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2 Pöschl-Teller potential 2

2.1 Vacuum state and the soliton 2

2.2 Shifted Hamiltonian 3
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1 Introduction

In general, quantum corrections to soliton masses can be computed using the WKB approx-

imation introduced in ref. [1]. In ref. [2] this method was applied to the sine-Gordon soliton

and it was found to yield the exact answer of [3], as was confirmed using integrability in

ref. [4].

The soliton mass is defined to be the difference between the lowest energy configu-

rations in the one-soliton and vacuum sectors. These two energies are themselves both

infinite, and so both must be regularized and then the regulators must be taken to infinity.

The result of this calculation depends on the relation between the regulators when this

limit is taken [5], and it is in general not known which relation yields the right answer.

For example, identifying modes in a compactified theory yields a different mass than an

identification of momentum cutoffs. Supersymmetric and integrable models are the excep-

tion, as the soliton mass can be computed using supersymmetry and integrability and so

one can determine which relation between regulators agrees with this answer. For example

a regulator which preserves the supersymmetry is guaranteed to yield the correct answer.

Therefore it may appear as though the WKB method can only be used to compute soliton

masses which are already known.

A resolution to this problem was proposed in ref. [6]. It was noted that the vacuum

and one-soliton sectors are related by the operator which creates the soliton, and so this

operator provides the correct identification of the regulators. As scalar theories in 1+1

dimensions can be rendered finite by normal-ordering, the vacuum Hamiltonian was normal

ordered and corresponding one-soliton sector Hamiltonian was directly computed using this
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identification. The one-soliton sector Hamiltonian was not normal ordered when written

in terms of the eigenfunctions of its kinetic term, but simply commuting the corresponding

creation operators to the left produced a constant term which was precisely equal to the

result of ref. [1] for the one-loop correction to the mass.

In this paper we test the method introduced in ref. [6] to derive the one-loop correction

to the mass of the sine-Gordon soliton. This correction has been derived using integrability

in ref. [4], with no arbitrary choice of regulator matching, and so it provides a robust test

of the method.

First of all, we shift the scalar field by the classical soliton solution to derive the one-

soliton sector Hamiltonian. We find that only the quadratic terms contribute to the soliton

mass at one-loop and we identify these terms with the Poschl-Teller Hamiltonian. We use

the classical solutions of this Hamiltonian to exactly diagonalize it, providing the desired

soliton mass as well as the Hamiltonian describing the excited states in the soliton sector

as a sum of quantum harmonic oscillator states.

2 Pöschl-Teller potential

2.1 Vacuum state and the soliton

The sine-Gordon Hamiltonian is

H =

∫

dxH(x) , H(x)=
1

2
:π(x)π(x) : +

1

2
: ∂xφ(x)∂xφ(x) :−

m2

λ
:
(

cos(
√
λφ(x))−1

)

:

(2.1)

where m and λ are positive numbers. The field φ has dimensions of [action]1/2, m has

dimensions of [mass] and λ has dimensions of [action]−1 therefore the only dimensionless

constant is λ~. Our loop expansion will therefore be an expansion in λ~. We however set

~ = 1 everywhere.

The theory has a series of degenerate ground states |0〉k with

k〈0|φ|0〉k =
2π√
λ
k , k ∈ Z (2.2)

and without loss of generality we will be interested in solitons which connect the adjacent

ground states |0〉0 and |0〉1.
Performing the standard expansion about the ground state |0〉0

φ(x) =

∫

dp

2π

1
√

2ωp

(

a†p + a−p

)

e−ipx , π(x) = i

∫

dp

2π

√
ωp√
2

(

a†p − a−p

)

e−ipx (2.3)

where

ωp =
√

m2 + p2 (2.4)

the canonical commutation relations satisfied by φ and π imply

[ap, a
†
q] = 2πδ(p− q). (2.5)

The normal ordering in eq. (2.1) is defined with respect to this a and a†.
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Let E0 and EK be the Hamiltonian eigenvalues of the vacua |0〉k and the one-soliton

sector ground state |K〉

H|0〉k = E0|0〉k , H|K〉 = EK |K〉. (2.6)

The soliton mass is defined to be

MK = EK − E0. (2.7)

E0 can be calculated in perturbation theory as in ref. [7]. The leading contributions appear

at two loops and are of order O(λ2). We will see that they are therefore not relevant to the

one-loop soliton mass which is of order O(λ0). Therefore, at the one-loop order considered

here, E0 = 0.

The classical equation of motion derived from (2.1) is

∂2φcl(x, t)

∂t2
− ∂2φcl(x, t)

∂x2
= −m2

√
λ
sin

(√
λφcl(x, t)

)

(2.8)

which has a stationary soliton solution

φcl(x, t) = f(x) , f(x) =
4√
λ
arctan emx. (2.9)

At leading order in the semiclassical expansion one expects that this will be the form factor

of the soliton ground state [8]

〈K|φ(x)|K〉 = f(x) +O(~). (2.10)

2.2 Shifted Hamiltonian

Following ref. [9], eq. (2.10) would be solved if |K〉 = Df |0〉0 + O(~) where Df is the

displacement operator

Df = exp

(

−i
∫

dxf(x)π(x)

)

(2.11)

which satisfies [6]

[Df , φ(y)] = −f(y)Df , : F [π(x), φ(x)] : Df = Df : F [π(x), φ(x) + f(x)] : (2.12)

where F is any function of two variables.

Eq. (2.10) leads us to rewrite the soliton ground state as

|K〉 = DfO|0〉0 (2.13)

where O is equal to the identity plus corrections of order O(~). We now define the soliton

sector Hamiltonian HK by the similarity transform

HDf = DfHK . (2.14)

Then a quick calculation shows

HKO|0〉0 = D−1
f H|K〉0 = EKO|0〉0. (2.15)
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Therefore instead of searching for the eigenstate |K〉 of H, we may equivalently search for

the eigenstate O|0〉0 of HK . Although H and HK are related by a similarly transformation,

the second problem can be treated in ordinary perturbation theory as O is equal to the

identity plus loop corrections.

HK can be evaluated using (2.12)

HK [π(x), φ(x)] = H[π(x), φ(x) + f(x)] (2.16)

and so

HK = Ecl +

∫

dx [HPT +HI ] (2.17)

where the classical energy is

Ecl =

∫

dx

[

1

2
(∂xf(x))

2 +
m2

λ

(

1− cos(
√
λf(x))

)

]

=
8m

λ
(2.18)

the interaction terms are

HI =
m2

√
λ
sin

(√
λf(x)

)

∞
∑

n=1

(−λ)n
(2n+ 1)!

: φ2n+1(x) : −m
2

λ
cos

(√
λf(x)

)

∞
∑

n=2

(−λ)n
2n!

: φ2n(x) :

(2.19)

and the Poschl-Teller (PT) Hamiltonian density is

HPT =
: π2(x) :

2
+

: ∂xφ(x)∂xφ(x) :

2
+

(

m2

2
−m2sech2 (mx)

)

: φ2(x) : . (2.20)

Recall that our loop expansion is an expansion in λ. The classical energy is of order

O(λ−1). Therefore the one-loop correction will be λ-independent. As the PT terms are

λ-independent, any correction derived from them will appear at one loop. The HI terms

on the other hand are all of at least order O(λ1/2), and so only contribute at two loops and

beyond. Thus, to calculate the one-loop soliton mass, we may drop HI leaving

H ′ = Ecl +HPT , HPT =

∫

dxHPT . (2.21)

In the remainder of this note we will explicitly diagonalize H ′ and so obtain the one-loop

soliton mass as well as its excitation spectrum at one loop.

3 Solutions to the Pöschl-Teller Hamiltonian

In this section we will calculate the inverse Fourier transforms of the eigenfunctions of the

Pöschl-Teller wave equation. To find the eigenstates of HPT , we insert the factorization

Ansatz

φcl(x, t) = ψk(x)e
−iωkt (3.1)

into the corresponding classical equations of motion to obtain

0 = ∂2xψk(x) + (k2 + 2m2sech2(mx))ψk(x) , k2 = ω2
k −m2. (3.2)
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There will be a bound solution ψB corresponding to the Goldstone mode of the soliton

and also, at each k an even an odd continuum solution given by the hypergeometric func-

tions [10]

ψe
k(x) = cosh2(mx)F

(

2 + ik/m

2
,
2− ik/m

2
;
1

2
;−sinh2(mx)

)

(3.3)

ψo
k(x) = cosh2(mx)sinh(mx)F

(

3 + ik/m

2
,
3− ik/m

2
;
3

2
;−sinh2(mx)

)

.

These hypergeometric fuctions may be calculated as in the appendix of ref. [6] to obtain

F

(

2 + ik

2
,
2− ik

2
;
1

2
;−sinh2(x)

)

=
cos(kx)− m

k sin(kx)tanh(mx)

cosh2(mx)
(3.4)

F

(

3 + ik/m

2
,
3− ik/m

2
;
3

2
;−sinh2(mx)

)

=

(

cos(kx)
cosh(mx) +

k
m

sin(kx)
sinh(mx)

)

cosh2(mx)(1 + k2/m2)
.

Substituting these back into eq. (3.3) and changing the normalization by a k-dependent

factor one obtains the solutions

ψe
k(x) =

k

m
cos(kx)− sin(kx)tanh(mx) (3.5)

ψo
k(x) = cos(kx)tanh(mx) +

k

m
sin(kx)

which are normalized so that
∫

dxψi
k1(x)ψ

j
k2
(x) = πδijC2

k1δ(k1 − k2) , Ck =
√

1 + k2/m2 , i, j ∈ {e, o}. (3.6)

The inverse Fourier transform of

gk(x) = ψe
k(x) + iψo

k(x) (3.7)

is

g̃k(p) =

∫

dxgk(x)e
ipx =

2k

m
πδ(p− k)− π

m
csch

(

π(p− k)

2m

)

(3.8)

which is normalized so that
∫

dp

2π
g̃k1(p)g̃k2(p) =

∫

dxgk1(x)gk2(−x) = 2πC2
k1δ(k1 − k2). (3.9)

The delta function results from the fact that asymptotically the eigenfunctions of HPT and

H0 (defined in (4.2)) are equal. There is no δ(p + k) term because with the coefficient

in (2.20) the PT potential is reflectionless [10]. Inserting

ωB = 0 , kB = im (3.10)

into (3.5) one finds the bound solution

gB(x) = iπsech
(pm

2m

)

(3.11)
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which corresponds to the Goldstone mode of the soliton. It satisfies the normalization

condition ∫

dx|gB(x)|2 = C2
B , CB =

√
2 (3.12)

and has inverse Fourier transform

g̃B(p) =

∫

dxgB(x)e
ipx =

πp

m2
csch

( πp

2m

)

. (3.13)

4 Mode expansion

4.1 PT annihilation and creation operators

To diagonlize HPT , first we decompose it

HPT = H0 + H̃PT (4.1)

where H0 is the usual free Hamiltonian

H0 =

∫

dx

[

1

2
: π(x)π(x) : +

1

2
: ∂xφ(x)∂xφ(x) : +

m2

2
: φ2(x) :

]

=

∫

dp

2π
ωpa

†
pap. (4.2)

Recall that the operators a and a† were defined in (2.3) by decomposing φ and π into plane

waves, which are solutions of the wave equation corresponding to H0. To diagonalize HPT ,

we instead decompose φ and π into the basis of constant frequency solutions of the PT

equation. In particular they will contain continuum and bound state contributions

φ(x) = φC(x) + φB(x) , π(x) = πC(x) + πB(x) (4.3)

which, following [6], may be decomposed into the PT oscillator basis

φC(x) =

∫

dk

2π

1√
2ωk

(

b†k + b−k

) gk(x)

Ck
, φB(x) = φ0

gB(x)

CB
.

πC(x) = i

∫

dk

2π

√

ωk

2

(

b†k − b−k

) gk(x)

Ck
, πB(x) = π0

gB(x)

CB
(4.4)

where we have introduced the operators φ0 for π0 which are just the position and momen-

tum operators of the soliton.

These definitions are easily inverted

b†k =

∫

dx

[
√

ωk

2
φ(x)− i√

2ωk
π(x)

]

g∗k(x)

Ck
, b−k =

∫

dx

[
√

ωk

2
φ(x) +

i√
2ωk

π(x)

]

g∗k(x)

Ck

(4.5)

from which one sees that the continuum b operators satisfy the Heisenberg algebra

[bk1 , b
†
k2
] = 2πδ(k1 − k2) (4.6)

while the bound state

φ0 =

∫

dxφ(x)
g∗B(x)

CB
, π0 =

∫

dxπ(x)
g∗B(x)

CB
. (4.7)
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satisfies the canonical algebra

[φ0, π0] = i. (4.8)

We cannot directly write HPT in terms of b and b† because it is the a and a† operators

which are normal ordered. Thus we must first write it in terms of a and then convert these

to b. To do this one first inverts (2.3)

a†p =

∫

dx

[

√

ωp

2
φ(x)− i

√

2ωp
π(x)

]

eipx , a−p =

∫

dx

[

√

ωp

2
φ(x) +

i
√

2ωp
π(x)

]

eipx

(4.9)

and decomposes the a operators as

a†p = a†C,p + a†BE,p , ap = aC,p + aBE,p. (4.10)

As we know a as a function of φ, which is a known function of b, we can write the Bogoliubov

transformation which relates the a and b oscillator modes

a†C,p =

∫

dk

2π

g̃k(p)

2Ck

(

ωp + ωk√
ωpωk

b†k +
ωp − ωk√
ωpωk

b−k

)

(4.11)

aC,−p =

∫

dk

2π

g̃k(p)

2Ck

(

ωp − ωk√
ωpωk

b†k +
ωp + ωk√
ωpωk

b−k

)

a†BE,p =
g̃B(p)

CB

[

√

ωp

2
φ0 −

i
√

2ωp
π0

]

, aBE,−p =
g̃B(p)

CB

[

√

ωp

2
φ0 +

i
√

2ωp
π0

]

.

Note that the delta function terms in (3.8) can be directly integrated, using the delta

function, and one sees that they do not mix a with b†. This will imply that they do not

affect the one-loop mass corrections of the soliton.

4.2 Contributions of continuum and bound states

Now we are ready to diagonalize HPT one term at a time. The calculation is very similar

to that in ref. [6], except that here there is no odd bound state. Let us first decompose H0

and H̃PT into continuum and bound state contributions

H0 = HC,0 +HB,0 , H̃PT = H̃C + H̃B. (4.12)

The continuum contribution is

HC,0 =

∫

dp

2π
ωpa

†
C,paC,p

=
1

4

∫

dk

2π

I5(k)

C2
kωk

+
m2

2

∫

dx

∫

dk1
2π

∫

dk2
2π

sech2(mx)
gk1(x)gk2(x)

Ck1Ck2
√
ωk1ωk2

(b†k1b
†
k2
+b−k1b−k2)

+

∫

dk

2π
ωkb

†
kbk+m

2

∫

dx

∫

dk1
2π

∫

dk2
2π

sech2(mx)
gk1(x)gk2(x)

Ck1Ck2
√
ωk1ωk2

b†k1b−k2 (4.13)

where

I5(k) =

∫

dp

2π
(ωp − ωk)

2g̃k(p)g̃k(p). (4.14)
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Similarly the continuum contribution to the PT potential term is

H̃C = −m2

∫

dx sech2 (mx) :φ2C(x) : (4.15)

= −m
2

8

∫

dx

∫

dp

2π

∫

dq

2π

sech2(βx)

ωpωq
e−i(p+q)x

∫

dk1
2π

∫

dk2
2π

g̃k1(p)g̃k2(q)

Ck1Ck2
√
ωk1ωk2

×
[

4ωpωq(b
†
k1
b†k2 +b−k1b−k2)+2ωq(2ωp+ωk1 +ωk2)b

†
k1
b−k2 +2ωq(2ωp−ωk1 −ωk2)b−k2b

†
k1

]

.

Combining the two continuum contributions and moving all b† to the left using (4.6) we

obtain

HC = HC,0 + H̃C =

∫

dk

2π
ωkb

†
kbk +QC (4.16)

where

QC =
1

4

∫

dk

2π

I5(k)

C2
kωk

+
m2

2

∫

dx

∫

dp

2π

∫

dq

2π

sech2(mx)

ωp
e−i(p+q)x

∫

dk

2π

g̃k(p)g̃−k(q)

C2
k

−m
2

2

∫

dx sech2(mx)

∫

dk

2π

gk(x)g
∗
k(x)

C2
kωk

. (4.17)

QC may be simplified using the equation of motion satisfied (3.2) by φk to obtain

QC = −1

4

∫

dk

2π

∫

dp

2π

(ωp − ωk)
2

ωp

g̃2k(p)

C2
k

. (4.18)

A similar calculation for the bound state contribution yields

HB = HB,0 + H̃0 =
π20
2

+QB (4.19)

where

QB = −1

4

∫

dp

2π

g̃B(p)g̃B(p)

C2
B

ωp. (4.20)

Using the fact that the frequency ωB = 0 for the Goldstone mode, one sees that this is of

the same form as QC in (4.18).

4.3 Diagonalized Hamiltonian

Putting everything together, we have diagonalized our one-loop Hamiltonian

HPT =

∫

dk

2π
ωkb

†
kbk +

π20
2

+Q (4.21)

where

Q = QC +QB (4.22)

= −1

4

∫

dk

2π

∫

dp

2π

(ωp − ωk)
2

ωp

g̃2k(p)

C2
k

− 1

4

∫

dp

2π

g̃B(p)g̃B(p)

C2
B

ωp

is a scalar.
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The Hamiltonian is seen to be just a sum of quantum harmonic oscillators described

by b and b† plus a center of mass motion described by φ0 and π0. The lowest energy state

O|0〉 therefore is the unique state which satisfies

bkO|0〉0 = π0O|0〉0 = 0 (4.23)

and it has energy EK = Ecl +Q by (2.15) and (2.21) because

H ′O|0〉1 = (Ecl +HPT )O|0〉0 = (Ecl +Q)O|0〉0. (4.24)

The excited states are just the oscillator excitations, made from products of b†k, and arbi-

trary momenta may be considered within the validity of the one-loop approximation.

Numerically evaluating Q, we find

QC = −0.03404m, QB = −0.284249m, Q = −0.31825m, (4.25)

which agrees with the result Q = −m/π obtained in ref. [4] using, essentially, the integra-

bility [11, 12] of the sine-Gordon model.

5 Conclusion

We used the sine-Gordon model to test the method introduced in ref. [6] for the calculation

of the one-loop correction to soliton masses. While the WKB method has been applied to

both models [1, 2] it suffers from an ambiguity due to a choice of matching of regularization

conditions [5]. However in the case of the sine-Gordon model, the soliton mass has been

calculated unambiguously using integrability in ref. [4]. Therefore, the case treated in this

paper provides a robust test of our method.

The quantum soliton in the sine-Gordon model is also of intrinsic interest. As the sine-

Gordon model is understood at strong coupling, where it becomes the massive Thirring

model [3], it may be possible to follow the soliton operator to strong coupling. At one loop

the operator may be found by solving (4.23) for O. Of course it is well-known that in the

Thirring model it becomes the fundamental fermion [13], but it would be interesting to see

what it becomes in terms of the strongly coupled sine-Gordon model itself. Perhaps this

would give a hint as to what becomes of N = 2 SQCD monopoles [14] when the Higgs

mass tends to zero and so the scalar condensate turns off and the infrared coupling becomes

strong?
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