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1 Introduction

About a decade ago, Bern, Carrasco, and Johansson (BCJ) conjectured [1, 2] the existence

of color-kinematics, or BCJ, duality of scattering amplitudes in perturbative Yang-Mills

theories. Their work initiated the double copy program that exploits this duality to con-

struct perturbative amplitudes in gravity theories, generalizing the earlier KLT [3] relations

between open and closed string scattering amplitudes. While the BCJ double copy has been

rigorously proven for all tree-level amplitudes (see for instance [4, 5]), the color-kinematic

duality remains conjectural for loop amplitudes [6]. Nevertheless, many explicit checks

of the conjecture at the loop level have been performed, leading to the recent study of

five-loop amplitudes in refs. [7, 8]. For a comprehensive review of the current state of the

field, see [9].

In particular, the BCJ double copy leverages the relative simplicity of gauge theory

scattering amplitudes to improve the efficiency of obtaining results in perturbative quantum

gravity that would be otherwise intractable. Naturally, one might also wonder if the double

copy construction extends beyond amplitudes to other observables, for instance, to relate

classical solutions of Yang-Mills and gravity theories. This question was first raised by

the work of [10, 11] in the context of Kerr-Schild solutions to the Einstein field equations.

The Kerr-Schild double copy was further developed to more general geometries [12–18],

gravitational wave backgrounds [19–21], and other applications [22–27]. A review can be

found in [28] as well as the later sections of [9].

A recent development in the classical double copy program is the application of these

techniques to the case of compact binary inspirals in the perturbative regime. Such sources
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are well motivated by the recent experimental breakthroughs in gravitational wave de-

tection [29, 30], where analysis of the data requires the construction of highly accurate

templates. Roughly, the determination of these gravitational wave templates can be di-

vided into calculating a two-body Hamiltonian that describes the orbital dynamics, and

the computation of gravitational radiation itself. The computation of potentials from the

double-copy of gauge theory amplitudes has been addressed in [31], based on ideas intro-

duced in [32, 33], and extended to higher perturbative orders in [34, 35]. See also [36–38]

for related work.

The connection between classical radiating sources and the double copy was first stud-

ied in [39], which employed a worldline formalism (based on the effective field theory

approach of [40], reviewed in [41–44]) to describe the scattering of massive classical point

particles coupled respectively to Yang-Mills and gravitational fields. By explicit calculation

at leading order in perturbation theory, ref. [39] proposed a set of color-to-kinematic map-

ping rules that relate classical radiating solutions in gauge theory to those of a theory of

gravity containing both graviton and scalar (dilaton) degrees of freedom. The same map-

ping was found [45] to generate Yang-Mills radiation from classical solutions of a certain

bi-adjoint scalar [46–51] which plays a role in the color-kinematics duality of scattering

amplitudes. Spinning particles were studied in refs. [52, 53] where it was found neces-

sary to include a two-form Kalb-Ramond axion gauge field Bµν on the gravity side, with

couplings to the graviton and dilaton that match those of low energy “string gravity,” in

order to generate a consistent double copy. Other recent developments in the application

of the double copy to perturbative classical radiation include refs. [54–56] on bound states,

ref. [57] on connections to amplitudes and a proposal to remove dilaton contamination,

and ref. [58] on connections to soft limits of scattering amplitudes. In the context of radi-

ation, a complementary line of attack that aims to relate the S-matrix directly to classical

observables includes the recent work of refs. [59–68].

Although the original proposal in [39] was successful in relating leading order solutions

in various theories, the replacement rules presented there still left the connection to the

original BCJ duality still somewhat unclear. For instance, it was not known (as the authors

of [39] recognized) how the mapping rules could be applied to the more complicated color

structures that would arise beyond leading order in the bi-adjoint and gauge theory solu-

tions. The situation was later clarified in a paper by Shen [69] which took as its starting

point the setup of refs. [39, 45] and used it to explicitly construct radiating solutions in

bi-adjoint scalar theory, Yang-Mills, and gravity at the next order in perturbation theory.

The results revealed a factorization property of the radiation amplitudes which is not ap-

parent at leading order, and which allows the application of color-kinematics duality to

relate observables in different theories in a way that is much more closely related to the

original BCJ duality of scattering amplitudes. The approach proposed in [69] provides

an (in principle) all orders prescription for constructing double copies of classical systems,

offers a more robust framework than the original proposal of [39], and has the potential to

shed light on the microscopic principle underlying the double copy in the classical case.

Our goal in this paper is both to test and to generalize the more recent formulation of

the classical double copy as presented in [69] away from the strict point particle limit. To
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do this we consider first the case of spinning sources, working to linear order in the spin. We

find that when written in the factorized form advocated in [69], the most general consistent

double copy of the Yang-Mills radiation amplitude for spinning sources is a classical field

sourced by objects carrying a pair of spin variables SµνL and SµνR . When the spins SµνL ,

SµνR are identified with one another, the axion field Bµν decouples from the gravitational

theory, at least to leading order in perturbation theory. Remarkably, the case where the

spin variables are treated as independent also has a consistent physical interpretation, as

the low energy limit of a theory containing closed bosonic strings as sources. To verify this

claim, we perform a multipole expansion of the term in the string worldsheet theory that

couples to Bµν , which at leading order in derivatives is of the form∫
d2σεab∂aX

µ∂bX
νBµν(X), (1.1)

finding precise agreement with the double copy prediction. We also examine the proposal

of [69] in the context of extended sources, which in the point particle limit which we study

here, correspond to worldline Lagrangians containing higher dimensional operators that

encode the response (color or tidal polarizability) of the source to applied long-wavelength

fields. In this case, we find that finite-size operators are consistent with the formulation

of [69], although there are constraints on the Wilson coefficients which reduce the num-

ber of independent operators, indicating that the double copy does not hold for generic

extended objects.

We organize the paper as follows: in the next section, we briefly review the setup

of classical charged worldlines coupled to scalar bi-adjoint, gauge, and gravitational fields

introduced in refs. [39, 45], as well as the formulation of the classical double copy found

in [69]. In section 3, we examine the color-kinematic duality of radiation amplitudes from

spinning sources, and show how the most general case can be interpreted as a “duality”

of open strings acting as sources on the gauge theory side with closed strings coupled

to gravity. The case of higher dimensional operators encapsulating finite-size effects is

summarized in 4, with computational details relegated to the appendix. Finally, we present

our conclusions in section 5.

2 The classical double copy

We begin with a brief review of the double copy for perturbative classical systems, as pro-

posed in ref. [39]. For technical details, we refer the reader to the original literature [39, 54].

We consider a classical scattering problem where a set of point-like objects coupled

to massless fields come in from infinity, interact via long range forces and emit radiation

before escaping back to large separations. The particular systems that we consider are the

cubic bi-adjoint scalar field theory [46–51], with an interaction term

S ⊃ −y
3

∫
ddxfabcf̃ ãb̃c̃φaãφbb̃φcc̃, (2.1)

– 3 –



J
H
E
P
0
2
(
2
0
2
0
)
0
9
2

that is invariant invariant under G × G̃ global symmetries acting on φaã in the bi-adjoint

representation, Yang-Mills theory1 with

S = −1

4

∫
ddxF aµνF

µν
a , (2.2)

and a gravity theory of fields (φ,Bµν , gµν) whose action at the two-derivative level is defined

by the “string gravity” Lagrangian in Einstein frame

S = −2md−2
Pl

∫
ddx
√
g

[
R− (d− 2)gµν∂µφ∂νφ+

1

12
e−4φHµνρH

µνρ

]
, (2.3)

with Hµνρ = (dB)µνρ, which is known to play a role in the double copy of gauge theory

amplitudes [70] as well as in Kerr-Schild double copy [12, 13].

The collection of classical sources are described by point particle effective field theories

formulated on their worldlines. Apart from the spacetime trajectory xµα(τ), we assume

that in the bi-adjoint theory each particle carries along its worldline a pair of color charges

caα(τ), c̃aα(τ), respectively transforming in the adjoint representations of G and G̃. Given

these variables, the lowest dimension interaction that is consistent with the symmetries is

given by (suppressing particle labels)

Spp ⊃ y
∫
dτ(c · φ · c̃)(x(τ)), (2.4)

where τ is a reparametrization invariant time coordinate along the particle, and we have

introduced the shorthand notation c · φ · c̃ = (c · φ)ãc̃ã = ca(φ · c̃)a = caφaãc̃ã.

The scalar radiation emitted by a system of particles that interact via eq. (2.4) is

computed in the perturbative regime. For this case, we explicitly show the corresponding

Feynman diagrams in figure 1. In the figure, we are depicting the perturbative corrections

to the classical one-point function of φaã (the external line labeled by momentum kµ).

Vertex insertions correspond to either the cubic interaction in eq. (2.1) or the worldline

coupling in eq. (2.4). In momentum space, the radiative part of this classical field is

determined by an on-shell quantity which we denote Aaã(k), with k2 = 0. It is defined as

the tree-level probability amplitude to emit a single scalar particle of momentum k by the

classical point sources. Equivalently, Aaã(k) is proportional to the coefficient of |~x|1−d/2 in

the classical solution φaã(ω, ~x) =
∫
dx0eiωx

0
φaã(x0, ~x) as |~x| → ∞, where the momentum

is given by kµ = ω(1, ~x/|~x|).
Ref. [45] computed the classical solution for a system of particles interacting through

eq. (2.4) in a configuration where they start out well separated at τ → −∞, emit radiation

at intermediate times, and scatter out to spatial infinity at τ →∞. In terms of the initial

momenta (rescaled by the masses) pµα ≡ dxµα/dτ |τ→−∞ and impact parameters bµα, defined

by the asymptotic orbits

xµα(τ → −∞) = bµα + pµατ, (2.5)

1Our sign conventions are Dµ = ∂µ + igsA
a
µT

a, [T a, T b] = ifabcT c, (T aadj)
b
c = −ifabc.
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Figure 1. Calculation of massless bi-adjoint scalar radiation at leading order in perturbation

theory. (a) corresponds to the worldline coupling with deflected trajectory via equations of motion,

and (b) represents two worldline couplings and a cubic spacetime interaction.

and the initial color charges caα, c̃
ã
α at τ → −∞, the leading order perturbative amplitude

can be put in the form

Aaã(k)=− iy3
∑
α,β

∫
`α,β

µα,β(k)

[
((cα · cβ)cα)a`2α

k · `β
(k · pα)2

((c̃α · c̃β)c̃α)ã + [cα, cβ ]a(−1)[c̃α, c̃β ]ã

+ [cα, cβ ]a
`2α

k · pα
((c̃α · c̃β)c̃α)ã + ((cα · cβ)cα)a

`2α
k · pα

[c̃α, c̃β ]ã
]
, (2.6)

where we have introduced the short hand notation for the integrals
∫
α =

∫
dd`α/(2π)d, and

µα,β(k) =

[
(2π)δ(`α · pα)

ei`α·bα

`2α

] [
(2π)δ(`β · pβ)

ei`β ·bβ

`2β

]
(2π)dδd(`α + `β − k). (2.7)

Similarly, in Yang-Mills theory, ref. [39] analyzed the perturbative radiation field

sourced by an ensemble of point color charges (xµ(τ), ca(τ)), each minimally coupled to

the the gauge field by a worldline term

Spp ⊃ −g
∫
dxµ(c ·A)µ(x(τ)). (2.8)

In this case, the long-distance radiation emitted by the collection of interacting charges is

ε(k) · Aa(k), where the emission amplitude corresponding to the kinematics in eq. (2.5),

and initial charges caα is given by an expression analogous to eq. (2.6),

Aaµ(k)=− ig3
∑
α,β

∫
`α,β

µα,β(k)

[
((cα · cβ)cα)a`2α

k · `β
(k · pα)2

(pα · pβ)pµα

+ [cα, cβ ]a
`2α
k ·pα

(pα · pβ)pµα + (cα · cβ)caα
`2α
k · pα

{
(k · pα)pµβ − (k · pβ)pµα − (pα · pβ)`µβ

}
+ [cα, cβ ]a(−1)

{
(k · pα)pµβ − (k · pβ)pµα −

1

2
(pα · pβ)(`β − `α)µ

}]
, (2.9)

which is defined up to pure gauge terms proportional to kµ that do not contribute for

on-shell polarizations k · ε(k) = 0. (The diagrams are similar to those of figure 1, so we

omit them here.)
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Motivated by BCJ duality [1], and the work of [10] on the non-perturbative double

copy, ref. [39] considered the effect of the following set of formal substitution rules

ca 7→ pµα,

[cα, cβ ]a 7→ Γµνρ(−k, `α, `β)pναp
ρ
β

≡ 1

2
(pα · pβ)

[
(`β − `α)µ + (2k · pβ − pβ · `β)pµα − (2k · pα − `α · pα)pµβ

]
,

g 7→ κ ≡ 1/(2mPl)
(d−2)/2, (2.10)

on the Yang-Mills amplitude Aaµ(k). Under these color-to-kinematics transformations,

one finds Aaµ(k) 7→ Aµν(k) that can be contracted to two independent polarization tensors

εµ(k)ε̃ν(k) to obtain an emission amplitude. We note that Aaµ(k) is defined up to terms that

vanish on-shell, so as shown in ref. [39], this ambiguity was used to add an “improvement

term” to arrive at the Yang-Mills amplitude in eq. (2.9) such that the predicted Aµν(k)

obeys the Ward identities

kµAµν(k) = kνAµν(k) = 0, (2.11)

for on-shell momenta.

Because the amplitude Aµν(k) has at most double poles at `2α = `2β = 0, it can be inter-

preted as the radiation amplitude in a local theory of massless fields with cubic interactions.

Decomposing the product εµε̃ν into symmetric traceless tensor εµν(k) ≡ ε(µε̃ν) − πµν , anti-

symmetric tensor aµν(k) ≡ ε[µε̃ν], and scalar πµν(k) ≡ ε·ε̃
d−2
(
ηµν − kµqν+kνqµ

k·q
)

(where q is an

arbitrary reference null vector) little group representations, one finds by direct calculation

that Aµν(k) describes radiation in a theory of spinless point particles coupled to graviton

gµν and dilaton φ bulk modes with Lagrangian given in eq. (2.3) (with Hµνρ = 0 due to

the tensor symmetry A(µν) = 0). To leading order, one finds that the sources are described

by the worldline action

Spp ⊃ −m
∫
eφ
√
gµνdxµdxν (2.12)

and therefore couple naturally to the Weyl re-scaled string frame metric g̃µν = e2φgµν .

The results in [39] were later extended [45] to show that the same color-to-kinematic

substitutions spelled out in eq. (2.10) also generate the gauge theory amplitude εa(k)·Aa(k)

from the bi-adjoint result Aaã(k) in eq. (2.6). Furthermore, as shown in [52, 53], the

mapping rules are also consistent if particle spin degrees of freedom Sµν with additional

chromo-magnetic interactions

Spp ⊃ −
g

m

∫
dτSµν(c · F )µν (2.13)

are included on the gauge theory side. In this case (and only for the precise numerical

value of the magnetic coupling in eq. (2.13)) the double copy includes radiation in the axion

channel as well as dilaton and graviton radiation. The spin Sµν (defined here to obey the

constraint Sµνpν = 0) interacts with fields (φ, gµν , Bµν) through a term of the form

Spp ⊃
1

2

∫
dxρe−2φ

[
Γµνρ +

1

2
Hµνρ

]
Sµν , (2.14)
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at least to linear order in the spin variable. Note that the magnitude of the axion coupling

is a prediction of the double copy map in eq. (2.10). As in the spinless case, the interaction

in eq. (2.14) can be given a simpler geometric interpretation in terms of the “string frame”

spin S̃µν = e2φSµν , which couples as

Spp ⊃
1

2

∫
dxρC+

µνρS̃
µν . (2.15)

Here the symmetric part C+ρ
(µν) = Γ̃ρµν corresponds to the Christoffel symbol of the string

frame metric g̃µν = e2φgµν and the torsion T ρµν = C+ρ
[µν] = e−2φHρ

µν ≡ H̃ρ
µν corre-

sponds to the axion field strength. We will elaborate on the spinning results in section 3.

2.1 Beyond leading order and color-kinematic duality

Although the double copy procedure as summarized in the previous section yields well

defined relations between leading order bi-adjoint, gauge, and gravitational radiation, color-

kinematic duality in the original BCJ sense is not explicit for the gauge theory result. Due

to this reason, it is (as already noted in ref. [39]) not clear from these results wether the rules

summarized in eq. (2.10) are sufficient to generate consistent predictions at higher orders

in perturbation theory. For example, at the next to leading order (NLO), the Yang-Mills

amplitude Aµa involves color structures of the form [69]

(cα · cβ)(cα · cγ)caα, (cα · cβ)(cα · cγ)caβ , (cα · [cβ , cγ ])caβ , (cα · cβ)[cα, cγ ]a, [[cα, cβ ], cγ ]a,

(2.16)

and it is not obvious that eq. (2.10) gives a well defined prescription for converting these

objects into consistent kinematic structures.

Recently, ref. [69] computed the NLO corrections to the radiation amplitudes in the

theories defined in the previous section, coupled to spinless particles. Based on the explicit

NLO results, [69] proposed a generalization of the classical double copy rules eq. (2.10)

which explicitly makes use of color-kinematic duality, naturally extending the classical

double copy construction to higher orders in perturbation theory.

The proposal takes as its starting point the n-th order perturbative amplitude Aaãn in

the bi-adjoint theory, expressed as a sum over independent “color numerators” Cai , C̃ ãi ,

schematically,2

Aaãn (k) = yn
∑
ij

Cai P
ij(k)C̃ ãj . (2.17)

This equation defines a non-diagonal “propagator matrix” P ij(k), which depends on a

mixture of poles from both the worldline and spacetime propagators. This differs from

the propagator factors appearing in the case of BCJ duality for scattering amplitudes,

which in this context can be regarded as a matrix proportional to the identity. A similar

decomposition for the gauge theory amplitude at NLO was also found

Aµan (k) = gn
∑
ij

Cai P
ij(k)Nµ

j (k), (2.18)

2For notational clarity, we have absorbed the sum over particle labels into the indices i, j that run over

color structures.

– 7 –



J
H
E
P
0
2
(
2
0
2
0
)
0
9
2

where the “kinematic numerators” Ni obey the Ward identity kµN
µ
i (k) = 0. It is important

to note that the Nµ
i (k) are chosen in a way such that they obey similar particle interchange

symmetries and kinematic Jacobi identities as the corresponding color objects Cai do. In

this sense the map between bi-adjoint and gauge theory radiation manifestly exhibits color-

kinematic duality.

Given eqs. (2.17), (2.18), the relation between the bi-adjoint and gauge theory observ-

ables is summarized in terms of the formal substitution rule

C̃ ãi 7→ Nµ
i (k). (2.19)

Taking this one step further, one maps the remaining color structure in eq. (2.18) according

to the same substitution rule to obtain an object

Aµνn (k) = κn
∑
ij

Nµ
i (k)P ij(k)Nν

j (k), (2.20)

which automatically obeys kµAµνn = kνAµνn = 0 due to the explicit color-kinematic dual-

ity. By direct calculation [69], this indeed reproduces the dilaton gravity amplitude Aµν

at NLO. One advantage of this formulation is that the numerators have manifest color-

kinematic duality at any given order in perturbation theory, which automatically guaratees

that the double copy amplitudes satisfy the Ward identities and hence define a consistent

theory containing massless spin-2 particles.

As an example of this procedure, and for use in later sections, we recast the lead-

ing order results in terms of the factorization proposed by Shen. The independent color

numerators in the LO bi-adjoint amplitude are

Ca =

(
(cα · cβ)caα
[cα, cβ ]a

)
, C̃ ã =

(
(c̃α · c̃β)c̃ãα
[c̃α, c̃β ]ã

)
, (2.21)

so from eq. (2.6), we can read off the propagator matrix

P = −iµα,β(k)

(
`2α

k·`β
(k·pα)2

`2α
k·pα

`2α
k·pα −1

)
, (2.22)

and the LO amplitude isAaã = y3
∑

α,β

∫
(Ca)TPC̃ ã. Similarly, the gauge theory amplitude

at LO can be decomposed as

Aaµ(k) = g3
∑
α,β

∫
(Ca)TPNµ, (2.23)

where the kinematic numerators are

Nµ =

(
(pα · pβ)pµα

(k · pα)pµβ − (k · pβ)pµα + 1
2(pα · pβ)`µα − 1

2(pα · pβ)`µβ

)
. (2.24)

Notice from the form of the color factors Ca and kinematic numerators Nµ in

eqs. (2.21), (2.24) that at this order in perturbation theory, the rules eq. (2.10) origi-

nally proposed in [39] are consistent with eq. (2.19). However, at NLO, eq. (2.10) no longer

yields consistent amplitude relations.
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3 The double copy for spinning sources and classical bosonic strings

3.1 Spinning sources and color-kinematic duality

In this section, we revisit the results of [52, 53] on radiation from spinning point-like objects

within the context of the results present in [69]. We begin by noting that if the numerical

value of the chromo-magnetic coupling constant is chosen precisely as in eq. (2.13), the

Yang-Mills radiation field, constructed to linear order in spin, can be put into the form

Aµ,a(k) = g3
∑
α,β

∫
(Ca)TPNR

µ (3.1)

where the effects of spin are encoded in the new numerator structure NR = N +NS , with

Nµ as in eq. (2.24) and to linear order in spin,

NS
µ = i

(
(`β ∧ pα)βp

µ
α − (`β ∧ pβ)αp

µ
α − (pα · pβ)(Sα ∧ k)µ + (k · pα)(Sα ∧ pβ)µ

(k · pβ)(Sα ∧ `α)µ + (`α ∧ `β)βp
µ
α − 1

2(`α ∧ pβ)α(`β − `α)µ − (α←→ β).

)
.

(3.2)

In this equation, we have introduced the shorthand notation (Sα∧p)µ = Sµνα pν , (k∧p)α =

kµ(Sα ∧ p)µ. Remarkably, the propagator matrix is identical to eq. (2.22) found in the

absence of spin, which is another way to understand why the choice of gyromagnetic ratio

in eq. (2.13) is the natural one from the point of view of the double copy.

Once we have the amplitude in the form of eq. (3.1) we can apply color-to-kinematics

substitution rules to generate a gravitational amplitude. First of all, the substitution

Ca 7→ Nµ in eq. (3.1) gives an amplitude

Aµν(k) = κ3
∑
α,β

∫
(Nν)TPNR

µ +O(S2), , (3.3)

which is consistent with the results of [52, 53] for (φ, gµν , Bµν) radiation in the bulk theory

defined by eq. (2.3), sourced by spinning point particles that couple as in eq. (2.15). How-

ever, the proposal in [69] allows a generalization of this mapping to a wider class of spinning

extended objects. To see this, note that as in BCJ duality, the numerator structure in the

color-to-kinematic replacements need not correspond to the same Nµ which we read off

the gauge theory result. Rather, we can use the mapping Ca 7→ Nµ
L , where in general the

consistent numerators NL
µ (with kµNL

µ = 0), do not coincide with NR
µ, but are instead

taken from a different gauge theory radiation amplitude. The gravitational radiation field

in this more general situation is given by

Aµν(k) = κ3
∑
α,β

∫
(NL

ν)TPNR
µ, (3.4)

which also corresponds to a consistent solutions, kµAµν = kνAµν = 0.

In particular, formally we can take Nµ
R from a theory of point color charges carrying

spin variables labeled SµνR and Nµ
L from a system of particles with an independent set of

spin degrees of freedom SµνL but identical otherwise (same color charges and momenta).
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The results of [52, 53] are recovered if we take SµνL = 0 and SµνR = Sµν , while taking

SµνL = Sµν and SµνR = 0 flips the order of ε and ε̃ leading to a sign change in the axion

channel. This corresponds to coupling the spin to a different connection

Spp ⊃
1

2

∫
dxρC−µνρS̃

µν , (3.5)

where C−
ρ
(µν) = Γ̃ρµν and torsion T ρµν = C−

ρ
[µν] = −H̃ρ

µν . On the other hand, the choice

SµνL = SµνR =
1

2
Sµν , (3.6)

yields an amplitude Aµν(k) = Aνµ(k) corresponding to spinning particles with vanishing

axion couplings.

3.2 Classical bosonic strings

As it turns out, the more general situation with independent spins SµνL and SµνR coupled

to gravitational fields via a term

Spp ⊃ −
1

4

∫
dxλ(SµνL − S

µν
R )Hµνλe

−2φ. (3.7)

also has a sensible physical interpretation. In fact, the form of this coupling together with

eq. (2.13) suggests a mapping between a classical open string coupled to a gauge field and

a classical closed string interacting with massless fields (φ, gµν , Bµν), at least to leading

order in the multipole expansion and in the classical regime.

To provide evidence for this claim, we consider first an open string which is in a “semi-

classical” configuration (i.e. it is in a state where at least some of the oscillator variables αµn
are highly occupied and the string invariant mass Ms is large in string units). If this object

is placed in an external field Aµ whose typical time and distance scales are large compared

to the string length,3 `, we can describe it systematically as a point source carrying gauge-

invariant interactions with the gauge field. We focus on the interactions linear in Aµ and

consider for simplicity the case of U(1) gauge symmetry. In the full theory of the extended

string, the gauge field couples to Chan-Paton charges qσ localized at the string endpoints

σ = 0, π (go is the open string coupling)

Sint = go
∑
σ=0,π

qσ

∫
dXµ(τ, σ)Aµ(X(τ, σ)). (3.8)

It is useful to work in the Polyakov gauge in which the string equations of motion in

the absence of external fields are simply (∂2τ − ∂2σ)Xµ = 0 subject to Virasoro constraints

∂τX · ∂σX = 0, and (∂τX)2 = −(∂σX)2. Then to linear order in external fields, the point

particle limit can be read off by inserting into eq. (3.8) the solution to the classical string

equations of motion,

Xµ(τ, σ) = xµ + `2pµτ + Zµ(τ, σ), (3.9)

3Our conventions are those of [71], S = 1
2π`2

∫
d2σ
√
hhab∂aX

µ∂bXµ. We work in conformal gauge,

hab = ηab.
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with oscillator contribution Zµ = i`
∑

n 6=0
αµn
n e
−inτ cosnσ, and expanding about the center-

of-mass coordinate xµ(τ) = xµ + `2pµτ . In particular, the U(1) current induced by the

moving string is the “vertex operator”

Jµ(k) =

∫
ddxeik·xJµ(x) = go

∑
σ=0,π

qσ

∫
dτ∂τX

µ(σ, τ)eik·X(σ,τ), (3.10)

and the multipole limit corresponds to the formal expansion in powers of kµ → 0 and Zµ.

Choosing coordinates with xµ = 0, the leading order term in this expansion is

Jµ(k → 0) ' go
∑
σ

qσ

∫
dτei`

2k·pτ `2pµ +O(Z1, k · Z1) = gsQ(2π)δ(k · p)pµ, (3.11)

which is of course the current of a static point particle whose U(1) charge is the sum

Q =
∑

σ qσ.

At the next order in the expansion, the string motion generates an electric dipole

moment of the form

Jµ(k → 0)|E ' −igo
∑
σ

qσ

∫
dτei`

2k·pτ (k · pZµ − (k · Z)pµ) +O(Z2, k · Z2) (3.12)

after integration by parts. Inserting the mode expansion for Zµ, this is a sum of delta

functions δ(`2k ·p−n) with n 6= 0 and therefore vanishes at frequencies ω ≡ k ·v �M−1s `−2.

So there is no permanent (time independent) electric dipole moment, as expected from

time-reversal symmetry. At the same order in the multipole expansion but next order in

powers of Zµ, we also have a term

Jµ(k → 0)|B ' go
∑
σ

qσ

∫
dτei`

2k·pτ ik · Z∂τZµ +O(k · Z2) (3.13)

' − i
2
gokν

∑
σ

qσ

∫
dτei`

2k·pτ (Zµ∂τZ
ν − Zν∂τZµ) +O(k · Z2) (3.14)

Here we have discarded a term which, upon integration by parts, acquires a factor of (k ·p)
and is suppressed in the static limit ω �M−1s `−2. Given that

ZµŻν
∣∣∣
σ=0,π

= −i`2
∑
n 6=0

1

n
αµnα

ν
−n + time dependent terms, (3.15)

the part of the moment that remains after rapid oscillations of order the string scale are

averaged out is proportional to the angular momentum of the string about the center of

mass xµ = 0,

Jµ(k → 0)|B = igoQ(2π)δ(k · p)kνSµν (3.16)

with intrinsic spin Sµν � ~ given in terms of the oscillator modes by [71]

Sµν =

∫ π

0
dσ (Zµ∂τZ

ν − Zν∂τZµ) = −i
∞∑
n=1

1

n

(
αµ−nα

ν
n − αν−nαµn

)
. (3.17)
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To summarize, we have found the current induced by the open string in the long-

wavelength limit

Jµ(k) = goQ(2π)δ(k · p) [1 + ikνS
µν ] + · · · . (3.18)

This is precisely the form one finds for a pointlike startic particle with current Jµ(x) =

δSpp/δAµ(x) and

Spp = goQ

∫
dxµAµ(x) +

1

2
goQ

∫
dτSµνFµν(x). (3.19)

In particular, in d = 4 dimensions, if we make the identification go = g, the spin-dependent

terms corresponds to a magnetic moment interaction with gyromagnetic ratio equal to

Dirac’s value gD = 2, consistent with earlier classical [72] and and quantum mechanical [73]

string theory results. The non-abelian generalization of this calculation should proceed

along the same lines, with a Wilson line inserted between the string endpoints in order to

ensure gauge invariance. The result in that case is then the chromomagnetic interaction

in eq. (2.13) with the same numerical value suggested by the consistency of the classical

double copy.

Similarly, we can perform the multipole expansion of a closed oriented string coupled

to a long-wavelength axion field. The relevant interaction term in the worldsheet action

is now

S ⊃ − 1

2π`2

∫
d2σεabBµν(X)∂aX

µ∂bX
ν . (3.20)

In this case, the mode expansions subject to periodic closed string boundary conditions in

σ 7→ σ + π are given by

Zµ(τ, σ) = ZµL(τ + σ) + ZµR(τ − σ) ≡ i`
∑
n 6=0

1

2n
e2inσ(e−2inταµn − e2inτ α̃

µ
−n), (3.21)

representing the contribution of left- and right-moving oscillators. In momentum space,

the current that couples to the axion corresponds to the vertex operator

Jµν(k) = −gc
∫
dτ

∫ π

0
dσeik·X (∂τX

µ∂σX
ν − ∂σXµ∂τX

ν) , (3.22)

where the closed string coupling is gc ≡ 1
2π`2

. Again, expanding in Zµ and k · Z, we find

that the leading term is formally linear in Zµ but vanishes due to the periodic boundary

condition. Thus, the string has zero “axion charge” (monopole moment). At the next order,

integrating over σ, and discarding the contribution from the non-zero modes, proportional

to δ(`2k · p− n) with n 6= 0, we find that

Jµν(k) = − i
2

(2π)δ(k · p)kλ(SµνL − S
µν
R ). (3.23)

where the spins in the two sectors are

SµνL = −i
∞∑
n=1

1

n
(αµ−nα

ν
n − αν−nαµn), (3.24)

SµνR = −i
∞∑
n=1

1

n
(α̃µ−nα̃

ν
n − α̃ν−nα̃µn). (3.25)

– 12 –



J
H
E
P
0
2
(
2
0
2
0
)
0
9
2

Eq. (3.23) matches the axion current induced by a point object which couples to Bµν as

Spp ⊃
1

4

∫
dxρHρµν(x)(SµνL − S

µν
R ), (3.26)

which agrees precisely with the prediction of the double copy. This differs from eq. (3.7)

by its dependence on the dilaton, but recalling that the present analysis is done in the

“string frame”, it is understood that for φ 6= 0 the field strength should be identified with

H̃ instead.

Finally, we note that under worldsheet parity, we have Ω : SR 7→ SL and Spp 7→ −Spp
as expect for oriented string configurations. From this point of view, the parity even

correspondence SµνL = SµνR = 1
2S

µν is analogous to the case of unoriented strings, which do

not couple to Bµν .

4 Dynamical polarizability and its double copy

The discussion above can also be generalized to objects which have finite extent ∼ R.

If probed by long-wavelength external fields, λ � R such objects can still be described

by a worldline theory. In addition to the minimal couplings in eqs. (2.4), (2.8), (2.12)

the theory also contains higher dimensional operators involving more derivatives and/or

powers of the external fields. By dimensional analysis, the Wilson coefficients of the non-

minimal operators scale as powers of the size of the extended object, giving rise to effects

suppressed by powers of R/λ� 1. By including all such operators that are allowed by the

symmetries of the theory, we systematically account for all possible finite-size effects,4 order

by order in the power counting. We now show how such finite-size effects are constrained

by demanding consistency of the double copy.

At leading (quadratic in fields) order, the finite-size operators determine linear re-

sponse, namely the multipole moments induced on the finite-size object by an external

field configuration. In the bi-adjoint theory, the linear response operators consistent with

G×G̃ symmetry arise at zeroth order in spacetime derivatives, and consist of the four terms

S =
1

2
y2
∑
i

λi

∫
dτOBS(i) , (4.1)

where

OBS(1) = φaãφaã, OBS(2) = (c · φ)ã(c · φ)ã, OBS(3) = (c · φ)ã(c · φ)ã, OBS(4) = (c · φ · c̃)2, (4.2)

and λαi are set of dimensionless coupling constants. For clarity we have suppressed the

particle label α on the coupling constants and action. We have also introduced the short-

hand notation (c · φ)ã = caφ
aã, (φ · c̃)a = φaãc̃ã, and c · φ · c̃ = cac̃ãφ

aã. We normalize these

operators with prefactor y2 and impose the coupling constant mapping rules y 7→ g 7→ κ

under the double copy.

4This neglects the possibility of absorption, for instance by black hole horizons, which requires the

existence of new nearly gapless worldline localized degrees of freedom. See [74].
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k

λα

ℓβ

(a)

β

λα

(b)

β

ℓβ a, ǫµ

k

a, ã

Figure 2. The leading order diagrams for bi-adjoint and Yang-Mills radiation amplitudes induced

by finite-size worldline operators, (a) for bi-adjoint scalar and (b) for Yang-Mills.

It is straightforward to compute the contribution to long-distance radiation from the

terms in eq. (4.1). We work to linear order in the parameters λi and consider a scattering

event where the field generated by a second point source deforms the extended object. The

time-dependence of the induced moments then sources scalar radiation. Diagrammatically,

the situation is depicted in figure 2(a). To linear order in the finite-size couplings, the

amplitude is given by

Aaã = y3
∑
α,β

∫
C̃Ta ΛCa, (4.3)

where we have defined the color numerators as

Ca =

(
caβ

(cα · cβ)caα

)
, C̃ ã =

(
c̃ãβ

(c̃α · c̃β)c̃ãα

)
, (4.4)

as well as the 2×2 matrix Λα of Wilson coefficients and a propagator prefactor for particle α

Λ = µα,β(k)`2α

(
λα1 λα3
λα2 λα4

)
. (4.5)

Likewise, in gauge theory, the linear response of a (spinless) extended color sources in

the long-wavelength limit can be described by including the operators

S =
1

4
g2
∑
i

λi

∫
dτOYM

(i) , (4.6)

where now

OYM
(1) = F aµνF

µν
a , OYM

(2) = (c · F )µν(c · F )µν ,

OYM
(3) = ẋµẋνF aµσF

a
ν
σ, OYM

(4) = ẋµẋν(c · F )µσ(c · F ) σ
ν . (4.7)

These operators induce contributions to radiation in scattering as shown in figure 2(b). By

explicit calculation, we find that the result exhibits a factorization property which parallels

that found in the bi-adjoint case,

Aaµ = g3
∑
α,β

∫
C̃Ta ΛαN

µ. (4.8)
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where Cai , i = 1, 2 is the set of color factors given in eq. (4.4) while the kinematic numerators

are defined to be

Nµ =

(
(k · pβ)`µβ − (k · `β)pµβ

1
2(pα · pβ)[(k · pα)`µβ − (k · `β)pµα] + 1

2(k · pα)[(k · pβ)pµα − (k · pα)pµβ ]

)
. (4.9)

In order to account for the full finite-size effects in gravity (including all the axionic

operators), it is also necessary to consider the radiation induced by the interactions of the

spin of the probe particle β with the extended object α. Working to linear order in spin,5

the amplitude is represented by diagrams of the same topology as in figure 2(b) where the

off-shell gluon is emitted from the chromomagnetic coupling of particle β. The result is

then of the same form as eq. (4.8), but the kinematic factor is shifted by a term linear in

Sµνβ , Nµ → Nµ +NS
µ, where

NS
µ= i

(
(k · `β)(Sβ ∧ `β)µ − (`α ∧ `β)β`

µ
β

1
2(`β ∧ pα)β [(k · pα)`µβ−(k · `β)pµα] + 1

2(k · pα)[(k · pα)(Sβ ∧ `β)µ−(`α ∧ `β)βp
µ
α]

)
.

(4.10)

The respective results in eq. (4.3) and eq. (4.8) suggest a set of single copy mapping

rules between finite-size objects in bi-adjoint scalar and Yang-Mills theory. Namely, making

the replacement C̃a 7→ Nµ maps the finite-size amplitude Aaã of bi-adjoint theory to the

radiation field Aaµ in gauge theory.6 We note that the Wilson coefficients in eq. (4.3)

and eq. (4.8) are in principle different. However, this mapping relation gives a direct

correspondence between the two sets λi 7→ λYM
i ≡ λi. Given this, it is then natural to take

a further step Aaµ 7→ Aµν while demanding λi unchanged, where

Aµν = κ3
∑
α,β

∫
(NL

ν)TΛNR
µ, (4.11)

with NL,R
µ = NSL,R

µ. Because kµAµν = kνAµν = 0 this defines a consistent radiation field

in a theory of finite-size sources coupled to massless fields (φ, gµν , Bµν).

Given the structure of the single copy Aaã 7→ Aaµ, which takes finite-size operators in

bi-adjoint theory with no derivatives to two-derivative operators in gauge theory, we expect

that the double copy amplitude Aµν encodes finite-size effects corresponding to a total of

four derivatives acting on the fields (φ, gµν , Bµν). To determine the precise form of the

finite-size response encoded in Aµν , we therefore start with the most general set of four-

derivative diffeomorphism invariant worldline operators that are quadratic in these fields.

Since we are not considering spin-dependent finite-size operators in the gauge theory, we

5We ignore finite-size operators built out of spin at this order in gauge or finite size couplings. It is easy

to see that there is no kinematic numerator with a dual representation to linear order in spin. However, we

might still need include such terms at higher orders in perturbation theory.
6Notice that this mapping takes operators with no derivatives on φaã to operators involving gradients of

Aµa in Yang-Mills. Including an operator of the form, e.g., y2
∫
dτ(∂µφ

aã)2 in scalar theory yields a radiation

amplitude Aaã = y3
∫
µα,β`

2
α(k · `β)C̃ ã1C

a
1 whose propagator structure `2α(k · `β) does not match with any of

the terms in eq. (4.8) Rather, it corresponds to a four-derivative operator
∫
dτDσF

a
µνD

σFµνa which yields an

amplitude of the form g3
∫
µα,β`

2
α(k · `β)Ca1N

µ
1 consistent with the color-kinematics substitution C̃ ã 7→ Nµ.
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also limit ourselves to spin-independent gravitational higher dimensional operators. At the

four-derivative level, the complete set of terms allowed by diffeomorphism invariance is

S =
∑
i

λ̃i

∫
dτÕ(i), (4.12)

where now we have twelve Wilson coefficients λ̃i corresponding to ten positive definite

operators

Õ(G1) =
1

4
(Rµνρσ)2, Õ(G2) =

1

4
(Rµνρσẋ

σ)2, Õ(G3) =
1

4
(Rµνρσẋ

ν ẋσ)2, (4.13)

Õ(D1) =
1

2
(∇µ∇νφ)2, Õ(D2) =

1

2
(ẋµ∇µ∇νφ)2, Õ(D3) =

1

2
(ẋµẋν∇µ∇νφ)2, (4.14)

Õ(A1) =
1

6
(∇σHµνρ)

2, Õ(A2) =
1

4
(∇σHµνρẋ

ρ)2, Õ(A3) =
1

6
(∇σHµνρẋ

σ)2,

Õ(A4) =
1

4
(∇σHµνρẋ

σẋρ)2, (4.15)

and to two terms that mix the graviton with the dilaton or axion

Õ(GD) = (ẋρẋσRµρνσ)∇µ∇νφ, (4.16)

Õ(GA) = (ẋσRµνρσ)(ẋλ∇µHνρλ). (4.17)

Note that we have omitted operators involving the Ricci tensor Rµν , since by field redefi-

nitions these are equivalent on-shell to terms constructed out of derivatives of φ and Bµν .

The amplitudes corresponding to radiation from the induced multipoles at zeroth and

first orders in spin are calculated from the diagrams in figures 3, 4 respectively. It turns

out that the individual amplitudes corresponding to each of the operators in eq. (4.12)

do not factorize in the way that would be expected from color-kinematics. However, by

taking linear combinations of operators, it is possible to construct amplitudes where the

only kinematic numerators that arise coincide with those that appear in the gauge theory

(in eqs. (4.9), (4.10)). For this choice of operators coefficients, the amplitude in the gravity

theory agrees with the prediction of the double copy given by eq. (4.8).

As an explicit example, we consider the case with positive axion-spin coupling, SµνL = 0

and SµνR = Sµν . The explicit calculations are reported in appendix A.1. The result is that

the gravitational Wilson coefficients are related to the finite-size coupling on the gauge

theory side by the relations

λα1 = 2λ̃αG1
=

λ̃αD1

d− 2
= 4λ̃αA1

, (4.18)

λα2 = 2λ̃αG2
= −2λ̃αGD = 2λ̃αD1

=
2λ̃αD2

d− 4
= 4λ̃αGA = 4λ̃αA2

= 8λ̃αA3
, (4.19)

λα3 = 2λ̃αG2
= −2λ̃αGD = 2λ̃αD1

=
2λ̃αD2

d− 4
= −4λ̃αGA = 4λ̃αA2

= 8λ̃αA3
, (4.20)

λα4 = 2λ̃αG3
= −4λ̃αGD = 4λ̃αD1

= −2λ̃αD2
=

4λ̃αD4

d− 2
= 4λ̃αA4

. (4.21)
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λ̃α

ℓβ

(c)

(b)

λ̃α

β

β

ℓβ
k

λ̃α

(e)

β

ℓβ aµν

k

k

β

(d)

λ̃α

β

(a)

k
ℓβ

ℓβ

λ̃α

ǫµν

ǫµν

Figure 3. The leading order radiation for spinless sources with finite-size corrections. The dotted

lines represent dilatons, the coiled lines are axions, and the thin wavy lines mean gravitons. The

first column contributes to graviton channel, the second are responsible for dilaton channel, and

the third gives the radiation in axion channel.

We note that although the full set of operators in the string gravity background are not

independent, there are still more free coefficients than the number of purely gravitational

operators. Thus it should be possible to characterize the full gravitational tidal response

at the linear level, provided one could project out the fields φ,Bµν in a systematic way

that does not introduce new constraints among the gravitational tidal operators.

It is also interesting to note that, at least for some of these relations, there is a ge-

ometrical pattern. In terms of the non-minimal connection C+
µνρ connection defined in

eq. (2.15), the above relations imply that the independent operators in the gravitational

double can be expressed as

S =
1

8

∑
i

λi

∫
dτOSG(i) , (4.22)

where

OSG(1) = (R̃+
µνρσ)2, (4.23)

OSG(2) = (R̃+
µνρσẋ

σ)2 + Õ(GA) +
1

4
Õ(A2) +

1

12
Õ(A3), (4.24)

OSG(3) = (R̃+
µνρσẋ

σ)2 − 3Õ(GA) +
1

4
Õ(A2) +

1

12
Õ(A3), (4.25)

OSG(4) = (R̃+
µνρσẋ

ρẋσ)2. (4.26)

However, while the dilaton dependence has been completely absorbed into the curvature

associated with the non-minimal connection C+
µνρ , it does not seem possible to modify the

torsion in order to simplify the axion dependent terms.
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Sβ

ℓβ
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(d)
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ℓβ aµν

k

k
aµν

Sβ
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λ̃α
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k
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λ̃α
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Figure 4. Diagrammatics for leading order finite-size contributions from spinning sources at linear

order in spin. The same symbols are used to represent the respective fields.

5 Discussions and conclusions

In this paper, we have generalized the classical double copy formulation of [69], based on

manifest color-kinematic duality, beyond the strict point particle limit. In particular, we

have shown that this yields a consistent map between radiation amplitudes in the case

of spinning particles and for extended objects, in the limit where their response to long-

wavelength probe fields can be encoded in a non-minimal worldline effective theory. Of

course, this paper only includes calculations at the lowest order where the color structures

are extremely simple. To justify the color-kinematic duality beyond the point particle

limit, we would have to consider higher-order contributions, where more complicated color

factors and (non-diagonal) propagator matrices will arise.

One of our findings in this paper is that the double copy substitution rules applied to

spinning gauge theory sources allow for consistent objects, on the gravity side, carrying

pairs of spins SµνL , SµνR on their worldlines. We have found that such objects have a

possible interpretation7 as a long-wavelength limit of a highly massive (classical) closed

string. Evidence for this claim includes the fact that on both the gauge theory and gravity

side of the duality, the sources must have couplings to massless fields whose numerical

values precisely match those predicted by string theory. The picture this suggests is of

classical open strings on the Yang-Mills side getting mapped via color-kinematics duality

to closed strings interacting with the (φ, gµν , Bµν) fields that naturally arise in the double

copy. According to this interpretation, identifying the two spins as SµνL = SµνR = 1
2S

µν

then corresponds to the case of unoriented strings, with Bµν decoupled.

7Another interpretation can be found in ref. [66], which identified the point sources on the gravity side

with massive states arising in the compactification of N = 4 supergravity.
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It would be interesting to pursue this connection to strings, not unexpected given the

close relation between BCJ duality and the earlier work of KLT, in more detail. Doing so

might help explain the pattern of constraints we found on the finite-size Wilson coefficients

in eqs. (4.18)–(4.21). Apart from the partial simplification that occurs by working with

the Weyl-rescaled metric, it is natural to guess that the constraints also arise from the

internal structure of the string sources. Similarly, the constraint on operators in the case,

SµνL = SµνR , including the decoupling of the axion to all orders, might have some connection

with a limit of the unoriented string.

Phenomenologically, the inclusion of higher-dimensional operators into the double copy

map enables one to study more realistic source objects with finite size (e.g. with non-

zero tidal Love numbers). However, making contact with phenomenology still requires a

systematic method for obtaining pure Einstein gravity. In this paper, we have found a way

to remove the axion, at least at leading order in perturbation theory. Some possibilities

for removing the dilaton have been proposed, for instance by introducing ghost fields [57]

or by direct construction in terms of scattering amplitude relations [63]. It would be useful

to test if any of these approaches can be extended to incorporate finite-size corrections as

well. We leave these considerations for future work.
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A Radiation from higher dimensional operators

We collect in the appendix the explicit gravity calculations leading to the results quoted in

section 4. First we consider radiation induced by graviton or dilaton exchange only. Then,

as depicted in figure 3(a), the quadratic graviton operators eq. (4.13) lead to graviton

radiation amplitudes

AµνG1
=2κ3

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · pβ)`µβ − (k · `β)pµβ

][
(k · pβ)`νβ − (k · `β)pνβ

]
, (A.1)

AµνG2
=κ3

∑
α,β

∫
`α,β

µα,β(k)`2α

{[
(pα · pβ)[(k · pα)`µβ − (k · `β)pµα]

+ (k · pα)[(k · pβ)pµα − (k · pα)pµβ ]
][

(k · pβ)`νβ − (k · `β)pνβ

]
− 1

d− 2

[
(k · pα)`µβ − (k · `β)pµα

][
(k · pα)`νβ − (k · `β)pνα

]}
, (A.2)

AµνG3
=
κ3

2

∑
α,β

∫
`α,β

µα,β(k)`2α

{[
(pα · pβ)[(k · pα)`µβ − (k · `β)pµα] + (k · pα)[(k · pβ)pµα

− (k · pα)pµβ ]
][

(pα · pβ)[(k · pα)`νβ − (k · `β)pνα] + (k · pα)[(k · pβ)pνα − (k · pα)pνβ ]
]

− 1

d− 2

[
(k · pα)`µβ − (k · `β)pµα

][
(k · pα)`νβ − (k · `β)pνα

]}
. (A.3)
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In addition, the graviton-dilaton operator eq. (4.16) gives rise to the diagram figure 3(b)

that corresponds to graviton radiation of the form

AµνGD = − κ3

d− 2

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · pα)`µβ − (k · `β)pµα

][
(k · pα)`νβ − (k · `β)pνα

]
. (A.4)

We observe that the combinations AG2 −AGD and AG3 − 1
2AGD yield results independent

of d.

In the dilaton channel, the quadratic dilaton operators eq. (4.14) allow diagrams of

the form shown in figure 3(c), resulting in radiation amplitudes

AD1 =
κ3

(d− 2)3/2

∑
α,β

∫
`α,β

µα,β(k)`2α(k · `β)2, (A.5)

AD2 =
κ3

(d− 2)3/2

∑
α,β

∫
`α,β

µα,β(k)`2α(k · `β)(k · pα)2, (A.6)

AD3 =
κ3

(d− 2)3/2

∑
α,β

∫
`α,β

µα,β(k)`2α(k · pα)4. (A.7)

In addition, figure 3(d) with an insertion of the graviton-dilaton operator eq. (4.16) also

leads to radiation in the scalar channel,

ADG =
κ3

(d− 2)1/2

∑
α,β

∫
`α,β

µα,β(k)`2α

[(
(pα · pβ)(k · `β)− (k · pα)(k · pβ)

)2
−

(k · `β)2

d− 2
+

2(k · `β)(k · pα)

d− 2

]
. (A.8)

Finally, diagram figure 3(e) with a single insertion of the graviton-axion operator eq. (4.17)

yields the axion radiation amplitude

AµνAG = 2κ3
∫
`α,β

µα,β(k)`2α

[
(k · pβ)`µβ − (k · `β)pµβ

]
×
[
(pα · pβ)[(k · pα)`νβ − (k · `β)pνα] + (k · pα)[(k · pβ)pνα − (k · pα)pνβ ]

]
. (A.9)

We note that in matching the double copy to the dilaton channel, we have omitted

contact terms with no propagator factors. Such terms yield integrals that are proportional

to to∫
dd`α
(2π)d

dd`β
(2π)d

[
(2π)δ(`α · pα)ei`α·bα

][
(2π)δ(`α · pα)ei`β ·bβ

]
(2π)dδd(`α + `β − k)

=

∫
dταdτβe

ik·x(0)β
∫

dd`

(2π)d
ei`·x

(0)
α e−i`·x

(0)
β =

∫
dταdτβe

ik·x(0)β δd(x(0)α − x
(0)
β ), (A.10)

where the free particle paths are x
(0)
α = bα + vατα. Because we consider classical scattering

at non-zero impact parameter bαβ = bα − bβ 6= 0, such terms are identically zero.
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A.1 Spin-dependent terms

The spinning point sources now support internal graviton and axion exchange, correspond-

ing to the diagrams in figure 4(a). These yield graviton emission amplitudes

AµνG1
= 2iκ3

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · pβ)`νβ − (k · `β)pνβ

][
(k · `β)(Sβ ∧ `β)µ − (`α ∧ `β)β`

µ
β

]
,

(A.11)

AµνG2
=
iκ3

2

∑
α,β

∫
`α,β

µα,β(k)`2α

{[
(k · pβ)`νβ − (k · `β)pνβ

]
×
[
(`β ∧ pα)β [(k · pα)`µβ − (k · `β)pµα] + (k · pα)[(k · pα)(Sβ ∧ `β)µ − (`α ∧ `β)βp

µ
α]
]

+
[
(pα · pβ)[(k · pα)`νβ − (k · `β)pνα] + (k · pα)[(k · pβ)pνα − (k · pα)pνβ ]

]
×
[
(k · `β)(Sβ ∧ `β)µ − (`α ∧ `β)β`

µ
β

]}
, (A.12)

AµνG3
=
iκ3

2

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(pα · pβ)[(k · pα)`νβ − (k · `β)pνα]

+ (k · pα)[(k · pβ)pνα − (k · pα)pνβ ]
][

(`β ∧ pα)β [(k · pα)`µβ − (k · `β)pµα]

+ (k · pα)[(k · pα)(Sβ ∧ `β)µ − (`α ∧ `β)βp
µ
α]
]
. (A.13)

At linear order in spin, we can also have graviton radiation mediated by axion exhange, as

in figure 4(b)

AµνGA = iκ3
∑
α,β

∫
`α,β

µα,β(k)`2α

{
−
[
(k · pβ)`νβ − (k · `β)pνβ

]
×
[
(`β ∧ pα)β [(k · pα)`µβ − (k · `β)pµα] + (k · pα)[(k · pα)(Sβ ∧ `β)µ − (`α ∧ `β)βp

µ
α]
]

+
[
(pα · pβ)[(k · pα)`νβ − (k · `β)pνα] + (k · pα)[(k · pβ)pνα − (k · pα)pνβ ]

]
×
[
(k · `β)(Sβ ∧ `β)µ − (`α ∧ `β)β`

µ
β

]}
. (A.14)

There is also dilaton radiation, from the diagram in figure 4(c) with one insertion of the

graviton-dilaton mixing operator in eq. (4.16)

ADG =
iκ3

(d− 2)1/2

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · pβ)(k · pα)− (k · `β)(pα · pβ)

]
×
[
(`β ∧ pα)β(k · `β) + (`α ∧ `β)β(k · pα)

]
. (A.15)

Finally, there is spin-dependent axion radiation, involving insertions of the purely

axionic operators in eq. (4.15) in the diagram of figure 4(e). Two of these amplitudes
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readily factorize into products of the kinematic factors appearing in gauge theory

AµνA1
= 4iκ3

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · pβ)`νβ − (k · `β)pνβ

][
(k · `β)(Sβ ∧ `β)µ − (`α ∧ `β)β`

µ
β

]
,

(A.16)

AµνA4
= 2iκ3

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(pα · pβ)[(k · pα)`νβ − (k · `β)pνα]

+ (k · pα)[(k · pβ)pνα − (k · pα)pνβ ]
][

(`β ∧ pα)β [(k · pα)`µβ − (k · `β)pµα]

+ (k · pα)[(k · pα)(Sβ ∧ `β)µ − (`α ∧ `β)βp
µ
α]
]
. (A.17)

The remaining two, AA2 and AA3 , do not factorize into Yang-Mills kinematic factors.

However, if we also include AAG (figure 4(d)) obtained from inserting the graviton-axion

operator eq. (4.17), we find that the linear combinations

AµνAG +AµνA2
+

1

2
AµνA3

= 2iκ3
∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · `β)(Sβ ∧ `β)µ − (`α ∧ `β)β`

µ
β

]
(A.18)

×
[
(pα · pβ)[(k · pα)`νβ − (k · `β)pνα] + (k · pα)[(k · pβ)pνα − (k · pα)pνβ ]

]
,

AµνAG −A
µν
A2
− 1

2
AµνA3

= −2iκ3
∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · pβ)`νβ − (k · `β)pνβ

]
(A.19)

×
[
(`β ∧ pα)β [(k · pα)`µβ − (k · `β)pµα] + (k · pα)[(k · pα)(Sβ ∧ `β)µ − (`α ∧ `β)βp

µ
α]
]
,

indeed factorize.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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