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1 Introduction

Conformal field theories (CFTs) play a key role in particle and condensed matter physics.

As fixed points of the renormalization group flow, they act as landmarks in the space

of quantum field theories (QFTs). Through the AdS/CFT correspondence [1, 2], they

promise to shed light on quantum gravity. They also describe critical points for second
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order phase transitions. Finally, CFTs are also among the few examples of interacting

QFTs where exact results are available without supersymmetry. Recently, the bootstrap

program [3, 4] achieved much progress in the study of CFTs, both through numerical [5, 6]

and analytical [7–9] techniques.

Basic observables in CFTs are correlation functions of local operators in the vac-

uum. Despite this, sometimes one can make predictions for the CFT data defining the

theory studying the dynamics of finite density states [10]. This is a consequence of the

state/operator correspondence [11, 12], which relates states in radial quantization to local

operators with the same quantum numbers.

This idea has been applied in the investigation of the superfluid phase in conformal field

theories [10, 13–20]. Indeed superfluids are the most natural candidates for the description

of states at large internal quantum numbers in CFTs. They admit a simple and universal

effective field theory (EFT) description [21, 22] which allows the computation of correlators

in a perturbative expansion controlled by the charge density. Recently, the same strategy

was applied in the context of non-relativistic CFTs [23–25].

As the angular momentum is increased, the superfluid starts rotating and vortices

develop [26]. These can be included in the EFT as heavy topological defects [27–31].

In [32], this EFT was used to describe operators with large spin and large charge in three

dimensional CFTs. In this work, we study the predictions of the vortex EFT for four

dimensional CFTs.

1.1 Summary of results

Let us first set our conventions for the four dimensional rotation group SO(4). Spinning

operators in four dimensions are classified in representations labelled by two positive half-

integer quantum numbers (J, J̄). These are related to the maximal values allowed for the

Cartan generators J34 and J12 as

(J, J̄) =

(
|J34 − J12|

2
,
|J12 + J34|

2

)
. (1.1)

With no loss of generality, we assume J34 ≥ J12 ≥ 0.

Consider a CFT invariant under an internal U(1) symmetry. The main prediction of

the superfluid EFT is the scaling dimension of the lightest scalar operator of charge Q in

the spectrum. It is given by [13]

∆0(Q) = αQ4/3 + βQ2/3 + . . . , (1.2)

for Q� 1; here α and β are independent Wilson coefficients.

In this work, we compute the scaling dimension of the lightest operator as the spin

is increased. As in [32], the EFT describes the regime where the spin is below the uni-

tarity bound, J, J̄ � Q4/3, and cannot reach the regime analyzed by the analytic boot-

strap [7, 8, 33–41]. To leading order in the charge and the spin, the results depend on

the first coefficient in (1.2) and on an extra Wilson coefficient γ̃ parametrizing the vortex

tension.
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For traceless symmetric operators J = J̄ = J34/2, the corresponding state passes

through three distinct regimes, qualitatively similar to the CFT3 case:

• For 2 ≤ J34 � Q1/3 the lightest operator corresponds to a phonon wave of angular

momentum J in the superfluid. The scaling dimension is given by

∆ = ∆0(Q) +

√
J34(J34 + 2)

3
+O

(
J4

34

Q2/3

)
. (1.3)

• For Q1/3 � J34 ≤ Q, the minimal energy state is given by a single vortex ring, whose

radius increases with J . Its energy is

∆ = ∆0(Q) + ∆V (Q, J34), (1.4)

where

∆V (Q,J)≡ 3

8α
Q1/6J1/2 log

(
J/Q1/3

)
− 3

4α
Q1/6J1/2 log

(
1+
√
J/Q

)
− 3

2α
Q2/3 log

(
1+
√
J/Q

)
+γ̃Q1/6J1/2+O

(
Q1/6J1/2×Q

1/3

J

)
(1.5)

The leading contribution in (1.5) comes from the first term, because of the logarithmic

enhancement. The other terms can be interpreted as finite-size corrections due to

the vortex extension and are functionally distinguished from the relative Q1/3/J

corrections.

• For Q� J34 � Q4/3 the superfluid forms a vortex crystal. The scaling dimension of

the corresponding operator is given by

∆ = ∆0(Q) +
3

4α

J2
34

Q4/3
+O

(
J2

34

Q4/3
× Q

J34
,
J2

34

Q4/3
×
(
J34

Q4/3

)2
)
. (1.6)

Mixed symmetric representations are conveniently parametrized in terms of J34, J12 in (1.1).

We write Jab to generically denote any of them. We find the following results:

• For 2 ≤ J12 ≤ J34 � Q1/3 the minimal energy state is given by two phonons propa-

gating on the superfluid, with energy:

∆ = αQ4/3 +

√
J34(J34 + 2)

3
+

√
J12(J12 + 2)

3
+O

(
J4
ab

Q2/3

)
. (1.7)

• For 1 ≤ Q − J34 � Q and 2 ≤ J12 � Q1/3, the lowest energy state corresponds to

a Kelvin wave of spin J12 propagating on a large vortex ring. The corresponding

operator scaling dimension is given by:

∆ = αQ4/3 + ∆V (Q, J34)

+
3

8α

π(J2
12 − 1)

Q1/3

[
logQ2/3 − 2ψ

(
J12 + 1

2

)
− 2γE − 1− log 64

]
+ γ̃

π(J2
12 − 1)

Q1/3
+O

(
J4

12

Q

)
. (1.8)
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• For Q1/3 � J12 ≤ J34 ≤ Q and (J12 + J34 −Q)2 � J12J34/Q
2/3, the minimal energy

state is given by two vortex rings. When 1 ≤ Q− J34 � Q1/3 the energy is given by

the sum of the two free contributions

∆ = αQ4/3 + ∆V (Q, J34) + ∆V (Q, J12), 1 ≤ Q− J34 � Q1/3. (1.9)

Interactions correct the result in the general case, which takes the same form only to

logarithmic accuracy

∆ = αQ4/3 +
3

8α
Q1/6

[
J

1/2
34 log

(
J34/Q

1/3
)

+ J
1/2
12 log

(
J12/Q

1/3
)]

+O
(
Q1/6J

1/2
ab

)
.

(1.10)

• For Q� J12 ≤ J34 � Q4/3 the superfluid arranges in a vortex lattice as in (1.6); the

scaling dimension of the corresponding operator is

∆ = αQ4/3 +
3

4α

J2
34 + J2

12

Q4/3
+O

(
J2
ab

Q4/3
× Q

Jab
,
J2
ab

Q4/3
×
(
Jab
Q4/3

)2
)
. (1.11)

These results apply to CFTs whose large charge sector can be described as a superfluid

and which admit vortices. These are natural and simple conditions, hence we expect them

to apply to a wide range of theories with a U(1) symmetry. Nonetheless, we cannot prove

these assumptions.

The rest of the paper is organized as follows. In section 2 we review the superfluid

description of large charge operators as well as the vortex EFT in 2+1 dimensions. In 3 we

formulate the effective field theory (EFT) for vortices in 3 + 1 dimensions. The results of

this section are derived in section 4. In 5 we show how to make predictions for correlators

involving a current insertion between two vortex states and in 6 we briefly comment on how

the results (1.4) and (1.6) change in generic spacetime dimensions. Finally in 7 we draw

our conclusions and comment on future research directions. Technical details are given in

the appendices B, C, D.

Conventions and coordinates on S3. Lorentz indices µ, ν, . . . go from 0 to 3 and we

use mostly minus metric signature sgn(gµν) = {1,−1,−1,−1}. Spatial indices are written

as i, j, . . . = 1, 2, 3 and are raised and lowered with a positive metric |gij |. We use the

notation ḟ = ∂0f for time derivatives. Indices a, b, . . . are used for the R4 embedding of

S3 and go from 1 to 4. Embedding coordinates are denoted Xa = Xa. Calling Xa(x) the

R4 coordinate corresponding to an S3 point x, the chordal distance between two points x

and x′ is given by:

∆X2(x, x′) =
∑
a

[
Xa(x)−Xa(x

′)
]2
. (1.12)

A convenient parametrization of S3 is provided by Hopf coordinates, defined via the

embedding:

X1 = R cos ξ sin η, X2 = R sin ξ sin η, X3 = R cosφ cos η, X4 = R sinφ cos η. (1.13)

– 4 –
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This gives the following metric tensor

ds2

R2
= dη2 + sin2 ηdξ2 + cos2 ηdφ2, η ∈ [0, π/2], ξ ∈ [0, 2π], φ ∈ [0, 2π]. (1.14)

For fixed η different from 0 and π/2, ξ and φ describe an S1 × S1 submanifold.

2 Review of previous results

2.1 Conformal superfluid

Let us first remind that, in a CFT, the state-operator correspondence relates eigenstates

of the Hamiltonian H on Sd with the set of local operators at any given point [11, 12].

The quantum numbers of the state on Sd and the corresponding operator are the same. In

particular, the energy E is related to the scaling dimension of the latter as ∆ = E/R.

The EFT description of CFTs at large quantum numbers is based on the assumption

that the lightest scalar operator with U(1) charge Q in a d+1 dimensional CFT corresponds

to a state with homogeneous charge density on R × Sd. For Q � 1, the scale associated

with the density of this state is parametrically bigger than the Sd radius R and the CFT is

expected to be in a “condensed matter phase”. As argued in [13], the simplest possibility

is that the CFT enters a superfluid phase. Technically, this is equivalent to assuming an

effective description in terms of a U(1) Goldstone boson [21]. The effective Lagrangian is

fixed by shift symmetry and Weyl invariance:

L/√g = c(∂χ)d+1 + c1(∂χ)d−1

{
R+ d(d− 1)

[∂µ(∂χ)]2

(∂χ)2

}
+ c2(∂χ)d−1Rµν

∂µχ∂νχ

(∂χ)2
+ . . . .

(2.1)

We use the notation (∂χ) = (∂µχ∂
µχ)1/2 and c, c1, c2 are Wilson coefficients. Here Rµνρσ

is the Riemann tensor on the cylinder R× Sd. We assume c, c1, c2 ∼ O(1), corresponding

to the generic expectation for a strongly coupled system. On a homogeneous background

at finite charge, the field takes the value χ = µt, where µ is the chemical potential of the

system. To leading order in derivatives, it is related to the U(1) charge density j0 as

j0 =
Q

RdΩd
= c(d+ 1)∂0χ(∂χ)d−1 = (d+ 1)cµd, (2.2)

where Ωd = 2π
d+1
2 /Γ

(
d+1

2

)
is the Sd volume. The chemical potential sets the cutoff of

the EFT:

Λ ∼ µ ∼ Q1/d

R
. (2.3)

By the state/operator correspondence, the ground state of (2.1) corresponds to the minimal

energy state with charge Q. Its energy is determined by a semiclassical analysis and takes

the form:

∆0(Q) = αQ
d+1
d

(
1 +

β

α
Q−

2
d + . . .

)
. (2.4)

Quantum corrections provide a Q0 contribution. For even d, there is no local counterterm

correcting this term, which is hence universal [10].
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The Lagrangian (2.1) describes also excitations on the background. For instance,

expanding χ = µt+ π and working to leading order in derivatives we get

L/√g = cµd−1d(d+ 1)

2

(
π̇2 − 1

d
∂iπ|gij |∂jπ

)
+ . . . . (2.5)

Quantizing the system, it follows that the spectrum can be organized as a Fock space in

terms of single particle states with angular momentum J and energy given by

ωJ = csλJ , c2
s =

1

d
. (2.6)

Here λ2
J = J(J+d−1)

R2 are the eigenvalues of the Laplacian on Sd and the sound speed cs is

fixed by conformal invariance. Physically, these states correspond to phonons propagating

in the superfluid and are associated with primary operators in the CFT. The J = 1 mode

has ω1 = 1/R and corresponds to the creation of a descendant.

A natural question is how the spectrum changes, as the spin J is increased. When the

angular momentum is parametrically smaller than the cutoff (2.3), the spectrum is reliably

described by phonons (2.6). The results (1.3) and (1.7) then follow. Increasing spin, one

finds singular solutions with a non zero winding number, such as π = φ, where φ is the

azimuthal angle. This signals that for J � Q1/d vortices develop in the superfluid and

must be included in the effective description. This was done in [32] for a 2 + 1 dimensional

CFT. The main goal of this work is to carry a similar analysis for a 3 + 1 dimensional

conformal field theory. To build some intuition, we briefly review the results of the 2 + 1

dimensional EFT in the next section.

2.2 Vortices in 2+1 dimensions

In d = 2, the action (2.1) reads

L = c(∂χ)3. (2.7)

To study vortices, it is convenient to consider a dual description in terms of a gauge field.

To this aim, we introduce an independent variable vµ ≡ ∂µχ and a Lagrange multiplier Aµ
to set the curl of vµ to zero:

L = cv3 − 1

2π
Aµ

εµνρ
√
g
∂νvρ, (2.8)

where εµνρ/
√
g is the antisymmetric Levi-Civita tensor. Integrating out vµ we get

L = −κF 3/2 (2.9)

where F =
√
FµνFµν and Fµν = ∂µAν − ∂νAµ. The coefficient κ is related to c as

κ = 1
25/4(3π)3/2

√
c
. The U(1) current relates the two descriptions

jµ = 3c(∂χ)∂µχ =
1

4π

εµνλ
√
g
Fνλ. (2.10)

As a consequence, the charge density (2.2) translates into a homogeneous magnetic field

〈Fθφ〉 = B sin θ = Q
2R2 sin θ, which sets the cutoff of the EFT according to (2.3).

– 6 –
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The action (2.9) describes a propagating degree of freedom, given by the fluctuations of

the magnetic field Fθφ and which corresponds to the phonon in the original picture, together

with a non-propagating Coulomb field A0, which does not have any local analogue in the

scalar formulation. As we will see, it is precisely this extra component which provides the

leading coupling to the vortices.

In the EFT, vortices are heavy charged particles in the dual description (2.9). They

are treated as 0 + 1 dimensional worldlines, whose spacetime trajectory is parametrized

by a function Xµ
p (τ) of a time parameter τ . The action of the superfluid plus vortices is

fixed by the requirement of Weyl invariance and τ -reparametrization invariance; the lowest

orders in derivatives take the form [32]

S = −κ
∫
d3xF 3/2 −

∑
p

qp

∫
AµdX

µ
p −

∑
p

∫
dτ
√
F
√
gµνẊ

µ
p Ẋν

p Fp

(
jµẊ

µ

jẊ

)
. (2.11)

The second term is the minimal coupling between the gauge field and a particle of charge

qp; this cannot be written in a local form in the scalar picture, showing the convenience

of the gauge formulation. Notice that the charge qp corresponds to the Goldstone winding

number around xp and is hence quantized: qp ∈ Z. The third term is the action for

a relativistic point particle in a superfluid;1 it is multiplied by an arbitrary function of
jµẊµ

jẊ
, since the superfluid velocity breaks Lorentz symmetry and allows constructing an

alternative condensed matter metric [26].

Working in the physical gauge X0
p = τ , we notice that the leading term in time

derivatives for the vortex lines arises from the second piece in (2.11). As we will self-

consistently see, this implies that vortices move with non-relativistic velocities | ~̇X| ∼ 1/
√
B.

Hence we can neglect terms with two time derivatives in the last term, retaining only a

constant contribution proportional to
√
B which is interpreted as the vortex mass. This

procedure is sometimes called lowest Landau level approximation in the literature [42–46].

The equations of motion (EOMs) deriving from (2.11) are

1

e2
∇if ij =

∑
p

qpẊ
j
p

δ2
(
xi −Xi

p

)
√
g

,
1

e2
∇iEi =

∑
p

qp
δ2
(
xi −Xi

p

)
√
g

, (2.12)

Ei = (Ẋp)jF
ji, (2.13)

where Ei = F i0 is the electric field and e2 = 21/4
√
B

3κ . The particle EOMs (2.13) are first

order in derivatives and imply that vortices move with drift velocity | ~̇Xp| ∼ | ~E/B| ∼ 1/
√
Q

as anticipated. Consequently, particle velocities, as well as the magnetic field fluctuations

sourced by them, are negligible and the only relevant interaction is the electrostatic one.

We now look for static classical solutions of the EOMs (2.12) and (2.13). Because of

the state/operator correspondence, classical solutions will be associated to operators with

the same quantum numbers. The spin and the scaling dimension of the corresponding

operators are then determined classically from the energy momentum tensor. The scaling

1See appendix D for a derivation from the coset construction.
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dimension of a state with n vortices reads2

∆ = ∆0(Q) +
R

2e2

∫
d2x
√
g ~E2 + γ̃

∑
p

√
2R
√
B

= ∆0(Q)−
√
Q

12α

∑
p 6=r

qpqr logQ∆X2(xp, xr) + γ̃n
√
Q, (2.14)

where Xa
p = (sin θp cosφp, sin θp sinφp, cos θp) is the vortex coordinate in the R3 embedding

of S2 and ∆X2(xp, xr) =
∑3

a=1

(
Xa
p −Xa

r

)2
is the chordal distance between two vortices.

The first term in (2.14) is the energy of the homogeneous phase, given by (2.4) with d = 2:

∆0(Q) = αQ3/2 + βQ1/2 + . . . . (2.15)

The second term is the energy stored in the electric field sourced by the vortices, which

is further rewritten as a sum over pairwise contributions in the right-hand side; the

logQ ∼ log Λ2 contribution arises from the logarithmically divergent self-energy of the

point charges. We used that the net charge on the sphere must be zero
∑

p qp = 0, as re-

quired by consistency of Gauss law on the sphere. Finally, the last term is the contribution

of n vortex masses and is written in terms of an independent coefficient γ̃, assumed to be

the same for all vortices.

Similarly, the angular momentum is

Ja =
RB

e2

∫
d2x
√
g niaεij

√
gEj = −Q

2

∑
p

qpX
a
p . (2.16)

Here nia is the Killing vector corresponding to the specified rotation, a = 1, 2, 3, and we

used Gauss law to obtain the right-hand side.

We can now discuss the consequences of the vortex EFT for the CFT spectrum. To

this aim, notice that the self-energy contribution ∼ logQ in eq. (2.14) is proportional to∑
p q

2
p and implies that vortices with |q| > 1 are energetically unfavored.3 The two main

results of [32] are:

• The lowest energy state for
√
Q� J ≤ Q consists of a vortex-antivortex pair rotating

on the sphere, at a distance proportional to the spin ∆X/2 = J/Q (see figure 1).

The scaling dimension of the corresponding operator reads

∆ = ∆0(Q) +

√
Q

3α
log

J√
Q

+ 2γ̃
√
Q+O

(√
Q× Q

J2

)
. (2.17)

The leading correction to the ground state energy arises from the second term as a

consequence of the logarithmic divergence of the vortex self-energy. This depends on

the same coefficient α appearing in (2.14). The vortex mass contribution, given by

the last term in (2.17), depends on a new coefficient and scales as the first subleading

term in the ground state energy (2.4). Corrections to this formula arise from the

particle velocities and the phonon field. As J →
√
Q, the vortices become relativistic

and the derivative expansion breaks down.

2Here we correct a typo in eq. (19) of [32].
3Notice that vorticity is quantized qp ∈ Z.
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Figure 1. A vortex-antivortex pair moving on the sphere at fixed distance; in the stereographic

projection the motion corresponds to two circular orbits.

• For Q � J � Q3/2 the lowest energy state corresponds to a vortex crystal phase.

Its energy is found approximating the vortex distribution as a continuous charge

distribution ρ(x) and then minimizing the energy at fixed angular momentum. The

leading contribution to the energy arises from the electric field | ~E| ∼ e2|ρ| and reads

∆ = ∆0(Q) +
1

2α

J2

Q3/2
+O

(
J2

Q3/2
× Q

J
,
J2

Q3/2
× J2

Q3

)
, (2.18)

corresponding to the charge density ρ = 3
2πR2

J
Q cos θ. The second term in (2.18) is

the electrostatic energy of the crystal. The leading corrections arise from the vortex

masses and the magnetic field fluctuations. The description holds as long as the

electric field is subleading to the homogeneous monopole field B and as long as the

particle velocities are negligible. Using | ~E| ∼ e2|ρ| ∼ J/
√
Q and | ~̇X| ∼

∣∣∣ ~E∣∣∣ /B, this

sets the condition J � Q3/2.4

For J �
√
Q spinning operators are described by phonons (2.6).

Spin and additional degrees of freedom in the vortex cores. In our analysis we

implicitly assumed the simplest possible structure for the vortex cores, which do not carry

any additional degrees of freedom on top. However, it is possible to imagine that the heavy

particles have non zero spin, for instance. One might then wonder to what extent such

additional structure on the worldline can modify the results discussed so far. As this point

was not addressed explicitly in [32], we would like to make few remarks in what follows.

Consider for concreteness fermionic vortices with half-integer spin5 and focus on a state

with a single vortex-antivortex pair. Spin degrees of freedom can be studied by adapting

the formalism of [49–51] to the conformal case. We report here only the key points, which

4This is in agreement with the experimental fact that vortex crystals exist when the filling fraction

ν = j0/nv is much bigger then one, where nv ∼ |ρ| is the vortex density [47, 48].
5We also assume parity; in this case, a Dirac particle in 2 + 1 dimensions may have both positive or

negative spin.
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can be easily understood via the analogy with the familiar case of a non-relativistic particle

with spin in a magnetic field. Some details are discussed in appendix A. Call sap the spin

of the particle p in embedding coordinates. The contribution of the latter to the angular

momentum (2.16) is of the same order of other O(1) contributions, proportional to the

particle velocities, which we neglected; the expression (2.16) is thus not modified to the

order of interest. Based on dimensional analysis and rotational invariance, we expect the

existence of the spin sap to modify the energy (2.14) at leading order via a contribution of

the kind

δ∆/R =
∑
p

gp√
2

√
BXa

p s
a
p, (2.19)

where the coefficients gp can be interpreted as the magnetic moments of the vortices.

This term indeed is just the Pauli interaction ~B · ~s/m between the spin and the magnetic

monopole field for a particle of mass m ∼
√
B [52]. At large angular momentum, we

can treat the positions of the vortices semiclassically as done before. Then, in the minimal

energy state the spin vectors point in the direction which minimizes (2.19) at fixed positions

for the vortices; this implies in particular that the doubling of the worldline degrees of

freedom due to the spin does not lead to any degeneracy in the spectrum. Consequently,

the result in eq. (2.17) for the minimal energy state with angular momentum
√
Q� J ≤ Q

is modified by the term

δ∆ = −g
2

J√
Q
, (2.20)

where we assumed all magnetic moments to be equal to g > 0. Notice that this contribution

is always subleading with respect to the second logarithmically enhanced term of eq. (2.17)

and it is at most of the same order of the vortex masses.

The conclusion of the previous analysis is general. The leading contribution to the

angular momentum, eq. (2.16), is unaffected by the presence of additional degrees of free-

dom characterizing the vortex cores. Similarly, the dominant contribution to the energy

from the vortices always arises from the electrostatic interaction. Additional degrees of

freedom might store energy in the vortex core, similarly to the vortex masses, and lead to

the existence of new subleading corrections.

3 Formulation of the EFT in four dimensions

3.1 Dual gauge field

As in 2 + 1 dimensions, to write a local coupling between vortices and the superfluid we

consider a dual description in terms of a gauge field. Following the steps in section 2.2, we

rewrite the leading order Lagrangian (2.1) in d = 3 using a two form Lagrange multiplier

Aµν = −Aνµ:

L = cv4 − 1

4π
Aµν

εµνρσ
√
g
∂ρvσ. (3.1)

Integrating out vµ then gives

L = −κH4/3, Hµνρ = ∂µAνρ + ∂νAρµ + ∂ρAµν , (3.2)
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where H =
√
−HµνρHµνρ and κ = 1

16π4/3

(
3
4c

)1/3
. The U(1) current provides the relation

between χ and Aµν :

jµ = 4c(∂χ)2∂µχ =
1

12π

εµνρσ
√
g
Hνρσ. (3.3)

Consequently, the homogeneous charge density 〈j0〉 = Q
2π2R3 in the vacuum translates into

a constant background field:

〈Hηξφ〉 = −B sin η cos η, B ≡ Q

πR3
. (3.4)

The cutoff of the theory (2.3) is thus set by B1/3 in the dual description. The action (3.2)

is often called of Kalb-Ramond type and is invariant under the gauge transformations

Aµν → Aµν + ∂µξν − ∂νξµ, for an arbitrary vector ξµ. The gauge redundancy allows

imposing three gauge fixing conditions, since a gauge transformation generated by a total

derivative ξµ = ∂µα acts trivially.

In the following, we shall be interested in fluctuations of the background (3.4). It is

thus convenient to expand the gauge field in a background value Āµν plus fluctuations:

Aµν = Āµν + δAµν , (3.5)

where a possible choice is

Āηξ = Āηφ = 0, Āξφ = −B
2

(
1− cos2 η

)
. (3.6)

Fluctuations are conveniently parametrized in terms of two three vectors bi and ai
defined as:

δAij =
√
g εijkb

k, δA0i = ai. (3.7)

We partially fix the gauge requiring ∇iAik = 0, which sets the curl of bi to zero. Then the

Lagrangian to quadratic order in the fluctuation reads:

L ' 1

4e2
f2 +

1

2e2

[
ḃiḃi −

1

3

(
∇ibi

)2]
, (3.8)

where e2 = (
√

6B)2/3

8κ and f2 = fijf
ij with

fij = ∂iaj − ∂jai. (3.9)

Following the gauge fixing, the field bi is purely longitudinal and corresponds to the phonon.

Instead ai is a non-propagating degree of freedom, called the hydrophoton since the residual

U(1) gauge invariance acts as ai → ai−∂iξ0. Analogously to the Coulomb field in (2.9), the

hydrophoton does not correspond to a local field in the original description and provides

the leading coupling to the vortices.
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3.2 String-vortex duality

Vortices in the dual description correspond to topological line defects, which are described

as 1 + 1 dimensional strings embedded in the 3 + 1 dimensional spacetime [27–29]. The

line element of a vortex p is parametrized by Xµ
p (τ, σ), where τ and σ are the world-sheet

coordinates. We use the words “vortex” and “string” interchangeably. We also assume

that no light degrees of freedom, besides the string coordinates, exist on the worldsheet.

The Lagrangian is required to be Weyl invariant and reparametrization invariant for

both τ and σ and is analogous to (2.11). The lowest order terms are given by

S = −κ
∫
d4x
√
gH4/3 −

∑
p

λp

∫
dτdσAµν∂τX

µ
p ∂σX

ν
p

−
∑
p

∫
dτdσH2/3

√
|det(Gαβ)|Fp

[
hαβG

αβ
]

+ . . . . (3.10)

The first term was discussed in the previous section. The second term is the leading

coupling between a string of vorticity λp ∈ Z and the gauge field. The last term is the

generalized Nambu-Goto (NG) action for the vortex; in appendix D we derive its form via

the coset construction. Here, the world-sheet metric is provided by:

Gαβ = gµν∂αX
µ
p ∂βX

ν
p , α, β = τ, σ. (3.11)

Since the superfluid velocity breaks Lorentz invariance, one can construct another inde-

pendent symmetric world-sheet tensor, which can be chosen as

hαβ = ∂αX
µ∂βX

ν jµjν
j2

. (3.12)

In general the NG action contains an arbitrary function of Gαβhαβ , where Gαβ is the

inverse of Gαβ . Weyl invariance further fixes the power of H which multiplies it. Finally

dots in (3.10) stands for higher derivative terms.

Consider now the physical gauge X0
p = τ for vortices. Using (3.6), the second term

in (3.10) is linear in time derivatives of the vortex line. As we will self-consistently see in

the next section, this implies that vortices move with drift velocity | ~̇X| ∼ f/B ∼ B−1/3.

Then, similarly to what we argued below (2.11), terms of the kind ~̇X · ~̇X in the NG action

can be treated as higher derivatives and we neglect them. The coupling of the phonon field

to the strings is also negligible to leading order. In this regime, the action reduces to

S ' 1

e2

∫
d4x

{
1

4
f2 +

1

2

[
ḃiḃi −

1

3

(
∇ibi

)2]}
−
∑
p

∫
dτdσ

[
λp
(
Āij∂τX

i∂σX
j + ai∂σX

i
p

)
+ γpB

2/3(∂σX)
]
, (3.13)

where γp = 61/3Fp (1) and we define

(∂σX) =
√
|gij |∂σXi

p∂σX
j
p . (3.14)

Notice that the phonon spectrum (2.6) to leading order is not affected by the presence of

vortices.
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4 Results of the EFT

4.1 Classical analysis

From the leading order action (3.13) the following equations of motion for the hydrophoton

and the strings are derived

− 1

e2
∇if ij =

∑
p

J jp ≡
∑
p

λp

∫
dσ ∂σX

j
p

δ3(xi −Xi
p)√

g
, (4.1)

λp

(
fik −B

√
gεijkẊ

j
p

)
∂σX

k
p = γpB

2/3|gij |
D

Dσ

[
∂σX

j

(∂σX)

]
. (4.2)

Eq. (4.1) is analogous to Ampère’s circuital law in magnetostatic, a vortex acting as an

electric current J ip sourcing the field f ij . Eq. (4.2) is the string equation of motion. Notice

that it is first order in time derivatives and implies that vortices move with drift velocity

| ~̇X| ∼ f/B ∼ B−1/3. The right-hand side arises from the NG action and it is proportional

to the covariant derivative of the line element D
Dσ

[
∂σXj

(∂σX)

]
; the left-hand side comes from

the minimal coupling to the gauge field.

As in section 2.2 the electrostatic problem required the net charge on the sphere to be

zero, the 3 + 1 dimensional magnetostatic problem defined by (4.1) and (4.2) requires zero

vorticity flux on every closed surface. To this aim, we only consider closed strings. This

point is perhaps more easily understood considering a vortex configuration in the scalar

description (2.1) [53]. In that language, this is a configuration where the value of the field

changes from π = 0 to π = 2πλ from below to above of a certain 2d space surface, where

λ ∈ Z (λ 6= 0) is the vorticity. A vortex is just the boundary of this surface. As S3 is a

compact manifold, the string must form a closed curve. In this picture it is also clear that

a closed vortex configuration cannot break into an open string.6 A similar reasoning can

be used in 2+1 dimensions to argue that the net electric charge on the sphere must vanish.

The energy and angular momentum associated to solutions of the EOMs are computed

from the stress energy tensor Tµν = 2√
g
δS
δgµν :

Tµν =
κ

H2/3

(
4HµσρH

σρ
ν + gµνH

2
)

+
∑
p

γpB
2/3

∫
dτdσ

δ4(xµ −Xµ
p )

√
g

√
|det(Gαβ)|Gαβ ∂αXσ

p ∂βX
ρ
p gσµgρν . (4.3)

The classical energy of the state is found from

E =
∆

R
=

3Q4/3

8π2/3c1/3R
+

1

4e2

∫
d3x
√
gf2 +

∑
p

γpB
2/3

∫
dσ(∂σX). (4.4)

The first term is the energy of the homogenous ground state. The second term is the energy

stored in the magnetostatic field fij created by the vortices. Finally, the last term is the

energy contribution from the tension and is proportional to the length of the string Lp.

6More formally, the surface described above is the object charged under the 2-form symmetry associated

to the current Jµνρ =
√
gεµνρσ∂

σχ ∝ Hµνρ/H
2/3 [54]; conservation of this current, associated to the winding

number of the Goldstone, forbids the breaking of a closed string.
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Eq. (4.1) gives the field ai in terms of the string current:

ai(x) = e2
∑
p

∫
d3x′Gij(x, x

′)J jp (x′), (4.5)

where Gij(x, x
′) is the photon propagator on S3. In appendix B it is shown that the photon

Green function on Sd takes the form

Gij′(x, x
′) = −

(
∂i∂j′u(x, x′)

)
F (u(x, x′)), u =

1

2
∆X2(x, x′) (4.6)

where ∆X2 is the chordal distance between two points in embedding space, and

F (u) =
Γ(d− 2)

(4π)
d
2 Γ
(
d
2

)
Rd−2

2F1

(
1, d− 2;

d

2
; 1− u

2R2

)
. (4.7)

Then the scaling dimension of the corresponding operator can be written as

∆ =αQ4/3+
Re2

2

∑
p,p′

∫
d3x
√
g

∫
d3x′

√
g′J jp (x)Gjk′(x,x

′)J k′p′ (x′)+
∑
p

γpRB
2/3Lp, (4.8)

where α = 3
8π2/3c1/3

. Notice the analogy with the structure of (2.14).

The angular momentum (in units of 1/R) of the corresponding state can be computed

similarly:

Jab =
RB

2e2

∫
d3x
√
g niabεijk

√
gf jk, (4.9)

where nab is the Killing vector corresponding to a rotation in the (Xa, Xb) plane. Using

Ampère’s law (4.1) and Stoke’s theorem, it is conveniently rewritten as

1

2
Jabεabcd = −RB

2

∑
p

λp

∫
dσp

[
Xp
c (∂σX

p
d)−Xp

d(∂σX
p
c )
]

= −RB
∑
p

λp

∫
dXp

c ∧ dX
p
d ,

(4.10)

where Xp
a are the vortex coordinates in the R4 embedding of S3. The last equation on the

right-hand side is a formal notation for the area enclosed by the vortex projection in the

(Xc, Xd) plane.

In the following we will study simple specific configurations.

4.2 Vortex rings

In nature, vortices often have a ring shape and move with a constant speed inversely

proportional to the radius [26]. It is hence natural to look for vortex ring solutions of

the EOMs (4.1) and (4.2). As we will see, a vortex ring generalizes the vortex-antivortex

configuration in figure 1.

The simplest configuration one can study is a slowly moving vortex ring with unit

negative charge λ = −1. We pick the gauge ξ = σ and consider a radius rR ≤ R ring

in the (X1, X2) plane in embedding space. The EOMs implies that the ring rotates with

constant drift velocity v in the (X3, X4) plane:

X2
1 (t, σ) +X2

2 (t, σ) = R2 sin2 η(t, σ) = R2r2 = const. φ(t, σ) = vt+ const. . (4.11)
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Figure 2. The vortex ring orbit in stereographic coordinates.

The precise value of v is fixed by eq. (4.1). From eq. (4.10) it follows that the only

nonvanishing component of the angular momentum is given by:

J34 = Qr2. (4.12)

In figure 2 the motion is depicted in stereographic coordinates, defined by the relation

(x, y, z) = 1
1+X1

(X3, X4, X2). Eq. (4.11) corresponds to a ring orbiting around the z axis;

as the angular momentum is increased, the ring size increases and its velocity decreases.

For r → 1 the surface embedded by the ring in the stereographic projection extends to

cover the whole plane and the vortex lies statically on the geodesic corresponding to the z

axis. Figure 2 qualitatively generalizes the 2 + 1 dimensional motion depicted in figure 1.

Using (4.8) we can calculate the energy of this configuration as:

E = αQ4/3/R+
e2R

2

∫∫
dξdξ′J i(ξ)Gij

(
x(ξ), x(ξ′)

)
J j(ξ′) + γB2/32πrR. (4.13)

The only nontrivial contribution arises from the second term, corresponding to the mag-

netostatic self-energy of the string. It diverges due to the short distance behaviour of the

hydrophoton propagator. We regulate the calculation working in d + 1 spacetime dimen-

sions, as explained in appendix C; the result is

E = αQ4/3/R+ e2πR

{
r

2π(3− d)
+
r
[
log
(
4πr2B2/3R2

)
+ 9

2 + 1
3 log 6− γE − 2ψ

(
3
2

)]
4π

− r

2π
log(r + 1)− 1

π
log(r + 1)

}
+ γB2/32πrR. (4.14)

Details of the computation are given in appendix C.1. There is a divergent piece for d→ 3

proportional to the vortex length, which renormalizes the string tension. The contribution

logarithmically enhanced by the cutoff ∼ e2r log
(
r2B2/3

)
can be seen as a consequence
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of the renormalization group running of γ induced by the hydrophoton [29]. Collecting

everything, the scaling dimension (4.8) for a vortex ring state reads

∆ = αQ4/3 + ∆V (Q, J34), (4.15)

where we isolated the vortex contribution to the energy:

∆V (Q, J) =
3

8α
Q1/6J1/2 log

(
J/Q1/3

)
− 3

4α
Q1/6J1/2 log

(
1 +

√
J/Q

)
− 3

2α
Q2/3 log

(
1 +

√
J/Q

)
+ γ̃Q1/6J1/2. (4.16)

Here γ̃ is a finite new coupling which absorbs all contributions proportional to r in (4.14).

As in (2.17), the leading contribution arises because of the classical running of the tension

induced by the magnetostatic self-energy and is given by the first term in (4.16). For

J � Q, the other contributions can be expanded in powers of the vortex length and to

leading order effectively scale as Q1/6J1/2. Physically, this is understood noticing that

the vortex energy density is set by e2 ∼ Q2/3, hence for short vortices the energy can be

estimated as the length times the energy density (neglecting the logarithmic running of the

tension): 2πrR × e2/3 ∼ Q1/6J1/2. However, as J → Q the functional dependence of the

second and third term in eq. (4.16) deviates from this expectation, as a consequence of the

vortex finite size.

As the ring radius is decreased to inverse cutoff length r → 1/(ΛR), corresponding

to J34 → Q1/3, the magnetostatic field f ∼ e2/(Rr) becomes of the same order of the

background field B and the vortex velocity approaches the relativistic regime. Hence

subleading contributions to (3.13) become unsuppressed and the EFT breaks down.

Eq. (4.15) can be identified as the minimal energy state at fixed angular momentum

in its regime of validity.

We now study states with two vortices, one laying on the (X1, X2) plane and the other

on the (X3, X4) plane in embedding space. Because of (4.10), these configurations are

associated to operators in mixed symmetric representations of the SO(4) group.

Consider first a radius R ring in the (X1, X2) plane interacting with a ring of arbitrary

size in the (X3, X4) plane. In this geometry, the interaction does not affect the equations

of motion and the solution takes a simple form

vortex 1 : X2
1 (t, σ1) +X2

2 (t, σ1) = R2, σ1 = ξ1;

vortex 2 : cos2 η2(t, σ2) = r2
2, ξ2(t, σ2) = v2t, σ2 = φ2.

(4.17)

Focussing on negative unit charge vortices λ1 = λ2 = −1, this configuration corresponds

to an operator in a mixed symmetric representation with spin given by

J34 = Q, J12 = Qr2
2. (4.18)

Since the electric currents J i sourced by the strings are orthogonal, the corresponding

scaling dimension is found analogously to (4.15):

∆ = αQ4/3 + ∆V (Q, J34) + ∆V (Q, J12). (4.19)

– 16 –



J
H
E
P
0
2
(
2
0
2
0
)
1
1
9

To leading order, a similar solution exists for 0 ≤ (1 − r2
1) � (RΛ)−2, hence for

0 ≤ Q− J34 � Q1/3. As before, the consistency of the EFT requires J12 � Q1/3.

In general, the mutual interaction affects non trivially the motion of the two vortex

rings. One can, however, identify the logarithmically enhanced contributions analogous

to the first term in (4.16) just from the free action. These indeed arise from the running

of the tension induced by the hydrophoton contribution to the vortex self-energy. For

Q1/3 � J12, J34 ≤ Q, the leading contribution to the energy reads:

∆ = αQ4/3 +
3

8α
Q1/6

[
J

1/2
34 log

(
J34/Q

1/3
)

+ J
1/2
12 log

(
J12/Q

1/3
)]
. (4.20)

This result holds as long as the minimal distance d between the two vortices is larger than

the inverse of the cutoff:

d2

R2
∼ (J12 + J34 −Q)2

J12J34
� 1

Q2/3
. (4.21)

4.3 Vortex crystals

Since the magnetostatic self-energy of a single vortex is proportional to λ2, strings with

|λ| ≥ 1 are energetically unfavored. Hence the minimal energy state for values of the angu-

lar momentum J34 � Q is made by n� 1 vortices. We then approximate the vortex distri-

bution with a continuous current density J i(x). The corresponding state is found minimiz-

ing the energy (4.4) at fixed angular momentum (4.9), giving the following density profile:

J ξ =
2

πR2

J34

Q
, J φ = J η = 0. (4.22)

The leading contribution to the energy comes from the magnetostatic field and reads

∆ = αQ4/3 +
3

4α

J2
34

Q4/3
. (4.23)

Physically, this state corresponds to a vortex crystal [47, 48, 55]. When J34 → Q4/3, the

magnetic field f approaches B, vortices become relativistic and the EFT breaks down.

Similarly, the ground state for Q � J34, J12 � Q4/3 is provided by a vortex crystal,

whose current density and energy are given by

J ξ =
2

πR2

J34

Q
, J φ =

2

πR2

J12

Q
, J η = 0, (4.24)

∆ = αQ4/3 +
3

4α

J2
34 + J2

12

Q4/3
. (4.25)

4.4 Quantization and Kelvin waves

Vortices in four dimensions are extended objects and can thus propagate Kelvin waves on

them [29]. The corresponding states are associated to primary operators in the CFT. To

study them, we consider a single string of vorticity λ = −1. It is convenient to parametrize

its coordinates via the following variables:

z(t, σ) = X1(t, σ) + iX2(t, σ) = R sin η(t, σ)eiξ(t,σ), (4.26)

w(t, σ) = X3(t, σ) + iX4(t, σ) = R cos η(t, σ)eiφ(t,σ). (4.27)
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These are related through the constraint |z|2 + |w|2 = 1. We pick the gauge ξ = σ and

t = τ . Integrating out explicitly the hydrophoton from eq. (3.13), we find the single vortex

action as

S1-vortex =

∫
dtdσ

[
i
B

2
w∗ẇ − γB2/3

√
|∂σz|2 + |∂σw|2

]
+
e2

4

∫
dtdσdσ′

(
∂σ∂σ′∆X

2(σ, σ′)
)
F

(
∆X2(σ, σ′)

2R2

)
, (4.28)

where F is given in (4.6). Eq. (4.28) can be seen as the (nonlocal) action of a complex

field w(t, σ) living on R × S1. It is manifestly invariant under the action of the unbroken

rotation generators J34, corresponding to rotations around the vortex w → eiαw, and J12,

corresponding to translations along the string σ → σ + α.

We expand for small fluctuations around the background w = 0, which describes a

radius R ring in the (X1, X2) plane with J34 = Q. The action to quadratic order reads:

S1-vortex '
∫
dtdσ

[
i
B

2
w∗ẇ − γB2/3 − γB2/3

2
|∂σw|2 +

γB2/3

2
|w|2

]
+ S

(2)
non-local, (4.29)

where S
(2)
non-local is found expanding the second line in (4.28). It follows that the vortex is

quantized as a standard non-relativistic field:

w(t, σ) =

√
2

B

∞∑
n=−∞

an
2π
e−iωnt+inσ, [an, a

†
m] = 2πδnm. (4.30)

As usual the an annihilate the vacuum an |0〉 = 0, and thus so does w(t, σ). The proper

frequencies ωn are computed in appendix C.2 and read

Rωn≡∆k(n) =
π(n2−1)

Q1/3

{
3

8α

[
logQ2/3−2ψ

(
n+1

2

)
−2γE−1−log64

]
+γ̃

}
. (4.31)

Notice that the n = 0 mode decreases the energy, while the n = ±1 modes have ω±1 = 0.

This can be understood from the expression of the angular momentum in terms of ladder

operators at order O(Q0). The rotations generated by J12 and J34 are linearly realized and

their generators are quadratic in terms of ladder operators:

J34 = Q−
∑
n

a†nan
2π

, J12 =
∑
n

n
a†nan
2π

. (4.32)

The string realizes nonlinearly the full rotation group. As a consequence, the broken

components of the angular momentum are linear in the n = ±1 annihilation and creation

operators:

J23 + J14 = −
√
Q

2π

(
a−1 + a†−1

)
, J23 − J14 =

√
Q

2π

(
a1 + a†1

)
,

J31 + J24 = i

√
Q

2π

(
a−1 − a†−1

)
, J31 − J24 = i

√
Q

2π

(
a1 − a†1

)
.

(4.33)
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Figure 3. A Kelvin wave in stereographic coordinates (x, y, z) = 1
1+X1

(X3, X4, X2).

From (4.32) we see that the n = 0 mode decreases J34 (and the radius of the vortex) by

one unit, hence it corresponds to the quantization of the classical ring solution discussed

in 4.2. Eq. (4.33) implies that the n = ±1 modes do not correspond to new states, but

describe rotations of the string orientation and therefore have vanishing frequency. In this

sense, their role is analogous to that of the J = 1 phonons in (2.6), describing descendants

of the ground state.

The modes with |n| ≥ 2 correspond to new solutions and are interpreted as Kelvin

waves propagating on the vortex; in the CFT they correspond to operators with the fol-

lowing quantum numbers7

J34 = Q− 1, J12 = n, ∆ = αQ4/3 + ∆V (Q,Q) + ∆k(n). (4.34)

As shown in figure 3, a Kelvin wave in stereographic coordinates takes the form of a

solenoid, trapping the magnetic field inside. The string undergoes a helical motion analo-

gous to the one of a wine opener.

Notice that Kelvin waves carry less energy than phonons with the same angular mo-

mentum (2.6). It follows that a state obtained acting on the vacuum as

(a†0)ma†n |0〉 ≡ |J34 = Q−m− 1, J12 = n〉 (4.35)

is the minimal energy state for the specified value of the angular momentum.

This description applies in the linear regime m+1=Q−J34�Q. When n=J12→Q1/3

higher derivative terms become unsuppressed and the EFT breaks.

4.5 Higher order corrections

Corrections arise from higher derivative terms we neglected in (3.13) and are suppressed

by powers of the cutoff scale (2.3). Following [32], here we comment on their form.

7In ∆ we neglect a ∼ Q−1/3 contribution from the vortex Casimir energy; this term does not depend on

J12 and can be thought as a subleading correction to ∆V .
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The first class of corrections was discussed in [10, 13] and arises considering the effect

of curvature terms in the superfluid and vortex action; these corrections are controlled by

the sphere radius and hence scale as 1/(ΛR)2 ∼ 1/Q2/3. They are also present in the

absence of vortices and provide the subleading terms in eq. (1.2).

Focus now on the single vortex state described in section 4.2. We find corrections

controlled by the vortex length L ∼
√
J34/Q, which hence scale as 1/(ΛL)2 ∼ Q1/3/J34

(we assume parity invariance, hence they depend only on L2). They arise from the terms

we neglected in the NG action to write (3.10) and are proportional to (∇ibi)/B, f2/B2

and ~̇X2. Higher derivatives of the string line element as well as the phonon contribution

to the energy (3.2) belong to the same class. Similarly, there are corrections of the form

Q1/3/J34, Q
1/3/J12 to eq. (4.19) for a two vortex state.

Notice that the subleading Q2/3 term in the ground state energy is bigger than the

vortex contribution (4.16) for Q1/3 � J34 � Q. The latter gives instead the leading

contribution for J34 ∼ Q. The vortex contribution is anyway functionally distinguished

from the ground state energy correction and is thus always calculable.

Let us now turn our attention to the Kelvin waves discussed in 4.4. The same cor-

rections discussed for a vortex ring exists in this case. Furthermore, for n � 1 higher

derivative corrections to the single vortex action (4.29) become important. As typical for

a non-relativistic field, these arise due to terms with two time derivatives, or, equivalently,

with four space derivatives (suppressed by an extra H−2/3 factor by Weyl invariance) and

scale as n2/Q2/3 = J2
12/Q

2/3.

Notice that the relative corrections to the ground state energy of the vortex are bigger

than the Kelvin wave energy (4.31) for J2
12/Q

1/3 . Q1/2/J
1/2
34 ; however, these corrections

are independent of J12, which enters only through (4.31).

Finally, the leading corrections to the energy of the vortex crystals states discussed

in 4.3 arise both from the phonon contribution to the energy, which is proportional to

(∇ibi)2/f2 ∼
(
Jab/Q

4/3
)2

, and from the free tension contribution, which gives Q/J correc-

tions using (4.22) or (4.24). Here Jab stands for both J34 and/or J12 depending on the state.

5 Correlators

We now turn our attention to the study of correlators. As in [32], the most natural

correlation function8 which can be studied corresponds to a current insertion within two

equal vortex states. In the EFT, this is determined through the following relations:

〈j0〉 =
Q

2π2R3
, 〈jφ〉 =

√
g

2π
fηξ, 〈jξ〉 = −

√
g

2π
fηφ. (5.1)

The hydrophoton field is obtained from (4.1), which, in analogy with Ampère’s law, can

be conveniently rewritten in integral form as

1

2

∮
C
dxiεijk

√
gf jk = −e2λenc, (5.2)

8To leading order, scalar insertions read as in the homogeneous phase [13].
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where λenc is the vorticity flux through the surface enclosed by the curve C. Using this

relation, eqs. (5.1) can be used to make nontrivial predictions about the OPE coefficients

of the theory.

Consider first the traceless symmetric state corresponding to a radius R vortex in the

(X1, X2) plane, which has J34 = Q and J12 = 0. For this state, eq. (5.1) reads:

〈j0〉 =
Q

2π2R3
, 〈jφ〉 =

e2

4π2R
, 〈jξ〉 = 0. (5.3)

The expectation value of a spin-1 parity even conserved operator in a traceless symmetric

state |(J, J), J34 = 2J, J12 = 0〉 is [56]:

〈(J, J), 2J, 0|j0(η, ξ, φ)|(J, J), 2J, 0〉 = R−3
2J∑
m=0

am sin2m η,

〈(J, J), 2J, 0|jφ(η, ξ, φ)|(J, J), 2J, 0〉 = R−3
2J∑
m=0

bm sin2m η,

〈(J, J), 2J, 0|jξ(η, ξ, φ)|(J, J), 2J, 0〉 = 0,

(5.4)

where am and bm are arbitrary theory dependent real coefficients, subject to the constraint∑
m bm = 0. Then the EFT gives

am =

{
Q

2π2 , if m = 0,

0, if 1 ≤ m� Q1/3;
bm =

{
3Q2/3

8π2α
, if m = 0,

0, if 1 ≤ m� Q1/3.
(5.5)

Predictions are made only for m� Q1/3 since the EFT breaks for distances of order of the

inverse cutoff (2.3) from the vortex, which lies at η = π/2.9

A similar analysis can be done for the vortex crystal states in (4.23) and (4.25). Con-

sider first the traceless symmetric case Q � J34 � Q4/3 and J12 = 0. Using (4.22),

eq. (5.1) reads

〈j0〉 =
Q

2π2R3
, 〈jφ〉 =

e2

2π2R

J

Q
cos2 η, 〈jξ〉 = 0. (5.6)

This expression holds on scales larger than the vortex separation ∼ 1/
√
J ∼

√
Q/J , on

which the continuous approximation (4.22) can be used. It is then convenient to rewrite

eq. (5.4) in Fourier basis

〈(J, J), 2J, 0|j0(η, ξ, φ)|(J, J), 2J, 0〉 = R−3
2J∑
m=0

ãm cos (2mη) ,

〈(J, J), 2J, 0|jφ(η, ξ, φ)|(J, J), 2J, 0〉 = R−3
2J∑
m=0

b̃m cos (2mη) .

(5.7)

9To appreciate this, it is useful to write sin2m η ≈ exp
(
−mδη2

)
for m� 1 and δη = π/2−η � 1, which

is exponentially suppressed away from the vortex core for m & Q1/3.
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Cutting off the sums at m�
√
J , we obtain the following predictions

ãm =

{
Q

2π2 , if m = 0,

0, if 1 ≤ m�
√
J/Q;

b̃m =

 3
8π2α

J34
Q1/3 , if m = 0, 1,

0, if 2 ≤ m�
√
J/Q.

(5.8)

Analogously, for the state (4.25) with Q� J12, J34 � Q4/3, the EFT gives

〈j0〉 =
Q

2π2R3
, 〈jφ〉 =

e2

2π2R

J34

Q
cos2 η, 〈jξ〉 =

e2

2π2R

J12

Q
sin2 η. (5.9)

Without loss of generality, we assume J12 ≤ J34. The three-point function of a spin-1

conserved operator in a mixed symmetric state |(J, J̄), J34, J12〉, where J34 and J12 are

related to (J, J̄) as in (1.1), can be conveniently written as [57, 58]:

〈(J, J̄), J34, J12|j0(η, ξ, φ)|(J, J̄), J34, J12〉 = R−3

2|J−J̄ |∑
m=0

am cos(2mη),

〈(J, J̄), J34, J12|jφ(η, ξ, φ)|(J, J̄), J34, J12〉 = R−3

2|J−J̄ |+1∑
m=0

bm cos(2mη),

〈(J, J̄), J34, J12|jξ(η, ξ, φ)|(J, J̄), J34, J12〉 = R−3

2|J−J̄ |+1∑
m=0

cm cos(2mη).

(5.10)

Here am, bm and cm are real coefficients, which satisfy the constraints
∑

m(−1)mbm =∑
m cm = 0 and b2J+1 = −c2J+1. We then obtain the following results for the OPE

coefficients:

am =

{
Q

2π2 , if m = 0,

0, if 1 ≤ m�
√
J12/Q;

bm =

 3
8π2α

J34
Q1/3 , if m = 0, 1,

0, if 2 ≤ m�
√
J12/Q;

cm =


(−1)m3

8π2α
J12
Q1/3 , if m = 0, 1,

0, if 2 ≤ m�
√
J12/Q.

(5.11)

6 Vortices in arbitrary dimensions

Based on the considerations so far, as well as on the previous results of [32], it is not hard

to understand the qualitative feature of the vortex EFT in higher spacetime dimensions.

We give some brief comments here for completeness. We focus on the derivation of the

scaling dimensions for traceless symmetric operators.

We first need to construct the dual of the d+ 1 dimensional Lagrangian (2.1) in terms

of a d− 1 form gauge field A. Proceeding as in section 3.1, this reads

L = −κ |H ·H|
d+1
2d , H = dA. (6.1)

As in (3.3), the gauge and the scalar description are related by ∗H ∝ j, where ∗ stands

for the Hodge dual. The action (6.1) can be expanded to quadratic order in terms of a
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non-propagating hydrophoton d− 2 gauge form and a longitudinal vector corresponding to

the phonon.

Vortices are d−1 membranes which couple to the gauge field A through a Kalb Ramond

like interaction. Calling Xµ
p (σ̄) their line elements, where σ̄ = (τ, σ1, . . .) parametrizes the

membrane coordinates, this coupling reads

SKR = −
∑
p

λp

∫
dd−1σ̄Aµ1µ2...µd−1

∂τX
µ1
p ∂σ1X

µ2
p . . . ∂σd−2

X
µd−1
p . (6.2)

One can similarly write the Nambu-Goto like action for the membrane [59]; we do not

report here the expression since its detailed form will not be needed in the following.

One can now proceed as in section 4. From the energy momentum tensor, one finds

that the leading contribution to the vortex energy comes from the hydrophoton gauge field.

Generalizing eqs. (2.16) and (4.10), the angular momentum is proportional to the volume

enclosed by the vortex in embedding coordinates.

For Q1/d � J ≤ Q, the minimal energy state corresponds to a single spherical vortex

in embedding space. The leading contribution to the vortex energy arises from the running

of the tension, induced by the hydrophoton contribution to the self-energy as in (4.14).

This can be computed using a flat space approximation for the gauge field Green function

and a UV hard cutoff Λ ∼ Q1/d/R to regulate the result:

∆ = ∆0(Q) +
d

2α(d+ 1)
J
d−2
d−1Q

1
d(d−1) log

(
J/Q

1
d

)
, Q1/d � J ≤ Q, (6.3)

where ∆0(Q) is given by (2.4). We expect d dependent corrections of order J
d−2
d−1Q

1
d(d−1)

to (6.3), similarly to (4.15); these contributions however will not be logarithmically en-

hanced by the cutoff.

As in section 4.3, for Q� J � Q
d+1
d we can identify the minimal energy state as a vor-

tex crystal. Following the same steps which lead to (4.23), we find the energy of this state:

∆ = ∆0(Q) +
d

4α

J2

Q
d+1
d

, Q� J � Q
d+1
d . (6.4)

Eqs. (6.3) and (6.4) match the results obtained in [32] and in this paper for d = 2, 3.

7 Conclusions and future directions

Condensed matter phases often admit a simple effective description [22]. In CFTs, one can

take advantage of this using the state/operator correspondence to study CFT data at large

quantum numbers. In this work, these ideas were used to compute the scaling dimensions of

operators of large internal charge and spin in a U(1) invariant CFT4. The results obtained

for traceless symmetric operators can be seen as a generalization of those obtained in

CFT3 [32]; however the study of operators in mixed symmetric representations explored

qualitatively distinct regimes, such as Kelvin wave propagation on a string (section 4.4).

We also provided predictions for correlators of the U(1) current in between vortex states in
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section 5 and generalized the predictions for the scaling dimensions of traceless symmetric

operators to arbitrary spacetime dimensions in eqs. (6.3) and (6.4).

The most direct extension of this work would be a detailed analysis of higher order

corrections, both in three and four dimensions. In particular, a refinement of the continuum

approximation used in section 4.3 might allow for the study of collective excitations in

the vortex crystal phase, corresponding to new CFT operators, possibly similar to the

Tkachenko mode studied in [47, 48].

Superfluids and vortices are ubiquitous in physics. In the high energy physics liter-

ature, they are mostly studied in connection with the large density phase of QCD [60].

Neglecting the masses of the three lightest quarks, the superfluid modes are associated

with the breaking of the baryon number U(1)B, the strangeness U(1)S or the approximate

axial symmetry10 U(1)A. All other degrees of freedom are generically gapped but for a

linear combination of the eighth gluon and the photon. For all of the superfluid modes

vortices may arise [62] and they are indeed expected to exist in neutron stars [63]. The

physics of the U(1)B and the U(1)S vortices, which are electrically neutral, is analogous

to the one studied in this paper and in general in [29]. The physics of the U(1)A vortices

however entails some new features. Indeed the slight breaking of the symmetry implies

the existence of (very fuzzy) domain walls surrounded by the string [64]. Furthermore,

the U(1)A Goldstone may interact with the gauge fields via a Wess-Zumino-Witten term.

Perhaps, some of these phenomena may be analyzed extending the EFT formalism of [29]

used in this paper (see also [53] for interesting ideas in this direction).

Within the exploration of the superfluid phase of CFTs [10, 13–20], the non-Abelian

case still leaves some open questions. As argued in [13], the basic prediction for the scaling

dimension of the lightest charged operator is insensitive to the non-Abelian nature of the

symmetry group, which instead manifests itself via the existence of the so-called gapped

Goldstones [65, 66]. Massive Goldstones are crucially needed to close the current algebra

of the non-Abelian group, like standard Goldstones, but at the same time have a fixed gap

of order cutoff dictated by the symmetry. Their role in the large charge sector of CFTs

and in more general finite density QFTs deserves further investigation.

Most of the existing results for large charge operators in CFTs are derived under the

assumption that the CFT admits a superfluid phase. It is hence important to check whether

this assumption applies in known theories. So far, most computations focussed on the pre-

diction for the scaling dimension of the lightest charged operator. This has been verified

in Monte-Carlo simulations of the O(2) [67] and O(4) [68] model and perturbatively for

Monopole operators [69–73], to order O(N0) in the CPN model [74] and at leading order

in the number of flavors in QED3 and the gauged Gross-Neveu model [75]. Relatedly, large

charge states have been studied in AdS/CFT in the context of holographic superconduc-

tors [76–78]. We are currently addressing similar questions within the ε-expansion [79],

which allows for extensive checks of the EFT predictions. Perhaps, the techniques ex-

plored in these works might also find application in a different context, such as the study

of processes with many external legs within the Standard Model [80–83].

10At high density, the effect of instantons breaking the U(1)A are suppressed [61].
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Despite their generality, superfluids are not the only possible description for large

charge states in CFT. For instance, if one assumes the charge Q to be unbroken, a natural

phase11 which might describe the CFT is a Fermi liquid [86]. Different descriptions are also

possible and are expected to apply in the presence of moduli spaces, which naturally allow

for other light degrees of freedom different than the Goldstone mode. This is the case for

free massless theories and N = 2 superconformal field theories, where the large R-charge

expansion is organized differently [87–89]. In [90, 91] the possibility of a semiclassical but

inhomogeneous phase in the O(4) model was explored.

In [92], the question of how to find solutions to the crossing equations at large charge

was addressed in connection with the existence of a macroscopic limit of correlators [93].

However, it remains an open question whether one can relate explicitly the large charge

sector of CFTs with the spectrum of light operators. Perhaps relatedly, a bootstrap analysis

recently connected large scaling dimensions tails of weighted spectral density of primary

operators with light operators exchanged in the dual channel [94].

Finally, the predictions of analyticity and the existence of a perturbative expansion

for large internal quantum numbers are reminiscent of the bootstrap results for large spin

operators [7, 8, 33–41]. The physical picture behind those results is particularly clear in the

dual AdS space12 [8, 33], where double-trace operators are associated to two widely sepa-

rated objects. Because of the AdS geometry, these only interact weakly via the exchange

of highly off-shell modes. A universal EFT description might exist in this case as well.
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A Vortices with half integer spin in 2+1 dimensions

In this section, we provide some details on vortices with half-integer spin, discussed in

section 2.2. To this aim we modify the action (2.11) following the approach of [49, 50].

In a parity invariant setting, an half integer spin particle at rest in 2 + 1 dimensions

can be in two different states. To add such a discrete multiplicity of states it is natural

to use a Grassmanian field living on the worldline, transforming covariantly under the

unbroken rotations.13 To do so in a covariant way, we consider a Grassmanian 3-vector

ξµp (τ) orthogonal to the particle velocity: ξµp gµνẊ
ν
p = 0. Here p labels the different vortices.

Neglecting interactions for the moment, the free reparametrization invariant action for one

11If this is consistent with conformal invariance [84, 85].
12A similar picture was proposed in [95], with no reference to the gravity dual.
13The worldline action breaks spontaneously boosts, see appnedix D.
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such variable reads:

S
(p)
ξ

∣∣
free

= − i
2

∫
dτ

[
ξνpgµν

(
D

Dτ
ξµp

)
+ λp

(
Ẋµ
p gµνξ

ν
p

)]
, (A.1)

where λp is a Grassmanian Lagrange multiplier.

The Lagrangian in eq. (A.1) was first studied in [49],14 where it was proven to correctly

describe a parity-invariant Dirac particle. We shall not repeat the full analysis here, but it

is useful to build some intuition focussing the non-relativistic limit of (A.1) in flat space.

Working in the physical gauge X0
p = t, the constraint ξµp ηµνẊ

ν
p = 0 implies ξ0

p ' 0 and

we obtain

S
(p)
ξ

∣∣
free
' i

2

∫
dτξipδij ξ̇

j
p . (A.2)

Quantizing the constrained system we get {ξip, ξ
j
p} = −δij [50], from which we can identify

ξip = iσi/
√

2 (i = 1, 2) and the spin is the conserved operator s12
p = −i/2[ξ1

p , ξ
2
p ] = −σ3/2.

The two eigenstates of s12
p describe the possible spin orientations for a particle at rest.

Let us now consider the possible interaction terms which can be introduced in (A.1).

Considering that the action shoud be quadratic in ξµp , that classically ξp · ξp = 0 and that

we work at leading order in the particle velocities, the leading interaction term is given by

i

2

gp√
2

∫
dτ
√
Ẋµ
p gµνẊν

p

Fµνξ
µ
p ξνp√

F/
√

2
, (A.3)

which can be interpreted as the relativistic version of the Pauli interaction [52]. The powers

of F are dictated by Weyl invariance and the dimensionless coupling gp can be interpreted as

the magnetic moment of the particle. We then conclude that, in order to describe fermionic

vortices with half-integer spin, we need to add to the action (2.11) the following term

∑
p

S
(p)
ξ = − i

2

∑
p

∫
dτ

ξνpgµν ( D

Dτ
ξµp

)
+ λp

(
Ẋµ
p gµνξ

ν
p

)
− gp√

2

√
Ẋµ
p gµνẊν

p

Fµνξ
µ
p ξνp√

F/
√

2

 .
(A.4)

To study the model given by (2.11)+(A.4), it is useful to integrate out the Coulomb

field A0(x) and notice that to leading order in the velocities ξ0
p ' 0. It is further convenient

to introduce a Grassmanian vector in embedding space as

ξap =
dXa

p

dxip
ξip,

~Xp · ~ξp = 0 , (A.5)

where ~Xp is the particle position in embedding coordinates. Then the effective action for

the vortices reads

S '
∫
dt

{∑
p

~A · ~̇Xp +
e2

8π

∑
p,r

qpqr log
(
~Xp − ~Xr

)2

+
i

2

∑
p

[
~ξp · ~̇ξp −

gp√
2

√
BεabcX

a
p ξ

b
pξ
c
p

]}
(A.6)

14The authors of [49] consider an additional redundant variable ξ5; eq. (A.1) coincides with their eq. (3.3)

in the gauge ξ5 = 0.
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where ~A is the potential for a magnetic monopole [96]. We neglected fluctuations of Ai and

the coupling between the electric field and ~ξp to leading order. The first two terms were

studied in [32]. Each particle gives both an orbital and a spin contribution to the angular

momentum:

~J =
∑
p

(
~Lp + ~sp

)
, Lap = −Q

2
qpX

a
p , sap = − i

2
εabcξ

b
pξ
c
p, (A.7)

where, upon quantization, [Lap, L
b
p] = iεabcL

c
p and [sap, s

b
p] = iεabcs

c
p, with ~sp · ~sp = 3/4.

Notice that only ~J is conserved, while the orbital and the spin part alone are not, due to

the interaction of the spin with the magnetic monopole field. The Hamiltonian is

H = const +
e2

4π
log ~L2 +

∑
p

gp
qp

~Lp · ~sp
R
√
Q
. (A.8)

Consider finally a semiclassical state made of a unit charge vortex-antivortex pair of the

kind considered around eq. (2.17). We assume that both vortices have the same magnetic

moment g > 0. For such a state the spin contribution to the angular momentum is negligble:
~J ' ~L = Q∆ ~X. To compute the energy of this state we use 〈~Lp · ~sp〉 ' ~Lclass.

p · 〈~sp〉, where
~Lclass.
p is obtained solving the classical equations of motion at fixed angular momentum. By

properly choosing the spin orientation of the particles to minimize the energy, we obtain

∆ = ∆0(Q) +

√
Q

3α
log

J√
Q

+ 2γ̃
√
Q− g

2

J√
Q
,

√
Q� J ≤ Q , (A.9)

which differs by the prediction for two spinless vortices in eq. (2.17) only by the last term.

B Photon propagator on the sphere

Here we obtain the photon propagator on a d dimensional sphere following the simple

method15 of [98, 99]. In this section we set R = 1.

Consider the action of a massless vector field coupled to a conserved current Jµ (in

Euclidean signature):

S =

∫
ddx
√
g

(
1

4
fµνf

µν − aµJµ
)
, fµν = ∂µaν − ∂νaµ. (B.1)

The gauge field on the equations of motion is given by

aµ(x) =

∫
ddx′

√
g′Gµν′(x, x

′)Jν
′
(x′), (B.2)

where Gµν′(x, x
′) satisfies the equation

∇µ
(
∂µGνν′(x, x

′)− ∂νGµν′(x, x′)
)

= −gνν′(x)
δ(x− x′)√

g′
+ ∂ν′Λν(x, x′). (B.3)

15A similar derivation in 4d de Sitter can be found in [97].
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Here Λν is a pure gauge term which drops from physical observables; primed and unm-

primed indices refer, respectively, to the points x and x′.

Let us define the following biscalar

u =
1

2
(X −X ′)2, (B.4)

where (X −X ′)2 is the chordal distance in embedding coordinates. Given the isometries

of the sphere, it is possible to parametrize the propagator as

Gνν′(x, x
′) = − (∂ν∂ν′u)F (u) + ∂ν∂ν′S(u). (B.5)

The last term is gauge dependent and drops from eq. (B.2).

The following properties hold:

1. ∇µ∂µu = d(1− u),

2. gµν∂µu∂νu = u(2− u),

3. ∇µ∂νu = gµν(1− u),

4. (∇µu)(∇µ∂ν′u) = (1− u)∂ν′u,

5. (∇µu)(∇µ∂ν∂ν′u) = −∂νu∂ν′u.

These can be explicitly verified in stereographic coordinates, for instance. It follows

∇µ
(
∂µGνν′(x, x

′)− ∂νGµν′(x, x′)
)

= − (∂ν∂ν′u)
[
u(2− u)F ′′ + (d− 1)(1− u)F ′

]
+ (∂νu∂ν′u)

[
(1− u)F ′′ + (1− d)F ′

]
. (B.6)

By symmetry, we can write Λν(x, x′) = (∂νu)Λ(u). Then for x 6= x′ (B.3) gives two

equations:

u(2− u)F ′′ + (d− 1)(1− u)F ′ = −Λ, (B.7)

(1− u)F ′′ − (d− 1)F ′ = Λ′. (B.8)

We can integrate the second and plug the result in the first to obtain

(2− u)uF ′′(u) + d(1− u)F ′(u)− (d− 2)F (u) = 0. (B.9)

This is just Klein Gordon equation for a scalar field of mass m2 = d−2 on Sd. The solution

is fixed requiring a power low singularity for u → 0 and regularity at the antipodal point

u→ 2 [100]:

F (u) =
Γ(d− 2)

(4π)
d
2 Γ
(
d
2

) 2F1

(
1, d− 2;

d

2
; 1− u

2

)
, d > 2. (B.10)

The normalization is determined matching the short distance limit with the flat space

propagator. Plugging in (B.5), we get eq. (4.6) in the main text.
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C Vortex energy in dimensional regularization

To regulate the computation of the magnetostatic energy, it is convenient to work in d+ 1

spacetime dimensions. It is natural to modify the Lagrangian (3.2) in a way which preserves

Weyl invariance:

L = −κH(d+1)/3. (C.1)

The definition of H in terms of the two-form field Aµν here is unchanged. Notice that

working in arbitrary d with a 2-form field we loose the duality with a shift invariant scalar,

hence this regularization breaks U(1) invariance at intermediate steps in the calculation.16

A more responsible approach might be to promote Aµν to a d − 2 form field, preserving

Weyl invariance of the action. An investigation of this issue might be helpful in expanding

the result of this paper to subleading orders.

Expanding the action (C.1) to quadratic order gives

Lfluct =
1

4e2(d)
fijf

ij +
1

2e2(d)

[
ḃiḃi −

(d− 3)

3
(∇ibi)2

]
, (C.2)

where we defined the electric coupling in d space dimensions as

e2(d) =

(√
6B
)2− d+1

3

2(d+ 1)κ
= e2

[
1− (d− 3)

(
logB

1
3 +

1

4
+

1

6
log 6

)
+O

(
(d− 3)2

)]
. (C.3)

The NG action discussed in section 3.2 is unchanged in d dimensions.

C.1 Vortex ring self-energy

Consider a single vortex moving on a trajectory given by (4.11). We want to compute the

self-energy contribution due to the hydrophoton, i.e. the second term in eq. (4.13). In Hopf

coordinates (1.13) and in dimensional regularization, it reads:

Emag =
e2(d)

2
R2

∫∫
dξdξ′Gξξ

(
(η, ξ, φ); (η, ξ′, φ)

)
= πRe2(d)R3−dI(r, d), (C.4)

where we isolated the integral

I(r, d) = r2 Γ(d− 2)

(4π)d/2Γ
(
d
2

) ∫ 2π

0
dξ cos(ξ) 2F1

(
1, d− 2;

d

2
; 1− 1

2
r2(1− cos ξ)

)
. (C.5)

In d = 3, the integral is logarithmically divergent for ξ → 0, corresponding to the interaction

of an infinitesimal line element with itself.

Setting 1
2(1− cos ξ) = y in (C.5), we get

I(r, d) = 2r2 Γ(d− 2)

(4π)d/2Γ
(
d
2

) ∫ 1

0
dy

(1− 2y)√
(1− y)y

2F1

(
1, d− 2;

d

2
; 1− r2y

)
. (C.6)

16Conversely, a cutoff approach as in [32] breaks Weyl invariance.
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The divergent part comes from the first term in the expansion of the hypergeometric

function when the argument goes to one:

2F1 (a, b; c; 1− z)
z→0−−−→ 1

za+b−c
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
, a+ b > c. (C.7)

We separate explicitly this contribution and recast the integral as:

I(r, d) = Idiv(r, d) + Ireg(r, d), (C.8)

where the divergent piece is

Idiv(r, d) = 2r2 Γ
(
d
2 − 1

)
(4π)d/2

∫ 1

0
dy

(1− 2y)√
(1− y)y

(
1

r2y

) d−2
2

=
r

2π(3− d)
+
r
[
log
(
4πr2

)
− γE − 2ψ (3/2)

]
4π

+O ((3− d)) ,

(C.9)

and the regular part can be evaluated directly in d = 3, where it reads

Ireg(r) ≡ Ireg(r, 3) =
r

2π2

∫ 1

0
dy

(1− 2y)

y
√

1− y

arcsin
(√

1− r2y
)

√
1− r2y

− π

2

 . (C.10)

To compute the latter, it is convenient to use the following expansion

arcsin
(√

1− x2
)

√
1− x2

=

∞∑
m=0

−(−2)m+1Γ
(
m+3

2

)2
(m+ 1)2

xm

m!
, 0 ≤ x < 1. (C.11)

Interchanging sum and integral, the regular part gives

Ireg(r) =
r2

4π2

∞∑
m=1

(−1)m+12π(m− 1)rm−1

m(m+ 1)
=
r

π
− r

2π
log(r + 1)− 1

π
log(r + 1). (C.12)

Collecting everything and adding the tension contribution, we arrive at (4.14).

C.2 Kelvin waves frequency

The EOMs which derive from (4.29) give the oscillation frequency of Kelvin waves as

1

2
Bωn = γ

πB2/3

R2

(
n2 − 1

)
+

2πe2(d)R3−d

R2
δωIn, (C.13)

where the second term comes from the nonlocal piece of the action and is written in terms

of the following integral:

δωIn =
1

2

∫
dσ
{ [
n2 cos(nσ)− cosσ

]
F (1− cosσ)

+
[
cos2 σ − cos(nσ) cosσ

]
F ′(1− cosσ)

}
. (C.14)
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Let us sketch the evaluation of (C.14). Changing variables as before, we write δωIn as the

sum of the following two contributions:

I1(n) =
Γ(d− 2)

(4π)d/2Γ(d/2)

∫ 1

0

dy√
y(1− y)

[
n2Tn(1− 2y)− (1− 2y)

]
2F1(1, d− 2; d/2; 1− y),

(C.15)

I2(n) =
Γ(d− 1)/2

(4π)d/2Γ (d/2 + 1)

×
∫ 1

0

dy(1− 2y)√
y(1− y)

[Tn(1− 2y)− (1− 2y)] 2F1(2, d− 1; d/2 + 1; 1− y). (C.16)

Here Tn(x) = cos (n arccos(x)) is a Chebyshev polynomial. The divergent contributions

are identified from the leading term of the Hypergeometric expansion (C.7) and can be

evaluated using ∫ 1

0
dy
Tn(1− 2y)√
y(1− y)

ym−
1
2 =

√
πΓ(m)

(
1
2 −m

)
n

Γ
(
m+ n+ 1

2

) . (C.17)

To evaluate the regular parts, we use the following results:

λn≡
∫ 1

0
dy
Tn(1−2y)√
y(1−y)

[
arcsin

(√
1−y

)
√
y
√

1−y
− π

2
√
y

]

=
π

2

[
ψ
(n

2
+1
)

+2ψ

(
n+

1

2

)
−ψ

(
n+1

2

)
−2ψ (n+1)

]
,

(C.18)

ρn≡
∫ 1

0
dy

1−2y√
y(1−y)

Tn(1−2y)

[
2F1

(
2,2;

5

2
;1−y

)
− 3π

8y3/2
+

3π

16y1/2

]
=

3

2
π

{(
n2+1

)[
ψ

(
n−1

2

)
−ψ

(
n− 1

2

)
+log2

]
+

4n4+6n2+3n−1

4n3−4n2−n+1
+

3

8

}
.

(C.19)

Using Mathematica we computed these integrals explicitly for fixed integer values of n

and identified their functional form; the result was then verified numerically and using

the n → ∞ asymptotic expansion of the results (C.18) and (C.19). This indeed can be

obtained explicitly truncating the series expansion of the Hypergeometric functions in the

integrals and using (C.17). The regular contributions finally read

Ireg
1 (n) =

1

4π2

(
n2λn − λ1

)
, (C.20)

Ireg
2 (n) =

1

12π2
(ρn − ρ1)− 1

64π

∫ 1

0
dy

(1− 2y) [Tn(1− 2y)− (1− 2y)]

y
√

(1− y)

=
1

12π2
(ρn − ρ1) +

3ψ
(
n+ 1

2

)
+ 3γE − 4 + log(64)− 6

4n2−1

96π
.

(C.21)

The second contribution in (C.21) arises since we subtracted the O
(
1/
√
y
)

term in the ex-

pansion of the Hypergeometric function from the first piece, in order to apply (C.19). Col-

lecting everything and expanding for d→ 3, we find the following remarkably simple result:

δωIn =
n2 − 1

8π(3− d)
+

(
n2 − 1

) [
log π − 2ψ

(
n+1

2

)
− γE − 1

]
16π

. (C.22)

Eq. (4.31) then follows.
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D Nambu-Goto action from the coset construction

In [13], it was argued that two charged scalar operators insertions in d + 1 dimensions at

x = 0 and x =∞ induce a specific symmetry breaking pattern for the leading trajectory in

the path integral. A similar logic can be applied when the operators have also large spin J .

As in the scalar case, translations Pµ, special conformal transformations Kµ and dilatation

D are broken, with the combination D+µQ left unbroken. Assuming the operator insertion

to be polarized in the (x1, x2) plane, the Lorentz generators J1p, J2p with p, q = 0, 3, . . .

must necessarily be broken. A vortex corresponds to the regime where it is energetically

favorable for the system to still be in an almost homogeneous state, rotations being broken

by a localized region of size 1/j0 ∼ R/Q1/d in which the superfluid description breaks.

This region naturally extends from 0 to ∞ along the directions orthogonal to the spin

polarization, corresponding hence to a d − 1 dimensional membrane. In this regime, J12

parametrizes rotation around the vortex and it is thus unbroken. We then identify the

symmetry breaking pattern corresponding to a vortex as:{
D̄ = D + µQ, J12, Jpq unbroken,

D, Pµ,Kµ, Jmp broken.
(D.1)

where we introduced the set of indices m,n = 1, 2 and p, q = 0, 3, . . ..

In order to apply the coset construction in a curved manifold, it is convenient to think

in terms of the generators acting in a local chart, denoted {D̂, P̂µ, K̂µ, Ĵµν}. These are

naturally associated with those acting on the plane considering the formal R → ∞ limit

on R× Sd [13]:

D = −RP̂0, Jij = Ĵij , J0i = −RP̂i, P0 = P̂0 +
D̂

R
+

K̂0

2R2
,

K0 =
1

2
K̂0 −RD̂ +R2P̂0, Pi = P̂0 +

Ĵ0i

R
− K̂i

2R2
, Ki =

1

2
K̂i +RĴ0i −R2P̂i.

(D.2)

We then rewrite the symmetry breaking pattern (D.1) in terms of the hatted generators.

Focussing on 2 + 1 and 3 + 1 dimensions, we get

2 + 1 :

{̂̄P 0 = P̂0 + µQ, Ĵ12 unbroken,

P̂i, Ĵ0i, K̂µ, Q̂ broken;
3 + 1 :

{̂̄P p = P̂p + µδ0
p QĴ12 unbroken,

P̂m, Ĵ0i, Ĵn3, K̂µ, Q̂ broken.

(D.3)

From (D.3) we can construct the Nambu-Goto action for the vortex via the coset construc-

tion [101, 102], applied to the case of a membrane [59].

D.1 2+1 dimensions

Following [13], we gauge all spacetime symmetries and specify the manifold only at the

end of computations. We henceforth do not consider special conformal transformations

anymore and work with a covariant derivative in terms of three gauge connections:

Dµ = ∂µ + iẽaµPa +
i

2
ωabµ Jab + iAµD. (D.4)
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Inices a, b = 0, 1, . . . label the gauged Poincaré generators and should not be confused

with spacetime indices µ, ν, . . . [103, 104]. From (D.1), the coset of a vortex line in 2 + 1

dimensions is formally identical to the conformal superfluid one

Ω = eiy
aP̄aeiσDeiη

iJ0ieiπQ = eiy
aPaeiσDeiη

iJ0ieiχQ, χ = µt+ π. (D.5)

The Maurer-Cartan (MC) one form reads

Ω−1DµΩ = iEaµ

(
P̄a +∇aσD +∇aπQ+∇aηiJ0i +

1

2
Ωij
a Jij

)
; (D.6)

where

Eaµ = e−σebµΛ a
b , ∇aπ = eσeµbΛba∂µχ− µδ0

a, ∇aσ = eσeµbΛba (∂µσ +Aµ) . (D.7)

Here eaµ transforms as a vierbein. We introduced the Lorentz matrix (e−iη
iJ0i)ab = Λ a

b .

The expressions of ∇aηi and Ωij
a are not needed here. One can also construct curvature

invariants as

Ω−1[Dµ, Dν ]Ω = iEaµE
b
ν

(
T cabPc +

1

2
RcdabJcd +AabD

)
. (D.8)

Explicit expressions for these can be found in [13]. Finally, one needs to consider the

projection of the MC one form onto the vortex world-line xµ(λ) [59]:

ẋµΩ−1DµΩ = iE

(
P0 +∇yiPi +∇σD +∇χQ+∇ηiJ0i +

1

2
ΩijJij

)
, (D.9)

where

E = ẋµe−σebµΛ 0
b , ∇yi = E−1ẋµe−σebµΛ i

b ,

∇χ = E−1ẋµ∂µχ, ∇σ = E−1ẋµ (∂µσ +Aµ) .
(D.10)

We can reduce the number of independent Goldstones setting to zero one or more of the

invariants in (D.6), (D.8) or (D.9). When an algebraic solution exists, these conditions are

called Inverse Higgs Constraints (IHCs) [105, 106]. In this case, the same IHCs which lead

to the superfluid action are imposed:

T abc = 0, ∇0π = 0, ∇iπ = 0, ∇aσ = 0. (D.11)

The first is a torsion free condition and selects the spin one-connection ωabµ compatible

with the metric ĝµν = e−2σgµν . The others are used to express Aµ, σ and ηi in terms of

the other fields:

Aµ = −∂µσ, µe−σ = (eµaeνa∂µχ∂νχ)1/2,
ηi

η
tanh η = −

eµi ∂µχ

eµ0∂µχ
, (D.12)

where η ≡
√
ηiηi and (∂χ) = (eaµeνa∂µχ∂νχ)1/2.

We can now construct the leading order invariants in the world-line. Noticing that

∇χ = µ and ∇σ = 0, these are constructed out of the einbein E and the covariant

derivative ∇yi as:

µE = ẋµ∂µχ, ∇yi∇yi = 1− (∂χ)2ẋµẋµ
(ẋµ∂µχ)2

. (D.13)
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The most general NG action is then written in terms of an arbitrary function:

S = µ

∫
dλE f

(
∇yi∇yi

)
=

∫
dt
√
ẋµẋµ(∂χ)F

[
(ẋµ∂µχ)2

(∂χ)2ẋµẋµ

]
. (D.14)

This is precisely the action used in [32].

D.2 3+1 dimensions

From (D.3), the coset is written as

Ω = eiy
aPaeiσDeiη

iJ0ieiξ
nJn3eiχQ. (D.15)

We use indices m,n = 1, 2 and p, q = 0, 3. One can compute the MC one form as before

Ω−1DµΩ = iEaµ
(
Pa +∇aσD +∇aχQ+∇aηiJ0i +∇aξnJn3 + Ω12

a J12

)
; (D.16)

with

Eaµ = e−σecµΛ b
cR

a
b , ∇aχ = eσeµcΛcbR

b
a∂µχ, ∇aσ = eσeµcΛcbR

b
a (∂µσ +Aµ) . (D.17)

Here we introduced another Lorentz matrix (e−iξ
nJn3)ab = R a

b . Curvature invariants are

written as before. The MC form projected on the vortex world-sheet Xµ(τ, σ) reads:

∂αX
µΩ−1DµΩ = iEpα

(
Pp +∇pynPn +∇pσD +∇pχQ+∇pηiJ0i +∇pξnJn3 + Ω12

p J12

)
,

(D.18)

where α = τ, σ and

Epα = ∂αX
µe−σecµΛ b

cR
p
b , ∇pyn = Eαp ∂αX

µe−σecµΛ b
cR

n
b ,

∇pχ = Eαp ∂αX
µ∂µχ, ∇pσ = Eαp ∂αX

µ (∂µσ +Aµ) .
(D.19)

Here Eαp is the inverse of the world-sheet vierbein: EpαEαq = δpq , EpαE
β
p = δαβ . As before,

the IHCs (D.11) are imposed. Since [P3, Jn3] ∼ Pn, we can also eliminate ξn imposing the

following IHC

∇3y
n = 0 =⇒ ξn

ξ
tan ξ =

vn

v3
, (D.20)

where the vector vi is given by

vi =
(∂3X

µ∂µχ)
(
∂0X

µecµΛ i
c

)
− (∂0X

µ∂µχ)
(
∂3X

µecµΛ i
c

)
(∂χ)

√
−det(Gαβ)hαβGαβ

. (D.21)

Here Gαβ and hαβ are:

Gαβ = gµν∂αX
µ∂βX

ν , hαβ =
∂µχ∂νχ

(∂χ)2
∂αX

µ∂βX
ν . (D.22)

These expression agree with the previous definitions (3.11) and (3.12). Since ∇pχ = µδ0
p

and ∇pσ = 0, leading order invariants are built out of the following objects

µ2det(Epα) = (∂χ)2
√
|det(Gαβ)|

√
Gαβhαβ , ∇0y

n∇0y
n = 1− 1

hαβGαβ
. (D.23)

One finally writes the leading order action as

S = µ2

∫
dτdσ detEpα f (∇0y

n∇0y
n) =

∫
dτdσ(∂χ)2

√
|det(Gαβ)|F [Gαβhαβ ]. (D.24)

Using (3.3), this agrees with the last line in (3.10).
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