

(2.2)

This set of variables was discovered by starting off with an even larger one containing
all spinor contractions of a certain form and restricting it to those for which the rational
functions under consideration actually display diverging behaviour.

The advantage of such a choice of variables is that there is now a one-to-one corre-
spondence between variables and possible poles of the rational coefficients in complex mo-
mentum space. This relation can be exploited numerically, for instance via high-precision
floating-point evaluations in singular limits

lim
vj→ε�1

ri ∝ εαi,j , (2.3)

1For an introduction to the spinor-helicity notation please see refs. [32, 34].
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where αi,j is the order of the pole (αi,j < 0) or zero (αi,j > 0) of the coefficient ri in the
spinor variable vj . If αi,j is zero, then vj is neither a pole nor a zero of ri.

After evaluating ri in all singular limits of eq. (2.3), we obtain the least common
denominator (LCD) representation of the rational function ri

ri = NLCD
DLCD

= N
∏
j

v
αi,j

j , (2.4)

where the quotient NLCD/N is given by the product of common factors in the numerator
{vj : αi,j > 0} or 1 if no common factor was found. In general, N is guaranteed to be free
from denominator factors, assuming ~v contains all possible poles of ri.

Note that in some cases such as the first example given in the appendix (A.1)/(A.2)
the task of determining the coefficient ri is rendered entirely trivial by this procedure, as
the product of the vαi,j

j factors yields the full answer up to an easily obtained constant
pre-factor. More generally, the numerator N is a polynomial in spinor variables of eq. (2.2)
whose complexity depends on its mass dimension and its phase weights (see section 2.3 of
ref. [23]). The coefficients of this polynomial can be fixed by linear solving.

Let us consider the second example given in the appendix (A.3)/(A.4), eq. (2.4) reads2

r10 = N
[13]4[25]4〈5|1 + 2|5]3 (2.5)

where N has mass dimension 14 and phase weights [−4,−4,−4, 0,−4]. In this case, the
corresponding ansatz, i.e. a set of products of spinor brackets which spans N , only has
160 entries. However, note that this is a fairly easy example. In general, as the number of
factors in DLCD increases, so does the size of the system corresponding to N , and in some
cases it can exceed 100 000 entries.

In order to simplify the reconstruction, we need to go one step further and perform
a partial-fraction decomposition before actually attempting the numerator reconstruction.
Such a decomposition will also better represent the pole structure of the coefficients. Thus,
let us write the coefficients in the following form

ri =
∑
k

Nk
∏
j

v
βk

i,j

j with βki,j ≥ αi,j . (2.6)

This decomposition is of course not unique. If we denote by
[
N
]
the size of the ansatz

for the expression N , the aim is to have
∑
k

[
Nk
]
�
[
N
]
. This is generally achieved by

picking the βki,j as large as possible.
In order to obtain insights into the structure of possible partial-fraction decomposition,

we study the behaviour of ri in all doubly singular limits

lim
vj1 ,vj2→ε�1

ri = εαi,(j1,j2) . (2.7)

By comparing αi,(j1,j2) to αi,j1 +αi,j2 we can infer potential partial-fraction decompositions.
Since in general there will exist additional factors vj3 6=j1,j2 that will also be of order ∼ O(ε)

2This coefficient is for R
(2)[N1

f
]

g−g+g−g+g+ .
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in this double limit, the logic to apply to extract useful information out of the table of
exponents αi,(j1,j2) can be fairly lengthy. We refer the reader to ref. [23] for a detailed
discussion. Let us consider an example instead.

In the case we already considered (A.3)/(A.4), two of the doubly singular limits are

lim
[13],〈5|1+2|5]→ε�1

r = ε−7 and lim
[25],〈5|1+2|5]→ε�1

r = ε−4 . (2.8)

Therefore, it is logical to conjecture that if we want to reconstruct the residue of 〈5|1+2|5]3

we need to include in the denominator the full fourth order pole [13]4 but [25] may suffice
as a simple pole. Indeed this is the case, as shown by the first fraction in (A.4).

This strategy appears to scale well with the size of DLCD, severely limiting [Nk] even in
the most complicated cases. Furthermore, as explained in ref. [23], specific numerators Nk
can be isolated and reconstructed individually by generating phase-space points in limits
where they are dominant. This allows to solve a few small systems instead of a single
large one, and to apply the strategy iteratively by recursively subtracting reconstructed
partial-fractioned terms and repeating the study of the singular limits for the remainder.

3 Results

In this section we compare three aspects of our results compared to those we used as an
input. First, we compare their complexity in terms of the leaf count of the finite remainder
expressions, that is in terms of the number of nodes in their abstract syntax trees. Second,
we estimate the number of calls to the numerical amplitude evaluation procedure needed
by both methods for the analytical reconstruction of the rational functions. Third, we
analyse the numerical stability of the resulting expressions under realistic conditions.

3.1 Algebraic complexity of the result

We compare the complexity of our expressions with the original input expressions from
ref. [1] which were simplified by means of Leinartas partial fractioning [35, 36]. As a
measure of complexity we use the leaf count.

Figure 1 shows the ratio of the leaf counts for all 740 coefficients. This comparison
is between the raw output of the spinor reconstruction to the Leinartas simplified version
of the Mandelstam expressions. The vast majority of the coefficients is simplified in the
spinor version, in some cases by more than one order of magnitude. Overall, the total new
leaf count is about two times smaller, at 4 ·106 compared to 9 ·106. This is the case, despite
the leaf count of most expressions is reduced by more than a factor of two, because the
largest reduction occurred for coefficients of relative small size. As a result of the reduced
complexity, the total speed up for the evaluation of all coefficients is also a factor of about
2, at about 1s instead of 2s on Mathematica.

3.2 Number of numerical evaluations

For the results we present in this paper, we take as input numerical evaluations of analyt-
ical expressions previously obtained in ref. [1]. In principle our method could have been
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Figure 1. Ratios of leaf counts of Mandelstam expressions to spinor-helicity ones.

applied directly to the numerical program from which the expressions we take as input were
themselves obtained. Of course this would have required a significantly larger amount of
computing resources. In this section we quantify how many numerical evaluations are
needed by each method to recover the analytical expressions, and show that using our
reconstruction technique would have required far fewer, albeit in some cases with higher
numerical precision.

The number of evaluations required to perform the reconstruction of a numerator Nk is
directly related to the size of the linear system which parametrises it. In particular, the rel-
evant systems are Lorentz invariant polynomials with [Nk] linearly independent monomials.
Let us perform the counting for a numerator of mass dimension d and zero phase weights,
since this case can be equivalently expressed in terms of spinor products or Mandelstam
variables, sij , and Gram determinants, tr5(ijkl).3 Let m be the multiplicity of the phase
space, then the counting for the number of linearly independent sij and tr5(ijkl) is simply

[sij ] = m(m− 3)
2 and [tr5(ijkl)] =

(
m− 1

4

)
. (3.1)

The size of the numerator ansatz is then bounded as follows((
[sij ]
d/2

))
≤ [Nk] ≤

((
[sij ]
d/2

))
+ [tr5(ijkl)]

((
[sij ]

(d− 4)/2

))
, (3.2)

where the double parenthesis denotes combinations with replacement

CR(n, r) =
((
n

r

))
= (n+ r − 1)!

r!(n− 1)! . (3.3)

Unfortunately, the exact counting valid at all-multiplicity is not easy to obtain due to the
following identity

tr5(2345)Pµ1 − tr5(1345)Pµ2 + tr5(1245)Pµ3 − tr5(1235)Pµ4 + tr5(1234)Pµ5 = 0 . (3.4)
3Note that there is only one linearly independent tr5 at five-point.
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Figure 2. Maximum mass dimension of numerator antäze to be reconstructed for each helicity
configuration when using Mandelstam invariants or spinor variables.

However, the upper bound of eq. (3.2) is saturated at all multiplicities for mass dimensions
d ≤ 4, and at all mass dimensions for multiplicities m ≤ 5, which includes case relevant for
the current study.

Figure 2 shows the largest mass dimension of the numerators appearing in the rational
coefficients of the various components of the two-loop five-parton finite remainders which
need to be reconstructed either in terms of Mandelstam invariants via finite-field meth-
ods over a single denominator, or in terms of spinor variables via Gaussian elimination
of partial-fractioned systems in specific kinematic configurations. In particular, the two
largest systems to reconstruct have respectively mass dimension d = 68 for the former
case, which by eq. (3.2) yields a system of size 132 720,4 and mass dimension d = 23 for
the latter case, which gives a system of size 2 288.5 Since the latter case corresponds to
the largest numerator in a partial-fractioned ansatz, i.e. max([Nk]), whereas the former to
a single fraction expression, i.e. [NLCD], for a fair comparison we should really sum over
the size of the systems for all numerators in said ansatz, i.e.

∑
k[Nk]. Yet, even then they

only add up to about 6 000. Figure 3 shows in more details the largest numerator mass
dimensions for the spinor expressions. Note that common numerator factors are not taken
into account, since they multiply the ansatz and are not parametrised by the latter.

A couple of further elucidations are in order. Firstly, we always solve the linear sys-
tems with an in-house implementation of a partially-pivoted row-reduction algorithm on
GPGPUs, which requires double precision floats.

Secondly, the largest linear systems, such as the one of size 2 288, are not generated in
any singular limit. These phase-space points are only required to 16 digits and are clearly

4The actual number of evaluations used in ref. [1] was 94,696 instead of the predicted 132,720, because
of subtleties and optimisations in their reconstruction algorithm.

5Note that eq. (3.2) requires even mass dimensions. In this case the ansatz is technically for mass
dimension 23 and phase weights [1, -1, 1, 1, 0].
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Figure 3. Maximum mass dimension of the numerator ansatze. This can be equivalently thought
of as the maximum degree of the polynomials in the angle and square spinor brackets. The ‘Nf’
labels refer to the respective terms in the expansion of eq. (1.3).

relevant for all coefficients, whereas the specific phase-space points for the other terms in
the partial-fraction decomposition may be required with higher precision and depend on
which residues need to be fitted. Therefore, the latter type may differ from one coefficient to
another depending on which poles appear. However, note that the case used above, where
the number of free parameters in these numerators add up to about 4 000, contains 20 of
the 30 poles of eq. (2.2). It is then reasonable to increase this number of 50% to account for
the remaining 10 poles. Still, this does not change the ball-park of up to 10 000 evaluations.

Thirdly, although most phase-space points are required with higher than double pre-
cision, they are also counted multiple times. For instance, if an ansatz takes the form
N1/〈12〉2 +N2/〈12〉, in the sum over the number of free parameters for the numerators Nk

both N1 and N2 will appear, even though the same high-precision evaluations in the limit of
small 〈12〉 can be used for both coefficients. The true number of required evaluations would
be max([N1], [N2]) instead of [N1] + [N2]. However, by performing this over-counting the
estimate is closer to the number of equivalent double-precision evaluations need. In gen-
eral the precision required depends linearly on how many sub-leading orders of a pole need
to be resolved. In practice we used fixed precision evaluations with 300 digits and picked
ε ∼ 10−30 for the singular limits (eq. (2.3)) to avoid stability issues, but in theory ε ∼ 10−16

and as few as 16 digits of precision per pole order could still allow to solve the systems
with double precision. However, these type of stability considerations would need to be
performed directly on the numerical code and not on already reconstructed expressions.

Overall, we find that the number of numerical evaluation required to perform the an-
alytical reconstruction is reduced from about 100 000 to about 10 000. Considering the
quoted evaluation time of 4.5 min per phase-space point in ref. [1], this could potentially
make the calculation cheaper, depending on the additional cost of higher precision execu-
tions. Parity in this case would be obtained for an average floating-point evaluation 10×

– 8 –



J
H
E
P
0
2
(
2
0
2
1
)
0
1
6

Figure 4. Relative errors over a thousand phase-space points in a collider configuration of double-
precision evaluations of spinor and Mandelstam expressions.

slower than a finite-field one. The expectation is that as the complexity of the expressions
increases, for instance as a consequence of an increased number of scales, the brute-force
single-numerator reconstruction will eventually become more expensive.

3.3 Numerical stability

The ultimate aim of expressions such as those considered in this paper is for them to be
used for predictions of physical observables, such as differential cross-sections. This requires
a phase-space integration to be carried out with Monte-Carlo algorithms. In calculations
of loop amplitudes the numerical accuracy of the results has been a source of concern due
to inherent instabilities of the methods or expressions used.

In this section, we study the double-precision floating-point numerical stability of the
two-loop five-parton rational coefficients, comparing our expressions to those used as input.
We do this by evaluating both sets of coefficients over 1 000 phase-space points. These are
unweighted LO events for three-jet production at the LHC, with a center of mass energy
of 14 TeV, and with a jet cut of 20 GeV. Care is taken that both momentum conservation
and on-shell relations are satisfied to one part in 1016 for the input momenta. For each
phase-space point the precision is then extended to 64 decimal digits, the coefficients are
re-evaluated and the relative error is computed as standard

δR = (double-precision evaluation)− (high-precision evaluation)
(high-precision evaluation) . (3.5)

We also check that in the high precision evaluation the Mandelstam and spinor expressions
agree at least for 16 significant digits. This is done at all 1 000 phase-space points for each
of the 740 coefficients for both Mandelstam and spinor representations. The resulting two
sets of 740 000 data points are plotted in figure 4.

In the ideal case, all points would lie around the peaks at −15 on the x-axis, signifying
little to no precision loss. However, we see that in practice this is not the case, with both
curves displaying long tails extending towards the positive x-axis. Data points around 0
signify evaluations which ended up being O(1) away from their true value: no significant
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digit is left and the output is pure numerical noise. It is apparent that the spinor expressions
have an improved behaviour in the tail of the distribution.

Furthermore, the numerical stability is drastically increased for evaluations in soft or
collinear regions of phase space. Evaluations in the collinear limit for 3-jet production at
NNLO are rare, but will be important for 2-jet production at N3LO, where these amplitudes
appear as real-virtual corrections. Evaluations in the soft limit will be probed in the case
of a large disparity of jet transverse momentum scales, which is relevant already for NNLO
3-jet production. For floating-point evaluations with vi ∼ 10−x and vj 6=i ∼ O(1) one may
reasonably expect to lose x digits of precision per order of the vi pole above the true one
for the given expression.

The presented expressions eliminate this type of instability by never having a pole of
higher order than necessary. For instance, if we consider the first example in the appendix,
the Mandelstam expression (A.1) has a spurious double pole in s12 and a spurious triple
pole in (s12 + s23 − s45) ∼ s13, whereas the spinor expression (A.2) manifestly has no pole
in the s12 channel and has a triple pole in the spinor variable [13], which for real kinematics
corresponds to s3/2

13 .

4 Conclusion

We presented spinor-helicity expressions for all rational coefficients of the two-loop five-
parton finite remainders. These were obtained by analysing the numerical behaviour of
the original expressions in Mandelstam variables [1] over specific configurations of complex
momentum space and by solving compact linear systems, following the strategies presented
in ref. [23].

The expressions we presented are more compact, faster to evaluate and numerically
more stable, despite not being subject to any post-processing. These improvements are re-
lated to the absence of poles of higher order than necessary in the reconstructed expressions.
This makes the pole structure more manifest and facilitates its physical interpretation.

Furthermore, our results required about one order of magnitude fewer numerical evalu-
ations compared to the one originally employed, although often with higher precision. This
is achieved by performing the partial-fraction decomposition before the reconstruction and
not afterwards. As a result, the systems which need to be considered are drastically re-
duced in size. For applications to other processes in the future this reduction could prove
crucial, given the time required to perform the numerical calculation in the first place.

Future applications could be the analytic reconstruction of finite remainder coefficients
in two-loop processes at five-point with an external mass or at six-point.
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A Concrete examples

The following two examples are taken directly from the results provided in the accompa-
nying files. They are labelled by particle content, helicity, term in the Nf expansion (see
eq. (1.3)), and base-1 index in the list of pentagon-function coefficients (see eq. (1.9)).

A.1 Expression for r3 in R
(2)[N1

f ]
u+u−g+g−g+

The Mandelstam expression for the coefficient is

r3 = −1/4 + s3
34/(4(−s15 + s23 + s34)3) (A.1)

− (3s2
34)/(4(−s15 + s23 + s34)2) + (3s34)/(4(−s15 + s23 + s34))

− (3s15s34s45)/(4(−s15 + s23 + s34)(s12 + s23 − s45)2)
+ (3s15s

2
34s45)/(4(−s15 + s23 + s34)3(s12 + s23 − s45))

− (3s15s34s45)/(4(−s15 + s23 + s34)2(s12 + s23 − s45))
+ (3s2

15s34s
2
45)/(4(−s15 + s23 + s34)3(s12 + s23 − s45)2)

+ (s3
15s

3
45)/(4(−s15 + s23 + s34)3(s12 + s23 − s45)3)

+ (3s15s34s45(−s15 + s34 + s45))/(4(−s15 + s23 + s34)2

× (s12 + s23 − s45)2) + (3s2
15s

2
45(−s15 + s34 + s45))

/(4(−s15 + s23 + s34)2(s12 + s23 − s45)3)
+ (3s15s45(s2

15 + s2
34 − 3s15s45 + s2

45 + 2s34(−s15 + s45)))
/(4(−s15 + s23 + s34)(s12 + s23 − s45)3)
+ (−s3

23 + 3s2
23s45 − 3s23s45(−s15 + s45)

+ s45(3s15(s15 − s34)− 6s15s45 + s2
45))

/(4(s12 + s23 − s45)3) + (−(s12 + s34)/(4s2
12(−s15 + s23 + s34))

− s2
34/(4s2

12(−s15 + s23 + s34)(s12 + s23 − s45))
− (s2

15s
2
45(−s15 + s34 + s45)2)/(4s2

12(−s15 + s23 + s34)3

× (s12 + s23 − s45)3) + (s2
15 + s2

23 − s2
34 + s15(s23 − 6s45)

− 3s23s45 + 3s2
45)/(4s2

12(s12 + s23 − s45)2)
− (s4

34 + s2
15s

2
45 + 2s3

34(−s15 + s45) + 4s15s34s45

× (−s15 + s45) + s2
34(s15 + s45)2)/(4s2

12(−s15 + s23 + s34)3

× (s12 + s23 − s45)) + (s34(−(s15(s34 − 2s45)) + s34(s34 + s45)))
/(2s2

12(−s15 + s23 + s34)2(s12 + s23 − s45))
− (s34(s12s34 − s15(s34 − 2s45) + s34(s34 + s45)))
/(4s2

12(−s15 + s23 + s34)3) + (2s12s34 + s15(−s34 + s45)
+ s34(2s34 + s45))/(4s2

12(−s15 + s23 + s34)2)
+ (s15s45(s2

15(s34 − s45) + s34(s34 + s45)2

+ s15(−2s2
34 − s34s45 + s2

45)))/(2s2
12(s15 − s23 − s34)3

× (s12 + s23 − s45)2) + (s15s45(s3
15 − (s34 + s45)3
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− s2
15(3s34 + 4s45) + s15(3s2

34 + 7s34s45 + 4s2
45)))

/(2s2
12(−s15 + s23 + s34)2(s12 + s23 − s45)3)

+ (s3
15 − 9s2

15s45 + (2s34 − s45)(s34 + s45)2

+ s15(−3s2
34 + 4s34s45 + 9s2

45))/(4s2
12(−s15 + s23 + s34)

× (s12 + s23 − s45)2) + (s4
15 + (s34 + s45)4

− 2s3
15(2s34 + 5s45)− 2s15(s34 + s45)2(2s34 + 5s45)

+ s2
15(6s2

34 + 24s34s45 + 19s2
45))/(4s2

12(s15 − s23 − s34)
× (s12 + s23 − s45)3) + (s3

15(s34 − 3s45)− s34(s34 + s45)3

− s2
15(3s2

34 + s34s45 − 8s2
45) + s15(3s3

34 + 7s2
34s45

+ s34s
2
45 − 3s3

45))/(4s2
12(−s15 + s23 + s34)2

× (s12 + s23 − s45)2) + (−s3
15 − s3

23 + s3
34 + 4s2

34s45

+ 6s34s
2
45 + 4s3

45 + s2
23(s34 + 4s45)

+ s2
15(−s23 + 3s34 + 8s45)− s23(s2

34 + 4s34s45 + 6s2
45)

− s15(s2
23 + 3(s34 + 2s45)2 − 2s23(s34 + 3s45)))

/(4s2
12(s12 + s23 − s45)3))tr5 ,

which ha a leaf-count of 2502. The equivalent spinor expression, with a leaf-count of 32, is

r3 = − [32]3[41]3

2[31]3[42]3 . (A.2)

A.2 Expression for r10 in R
(2)[N1

f ]
g−g+g−g+g+

The Mandelstam expression for the coefficient is

r10 = −2/3− (13s4
15)/(6(s12 + s15 − s34)4) (A.3)

+ (25s3
15)/(4(s12 + s15 − s34)3)− (53s2

15)
/(8(s12 + s15 − s34)2) + (73s15)/(24(s12 + s15 − s34))
+ (73s23)/(24(s12 + s23 − s45))− (s34(13s15 + 6s34 − 6s45)s45)
/(6(s12 + s15 − s34)(s12 + s23 − s45)2)− (26s3

15s34s45)
/(3(s12 + s15 − s34)4(s12 + s23 − s45)) + (71s2

15s34s45)
/(6(s12 + s15 − s34)3(s12 + s23 − s45))− (13s15s34s45)
/(6(s12 + s15 − s34)2(s12 + s23 − s45))
+ (13s34s45)/(8(s12 + s15 − s34)(s12 + s23 − s45))
− (13s2

15s
2
34s

2
45)/((s12 + s15 − s34)4(s12 + s23 − s45)2)

− (111s2
34s

2
45)/(8(s12 − s34)(s12 + s15 − s34)

× (s12 + s23 − s45)2) + (22s2
34(s34 − s45)s2

45)
/((s12 − s34)(s12 + s15 − s34)(s12 + s23 − s45)3)
− (26s15s

3
34s

3
45)/(3(s12 + s15 − s34)4(s12 + s23 − s45)3)
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− (19s3
34s

3
45)/(2(s12 − s34)(s12 + s15 − s34)2

× (s12 + s23 − s45)3) + (5s3
34s

3
45)/(8(s12 − s34)2

× (s12 + s15 − s34)(s12 + s23 − s45)3) + (7s3
34(s34 − s45)s3

45)
/((s12 − s34)(s12 + s15 − s34)2(s12 + s23 − s45)4)
+ (s3

34(s34 − s45)s3
45)/(2(s12 − s34)2(s12 + s15 − s34)

× (s12 + s23 − s45)4)− (13s4
34s

4
45)/(6(s12 + s15 − s34)4

× (s12 + s23 − s45)4)− (7s4
34s

4
45)/(4(s12 − s34)

× (s12 + s15 − s34)3(s12 + s23 − s45)4)
− (s4

34s
4
45)/(8(s12 − s34)2(s12 + s15 − s34)2

× (s12 + s23 − s45)4)− (s4
34s

4
45)/(2(s12 − s34)3

× (s12 + s15 − s34)(s12 + s23 − s45)4)
− (26s3

34s
3
45(s15 − s34 + s45))/(3(s12 + s15 − s34)3

× (s12 + s23 − s45)4) + (s15s34s45(−3s15s34 + 3s15s45

+ 5s34s45))/(2(−s12 + s34)3(s12 + s23 − s45)2)
− (3(−2s15s34 + 2s15s45 + 11s34s45))/(8(s12 − s34)
× (s12 + s23 − s45)) + (s34s45(71s2

15 − 19s15s34 + 19s15s45

+ 48s34s45))/(6(s12 + s15 − s34)2(s12 + s23 − s45)2)
+ (36s15s23 − 195s2

23 − 18s15s34 + 18s15s45 + 133s34s45)
/(24(s12 + s23 − s45)2) + (s34s45(71s2

15 − 38s15s34

− 33s2
34 + 38s15s45 + 189s34s45 − 33s2

45))
/(6(s12 + s15 − s34)(s12 + s23 − s45)3)
− (s2

34s
2
45(21s2

34 − 43s34s45 + 21s2
45))

/(2(s12 − s34)(s12 + s15 − s34)(s12 + s23 − s45)4)
− ((−(s15s34) + s15s45 + 5s34s45)(s15s45 + s34(−s15 + s45))2)
/(2(s12 − s34)3(s12 + s23 − s45)3)
+ (2s15s34s45(−13s15(s15 + s45) + s34(13s15 + 10s45)))
/(3(s12 + s15 − s34)3(s12 + s23 − s45)2)
+ (s2

34s
2
45(−104s15(s15 + s45) + s34(104s15 + 17s45)))

/(6(s12 + s15 − s34)3(s12 + s23 − s45)3)
− (s2

34s
2
45(39s2

34 + 39(s15 + s45)2 − s34(78s15 + 125s45)))
/(3(s12 + s15 − s34)2(s12 + s23 − s45)4)
+ (4s15(3s15 − 7s45)s45 + 28s2

34(−s15 + 4s45)
+ s34(−12s2

15 + 85s15s45 − 112s2
45))/(8(s12 − s34)

× (s12 + s23 − s45)2) + (s15s34(24s15 − 29s45)s45

− 6s2
15s

2
45 + s2

34(−6s2
15 + 29s15s45 − 5s2

45))
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/(8(s12 − s34)2(s12 + s23 − s45)2)
− (s34s45(52s15(s15 + s45)2 + s2

34(52s15 + 9s45)
− s34(104s2

15 + 217s15s45 + 9s2
45)))/(6(s12 + s15 − s34)2

× (s12 + s23 − s45)3) + (s34s45(52s3
34 − 52(s15 + s45)3

− 6s2
34(26s15 + 73s45) + 3s34(52s2

15 + 177s15s45

+ 146s2
45)))/(6(s12 + s15 − s34)(s12 + s23 − s45)4)

+ (−102s15s
2
23 + 231s3

23 + s23s34(18s15 − 257s45)
+ s2

34(66s15 − 179s45) + 3s15s23(7s15 − 6s45)
+ 6s15s45(−6s15 + 11s45) + s34(36s2

15 − 503s15s45

+ 179s2
45))/(24(s12 + s23 − s45)3)

+ (s3
34(50s15 − 161s45) + s15s45(−12s2

15 + 57s15s45

− 50s2
45) + s2

34(57s2
15 − 280s15s45 + 363s2

45)
+ s34(12s3

15 − 142s2
15s45 + 280s15s

2
45 − 161s3

45))
/(8(s12 − s34)(s12 + s23 − s45)3)
+ (s2

15(12s15 − 19s45)s2
45 + s15s34s45(−24s2

15 + 113s15s45

− 65s2
45) + s3

34(19s2
15 − 65s15s45 + 41s2

45)
+ s2

34(12s3
15 − 113s2

15s45 + 174s15s
2
45 − 41s3

45))
/(8(s12 − s34)2(s12 + s23 − s45)3)
+ ((s34 − s45)(s3

15s
3
45 + s2

15s34s
2
45(−3s15 + 4s45)

+ s15s
2
34s45(3s2

15 − 8s15s45 + 6s2
45)

+ s3
34(−s3

15 + 4s2
15s45 − 6s15s

2
45 + 4s3

45)))
/(2(s12 − s34)3(s12 + s23 − s45)4)
+ (s2

15(16s15 − 13s45)s3
45 + s4

34(−13s2
15 + 36s15s45

− 30s2
45)− 4s15s34s

2
45(12s2

15 − 25s15s45 + 9s2
45)

− 6s2
34s45(−8s3

15 + 29s2
15s45 − 26s15s

2
45 + 5s3

45)
+ 4s3

34(−4s3
15 + 25s2

15s45 − 39s15s
2
45 + 19s3

45))
/(8(s12 − s34)2(s12 + s23 − s45)4)
+ (s4

34(−7s15 + 19s45) + s3
34(−13s2

15 + 55s15s45 − 72s2
45)

+ s15s
2
45(−6s2

15 + 13s15s45 − 7s2
45)

+ s34s45(12s3
15 − 51s2

15s45 + 55s15s
2
45 − 19s3

45)
+ 3s2

34(−2s3
15 + 17s2

15s45 − 34s15s
2
45 + 24s3

45))
/(2(s12 − s34)(s12 + s23 − s45)4)
+ (84s15s

3
23 − 109s4

23 + s3
34(−84s15 + 436s45)

+ s2
23(−39s2

15 − 84s15s34 + 84s15s45 + 436s34s45)
+ s2

34(−117s2
15 + 52s15s45 − 1526s2

45)
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+ 3s15s45(12s2
15 − 39s15s45 + 28s2

45)
+ s34(−36s3

15 + 490s2
15s45 − 52s15s

2
45 + 436s3

45)
+ s23(s2

34(84s15 − 436s45) + 6s15(2s2
15 − 13s15s45

+ 14s2
45) + s34(78s2

15 − 68s15s45 + 436s2
45)))

/(24(s12 + s23 − s45)4) + (−73/(24s2
12) + (13s3

15(s15 − s34)2)
/(6s2

12(s12 + s15 − s34)4(s12 + s23 − s45))
+ s2

34/(2s2
12(s12 − s34)(s12 + s23 − s45))

+ (−116s2
15 + 73s15s34 − 6s2

34)/(12s2
12(s12 + s15 − s34)

× (s12 + s23 − s45))− (s2
15(101s2

15 − 150s15s34 + 49s2
34))

/(12s2
12(s12 + s15 − s34)3(s12 + s23 − s45))

+ (s15(309s2
15 − 318s15s34 + 61s2

34))
/(24s2

12(s12 + s15 − s34)2(s12 + s23 − s45))
+ (13s2

15(s15 − s34)2s34s45)/(2s2
12(s12 + s15 − s34)4

× (s12 + s23 − s45)2) + (s15s
3
34s45)/(2s2

12(s12 − s34)3

× (s12 + s23 − s45)2) + (9s3
34s45)/(2s2

12(s12 − s34)
× (s12 + s15 − s34)(s12 + s23 − s45)2)
+ (13s15(s15 − s34)2s2

34s
2
45)/(2s2

12(s12 + s15 − s34)4

× (s12 + s23 − s45)3) + (49s4
34s

2
45)/(8s2

12(s12 − s34)
× (s12 + s15 − s34)2(s12 + s23 − s45)3)− (3s4

34s
2
45)

/(8s2
12(s12 − s34)2(s12 + s15 − s34)(s12 + s23 − s45)3)

+ (13(s15 − s34)2s3
34s

3
45)/(6s2

12(s12 + s15 − s34)4

× (s12 + s23 − s45)4) + (7s5
34s

3
45)/(4s2

12(s12 − s34)
× (s12 + s15 − s34)3(s12 + s23 − s45)4)
+ (s5

34s
3
45)/(8s2

12(s12 − s34)2(s12 + s15 − s34)2

× (s12 + s23 − s45)4) + (s5
34s

3
45)/(2s2

12(s12 − s34)3

× (s12 + s15 − s34)(s12 + s23 − s45)4)
+ (3s3

34s45(−12s34 + 11s45))/(4s2
12(s12 − s34)

× (s12 + s15 − s34)(s12 + s23 − s45)3)
+ (s4

34s
2
45(−3s34 + 11s45))/(8s2

12(s12 − s34)2

× (s12 + s15 − s34)(s12 + s23 − s45)4)
+ (s4

34s
2
45(−21s34 + 22s45))/(4s2

12(s12 − s34)
× (s12 + s15 − s34)2(s12 + s23 − s45)4)
+ (s2

34(−2s15(s34 − 5s45) + s34s45))/(8s2
12(s12 − s34)2

× (s12 + s23 − s45)2) + (s34(−6s15s34 − 15s2
34 + 8s15s45

+ 17s34s45))/(8s2
12(s12 − s34)(s12 + s23 − s45)2)
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+ (s3
34s45(42s2

34 − 93s34s45 + 52s2
45))/(8s2

12(s12 − s34)
× (s12 + s15 − s34)(s12 + s23 − s45)4)
− (s2

34(s34 − s45)(s2
15(s34 − s45)2 + 3s2

34s
2
45

+ 3s15s34s45(−s34 + s45)))/(2s2
12(s12 − s34)3

× (s12 + s23 − s45)4) + (s2
34(s2

15(s34 − s45)2

+ 3s2
34s

2
45 + 4s15s34s45(−s34 + s45)))

/(2s2
12(s12 − s34)3(s12 + s23 − s45)3)

+ (232s15 + 268s23 − 73(s34 + s45))/(24s2
12(s12 + s23 − s45))

− (13s34(−s15 + s34)s45(8s2
15(s15 + s45)

+ s2
34(8s15 + 3s45)− s15s34(16s15 + 23s45)))

/(12s2
12(s12 + s15 − s34)3(s12 + s23 − s45)3)

+ (309s3
15 + s15s34(183s34 − 262s45)− 159s2

15(3s34 − s45)
+ 3s2

34(−5s34 + 43s45))/(24s2
12(s12 + s15 − s34)

× (s12 + s23 − s45)2) + (−309s2
15 − 426s2

23

− 6s15(48s23 − 53s34) + 195s23(s34 + s45)
+ s34(−73s34 + 195s45))/(24s2

12(s12 + s23 − s45)2)
+ (s2

34s
2
45(−78s3

34 + 78s2
15(s15 + s45)

+ 2s2
34(117s15 + 86s45)− s15s34(234s15 + 229s45)))

/(12s2
12(s12 + s15 − s34)3(s12 + s23 − s45)4)

− (s15(−s15 + s34)(26s2
15(s15 + s45) + s2

34(26s15 + 67s45)
− s15s34(52s15 + 249s45)))/(12s2

12(s12 + s15 − s34)3

× (s12 + s23 − s45)2) + (s3
34(46s15 − 51s45)

− 2s3
15(101s15 + 75s45)− 2s15s

2
34(147s15 + 106s45)

+ s2
15s34(450s15 + 569s45))/(24s2

12(s12 + s15 − s34)2

× (s12 + s23 − s45)2) + (2s2
15(6s2

34 − 6s34s45 + s2
45)

+ s15s34(22s2
34 − 57s34s45 + 19s2

45)
+ s2

34(15s2
34 − 54s34s45 + 37s2

45))/(4s2
12(s12 − s34)

× (s12 + s23 − s45)3) + (s34(8s2
34s45(−2s34 + 5s45)

+ 8s2
15(2s2

34 − 3s34s45 + s2
45)

+ s15s34(11s2
34 − 70s34s45 + 43s2

45)))
/(8s2

12(s12 − s34)2(s12 + s23 − s45)3)
+ (−101s4

15 + 150s3
15(2s34 − s45)

+ s2
15(−294s2

34 + 606s34s45 − 49s2
45)

+ 2s15s34(46s2
34 − 171s34s45 + 57s2

45)
+ 3s2

34(s2
34 − 74s34s45 + 59s2

45))
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/(12s2
12(s12 + s15 − s34)(s12 + s23 − s45)3)

+ (−19s5
34 + 4s2

15s
3
45 + 6s15s34s

2
45(−6s15 + 5s45)

+ 9s4
34(−5s15 + 13s45) + s3

34(−40s2
15 + 180s15s45

− 183s2
45) + s2

34s45(72s2
15 − 153s15s45 + 61s2

45))
/(8s2

12(s12 − s34)(s12 + s23 − s45)4)
+ (52s3

15(s15 + s45)2 + s4
34(52s15 + 72s45)

− 16s2
15s34(13s2

15 + 63s15s45 + 37s2
45)

+ s3
34(−208s2

15 − 944s15s45 + 66s2
45)

+ 3s15s
2
34(104s2

15 + 592s15s45 + 259s2
45))

/(24s2
12(s12 + s15 − s34)2(s12 + s23 − s45)3)

+ (s34s45(156s4
34 + 156s2

15(s15 + s45)2

− 6s3
34(104s15 + 193s45)− 6s15s34(104s2

15 + 255s15s45

+ 125s2
45) + s2

34(936s2
15 + 2250s15s45 + 817s2

45)))
/(24s2

12(s12 + s15 − s34)2(s12 + s23 − s45)4)
+ (−52s5

34 + 52s2
15(s15 + s45)3 + 4s4

34(65s15 + 321s45)
− s3

34(520s2
15 + 3252s15s45 + 2721s2

45)
− 2s15s34(130s3

15 + 687s2
15s45 + 828s15s

2
45 + 271s3

45)
+ s2

34(520s3
15 + 3312s2

15s45 + 3825s15s
2
45 + 907s3

45))
/(24s2

12(s12 + s15 − s34)(s12 + s23 − s45)4)
+ (s34(−4s2

15(5s34 − 2s45)(s34 − s45)2 + 3s2
34s45

× (5s2
34 − 22s34s45 + 13s2

45)
+ s15(−9s4

34 + 75s3
34s45 − 99s2

34s
2
45 + 33s34s

3
45)))

/(8s2
12(s12 − s34)2(s12 + s23 − s45)4)

+ (202s3
15 + 340s3

23 + 2s15(77s2
23 − 129s23s34

+ s34(156s34 − 397s45)) + 2s23s34(61s34 − 231s45)
− 231s2

23(s34 + s45) + s2
34(−13s34 + 283s45)

+ 2s2
15(107s23 + 75(−3s34 + s45)))/(24s2

12

× (s12 + s23 − s45)3)− (52s4
15 + 52s3

15(s23 − 4s34 + 2s45)
+ 2s2

15(32s2
23 + 192s2

34 − 489s34s45 + 32s2
45

+ 32s23(−3s34 + s45)) + 109(s4
23 − s23s

2
34(s34 − 7s45)

+ s2
23s34(s34 − 3s45)− s3

23(s34 + s45)
+ s2

34(s2
34 − 11s34s45 + 10s2

45))
+ s15(25s3

23 − 50s2
23s34 + s23s34(75s34 − 452s45)

− 4s34(25s2
34 − 339s34s45 + 113s2

45)))
/(24s2

12(s12 + s23 − s45)4))tr5 ,
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which has a leaf-count of 6848. The equivalent spinor expression, with a leaf-count of 274, is

r10 = −1[12]3[15][23]〈25〉3[35]3

[13]4[25]〈5|1 + 2|5]3 + 97
12

[12]4〈25〉[35]4

[13]4[25]3〈5|1 + 2|5] (A.4)

+ 13
3

[12]4〈15〉[15][35]4

[13]4[25]4〈5|1 + 2|5] + 1
4

[12]4〈15〉[15]〈25〉[35]4

[13]4[25]3〈5|1 + 2|5]2

+−3
2

[12]2〈25〉2[25][35]2

[13]2[25]〈5|1 + 2|5]2 + 7
4

[12]3〈25〉2[35]3

[13]3[25]〈5|1 + 2|5]2

+−43
3

[12]3〈25〉[35]3

[13]3[25]2〈5|1 + 2|5] −
25
3

[12]3〈15〉[15][35]3

[13]3[25]3〈5|1 + 2|5]

+−3
2

[12]〈25〉[25][35]
[13][25]〈5|1 + 2|5] + 4 [12]2〈25〉[35]2

[13]2[25]〈5|1 + 2|5]

+−15
2

[12]2[35]2

[13]2[25]2 + 7
2

[12][35]
[13][25] −

2
3 .
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