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1 Introduction

Supersymmetric localization on compact spaces and its applications has been studied ex-

tensively recently, see [1] for a recent review. This area began with the work of Witten [2]

and was developed in the works of [3–5] to enable the evaluation of observables in super-

symmetric quantum field theories. The exact computation of supersymmetric partition

functions and Wilson lines served as highly non-trivial checks of AdS/CFT [6–8]. Field

theories defined on a compact space serve as standard examples for applying the method

of localization. This is because the method relies on identifying a fermionic symmetry Q.

The Lagrangian including the localizing term is symmetric under Q only upto boundary

terms and restricting the space to be compact ensures that these boundary terms do not

arise.
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The systematic extension of the method of supersymmetric localization is an important

problem. Non-compact spaces which form the canonical examples to study localization are

of the form AdSn×Sm. This is mainly due to the variety of applications of supersymmetric

theories on such spaces. For example, localization of N = 2 gravity on AdS2×S2 is impor-

tant for obtaining the exact entropy of BPS black holes in these theories [9–14]. Similarly

the exact evaluation of the supersymmetric partition function of N = 8 supergravity on

AdS4 serves as an important check of the holographic duality with ABJM theory [15, 16].

As demonstrated in [17], when the method of supersymmetric localization is applied to

non compact spaces one needs to carefully examine the boundary conditions implemented

on the fields.1 The boundary conditions of both the bosonic and fermionic fields must be

chosen so that they are consistent with the superysmmetric transformations. They also

must be chosen so that boundary terms that arise under the action of Q on both the original

action as well as the localizing term vanish. Furthermore, the path integral must be well

defined under these boundary conditions. Normalizable boundary conditions on all fields

ensure that the boundary terms at asymptotic infinity vanish as well as the path integral

is well defined. However normalizable boundary conditions may not always be compatible

with supersymmetry.

In [18], the method of Greens function was introduced to evaluate one loop determi-

nants that arise in localization. This was done for the N = 2 chiral multiplet on AdS2×S1.

The method involved studying the variation of the one loop determinant under a param-

eter α,2 that parametrises the localizing background and then integrating with respect to

α. It was shown that whenever normalizable boundary conditions also are consistent with

supersymmetric transformations, the variation of the one loop determinant reduces to a

total derivative and one only needs to evaluate the boundary contributions from the origin

of AdS2 and the asymptotic infinity. Furthermore, it was demonstrated that the final result

for the one loop determinant agrees with the index whenever the boundary conditions are

normalizable and supersymmetric.

In this paper we develop the Green’s function method further. A brief outline of the

Greens function method is the following. Let DB(α) be the bosonic operator and DF (α)

be the fermionic operator that occurs in the evaluation of the one loop determinants. They

depend on the classical localising background through the parameter α. Then the variation

of the one loop determinants with respect to α is given by

δ

δα
lnZ1-loop(α) = Tr

[
GF

δ

δα
DF (α)

]
− 1

2
Tr

[
GB

δ

δα
DB(α)

]
, (1.1)

Here GB, GF are the bosonic and fermionic Greens function corresponding to the operator

DB and DF respectively.

We show that under some general assumptions which hold for theories with at least

N = 2 supersymmetry on spaces of the form AdSn × Sm the variation of the one loop

determinant with respect to α which parametrises the localising backround always reduces

1See also [19] where the partition function for a chiral multiplet on the twisted background of AdS2×

S1 with flavor fugacity turned on was computed using the localization technique.
2α parametrises the vector multiplet background.
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to a total derivative. This reduction to a total derivative holds whenever supersymmetric

boundary conditions are compatible with normalisable boundary conditions. The general

assumptions that we make relate to the properties of the second order operators, DB and

DF , that arise in these theories in the evaluation of the one loop determinants. These

assumptions enable the evaluation of the variation given in (1.1). Then integrating with

respect to α we can obtain the one loop determinant. In this paper we demonstrate

that these properties hold for both the vector multiplet as well as the chiral multiplet on

AdS2 × S1. We have also verified that it continues to hold for the vector as well as the

hypermultiplet on AdS2×S2 [20]. We suspect that the general assumptions are properties

that hold whenever the actions have at least N = 2 supersymmetry but at present we do

not have a proof.

Here we state these assumptions in a qualitative form. In the next section we make

these quantitative. These assumptions are made on the second order differential operators

that appear after one reduces the operators DB,DF to only the radial equation parametris-

ing the AdS direction. This reduction is made by expanding all the fields in an appropriate

basis. For example, it is the Fourier basis corresponding to the two S1’s for the case of

AdS2 × S1

1. The matrix second order operator corresponding to the one loop bosonic determinant

reduces to a certain block diagonal form in a special gauge. The operators are Hermi-

tian and non-degenerate and have regular singularities at the origin of AdS and the

boundary. This last assumption enables a Forbenius series expansion of the solutions

at these points.

2. The matrix second order operator corresponding to the one loop fermionic determi-

nants also reduce to a certain block form. All the second derivatives occur only with

terms involving the ghosts. The operator is Hermitian. It is only certain compo-

nents of the block form that contain the dependence on α which parametrises the

background.

3. The bosonic operator and the fermionic operators are related to each other by factors

of Q2. This follows from supersymmetry. Therefore the fermionic solutions can be

found in terms of the bosonic ones.

4. The Greens function for the bosonic operator exists and this in turn implies the

Greens function for the fermionic operator can be constructed from that of the bosonic

Greens function.

Using these assumptions it can be shown that the variation in (1.1) reduces to a total

derivative. Therefore, the behaviour of the Greens functions as well as the second order

operators at the origin of AdS and at infinity determine the variation (1.1). The result for

the variation is given in equation (2.31). Then finally using assumptions of the behaviour

of certain components of the fermionic matrix operator at these points, the variation can

be evaluated.
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Our main result is that we show that the variation of the one loop determinant given

in (1.1) is an integer times the variation of 1
2 ln(Q

2). The integer is determined by the

difference between the number of allowed solutions to a first order differential equation

that occurs from the fermionic operator at the origin and at asymptotic infinity of the AdS.

The result is given in equation (2.47). Thus, the final result for the one loop determinant

resembles an index of an operator. We then identify this operator and show that the one

loop determinant is expressed in terms of index of this operator.

As we mentioned earlier we verify that these assumptions hold for the case of the

N = 2 vector as well as the chiral multiplet on AdS2×S1. We also show that normalisable

boundary conditions imply supersymmetric boundary conditions for the vector multiplet

provided L2 > 3
4 . Here L is the ratio of the radius of AdS2 to S1. For the chiral multiplet

of R-charge ∆ the conditions that ensure normalisable boundary conditions are also su-

persymmetric is that there should be no integer n in the interval
(
∆−1
2L , ∆

2L

)
was obtained

in [18].

We apply our results to N = 2 Chern Simons with Nf chiral multiplets in the fun-

damental and Nf anti-chiral multiplets in the fundamental and show that the partition

function of the theory with gauge group U(Nc) at level k is identical to the theory with

the gauge group U(|k|+Nf −Nc) at level −k and with the same matter content. That is

level-rank duality continues to hold when the theory is placed on AdS2 × S1.

It is important to mention that our gauge fixing condition is a generalisation of the

covariant gauge condition which is given by

cosh2 r∇µ̂

(
1

cosh2 r
aµ̂

)
+ ∂tat = 0 . (1.2)

This gauge condition was first used in [17]. Here r is the radial coordinate in AdS2, µ̂ refers

to the two coordinates on AdS2 and t refers to the coordinate on S1. This gauge choice

ensures that the operators that occur the operators that occur in the analysis of the Greens

function of the bosons is block diagonal. We have seen that the results are independent of

gauge choice. We show in appendix C that for the bosonic U(1) Chern-Simons theory, the

partition function evaluated in a one parameter set of gauge conditions that interpolate

between the covariant gauge and the condition in (1.2) remains the same.

This paper is organised as follows. In section 2 we present the details of the assumptions

made on the properties of the quadratic operators that appear in localization of at least

N = 2 theories on AdS spaces. In section 2.3 we make further assumptions on the behaviour

of the terms in the fermionic kinetic term at the boundary of AdS and at the origin. We then

present our proof that under these assumptions the variation of the one loop determinant

is an integer times the variation of 1
2 ln(Q

2) is given in section 2.3. In section 2.4, we

show that this integer is the index of a first order matrix differential operator appearing

in the fermionic kinetic term. In section 3 we introduce N = 2 Chern Simons theory on

AdS2 × S1, the localizing term as well as the gauge fixing condition. We also determine

the behaviour of all fields at asymptotic infinity of AdS2 so that they are all normalisable.

In section 3.3, we demonstrate that the general assumptions made on the properties of the

second operators that occur in evaluating one loop determinants in section hold for the case

– 4 –
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of N = 2 Chern-Simons theory on AdS2 × S1. We also derive the conditions under which

normalizable boundary conditions are consistent with supersymmetry. Finally we obtain

the variation of the one loop determinant and demonstrate that it is an integer times the

variation of 1
2 ln(Q

2). We show that the result agrees with that obtained in [17]. In section 4

we apply our analysis to evaluate the supersymmetric partition function of U(Nc) Chern-

Simons theory on AdS2 × S1 coupled with Nf chiral multiplets in the fundamental and

an equal number of chiral multiplets in the anti-fundamental. From the expression of the

partition function we demonstrate this theory obeys level-rank duality. Section 5 contains

our conclusions. Appendix A and B provide the details of the supersymmetic variations

as well as the equations of motion of all the fields about the localization background.

Appendix C contains the evaluation of the partition function of U(1) Chern-Simons theory

in a one parameter set of gauge conditions which interpolate between the covariant gauge

and the gauge in (1.2).

2 A general proof

In this section, we will present a general discussion about the one loop computations in

supersymmetric localization on a general manifold for vector and matter multiplets. Our

discussion will be based on the Green’s function method which was used in [18] to compute

the path integral of chiral multiplet on AdS2×S1. In the computation of path integral using

the supersymmetric localization technique, we need to compute the one loop determinant

of the operators about the localization background. In the Green’s function approach,

developed in [18], we computed the variation of the one loop determinant instead i.e.

δ

δα
lnZ1-loop(α) = Tr′

[
GF

δ

δα
DF (α)

]
− 1

2
Tr′

[
GB

δ

δα
DB(α)

]
, (2.1)

where DF (α) and DB(α) are fermionic and bosonic kinetic operator, respectively and GF

and GB are their Green’s functions. Also, α is some parameter which enters in both

bosonic and fermionic differential operator and the “Tr” in (2.1) is the space-time as well

as matrix trace over non zero modes. Typically, we choose this parameter to the one which

parametrises the localization background. The one loop determinant, up to a constant in

α, is then obtained by integrating the right hand side of (2.1) with respect to α.

The choice of the parameter α is arbitrary as it was shown in [18], the final result of the

one loop determinant is independent of the choice of the parameter with respect to which

we decide to vary the one loop determinant. Thus in this method, we need compute the

Green’s function of the differential operator which appears in the one loop computations.

One of the remarkable simplifications occur in this approach is that when the boundary

conditions of the fields are consistent with supersymmetry, the variation (2.1) is a total

derivative and contributions to one loop determinant comes from the boundary behaviour

of the solutions of equations of motion of all the fields in the chiral multiplet. We find

that this is quite generic feature of the supersymmetric localization and independent of

the multiplet and spaces i.e. if the boundary conditions of the fields are consistent with

supersymmetry, the variation is always a total derivative.
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Our method presented below is quite generic and, in particular, very useful for the

localization computation in non compact spaces such as AdS space which also involve

imposing a boundary conditions. We start with stating the notation and the set up.

Set up.

1. In the vector multiplet fields, after integrating out the auxiliary fields as well as b

(BRST partner of the ghost c̃) ghost we are left with the vector field, scalar fields,

ghost field c and fermions. We denote the bosonic fields by X0 and σ, where σ is the

scalar field which parametrises the localization manifold. The bosonic field X0 is a

(k + 1) component column vector. In the case of AdS2 × S1, we have k + 1 = 3, X0

consists of the gauge field aµ̂, at. Since the method always requires a scalar which

takes a non zero value on the localization manifold, the method is suitable for theories

with at least N = 2 supersymmetry.

2. The fermionic fields are grouped as QX0 and (c,X ′
1). The fermionic field QX0 and

X ′
1 are (k + 1) and k component column vector, respectively.

3. In the matter multiplet fields, after integrating out the auxiliary fields we are left

with scalar fields which we denote by X0 and the fermionic fields are decomposed as

QX0 and X1. We assume that the scalar fields in the matter multiplet do not acquire

non zero value on the localization manifold.

With this set up, our method of localization computations will be based on the following

assumptions:

Assumptions.

1. Fields are functions of a non periodic coordinate r. In particular, it is assumed that

we have done Kaluza Klein reduction in the rest of the coordinate and the Lagrangian

for each KK mode is a function in one variable r. We will take the range of r to

be from 0 to ∞ for convenience (precise interval is not important for most of the

presentation).

2. For the vector multiplet calculations, we need to add gauge fixing functional G(A) in
the path integral. We assume that the gauge fixing condition G(A) is such that after

eliminating auxiliaries and b, the bosonic equation for σ decouples from the rest of

the bosonic fields X0.
3 This choice is not necessary but it will simplify some of the

calculations. The bosonic equations can, therefore, be written as the matrix operator

Ab

1(r) 0

0 Ab
2(r)




(
X0

σ

)
≡ Mb

(
X0

σ

)
. (2.2)

For the matter multiplet case there is no second block corresponding to σ.

3For the vector multiplet case we add the following gauge fixing term in the QV action: Qtr(c̃(G + ξb))

where ξ is a parameter. It turns out that in order to decouple the equations of motion of σ field from rest

of the bosonic fields, one needs to add a Q-exact term to the localizing action of the form Q(tr(α[c,G])),

where α is some constant (in general it is related to localization background), which can also be thought of

as redefining c̃ → c̃+ [α, c].

– 6 –
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3. We assume that Mb is hermitian second order matrix differential operator:

Mb(r) = M
(2)
b (r)

d2

dr2
+M

(1)
b (r)

d

dr
+M

(0)
b (r) (2.3)

where M
(2)
b (r), M

(0)
b (r) and M

(0)
b (r) are (k+2)×(k+2) matrices and M

(2)
b (r) is non-

degenerate. It implies that Ab
1(r) and Ab

2(r) are hermitian and second order matrix

differential operators and the coefficient of d2

dr2
is non-degenerate for all r ∈ (0,∞).

At r = 0 and u = e−r = 0 (i.e. the two boundaries of the one-dimension problem)

and the operators Ab
1 and Ab

2 have regular singularities.

4. For the fermionic fields the equations are:




A11(r) A12(r) B(r)

A21(r) A22(r) 0

C(r) 0 D(r)







QX0

c

X ′
1


 ≡ Mf (r)




QX0

c

X ′
1


 . (2.4)

Here, generically, A11(r), A12(r), A21(r) and A22(r) are (k+1)×(k+1), (k+1)×1, 1×
(k+1) and 1×1 matrix differential operators, respectively. Similarly, B(r), C(r) and

D(r) are (k+1)× k, k× (k+1) and k× k matrix differential operators, respectively.

5. Mf (r) is assumed to be Hermitian. In particular, this means that A11(r), A22(r) and

D(r) are Hermitian while A(r)†21 = A12(r) and B(r) = C(r)†.

6. D(r) is purely algebraic and is invertible k×k matrix. A11(r), B(r) and C(r) involve

only first order differential operators. The only two derivative term in the localizing

action are the ones that involve ghost c. What this means is that A21(r), A12(r) and

A22(r) involve second order differential operators.

7. Requiring that the action is supersymmetric implies that one can obtain the equations

of motions for fermionic fields from those of the bosonic fields upto a factor of Q2.

This implies that there exist a matrix first order differential operator E and its adjoint

E† such that

M̂(r) ≡ E(r)†Mf (r)E(r) =




γ1A
b
1(r) 0 0

0 γ2A
b
2(r)

0 0 D(r)


 . (2.5)

It is not very hard to find E(r) which does the above and is given by

E(r) =




1 0 0

K f(r) 0

−D(r)−1C(r) 0 1


 (2.6)
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and for this choice of E(r), the constants are γ1 = 1
Q2 and γ2 = Q2. Here K is

a (k+1)-component row vector and f(r) is a scalar function which is independent of

the parameter α. More explicitly, the relations are4

A12(r) = −K†A22(r), A21(r) = −A22(r)K

A11(r)−K†A22(r)K−B(r)D(r)−1C(r) = γ1A
b
1(r), f(r)†A22(r)f(r) = γ2A

b
2(r) . (2.7)

8. The Greens fn for Ab
1 exists. This means that Ab

1 has no zero modes. The differential

operator Ab
2 can have zero modes. Typically, these correspond to the variation of the

saddle point, which happens only for modes that are constant along space orthogonal

to AdS2 and for which we already have collective coordinate integration. This case

will be discussed separately.

2.1 Green’s function

In this section, we will construct the Green’s function for both the fermionic and bosonic

kinetic operators and discuss the relation between the two. We will find that the fermionic

Green’s function can always be constructed from the bosonic Green’s function provided

their boundary conditions agree with supersymmetry.

We start with the bosonic Green’s function. The bosonic Green’s function satisfies the

equation

Mb(r)Gb(r, r
′) = δ(r, r′) Ik+2 . (2.8)

Here Ik+2 is (k+2)-dimensional identity matrix. In general, the differential operator Mb(r)

could have zero modes. Since, in the path integral we integrate over only non zero modes,

therefore, we are interested in computing only the Green’s function for the non zero modes.

Let the solution for the Green’s function equation for r < r′ be

G<
b (r, r

′) =


G1(r, r

′) 0

0 G2(r, r
′)


 , (2.9)

and for r > r′ be

G>
b (r, r

′) =


G′

1(r, r
′) 0

0 G′
2(r, r

′)


 . (2.10)

Furthermore, G<
b (r, r

′) is smooth at r = 0 and satisfy the allowed boundary conditions at

r′ = ∞ while G>
b (r, r

′) is smooth at r′ = 0 and satisfy the allowed boundary conditions at

r = ∞. It is important to note that these boundary conditions on the Green’s function are

exactly the same boundary condition which impose on the bosonic fields.

4The similarity transformations (2.5) are obtained by following supersymmetry which implies that the

equations of motion for X0 and QX0 are identical upto a factor of Q2. Similarly, the equation of motion

for the ghost field c is also related to σ. This relations follows because Qc = f(r)σ+ k ·X0 where k is some

vector which is usually related to the killing vector. If we define the field c′ as c′ = f(r)−1
(

c− 1
Q2 k ·QX0

)

,

then we see that supersymmetry implies the equation of motion for c′ is identical to that of σ upto a factor

of Q2.

– 8 –
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Since, Mb(r) is a 2nd order differential operator, these Green’s function also satisfy

the continuity/discontinuity relations:

lim
r′→r

(G>
b (r, r

′)−G<
b (r, r

′)) = 0 , (2.11)

lim
r′→r

∂r(G
>
b (r, r

′)−G<
b (r, r

′)) = (M
(2)
b (r))−1 . (2.12)

Next, we will determine the fermionic Green’s function. The Green’s function equation for

fermionic operator is

Mf (r)Gf (r, r
′) = δ(r, r′) I2k+2 . (2.13)

Now, following our assumption (6), the fermionic Green’s function can be obtained from

the bosonic Green’s function i.e. for r < r′, the fermionic Green’s function is

G<
f (r, r

′) ≡ E(r)Ĝ<(r, r′)E†(r′) = E(r)




1
γ1
G̃1(r, r

′) 0 0

0 1
γ2
G̃2(r, r

′) 0

0 0 0


E†(r′) , (2.14)

and for r > r′

G>
f (r, r

′) ≡ E(r)Ĝ>(r, r′)E†(r′) = E(r)




1
γ1
G̃′

1(r, r
′) 0 0

0 1
γ2
G̃′

2(r, r
′) 0

0 0 0


E†(r′) . (2.15)

Here, it is worth to mention couple of points. Firstly, the bosonic Green’s function

G̃1,2 and G̃′
1,2 are such that the fermionic Green’s function G<

f (r, r
′) and G>

f (r, r
′) satisfy

the required boundary conditions as a function of both the argument r and r′. Therefore,
in general G̃1,2 and G̃′

1,2 are different than G1,2 and G′
1,2, respectively. In particular, it

satisfies

M̂(r)Ĝ(r, r′) = δ(r, r′)



Ik+1 0 0

0 1 0

0 0 0


 . (2.16)

Now, when the boundary conditions are consistent with supersymmetry then one can see

that given an admissible bosonic solution one can construct an admissible fermionic solution

and vice versa. Thus, for the supersymmetric boundary conditions we have G1,2(r, r
′) =

G̃1,2(r, r
′) and G′

1,2(r, r
′) = G̃′

1,2(r, r
′). The argument for this is as follows.

Let us suppose that s, which is a (k + 2)-vector, is a solution of the bosonic equation

Mbs = 0. Now, consider the (2k + 2) dimensional vector sf = E ŝ where ŝ = ( s
0 ),

where 0 is a k dimesnional zero. Then it follows that Mfsf = (E†)−1M̂ ŝ = 0. So for

every bosonic solution si we have the corresponding fermionic solution sif = Eŝi. Of

course, it goes other way also: for every fermionic solution sif , PE−1sif , where P is the

projector that projects to the first (k + 2) components, will be a bosonic solution. By

– 9 –
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supersymmetric boundary condition, it is meant that for every acceptable bosonic solution

the corresponding fermionic solution is also acceptable (and of course this implies the other

way also). Now, let us consider G>
b (r, r

′). Near r = ∞ this will be linear combinations of

bosonic solutions that are acceptable at r = ∞. Then, G>
f (r, r

′) = E(r)G>
b (r, r

′)E†(r′).
As a function of r and r′ this will be linear combinations of fermionic solutions of Mf

and its conjugate, respectively. If boundary condition are supersymmetric then it is clear

G>
f (r, r

′) will be the correct fermionic Green’s function. If the boundary conditions are

not supersymmetric then it must be that there is some bosonic solution, say s1b , which is

not acceptable at r = ∞ but the corresponding fermionic solution s1f is acceptable. So in

G>
f (r, r

′) = E(r)G>
b (r, r

′)E†(r′) one will have to start with a “bosonic Greens function”

which as a function of r involves s1b in order to get acceptable fermionic Green’s function.

However, the acceptable bosonic Green’s function will be different as it should not involve

s1b as a function of r.

Secondly, note that E(r) and E†(r′) are differential operators. So, in the definition

of Gf above the E(r) appearing on the left is a differential operator that acts on the

argument r of G̃1,2(r, r
′) and G̃′

1,2, while E†(r′) appearing on the right is a differential

operator in variable r′ and acts on the argument r′ of G̃1,2(r, r
′) and G̃′

1,2(r, r
′) (with d

dr′ →
− d

dr′ ). One can see this as follows:

We start with the inhomogeneous equation

Mf




QX0

c

X ′
1


 =




h1

h2

h3


 . (2.17)

Then we want to show that the solution of the above equation is



QX0(r)

c(r)

X ′
1(r)


 =

∫

r′>r
dr′G<

f (r, r
′)




h1(r
′)

h2(r
′)

h3(r
′)


+

∫

r′<r
dr′G>

f (r, r
′)




h1(r
′)

h2(r
′)

h3(r
′)


 , (2.18)

with the functions G<
f (r, r

′) and G>
f (r, r

′) given in (2.14) and (2.15), respectively. To prove

this we first integrate d
dr′ appearing in E† in G<

f and G>
f by parts. We get two contributions:

1) The boundary term

E1(r)(∂rĜ
>
f (r, r

′)|r′=r−−∂rĜ
<
f (r, r

′)|r′=r+)E
†
1(r)




h1(r)

h2(r)

h3(r)


 =




0

0

1
γ1

D−1C1(A
b(2)
1 )−1C†

1D
−1h3(r)


 ,

=




0

0

D−1h3(r)


 , (2.19)

where in the first equality we have used the discontinuity relation (2.12) and A
b(2)
1 (r)

is the matrix coefficient of the second order differential operator Ab
1(r). In the second
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equality we use the fact that the first order derivative in E(r) and E(r)† appears only
in the off-diagonal blocks involving C(r) and C(r)† where

C(r) = C1(r)
d

dr
+ C0(r), and C(r)† = − d

dr
C1(r)

† + C0(r)
† . (2.20)

The second equality in (2.19) can be argued as follows. C and K are k × (k + 1)

matrix and 1 × (k + 1) matrices. We can define a k dimensional space V1 and a

one-dimensional space V2 which satisfy the conditions:

KV1 = 0, C1V2 = 0 . (2.21)

The fact that V2 is one- dimensional follows from the non-degeneracy of coefficient of

the second derivative term in A1 namely γ1A
(2)
1 = −K†A(2)

22 K + C†
1D

−1C1. Now we

can choose a basis for (k + 1) dimensional space (represented as (k + 1) dimesnional

row vector) such that the first V1 occupies the first k elements while V2 the last

element. Then the C1 = (c1 0) where c1 is a non-degenerate (k × k) matrix and 0

is the k dimensional null vector. Furthermore K is a (k + 1) dimensional row vector

with the first k elements being zero. It follows that γ1A
(2)
1 |V2 = −K†A(2)

22 K and

γ1A
(2)
1 |V1 = c†1D

−1c1. The last equality implies that (γ1A
(2)
1 )−1|V1 = c−1

1 D(c†1)
−1.

Thus in this basis we have:

1

γ1
D−1C1(A

(2)
1 )−1C†

1D
−1 =

1

γ1
D−1c1(A

(2)
1 |V1)

−1c†1D
−1 ,

= D−1 , (2.22)

which proves (2.19). Applying Mf on (2.19) gives:



C†D−1h3

0

h3(r)


 . (2.23)

2) The bulk term

This is the same as (2.18) except that E† appeaing Gf and G′
f act now to the

right i.e. on the source. The bulk term can be rewritten as

E(r)

(∫

r′>r
dr′ Ĝ<(r, r′) +

∫

r′<r
dr′ Ĝ>(r, r′)

)
E†(r′)




h1(r
′)

h2(r
′)

h3(r
′)


 . (2.24)

This is so because the boundary term that appears in pulling the differential operator

E outside the integral vanishes due the discontinuity relation (2.12).

Now, let us apply Mf (r) = (E†(r))−1M̂(r)E(r)−1 on the bulk term (2.24). First

of all E(r)−1 removes E(r) in (2.24). The action of the operator M̂ on Ĝ<(r, r′) and
Ĝ>(r, r′) vanishes since r 6= r′. So, the only possible contribution can come when
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one of the derivatives d
dr in M̂ acts on the limits of the integrations. Using the

discontinuity relations (2.12) one can show that this results in

(E†)−1



1 0 0

0 1 0

0 0 0


E†(r)




h1(r)

h2(r)

h3(r)


 =




h1(r)− C†D−1h3(r)

h2(r)

0


 , (2.25)

where we have used the explicit form of (E†)−1

(E†)−1 =




1 −f−1,†K† C†D−1

0 f−1,† 0

0 0 1


 . (2.26)

Adding the two contributions (2.23) and (2.25), one finds that Mf acting on the

proposed solution (2.18) indeed reproduces the source.

2.2 Variation of one loop determinant

Now one can compute the variation of the one loop determinant (2.1) with respect to α

δα lnZ1-loop(α) =
1

2

∫ ∞

0
dr lim

r′→r+
tr
(
δαMf (r)G

<
f (r, r

′)− δαMb(r)G
<
b (r, r

′)
)
. (2.27)

Here “tr” is just the matrix trace and δα ≡ δ
δα . In the above, we have taken the limit

r′ → r+. Had we taken the limit r′ → r−, the fermionic and bosonic Greens functions will

be replaced by G>
f and G>

b , respectively but we will see later that the final result does not

change. The fermionic part of the variation after using the form of Mf and Gf and some

algebra, is

tr(δαMf (r)G
<
f (r, r

′)) = tr
1

γ1

(
δαA11(r)G̃1(r, r

′)−δα(K
†A22(r)K)G̃1(r, r

′)

−δαB(r)D−1(r)C(r)G̃1(r, r
′)−δαC(r)G̃1(r, r

′)C†(r′)D−1(r′)

+δαD(r)D−1(r)C(r)G̃1(r, r
′)C†(r′)D−1(r′)

)

+tr
1

γ2
δα(A22(r))f(r)G̃2(r, r

′)f†(r′) ,

= tr
(
δαA

b
1(r)G̃1(r, r

′)+f−1,†(r)δαA
b
2(r)G̃2(r, r

′)f†(r′)
)

+tr
1

γ1

(
B(r)δα(D

−1(r)C(r))G̃1(r, r
′)−δαC(r)G̃1(r, r

′)C†(r′)D−1(r′)

+δαD(r)D−1(r)C(r)G̃1(r, r
′)C†(r′)D−1(r′)

)
. (2.28)

In the above we have used the relations (2.7) and also the fact that G1(r, r
′) and G2(r, r

′)
are Green’s function for the kinetic operators Ab

1(r) and Ab
2(r), respectively. Thus, the
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fermionic contributions to the variation (2.27) is

lim
r′→r+

tr(δαMf (r)Gf (r, r
′)) = tr

(
δαA

b
2(r)G̃2(r, r) + δαA

b
1(r)G̃1(r, r)

)

+tr
1

γ1

(
C†(r)δα(D

−1(r)C(r))G̃1(r, r)

−δα(D
−1(r)C(r))G̃1(r, r)C

†(r)
)
. (2.29)

Now, we see that the first two terms in the above equation cancel the bosonic variation

if and only if the boundary conditions are consistent with supersymmetry i.e. when the

fermionic Green’s function is contructed from the bosonic Green’s function (2.9) and (2.10).

In this case, we are finally left with

δα lnZ1-loop(α) =
1

2

∫ ∞

0
dr tr

1

γ1

(
C†δα(D

−1C)G1(r, r)− δα(D
−1C)G1(r, r)C

†
)
,

(2.30)

where the differential operators C and C† appearing on the left and right of G1 act on

respectively the first and second arguments of G1. We can now move the operator C†

appearing on the right of G1 in the second term of (2.30) to the left of G1 by using

cyclicity of matrix trace as well as an integration by part. This results in a bulk term

which cancels with the first term and a boundary term. Thus, the variation of the one loop

determinant becomes

δα lnZ1-loop(α) = −1

2
tr

1

γ1
(C†

1(r)δα(D
−1(r)C(r))G1(r, r)

∣∣∣
r→∞

r→0
. (2.31)

Note that the operator C(r) acts only on the first argument of the Green’s function. Thus,

we find that if the fermionic Green’s function are related to the bosonic Green’s function

as in (2.14) and (2.15), the variation of the one loop determinant receives contribution only

from the boundary. Moreover, to evaluate the boundary term, we just need to know the

bosonic Green’s function G1(r, r
′). This is one of the most important results of our paper.

Now, if it turns out that the C is independent of α (as we will see in the examples of

AdS2×S1) or its α dependence is subleading near each boundary (we have also observed this

in other examples [20]), then from (2.7) we see that D−1 = γ1D
−1
0 , where D0 is independent

of α (at least near each boundary). Using the relation 1
γ1

= Q2 we then conclude that

δα lnZ1-loop(α) =
1

2
(δα lnQ

2)Tr(C†
1D

−1
0 C)G1(r, r)

∣∣∣
r→∞

r→0
. (2.32)

The above result (2.32) we arrived at by taking the limit r′ → r+. If we had taken the

other limit r′ → r−, we would end up with the same expression as above but with G1

replaced by G′
1. The difference between the variations will be

1

2
(δα lnQ

2)Tr(C†
1D

−1
0 C)(G1(r, r)−G′

1(r, r))
∣∣∣
r→∞

r→0
. (2.33)
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Using the discontinuity relation of the Green’s function, we find that the above difference

becomes

1

2
(δα lnQ

2)Tr(C†
1D

−1
0 C1)

1

A
(2)
1 (r)

∣∣∣
r→∞

r→0
=

1

2
(δα lnQ

2)TrV1Ik

∣∣∣
r→∞

r→0
= 0 . (2.34)

In the above Ik is a k × k identity matrix. Thus, it is reassuring that the result does not

depend on the way one takes the limit r′ → r.

It will be interesting to investigate the cases where the α dependence in C is not

subleading and its implications on the Green’s function method presented above.

2.3 Calculation of the boundary terms

Now, we will evaluate the boundary terms (2.31). The boundary term is given in terms of

the Green’s function of the differential operator Ab
1 which is a (k+1)×(k+1) matrix second

order differential operator. We have stated earlier, as a part of our assumptions (2.7), that

the Ab
1 can be expressed in terms of the fermionic operator as A11 −K†A22K − BD−1C.

This is one of the consequences of supersymmetry. Furthermore, the second order derivative

term in Ab
1 comes from K†A22K and BD−1C. While the former has rank 1 the latter has

rank k. In order to simplify the computations, we can decompose the (k + 1) dimensional

space in terms of a k dimensional space V1 and a one-dimensional space V2 as in (2.21).

This means that second derivative part of K†A22K in Ab
1 acts only on V2 and that of

BD−1C, namely B1D
−1C1 acts only on V1. Of course the first order derivative and non-

derivative pieces contained in A11 and BD−1C will in general act on both V1 and V2 and

therefore, the operator Ab
1 will mix these two spaces through lower order derivative terms.

To evaluate the boundary term (2.31) we will make the following assumptions.

1. The leading behaviour of the solutions of Ab
1 near the boundaries, i.e. near r = 0

and r = ∞, is determined by K†A22K on V2 and by BD−1C restricted to V1. This

means that the first order derivative and non-derivative pieces contained in A11,

A22 and BD−1C that mix V1 and V2 only contribute to subleading orders. We

have checked in all the examples we have studied, assumption holds. In fact, our

preliminary calculations also indicate that the assumption follows from the general

positive definite localising action of the form S ∼ Ψ(QΨ)†. Therefore, to compute

the boundary term (2.31) or (2.32), we only need to study the action of BD−1C and

the Green’s function, G1(r, r
′), restricted to the vector space V1. That is, the leading

contribution to the boundary term comes from the space of solutions of BD−1C (now

viewed as (k × k) matrix operator) on V1.

2. The Greens fn for Ab
1 exists. This, taking into account assumption (1), implies that

of the 2k solutions of BD−1C on V1 near the boundary at least k solutions satisfy

the boundary conditions. Similarly, it implies that of the 2 solutions of K†A22K on

V2 at least one solution satisfies the boundary condition.
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3. Ab
1 has no zero modes.5 This means that there are precisely k solutions to BD−1C on

V1 and 1 solution of K†A22K on V2 that are allowed near each of the boundaries and

that none of the allowed k solutions near one boundary, when analytically continued

to the other boundary satisfies the corresponding boundary condition.

In the following, by a slight abuse of notation, we will denote by C and B(= C†) their

restrictions to V1 i.e. they will be represented (by a suitable change of basis) as (k × k)

matrix operators, unless stated explicitly otherwise. Similarly, we will denote the Green’s

function of Ab
1 restricted to V1 by G1(r, r

′) for r < r′ and G′
1(r, r

′) for r > r′ and both will

be a k × k matrix.

Now, the assumption (1) could have been relaxed. Of course even if this assumption is

not valid in some cases, one can carry out the boundary analysis of the Green’s functions

and compute the boundary term in the α variation above in each case separately, but this

assumption will allow us to obtain a general formula for the boundary term and relate it

to the index of the differential operator C.

We begin with 2k linearly independent solutions of Ab
1 (now viewed as (k × k) matrix

operator) on V1. Let us denote by S a (k × 2k) matrix where the 2k columns label the 2k

different solutions and let η be a diagonal (2k× 2k) matrix with entries −1 for the allowed

solutions and +1 for the ones that are not allowed. From the assumptions (2) and (3),

there are k solutions each with +1 and −1 eigenvalues of η. Thus, 1
2(1 − η) and 1

2(1 + η)

are projections operator which will project the solutions matrix S into the acceptable and

non-acceptable solutions near each boundary. Furthermore, the leading behaviour of the

solution S agrees with the leading behaviour of the solution of BD−1C restricted on V1.

We define the Green’s function to be

G1(r, r
′) =

1

2
S(r)(1− η)X(r′) , for r < r′ ,

G′
1(r, r

′) =

(
1

2
S(r)(1 + η) + · · ·

)
X(r′) , for r > r′ . (2.35)

Here X(r′) is an unknown (2k×k) matrix such that (1−η)X(r′) is admissible at the other

boundary i.e. at r → ∞ and (1 + η)X(r′) satisfy the allowed boundary condition at the

first boundary i.e. at r = 0. The dots in the second equation above denote combinations

of allowed solutions i.e. of the form Y1
1
2S(r)(1 − η)Y2(1 + η) where Y1and Y2 are some

constant (i.e. independent of r) matrices. Y1 and Y2 are determined by requiring that the

combination
(
1
2S(r) + Y1

1
2S(r)(1− η)Y2

)
(1 + η) are the analytic continuation of allowed

solutions near the other boundary. However these dotted terms will be subleading and

therefore not be relevant for us and we will drop them in the following. What is important,

however, is that the k linearly independent solutions that are admissible at the other

boundary, let say at r = 0, when analytically continued to r = ∞, span the k dimensional

space 1
2S(r)(1+ η) (of inadmissible solutions) near the first boundary, as is implied by the

assumption (3) of the non-existence of zero modes for Ab
1.

5Ab
2 can have zero mode corresponding to the variation of the saddle point, which happens only for

modes that are constant along space orthogonal to AdS2 and for which we already have collective coordinate

integration. This case will be discussed separately.
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Next, we determine X(r). When r 6= r′ both G and Ĝ are annihilated by Ab
1. The

continuity/discontinuity relations for the Greens function near r = r′ are:

G′
1(r, r)−G1(r, r) = 0 ,

lim
ǫ→0

B1D
−1
0 C1∂r(G

′
1(r, r

′)|r′=r−ǫ −G1(r, r
′)|r′=r+ǫ) = 1 . (2.36)

Here 1 is a k × k identity matrix. Note that in the second line we have used the fact that

second order differential operator A22 in Ab
1 does not play a role on the solution in vector

space V1. Using the continuity equation, the discontinuity equation can also be written as

lim
ǫ→0

B1D
−1
0 C(G′

1(r, r
′)|r′=r−ǫ −G1(r, r

′)|r′=r+ǫ) = 1 . (2.37)

Using the expressions for the Green’s function given in (2.35), we write the two equations

in (2.36) as a matrix equation for X(r)

W (r)ηX(r) =

(
0

1

)
, (2.38)

where

W =




S(r)

B1D
−1
0 CS(r)


 =




s(r) s̃(r)

B1D
−1
0 Cs(r) B1D

−1
0 Cs̃(r)


 . (2.39)

In the above we have split k × 2k matrix S as S = (s(r) s̃(r)), where s(r) = {si(r)} and

s̃(r) = {s̃i(r)}, for i = 1, . . . , k are solutions of Ab
1. Thus we obtain

X(r) = ηW−1

(
0

1

)
. (2.40)

Note that the inverse of W exist because the determinant of W is determinant of B1D
−1
0 C1

times the Wronskian and hence non-zero because of our assumptions. Since to evaluate the

boundary term (2.32), we just need to know the asymptotic form of the Green’s function,

we therefore, only require the asymptotic form of X(r) at each boundary. To begin with

we first consider the analysis near the boundary i.e. r = 0. Without loss of generality, we

can assume that the set of solutions {si(r)}, for i = 1, . . . , k belong to the kernel of C near

r = 0. In this case near r = 0, we have

lim
r→0

W−1 =


s−1 −s−1s̃(B1D

−1
0 Cs̃(r))−1

0 (B1D
−1
0 Cs̃(r))−1


 , (2.41)

where we have used the fact that B1D
−1
0 Cs(r) = 0. In this case near the boundary r = 0,

the solution (2.40) becomes

X(r) = η0


s−1(r) −s−1(r)s̃(r)(B1D

−1
0 Cs̃(r))−1

0 (B1D
−1
0 Cs̃(r))−1




(
0

1

)
,

= η0


−s−1(r)s̃(r)(B1D

−1
0 Cs̃(r))−1

(B1D
−1
0 Cs̃(r))−1


 , (2.42)
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where with this ordering of the solutions in S(r), so that first k column belongs to the

Kernel of C near r = 0, the corresponding projector is η0. Using the above equation we

can obtain the Green’s function for r < r′ near the boundary r = r′ = 0 as

G1(r, r
′) = −1

2

(
s(r) s̃(r)

)
(1− η0)


−s−1(r′)s̃(r′)(B1D

−1
0 Cs̃(r′))−1

(B1D
−1
0 Cs̃(r′))−1


 . (2.43)

Now, we can compute the boundary term at r = 0 by using (2.32) and the expression

for G(r, r′) from (2.35) and (2.43) and the result is

lim
r→0

Tr(B1D
−1
0 CG1(r, r

′)|r′→r) = −
1

2
Tr







(

0 B1D
−1
0 Cs̃(r)

)

(1−η)







−s−1(r)s̃(r)(B1D
−1
0 Cs̃(r))−1

(B1D
−1
0 Cs̃(r))−1












,

= −
1

2
Tr



(1−η)





0 −s−1(r)s̃(r)

0 1







 ,

= −(k−ℓ) . (2.44)

where ℓ is the number of admissible solutions at r = 0 that are in the Kernel of C.

We can repeat the same analysis at r = ∞. The difference now is that for r > r′

the Green’s function must involve solutions that are admissible near r = ∞. Let the

corresponding projector be 1
2(1 − η∞). Then we have the Green’s function as in (2.35)

with η → −η∞. We can repeat the above analysis except that we assume that our set of

solutions to S(r) = (s′(r) s̃′(r)) such that the first k column belongs to the Kernel of C

near r = ∞. Following the same steps as above, we get the contribution to the boundary

term near r = ∞

−1

2
Tr

[
(1 + η∞)

(
0 −s−1(r)s̃(r)

0 1

)]

= −ℓ′ , (2.45)

where ℓ′ is the number of admissible solutions in the set {s′(r)} at r = ∞ that are in the

Kernel of C. Note in the above we have used the fact that the first k×k block of 1
2(1+η∞)

has ℓ′ zeros.
Taking the difference between the contribution at r = ∞ and at r = 0 one ends up

with the simple result

BT ≡ Tr(C†
1D

−1
0 C)G1(r, r)

∣∣∣
r→∞

r→0
= (k − ℓ− ℓ′) . (2.46)

Finally combining (2.46) and (2.32) we obtain our main result

δα lnZ1-loop(α) =
1

2
(δα lnQ

2)(k − ℓ− ℓ′) . (2.47)

Here we again recall the various integers that occur in this expression.

1. k + 1 is the integer that defines dimension of the bosonic space X0.

2. ℓ, ℓ′ are the number of admissible solutions of the first order equations Cs(r) = 0 at

the origin and at asymptotic infinity of AdS, respectively.
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Note that the above result (2.47) is obtained for each Kaluza Klein mode. Therefore, to

obtain the complete contribution to the variation of the one loop determinant we need to

sum over KK modes labelled by ~n

δα lnZ
total
1-loop(α) =

1

2

∑

~n

(δα lnQ
2
~n)(k − ℓ~n − ℓ′~n) . (2.48)

2.4 Connection to index of the operator C

In this section we will show that the result of the boundary term (2.46) is an index of the

first order differential operator C = C|V1 . To show this we start with the fact that the oper-

ator Ab
1(r)

∣∣∣
V1

, whose one loop determinant we are interested in to compute, asymptotically

approaches C†D−1C. Therefore, a solution of the operator Ab
1(r)

∣∣∣
V1

s = 0 near each bound-

ary either belong to the solution space S(C) of the operator C or the solutions space S(C†) of
C† which is a subset of the image of the operator C. We start with the solution space S(C).
A solution in S(C) has asymptotic behaviour rγ and eγ̂r near r → 0 and r → ∞, respec-

tively. Let this set be Γ(C) = {γ1, . . . , γk} and Γ̂(C) = {γ̂1, . . . , γ̂k}. The rest k solutions of

Ab
1(r)

∣∣∣
V1

correspond to the set S(C†), the space of solution of C†, and the corresponding set

of the asymptotic behaviour be Γ(C†) = {γ∗1 , . . . , γ∗k} and Γ̂(C†) = {γ̂∗1 , . . . , γ̂∗k}. Now given

these sets near each boundary the differential operators C and C† can be diagonalised. Near

r → 0 differential operators C and C† can be brought to the form6

C = Ik
d

dr
+

1

r
Cdiag.
0 , C† = −Ik

d

dr
+

1

r
C†diag.
0 , (2.49)

and near r → ∞ differential operators C and C† can be brought to the form

C = Ik
d

dr
+ Cdiag.

∞ , C† = −Ik
d

dr
+ C†diag.

∞ . (2.50)

Here Cdiag.
0 (C†diag.

0 ) and Cdiag.
∞ (C†diag.

∞ ) are constant k×k matrices with diagonal entries given

by Γ(C) (Γ(C†)) and Γ̂(C) (Γ̂(C†)), respectively.
Next, we consider an operator C′(C′†) which is continuously connected to C(C†) and is

defined globally for every value of r. This operator has the form

C′ = Ik
d

dr
+ C′

0(r), C′† = −Ik
d

dr
+ C′†

0 (r) . (2.51)

The non derivative term C′
0(C

′†
0 ) is such that the operator C′(C′†) is a k × k diagonal first

order differential operator for every value of r and near the boundary it approaches the

asymptotic form (2.49) and (2.50) of the differential operator C(C†). Thus, C′(C′†) is an

interpolating operator between the asymptotic (2.49) and (2.50). Since the operator C′ is
continuously connected to the operator C, we expect that the index of C′ to be same as

that of the operator C.
6Note that one can always put the operator C and C† of the form (2.49) and (2.50) without the non

derivative term being diagonal.
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Now we will compute the index of the operator C′. Let S(C′) be the space of solutions

of matrix differential operator C′. Since C′ is a k×k first order matrix differential operator,

we expect the dimension for the space of solutions to be dimS(C′) = k. We consider two

spaces, S1(C′) ⊂ S(C′) and S2(C′) ⊂ S(C′), where S1(C′) are the set of solutions which

are smooth near r = 0 and S2(C′) are the set of solutions which are admissible near

r = ∞. Since, operators C and C′ have the same asymptotic, therefore, they have the same

dimension of the space of admissible solution. Thus, dimS1(C′) = ℓ and dimS2(C′) = ℓ′.
Let the space of Kernel of C′ is Ker(C′) and its dimension is s. The space Ker(C′) ⊂ S(C′)
is the space of solutions which are smooth near r = 0 as well as admissible near r = ∞.

Clearly, Ker(C′) = S1(C′)∩S2(C′). Furthermore, we expect that there are solutions ∈ S(C′)
which are neither smooth near r = 0 nor admissible near r = ∞. These solutions belong

to the space Ŝ(C′) = S(C′)/S1(C′) ∪ S2(C′) and the dimension of this space is

dim Ŝ(C′) = k − ℓ− ℓ′ + s = k − ℓ− ℓ′ + dimKer(C′) . (2.52)

Next, we argue that for every solution belonging to Ŝ(C′), ∃ a solution belonging to Ker(C′†).
In particular, given a solution in S(C′) which is neither smooth near r = 0 nor admissible

near r = ∞, the existence of Green’s function of Ab
1(r) requires that there exist a solution

belonging to the Kernel of C† which is smooth near r = 0 and admissible near r = ∞.

Thus

dimKer(C′†)− dimKer(C′) = k − ℓ− ℓ′. (2.53)

The argument goes as follows: let us consider a solution si ∈ Ŝ(C′) which has asymptotic

determined by γi ∈ Γ(C) and γ̂i ∈ Γ̂(C) near r = 0 and r = ∞, respectively. Both γi and

γ̂i correspond to non admissible behaviour. Now we require that near each boundary the

Green’s function of Ab
1(r)

∣∣∣
V1

exists. Since, Ab
1(r)

∣∣∣
V1

asymptote to C†D−1C, it implies that

for every such γi ∈ Γ(C) at r = 0 there is γ∗i ∈ Γ(C†) and for every such γ̂i ∈ Γ̂(C) at r = ∞
these is γ∗i ∈ Γ̂(C†), where γ∗i and γ̂∗i give rise admissible asymptotic behaviour. Since C′†

asymptote to C† near each boundary, this implies that there exist a solution si of C′† which
has the asymptotic behaviour determined by γ∗i and γ̂∗i and is acceptable at both ends. Thus

it belongs to the kernel of C′†. Furthermore, using the inner product 〈v1, v2〉 =
∫
dr v†1v2,

one sees that the space Ker C′† is isomorphic to the space Coker C′. Thus

ind(C′) ≡ dimCoker(C′)− dimKer(C′) = k − ℓ− ℓ′. (2.54)

Since C′ is continuously related to C,

ind(C) = k − ℓ− ℓ′. (2.55)

Thus, the boundary term (2.46) is the index of the operator C = C|V1 .

3 Chern-Simons theory on AdS2 × S1: Greens function approach

In this section, we revisit the analysis presented in [17]. In [17], we computed the partition

function of a non abelian bosonic Chern Simons theory on the metric background

ds2 = dτ2 + L2(dr2 + sinh2 r dθ2) , (3.1)
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where L is some constant, using the supersymmetric localization. This is possible because

of the following reason: the supersymmetric completion of a bosonic Chern-Simons action is

SC.S. =

∫
d3x

√
gTr

[
iεµνρ

(
aµ∂νaρ −

2i

3
aµaνaρ

)
− λ̃λ+

i

2
Hσ

]
. (3.2)

Here εµνρ = 1√
g ǫ

µνρ, ǫτηθ = 1. Also, in order to construct supersymmetric action, we

have used the vector multiplet in N = 2 theory in Euclidean signature which contains an

imaginary scalar σ, gauge field aµ, an auxiliary scalar field H which is also imaginary and

2 component complex fermions λ and λ̃. Now, we note that the fermions and scalars in the

vector multiplet are purely auxiliary fields as they do not have kinetic terms and therefore,

one can integrate them out. Thus the supersymmetric Chern-Simons theory is equivalent

to a bosonic Chern-Simons theory.

The analysis in [17] was based on index computation which relies on the boundary

conditions being consistent with supersymmetry. These consist of normalizable bound-

ary conditions on the gauge field and non normalizable boundary conditions on fermions

following from supersymmetry transformations. We find that the one loop determinant

evaluated using the index calculations is given as

Z1-loop(α) =
∏

ρ

√∏

n 6=0

(n− iρ · α)
∏

p 6=0

( p

L
− iρ · α

)
. (3.3)

We will reproduce the above answer in the Green’s function approach with normalizable

boundary conditions on all fields, including fermions, and find that the above result holds

true as long as L2 > 3
4 . It would be interesting to understand the significance of the rational

number 3
4 .

3.1 Q-exact deformation and gauge fixing

Next, we deform the action (3.2) by a Q-exact term, tQVloc. We express the QVloc in terms

fermion bilinear (Ψ,Ψµ) instead of (λ, λ̃) which are defined as

Ψ =
i

2
(ǫ̃λ+ ǫλ̃) , Ψµ = Qsaµ =

1

2
(ǫγµλ̃+ ǫ̃γµλ) . (3.4)

The fermion bi-linears are convenient for the evaluation of the index. The inverse of the

above relations expresses (λ, λ̃) in terms of Ψ,Ψµ as

λ =
1

ǫ̃ǫ
[γµǫΨµ − iǫΨ] , λ̃ =

1

ǫǫ̃
[γµǫ̃Ψµ − iǫ̃Ψ] . (3.5)

The supersymmetry transformation of the bi-linears are

QsΨ =
1

4
(ǫ̃ǫ)H − i

2
(ǫ̃γµνǫ)Fµν −

1

L
σ ,

QsΨµ = LKaµ +DµΛ , (3.6)

where Λ = ǫ̃ǫ σ −Kµaµ. One convenient choice of Vloc is given by

Vloc =

∫
d3x

√
g

1

(ǫ̃ǫ)2
Tr

[
Ψµ(QsΨµ)

† +Ψ(QsΨ)†
]
. (3.7)
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The bosonic part of the QVloc action is given by

QsVloc{bosonic} =

∫
d3x

√
g

1

2(ǫ̃ǫ)2
Tr

[
(QsΨ

µ)(QsΨµ)
† + (QsΨ)(QsΨ)†

]
,

=

∫
d3x

√
gTr

[
1

4
FµνF

µν − 1

2 cosh2 r
Dµ(cosh r σ)D

µ(cosh r σ)

− 1

32

(
H − 4σ

L cosh r

)2
]
.

(3.8)

For a gauge group G with rank r, the minimum of the QsVloc{bosonic} is parametrized by r

real parameters as

aµ = 0 , σ =
iα

cosh r
, H =

4iα

L cosh2 r
. (3.9)

Here α is a real constant matrix valued in Lie algebra of the gauge group. Furthermore,

on this localization background the gauge transformation parameter in supersymmetry

algebra reduces to a constant, Λ(0) = iα.

Next, we need to introduce the gauge fixing Lagrangian. In our case it turns out that

the Green’s function analysis becomes simpler for the gauge fixing Lagrangian

Lg.f. = TrQ

[
i(c̃ cosh2 r + 2[α, c])∇µ

(
1

cosh2 r
aµ

)
+ ξc̃b

]
, (3.10)

where Q = Qs +QB and QB is the BRST transformation. Below we will define the action

of the supersymmetry transformations and BRST transformations on all the fields.

Note that the above gauge fixing Lagrangian is different than the one used in [17]. As

we will see below, the above choice of the gauge fixing Lagrangian decouples the equations

of motion for the fluctuations of the scalar field σ with the gauge field fluctuations.

The complete action including the gauge fixing Lagrangian is invariant under BRST

transformations on the fields which are given by

QBaµ = Dµc, QB c̃ = b, QBc =
i

2
{c, c}, QBλ̃ = i{c, λ̃},

QBλ = i{c, λ}, QBσ̂ = i[c, σ̂], QBĤ = i[c, Ĥ], QBb = 0 . (3.11)

Here aµ, σ̂ and Ĥ are fluctuations away from localizing.

We also define the susy transformations for extra fields

Qsc = −Λ + Λ(0), Qsb = LK c̃+ i[Λ(0), c̃], Qsc̃ = 0 , (3.12)

such that the combined transformations generated by Q = Qs +QB satisfy the algebra

Q2 = LK + δgauge transf.

Λ(0) . (3.13)
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To summarize, the complete transformations of fields under Q̂ are given by

Qaµ = Ψµ +Dµc, Qσ̂ = Qsσ̂ + i[c, σ̂] ,

QΨµ = LKaµ +DµΛ + i{c,Ψµ}, QΨ =
1

4
(ǫ̃ǫ)Ĥ − i

2
(ǫ̃γµνǫ)Fµν(a)−

1

L
σ̂ + i{c,Ψ} ,

Qc = −Λ + Λ(0) +
i

2
{c, c}, Qc̃ = b . (3.14)

At this point it is worth to mention a point which will be important in the later analysis.

In our ξ-gauge, we see from the ghost Lagrangian involving fields (c̃, b)

Lc̃,b = Tr

[
ib cosh2 r∇µ

(
1

cosh2 r
aµ

)
−ξb2+ic̃ cosh2 r∇µ

(
1

cosh2 r
∂µc

)
+ξc̃(LK c̃+i[Λ(0), c̃])

]
,

(3.15)

that if we choose

c̃ =
~µ

cosh2 r
, b =

~µ′

cosh2 r
, (3.16)

where ~µ and ~µ′ are gauge Lie algebra valued constant, then this mode decouples from the

rest of the fields in the theory. The quadratic terms involving b and c̃ only gives a mass

terms for this mode which is proportional to ξ. In fact, in ξ = 0 limit these are zero modes.

We will keep ξ non zero for our convenience, however, we will subtract the contribution of

this mode in the later calculation.

3.2 Boundary conditions

In this section we will discuss the boundary conditions on the fields present in the the-

ory. This is essential when we define a quantum field theory on spaces with boundary.

These boundary conditions set the value of the field at the boundary. In fact different

boundary conditions define different quantum field theory. However, in the present case

we are considering spaces which are of non compact type such as AdS. In this case the

boundary conditions are much more reacher. AdS space being an open space, one needs to

impose conditions on the asymptotic behaviour of fields. Typically, these asymptotic fall

off conditions on fields are motivated by preserving certain aspect of the theory such as

preserving certain symmetry, normalizability and the ones motivated from the AdS/CFT

correspondence. Here, we follow normalizability as the criteria on the fall off conditions

i.e. we require that fluctuations of all the fields present in the theory on AdS space should

fall off asymptotically in a manner such that they are L2-normalizable. Assuming this

condition we find that for the bosonic fields in the vector multiplet, the fields should fall

off asymptotically to satisfy

er/2at → 0, er/2ar → 0, e−r/2aθ → 0, er/2σ → 0 . (3.17)

Here aµ and σ are Lie algebra valued gauge field and scalar field, respectively. Similarly,

requiring that the gaugino fields, λ and λ̃, are normalizable implies that

Ψt → 0, Ψr → 0, e−rΨθ → 0, and Ψ → 0 . (3.18)
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Next, we want to define the boundary conditions on the ghost system. The ghost system

consists of two grassmann odd scalar c, c̃ and the Lagrange multiplier field b. The nor-

malizable boundary condition on the Lagrange multiplier b implies that the fluctuations

should statisfy er/2b → 0. The boundary condition on the ghost field c is chosen to be the

same as in [17] i.e.

c → f(θ) + e−r/2f̃(θ, τ) + . . . . (3.19)

This was motivated from the fact that c is a gauge transformation parameter and we allow

fluctuations of c which does not change the boundary conditions on the gauge field. Once

we have chosen the boundary conditions on the field c, the boundary condition on the

ghost c̃ is fixed by requiring that
∫

d2x
√
g c̃ c < ∞ . (3.20)

This requires that the field c̃ should satisfy er c̃ → 0, i.e. it falls faster than e−r. Later on,

we will see that these boundary condition on c and c̃ are essential in order to construct

their Green’s function.

3.3 Equations of motions and the Greens function

As we explained earlier, the variation of the one loop determinant is given by the product

of the variation of the differential operator and its Green’s function. The differential

operator appears at the quadratic order in the fluctuations in the QV action. The Green’s

function can be explicitly constructed out of the solutions of the equations of motions of

the differential operator. However, in the supersymmetric case to evaluate the variation of

the one loop determinant, we do not need the explicit form of these solutions rather only

their asymptotic behaviour, which is a considerable simplifications. In this section, we will

present these differential operator for both bosonic and fermionic fields and their Green’s

function. After this we will discuss the asymptotic behaviour of these differential operator

which we will use to construct the asymptotic solutions. Furthermore, for the purposes

of the presentation we will assume the Gauge group is SU(2), but near the end we will

generalize the result to any arbitrary compact group.

Equations of motions. We begin with the bosonic fields. In the discussion below we

will not care about the auxiliary field H, as its equation of motion is trivial and we assume

that we have integrated it out in the path integral. The rest of the bosonic fields are the

vector field aµ and the scalar field σ which are elements in the Lie algebra of SU(2). In

the following discussion we will only consider the non-Cartan part of these fields. This is

because the quadratic fluctuations containing the fields in the Cartan do not depend on α

and thus, do not contribute to the variation in the one loop determinant. It is easy to see

this in the bosonic action (3.8) (and similarly for fermionic action).

We first expand the fields in terms of Fourier modes and write the Lagrangian in terms

of the following Fourier modes

a1t =
1

2
a+t;n,p(r)e

i(nt+pθ)+
1

2
a−t;n,p(r)e

−i(nt+pθ), a1r =
i

2
a+r;n,p(r)e

i(nt+pθ)− i

2
a−r;n,p(r)e

−i(nt+pθ)

a1θ =
1

2
a+θ;n,p(r)e

i(nt+pθ)+
1

2
a−θ;n,p(r)e

−i(nt+pθ), a2t = − i

2
a+t;n,p(r)e

i(nt+pθ)+
i

2
a−t;n,p(r)e

−i(nt+pθ)
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a2r =
1

2
a+r;n,p(r)e

i(nt+pθ)+
1

2
a−r;n,p(r)e

−i(nt+pθ), a2θ = − i

2
a+θ;n,p(r)e

i(nt+pθ)+
i

2
a−θ;n,p(r)e

−i(nt+pθ)

σ1 =
1

2
σ+
n,pe

i(nt+pθ)+
1

2
σ−
n,pe

−i(nt+pθ), σ2 =
1

2i
σ+
n,pe

i(nt+pθ)− 1

2i
σ−
n,pe

−i(nt+pθ) . (3.21)

Here the labels on the fields are the usual labels of the Lie algebra su(2).

The equations of motion for the vector field and scalar field are obtained by varying

the action with respect to a−µ;n,p and σ−
n,p and can be written as

MbE
+
b;n,p(r) ≡ M2∂

2
rE

+
b;n,p(r) +M1∂rE

+
b;n,p(r) +M0E

+
b;n,p(r) = 0 . (3.22)

Here M2,1,0 are 4× 4 matrices whiose elements are functions of coordinate r. The explicit

form of these matrices are given in appendix B. The column vector E+
b;n,p(r) is given as

E+
b;n,p(r) =




a+t;n,p(r)

a+r;n,p(r)

a+θ;n,p(r)

σ+
n,p(r)




. (3.23)

Similar to bosonic case, we first expand the fermionic fields in terms of Fourier modes.

We will not present here the Fourier expansion of the fermionic fields, but we follow closely

to the bosonic case e.g.

Ψ1
t =

1

2
Ψ+

t;n,p(r)e
i(nt+pθ) +

1

2
Ψ−

t;n,p(r)e
−i(nt+pθ) ,

Ψ1
r =

i

2
Ψ+

r;n,p(r)e
i(nt+pθ) − i

2
Ψ−

r;n,p(r)e
−i(nt+pθ) ,

Ψ1
θ =

1

2
Ψ+

θ;n,p(r)e
i(nt+pθ) +

1

2
Ψ−

θ;n,p(r)e
−i(nt+pθ) . (3.24)

Then, the fermionic equations of motions are

MfE
+
f ;n,p(r) ≡ M2f∂

2
rE

+
f ;n,p(r) +M1f∂rE

+
f ;n,p(r) +M0fE

+
f ;n,p(r) = 0 . (3.25)

Here M2f,1f,0f are 6× 6 matrices which are functions of coordinate r, and

E+
f ;n,p(r) =




Ψ̃+
t;n,p

Ψ̃+
r;n,p

Ψ̃+
θ;n,p

c+n,p

c̃+n,p

Ψ+
n,p




. (3.26)

Here Ψµ = Ψ̃µ −Dµc.
7 The explicit form of these matrices are given in appendix B.

7Note that the change of the field variable does not involve α. Therefore, one naively expects that

the resultant Jacobian will not give any extra α-dependent contribution. We have checked that this naive

expectation is indeed correct.
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Greens function. The Green’s function for the bosonic operator is a 4× 4 matrix and

satisfies the equation

M2∂
2
rG

+
b;n,p(r, r

′) +M1∂rG
+
b;n,p(r, r

′) +M0G
+
b;n,p(r, r

′) = δ(r − r′) . (3.27)

The explicit form of the matrices M2,1,0 are given in the appendix B. One of the simplifica-

tions which occur for the choice of the gauge fixing Lagrangian (3.10) is that the equations

of motion for the scalar decouples from the equations of motion of the vector field aµ. Thus,

the bosonic Green’s function is block diagonal and has the form (2.9) for r < r′ and (2.10)

for r > r′, where in the present case, G1(r, r
′) (and G′

1(r, r
′)) is 3 × 3 and G2(r, r

′) (and

G′
2(r, r

′)) is 1× 1 matrix, respectively.

The continuity and discontinuity of the first derivative of the Green’s function

G+
b;n,p(r, r

′)
∣∣∣
r<r′

−G+
b;n,p(r, r

′)
∣∣∣
r>r′

= 0 , (3.28)

and

∂rG
+
b;n,p(r, r

′)
∣∣∣
r<r′

− ∂rG
+
b;n,p(r, r

′)
∣∣∣
r>r′

= M−1
2 . (3.29)

Similarly, the Green’s function for the fermionic operator is a 6× 6 matrix which satisfies

the similar continuity and discontinuity relations as above.

3.4 Boundary terms

Next, we consider the variation of the one loop determinant with respect to the background

parameter α. The variation is

δ

δα
lnZ1-loop(α) = Tr

[
GF

δ

δα
DF (α)

]
− 1

2
Tr

[
GB

δ

δα
DB(α)

]
, (3.30)

where DF (α) and DB(α) are fermionic and bosonic kinetic operator, respectively. Following

the discussion presented in the section 2.2 we find that in the supersymmetric case the

variation is a total derivative and is given as

δ

δα
lnZ1-loop(α) = −δα(lnQ

2) trB1D
−1
0 CG1(r, r)

∣∣∣
r=∞

r=0
, (3.31)

where G1(r, r
′) is the bosonic Green’s function which is constructed out of the solutions of

the equations of motions for the vector field and

B = B1
∂

∂r
+B0, C = C1

∂

∂r
+ C0 . (3.32)

The explicit forms of these matrices are

B1 =




0 − iL
2 tanh2 r

− i
2 sinh r 0

0 i
2 sech

2 r




, B0 =




i
2L

2n sinh r −iL sech2 r tanh r

−i sinh r tanh r i
2 cosh2 r

(−p+ Ln sinh2 r)

i
2

p
sinh r −i sech2 r tanh r




,

(3.33)
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and

C1 =




0 i
2 sinh r 0

i
2L tanh2 r 0 − i

2 sech
2 r


 , C0 =




i
2L

2n sinh r i
4 cosh r

(3−cosh 2r) ip
2 sinh r

0 i
2 (Ln sinh2 r−p) sech2 r 0


 .

(3.34)

It is not very hard to see that the differential operator B and C are adjoint to each other,

i.e. B = C†. The operator D is algebraic (not a differential operator) and is given by

D =



iLξ(p+ L(n− α)) sinh r 0

0 − i
2L(p+ L(n− α)) sech r tanh r


 . (3.35)

Note that the matrix operator B (and C) are independent of α. Furthermore, the α

dependence in the matrix D is of the form Q2 and therefore, the matrix D can be written

as Q2D0, where D0 is independent of α. Thus, it justifies the form of the variation (3.31)

where δα acts only on D.

It is important to emphasize here that the variation being a total derivative (3.31)

depends on the boundary conditions. In fact, the derivation assumes that the fluctuations

of fermionic and bosonic fields obey boundary conditions which are consistent with susy.

In other words, the fermionic kinetic operator is related to bosonic kinetic operator by

a similarity transformations8 and therefore, the fermionic and bosonic Green’s functions

are related by similarity transformations. We will show below that this is true if L2 > 3
4 .

When L2 < 3
4 , the variation of the one loop determinant will not just be a boundary term

but will also contain bulk terms [18].

3.5 Evaluating boundary terms

Next, we evaluate the boundary term (3.31). To evaluate this we just need to determine

the action of the first order differential operator B1D
−1
0 C on the Green’s function G1(r, r

′)
and their asymptotic behaviour. Interestingly, we do not need to know the complete details

of the Green’s function except it’s asymptotic behaviour. As we will see below, this greatly

simplifies the computations. The Green’s function is constructed from the solutions of

the equations of motions and we will only need to know the asymptotic behaviour of the

solutions.

Now, the Green’s function G1(r, r
′) satisfies

Mb

∣∣∣
X0

G1(r, r
′) ≡ (mb2 ∂

2
r +mb1 ∂r +mb0)G1(r, r

′) = δ(r, r′) . (3.36)

Here mb2,1,0 are 3 × 3 matrices acting on X0 only (which are component of the vector

fields). The differential operator Mb|X0 is obtained by projecting the operator Mb to the

vector space X0

Mb

∣∣∣
X0

= PMbPT , (3.37)

8One can show that fermionic kinetic operator is Mf = (E†)−1

(

γ1A
b

1
0 0

0 γ2A
b

2
0

0 0 D

)

E−1, where E is a

((2k + 2)× (2k + 2)) matrix first order differential operator and γ1 = 1
Q2 = 1

γ2

.
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where

P =



1 0 0 0

0 1 0 0

0 0 1 0


 . (3.38)

In the discussion presented in the section 2.3, it turned out to be useful to split the

vector space into a rank 1 and rank 2 subspaces. The rank 2 subspace was defined to be

the one whose elements are orthogonal to the vector K and the rank 1 whose elements

orthogonal to C1. Following the same spirit, we split the vector space X0 which we denote

by V into V1 and V2. In the present case, the dimension of the vector space V , V1 and V2

are 3, 2 and 1, respectively. To define the vector space V1 we need the vector K which is

given as (see the appendix for more details)

K =
1

p+ L(n− α)

(
L 0 1

)
. (3.39)

A typical vector in V1 has the form

v1 =




−x1
L

x2

x1


 , x1,2 ∈ R (3.40)

and that belonging to the vector space V2 has the form

v2 = x




1

0

L sinh2 r


 , x ∈ R (3.41)

In order to simplify the computations, we change the basis of the vector space V such

that the first two non zero component belongs to the vector space V1 and the 3rd non

zero component belongs to the vector space V2. That is given a vector v ∈ V , we define a

vector ṽ as v = J ṽ such that for ṽ =
(

c1
c2
0

)
, for c1,2 ∈ R, the corresponding v ∈ V1 and for

ṽ =
(

0
0
c3

)
, for c3 ∈ R, the corresponding v ∈ V2. It turns out that there is no unique choice

of J (different J ’s are related to each other by rotation in V1 space) and one convenient

choice is

J =




0 2
L tanh r 2

L sech r

2 0 0

0 −2 tanh r 2 sinh r tanh r


 . (3.42)

Subsequently, the corresponding matrix operator acting on the elements of the vector space

Ṽ is related to the original operator by similarity transformations as

mb2p,b1p,b0p = JTmb2,b1,b0J . (3.43)
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Asymptotic behaviour of differential operator. As we found earlier in (3.31) that

to evaluate the variation of the one loop determinant, we just need to know the asymptotic

behaviour of the Green’s function. Now, the Green’s functions are constructed out of the

solutions of the equations of motion. Thus for our purposes to evaluate the boundary

terms (3.31), the global form of the solutions are not necessary rather its asymptotic form

will suffice. Furthermore, we argued there that the contributions to the boundary terms

only come from the space of the solutions belonging to the vector space V1. Thus we need

to construct the Green’s function restricted to the vector space V1 i.e.

G1(r, r
′)
∣∣∣
V1

= PG1(r, r
′)P T , (3.44)

where the projection operator is

P =

(
1 0 0

0 1 0

)
. (3.45)

To obtain the asymptotic form of the solutions, we need to analyse the asymptotic

behaviour of the kinetic operator near r = 0 and r = ∞. Near r → 0, the leading

contributions to matrix coefficients of the 2nd order differential operator are

lim
r→0

mb2p =
r

L2




1
ξ

0 0

0 −2 0

0 0 −2


+O(r3), lim

r→0
mb1p =

1

ξL2




1 −p(1+2ξ) 0

p(1+2ξ) −2ξ 0

0 0 −2ξ


+O(r) ,

lim
r→0

mb0p =
1

L2rξ




2p2ξ−1 p(1−2ξ) 0

p(1−2ξ) 2ξ−p2 0

0 0 2p2ξ


+O(1) . (3.46)

On the other hand near r → ∞, the leading behaviour of the differential operator is

lim
r→∞

mb2p =
1

uL2




1
2ξ 0 0

0 −1 0

0 0 −1


+O(1), lim

r→∞
mb1p =

1

uL2




1
2ξ

Ln(1+2ξ)
2ξ 0

−Ln(1+2ξ)
2ξ −1 0

0 0 −1



+O(1) ,

lim
r→∞

mb0p =
1

uL




Ln2− 1
Lξ

n
ξ

0

n(1−2ξ)
2ξ −Ln2

2ξ 0

0 0 Ln2



+O(1) . (3.47)

Here u = e−r.

It is important to observe that the second order differential operator JTBD−1CJ
∣∣∣
V1

has the same asymptotic behaviour as the differential operator
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Solutions near r → 0. The asymptotic behaviour of the solution near r → 0 is con-

trolled by the integer p and is independent of n. Solving the equations of motion near

r → 0 we find that, for p > 0, there are 3 smooth solutions which are

s1p(r) = rp−1



1

1

0


 ∈ V1, s2p(r) = rp+1




p(1+2ξ)+4ξ
2+p(1+2ξ)

1

0


 ∈ V1 ,

s3p(r) = rp



0

0

1


 ∈ V2 , (3.48)

and 3 singular solutions which are

s4p(r) = r−p−1




1

−1

0


 ∈ V1, s5p(r) = r−p+1




1

− p(1+2ξ)−2
p(1+2ξ)−4ξ

0


 ∈ V1 ,

s6p(r) = r−p



0

0

1


 ∈ V2 . (3.49)

For p < 0, the solutions s4p,5p,6p are smooth and s1p,2p,3p are singular.

For the case of p = 0, we see that s3(r) and s6(r) are degenerate. Solving next to

leading order we find two linearly independent solutions and are given by

s30(r) =



0

0

1


 ∈ V2, s60(r) = ln r



0

0

1


 ∈ V2 . (3.50)

Thus, for p = 0, the solutions which are smooth are s20,30,50 whereas s10,40,60 are singular

near r → 0, where s20,50 and s10,40 are obtained by putting p = 0 in s2p,5p and s1p,4p,

respectively.

Since Ψ̃µ satisfies the same equations of motion as the vector field, therefore, the

smooth solutions for the vector field are also smooth for Ψ̃µ. Near r → 0 behaviour of the

solution for (c̃,Ψ) is obtained from Ψ̃µ as




c̃+n,p

Ψ+
n,p


 = −D−1C




Ψ̃+
t;n,p

Ψ̃+
r;n,p

Ψ̃+
θ;n,p




. (3.51)

Using the solutions given in (3.48) and (3.49) for p > 0, we find that s1p(r), s2p(r) and

s3p(r) also give rise smooth solutions for c̃ and Ψ. For example when s1p(r), s2p(r) and
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s3p(r) are acted upon by the differential operator −D−1C, we get near r → 0

−D−1Cs1p(r) ∼
(
c1

c2

)
rp, −D−1Cs2p(r) ∼ c3

(
−1

1

)
rp, −D−1Cs3p(r) ∼

(
c4

c5

)
rp .

(3.52)

Here ci’s are constants. Thus, for p > 0 above are smooth solutions for c̃ and Ψ. Similarly,

it is not difficult to see that s4p,5p,6p do not give smooth solution near r → 0. For p < 0, the

smooth solutions for c̃ and Ψ are obtained from s4p,5p,6p whereas s1p,2p,3p give rise singular

solutions. For p = 0, si0 for i = 1, . . . 5 give smooth solutions for c̃ and Ψ. Thus, for the

fermionic system (Ψ̃µ, c̃,Ψ), for p = 0, the smooth solutions are s20,30,50 whereas s10,40,60
are singular.

Solutions near r → ∞. Next, we determine the asymptotic behaviour of the solutions

near r → ∞. The asymptotic behaviour of the solution near r → ∞ is controlled by the

integer n and is independent of p. We find that for L2n2 > 3
4 , following are the asymptotic

behaviour of normalizable solutions (normalizability conditions for the component of gauge

field are given in (3.17))

s̃1n =



c(n)

1

0


 e−

r
2
(3+

√
1+4L2n2) ∈ V1, s̃2n =



c̃(n)

1

0


 e−

r
2
(−1+

√
1+4L2n2) ∈ V1 ,

s̃3n =



0

0

1


 e−

r
2
(1+

√
1+4L2n2) ∈ V2 . (3.53)

Here c(n) =
Ln

(
−1+6ξ+

√
1+4L2n2 (1+2ξ)

)

2

(
−1+

√
1+4L2n2+L2n2(1+2ξ)

) and c̃(n) = −
Ln

(
−5−2ξ+

√
1+4L2n2 (1+2ξ)

)

2

(
1+

√
1+4L2n2−L2n2(1+2ξ)

) .

The asymptotic behaviour of solutions which are not normalizable are

s̃4n =



c1(n)

1

0


 e−

r
2
(−1−

√
1+4L2n2) ∈ V1, s̃5n =



c̃1(n)

1

0


 e−

r
2
(3−

√
1+4L2n2) ∈ V1 ,

s̃6n =



0

0

1


 e−

r
2
(1−

√
1+4L2n2) ∈ V2 . (3.54)

Here c1(n) = −
Ln

(
5+2ξ+

√
1+4L2n2 (1+2ξ)

)

2

(
−1+

√
1+4L2n2+L2n2(1+2ξ)

) and c̃1(n) =
Ln

(
1−6ξ+

√
1+4L2n2 (1+2ξ)

)

2

(
1+

√
1+4L2n2−L2n2(1+2ξ)

) .

However, for 0 < L2n2 < 3
4 , we find that the normalizable solutions are s̃1n(r), s̃3n(r)

and s̃5n(r) and non normalizable solutions are s̃2n(r), s̃4n(r) and s̃6n(r). The solution
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with n = 0 will play an important role for later analysis, we present here their explicit

form. For n = 0, the asymptotic behaviour of normalizable solutions are

s̃10(r) =



1

0

0


 e−2r ∈ V1, s̃30(r) =



0

0

1


 e−r ∈ V2 ,

s̃50(r) =



0

1

0


 e−r ∈ V1. (3.55)

and the asymptotic behaviour of the non normalizable solutions are

s̃20(r) =



0

1

0


 ∈ V1, s̃40(r) =



1

0

0


 er ∈ V1 ,

s̃60(r) =



0

0

1


 ∈ V2 . (3.56)

Now, we discuss asymptotic behaviour of solutions belonging to fermionic system (Ψ̃µ, c,

c̃,Ψ). Since Ψ̃µ satisfies the same equation of motion as the vector field, the solutions of

vector field are also solutions for the fermion Ψ̃µ. However, fields (Ψ̃µ, c, c̃,Ψ) have differ-

ent normalizabilty conditions, see (3.18) and (3.19), and therefore, we need to reanalyse

which of the solutions among the set of solutions obtained above are normalizable and

non normalizable, respectively for fermions. Before going to analyse the above solutions

for fermions, it is important to mention a few comments about the equation of motion

satisfied by c. From susy algebra (3.14), we see that if we replace c by cosh r ĉ− 1
Q2K

µΨ̃µ,

then ĉ satisfies the same equation as σ. Solving the equation of motion for σ we find that

there are 2 solutions with asymptotic behaviour near r = ∞

σn,p ∼ A1e
− r

2
(1−

√
1+4L2n2) +A2e

− r
2
(1+

√
1+4L2n2) . (3.57)

The normalizablity condition on σ requires us to choose the second solution. Since ĉn,p
satisfies the same equation as σn,p, we have the same asymptotic behaviour for ĉn,p. Thus,

it is easy to see that for the ghost cn,p, it is only the 2nd solution (labelled by A2) which will

give admissible asymptotic behaviour. Furthermore, given the asymptotic behaviour of the

solutions Ψ̃µ, the asymptotic behaviour of (c̃,Ψ) is obtained by using (3.51). Now, we will

tabulate these solutions in table 1 indicating whether they are normalizable (marked by

X) or nonnormalizable (marked by X). Looking at the table, we see that the solutions for

bosonic and fermionic fields are consistent with supersymmetry only for L2n2 > 3
4 . For the

range 0 < L2n2 < 3
4 , we find that s̃1n(r), s̃3n(r) and s̃5n(r) are normalizable for the gauge

field whereas s̃1n(r), s̃2n(r) and s̃3n(r) are normalizable for fermionic fields. Thus, there

is a mismatch of the space of allowed solutions for fermionic and bosonic fields. In this

situation, the Green’s function for the bosonic field is not related to that of the fermionic
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Solutions Ψ̃µ c = cosh r ĉ− 1
Q2K

µΨ̃µ c̃ Ψ

s̃1n(r) X ∀n 6= 0 X ∀n 6= 0 X ∀n 6= 0 X ∀n 6= 0

s̃2n(r) X ∀n 6= 0 X ∀n 6= 0 X ∀n 6= 0 X ∀n 6= 0

s̃3n(r) X ∀n 6= 0 X ∀n 6= 0 X ∀n 6= 0 X ∀n 6= 0

s̃4n(r) X ∀n 6= 0 X ∀n 6= 0 X ∀n 6= 0 X ∀n 6= 0

s̃5n(r) X 0 < ∀L2n2 < 2 X 0 < ∀L2n2 ≤ 2 X ∀n 6= 0 X ∀n 6= 0

s̃6n(r) X ∀n 6= 0 X ∀n 6= 0 X ∀n 6= 0 X ∀n 6= 0

Table 1. Summary of acceptable and non acceptable solutions for fermionic fields.

field and, therefore, for the modes lying in the interval, 0 < L2n2 < 3
4 , the variation of the

one loop determinant will not be just a boundary term but will also include bulk terms.

To determine the explicit expression for the bulk term we need to know the global form of

the solutions and not just the asymptotic behaviour. This is a much more harder problem

in the present case where we do not have the global form of the solution. To avoid this,

we assume that L2 > 3
4 . With this there are no modes lying in the interval 0 < L2n2 < 3

4 .

Now, we will discuss the case of n = 0. In this case the analysis is slightly subtle and

needs a separate discussion.

Case: n = 0. The acceptable solutions for the bosonic fields are given in (3.55). Next

we need to analyze whether these solutions give rise acceptable solutions to fermionic fields.

In this case it turns out that s̃10 and s̃30 give rise normalizable solutions, while s̃40 and

s̃60 give rise nonnormalizable solutions to the fermionic fields. The asymptotic behaviour

of the solutions s̃50 and s̃20 are subtle for fermionic fields. For these solutions, we find the

following: for the solutions s̃50, the asymptotic behaviour of fermionic fields as r → ∞ are

s̃50 : Ψ̃t ∼ e−r, Ψ̃r ∼ 0, Ψ̃θ ∼ e−r, c̃ ∼ e−3r, Ψ ∼ O(1), c ∼ O(1) , (3.58)

whereas for the solutions s̃20, the asymptotic behaviour of fermionic fields as r → ∞ are

s̃20 : Ψ̃t ∼ O(1), Ψ̃r ∼ 0, Ψ̃θ ∼ O(1), c̃ ∼ e−r, Ψ ∼ e−r, c ∼ O(1) . (3.59)

Comparing these asymptotic behaviour with the boundary conditions (3.18) and the bound-

ary condition on c̃, one would naively declare both the above solutions to be non normal-

izable. But this would amount to non existence of Green’s function. The requirement

of the existence of the Green’s function forces us to declare one of these solution to be

normalizable and other to be nonnormalizable. Thus, for the case of n = 0 and p 6= 0 we

have two choices:

1) We declare that s̃50 is normalizable and s̃20 is nonnormalizable which would corre-

spond to preserving supersymmetry, or

2) We declare s̃20 to be normalizable and s̃50 nonnormalizable, then this would break

the supersymmetry.
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Making either of the choices requires to modify (although minimally) the boundary

conditions we started with. Since we are only interested in the boundary terms, which is

the case when the allowed modes are also consistent with supersymmetry, we choose the

option 1. It is definitely worth to try with option 2, but in this case we also need to calculate

the bulk term (because for this choice we do not have supersymmetric cancellation) which

is beyond the scope of the present paper. To allow the option 1, we modify the boundary

conditions (3.18) which would amount to following asymptotic behaviour

Ψt → 0, Ψr → 0, e−rΨθ → 0, and Ψ → O(1) . (3.60)

Note that this choice does not change the analysis presented above for the case n 6= 0.

3.6 Variation of the one loop partition function

As it was shown in the section 2.3 that to determine the boundary contribution we just

need to know the dimension of the kernel of the operator C|V1 i.e. ℓ and ℓ′ near r → 0 and

r → ∞, respectively. Theses dimensions of the kernel of the operator C|V1 depends on the

value of (n, p). We split the evaluation of the boundary term in following 4 different cases:

Case: p 6= 0, n 6= 0. We start with the computation of the boundary term near r → 0.

As we found earlier, the asymptotic behaviour of the solutions in this limit depends only

on the value of p and are independent of n. The solutions which are admissible near r → 0

for p > 0 and p < 0 are s1p(r) and s2p(r), and s4p(r) and s5p(r), respectively. However, it

is only s1p(r) (s4p(r)) belongs to the kernel of C|V1 for p > 0 (p < 0) i.e.

lim
r→0

C|V1s1p(r) = 0, for p > 0 , (3.61)

and

lim
r→0

C|V1s4p(r) = 0, for p < 0 . (3.62)

Thus the dimension of the kernel, ℓ, for p 6= 0 is 1.

Near r → ∞, the admissible solutions are s1n(r) and s2n(r). However, the solution

which belongs to the kernel of C|V1 is s2n(r) i.e.

lim
r→∞

C|V1s2n(r) = 0 . (3.63)

Thus, we have ℓ′ = 1. Therefore, the boundary contribution for the case n 6= 0 and p 6= 0 is

BT = (k − ℓ− ℓ′) = 2− 1− 1 = 0 . (3.64)

Case: p 6= 0, n = 0. Since the asymptotic behaviour near r → 0 for p 6= 0 does not

depend on n, the dimension of the kernel, ℓ, remains same as before and is equal to 1.

However, for n = 0 we find that there no normalizable modes in (3.55) which belongs to

the kernel of C|V1 . Thus in this case we have ℓ′ = 0. Therefore, the boundary contribution

for the case n = 0 and p 6= 0 is

BT = (k − ℓ− ℓ′) = 2− 1 = 1 . (3.65)
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Case: n 6= 0, p = 0. Since the asymptotic behaviour near r → ∞ for n 6= 0 does not

depend on p, the dimension of the kernel, ℓ′, remains same as before and is equal to 1.

However, for p = 0 we find that there no smooth modes which belongs to the kernel of

C|V1 . Thus in this case we have ℓ = 0. Therefore, the boundary contribution for the case

p = 0 and n 6= 0 is

BT = (k − ℓ− ℓ′) = 2− 1 = 1 . (3.66)

Case: n = p = 0. Following the discussion of n = 0, p 6= 0 and p = 0, n 6= 0 cases we

find that dimensions of the kernel of C|V1 in the case of n = p = 0 are ℓ = ℓ′ = 0. Thus,

its contribution to the boundary term is

BT = 2 . (3.67)

It was observed in [17] that this contribution to the index comes precisely from the zero

modes of the ghost fields which were given by globally constants mode for ghost c and anti

ghost c̃. Since the determinant are computed over non zero modes, we did not include the

contribution of these zero modes.

We also observe this fact in our present computation. First zero mode corresponds

scalar fluctuations parallel to the localization background i.e.

σ̂ =
~A

cosh r
, ~A = constant Lie algebra element . (3.68)

The supersymmetric partner of the above zero mode is the constant ghost mode c = ~A (it

can be seen following (3.12)).

As we discussed near (3.16), the second zero mode corresponds to

c̃ =
~µ

cosh2 r
, b =

~µQ

cosh2 r
, where Q~µQ = i[Λ(0), ~µ] , (3.69)

where ~µ and ~µQ are Grassmann odd and even constant Lie algebra element, respectively.

The ghost Lagrangian involves mass like terms

ξ

cosh2 r


tr ~µ2

Q + 2
∑

~ρ>0

ρ · αµ−ρµρ


 ⊂ Lg.f. . (3.70)

Here ~ρ is a root of the Lie algebra. The first terms comes from tr b2 and the second term

comes from tr c̃ [Λ0, c̃]. Integrating over this mode and then calculating its variation with

respect to α gives rise BT = 1. Since this contribution is a zero mode contribution and we

are computing determinant over non zero mode, we subtract 1 from (3.67).

To treat the zero mode c = ~A, we need to use the method of generalized Green’s

function. In this method, the Green’s function equation is modified by a zero mode pro-

jector. Because of the presence of the zero mode projector, the variation of the one loop

determinant, after performing integration by parts, now gives boundary terms together

with an extra bulk term proportional to number of zero modes which now arises from the
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zero mode projector. Preliminary results from following this method results in extra −1

for (3.67).9 Thus taking into account all zero mode we get BT = 0 for the case n = 0 = p.

Thus, collecting all the above results we find that for L2 > 3
4 , the variation of the one

loop determinant (2.32) is (for a general compact gauge group)

δ~α lnZ = − i

2

∑

n 6=0

~ρ

n− iρ · α − i

2

∑

p 6=0

~ρ
p
L − iρ · α . (3.71)

Integrating with respect to α, we obtain

Z1-loop(α) =
∏

ρ

√∏

n 6=0

(n− iρ · α)
∏

p 6=0

( p

L
− iρ · α

)
. (3.72)

which is the result obtained in [17]. Thus, the partition function of a Chern Simons theory

with level k and the gauge group G of rank r is

Z =

∫

Rr

dα exp(−πiLkTrα2)
∏

ρ>0

sinh(πρ · α) sinh(πLρ · α) . (3.73)

In the above, the integration variable α is valued in the Cartan of the Lie algebra of the

gauge group G. Furthermore, we have also included the contribution of the Vandermonde

determinant (it is the Jacobian coming from rotating any constant Lie algebra element to

an element in the Cartan) to convert the infinite product (3.72) to the product of hyperbolic

function.

If we also include matter field which consist of Nf chiral multiplets transforming in

some representation Ri, where i = 1, . . . , Nf , of the gauge group, then the partition func-

tion of a Chern Simons theory matter theory is given by

Z =

∫

Rr

dα exp(−πiLkTrα2)
∏

ρ>0

sinh(πρ · α) sinh(πLρ · α)
Nf∏

i=1

∏

ρ

Z1-loop
matter(Ri;α) , (3.74)

where Z1-loop
matter(R;α) is the one loop determinant of the chiral multiplet in the representa-

tion R. It was demonstrated in [18] using the Greens function method, to compute the one

loop determinant Z1-loop
matter(R;α), that arises in Localization depends on the choice of Q-exact

action. In particular, this difference arose for the modes in the interval ∆−1
2L < n < ∆

2L .

4 Level-rank duality on AdS2 × S1

In this section, we will discuss one of the implications of the result obtained in the last

section for Chern Simons matter theory. We find that for the cases when there are no

bulk terms in the partition function i.e. when the normalizable boundary conditions are

consistent with supersymmetry (which is the case when L2 > 3
4 , and there are no integers

9The details of the treatment of the zero modes using the generalized Green’s function as well as repeating

the analysis in the standard covariant gauge as opposed to the gauge adopted in this work are presently in

progress and will be presented in a future work.
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in the interval ∆−1
2L < n < ∆

2L), the partition function respects 3 dimension level-rank

duality. We will consider here the example of U(N) Chern Simons theory coupled to Nf

hypermultiplets in fundamental (i.e. Nf chiral in fundamental and Nf chiral multiplet in

anti fundamental) with R-charge ∆. In this case the statement of level-rank duality is

Nf hypermultiplet coupled to U(Nc)k ⇐⇒ Nf hypermultiplet coupled to U(|k|+Nf−Nc)−k

(4.1)

We will find that this duality also holds true for U(N) Chern Simons theory coupled to Nf

hypermultiplets in fundamental on AdS2 × S1.

Without loss of generality we will assume that the ratio of the size L = 1. However,

one can generalize the discussion below for any value of L such that L2 > 3
4 . Also for the

presentation, we will also consider three different cases for which there are no integer in

the interval ∆−1
2L < n < ∆

2L : 1) with no matter fields (Nf = 0), 2) Nf hypermultiplets

in fundamental with R-charge ∆ = 0, and 3) Nf hypermultiplets in fundamental with

R-charge ∆ = 1.

Case: Nf = 0. In this case the partition function (3.74) reduces to the partition function

of a pure Chern Simons theory which is

Z =

∫

Rr

dα exp(−πikTrα2)
∏

ρ>0

sinh2(πρ · α) . (4.2)

This partition function is exactly same as the partition function of U(N)k Chern Simons

theory on S3.

Case: Nf hypermultiplets with ∆ = 0. For a chiral multiplet with R-charge ∆ = 0,

the one loop contribution to the partition function (3.74) is given by

lnZ1-loop
matter =

∑

p>0,n≥0

ln(p+ n+ iρ(α))−
∑

p≤0,n<0

ln(−p− n− iρ(α)) . (4.3)

Thus for a given hypermultiplet with R-charge ∆ = 0, the one loop contribution to the

partition function is

lnZ1-loop
hyper-matter =

∑

p>0,n≥0

ln(p+ n+ iρ(α))−
∑

p≤0,n<0

ln(−p− n− iρ(α))

+
∑

p>0,n≥0

ln(p+ n− iρ(α))−
∑

p≤0,n<0

ln(−p− n+ iρ(α)) = 0 . (4.4)

Therefore, in this case there are no contribution to the partition function from the fields in

the matter sector. Thus the partition function of U(N)k Chern Simons theory coupled to

Nf hypermultiplet with R-charge ∆ = 0 is equal to the partition function of U(N)k Chern

Simons theory. Note that this is same as the partition function of U(N)k Chern Simons

theory coupled to Nf hypermultiplet on S3 but with R-charge ∆ = 1.
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Case: Nf hypermultiplets with ∆ = 1. For a chiral multiplet with R-charge ∆ = 1,

the one loop contribution to the partition function (3.74) is given by

lnZ1-loop
matter =

∑

p>0,n≥1

ln

(
p+ n+ iρ(α)− 1

2

)
−

∑

p≤0,n≤0

ln

(
−p− n− iρ(α) +

1

2

)
. (4.5)

Thus for a given hypermultiplet with R-charge ∆ = 1, the one loop contribution to the

partition function is

Z1-loop
hyper-matter =

∏
r=1

(
r + iρ(α) + 1

2

)r (
r − iρ(α) + 1

2

)r
∏

r=1

(
r − iρ(α)− 1

2

)r (
r + iρ(α)− 1

2

)r =
1

2 coshπρ(α)
. (4.6)

Therefore, the partition function of U(N)k Chern Simons matter theory coupled to Nf

fundamental hypermultiplet with R-charge ∆ = 1 is

Z =

∫

Rr

dα exp(−πiLkTrα2)
∏

ρ>0

sinh(πρ · α) sinh(πLρ · α)
∏

ρ

(
1

2 coshπρ(α)

)Nf

. (4.7)

The above is the partition function of U(N)k Chern Simons matter theory coupled to Nf

fundamental hypermultiplet on S3 with R-charge ∆ = 1
2 . It is known that this partition

function respects the duality (4.1).

5 Conclusions

In this paper we have developed the method of Greens function introduced in [18] to

evaluate one loop determinants that occur in localization of supersymmetric field theories

on AdS spaces. The method requires the theory to have at least N = 2 supersymmetry in

the respective space time dimensions. Boundary conditions of all fields play a crucial role in

the application of localization in non-compact spaces. Normalizable boundary conditions

are required for the definition of the path integral, it is only when normalizable boundary

conditions are consistent with supersymmetric boundary conditions that the method of

localization can be applied. We have introduced a general set of assumptions on the

second order operators that occur in the evaluation of the one loop determinants that

hold for theories with at least N = 2 supersymmetry. Under these assumptions we have

constructed the Greens function and shown that the variation of the one loop determinant

about the localizing background reduces to a total derivative. This is our first main result

of the paper. This implies that the variation receives contributions only from asymptotic

infinity and at the origin of AdS. Then from studying the asymptotics of the Greens function

and the second order operators we show that the variation of the one loop determinant is

given by an integer times the variation of 1
2 lnQ

2. This is the second main result of our

paper.

We then examineN = 2 Chern-Simons theory coupled to chiral multiplets on AdS2×S1

and show how the general set of assumptions we introduced hold for this case. We use

our results to conclude that U(Nc) Chern-Simons theory at level k coupled to Nf chiral

multiplets and Nf anti-chiral multiplets in the fundamental obeys level-rank duality on

AdS2 × S1.
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As we have emphasised, the Greens function method is general as is applicable for other

situations. We believe that the method is applicable to evaluate one loop determinants

that arise in localization of supersymmetric theories on AdSn × Sm with at least N = 2

supersymmetry. One such case is that of N = 2 theories on AdS2 × S2 with matter. We

hope to report results related to this in the near future. Localization of supersymmetric

field theories on AdS2 × S2 are relevant to evaluate quantum corrections to black hole

entropy.

Another direction to explore will be localization of 2-dimensional theories on AdS2. In

particular it will be interesting to see if the duality between the Coulomb and the Higgs

branch seen for N = (2, 2) theories on the sphere S2 by [21] also hold for the case of the

theory on AdS2.

The general method we have introduced can be further refined. The 8 assumptions

presented in section 2 were obtained by a detailed study of the Greens function approach

and extracting general properties. These assumptions enabled us to show that the variation

of the one loop determinant reduces to a total derivative. We then introduced 3 assumptions

in section 2.3. These set of assumptions enabled us to show that the variation of the one

loop determinant is an integer times the variation of 1
2 lnQ

2. Our preliminary investigations

indicate that all these assumptions can be shown to hold true from the supersymmetry of

the localizing Lagrangians. In fact we have seen that they also hold for N = 2 theories

with matter on AdS2×S2 [20]. It will be interesting to show that these assumptions follow

as a natural consequence of supersymmetry.

Finally, we have seen that the Greens function method shows that variation of the one

loop determinant is given by integer times the variation of 1
2 lnQ

2. We again emphasise

that this result is only when normalizable boundary conditions are compatible with super-

symmetry. The integer is given by the index of the operator C restricted to a k-dimensional

vector space. It will be interesting to investigate if this result can be connected with the

technique of applying the fixed point evaluation of one loop determinants that arise in

localization as recently applied in [13, 16, 22–24].
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A Supersymmetry of the vector multiplet

Vector multiplet in N = 2 theory in Lorentzian signature contains a real scalar σ, gauge

field aµ, an auxiliary real field G and 2 component Weyl fermions λ and λ̃. In order

to compute partition function we need to analytically continue to Euclidean space. We

choose the analytic continuation where the scalar field σ and the auxiliary field H are

purely imaginary, the gauge field aµ is real and the spinors λ and λ̃ are two independent

complex spinor. The Euclidean supersymmetry transformation of the fields in the vector
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multiplet is given by

Qsλ = − i

4
ǫH − i

2
ǫµνργρFµνǫ− iγµǫ (iDµσ − Vµσ) ,

Qsλ̃ =
i

4
ǫ̃ H − i

2
ǫµνργρFµν ǫ̃+ iγµǫ̃ (iDµσ + Vµσ) ,

Qsaµ =
1

2

(
ǫγµλ̃+ ǫ̃γµλ

)
,

Qsσ =
1

2

(
−ǫλ̃+ ǫ̃λ

)
,

QsH = −2i
[
Dµ

(
ǫγµλ̃− ǫ̃γµλ

)
− i

[
σ, ǫλ̃+ ǫ̃λ

]
− iVµ

(
ǫγµλ̃+ ǫ̃γµλ

)]
. (A.1)

The square of the susy transformations on vector multiplet fields are given by

Q2
sλ = LKλ+ i[Λ, λ]− 1

2L
λ ,

Q2
sλ̃ = LK λ̃+ i[Λ, λ̃] +

1

2L
λ̃ ,

Q2
saµ = LKaµ +DµΛ ,

Q2
sσ = LKσ − iKµ[aµ, σ] ,

Q2
sH = LKH + i[Λ, H] . (A.2)

Here Λ = ǫ̃ǫ σ −Kρaρ.

Using the above supersymmetry transformations we also note that QsΛ = 0.

Therefore, the algebra of supersymmetry transformation is given by

Q2
s = LK + δgauge transf

Λ + δR−symm
1
2L

. (A.3)

B Equations of motions

The equations of motion for the vector field and scalar field can be written as

M2∂
2
rE

+(r) +M1∂rE
+(r) +M0E

+(r) = 0 (B.1)

Here M2,1,0 are 4× 4 matrices which are functions of coordinate r, and

E+(r) =




a+t (r)

a+r (r)

a+θ (r)

σ+(r)




(B.2)
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with components

M2 =




− sinh r
2 0 0 0

0 sinh r
4L2ξ

0 0

0 0 − 1
2L2 sinh r

0

0 0 0 sinh r
2




(B.3)

M1,11 = −cosh r

2
, M1,12 = − 1

4ξ

(
n(1 + 2ξ) cosh2 r − 2ξα

)
sech r tanh r

M1,13 = 0, M1,14 = 0

M1,21 =
1

4ξ

(
n(1 + 2ξ) cosh2 r − 2ξα

)
sech r tanh r, M1,22 =

cosh r

4L2ξ

M1,23 =
1

4L2ξ sinh r cosh2 r

(
p(1 + 2ξ) cosh2 r − 2Lξ sinh2 r

)
, M1,24 = 0

M1,31 = 0, M1,32 = − 1

4L2ξ sinh r cosh2 r

(
p(1 + 2ξ) cosh2 r − 2Lξ sinh2 r

)

M1,33 =
cosh r

2L2 sinh2 r
, M1,34 = 0, M1,41 = 0, M1,42 = 0, M1,43 = 0

M1,44 =
cosh r

2
(B.4)

M0,11 =
p2

2 sinh r
+

L2

2ξ

(
−n2 sinh r + 2ξ(2n− α)α sech r tanh r

)

M0,12 = α sech3 r +
1

4ξ
(n(1− 2ξ) cosh r − 2(n+ ξα) sech r)

M0,13 =
1

2
(Ln− p)α sech r tanh r − 1

4ξ sinh r
(p(n+ 2nξ − 2α ξ)) ,

M0,14 = 0, M0,21 =
n sinh r tanh r

2ξ

M0,22 =
1

2
(n2 sinh r − α2 sech r tanh r) +

1

4L2ξ sinh r

(
−1 + 2p2ξ + 2 sinh2 r tanh2 r

)

M0,23 = − p

L2ξ sinh r sinh 2r
, M0,24 = 0

M0,31 =
1

2
(Ln− p)α sech r tanh r − 1

4ξ sinh r
(p(n+ 2nξ − 2α ξ))

M0,32 =
1

4L2ξ

(
p(−1 + 2ξ)

cosh r

sinh2 r
+ 2 sech r(p− Lξα+ 2Lξα sech2 r)

)

M0,33 =
1

2L sinh r

(
2pα+ L(n2 − α2)

)
− p2

4L2ξ sinh3 r
+

ξ

2L
(−2p+ Lα) sech r tanh r,
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M0,34 = 0, M0,41 = 0, M0,42 = 0, M0,43 = 0

M0,44 = − p2

2 sinh r
− 1

2
L2n2 sinh r + sech r tanh r . (B.5)

In the case of fermions, we get

M2f,1i = δi4
1

2
sech r tanh r, M2f,2i = 0, M2f,3i = δi4

1

2L
sech r tanh r

M2f,5i = 0, M2f,6i = 0,

M2f,41 = −
1

2
sech r tanh r, M2f,42 = 0, M2f,43 = −

1

2L
sech r tanh r,

M2f,44 =
i

2L
(p+L(n−α)) sech r tanh r, M2f,45 = 0, M2f,46 = 0 (B.6)

M1f,11 = 0, M1f,12 = −
i

2
sech r tanh r, M1f,13 = 0, M1f,14 =

1

4
(3−cosh 2r) sech3

r

M1f,15 = 0, M1f,16 = −
1

2
L tanh2

r, M1f,21 =
i

2
sech r tanh r, M1f,22 = 0

M1f,23 =
i

2L
sech r tanh r, M1f,24 = 0, M1f,25 = −

i

2
sinh r, M1f,26 = 0,

M1f,31 = 0, M1f,32 = −
i

2L
sech r tanh r, M1f,33 = 0, M1f,34 =

1

4L
(3−cosh 2r) sech3

r

M1f,35 = 0, M1f,36 =
1

2
sech2

r, M1f,41 =
1

4 cosh3 r
(−3+cosh 2r), M1f,42 = 0

M1f,43 =
1

4L cosh3 r
(−3+cosh 2r), M1f,44 = −

i(p+L(n−α))

4L cosh3 r
(−3+cosh 2r)

M1f,45 = 0, M1f,46 = 0, M1f,51 = 0, M1f,52 =
i

2
sinh r, M1f,53 = 0, M1f,54 = 0,

M1f,55 = 0, M1f,56 = 0, M1f,61 = −
L

2
tanh2

r, M1f,62 = 0, M1f,63 =
1

2
sech2

r

M1f,64 = 0, M1f,65 = 0, M1f,66 = 0 (B.7)

M0f,11 = −
iL

2
(−p+L(n−α)) sech r tanh r, M0f,12 =

i

4 cosh3 r
(−3+cosh 2r)

M0f,13 = −
i

2
sech2

r
(

Ln sinh r+
p

sinh r

)

, M0f,14 = −
1

2
sech2

r

(

L
2
n
2 sinh r+

p2

sinh r

)

M0f,15 =
i

2
L

2
n sinh r, M0f,16 = −L sech2

r tanh r, M0f,21 = 0

M0f,22 =
i

2L
(p+L(n+α)) sech r tanh r, M0f,23 = 0, M0f,24 = 0, M0f,25 = −i sinh r tanh r,

M0f,26 =
1

2
(Ln sinh2

r−p) sech2
r, M0f,31 = −

i

2
sech2

r
(

Ln sinh r+
p

sinh r

)

,

M0f,32 =
i

4L cosh3 r
(−3+cosh 2r), M0f,33 =

i

2L sinh r cosh2 r
(−p+L(n+α)),

M0f,34 = −
1

2L
sech2

r

(

L
2
n
2 sinh r+

p2

sinh r

)

, M0f,35 =
ip

2 sinh r
, M0f,36 = − sech2

r tanh r

M0f,41 =
1

2
sech2

r

(

L
2
n
2 sinh r+

p2

sinh r

)

, M0f,42 = 0, M0f,43 =
1

2L
sech2

r

(

L
2
n
2 sinh r+

p2

sinh r

)

M0f,44 = −
i(p+L(n−α))

2L sinh r cosh2 r
(L2

n
2 sinh2

r+p
2), M0f,45 = 0, M0f,46 = 0

M0f,51 =
i

2
L

2
n sinh r, M0f,52 = −

i

4 cosh r
(−3+cosh 2r), M0f,53 =

ip

2 sinh r
, M0f,54 = 0,
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M0f,55 = iLξ(p+L(n−α)) sinh r, M0f,56 = 0, M0f,61 = 0, M0f,62 = −
1

2
(Ln sinh2

r−p) sech2
r,

M0f,63 = 0, M0f,64 = 0, M0f,65 = 0, M0f,66 = −
iL

2
(p+L(n−α)) sech r tanh r . (B.8)

C On gauge fixing conditions

Here we justify the choice of the gauge fixing condition (3.10). In particular, we will show

that the one loop result obtained for the abelian gauge theory in [17] using the covariant

gauge also holds true for the gauge fixing condition chosen in this paper. In fact, it works

for the general gauge fixing condition

G(a) = coshδ r∇µ

(
1

coshδ r
aµ

)
= coshδ r∇µ̂

(
1

coshδ r
aµ̂

)
+ ∂tat . (C.1)

where µ̂ is 2-dim AdS indices. The integral over ghost gives the Jacobian J which is defined

through the functional integral as:

∫
DλJ δ(Mλ) = 1 (C.2)

where M is obtained by infinitesimal gauge transformation a → a+ dλ on G:

M = coshδ r∇µ̂

(
gµ̂ν̂

coshδ r
∇ν̂

)
+ ∂2

t (C.3)

and λ is in the space of all allowed gauge transformations.

Now, the allowed gauge transformations are defined as the ones that preserve the

square integrability of gauge fields (a, at): for t-dependent part of the gauge transformation

parameter λ(t, r, θ) =
∑

n 6=0 λn(r, θ) e
int, it requires that

er/2λn(r, θ) → 0, for r → ∞ . (C.4)

The space of such gauge transformation we denote by H. However, for t-independent part

of the gauge transformation parameter λ0(r, θ), the condition on the normalizability of the

gauge field requires that

λ0(r, θ) ∼ λ
(0)
0 (θ) + e−β r/2λ

(β)
0 (θ) + . . . , for β > 1 (C.5)

The space of such gauge transformation we denote by H0. We note that the operator M

is not self-adjoint for δ 6= 0. However, it has the following properties:

1) We first note that the differential operator M does not have zero modes for δ > 1.

We find that the solution of Mf(r) = 0 has following large r asymptotic

f(r) =





e−
r
2
(1−δ−

√
4L2n2+(1−δ)2), for n 6= 0

er(δ−1), for n = 0, δ > 1 ,

O(1), for n = 0, 0 ≤ δ ≤ 1 .

(C.6)
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From the above we see that for n 6= 0, there are no zero mode. For n = 0, we

have zero modes for δ ≤ 1. Thus for δ = 2, which is our choice of gauge, we do

not have zero modes and therefore, the gauge choice completely fixes the gauge. For

δ = 0, which corresponds to covariant gauge fixing, there are an infinite number of

zero modes [25]. Now, we will solve the differential equation for the adjoint operator,

M †f(r) = 0. Solutions have following large r asymptotic behaviour

f(r) =





e−
r
2
(1+δ−

√
4L2n2+(1−δ)2), for n 6= 0

e−r, for n = 0, α > 1 ,

e−δr, for n = 0, 0 ≤ δ < 1

Γ(0), for n = 0, δ = 1 .

(C.7)

So, we see that for n 6= 0, there are no zero modes if L2n2 ≥ 2δ−1
4 . In particular, for

δ = 2, which is our gauge fixing, and L2 > 3
4 , which is supersymmetric case, there

are no zero modes. For 0 ≤ δ ≤ 1, we do not have zero modes.

2) For n 6= 0, MH spans all of H. The argument is as follows: if we assume that there

must exist some function say f ′ such that it is orthogonal to Mf for all f ∈ H, i.e.∫
d2xf ′Mf = 0 for all f ∈ H, then integrating by part, we get M †f ′ = 0. In this

computation we obtain boundary terms which vanish because both f, f ′ ∈ H. But as

we have shown before that for n 6= 0, kernel of M † in H is empty. This proves that

MH spans all of H.

3) For n = 0, λ ∈ H0. Now one can see that MH0 is contained in H. Furthermore,

M has no kernel in H0 for δ ≥ 1 while for δ < 1 it has a kernel with the zero

mode going to order one asymptotically. This means that for δ < 1 the large gauge

transformations are not fixed.

We will now perform the path integral for each Fourier mode n along t. For n 6= 0 we

can solve G(a) = 0 for at as

a
(n)
t =

i

n
coshδ r∇µ̂

(
gµ̂ν̂

coshδ r
a
(n)
ν̂

)
(C.8)

Integrating at for n 6= 0, one also gets
∏

n 6=0
1
n . For n = 0, we are left with the Gauge

fixing condition coshδ r∇µ̂

(
gµ̂ν̂

coshδ r
a
(0)
ν̂

)
= 0.

For the other component of the gauge field, we use the 2-dim hodge decomposition

a
(n)
µ̂ = ∂µ̂fn + ǫµ̂ν̂∂

ν̂f ′
n, where ǫrθ =

√
ĝ = L2 sinh r . (C.9)

Here f ′ ∈ H while f ∈ H0. Furthermore, we split f as f̂ + g where now f̂ ∈ H and

g ∈ H0/H, i.e. g can go as O(1) near r → ∞. Moreover, we demand that g is orthogonal to

all the normalizable fns f̂ (and f ′) with respect to the inner product
∫
d2x gµ̂ν̂∂µ̂g∂ν̂ f̂ = 0.

This can be satisfied by taking g to be solution of AdS laplacian (i.e. discreet modes).
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More explicitly a normalized basis with respect to the above norm for these solutions

is g = 1√
2π|ℓ|

gn,p tanh
|ℓ| ( r

2

)
eiℓθeint, where ℓ = ±1,±2, . . . .

The Chern Simons action upto total derivative terms becomes

κ

2

∫
d2x

∑

n>0

[
2i

n

(
(Mf̂n)�f ′

−n − (Mf̂−n)�f ′
n

)
+ . . .

]
+

κ

2

∫
d2xa

(0)
t �f ′

0 (C.10)

+κ
∑

n,ℓ>0

n(gn,−ℓ g−n,ℓ − gn,ℓ g−n,−ℓ) .

Here � is a 2 AdS2 Laplacian and dots include terms that do not involve f̂n and f̂−n and

vanish when f ′
n and f ′

−n vanish. Next, we want to change the variables from f → f̃ = Mf̂ .

This can be done in the functional integral by inserting
∫ ∏

n 6=0

Df̃nDf̃−nδ(f̃n −Mf̂n)δ(f̃−n −Mf̂−n) = 1 , (C.11)

and integrate first f̂n and f̂−n. Now, taking into account the Fadeev Popov determi-

nant J (for n 6= 0) satisfying (C.2) and noting the fact that f̂ and λ are in the same

space of normalizable functions, the result of this integral together with J , is simply to

replace Mf̂n and Mf̂−n by f̃n and f̃−n, respectively in the action (C.11). From the ar-

gument in (2) above f̃ spans all of H. Now we can integrate f̃n and f̃−n and the re-

sult is
∏

n 6=0 δ
(
iκ
n �f ′

n

)
δ
(−iκ

n �f ′
−n

)
. Similarly, integrating the auxiliary fields a

(0)
t we get

δ(iκ�f ′
0). Since f ′ ∈ H and � has no zero mode in H, delta function enforces f ′

n = 0 in

the remaining part of the action i.e. the dots in (C.11) vanish. Finally integrating f ′
n and

f ′
−n we get 1

detκ�

∏
n 6=0

1
det( κ

n
�)

.

Now, we are still left with the integral over f0 and δ(Mf0) in the integrand (coming

from the gauge condition for n = 0) where f0 ∈ H0 includes both square integrable as well

as functions that go as order one at infinity. However, the contribution of this integral is

exactly cancelled by the Fadeev Popov determinant J for n = 0. Finally, we perform the

integral over gn,ℓ and take the logarithm of the entire result. We get

−
∑

n∈Z
ln(k�)−

∞∑

n,ℓ=1

ln k2 = −1

2
ln k . (C.12)

In the above we have used zeta function regularization. This is the same result as obtained

in [17] using the covariant gauge fixing condition.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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