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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model [1–4] has attracted much attention recently as a toy

model for AdS/CFT in lowest possible dimensions. It is an interacting statistical quantum

mechanical model of N Majorana fermions with random couplings. In the regime of large

coupling (low temperature) this model is perturbatively (in the 1/N -expansion) dual to

a simple theory of two-dimensional dilaton-gravity known as the Jackiw-Teitelboim (JT)

gravity [5, 6].1

A universal feature emerging for all variety of these quantum mechanical models is

their low energy dynamics which is governed by a solvable Euclidean theory known as

the ‘Schwarzian theory’ [9] which turns out to be the appropriate boundary term defining

our two dimensional dilaton-gravity theory. The dynamical field in this theory is a quasi-

periodic field f(τ) with τ being the imaginary time on the thermal circle 0 < τ < β and

performing as the reparametrization on the thermal circle Diff(S1). This effective theory is

by construction defined on the symplectic manifold Diff(S1)/SL(2,R) or Diff(S1)/U(1) and

1A variant of the SYK model is the so-called complex SYK model [7, 8] in which fermions are complex

instead of being Majorana.
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its quantum mechanical realization has been shown to be one-loop exact [10]. These sym-

plectic manifolds are technically known as coadjoint orbits of the Virasoro group [11–14].

The coadjoint orbit method [15–18] which we will benefit from in this work gives a geomet-

ric interpretation of the coadjoint representation of Lie groups and provides a systematic to

construct field theory actions on a given Lie group orbit. For reviews and other applications

and employment of the orbit method see [19–27].

One of the consequences of the exactness of the path integral of the Schwarzian theory

is that the Hamiltonian function associated to the imaginary time evolution is in fact

proportional to the Schwarzian action itself. In this paper we use this consequence as a

base for constructing the ‘warped Schwarzian theory’ in section 4 based upon the coadjoint

orbits of the warped Virasoro group [28] which is reviewed and developed for our application

in section 2. We also calculate the Kirillov-Kostant-Souriau symplectic 2-form [15–18] on

the corresponding coadjoint orbits in section 3 and then use it as a measure to evaluate

the one-loop-exact path-integral of the theory in section 5 and discuss the spectrum of the

theory in terms of the density of states. In section 6 we discuss the thermodynamics of the

warped Schwarzian theory and its implication to the complex SYK model.

2 Warped Virasoro symmetry

The Virasoro group is the unique nontrivial central extension of the group of reparametriza-

tion on the circle. It has several generalizations but a simple extension is to make a semi-

direct product of it with functions on the circle. We denote it as ‘warped Virasoro group’,

a terminology inferred from the physics literature [29, 30] and mostly studied in the con-

text of two dimensional warped conformal field theories (WCFTs).2 Here in this work we

are interested in the one dimensional (Euclidean time) realization of this symmetry group.

Recently it has been shown that the warped Virasoro algebra is the underling symmetry

for the low energy effective action of the complex SYK model [34].

2.1 Coadjoint orbits of the warped Virasoro group

The warped Virasoro group Ĝ is the universal central extension of the Lie group G of all

orientation preserving diffeomorphism of the circle acting naturally on smooth functions of

the circle;

(f, σ) ∈ G ≡ Diff(S1) n C∞(S1) . (2.1)

For f ∈ Diff(S1) and σ ∈ C∞(S1) the group operation is

(f1, σ1) · (f2, σ2) = (f1 ◦ f2 , σ1 + σ2 ◦ f−11 ) , (2.2)

where the circle ◦ denotes the function composition. This group operation is inferred from

the semi-direct product structure of the group [28, 35].

2In mathematics literature it is classified as the Schrödinger-Virasoro Lie group [31] or the corresponding

algebra is sometimes called the Heisenberg-Virasoro algebra [32, 33].
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The corresponding Lie algebra ĝ, called the warped Virasoro algebra is defined as the

unique (up to isomorphism) nontrivial central extension of the Lie algebra g of first order

differential operators on S1;

v(τ) ≡ ε(τ)∂τ + σ(τ) ∈ g , (2.3)

with ε(τ + β) = ε(τ) and σ(τ + β) = σ(β) where β is the circumference of S1. This Lie

algebra admits three central extensions [31, 36–38]. We denote each element of ĝ = g⊕R3

by a pair (v(τ),a) with a = a1e1 + a2e2 + a3e3 ∈ R3 where ei can be considered as

orthonormal basis of R3. The commutator in the centrally extended Lie algebra ĝ is

defined as [
(v1(τ),a1) , (v2(τ),a2)

]
=
(
[v1,v2](τ), η(v1,v2)

)
, (2.4)

with

[v1,v2](τ) =
(
ε1(τ)ε′2(τ)−ε′1(τ)ε2(τ)

)
∂τ+

(
ε1(τ)σ′2(τ)−ε2(τ)σ′1(τ)

)
, (2.5)

η(v1,v2) =

∫
S1

[
1

12

(
ε′1(τ)ε′′2(τ)

)
e1+

1

4

(
σ2(τ)ε′′1(τ)−σ1(τ)ε′′2(τ)

)
e2+

1

2

(
σ′1(τ)σ2(τ)e3

)]
,

(2.6)

where we have introduced the notation
∫
S1 ≡

β∫
0

dτ . Note that at this point β is just a

parameter specifying the size of the circle S1, later in our physical setup it will denote the

inverse temperature of our quantum mechanical system on S1.

Corresponding to the adjoint vectors v(τ) ∈ g, we have coadjoint vectors b(τ) ∈ g∗

which maps adjoint vectors to numbers. In the case of the warped Virasoro algebra these

covectors can be represented in terms of a quadratic density and a one-form on the circle;

b(τ) ≡ T (τ) dτ2 + P (τ) dτ ∈ g∗ . (2.7)

A coadjoint vector of the warped Virasoro algebra ĝ is a pair (b(τ), c) ∈ ĝ∗ where c =

c1e
∗
1 + c2e

∗
2 + c3e

∗
3 is the dual of a such that 〈e∗i , ej〉 = δij . The pairing between ĝ ≡ g⊕R3

and ĝ∗ ≡ g∗ ⊕ R3 is defined by

〈(b, c) , (v,a)〉 =

∫
S1

(
T (τ)ε(τ) + P (τ)σ(τ)

)
+ c1a1 + c2a2 + c3a3 . (2.8)

The group Ĝ acts on vectors by the adjoint action Ad(f,σ) and on covectors by the coadjoint

action Ad∗(f,σ). The pairing (2.8) should be invariant under the group action so the coadjoint

representation Ad∗ of the group Ĝ is defined by3

〈Ad∗(f,σ)(b, c), (v,a)〉 = 〈(b, c),Ad−1(f,σ)(v,a)〉 . (2.9)

3The central elements spanning R3 in the group Ĝ ≡ G×R3 acts trivially on the (co)algebra and so the

(co)adjoint action of Ĝ is the same as of G. For detailed analysis see appendix A of [28].
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The coadjoint action leaves the central elements invariant but transforms the b(τ) covector

into a new covector in the coadjoint orbit

Ad∗(f,σ)−1(b, c) = (b ◦ f − c · S(f, σ), c) , (2.10)

where

b ◦ f = T (f(τ)) df2 − P (f(τ)) dσ df + P (f(τ)) df , (2.11)

is the natural action of the group G =Diff(S1)nC∞(S1) on the dual space of its Lie algebra

g∗ while S(f, σ) term can be considered as the contribution of the central extension of

the group;

S(f,σ) =

(
e1

[(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
]

+e2

(
σ′′−σ′ f

′′

f ′

)
−e3

σ′2

2

)
dτ2+

(
e3σ

′+e2
f ′′

f ′

)
dτ .

(2.12)

2.2 Vacuum orbit on the cylinder

Each coadjoint orbit is parametrized by f and σ and identified uniquely w.r.t. an orbit

representative (b0, c) where

b0 = T vac dτ2 + P vac dτ . (2.13)

In order to determine the orbit representative we visualize the warped Virasoro group as

the following infinitesimal transformation on the R2 plane with coordinates (τ, x);

τ → τ + ε(τ) , and x→ x+ σ(τ) . (2.14)

Upon integrating the infinitesimal transformations (2.14), one obtains finite diffeomor-

phisms of the plane R2 given by4

τ → f(τ) and x→ x+ g(τ) , (2.15)

where g(τ) = σ ◦ f(τ). The reparametrization f(τ) and the translation g(τ) are respec-

tively an orientation preserving conformal transformation and an arbitrary function on a

line forming the group Diff(R) n C∞(R). In our physics setup, τ is parametrizing the

temperature of the system whereas the pure imaginary line x (not to be confused by any

spacetime coordinate) parametrizes a direction along a new chemical potential µ as we will

see later on.

Associated to these group elements, the pair of currents (T (τ), P (τ)) generate infinites-

imal general coordinate transformations along Euclidean time τ and translation along x as

in (2.14) respectively. This group admits three central extensions (c, κ, k), therefore these

currents are anomalous which can be observed in their transformation under the coadjoint

representation of G as we briefly reviewed above and more elaborated in [28].

4The coordinate τ does not have to be periodic in general.
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In order to consider the theory at finite temperature T = β−1 we replace R by S1

with τ ∼ τ + β. In this case g(τ) is an arbitrary function on the circle and f(τ) is a

diffeomorphism of the circle;

f(τ + β) = f(τ) + β , g(τ + β) = g(τ) . (2.16)

Relative to the line, the vacuum energy on the circle is shifted. We require the vacuum

on the circle to be SL(2,R)×U(1) invariant so we can determine these vacuum state values

which correspond to the orbit representative uniquely by mapping between the cylinder

and the plane using the following set of finite warped conformal transformation;

τ → e2πiτ/β , x→ x+ α τ , (2.17)

where α is an arbitrary pure imaginary tilt [30] quantifying the chemical potential µ = iα

in the WCFT context [39]. We have the following thermal identification;

(τ, x) ∼ (τ + β, x− iµβ) . (2.18)

In our one dimensional (quantum) mechanical system one should not consider x as a real

space coordinate but as the coordinate on the phase space parametrizing a new chemical

potential µ.

The coadjoint representation (2.10) provide the finite transformation law of the cur-

rents T and P under a finite transformation (2.15). These transformation rules map the

pair (T, P ) to a new pair (T̃, P̃ ) at f(τ) whose explicit form can be read from (2.10) by

setting c1 = c, c2 = 4κ and c3 = −k according to the notation in [28];

P̃ (f(τ)) =
1

f ′(τ)

[
P (τ) + κ

f ′′(τ)

f ′(τ)
− k

2
g′(τ)

]
(2.19a)

T̃ (f(τ)) =
1

f ′(τ)2

[
T (τ) +

c

12
{f(τ); τ} − P (τ)g′(τ)− κg′′(τ) +

k

4
g′(τ)2

]
. (2.19b)

Here g = σ ◦ f and {f ; τ} =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
denotes the Schwarzian derivative and prime

refers to derivative w.r.t. τ . The infinitesimal form of these transformation can be obtained

by expanding f and g to linear order of ε and σ;

δ(ε,σ)P = εP ′ + ε′P − κε′′ + k

2
σ′ , (2.20a)

δ(ε,σ)T = εT ′ + 2ε′T − c

12
ε′′′ + σ′P + κσ′′ . (2.20b)

Plugging (f(τ), g(τ)) = (e2πiτ/β , α τ) into (2.19) and setting the vacuum values on the

plane to zero we obtain the vacuum values on the cylinder;

P vac = −2πiκ

β
+
αk

2
, T vac = −π

2c

6β2
− 2πiκα

β
+
α2k

4
. (2.21)

If we choose the exponential map by f−1 = e−2πiτ/β we are led to the same expression

as in (2.21) with β → −β. This means that the Z2-symmetry of interchanging between

– 5 –
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degenerate vacua |β〉 and |−β〉 is broken by the presence of the κ-term. This map amounts

to choosing only one of these vacuum on the cylinder and as a consequence our final

result will be sensitive to this. This symmetry is however restored if we simultaneously

change κ → −κ. We have chosen g(τ) in (2.17) to be linear in τ such that the (T, P ) are

transformed only by constant values which amounts to a shift of only zero modes. It is

important to note that for having a well-defined quantum theory defined on the circle we

have α and g(τ) being pure imaginary. Otherwise the Energy ground state value T vac will

have an imaginary part on the circle. This is consistent with the holographic constraints

on WCFTs [30, 40].

By assigning vacuum values (2.21) to (T̃, P̃ ) in (2.19) we generate all vacuum-repre-

sentatives of the SL(2,R)×U(1) invariant warped Virasoro coadjoint orbit on the cylinder;

P (τ) =
k

2

(
g′+αf ′

)
−κ

(
f ′′

f ′
+

2πi

β
f ′
)

(2.22a)

T (τ) =− c

12

{
tan

π

β
f ;τ

}
+
k

4
(g′+αf ′)2−κ

[
2πiα

β
f ′2+

(
f ′′

f ′
+

2πi

β
f ′
)
g′−g′′

]
, (2.22b)

with the property
{

tan π
β f ; τ

}
= {f ; τ} + 2π2

β2 f
′2. Subject to boundary conditions (2.16)

on fields f(τ) and g(τ) the Fourier mode generators of (2.22) on the cylinder

Ln =

β∫
0

dτ [T (τ)− T vac︸ ︷︷ ︸
T cyl(τ)

] e
2π
β
inτ

, Pn =

β∫
0

dτ [P (τ)− P vac︸ ︷︷ ︸
P cyl(τ)

] e
2π
β
inτ

, (2.23)

satisfy the twisted warped Virasoro algebra;

i{Ln, Lm} = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 , (2.24a)

i{Ln, Pm} = −mPn+m − iκ(n2 − n)δn+m,0 , (2.24b)

i{Pn, Pm} =
k

2
n δn+m,0 , (2.24c)

where we used (2.20) with ε(τ) ∼ e
2π
β
inτ

and σ(τ) ∼ e
2π
β
inτ

, and the fact that {Q1, Q2} =

−δ1Q2. It is clear form the algebra (2.24) that the global part of this symmetry algebra

is four dimensional corresponding to the invariance of the vacuum under (L±1,0, P0) or

under (L1,0, P0,−1).

3 Symplectic form

A coadjoint orbit Mξ with ξ ∈ g∗ is a symplectic submanifold of M which carries a

natural symplectic structure ωξ denoted as Kirillov-Kostant-Souriau symplectic form [15–

17] defined by

ω(X1(ξ), X2(ξ)) = −ξ([X1, X2]) , (3.1)

– 6 –
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where X(ξ) is the vector field at ξ ∈ g∗ generated by the coadjoint action of X ∈ g;

〈X(ξ), Y 〉 = 〈ad∗Xξ, Y 〉 = −〈ξ, [X,Y ]〉 . (3.2)

Let us apply the definition (3.2) to the coadjoint action of the warped Virasoro algebra ĝ

on its dual space ĝ∗. Using the vectors (2.3) and covectors (2.7) we have;

X(ξ) = ad∗(v,a) (b, c) = (δT (τ) dτ2 + δP (τ) dτ, 0) (3.3)

where δT and δP are defined in (2.20).

Now by having the knowledge of section 2.1 we are ready to calculate the value of the

symplectic form ω (3.1) for the warped Virasoro coadjoint orbit with constant representa-

tive at the point (b, c) ∈ ĝ∗ on the pair of vector fields X1(ξ) and X2(ξ) on the orbit,

ω12 = −
〈
(b, c) ,

[
(v1(τ),a1) , (v2(τ),a2)

]〉
= −

∫
S1

[
T (τ)

(
ε1(τ)ε′2(τ)− ε2(τ)ε′1(τ)

)
+ P (τ)

(
ε1(τ)σ′2(τ)− ε2(τ)σ′1(τ)

)
+
c1
12
ε′1(τ)ε′′2(τ)− c2

4

(
ε′1(τ)σ′2(τ)− ε′2(τ)σ′1(τ)

)
+
c3
2
σ′1(τ)σ2(τ)

]
(3.4)

= − c

12

∫
S1

[
ε′1ε
′′
2 −

{
tan

π

β
f ; τ

}(
ε1ε
′
2 − ε2ε′1

)]
+ κ

∫
S1

[
ε′1σ
′
2 − ε′2σ′1 +

((
f ′′

f ′
+

2πi

β
f ′
)
g̃′ − g̃′′

)(
ε1ε
′
2 − ε2ε′1

)
+

(
f ′′

f ′
+

2πi

β
f ′
)(

ε1σ
′
2 − ε2σ′1

)]
− k

2

∫
S1

[
σ1σ

′
2 +

1

2
g̃′2
(
ε1ε
′
2 − ε2ε′1

)
+ g̃′

(
ε1σ
′
2 − ε2σ′1

)]
, (3.5)

where in (3.4) we used the covector (2.7) and the vector (2.3) and used the pairing (2.8).

In (3.5) the τ -dependence of variables is implicit and for brevity we introduced g̃(τ) =

g(τ) + αf(τ). In transition from (3.4) to (3.5) we inserted the expression for P (τ) and

T (τ) from (2.22) for the vacuum orbit on the cylinder which is globally SL(2,R)×U(1)

invariant. Now we rephrase (3.5) in terms of differential forms;

ω = − c

24

∫
S1

[
dε′ ∧ dε′′ − 2

{
tan

π

β
f ; τ

}
dε ∧ dε′

]
+ κ

∫
S1

(
dε′ +

(
f ′′

f ′
+

2πi

β
f ′
)

dε

)
∧
(
dσ + g̃′ dε

)′
− k

4

∫
S1

(
dσ + g̃′ dε

)
∧
(
dσ + g̃′ dε

)′
. (3.6)

Here dacts on fields and not on coordinates and it essentially symbolizes a one-form on the

coadjoint orbit. The symplectic form in (3.6) is closed dω = 0 by construction which can

also be examined directly. It is invariant under the action of the twisted warped group (2.1)

and it is nondegenerate on the coadjoint orbit. In the following we find the finite form of

the Symplectic 2-form.

– 7 –
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According to the group operation (2.2) it is important to note that, f as an element of

the (twisted) warped Virasoro group (2.1), transforms under Diff(S1) while σ transforms

both under Diff(S1) and C∞(S1). So we have;

df = f ′ dε , dg = dσ + g′ dε with g = σ ◦ f . (3.7)

Using (3.7) one can rewrite (3.6) in a more abstract way as;

ω = − c

24

∫
S1

[
df ′ ∧ df ′′

f ′2
− 4π2

β2
df ∧ df ′

]
+ κ

∫
S1

d log

(
exp

2πi

β
f

)′
∧ dg̃′

− k

4

∫
S1

dg̃ ∧ dg̃′ . (3.8)

The first term in (3.8) is the famous Kirillov-Kostant-Souriau symplectic form for the

Virasoro-group [11, 12] at central charge c while the last term in (3.8) is the contribution

from the infinite dimensional Heisenberg group (U(1) Kac-Moody) at level k/2 [12, 18] or

the k-cocycle of the warped Virasoro group. The symplectic form of the twisted warped

Virasoro group has an off-diagonal κ-contribution which is shown in the middle term which

to the best of our knowledge is new. If k 6= 0 we can diagonalize (3.8) and rewrite it in a

more compact form

ω = −ceff

24

∫
S1

[
df ′ ∧ df ′′

f ′2
− 4π2

β2
df ∧ df ′

]
− k

4

∫
S1

dgeff ∧ dg′eff , (3.9)

where

ceff = c− 24κ2

k
, geff = g + αefff −

2κ

k
log f ′ , αeff = α− 2κ

k

(2πi

β

)
. (3.10)

It is essential to notice that at least classically when k 6= 0, we could hide the κ-contribution

from the vacuum orbit into the Virasoro and the Heisenberg orbits by doing shifts in (3.10)

and the coadjoint orbit does not change in this case. However the price one pays is that

the field geff unlike the field g̃ is no more pure imaginary and has a real part which is
2κ
k log f ′. This field redefinition will also happen at the level of the action (4.5) and field

equations (4.9). When the level k is zero this change of variable is no more valid and we

should directly work with (3.6) or (3.8) at k = 0.

3.1 Pfaffian

We may evaluate the symplectic form on the coadjoint orbit around the identity element

f = τ of Diff(S1)nC∞(S1) such that f(τ) = τ+ε(τ) and g(τ) = σ(τ) by Fourier expanding

the fluctuations as;

dε(τ) =
β

2π

∑
n∈Z

dεn e
− 2π
β
inτ

, dσ(τ) =
β

2π

∑
n∈Z

dσn e
− 2π
β
inτ

. (3.11)

– 8 –
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In terms of these Fourier modes the symplectic form of the coadjoint orbit at identity

becomes

ω =
β2

πi

∑
n≥1

(
cπ2

6β2
n3 + T vac n

)
dεn dε−n

+
β2

2πi

∑
n≥1

(
2πiκ

β
n2 + P vac n

)
dεn dσ−n +

β2

2πi

∑
n≥1

(
2πiκ

β
n2 − P vac n

)
dε−n dσn

+
β2

2πi

∑
n≥1

k

2
n dσn dσ−n . (3.12)

We assume

ε∗n = ε−n , σ∗n = −σ−n , (3.13)

as a consequence of f being essentially a real angle and g being a pure imaginary function

of S1. We restricted the domain of sums in (3.12) such that the symplictic form remains

non-degenerate for generic values of couplings. Of course there are special values where

the simplectic matrix becomes reducible and we should restrict it more. We will consider

these cases separately below.

The natural volume form (or measure of the integral) in an M -dimensional symplec-

tic manifold M with coordinates ξ1, · · · , ξM which is equipped with the antisymmetric

symplectic matrix ωij is

volM = Pf(ω) dξ1 · · · dξM . (3.14)

In our case the matrix ωij has the following block form;

ω =

(
ωεε ωεσ

ωT
εσ ωσσ

)
. (3.15)

The rank of matrices ωεε, ωεσ and ωσσ are generically 2N where N is the dimensionality

of the vector space which is a large number da1 · · · daN and is the upper limit of sums

in (3.12). In order to calculate the Pfaffian of the matrix (3.15) we can factorize it as

ω = BΩBT with the non-singular matrix B and use the following identity;

Pf(BΩBT) = Pf(Ω)det(B) . (3.16)

In our discussion this decomposition is made such that B is upper/lower triangular. We

keep c being non-zero all the time, depending on other cocycles being zero or not we have

the following three cases:

• In the case where κ = 0 the symplectic form is reducible to

ω = − c

12
2πi

∑
n≥2

(n3 − n) dεn dε−n +
k

2

β2

2πi

∑
n≥1

n dσ̃n dσ̃−n (3.17)
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with dσ̃n = dσn+α dεn. The Pfaffian of the antisymmetric symplectic matrix becomes

Pf(ω) = Pf(ωεε)Pf(ωσσ)

= (−1)N−1
N∏
n≥2

(
− c

24
2πi(n3 − n)

) N∏
m≥1

(
−k

4

β2

2π
im

)
. (3.18)

In this case ωεε and ωσσ are (2N − 2) × (2N − 2) and 2N × 2N matrices and both

should be non-degenerate in order to have a well-defined volume. This amounts to

having the full SL(2,R)×U(1) global identification on the orbit. In other words, in

the absence of the κ cocycle the zero modes of the algebra which form the maximal

finite subalgebra are ε0,±1 and σ0 and they form the SL(2,R)×U(1).

• In the case where k = 0, the symplectic form is also reducible

ω = − c

12
2πi

∑
n≥2

(n3 − n) dεn dε−n

+ κβ
∑
n≥2

(n2 − n) dεn dσ̃−n + κβ
∑
n≥1

(n2 + n) dε−n dσ̃n (3.19)

and since the matrix ωσσ is identically zero the matrix ωεε does not play any role in

the Pfaffian of the matrix ω;

Pf(ω) = (−1)N−1Pf(ωεσ)2

= (−1)N−1
N∏
n≥2

κβ

2
(n2 − n)

N∏
m≥1

κβ

2
(m2 +m) . (3.20)

In this case it is enough to have the ωεσ, which is a (2N −1)× (2N −1) matrix, being

non-degenerate for having a well-defined symplectic volume in the phase space. As

a consequence in the presence of κ while k = 0 the zero modes defining our orbit are

ε0,1 and σ−1,0 and they obey the centrally extended iso(1,1) algebra [28].

• In the most general case where all cocycles are non-zero we can find the Pfaffian

using (3.12)–(3.16);

Pf(ω) = Pf(ωεε + ωεσω
−1
σσω

T
εσ)Pf(ωσσ)

= (−1)N−1
N∏
n≥2

(
−ceff

24
2πi(n3 − n)

) N∏
m≥1

(
−k

4

β2

2π
im

)
(3.21)

where ceff = c − 24κ2/k. Again we have restricted the domain of n such that the

determinant of the symplectic matrix is non-zero. In this case non-degeneracy of ω

again leads to the SL(2,R)×U(1) as the stabilizer of the orbit.

This last result in the list is compatible with the diagonalization of the symplectic form

in its finite form (3.9).
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4 Warped Schwarzian theory

In general the Hamiltonian corresponding to the imaginary time evolution τ → τ + ε0 is

associated to the zero-mode of T (τ):

H = L0 =

∫
S1

T (τ) . (4.1)

Since we are considering the Euclidean theory the action is equal to its imaginary-time

Hamiltonian up to normalization. This is a consequence of applying the Duistermaat-

Heckman formula which means the corresponding partition function in one-loop exact [10].

This application is based on the fact that these theories arise from coadjoint orbits which

are symplectic manifolds and possess a U(1) imaginary-time translation generator L0. In

fact this fact has been used to express the exponential of the Schwarzian action as the

evolution operator in the quantum theory [41]. In the most general case we consider the

following one dimensional classical action;

S =

β∫
0

T (τ) dτ = S(c) + S(k) + S(κ) (4.2)

where S(c,k,κ) correspond to different contributions of the three cocycles (c, k, κ) of the

twisted warped Virasoro group respectively. Before going any further for simplicity we

first make the following field redefinition;

g̃ = g + α f , (4.3)

to eliminate the contribution of α terms from the action (4.2). This however changes the

periodicity property in g as g̃(τ + β) = g̃(τ) + αβ. After we drop the total derivative

contributions we have;

S(c) = − c

12

β∫
0

{
tan

π

β
f ; τ

}
dτ , (4.4a)

S(k) =
k

4

β∫
0

g̃′2 dτ , (4.4b)

S(κ) = −κ
β∫

0

(
exp 2πi

β f
)′′(

exp 2πi
β f
)′ g̃′ dτ . (4.4c)

If k 6= 0 we can always absorb the contribution of S(κ) into S(c) and S(k) up to total

derivative terms, leading to the following action;

S = −ceff

12

β∫
0

{
tan

π

β
f ; τ

}
+
k

4

β∫
0

g′2eff , (4.5)

– 11 –



J
H
E
P
0
2
(
2
0
2
0
)
1
2
6

with effective values defined in (3.10). As obviously seen from (4.5) the action for the

non-vanishing U(1) level corresponds to the Schwarzian action of the vacuum Virasoro

coadjoint orbit as diffeomorphisms of the circle with an improvement in the central charge

decoupled from a free scalar geff. We expect that the measure of the integration remains

invariant under these shifts in g;

g → geff = g + αf − 2κ

k

(
log f ′ +

2πi

β
f

)
, (4.6)

as it can be considered as part of the group action on g. However the periodicity property

of g will be twisted as a consequence of multiple shifts;

g(τ + β) = g(τ) + αeff β . (4.7)

The action (4.5) when κ = 0 has been studied extensively as the effective action of the

complex SYK model which has a U(1) global symmetry.5 The goal in this note is to consider

the consequences when κ 6= 0. Specially once k = 0 the shift (4.6) is no more valid.

4.1 Saddle points of the action

Upon variation of the action (4.2) w.r.t. f and g̃ (4.3), in general we have the following

field equations;

δf ,
c

12

[
4π2

β2
f ′ +

1

f ′

(
f ′′

f ′

)′]′
+ κ

[
g̃′′

f ′
− 2πi

β
g̃′
]′

= 0 , (4.8a)

δg̃ , κ

[
f ′′

f ′
+

2πi

β
f ′
]′
− k

2
g̃′′ = 0 . (4.8b)

In general when κ 6= 0 these two equations are coupled. If k 6= 0, one can solve the second

equation for g̃′ and insert it into the first equation to obtain the f -equation;

ceff

12

1

f ′

{
tan

πf

β
; τ

}′
= 0 . (4.9)

Without loss of generality we assume ceff 6= 0, otherwise the function f(τ) remains arbitrary

and the classical action becomes zero. Furthermore, f ′ > 0 and finite as a consequence

of f(τ) being an orientation-preserving diffeomorphism. Thus the equation (4.9) can be

solved as

tan
π

β
f(τ) =

a/λ sinλτ + b cosλτ

c/λ sinλτ + d cosλτ
. (4.10)

The numerator and the denominator in (4.10) have to be linearly independent so we should

have ad− bc 6= 0. The solution to the second equation (4.8b) determines the field g̃(τ);

g̃(τ) =
2κ

k
log[exp

2πi

β
f ]′ +B0τ + C0 . (4.11)

At finite temperature β and finite chemical potential α, the periodicity properties (2.16)

and (4.7) fix integration constants as λ = πn
β and B0 = αeff. The zero temperature limit

(β →∞) of these solutions is taken by replacing tan π
β f and exp 2πi

β f in (4.10) and (4.11)

by f while in this case λ is not quantized anymore.

5For some studies on the SYK model with global symmetries see [42–50].
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4.2 On-shell action

The corresponding on-shell value of the action for the classical solution (4.10)–(4.11) is;

F ⊃ β−1S
on-shell

= −ceff

6
λ2 +

k

4
α2

eff , (4.12)

where the effective values ceff and αeff are given in (3.10). This sounds similar to the finite

temperature contribution to the classical free energy of the low energy complex SYK by

replacing the bare values of the central charge and the chemical potential with physical

ones as in (3.10). However there is an essential difference, namely the effective chemical

potential depends on β. This would change the behaviour of the density of states.

In the case where k = 0 the solution (4.10)–(4.11) does not hold. In this case one can

first solve f(τ) from (4.8b) and plug the solution into equation (4.8a) and solve for g̃(τ).

In terms of the new variable exp 2πi
β f , from equation (4.8b) we have;(

exp
2πi

β
f

)′′
= 2iλ

(
exp

2πi

β
f

)′
, λ =

πn

β
, (4.13)

whereas equation (4.8a) can be rewritten as;

c

12

{
exp 2πi

β f ; τ
}′

(tan π
β f)′

− 2πiκ

β

[
(g̃′ exp −2πiβ f)′

(exp −2πiβ f)′

]′
= 0 . (4.14)

The equation (4.13) shows that taking derivatives only scales the classical solutions. As a

consequence
{

exp 2πi
β f ; τ

}
= 2λ2 and the contribution of the term with derivative of the

Schwarzian to the equation (4.14) is zero. In this case (k = 0) the on-shell action after

using (4.13) is very easy to find from (4.4c);

F ⊃ β−1S
on-shell

= − c
6
λ2 − 2iακλ . (4.15)

The exact finite temperature solutions of both f and g in this case are as follows;

exp
2πi

β
f(τ) = C0e

2iλτ + C1 , g̃(τ) = C2 exp
2πi

β
f(τ) +B0τ + C3 (4.16)

where Ci’s are some arbitrary constants and B0 = α = −iµ accounts for the chemical

potential. Again the zero temperature solutions can be obtained by replacing exp 2πi
β f

with f and considering λ as being unquantized.

5 Partition function

In this section we set to evaluate the partition function for the warped Schwarzian theory

defined by the Euclidean action (4.2) as the integral

Z =

∫
M
DfDg e−S[f,g] . (5.1)
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The fields f and g subject to their boundary conditions are elements of the constant

representative coadjoint orbits of the twisted warped Virasoro group. The phase space

which restricts the integration space in (5.1) is the infinite dimensional quotient space

M =
Diff(S1) n C∞(S1)

SL(2,R)×U(1)
. (5.2)

The coadjoint orbit (5.2) as a manifold is symplectic (and in this case also Kähler) and

as a consequence the measure of integration in 5 is fixed using the Pfaffian of the sym-

plectic matrix. The Duistermaat-Heckman (DH) theorem, applied to symplectic manifolds

endowed with a U(1) time translation generators L0 playing the role of the action in the

integral (5.1), states that the path integral is 1-loop exact;

Z = e−S
(0)
Z1-loop . (5.3)

In order to evaluate the one-loop integral it is enough to expand around the classical solution

to the equations of motion. Around the saddle point we can expand as f(τ) ' τ + ε(τ)

and since g = σ ◦ f , we have g(τ) ' σ(τ) + ε(τ)σ′(τ). We can think of ε(τ) and σ(τ) as

Goldstone modes for the broken SL(2,R) and U(1). The action (4.2) to quadratic order in

ε(τ) and σ(τ) becomes S = S(0) + S(2) with;

S(0) = βT vac = −cπ
2

6β
− 2πiακ+

kβ

4
α2 , (5.4)

S(2) =

β∫
0

[
c

24

(
ε′′2 −

(
2π

β

)2

ε′2

)
+
k

4

(
σ′ + αε′

)2 − κ(ε′′ + 2πi

β
ε′
)(

σ′ + αε′
)]

dτ . (5.5)

The expression for S(0) is the saddle point contribution Son-shell in (4.12) for λ = π/β as

expected. The goal would be to compute the Euclidean one-loop path integral

Z1-loop =

∫
M
DεDσ̃ e−S(2)[ε,σ̃] . (5.6)

Here σ̃ = σ′ + αε′. This change of variable leaves the measure of the integral invariant as

σ → σ̃ is a group action. In order to perform the path integral on the quotient space we

should not include zero modes or the kernel of the symplectic from (3.12) in the measure of

integration. The periodicity properties of f and g in (2.16) and (4.7) imply that ε(τ +β) =

ε(τ) and σ(τ + β) = σ(τ). We employ the Fourier mode expansion of the fluctuations;

ε(τ) =
β

2π

∑
n∈Z

εn e
− 2π
β
inτ

, σ(τ) =
β

2π

∑
n∈Z

σn e
− 2π
β
inτ

, (5.7)
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and evaluate the quadratic effective action (5.5) to quadratic order in fluctuations around

the SL(2,R)×U(1) vacuum. We find the individual contribution to each cocycle as follows;

S(2) =
cπ2

3β

∑
n≥2

n2(n2 − 1)|εn|2

+ 2πiκ
∑
n≥2

n(n2 − n)εnσ̃−n + 2πiκ
∑
n≥1

n(n2 + n)ε−nσ̃n

+
kβ

2

∑
n≥1

n2 |σ̃n|2 , (5.8)

where σ̃n = σn + αεn. Using the symplictic from (3.12) and the corresponding Pfaffian we

can perform the 1-loop path integral (5.6). We find it useful to discuss cases where the

twist term κ or the level k is zero separately.

5.1 Untwisted warped Schwarzian theory with non-zero level

The path integral of the twistless case when κ = 0 is the same as for the complex SYK

model in the low energy regime carried out in [10, 50, 51]. The modes ε and σ̃ are decoupled

in both the action and the measure of the path integral and we can evaluate the 1-loop

path integral by evaluating each contribution separately. Using the Pfaffian (3.18), the

contribution of each piece is as follows;6

Z
(c)
1-loop = (−1)

N(N−1)
2

∏
n≥2

cπ

6
(n3 − n)

∫
d2εn exp

(
−cπ

2

3β
n2(n2 − 1)|εn|2

)
(5.9)

= ±2β−1
∏
n≥1

β

2n
= ±4β−1

√
π

β
, (5.10)

Z
(k)
1-loop = (−1)

N(N−1)
2

∏
n≥1

kβ2

4π
n

∫
d2σ̃n exp

(
−kβ

2
n2 |σ̃n|2

)
(5.11)

= ±
∏
n≥1

β

2n
= ±2

√
π

β
. (5.12)

The Gaussian integrals can easily be evaluated. In order to evaluate the infinite products

we used the zeta function regularization

∏
n=1

β

2n
= exp

{
− d

ds

∑
n=1

(
β

2n

)−s ∣∣∣
s=0

}
= exp

{(
log

β

2

)
ζ (0)− ζ ′(0)

}
= 2

√
π

β
. (5.13)

The final answer is the product of contributions from the c- and the k-cocycles;

Z
(κ=0)
1-loop = Z

(c)
1-loopZ

(k)
1-loop ∝

1

β2
. (5.14)

The proportionality constant is state independent and irrelevant. This one-loop result

matches with our expectation regarding the number of zero modes which is four in the case

6We have d2εn = dεRn dεIn = i
2

dεn dε−n and d2σn = dσRn dσIn = − i
2

dσn dσ−n.
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of warped Virasoro algebra. The full partition function in this case is

Z (β, α) ∝ 1

β2
exp

(
cπ2

6β
− kβ

4
α2

)
. (5.15)

5.2 Twisted warped Schwarzian theory at level zero

Another interesting case would be to carry out the partition function when the U(1) level

is vanishing k = 0 but κ 6= 0. At the first glance to the action (4.2), in this case the g field

plays the role of a Lagrange multiplier that can be integrated out;

Z =

∫
M(k=0)

Df δ
[(

log f ′ +
2πi

β
f

)′′]
e−SSch[f ] . (5.16)

The path integral would then reduce to evaluating a Dirac delta functional in the integral.

This is again naive as one should be cautious with the domain of the integration. In the

path integral (5.1), we should avoid integrating over zero modes that are globally quotiented

in the integration space (5.2). Again using the mode expansion of the action (5.8) and the

Pfaffian of the symplectic matrix (3.20) in this case we have

Z
(k=0)
1-loop = (−1)N−1

∏
n≥2

κβ

2
(n2−n)

×
∫

dεndσ̃−n exp

(
− cπ

2

6β
n2(n2−1)|εn|2−2πiκn(n2−n)εnσ̃−n

)
∏
m≥2

κβ

2
(m2+m)

∫
dε−mdσ̃m exp

(
− cπ

2

6β
m2(m2−1)|εm|2−2πiκm(m2+m)ε−mσ̃m

)
κβ

∫
dε−1dσ̃1 exp(−4πiκε−1σ̃1)

= (−1)N−1 I1,−1
∏
n≥2

κ2β2n2(n2−1)

∫
d2εnd2σ̃n exp

(
−An|εn|2−εRnJn−εInKn

)
= (−1)N−1 I1,−1

∏
n≥2

3κ2β3

cπ

∫
d2σ̃n exp

(
12κ2β

c
n2|σn|2

)
= I1,−1

∏
n≥2

β2

4n2 =
β

2

16π

β3 =
8π

β2 (5.17)

where

An =
cπ2

3β
n2(n2 − 1) , Jn = 4πκ

(
in2σRn − n3σIn

)
, Kn = 4πκ

(
n3σRn + in2σIn

)
. (5.18)

We evaluated the norm of the integral I1,−1 by the doubling trick;7

|I1,−1|2 = −4κ2β2
∫

d2ε1 d2σ̃1 exp
(
−8πκ

[
εI1σ̃

R
1 − εR1 σ̃I1

])
=
β2

4
. (5.19)

7Since we assumed σ to be pure imaginary we assure that κ is real.
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We can also do a direct calculation by expanding ε−1 and σ1;

I1,−1 =
κβ

4

( ∞∫∫
−∞

dεR−1 dσ̃R1 −
∞∫∫

−∞

dεI−1 dσ̃I1 + i

∞∫∫
−∞

dεR−1 dσ̃I1 + i

∞∫∫
−∞

dεI−1 dσ̃R1

)

· exp
(
4πκ

[
εR−1σ̃

I
1 + εI−1σ̃

R
1

]
− 4πiκ

[
εR−1σ̃

R
1 − εI−1σ̃I1

])
= −β

2
. (5.20)

5.3 Twisted warped Schwarzian theory with non-zero level

Once κ 6= 0 and k 6= 0, it is possible to hide the κ-contribution to the quadratic action in

c- and k-terms

S(2) =

β∫
0

[
ceff

24

(
ε′′2 −

(
2π

β

)2

ε′2

)
+
k

4
σ′2eff

]
dτ , (5.21)

where

σeff = σ + αeffε−
2κ

k
ε′ (5.22)

with the effective values ceff and αeff being defined in (3.10). A quick conclusion would

be to map the problem to the previous case 5.1 where κ = 0 and k 6= 0 with physical

quantities, c and α being modified to effective ones (3.10). However we note that the shift

in σ̃ in (5.22) is violating the holomorphicity of the σ field. In other words, the new σeff

is a complex field whose real and pure imaginary values are independent from each other.

This means that the positive and negative Fourier modes (σeff)n are no more related to

each other as they were before (3.13). So in order to keep track of all terms we preferably

work with old variables ε and σ̃ in the action;

Z1-loop =K1,−1
∏
n≥2

ceff

12

kβ2

2
n(n3−n)

∫
d2εnd2σ̃n exp

(
−An|εn|2−

kβ

2
n2|σ̃n|2−εRnJn−εInKn

)

=K1,−1
∏
n≥2

ceffkβ
3

c8π

∫
d2σ̃n exp

(
−kβ

2c

[
c−24κ2/k

]
n2|σn|2

)

=K1,−1
∏
n≥2

β2

4n2
∼ 8π

β2
. (5.23)

In this case we used;

K1,−1 =
kβ2

4π

∫
d2σ̃1 exp

(
−kβ

2
|σ̃1|2 − 4πiκ ε∗1σ̃1

)
=
β

2
. (5.24)

The full partition function of the warped Schwarzian theory is

Z(β, α) ∝ 1

β2
exp

(
cπ2

6β
+ 2πiακ− kβ

4
α2

)
, (5.25)

where α = −iµ with µ playing the role of a chemical potential to the U(1) charge.
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In order to compare the spectrum of the warped Schwarzian theory with its Schwarzian

parent we separate the full partition function (5.25) as follows

ZWSch(β, µ) =
ZSch(β)√

β
exp

(
2πµκ+

kµ2

4
β

)
. (5.26)

The density of states can be determined as the inverse Laplace transform to the partition

function. If we assume k < 0, and shift the zero point energy to −kµ2

4 we have

ρWSch(E − kµ2

4
, µ) =

e2πµκ√
π

E∫
0

ρSch(E′)√
E − E′

dE′ (5.27)

= 2 e2πµκ
√

6E /c I1

(
2
√
cE /6

)
, E > 0 , (5.28)

where ρSch(E) = 2
√
6√
cπ

sinh
(
2π
√
cE /6

)
and I1(x) = −iJ1(ix) is the modified Bessel func-

tion of the first kind. Asymptotically for cE � 1 the density of states as a function of

E grows like ρ ∼ e2
√
cE /6

E1/4 while for small values above the zero point energy cE � 1 it

behaves linearly ρ ∼ E. The result in (5.27) also holds at the critical point when k = 0.

The k > 0 does not lead to a well defined density, however if κ = 0 we can have α being

real (µ pure imaginary) and we are back to the above case.

6 Thermodynamics

In this section we discuss the thermodynamics of the warped Schwarzian theory (4.2).

When the κ-term in (4.2) is zero, this theory coincides with the low-energy effective action

for the complex SYK model at large N . The fluctuations of energy above the ground state

E and the total charge Q associated to the U(1) symmetry can be obtained from (5.5) as [8],

E(τ)− µQ(τ) =
δS(2)

δε′(τ)
, Q(τ) = i

δS(2)

δσ′(τ)
. (6.1)

We have,

E(τ) = − c

12

[
ε′′′ +

(
2π

β

)2

ε′

]
+ κ

[
σ̃′′ − 2πi

β
σ̃′
]
, (6.2a)

Q(τ) =
ik

2
σ̃′ − iκ

[
ε′′ +

2πi

β
ε′
]

=
ik

2
σ′eff . (6.2b)

When k 6= 0,8 in order to compute the corresponding two-point correlators among E and

Q in the warped Schwarzian theory, we first exploit the action presented in (5.21) and its

analogy to the complex SYK model to present the correlators among ε and σeff [8, 9];

〈ε(τ)ε(0)〉= 3β3

4π4ceff

[
π2

6
+1− 1

2

(
2πτ

β
−π
)2

+
5

2
cos
(

2πτ

β

)
+
(

2πτ

β
−π
)

sin
(

2πτ

β

)]
, (6.3)

〈σeff(τ)σeff(0)〉= β

2π2k

[
1

2

(
2πτ

β
−π
)2
− π2

6

]
, (6.4)

8Here we consider the case where k is non-vanishing, the case where k = 0 has been considered in [52].
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where σeff = σ̃ − 2κ
k (ε′ + 2πi

β ε) as given in (5.22). Furthermore, using the above correlators

and the fact that 〈ε(τ)σeff(0)〉 = 0 we can obtain the two-point correlators for σ̃;

〈σ̃(τ)ε(0)〉 =
2κ

k

(
∂τ +

2πi

β

)
〈ε(τ)ε(0)〉 , (6.5a)

〈ε(τ)σ̃(0)〉 = −2κ

k

(
∂τ −

2πi

β

)
〈ε(τ)ε(0)〉 , (6.5b)

〈σ̃(τ)σ̃(0)〉 = 〈σeff(τ)σeff(0)〉 − 4κ2

k2

(
∂2τ +

(
2π

β

)2
)
〈ε(τ)ε(0)〉 . (6.5c)

Using these results, we can compute the two-point correlators between the conserved quan-

tities in (6.1) which turn out to be τ -independent;

〈E(τ)E(0)〉 =
π2c

3β3
, 〈E(τ)Q(0)〉 = −2πκ

β2
, 〈Q(τ)Q(0)〉 =

k

2β
. (6.6)

Obviously when κ 6= 0 we see a new non-zero correlator in (6.6) in comparison to the

complex SYK model. This explicitly demonstrates the role of all three cocycles of the

warped Virasoro group to the complex SYK model. For comparison with reported results

in [8], one can rename c and k in (6.6) in terms of the phenomenological couplings γ (heat

capacity) and K (zero-temperature compressibility) in the complex SYK model as follows;

c→ 3γN

π2
, k → 2NK . (6.7)
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