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1 Introduction

A large class of five-dimensional (5d) N = 1 gauge theories have non-trivial fixed points.

Novel phenomena such as dualities and global symmetry enhancements emerge at such

conformal fixed point [1–4]. Two or more theories of different gauge theory descriptions

can flow to the same fixed point and thus they are UV-dual in the sense that they flow to the

same superconformal field theory (SCFT) at UV. For instance, 5d Sp(N) gauge theories
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with Nf hypermultiplets in the fundamental representations (flavors) and 5d SU(N + 1)κ
gauge theories of Chern-Simons (CS) level κ = N + 3−Nf/2 with Nf flavors are a typical

example of such UV-duality [5]. In particular, 5d N = 1 gauge theories of rank-2 gauge

groups are completely classified with their dual partners and field contents [6–11]. Such

dual theories enjoy intriguing enhanced global symmetry, whose symmetry structure arises

through non-trivial interplays between instanton particles and hypermultiplets, and is often

checked from the index functions like superconformal index or partition function with

shifted Coulomb branch parameters.

Prepotential captures low energy effective descriptions of these SCFTs in Coulomb

branch where gauge group is completely broken to U(1)r where r is the rank of gauge group.

Intriligator, Morrison, and Seiberg (IMS) proposed the explicit form of the prepotential,

which is one-loop exact and at most cubic [4]. We refer to this perturbative prepotential as

the IMS prepotential. The IMS prepotential is readily determined from the gauge groups,

the CS levels (if exit), and hypermultiplet contents. Thus it respects perturbative global

symmetry from the hypermultiplets. The first derivative of the prepotential with respect

to Coulomb branch moduli yields monopole string tension, and also the second derivative

describes the effective coupling, which plays a role of the Coulomb branch metric. As

there are no instanton contributions, the IMS prepotential is insensitive to the global

symmetry enhancements.

As many of such 5d N = 1 theories can be engineered via Type IIB 5-brane webs [12,

13] or M-theory on Calabi-Yau (CY) threefold [14, 15], brane configurations also provide

a direct description of the prepotential. For instance, one can study CY geometry of 5d

gauge theories to obtain their triple intersections which yield the prepotential of the 5d

theories or one can also scan possible gauge theory descriptions from the geometry which

lead to a classification of the UV-dual theories [6, 9, 11, 16–19]. Though Type IIB 5-

branes can be understood as dual description of the geometry, not all CY geometries can

be realized as a 5-brane web. For those theories whose 5-brane configurations exist, UV-

dual structure is more intuitive as they can be realized as an S-duality or resolution of

orientifold planes, followed by Hanany-Witten transitions [20]. Enhanced global symmetry

can be also read off from the 7-brane analysis [21–23]. Areas of the compact faces of a

given 5-brane web correspond to monopole string tensions, from which one can readily

reconstruct the prepotential. Equivalence of the areas of the compact faces from 5-brane

webs and the prepotential for the corresponding theories is a necessary condition to find a

new 5-brane diagram. See recent proposals of 5-brane webs for SO(N) (7 ≤ N ≤ 12) gauge

theories with spinor matter [24], for G2 gauge theories with flavors [8, 25], for SU(6) gauge

theories with hypermultiplets in the rank-3 antisymmetric representation [26] and also for

6d D-Type conformal matter on a circle [27–29].

A 5-brane web contains much more than just the prepotential as one can compute

the partition functions [30, 31] (also leading to Gopakumar-Vafa (GV) invariants [32, 33])

and Seiberg-Witten curves based on it. 5-brane webs can be understood as a dual CY

toric(-like [34, 35]) diagram [36] and hence inherits M-theory configurations. One can

deform 5-brane webs using the Hanany-Witten transitions and the flop transitions, and also

apply SL(2,Z) transformations. Through such transitions, one can reach all the parameter

regions of the theories. 5-brane webs hence naturally capture both perturbative and non-
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perturbative aspects of the theory. On the other hand, since the IMS prepotential is

valid in the perturbative regime where the gauge coupling is small, the IMS prepotential is

incomplete in describing the theories as a whole including other phases of parameter regions.

In this paper, we attempt to extend and generalize the IMS prepotential to include

non-perturbative regime and also to capture other allowed parameter regions where dual

gauge theories are naturally realized. In other words, we construct “complete” prepotential

over the extended Kähler cone,1 such that (i) it reduces to the perturbative prepotential

of its gauge theory description if exists, (ii) it manifests its global symmetry, and (iii) it is

valid for the whole parameter region.

To this end, we use 5-brane webs as they inherit all the parameter regions. In par-

ticular, we introduce invariant Coulomb branch parameters that are invariant under the

enhanced global symmetry [39]. The complete prepotential expressed in terms of the in-

variant Coulomb branch parameters is manifestly invariant under the enhanced global sym-

metry. The mass parameters together with the instanton mass form invariant polynomials

of the representation of the enhanced global symmetry. Along the way, we introduce a new

notation in terms of the step function which is useful to keep track of flop transitions on

a 5-brane web, motivated by the expression in [40]. By considering all possible flops,2 one

can cover all the parameter regimes, which leads to the complete prepotential. In the week

coupling limit, of course, this complete prepotential naturally reduces to the IMS prepo-

tential. To exhaust the form of the complete prepotentials, we discuss different approaches

and test against various consistency checks to support our complete prepotentials.

The organization of the paper is as follows. In section 2, we demonstrate how to

construct the complete prepotential for the rank-1 theory, the SU(2) gauge theory with

Nf ≤ 7 flavors, which is expressed as the representation of ENf+1 symmetry. In subsequent

sections, we apply our method to rank-2 theories. As representative examples, we consider

the Sp(2) gauge theory with Nf ≤ 9 flavors in section 3 and the Sp(2) gauge theory with

one antisymmetric and Nf ≤ 7 flavors in section 4. In these sections, we discuss other

ways of obtaining the complete prepotential from geometry and from the GV invariants

to support the form of the complete prepotentials. We also consider various consistency

check like duality and RG flows. We conclude with possible applications, generalizations

and restrictions. In appendices we list the explicit form of the complete prepotentials that

are mentioned in the main text.

2 Prepotential for rank-1 theories

In this section we first start from determining complete prepotentials for simple examples,

namely rank-1 theories.

2.1 Complete prepotential

A 5d N = 1 supersymmetric gauge theory with a gauge group G has a Coulomb branch

which is parametrized by the real scalar field φ in the vector multiplet. On the Coulomb

1Here, the extended Kähler cone [37] refers to the enlarged Kähler moduli space [38].
2Flop invariant property is explored in a geometric setup based on the combined fiber diagram [41].
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branch, the gauge group is broken to U(1)rG where rG is the rank of G. The prepotential

governing the low-energy abelian theory is given by [1, 2, 4]

F(φ) =
1

2
m0hijφiφj +

κ

6
dijkφiφjφk +

1

12

( ∑

r∈roots

|r · φ|3−
∑

f

∑

w∈Rf

|w · φ+mf |3
)
, (2.1)

where m0 is the inverse of the gauge coupling squared, κ is the classical Chern-Simons

level and mf is a mass parameter for the matter f . r is a root of the Lie algebra g

associated to G and w is a weight of the representation Rf of the Lie algebra g. Here,

hij = Tr(TiTj), dijk = 1
2Tr (Ti{Tj , Tk}) where Ti are the Cartan generators of g. The terms

with the absolute values in the prepotential are the one-loop exact quantum contributions.

The first derivative of the prepotential ∂F
∂φi

gives the monopole string tensions Ti, and a

second derivative ∂2F
∂φi∂φj

yields the effective coupling τeff which is the metric on the Coulomb

branch. We call this prepotential the Intriligator-Morrison-Seiberg (IMS) prepotential for

later convenience.

As the IMS prepotential is a perturbative quantity, it is insensitive to non-perturbative

phenomena such as global symmetry enhancements and UV dualities. The discrete theta

angle of 5d Sp(N) theory is also not captured in the IMS prepotential. As a concrete

example, consider the 5d N = 1 SU(2) gauge theory with Nf ≤ 7 hypermultiplets in the

fundamental representation (flavors). It has a perturbative global symmetry of SO(2Nf )×
U(1)I , where SO(2Nf ) comes from Nf flavor symmetry and U(1)I corresponds to the

conserved symmetry of the instanton particle. In the infinite coupling limit, the theory

becomes a superconformal field theory and enjoys the enhanced global symmetry ENf+1 ⊃
SO(2Nf ) × U(1)I [1]. For pure SU(2) = Sp(1) gauge theory, manifest global symmetry

is U(1)I , and there are two distinct theories which differ by the theta angle θ = 0, π,

called SU(2)0 and SU(2)π gauge theories, respectively. Though they do not have any

hypermultiplet, these two theories have different global symmetries at the conformal fixed

point: the global symmetry for the SU(2)0 gauge theory is enhanced to SU(2) ⊃ U(1)I ,

while that for the SU(2)π gauge theory remains as U(1)I . They are also often referred to as

the E1 and Ẽ1 theories, respectively [2]. The IMS prepotentials for the E1 and Ẽ1 theories

are same and given by

FSU(2) =
1

2
m0 a

2 +
4

3
a3, (2.2)

where m0 ≥ 0 is the instanton mass and the Coulomb parameter a = φ lies in the Weyl

chamber a ≥ 0.3 As non abelian global symmetry is realized as the Weyl reflection on the

mass parameters, one can see that the IMS prepotential (2.2) does not show the SU(2)

symmetry manifestly.4 Rather it is of a U(1)I symmetry associated with m0. The IMS

prepotential (2.2) hence does not capture the symmetry enhancement as it is. The corre-

sponding monopole string tension T is given by

T = m0 a+ 4 a2, (2.3)

3Throughout this paper, we choose a naturally ordered Coulomb branch parameters with a judicious

choice of Weyl chamber.
4In other words, the IMS prepotential (2.2) is not manifestly invariant under m0 ↔ −m0.
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2a+
1

2
m0

2a
m0/2

E1

2a
m0/2

Ẽ1

3a+
1

2
m0

a+
1

2
m0

(a) (b)

Figure 1. (a) A 5-brane web for pure SU(2)0 gauge theory (or E1 theory). (b) A 5-brane web for

pure SU(2)π gauge theory (or Ẽ1 theory).

and the effective coupling τeff is

τeff = m0 + 8 a . (2.4)

From the perspective of 5-brane webs in Type IIB string theory, it is also straightfor-

ward to obtain the prepotential. As a BPS configuration, 5-brane web is made of 5-branes

of (p, q) charges forming edges and faces as shown in figure 1. Given a 5-brane web, one can

associate the parameters of the 5-brane web diagram with the gauge theory parameters,

m0,mf , and φi (or equivalently ai). Areas of the compact faces of a 5-brane correspond to

the monopole string tension for the theory. As one can express the areas of the compact

faces in terms of the gauge theory parameters, one can readily obtain the prepotential from

a given 5-brane web. For instance, the 5-brane webs in figure 1 are pure SU(2) theories with

different discrete theta angles. It is easy to check that the area of the compact faces of these

5-branes in figure 1 is the same as (2.3) and therefore yields the same prepotential as (2.2).

5-brane configurations, of course, convey more information than just a prepotential.

Though the IMS prepotential for the E1 theory and that for the Ẽ1 theory are the same,

their 5-brane webs are different in the sense that they are not related by any continuous

deformations. In [13, 39], it was discussed that the enhanced global symmetry can be

captured in 5-brane webs as the fiber-base duality, with the introduction of the invariant

Coulomb branch parameter, which is the shifted Coulomb branch parameter such that it

is invariant under the exchange of fiber and base Kähler parameters. For instance, one can

see that the SU(2)0 5-brane web given in figure 1(a) can be symmetric under the reflection

with respect to the (1, 1) 5-brane when the fiber Kähler parameter QF and the base Kähler

parameter QB are suitably chosen such that QF ↔ QB. This fiber-base duality hence leads

to the global symmetry enhancement to E1 = SU(2).

For the pure SU(2)0 gauge theory, the invariant Coulomb branch parameter ã is given

by [39]

ã = a+
1

8
m0 , (2.5)

with which the effective coupling (2.4) becomes independent of m0. The prepotential for

the E1 theory is then expressed as

FE1 = − 1

16
m2

0 ã +
4

3
ã3 , (2.6)
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3 a+
1

2
m0

−a− 1

2
m0

3 aE0

E0Ẽ1

(a) (b)

Figure 2. (a) Ẽ1 theory with a+ 1
2m0 < 0. (b) E0 theory.

where irrelevant constants are/will be neglected. It is clear that this new form of the

prepotential (2.6) is invariant under SU(2) Weyl reflection m0 ↔ −m0. The new prepo-

tential, expressed in terms of the invariant Coulomb branch parameter, hence makes SU(2)

enhanced global symmetry manifest. The prepotential (2.6) is also valid for all possible

phases of m0.

For the pure SU(2)π gauge theory, as there is no enhanced global symmetry, no invari-

ant Coulomb branch parameter is needed, and hence, for m0 > 0, the prepotential (2.2)

remains unaltered. For m0 < 0, on the other hand, the theory can become non-Lagrangian

as depicted in figure 2(a). In this phase, the IMS description is not valid. The prepo-

tential can be nevertheless read off from the 5-brane web. The area of the compact face,

corresponding to the monopole string tension, is

T =
9

2

(
a+

1

6
m0

)2

. (2.7)

We note here that the Coulomb branch parameter a is further restricted since the monopole

tension T should be non-negative. I.e., a > −1
6m0 for m0 < 0. (See also [42].) We call

these allowed parameter regions the physical Coulomb branch [7]. The prepotential in the

parameter region is then given by

F =
3

2
a3 +

3

4
m0 a

2 +
1

8
m2

0 a . (2.8)

One can see that it is not invariant under m0 ↔ −m0 and thus the corresponding global

symmetry is still U(1)I , as expected.

As the Ẽ1 theory allows the decoupling (RG flows) to the E0 theory, we can further

check whether the prepotential (2.8) reproduces that for the E0 theory. By taking m0 →
−∞, keeping 3a+ 1

2m0 finite, in figure 2(a), we find that the prepotential for the E0 theory,

obtained from the resulting web diagram figure 2(b) is given by

FE0 =
3

2
(aE0)3 , (2.9)
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where irrelevant constant is dropped and

aE0 = a
Ẽ1

+
1

6
m0Ẽ1

. (2.10)

In order to incorporate all the regimes of the parameters a,m0, we found that it is

convenient to introduce the following new symbol, motivated by [40],

⌈∣∣x
∣∣⌉ ≡ θ(−x) · x =

{
0 x > 0 ;

x x < 0 ,
(2.11)

with the Heaviside step function θ(x), which is related to the absolute value as

∣∣x
∣∣ = x− 2

⌈∣∣x
∣∣⌉ or

∣∣x
∣∣ = −x− 2

⌈∣∣−x
∣∣⌉ . (2.12)

It is then straightforward to see that prepotential that includes all ranges of m0 for the Ẽ1

theory takes the form

F
Ẽ1

=
1

2
m0 a

2 +
4

3
a3 +

1

6

⌈∣∣∣∣ a+
1

2
m0

∣∣∣∣
⌉3

. (2.13)

The prepotential (2.13) then becomes the perturbative prepotential for pure SU(2)π the-

ory (2.2) when a ≥ 0 and a + 1
2m0 ≥ 0. (2.13) gives rise to that of non-Lagrangian

theory (2.8) when a + 1
2m0 ≤ 0 and a + 1

6m0 ≥ 0. These ranges come from the condi-

tion that each length of the edges in figure 1(b) and figure 2(a), or equivalently from each

monopole string tension being positive.

The prepotentials for the pure SU(2) gauge theories with θ = 0, π, (2.6) and (2.13),

therefore, cover not only the usual perturbative (IMS prepotential) regime but also include

non-perturbative regime. They are expressed in terms of the invariant Coulomb moduli

and thus manifest in enhanced global symmetry. We call such new prepotentials complete

prepotentials. Notice here that the first two terms in the complete prepotential for the

Ẽ1 theory (2.13) are just the IMS prepotential (2.2), and the last term is given as the

5-brane length cubed associated with the flop transitions in figure 2(a). The last term is

interpreted as the contribution from the light instanton particle. It is in fact true that the

complete prepotential can be read off by carefully tracing out all possible flops in a given

5-brane web.

Let us now consider cases with flavors. For Nf = 1 flavor, the IMS prepotential is

given as

FIMS =
1

2
m0 a

2 +
4

3
a3 − 1

12
|a±m1|3

=
1

2
m0 a

2 +
7

6
a3 − 1

2
m2

1 a+
1

6

⌈∣∣ a±m1

∣∣⌉3
, (2.14)

where we introduced the shorthand notation ± for a double sum, e.g., |x± y|3 ≡ |x+ y|3 +

|x−y|3. Possible phases of the 5-brane webs for the theory with Nf = 1 flavor are depicted

in figure 3 [2, 12, 42]. All these phases in the parameter space of the E2 theory, which we

– 7 –
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(I) (II)

(III) (IV)

(V)

2a
a−m1

−a−m1

a+m1

a−m1

3a+
1

2
(m0 −m1)

2a+
1

2
(m0 +m1) 2a+

1

2
(m0 +m1)

2a

a+
1

2
(m0 −m1)

2a

2a+
1

2
(m0 +m1)

3a+
1

2
(m0 −m1)

3a+
1

2
(m0 −m1)

Figure 3. All possible distinct phases of E2 web diagram.

identify with the Kähler cone of the corresponding geometry, is depicted in figure 4, which

adds more quantitative information to the figure that appears in [2].

From these phases given in figure 3, one can compute the area Ti of each phase and

then obtain the corresponding prepotential Fi:

• Phase (I): {a+m1 > 0 & a−m1 > 0 & a+ 1
2(m0 −m1) > 0}

F(I) =
7

6
a3 +

1

2
m0 a

2 − 1

2
m2

1 a . (2.15)

• Phase (II): {a > 0 & a+ 1
4(m0 +m1) > 0 & a+m1 < 0}

F(II) =
4

3
a3 +

1

2
(m0 +m1) a2 . (2.16)

• Phase (III):{a > 0 & a−m1 < 0 & a+ 1
2(m0 −m1) > 0}

F(III) =
4

3
a3 +

1

2
(m0 −m1) a2 . (2.17)
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A

B

C

D

E

OAB

OBC

OAC

OAE

OCD

ODE

a = 0
<latexit sha1_base64="QpGLJ9METLdDusJFM0BYwV3uV/0="></latexit>

a+
1

4
(m0 +m1) = 0

<latexit sha1_base64="HNzNV7xoWsNJ4BTeAPG3W6DcSkw="></latexit>

a+
1

6
(m0 �m1) = 0

<latexit sha1_base64="+VadvKKgz7CSOE7VPE1qXFKRyKA="></latexit>

a�m1 = 0
<latexit sha1_base64="J3JtyjYRRkCiUnJpsLLg7TVmWZE="></latexit>

a+m1 = 0
<latexit sha1_base64="GRFTpr3kWc7TPh8feUoJMsYfnC0="></latexit>

a+
1

2
(m0 �m1) = 0

<latexit sha1_base64="lnpCYqZXnOrytTFg18b5TPyljMo="></latexit>

F

(I)
<latexit sha1_base64="jvM0dYMN4/hPz4Me+PcN36LanyY="></latexit>

ODEF (II)
<latexit sha1_base64="Xmml5Gv+TnhvDW9xauc7f39B7Ys="></latexit>

OBDE (III)
<latexit sha1_base64="q7pwFZSWkTpxKtZmBdQM2eDsp/Y="></latexit>

OCEF (IV)
<latexit sha1_base64="jW+0db8OWCcDFzwZJV3P8sdJlAk="></latexit>

OADF (V)
<latexit sha1_base64="TQampgarcpnaY2IVO8EQlA5EOlA="></latexit>

OACF

Figure 4. The parameter space of the E2 theory, which is identified as the Kähler cone of the

corresponding geometry. The allowed parameter region is the space which is surrounded by the three

planes represented by OAB, OBC, and OCD, respectively. If we fix the mass parameters m0 and

m1, this allowed region is identified as the physical Coulomb moduli. This allowed parameter region

is divided into five phases due to the three internal “walls”, which are represented by OAE, OCD,

and ODE, respectively. These walls are the place where the flop transition occurs. Especially,

Phase (I) is identified as the region surrounded by these three internal walls, which we represent

as ODEF .

• Phase (IV): {a+ 1
4(m0 +m1) > 0 & a−m1 > 0 & a+ 1

2(m0 −m1) < 0}

F(IV) =
4

3
a3 +

1

4
(3m0 −m1) a2 +

1

8
(m0 +m1)(m0 − 3m1) a . (2.18)

• Phase (V): {a+ 1
6(m0 −m1) > 0 & a−m1 < 0 & a+ 1

2(m0 −m1) < 0}

F(V) =
3

2
a3 +

3

4
(m0 −m1) a2 +

1

8
(m0 −m1)2 a . (2.19)

These prepotentials for all phases can be put in a single short expression,

FE2 =
7

6
a3 +

1

2
m0 a

2 − 1

2
m2

1 a+
1

6

⌈∣∣ a±m1

∣∣⌉3
+

1

6

⌈∣∣∣∣ a+
1

2
(m0 −m1)

∣∣∣∣
⌉3

, (2.20)

which is valid in all region and so it is the complete prepotential of the E2 theory.

Among five different phases in figure 3, (I), (II), and (III) are the phases that the IMS

prepotential for the SU(2) gauge theory with one flavor has, and thus the prepotential

covering all the allowed phases is expressed as

FE2 = FIMS +
1

6

⌈∣∣∣∣ a+
1

2
(m0 −m1)

∣∣∣∣
⌉3

, (2.21)
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where FIMS is given in (2.14) and the last term is responsible for the phases where m0 <

−2a + m1. Some of such phases can on the other hand related to the IMS phases by

S-duality. For instance, the phase (IV) is S-dual of the phase (III).

The complete prepotential (2.20) incorporating all the parameter regions is then clearly

expressed as the IMS prepotential plus the S-dual pairs or the contributions of all possi-

ble flops,

FE2 =FCFT +
1

6

∑

flops

⌈∣∣ flops
∣∣⌉3
, (2.22)

where FCFT is F(I) in (2.15), and there are three different types of flops, as depicted in 3,

which accounts for the last three terms in (2.20). Note that FCFT is the prepotential on a

phase of the parameter region where the Coulomb branch modulus a can be much larger

than the other mass parameters including the inverse coupling constant squared m0. In

this paper, we call this phase “the CFT phase,” which is compatible with the parameter

region where all the mass parameters are turned off.

One can see that the RG flows to one less flavor cases naturally connect to the complete

prepotentials for E1 and Ẽ1 theories. Namely, by taking m1 → −∞ and m0 → +∞ while

mE1
0 = m0 +m1 is kept fixed, one readily finds that (2.20) becomes (2.2), i.e. FE2 → FE1 .

Likewise, by taking m1 → +∞ & m0 → ∞ while mẼ1
0 = m0 −m1 is kept fixed [42], one

readily finds that (2.20) again becomes (2.8), i.e. FE2 → FẼ1
.

The perturbative global symmetry for the SU(2) theory with Nf = 1 flavor is SO(2)×
U(1)I . On the other hand, one can read off the enhanced E2 = SU(2) × U(1) symmetry

from (2.20) by introducing the invariant Coulomb branch parameter ã. For the SU(2)

gauge theory with Nf = 1 flavor, the invariant Coulomb branch parameter is given by [39],

ã = a+
1

7
m0 . (2.23)

The complete prepotential (2.20) is then expressed as

FE2 =
7

6
ã3 −

(
x2 +

1

7
y2

)
ã +

1

6

⌈∣∣∣∣ ã +
4

7
y

∣∣∣∣
⌉3

+
1

6

⌈∣∣∣∣ ã± x−
3

7
y

∣∣∣∣
⌉3

, (2.24)

where we have introduced E2 = SU(2)×U(1) symmetry parameters, x, y [43]

x =
1

4
m0 +

1

4
m1 , y = −1

4
m0 +

7

4
m1 , (2.25)

so that the last two terms in (2.24) become an SU(2) doublet, invariant under x↔ −x, and

the U(1) parameter is denoted by y. As a consequence, a particular set of flop transitions

is closely related to the Weyl reflections of enhanced global symmetry. It means that one

can obtain the complete prepotential by taking into account all possible flop transitions,

which enables one to span all the parameter regions, or equivalently by considering the

Weyl reflections for the corresponding representation of enhanced global symmetry. The

latter would be more systematic when the rank of gauge group or the number of hyper-

multiplet is large.
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The same complete prepotential (2.24) can be obtained by the following systematic

procedure: (i) Start with the IMS prepotential for a given theory in a Weyl chamber with

certain phases for masses. (ii) Rewrite the IMS prepotential in terms of the invariant

Coulomb branch parameter ã. (iii) Then apply the Weyl reflections for enhanced global

symmetry. For instance, from (i) and (ii), we get the prepotential for SU(2) gauge theory

with Nf = 1 flavor is given as

F =
7

6
ã3 −

(
1

2
m2

1 +
1

14
m2

0

)
ã +

1

6

⌈∣∣ ã− 1

7
m0 ±m1

∣∣⌉3
. (2.26)

Using (2.25) and also applying the Weyl reflection of SU(2), one reproduces (2.24).

One can easily repeat the procedure and get the complete prepotential for SU(2) gauge

theory with Nf ≤ 7 flavors. Here, the invariant Coulomb branch parameter ã for the SU(2)

theory with Nf flavors is then given by5

ã = a+
1

8−Nf
m0 , (2.27)

which is equivalent to [39]. As an example, we write the prepotential the SU(2) theory

with Nf = 7 flavors. First, the IMS prepotential for the SU(2) theory with Nf = 7 flavors

6FIMS = a3 + 3m0a
2 − 3

7∑

k=0

m2
ka+

7∑

k=1

⌈∣∣ a±mk

∣∣⌉3
. (2.28)

With the invariant Coulomb branch parameter ã = a+m0, one applies the Weyl reflection

of E8 given in appendix A to get the complete prepotential

6FSU(2)+7F = − 3

7∑

k=0

m2
k ã + ã3 +

7∑

k=1

⌈∣∣ ã−m0 ±mk

∣∣⌉3
(2.29)

+
7∑

k=1

⌈∣∣ ã +m0 ±mk

∣∣⌉3
+

∑

1≤i<j≤7

⌈∣∣ ã±mi ±mj

∣∣⌉3

+
∑

{si=±1}
even+

⌈∣∣∣∣ ã−
1

2
m0 +

1

2

7∑

k=1

skmk

∣∣∣∣
⌉3

+
∑

{si=±1}
odd+

⌈∣∣∣∣ ã +
1

2
m0 +

1

2

7∑

k=1

skmk

∣∣∣∣
⌉3

.

5Given the IMS prepotential, one can take a limit, called CFT phase, where the Coulomb branch

parameters ai are much larger than mass parameters mj including the instanton mass m0, subject to

ai � m0 � mj . In this phase, we see that the effective coupling τij = ∂2F
∂φi∂φj

to be only a function of a and

m0. For instance, the prepotential for 5d SU(2) gauge theory with Nf flavors in the CFT phase is given by

FSU(2)+NfF

CFT =
1

2
m0 a

2 +
1

6
(8−Nf ) a3.

Form this, one can consider the second derivatives of FCFT, which gives the effective coupling in the CFT

phase, τeff = m0 + (8−Nf )a. In the CFT phase, we require that no mass parameter appears so as not to

be transformed under the Weyl reflection of the enhanced global symmetry. In other words, by shifting the

Coulomb branch parameter, we introduce the invariant Coulomb branch parameter ã (2.27) so that FCFT

respects the enhanced global symmetry.
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Here, the summation symbol in the term corresponding to the (conjugate) spinor repre-

sentation
∑

{si=±1}
even+

and
∑

{si=±1}
odd+

(2.30)

denotes that we sum over all possible combination of si such that even (odd) number of si
take the value si = +1, while the remaining take the value si = −1. It is straightforward

to check that this complete prepotential goes back to the IMS prepotential in the weak

coupling region m0 � |mf |, |a|. We note that linear combinations of mi in
⌈∣∣ ∣∣⌉3

form

SO(14) representation and the coefficient of m0 is the U(1)I charge. We can put the terms

in (2.29) to re-express the prepotential as an SO(16) manifest form F = FCFT +FSO(16)
120 +

FSO(16)
128 , and they can be further reorganized as the adjoint representation of E8

E8 ⊃ SO(16) ⊃ SO(14)×U(1)I

248 = 120 + 128 = 10 + 14−2 + 142 + 910 + 64−1 + 641. (2.31)

Therefore we get a complete prepotential which is E8 manifest, FE8 = FCFT + FE8
248,

6FE8 = −3
7∑

k=0

m2
k ã + ã3 +

∑

wE8
∈248

⌈∣∣ ã + ~wE8 · ~m
∣∣⌉3

. (2.32)

We note that in counting the dimension of representations, we added 8
⌈∣∣ ã
∣∣⌉3

by hand to

account for the 8 Cartans, which did not necessarily appear in (2.29) since
⌈∣∣ ã
∣∣⌉3

= 0

for ã > 0.

For less flavors, one can decouple flavors one by one from the FE8 to obtain the

complete prepotentials for the SU(2) gauge theory with Nf ≤ 7 flavors. They show the

ENf+1 enhanced global symmetry, and the explicit expressions are listed in appendix B.

2.2 Prepotential from partition function

Suppose that we compactify a 5d N = 1 gauge theory on S1 with radius R. Or equivalently,

we consider a 4d N = 2 gauge theory with Kaluza-Klein modes. It is well known that the

prepotential FR3,1×S1 of this theory [44, 45] is obtained from the 5d Nekrasov partition

function ZR3,1×S1 by taking the limit [46–48]

FR3,1×S1 = lim
ε1,ε2→0

ε1ε2 logZR3,1×S1 . (2.33)

This prepotential, of course, includes instanton contribution as well as 1-loop perturbative

part. It is known that IMS prepotential can be reproduced from the decompactification

limit of this prepotential

lim
R→∞

1

R
FR3,1×S1 ⇒ FIMS, (2.34)

It has been discussed that the instanton contribution vanishes in this limit because the

instanton factor e−Rm0 is exponentially suppressed. This claim is correct as long as we

consider the weak coupling region m0 � |mf |, |a|.
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However, in this paper, we are considering all the possible parameter region, even

including the region m0 < 0, where the original gauge theory description is not valid any

more. In this case, it is not correct to claim that the instanton contribution still vanishes

in the limit. We claim that the same limit indeed reproduces our complete prepotential if

we admit all the parameter region:

FComplete = lim
R→∞

1

R
FR3,1×S1 . (2.35)

That is, the instanton contribution does remain in the decompactification limit in a way

similar to perturbative part. This claim, of course, goes back to the traditional claim (2.34),

when we consider the weak coupling region, where our complete prepotential reproduces

the IMS prepotential.

In order to see this, let us first start from Nekrasov partition function. Nekrasov

partition function is identified as the refined topological string partition function on the

corresponding Calabi-Yau 3-fold, which is expressed in the following form by using the

Gopakumar-Vafa invariants N
(jL,jR)
C [31, 32, 49]:

ZR3,1×S1 = Z0 exp


 ∑

C∈H2(X,Z)

∑

jL,jR

∞∑

n=1

N
(jL,jR)
C [jL, jR]tn,qn

n
(
t
n
2 − t−n2

)(
q
n
2 − q−n2

)e−nRTC



= Z0PE


 ∑

C∈H2(X,Z)

∑

jL,jR

N
(jL,jR)
C [jL, jR]t,q(

t
1
2 − t− 1

2

)(
q

1
2 − q− 1

2

)e−RTC

 (2.36)

where PE stands for the plethystic exponential and

[jL, jR]t,q := (−1)jL+jR+1
(
(tq)−jL + · · · (tq)jL

) (
(tq−1)−jR + · · · (tq−1)jR

)
, (2.37)

with t = e+Rε1 , q = e−Rε2 . The variable RTC is the Kähler parameters corresponding to

the the 2-cycle C and can be interpreted as the masses of M2-branes wrapped on C, which

is rescaled by the radius R for later convenience. The prefactor Z0 is the part which does

not vanish in the limit RTC →∞.

When we take the limit as in (2.33), we obtain

FR3,1×S1 = RF0 −
1

R2

∑

C∈H2(X,Z)

∑

jL,jR

(−1)jL+jR+1(2jL + 1)(2jR + 1)N
(jL,jR)
C Li3

(
e−RTC

)

(2.38)

where RF0 = limε1,ε2→0 ε1ε2 logZ0 corresponds to the triple-intersection term in the CFT

phase. Li3 is the polylogarithm function defined as Lis(z) =
∑∞

k=1
zk

ks . When we finally

take the decompactification limit, we obtain

FComplete = F0 −
1

6

∑

C∈H2(X,Z)

∑

jL,jR

(−1)jL+jR+1(2jL + 1)(2jR + 1)N
(jL,jR)
C

⌈∣∣TC
∣∣⌉3
, (2.39)

where we used

lim
R→+∞

1

R3
Li3
(
e−Rx

)
=

1

6

⌈∣∣x
∣∣⌉3
. (2.40)
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At this stage, it looks as if our complete prepotential includes infinitely many terms cor-

responding to all the 2-cycles C ∈ H2(X,Z). Note, however, that the Coulomb branch

parameter a must be inside the physical Coulomb moduli. Therefore, if TC > 0 is always

satisfied for certain C in the physical Coulomb moduli, it indicates that the correspond-

ing term vanishes by definition (2.11):
⌈∣∣TC

∣∣⌉ = 0. That is how we obtain the finitely

many terms.

In the following, we see this phenomena in the specific example: Sp(1) gauge theory

with Nf = 7 flavors. This theory enjoys E8 global symmetry at the UV fixed point. We

follow the convention for the representations of E8 summarized in appendix A. The Calabi-

Yau geometry corresponding to the SU(2) gauge theory with Nf = 7 flavors is the 8th local

del Pezzo surface and its Gopakumar-Vafa invariants are computed in [33] explicitly. Their

results indicates that the corresponding 5d Nekrasov partition function can be written in

the following form:

ZR3,1×S1

Z0
= PE

[
1

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )

×
{ [

[0, 0]χµ8 +

[
1

2
,
1

2

]]
Ã+

[[
0,

1

2

]
(χµ1 + 1) +

[
1

2
, 1

]
χµ8 +

[
1,

3

2

]]
Ã2

+

[
[0, 0]

(
χµ8 + χµ7

)
+ [0, 1]

(
χµ8 + χµ2 + χµ1 + 1

)
+ [0, 2]χµ8

+

[
1

2
, 1

](
χµ8 + χµ1 + 1

)
+

[
1

2
,

3

2

](
χµ8 + χµ7 + χµ1 + 1

)
+

[
1

2
,

5

2

]
+ [1, 0]

+ [1, 1]χµ8 + [1, 2]
(
χµ8 + χµ1 + 1

)
+

[
3

2
,

3

2

]
+

[
3

2
,

5

2

]
χµ8 + [2, 3]

]
Ã3

+O(Ã4)

}]
. (2.41)

where we denote Ã = e−Rã. and we abbreviated the label t, q in [jL, jR]t,q for simplicity.

In appendix E, we have derived that the physical Coulomb moduli is given as

2ã− w · ~m ≥ 0, ∀w ∈ µ1,

3ã− w · ~m ≥ 0, ∀w ∈ µ2. (2.42)

Also, we discussed that the following inequalities are satisfied from these conditions:

n0ã ≥ 0, ∀n0 ≥ 1

n1ã− w · ~m ≥ 0, ∀w ∈ µ1, ∀n1 ≥ 2,

n2ã− w · ~m ≥ 0, ∀w ∈ µ2, ∀n2 ≥ 3,

n7ã− w · ~m ≥ 0, ∀w ∈ µ7, ∀n7 ≥ 3,

n8ã− w · ~m ≥ 0, ∀w ∈ µ8, ∀n8 ≥ 2. (2.43)

These inequalities indicate that all the terms in (2.41) of the form

1 · Ãn0 (n0 ≥ 1), χµ1Ã
n1 (n1 ≥ 2), χµ2Ã

n2 (n2 ≥ 3),

χµ7Ã
n7 (n7 ≥ 3), χµ8Ã

n8 (n8 ≥ 2) (2.44)
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Figure 5. String generating BPS particle with spin (jL, jR) = (0, 12 ).

Figure 6. String junction generating BPS particle with spin (jL, jR) = (0, 1).

vanish after the decompactification limit (2.35) because they produce the terms propor-

tional to
⌈∣∣ (l.h.s. of (2.43))

∣∣⌉3
= 0 in the complete prepotential (2.39). Only the excep-

tional term in (2.41) is

[0, 0]χµ8Ã, (2.45)

which contributes as

1

6

∑

w∈µ8

⌈∣∣ ã + w · ~m
∣∣⌉3
. (2.46)

If we identify the triple-intersection term as6

F0 = −1

2

7∑

k=0

m2
k ã +

1

6
ã3, (2.47)

we reproduce our complete prepotential (2.32) from the partition function (2.41).

Through the computation above, we have an interesting observation. The physical

Coulomb moduli (2.42) can be regarded as the condition that the Kähler parameters TC
corresponding to the terms in

[
0,

1

2

]
χµ1Ã

2, [0, 1]χµ2Ã
3, (2.48)

which appear in (2.41), should be all positive. The first one in (2.48) corresponds to the

W-boson and their partners related by the Weyl reflections. The example of the string

generating such particles is depicted in figure 5. The second one in (2.48) includes the

term which remains after the flavor decoupling down to the E0 theory. It implies that such

6This part cannot be read off from the Gopakumar-Vafa invariants and should be computed separately.

Here, we simply imported the results from (2.32).
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term corresponds to the string junction which appears in the web diagram as depicted in

figure 6. At the boundary of the physical Coulomb moduli, where the magnetic monopole

tension vanishes, either of these two types of BPS particle becomes massless.7 Here, we

summarize our observation:

Observation 1. Whenever the monopole tension goes to zero, at least one BPS particle

either with spin (jL, jR) = (0, 1
2) or with spin (jL, jR) = (0, 1) also becomes massless and

vice versa.

We expect that it is true for more generic examples. If this is true, we can reproduce

the physical Coulomb moduli from the Gopakumar-Vafa invariants by imposing TC ≥ 0

for all the 2-cycle C satisfying N
(jL,jR)
C > 0 with (jL, jR) = (0, 1

2) or (jL, jR) = (0, 1).

Moreover, we have further observation from (2.45) that the BPS particle which con-

tributed to the complete prepotential is the contribution from the hypermultiplets and

their partners. Such BPS particle can realize negative Kähler parameter TC < 0 by the

transition as depicted in figure 7. The brane configuration in figure 7 can be interpreted

as the flop transition of the rational curves with the normal bundle O(−1) ⊕ O(−1). We

summarize our observation as follows:

Observation 2. The negative Kähler parameters TC < 0 which contribute to the com-

plete prepotential can be realized only from the rational curves with the normal bundle

O(−1)⊕O(−1).8

Again, we expect that it is true for other examples. Note that M2-brane wrapping such

a curve corresponds to the BPS particle with spin (jL, jR) = (0, 0). Therefore, this implies

that the BPS particle with (jL, jR) 6= (0, 0) cannot contribute to the complete prepotential

and thus, (2.39) simplifies as

FComplete = F0 +
1

6

∑

C∈H2(X,Z)

N
(0,0)
C

⌈∣∣TC
∣∣⌉3
. (2.49)

Only some of the BPS particles with spin (jL, jR) = (0, 0) can contribute to the complete

prepotential.

If these two observations would be applicable for generic gauge theories of any rank,9

they would give a systematic method to obtain the complete prepotential as well as the

physical Coulomb moduli from the list of Gopakumar-Vafa invariants. We will use them

later to study Sp(2) gauge theory.

7These two cases are studied in [37] as examples of “a divisor collapsing to a curve” and “a divisor

collapsing to a point”, respectively.
8For example, the cycle with the Kähler parameter 2a, which is the rational curve with the normal bundle

O(−2) ⊕ O(0), does not contribute to the complete prepotential in our convention because we chose the

Weyl chamber a > 0. The contribution from the cycle with the Kähler parameter of the form mi−mj also

vanishes because we remove such contribution from the the partition function as the“extra factor” [50–55].
9It would be interesting to find more precise mathematical expressions for these observations, which

might have appeared in the math literature.
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TC > 0
<latexit sha1_base64="LLv4iF+SO14RxqMzbHv6Y6el2SU="></latexit>

TC < 0
<latexit sha1_base64="Dh6V3vhjRC2kFzUkQ6CY85T+cyM="></latexit>

TC
<latexit sha1_base64="/YRNJfJUFY4MLDVfg3Bwc077tUk="></latexit>

�TC
<latexit sha1_base64="wX33vnkq7+ljwbKvpkVXFLGFKd8="></latexit>

Figure 7. String generating BPS particle with spin (jL, jR) = (0, 0), which can realize TC < 0.

2.3 Prepotential from Mori cone generators

We have seen in section 2.1 that the effective prepotentials for the SU(2) gauge theories

receive novel contributions from light instanton particles. In section 2.2 the contributions

were interpreted in terms of BPS particles wrapped on holomorphic curves in the local

Calabi-Yau threefold dual to the 5-brane web for the SU(2) gauge theory with 7 flavors.

In this subsection, we will identify the holomorphic curves more explicitly in the dual ge-

ometry.

We focus on the 5d SU(2) gauge theory with 7 flavors and hence on the 8th del Pezzo

surface dP8 which is the base manifold of the dual local Calabi-Yau threefold. We first

determine relations between the volume of curves in dP8 and the parameters of the SU(2)

gauge theory with 7 flavors. Any element in the second homology of dP8 is generated by

the hyperplane class L and the exceptional curve classes Xi (i = 0, · · · , 7). The intersection

numbers are given by

L · L = 1, Xi ·Xj = −δij , L ·Xi = 0, (2.50)

for all i, j = 0, · · · , 7 and the canonical divisor class is

KdP8 = −3L+

7∑

i=0

Xi. (2.51)

In order to see the structure of the SU(2) gauge theory with 7 flavors, it is useful to regard

dP8 as a blow up of dP1 at 7 points. The dP1 part gives the SU(2) gauge theory and the 7

points blow ups introduce 7 flavors. Let the 7 exceptional curves associated to the 7 blow

ups be Xi (i = 1, · · · , 7). The fiber class F of dP1 is then given by F = L − X0. The

volume of the fiber class is related to the Coulomb branch modulus a of the SU(2) gauge

theory and we have

vol(F ) = 2a. (2.52)

In order to see the other relations, we can make use of the fact that the E8 root lattice

is a subset in H2(dP8,Z). The E8 root lattice in H2(dP8,Z) is given by

RdP8 = {C ∈ H2(dP8,Z) | C · C = −2, C ·KdP8 = 0} (2.53)

Then RdP8 is generated by

Ci = Xi−1 −Xi (i = 1, · · · , 7), C8 = L− (X1 +X2 +X3). (2.54)
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C7 C6 C5 C4 C3 C2 C1

C8

Figure 8. The intersection structure of the curves in (2.54).

The matrix Ci · Cj yields the negative of the Cartan matrix of the E8 Lie algebra and the

intersection structure of Ci (i = 1, · · · 8) forms the Dynkin diagram of E8 as in figure 8.

Namely the curves C1, · · · , C8 correspond to the simple roots of E8.

The appearance of the E8 root system is related to the fact that the SU(2) gauge theory

with 7 flavors shows an E8 global symmetry at the UV fixed point. The mass parameters

mi, (i = 0, · · · , 7) are associated with the Cartan part of the E8 global symmetry. Here m0

is the inverse of the gauge coupling squared. The other mi’s are the mass of the 7 flavors

and they are associated with the Cartan part of the perturbative SO(14) flavor symmetry.

The curves C2, · · · , C8 form the D7 Dynkin diagram and hence they are related to the

simple roots of SO(14). Therefore the volume of the curves can be parameterized by

vol(Ci) = mi −mi−1 (i = 2, · · · , 7), vol(C8) = m2 +m1. (2.55)

On the other hand, the E8 root corresponding to C1 is related to a spinor weight of SO(14)

and its volume is given by

vol(C1) =
1

2
(m0 +m1 −m2 −m3 −m4 −m5 −m6 −m7). (2.56)

Then solving (2.52), (2.55), (2.56) in terms of L,Xi for i = 0, · · · , 7 yields

vol(L) = 3a+
1

2
(m0 −m1 −m2 −m3 −m4 −m5 −m6 −m7),

vol(X0) = a+
1

2
(m0 −m1 −m2 −m3 −m4 −m5 −m6 −m7),

vol(Xi) = a−mi (i = 1, · · · , 7).

(2.57)

We would like to identify the holomorphic curves explicitly in the dP8 which yield

the contributions given by
⌈∣∣ ∣∣⌉ in the complete prepotential of (2.32). When one of

⌈∣∣ ∣∣⌉’s
vanishes, the corresponding BPS particle becomes massless. This occurs on a codimension-

1 boundary of the Kähler cone of the geometry. In other words, the BPS particle arises

from an M2-brane wrapped on a curve which corresponds to a generator of the Mori

cone. Therefore we will concentrate on the generators of the Mori cone of the geometry.

Furthermore, as mentioned in observation 2 in the previous subsection, we expect that the

BPS particles which contribute to the effective prepotential come from M2-branes wrapped

on rational curves with the normal bundle O(−1) ⊕ O(−1). Hence we consider rational

curves with the self-intersection number −1 in the generators of the Mori cone of dP8.
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In general we need to see all such curves of all the local Calabi-Yau threefolds that are

related by flop transitions. This is because the complete prepotential is valid in the whole

parameter region which corresponds to the extended Kähler cone. However for the rank-1

case, flopping such a curve inside dP8 corresponds to a blow down of dP8 and introduces a

flopped curve outside the compact surface. The blow down of dP8 is dPn with 0 ≤ n < 8 or

F0. The rational curves with the self-intersection number −1 in the generators of their Mori

cones are a subset of those of dP8. This can be expected since the blow down geometry is

related to the SU(2) gauge theory with less flavors. Therefore it is enough to look at the

generators of the Mori cone of dP8.10

The rational curves with the self-intersection number −1 in the generators of the Mori

cone of dP8 are given by

Xi, L−Xi −Xj , 2L−
5∑

j=1

Xij , 3L− 2Xi1 −
6∑

j=1

Xij+1 ,

4L− 2

3∑

j=1

Xij −
5∑

j=1

Xij+3 , 5L− 2

6∑

j=1

Xij −
2∑

j=1

Xij+6 , 6L− 3Xi1 −
7∑

j=1

2Xij+1 .

(2.58)

It is also possible to compute the volume of the curves in (2.58) using the parameteriza-

tion (2.57), Then the volume of the curves is

V1 = ã±mi ±mj , V2 = ã +
1

2
(±m0 ±m1 ±m2 ±m3 ±m4 ±m5 ±m6 ±m7), (2.59)

where ã = a + m0 and the number of plus signs in V2 is even. These are nothing but the

mass of the particles which contribute to the complete prepotential (2.32) for the SU(2)

gauge theory with 7 flavors. Hence we are able to identify the holomorphic curves in dP8

which yield the contributions given by
⌈∣∣ ∣∣⌉ of the complete prepotential (2.32).

3 Prepotential for rank-2 theories: Sp(2) gauge theory with 9 flavors

In section 2 we determined the complete prepotentials including the effects of instanton

particles for the Sp(1) gauge theory with 7 flavors. In this section we generalize the

analysis to the Sp(2) gauge theory with 9 flavors. We will see that the enhanced flavor

symmetry is not enough to determine the prepotential completely and there are more terms

which are not connected to contributions by perturbative particles by the Weyl reflections

of the enhanced global symmetry group. We will identify the new contributions from

the corresponding brane web and perform various consistency check with dualities and

geometries.

10The situation is different for higher rank cases. For a higher rank case, the geometry may be given by

gluing compact complex surfaces. Then flopping a curve in one surface may introduce a new rational curve

with the self-intersection number -1 as a generator of the Mori cone of a different surface, which could yield

a BPS particle in a different representation when an M2-brane is wrapped on the curve. Or sometimes a

blow down geometry may have a new type of curves in the generators of the Mori cone. We will encounter

those cases in section 3.5.
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3.1 Complete prepotential

We start from the effective prepotential for the Sp(2) gauge theory with 9 flavors on a gauge

theory phase. On this phase, the effective prepotential in [4] is valid and it is given by

FIMS =
1

2
m0(a2

1 + a2
2) +

1

6

[
(a1−a2)3 + (a1+a2)3 + 8(a3

1+a3
2)
]
− 1

12

2∑

i=1

9∑

j=1

|ai ±mj |3

=
1

2
m0(a2

1 + a2
2) +

1

6
(a3

1 − a3
2) + a1a

2
2 −

1

2

2∑

I=1

9∑

i=1

m2
i aI +

1

6

2∑

I=1

9∑

i=1

⌈∣∣ aI ±mi

∣∣⌉3
,

(3.1)

where we chose the Weyl chamber a1 ≥ a2 ≥ 0.

The Sp(2) gauge theory with 9 flavors exhibits an SO(20) global symmetry at the UV

fixed point. Therefore we first extend the prepotential (3.1) by making it invariant under

the Weyl group symmetry of SO(20). One subtlety is that the Coulomb branch moduli a1

and a2 also transform under the Weyl reflections. Hence we first need to determine the

Coulomb branch moduli that are invariant under the enhanced global symmetry. It is then

useful to look at the effective coupling on the CFT phase. On the CFT phase all the mass

parameters including m0 will be treated equally and the effective coupling is also invariant

under the Weyl reflections. Let us first temporarily assume that (3.1) is valid on the CFT

phase and consider a region where the Coulomb branch moduli are larger than the mass

parameters, namely a1, a2 > |mi| for i = 1, · · · , 9. The prepotential (3.1) reduces to

FIMS =
1

6
(a3

1 − a3
2) + a1a

2
2 +

1

2
m0(a2

1 + a2
2)− 1

2

9∑

i=1

m2
i (a1 + a2). (3.2)

Then taking a derivative of the prepotential (3.2) with respect to Coulomb branch moduli

twice yields

∂FIMS

∂a2
1

= a1 +m0,
∂FIMS

∂a2
2

= 2a1 − a2 +m0,
∂FIMS

∂a1a2
= 2a2. (3.3)

Then it is impossible to redefine a1 and a2 to make three combinations in (3.3) invariant

under the Weyl reflections of the enhanced global symmetry, as m0 is not invariant.

Since there is no shift of a1 and a2 which makes (3.3) invariant under the Weyl re-

flection, we claim that (3.1) is actually not valid on the CFT phase. In fact it is natural

that the prepotential (3.1) is not valid on the CFT phase since (3.1) assumes m0 is larger

than the other parameters. There can be further phase transition when m0 is smaller

than the Coulomb branch moduli. In order to see it we make use of a 5-brane web di-

agram for the Sp(2) gauge theory with 9 flavors in figure 9(a). The diagram describes

the theory in the parameter region m0 > a1 > a2 > |mf | > 0. Then it is possible to

change m0 into a smaller value and the diagram in figure 9(a) becomes the one in fig-

ure 9(b) when a1 > m0 > a2 > |mf | > 0. We can further move to the parameter region

a1 > a2 > m0 > |mf | > 0 by performing a flop transition with respect to a line of the
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(b)

O5

m0
a2

(c)

Figure 9. (a). The 5-brane web diagram for the Sp(2) gauge theory with nine flavors. (b).

Lowering the left top D5-brane in figure 9(a) until the its height is lower than the that of the top

color brane. (c). The diagram after performing a flop transition with respect to a line of the length

m0 − a2 in figure 9(b).

length m0 − a2, which yields the diagram in figure 9(c). Therefore the prepotential on the

CFT phase should be given by

FCFT =FIMS −
1

6
(a2 −m0)3

=
1

6
(a3

1 − 2a3
2) + a1a

2
2 +

1

2
m0(a2

1 + 2a2
2)− 1

2

9∑

i=1

m2
i a1 −

1

2

9∑

i=0

m2
i a2 +

1

6
m3

0.
(3.4)

Then taking a derivative of the prepotential (3.2) with respect to Coulomb branch moduli

twice yields

∂FCFT

∂a2
1

= a1 +m0,
∂FCFT

∂a2
2

= 2a1 − 2a2 + 2m0,
∂FCFT

∂a1a2
= 2a2, (3.5)

and we can define invariant Coulomb branch moduli ã1, ã2 as

ã1 = a1 +m0, ã2 = a2. (3.6)

Indeed when we rewrite the prepotential (3.4) in terms of the invariant Coulomb branch

moduli, the prepotential becomes

FCFT =
1

6
(ã3

1 − 2ã3
2) + ã1ã

2
2 +

1

2

9∑

i=0

m2
i (ã1 − ã2) +

1

2
m0

9∑

i=0

m2
i , (3.7)

which is invariant under the Weyl group symmetry of SO(20) up to the constant term

which only depends on the mass parameters. Since the constant term does not affect any
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Figure 10. (a). The 5-brane web diagram for the Sp(2) gauge theory with nine flavors in a phase

where the line of the length (3.11) can be seen. (b). The 5-brane web diagram for the Sp(2) gauge

theory with nine flavors in a phase where the line of the length (3.12) can be seen.

physical quantity we will use the following effective prepotential on the CFT phase,

FCFT =
1

6
(ã3

1 − 2ã3
2) + ã1ã

2
2 −

1

2

9∑

i=0

m2
i (ã1 + ã2). (3.8)

Using the effective prepotential on the CFT phase the effective prepotential we have

now is given by

F =FCFT +
1

6

9∑

i=1

⌈∣∣ ã1 −m0 ±mi

∣∣⌉3
+

1

6

9∑

i=1

⌈∣∣ ã2 ±mi

∣∣⌉3
+

1

6

⌈∣∣ ã2 −m0

∣∣⌉3
. (3.9)

It is straightforward to make the prepotential (3.9) invariant under the Weyl group sym-

metry of SO(20). The Weyl reflection invariant prepotential is then

F =FCFT +
1

6

∑

0≤i<j≤9

⌈∣∣ ã1 ±mi ±mj

∣∣⌉3
+

1

6

9∑

i=0

⌈∣∣ ã2 ±mi

∣∣⌉3
. (3.10)

In fact it turns out that the prepotential (3.10) is not complete. The 5-brane web

diagrams in certain phases imply that there are lines which can be flopped with length which

does not appear in (3.10). The web diagram in such a phase is depicted in figure 10(a).

Then there is a floppable line with the length

m1 − x = ã1 + ã2 −
1

2
m0 +

1

2
m1 −

1

2

9∑

i=2

mi. (3.11)

We can also consider the 5-brane web in figure 10(b). Then the length of the middle

internal D5-brane is

2a1 + a2 +m0 −
4∑

i=1

mi = 2ã1 + ã2 −
4∑

i=0

mi, (3.12)
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which can be also flopped. Then including the contributions (3.11) and (3.12) and making

the prepotential invariant under the Weyl group symmetry of SO(20) is

F =
1

6
(ã3

1 − 2ã3
2) + ã1ã

2
2 −

1

2

9∑

f=0

m2
f (ã1 + ã2)

+
1

6

∑

0≤i<j≤9

⌈∣∣ ã1 ±mi ±mj

∣∣⌉3
+

1

6

9∑

i=0

⌈∣∣ ã2 ±mi

∣∣⌉3

+
1

6

∑

{si=±1}
odd +

⌈∣∣∣∣ ã1 + ã2 +
1

2

9∑

i=0

simi

∣∣∣∣
⌉3

+
1

6

∑

0≤i1<i2<i3<i4<i5≤9

⌈∣∣ 2ã1 + ã2 ±mi1 ±mi2 ±mi3 ±mi4 ±mi5

∣∣⌉3
.

(3.13)

We argue that the prepotential (3.13) is the complete prepotential of the Sp(2) gauge theory

with 9 flavors. In other words, the prepotential can be used in any region in the physical

Coulomb branch moduli space of the theory. It is also straightforward to check that it

reduces to the IMS prepotential (3.1) in the weak coupling region m0 � |mf |, |aI |. In the

rest of this section we will provide more support for (3.13) and give a physical explanation

of the necessity of the new terms.

3.2 Consistency with dualities

We have obtained the complete prepotential of the Sp(2) gauge theory with 9 flavors (3.13)

by including the region where instanton particles become massless. The Sp(2) gauge theory

with 9 flavors is dual to the SU(3) gauge theory with 9 flavors and the CS level κ = ±1
2 and

also to the [4]−SU(2)−SU(2)−[3] quiver theory. Therefore the complete prepotential (3.13)

should reproduce the IMS prepotentials of the SU(3) gauge theory and the SU(2)× SU(2)

gauge theory in the weak coupling limit. We will see that the IMS prepotentials of the dual

theories are indeed reproduced from the complete prepotential of the Sp(2) gauge theory.

In fact, the additional terms which we added by hand from the 5-brane webs are necessary

to realize the IMS prepotentials of the dual theories. Let us first consider the dual SU(3)

gauge theory with 9 flavors and the CS level κ = ±1
2 . The duality map in the case of 10

flavors has been obtained in [56, 57]. It is straightforward to obtain the duality map after

decoupling one flavor and it is given by

mSp
0 =

3

4
mSU

0 +
1

4

9∑

i=1

mSU
i ,

mSp
i = mSU

i +
1

4

(
mSU

0 −
9∑

i=1

mSU
i

)
, (i = 1, · · · , 9)

aSp
i = aSU

i +
1

4

(
mSU

0 −
9∑

i=1

mSU
i

)
, (i = 1, 2).

(3.14)
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By substituting the duality map (3.14) into complete prepotential (3.13), the complete

prepotential is now written in terms of the parameters of the SU(3) gauge theory. For ob-

taining the IMS prepotential we need to consider the weak coupling region m0 � |mf |, |aI |.
Then most of the terms disappear and the remaining terms are

∑

0≤i<j≤9

⌈∣∣ ãSp
1 ±mSp

i ±m
Sp
j

∣∣⌉3 →
9∑

i=1

⌈∣∣ aSU
1 −mSU

i

∣∣⌉3
, (3.15)

9∑

i=0

⌈∣∣ ãSp
2 ±mSp

i

∣∣⌉3 →
(
aSU

2 −
1

2

9∑

f=0

mSU
f

)3

+
9∑

i=1

⌈∣∣ aSU
2 −mSU

i

∣∣⌉3
, (3.16)

∑

{si=±1}
odd +

⌈∣∣∣∣ ã
Sp
1 + ãSp

2 +
1

2

9∑

i=0

sim
Sp
i

∣∣∣∣
⌉3

→
9∑

i=1

⌈∣∣ aSU
1 + aSU

2 +mSU
i

∣∣⌉3

=

9∑

i=1

⌈∣∣−aSU
3 +mSU

i

∣∣⌉3
, (3.17)

∑

0≤i1<i2<i3<i4<i5≤9

⌈∣∣ 2ãSp
1 + ãSp

2 ±mSp
i1
±mSp

i2
±mSp

i3
±mSp

i4
±mSp

i5

∣∣⌉3 → 0. (3.18)

Summing all the terms (3.15)–(3.18) with the prepotential on the CFT phase (3.8) yields

FSU(3)
weak =

1

6

(
(aSU

1 )3 − (aSU
2 )3

)
+ aSU

1

(
aSU

2

)2
+

1

2
mSU

0

(
(aSU

1 )2 + aSU
1 aSU

2 + (aSU
2 )2

)

− 1

2

9∑

i=1

mSU
i aSU

1 aSU
2 −

1

2

9∑

i=1

(aSU
1 + aSU

2 )
(
mSU
i

)2

+
1

6

9∑

i=1

(⌈∣∣ aSU
1 −mSU

i

∣∣⌉3
+
⌈∣∣ aSU

2 −mSU
i

∣∣⌉3
+
⌈∣∣−aSU

3 +mSU
i

∣∣⌉3
)
,

(3.19)

where we omitted constant terms which do not depend on the Coulomb branch moduli of

the SU(3) gauge theories. Using the identity (2.11), we find that this agree with the IMS

prepotential

FSU(3)
IMS =

1

4
mSU

0

(
(aSU

1 )2 + (aSU
2 )2 + (aSU

3 )2
)

+
1

12

(
(aSU

1 )3 + (aSU
2 )3 + (aSU

3 )3
)

+
1

6

(
(aSU

1 − aSU
2 )3 + (aSU

1 − aSU
3 )3 + (aSU

2 − aSU
3 )3

)

− 1

12

3∑

i=1

9∑

j=1

∣∣aSU
i −mSU

j

∣∣3
(3.20)

for the SU(3) gauge theory with 9 flavors and the CS level κ = 1
2 up to the constant terms.

We can also see from (3.17) that a part of the terms associated with the conjugate

spinor representation gives perturbative contributions in the SU(3) gauge theory. There-

fore, the contribution in the conjugate spinor representation, which was added by hand

from the discussion with the 5-brane web diagram in section 3.1, turns out to be necessary

to make the duality hold.
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m(1)3
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m(2)1
m(2)2

m(2)3

m(1)1

-a(1)

a(2)

-a(2)

a(2)-a(1)+mbif

2a(1)-a(2)+1/2(m(1)0-m(1)1-m(1)2+m(1)3+m(1)4)

(a) (b)

O7-

m1

m2
m3

m4

m5m6

m7

m8

m9
a1

a2

m0

(c)

Figure 11. (a). The 5-brane web diagram for the quiver theory [4] − SU(2) − SU(2) − [3] and

the gauge theory parameterization. (b). S-dual to the diagram in figure 11(a). The black dots

represent 7-branes. (c). The 5-brane web diagram for the Sp(2) gauge theory with 9 flavors and

the gauge theory parameterization. The black dot in this figure represents an O7−-plane.

The Sp(2) gauge theory with 9 flavors has another dual frame given by the quiver

gauge theory [4]− SU(2)− SU(2)− [3]. It is also possible to obtain the duality map using

5-brane webs in figure 11. The diagram in figure 11(a) shows the parameterization for

the SU(2) × SU(2) quiver theory. The S-dual of the diagram is simply given by rotating

the diagram by π as in figure 11(b). We further move 7-branes in figure 11(b) in the

directions indicated by the arrows in the figure so that we can read off the parameterization

of the Sp(2) gauge theory. The resulting diagram after moving the 7-branes is given in

figure 11(c). In order to see the parameterization in terms of the Sp(2) gauge theory,

the flavor mass parameters and the Coulomb branch moduli should be measured from the

location of an O7−-plane. The parameterization of the Sp(2) gauge theory can be read off
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as in figure 11(c). Comparing the two parameterizations, the explicit map between mass

parameters is given by

mSp
1 =

1

2
(−m(1)

1 +m
(1)
2 −m

(1)
3 −m

(1)
4 ),

mSp
2 =

1

2
(m

(1)
1 −m

(1)
2 −m

(1)
3 −m

(1)
4 ),

mSp
3 =

1

2
(m

(1)
1 +m

(1)
2 −m

(1)
3 +m

(1)
4 ),

mSp
4 =

1

2
(m

(1)
1 +m

(1)
2 +m

(1)
3 −m

(1)
4 ),

mSp
5 =

1

2
m

(1)
0 −mbif,

mSp
6 =

1

2
m

(1)
0 +mbif,

mSp
7 =

1

2
(m

(1)
0 +m

(2)
0 −m

(2)
1 +m

(2)
2 +m

(2)
3 ),

mSp
8 =

1

2
(m

(1)
0 +m

(2)
0 +m

(2)
1 −m

(2)
2 +m

(2)
3 ),

mSp
9 =

1

2
(m

(1)
0 +m

(2)
0 −m

(2)
1 −m

(2)
2 −m

(2)
3 ),

mSp
0 =

1

2
(m

(1)
0 +m

(1)
0 +m

(2)
1 +m

(2)
2 −m

(2)
3 ).

(3.21)

Also the map for the Coulomb branch moduli is given by

aSp
1 =a(2) +

1

2
(m

(1)
0 +m

(2)
0 −m

(2)
1 −m

(2)
2 +m

(2)
3 ),

aSp
2 =a(1) − a(2) +

1

2
m

(1)
0 .

(3.22)

We can then substitute the duality map (3.21) and (3.22) into complete prepoten-

tial (3.13). For obtaining the IMS prepotential we need to consider the weak coupling

region m
(1)
0 ,m

(2)
0 � |m(1)

f |, |m
(2)
f |, |a(1)|, |a(2)|. Then most of the terms again disappear and

the remaining terms are

∑

0≤i<j≤9

⌈∣∣ ãSp
1 ±mSp

i ±m
Sp
j

∣∣⌉3 →
3∑

i=1

⌈∣∣ a(2)
2 ±m

(2)
i

∣∣⌉3
, (3.23)

9∑

i=0

⌈∣∣ ãSp
2 ±mSp

i

∣∣⌉3 →
(

(a(1) + a(2)) +
1

2

(
−m(2)

0 +m
(2)
1 +m

(2)
2 +m

(2)
3

))3

+

(
(a(1) + a(2)) +

1

2

(
−m(2)

0 +m
(2)
1 −m

(2)
2 −m

(2)
3

))3

+

(
(a(1) + a(2)) +

1

2

(
−m(2)

0 −m
(2)
1 +m

(2)
2 −m

(2)
3

))3

+

(
(a(1) + a(2)) +

1

2

(
−m(2)

0 −m
(2)
1 −m

(2)
2 +m

(2)
3

))3

+
⌈∣∣ a(1) − a(2) ±mbif

∣∣⌉3
, (3.24)
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∑

{si=±1}
odd +

⌈∣∣∣∣ ã
Sp
1 + ãSp

2 +
1

2

9∑

i=0

sim
Sp
i

∣∣∣∣
⌉3

→
4∑

i=1

⌈∣∣ a(1) ±m(1)
i

∣∣⌉3
(3.25)

∑

0≤i1<i2<i3<i4<i5≤9

⌈∣∣ 2ãSp
1 + ãSp

2 ±mSp
i1
±mSp

i2
±mSp

i3
±mSp

i4
±mSp

i5

∣∣⌉3

→
⌈∣∣ a(1) + a(2) ±mbif

∣∣⌉3
. (3.26)

Summing all the terms (3.23)–(3.26) with the prepotential on the CFT

phase (3.8) yields

FSU(2)×SU(2)
weak =

1

6

(
2(a(1))3 + 5(a(2))3 − 6a(1)(a(2))2

)
+

1

2
m

(1)
0 (a(1))2 +

1

2
m

(2)
0 (a(2))2

− 1

2
a(1)

4∑

i=1

(m
(1)
i )2 − 1

2
a(2)

3∑

i=1

(m
(2)
i )2 − a(1)(mbif)

2

+
1

6

4∑

i=1

⌈∣∣ a(1) ±m(1)
i

∣∣⌉3
+

1

6

3∑

i=1

⌈∣∣ a(2) ±m(2)
i

∣∣⌉3

+
1

6

⌈∣∣ a(1) ± a(2) ±mbif

∣∣⌉3
,

(3.27)

where we again ignore terms which do not depend on the Coulomb branch moduli of the

SU(2)× SU(2) gauge theory. We find that this agrees with the IMS prepotential

FSU(2)×SU(2)
IMS =

1

2

(
m

(1)
0 (a(1))2 +m

(2)
0 (a(2))2

)
+

4

3

(
(a(1))3 + (a(2))3

)

− 1

12

4∑

j=1

∣∣∣a(1) ±m(1)
j

∣∣∣
3
− 1

12

3∑

j=1

∣∣∣a(2) ±m(2)
j

∣∣∣
3

− 1

12

∣∣∣a(1) ± a(2) ±mbif

∣∣∣
3
.

(3.28)

for the [4]− SU(2)− SU(2)− [3] quiver theory up to the constant terms.

Note that the contribution of the bi-fundamental hypermultiplet in (3.27) comes from

the contribution in the rank 5 antisymmetric representation of SO(20) as in (3.26). The

contributions was originally inferred from the analysis of the 5-brane web diagram. The

duality to the SU(2) × SU(2) quiver theory shows that a part of the contribution is in

fact the perturbative contributions in the quiver theory. Hence the terms in the rank 5

antisymmetric representation are necessary to make the duality hold.

3.3 Consistency with Higgsing

In section 3.2 we have seen the complete prepotential (3.13) reproduces the IMS prepo-

tential in the weak coupling region of the dual theories. It is also possible to check the

consistency with the Higgsing to the Sp(1) gauge theory with 7 flavors from the Sp(2)

gauge theory with 9 flavors. The Higgsing can be carried out by tuning the gauge theory

parameters as

a2 = mi = −mj , (3.29)
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where i and j are one of 1, 2, · · · , 9 with i 6= j. Then inserting (3.29) into the complete

prepotential (3.13) should reproduce the complete prepotential (2.32) of the Sp(1) gauge

theory with 7 flavors up to terms which do not depend on the Coulomb branch modulus ã.

In order to see which terms remain after inserting the tuning conditions (3.29), we first

need to determine the physical Coulomb branch moduli space of the Sp(2) gauge theory

with 9 flavors. The explicit derivation will be done in section 3.4 and the we here use the

final result which is given by

ã2 ≥ 0, (3.30)

ã1 + 3ã2 ≥ w[0000000001] · ~m, (3.31)

ã1 + 2ã2 ≥ w[0000000010] · ~m, (3.32)

ã1 − ã2 ≥ w[1000000000] · ~m, (3.33)

ã1 − 2ã2 ≥ 0, (3.34)

2ã1 + 3ã2 ≥ w[0000001000] · ~m, (3.35)

2ã1 + 2ã2 ≥ w[0000010000] · ~m, (3.36)

2ã1 ≥ w[0001000000] · ~m, (3.37)

2ã1 − ã2 ≥ w[0010000000] · ~m, (3.38)

3ã1 ≥ w[1000100000] · ~m, (3.39)

3ã1 − 3ã2 ≥ w[0000100010] · ~m. (3.40)

Here, the representation is expressed by the Dynkin label [n1, n2, · · · , n10] of SO(20). Es-

pecially, [0000000010] is the spinor representation 512 and [0000000001] is the conjugate

spinor representation 512.

Let us then look at each term in (3.13) together with the conditions (3.29). We also re-

label the mass parameters except for mi and mj appeared in (3.29) by m1,m2, · · · ,m7 after

inserting the tuning conditions (3.29). The first line of (3.13) with (3.29) imposed becomes

1

6
(ã3

1 − 2ã3
2) + ã1ã

2
2 −

1

2

9∑

k=0

m2
k(ã1 + ã2)→ 1

6
ã3

1 −
1

2

7∑

k=0

m2
kã1, (3.41)

where the arrow indicates that we omit terms which do not depend on the Coulomb branch

modulus ã1.

Next we consider the first term in the second line of (3.13) which is characterized by

the linear combinations,

ã1 ±mi1 ±mi2 . (3.42)

When both mi and mj appear in (3.42), (3.42) becomes

ã1 ± ã2 ± ã2, (3.43)

Depending on the signs in front of ã2 we have three types for the linear combinations which

satisfy the following inequalities,

ã1 + 2ã2 ≥ ã1 ≥ ã1 − 2ã2 ≥ 0, (3.44)
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where the first two inequalities come from (3.30) and the last inequality comes from (3.34).

Therefore we conclude that
⌈∣∣ ã1 ± ã2 ± ã2

∣∣⌉ = 0 in the physical Coulomb branch moduli

space. Another possibility is that one of mi and mj appears in (3.42). In this case (3.42) be-

comes

ã1 ± ã2 ±mi2 , (3.45)

where mi2 6= mi,mj . There are two types of the linear combinations depending on the sign

in from of ã2 and the inequalities they satisfy are

ã1 + ã2 ±mi2 ≥ ã1 − ã2 ±mi2 ≥ 0. (3.46)

Here the first inequality again comes from (3.30) and the last inequality comes from (3.33).

Therefore we again have
⌈∣∣ ã1 ± ã2 ±mi2

∣∣⌉ = 0. The last possibility is that neither of mi nor

mj appears in (3.42). In this case, the physical Coulomb branch moduli space conditions

do not fix the sign of the linear combination ã1 ±mi1 ±mi2 and hence these terms remain

after the Higgsing. As for the second terms in the second line in (3.13), they become terms

which do not depend on ã1 and we ignore the contributions.

We then move onto the term in the third line in (3.13), which is characterized by the

linear combinations,

ã1 + ã2 +
1

2

9∑

k=0

skmk. (3.47)

In this case mi and mj always appear in (3.47) and we have three types of the linear

combinations (3.47) depending on the signs in front of mi and mj . When the signs are

both positive or both negative we have

ã1 + ã2 +
1

2

7∑

i=0

skmk, (3.48)

where the number of sk = +1 is odd. Choosing a particular spinor weight for the condition

in (3.32) implies that

ã1 + ã2 +
1

2

7∑

k=0

skmk ≥ 0, (3.49)

with odd numbers of sk = +1’s. When the sign in front of mi is positive and the sign in

front of mj is negative we have

ã1 + 2ã2 +
1

2

7∑

k=0

skmk, (3.50)

where the number of sk = +1 is even. The condition (3.31) with a particular conjugate

spinor weight yields

ã1 + 2ã2 +
1

2

7∑

k=0

skmk ≥ 0, (3.51)
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with even numbers of sk = +1’s. Finally when the sign in front of mi is negative and the

sign in front of mj is positive the linear combination (3.47) is given by

ã1 +
1

2

7∑

k=0

skmk, (3.52)

where the number of sk = +1 is even. The sign of this linear combination is not fixed by

the physical Coulomb branch moduli condition and these terms remain after the Higgsing.

Finally we consider the last line in (3.13). Namely we consider the linear combinations,

2ã1 + ã2 ±mi1 ±mi2 ±mi3 ±mi4 ±mi5 . (3.53)

When both mi and mj appear in (3.53), (3.53) becomes

2ã1 + ã2 ± ã2 ± ã2 ±mi3 ±mi4 ±mi5 . (3.54)

Depending on the signs in front of ã2, we have three patterns. The three linear combinations

satisfy the following inequalities,

2ã1 + 3ã2 ±mi3 ±mi4 ±mi5 ≥ 2ã1 + ã2 ±mi3 ±mi4 ±mi5

≥ 2ã1 − ã2 ±mi3 ±mi4 ±mi5 ≥ 0. (3.55)

The first two inequalities come from (3.30) and the last inequality comes from (3.38). In

the case when one of mi and mj appears in (3.53), we have

2ã1 + ã2 ± ã2 ±mi2 ±mi3 ±mi4 ±mi5 , (3.56)

where mi2 ,mi3 ,mi4 ,mi5 are not equal to neither mi nor mj . The different signs in front of

ã2 yields two linear combinations and they satisfy the inequalities,

2ã1 + 2ã2 ±mi2 ±mi3 ±mi4 ±mi5 ≥ 2ã1 ±mi2 ±mi3 ±mi4 ±mi5 ≥ 0, (3.57)

where the first inequality comes from (3.30) and the last inequality comes from (3.37).

Lastly there are cases where neither mi nor mj appear in (3.53). In this case, we can

rewrite the linear combination (3.53) as

2ã1 + 2ã2 ±mi1 ±mi2 ±mi3 ±mi4 ±mi5 −mi. (3.58)

Then the physical Coulomb branch moduli condition (3.36) implies

2ã1 + 2ã2 ±mi1 ±mi2 ±mi3 ±mi4 ±mi5 −mi ≥ 0. (3.59)

Therefore for all the cases the linear combinations (3.53) with the tuning condition (3.29)

are positive and hence we have
⌈∣∣ 2ã1 + ã2 ±mi1 ±mi2 ±mi3 ±mi4 ±mi5

∣∣⌉ = 0 for (3.29).

Therefore, collecting all the terms which do not vanish after inserting the tuning con-

ditions (3.29) into the complete prepotential (3.13) yields

FHiggsed =
1

6
ã3

1 −
1

2

7∑

k=0

m2
kã1

+
1

6

∑

0≤k<l≤7

⌈∣∣ ã1 ±mk ±ml

∣∣⌉3
+

1

6

∑

{sk=±1}
even +

⌈∣∣∣∣ ã1 +
1

2

7∑

k=0

skmk

∣∣∣∣
⌉3

,

(3.60)
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where we omitted terms which do not depend on ã1. We can see that the prepotential (3.60)

precisely reproduces the complete prepotential (2.32) after identifying ã1 = ã.

3.4 Prepotential from partition function

Here, we derive the complete prepotential assuming that the observations made in sec-

tion 2.2 also holds for this case. As discussed in appendix F the partition function for 5d

N = 1 Sp(2) gauge theory with Nf = 9 flavors is given as

Z = PE

( ∞∑

k=0

FkÃ1
k

)
, (3.61)

where each coefficient Fk is given as follows.

For k = 0:

F0 =
1

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )

(
[0, 0]Ã2χ20 +

[
0,

1

2

]
Ã2

2

)
. (3.62)

For k = 1:

F1 =
1

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )

( ∞∑

n=0

[0, n]Ã2
2n+1χ512 +

∞∑

n=0

[
0, n+

1

2

]
Ã2

2n+2χ512 (3.63)

+ [0, 0] (χ190 + 1) +

[
0,

1

2

]
(Ã2

−1 + Ã2)χ20 + [0, 1](Ã2
−2 + 1 + Ã2

2) +

[
1

2
,

1

2

])
.

For k = 2:

F2 =
1

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )

∑

R

cR(Ã2, t, q)χR(m), (3.64)

where the summation is over the representation of SO(20). Since the exact form for some

of the cR are too complicated, we expand in terms of Ã2 and show the leading order results:

c[2000000000] =

[
0,

1

2

]
,

c[1000000010] =

[
0,

1

2

]
Ã2 +O(Ã2

2),

c[1000000001] = ([0, 0] + [0, 1]) Ã2
2 +O(Ã2

3),

c[0000000002] = c[0000000020] =

[
0,

5

2

]
Ã2

6 +O(Ã2
7),

c[0000000011] = [0, 2]Ã2
5 +O(Ã2

6),

c[0000000100] =

[
0,

3

2

]
Ã2

4 +O(Ã2
5),

c[0000001000] = [0, 1]Ã2
3 +O(Ã2

4),
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c[0000010000] =

[
0,

1

2

]
Ã2

2 +O(Ã2
3),

c[0000100000] = [0, 0]Ã2 +

(
[0, 0] + [0, 1] +

[
1

2
,

3

2

])
Ã2

3 +O(Ã2
4),

c[000100000] = [0,
1

2
] +O(Ã2),

c[001000000] = [0, 1]Ã2
−1 +O(1),

c[010000000] =

[
0,

3

2

]
Ã2
−2 +O(Ã2

−1),

c[100000000] = [0, 2]Ã2
−3 +O(Ã2

−2),

c[0000000010] = ([0, 0] + [0, 1]) +O(Ã2),

c[0000000001] =

([
0,

1

2

]
+

[
0,

3

2

]
+

[
1

2
, 1

])
Ã2 +O(Ã2

2),

c[0000000000] =

[
0,

5

2

]
Ã2
−4 +O(Ã2

−3). (3.65)

For k = 3:

F3 =
1

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )

∑

R

CR(Ã2, t, q)χR(m) (3.66)

with CR begin given as follows. Since the expression is even more complicated, we write

only the order of Ã2 except for the terms which we will focus later:

C[2000000010] = O(Ã2
2), C[2000000001] = O(Ã2

1), C[1000000020] = O(Ã2
5),

C[1000000011] = O(Ã2
4), C[1000000002] = O(Ã2

5), C[1000000100] = O(Ã2
3),

C[1000001000] = O(Ã2
2), C[1000010000] = O(Ã2

1),

C[1000100000] = [0, 1] +O(Ã2),

C[100100000] = O(Ã2
−1), C[101000000] = O(Ã2

−2), C[110000000] = O(Ã2
−3),

C[2000000000] = O(Ã2
−4), C[0000000030] = O(Ã2

8), C[0000000021] = O(Ã2
7),

C[0000000012] = O(Ã2
8), C[0000000003] = O(Ã2

9), C[0000000110] = O(Ã2
6),

C[0000001010] = O(Ã2
5), C[0000010010] = O(Ã2

4),

C[0000100010] = [0, 1]Ã2
3 +O(Ã2

4),

C[0001000010] = O(Ã2
2), C[0010000010] = O(Ã2), C[0100000010] = O(1),

C[1000000010] = O(Ã2
−1), C[0000000101] = O(Ã2

7), C[0000001001] = O(Ã2
6),

C[0000010001] = O(Ã2
5), C[0000100001] = O(Ã2

4), C[0001000001] = O(Ã2
3),

C[0010000001] = O(Ã2
2), C[0100000001] = O(Ã2), C[1000000001] = O(1),

C[0000000002] = O(Ã2
2), C[0000000011] = O(Ã2

3), C[0000000002] = O(Ã2
4),

C[0000000100] = O(Ã2
2), C[0000001000] = O(Ã2), C[0000010000] = O(1),

C[0000100000] = O(Ã2
−1), [0001000000] = O(Ã2

−2), C[0010000000] = O(Ã2
−3),
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C[0100000000] = O(Ã2
−4), C[1000000000] = O(Ã2

−5), C[0000000010] = O(Ã2
−2),

C[0000000001] = O(Ã2
−1), C[0000000000] = O(Ã2

−6). (3.67)

We first derive physical Coulomb moduli from this partition function. Following

observation 1 in section 2.2, we focus on the particle with spin (jL, jR) = (0, 1
2), and

(jL, jR) = (0, 1). Corresponding to the term of the form

1

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )
[0, jR]χ[n1,n2,··· ,n10]Ã1

N1Ã2
N2

(
jR =

1

2
or jR = 1

)
, (3.68)

inside PE in (3.61), we obtain the following constraint for physical Coulomb moduli

N1ã1 +N2ã2 + w[n1,n2,··· ,n10] · ~m ≥ 0, (3.69)

where w[n1,n2,··· ,n10] is the arbitrary weights in the representation labelled by the Dynkin

label [n1, n2, · · · , n10]. From all the constraints above, we find effective constraints that

were listed in (3.30)–(3.40). We propose that these give the physical Coulomb moduli

for 5d N = 1 Sp(2) gauge theory with Nf = 9 flavors. Using all these constraints, we

have checked that the corresponding Kähler parameters are always positive for most of

the terms. Such terms does not contribute to the complete prepotential as discussed in

section 2.2. Only exceptional terms are the following four

[0, 0]Ã2χ20

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )
,

[0, 0]Ã1χ190

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )
,

[0, 0]Ã1Ã2χ512

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )
,

[0, 0]Ã1
2Ã2χ[0000100000]

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )
. (3.70)

All these terms correspond to the BPS particles with spin (jL, jR) = (0, 0), which support

observation 2. From these terms, we obtain the complete prepotential

FComplete = FCFT +
1

6

∑

w∈20

⌈∣∣ ã2 + w · ~m
∣∣⌉3

+
1

6

∑

w∈190

⌈∣∣ ã1 + w · ~m
∣∣⌉3

+
1

6

∑

w∈512

⌈∣∣ ã1 + ã2 + w · ~m
∣∣⌉3

+
1

6

∑

w∈15504

⌈∣∣ 2ã1 + ã2 + w · ~m
∣∣⌉3
, (3.71)

where 15504 is the rank 5 antisymmetric tensor representation. The last term can be

rewritten in terms of the mass parameters more explicitly as
∑

w∈15504

⌈∣∣ 2ã1 + ã2 + w · ~m
∣∣⌉3

=
∑

0≤i1<i2<i3<i4<i5≤9

⌈∣∣ 2ã1 + ã2 ±mi1 ±mi2 ±mi3 ±mi4 ±mi5

∣∣⌉3
(3.72)

+ 7
∑

0≤i1<i2<i3≤9

⌈∣∣ 2ã1 + ã2 ±mi1 ±mi2 ±mi3

∣∣⌉3
+ 36

9∑

i=0

⌈∣∣ 2ã1 + ã2 ±mi

∣∣⌉3
.

We find that the last line in (3.72) vanishes in the physical Coulomb moduli (3.30)–(3.40).

Analogous discussion applies also to the term in the rank 2 antisymmetric tensor representa-

tion 190. Taking these into account, we find that (3.71) reproduces the prepotential (3.13).
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3.5 Prepotential from Mori cone generators

Similar to the rank one case, we can identify holomorphic curves in the dual geometry

which are related to one-loop corrections of the complete prepotential (3.13) of the Sp(2)

gauge theory with 9 flavors. For identifying such holomorphic curves we consider rational

curves with the self-intersection number −1 in the generators of the Mori cone of the dual

geometries as discussed in section 2.3. It turns out that it is not enough to focus on a

Kähler moduli space of a local Calabi-Yau threefold but we need to look at other phases

related by flop transitions to find all such curves which account for the contributions given

by
⌈∣∣ ∣∣⌉ to the complete prepotential (3.13). This will generically occur since the complete

prepotential has been constructed so that it is valid in the extended Kähler cone. The

geometry which yields the 5d Sp(2) gauge theory with 9 flavors is a local Calabi-Yau

threefold with a base given by dP1 ∪ Bl9F5 or the ones obtained by flop transitions from

it. Namely, the base is given by two compact complex surfaces dP1 and Bl9F5 which are

glued along a curve. The curves in dP1 are generated by the hyperplane class L and the

exceptional curve X ′0 and the intersection numbers are given in (2.50). One the other

hand, the curves in Bl9F5 are generated by the fiber curve F , the base curve E and the

exceptional curves Xi (i = 1, · · · , 9). The intersection numbers are

F · F = 0, E · E = −5, F · E = 1,

F ·Xi = 0, E ·Xi = 0, Xi ·Xj = −δij ,
(3.73)

for i, j = 1, · · · , 9. The gluing curve for the two surfaces is given by 2L−X ′0 in dP1 or E

in Bl9F5 [6].

We first determine the gauge theory parameterization for the volume of the curves in

the two surfaces. The fiber classes which correspond to simple roots of the Sp(2) gauge

theory are L−X ′0 and E + 7F −∑9
i=1Xi [6]. Hence we parameterize their volume as

vol(L−X ′0) = a1 − a2, vol

(
E + 7F −

9∑

i=1

Xi

)
= 2a2. (3.74)

In order to determine the dependence on the mass parameters it is useful to flop the

exceptional curve in dP1 and to move on to a description by the geometry P2∪Bl10F6. Due

to this flop the second surface has one more exceptional curve X0 which can be identified

as X0 = F +X ′0. Then all the exceptional curves are in the Bl10F6 and the SO(20) flavor

symmetry can be seen from it. In other words, we may find the SO(20) root lattice inside

H2(Bl10F6,Z). The curves C correspond to the roots has the self-intersection number −2

and should not be charged under the Sp(2) gauge group. Therefore, we may identify the

roots of SO(20) by the conditions,

C · C = −2, C ·KBl10F6 = 0, C · E = 0, (3.75)

where KBl10F6 is the canonical divisor class and is given by

KBl10F6 = −2E − 8F +

9∑

i=0

Xi. (3.76)

– 34 –



J
H
E
P
0
2
(
2
0
2
0
)
0
7
4

C3 C4 C5 C6 C7 C8 C9

C10

C1 C2

Figure 12. The intersection structure of the curves in (3.78).

Then the following curves satisfy (3.75)

±(Xi −Xj), ±(E + 6F −X1 −X2 − · · · − X̌i − · · · − X̌j − · · · −X9), (3.77)

for 0 ≤ i < j ≤ 9, where X̌i means Xi is absent. The curves in (3.77) are generated by

Ci = Xi−1 −Xi (i = 1, · · · , 9), C10 = E + 6F −
7∑

i=0

Xi, (3.78)

and they form the D10 Dynkin diagram as in figure 12. We can then identify the

curves (3.78) as the simple roots of SO(20). Hence we associate the mass parameters

mi (i = 0, · · · , 9) as

vol(Ci) = mi−1 −mi (i = 1, · · · , 9), vol(C10) = m8 +m9, (3.79)

where the sign of the mass parameters was chosen so that it agrees with the convention

used in section 3.1.

Solving (3.74) and (3.79) determines the relations between the volume of the curves in

P2 ∪ Bl10F6 and we obtain

vol(L) = a1 − 2a2 +m0, vol(F ) = a1 + 2a2 +
1

2
m0 −

1

2

9∑

i=1

mi,

vol(Xi) = a1 + a2 +
1

2
m0 −

1

2

9∑

j=1

mj +mi, (i = 0, · · · .9).

(3.80)

With this parameterization (3.80), we can compute the volume of rational curves with

the self-intersection number −1 in the generators of the Mori cones in terms of the gauge

theory parameters. In the case of P2 ∪ Bl10F6 the self-intersection number −1 rational

curves exist only in Bl10F6 and such curves in the generators of the Mori cone of Bl10F6

are given by (for example see [6])

Xi, F −Xi, E + 6F −
7∑

j=1

Xij ,

E + 7F −
9∑

j=1

Xij , 2E + 12F −
5∑

j=1

2Xij −
5∑

j=1

Xij+5 ,

3E + 18F −
2∑

j=1

3Xij −
7∑

j=1

Xij+3 , 4E + 24F − 4Xi1 −
9∑

j=1

Xij+1 .

(3.81)
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Expressing the volume of the curves in (3.81) by the parameterization (3.80), we find

V1 = ã1 + ã2 +
1

2

9∑

i=0

simi V2 = ã2 ±mi (i = 0, · · · , 9), (3.82)

where ã1 = a1 + m0 and ã2 = a2. si = ±1 and the number of the plus signs is odd. M2-

branes wrapped on the curves in (3.82) exactly reproduce the BPS particle contributions

which are in the vector and the conjugate spinor representations of SO(20) which appeared

in the complete prepotential (3.13).

Rational curves with the self-intersection number −1 which yield BPS particles in the

other representations contributing to the complete prepotential (3.13) can be also found in

the generators of the Mori cones of flopped geometries. We consider performing flops with

respect to curves in the followings,

Ci = F −Xi, Ci+10 = E + 7F − (X0 + · · ·+ X̌i + · · ·+X9), i = 0, · · · , 9. (3.83)

The volume of the curves is

vol(Ci) = a2 −mi, vol(Ci+10) = a2 +mi, (3.84)

for i = 0, · · · , 9. Note that each curve in (3.83) intersects with the gluing curve E with

the intersection number one and also Ci · Cj = 0 when i 6= j modulo 10. For example,

performing a flop transition with respect to a curve in (3.83) yields dP1 ∪ Bl9F5.

Let us first flop two curves Ci, Cj where j 6= i and j 6= i + 10 from P2 ∪ Bl10F6. The

flopped geometry is then dP2∪Bl8F4 and one of the rational curves with the self-intersection

number −1 in the generator of the Mori cone of dP2 is L+Ci +Cj . In total, we have 180

choices to select Ci and Cj and the volume of the curves can be summarized as

V3 = ã1 ±mi ±mj , (3.85)

where 0 ≤ i < j ≤ 9. M2-branes wrapped on the curves in (3.85) give rise to the con-

tributions which are in the rank 2 antisymmetric representation of SO(20) in (3.13). We

then consider flop five curves Ci1 , Ci2 , Ci3 , Ci4 , Ci5 where each subscript is different from

each other modulo 10. The flopped geometry is dP5 ∪ Bl5F1 which can be also written as

Bl4F1 ∪ dP6. In this case the gluing curve 2L + Ci1 + Ci2 + Ci3 + Ci4 + Ci5 becomes a

rational curve with the self-intersection number −1 in the generator of the Mori cone of

dP6. There are 8064 choices to choose Ci1 , Ci2 , Ci3 , Ci4 , Ci5 and the volume of the curves

can be written as

V4 = 2ã1 + ã2 ±mi1 ±mi2 ±mi3 ±mi4 ±mi5 , (3.86)

where 0 ≤ i1 < i2 < i3 < i4 < i5 ≤ 9. The curves in (3.86) are related to the contributions

in the rank 5 antisymmetric representation of SO(20) in (3.13). Combining (3.81), (3.85)

and (3.86), we are able to identify all the holomorphic curves which give rise to the contri-

butions of type
⌈∣∣ ∣∣⌉ to the complete prepotential (3.13).
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4 Prepotential for rank-2 theories: Sp(2) gauge theory with 1 antisym-

metric and 7 flavors

In previous section, we studied the complete prepotential for the Sp(2) gauge theory with

9 flavors. In this section, we propose the complete prepotential for the Sp(2) gauge theory

with 7 flavors and 1 hypermultiplet in antisymmetric tensor representation. This theory is

known to correspond to rank 2 SCFT with E8 × SU(2) global symmetry.

4.1 Complete prepotential

Similar to previous sections, we first start from IMS prepotential of the Sp(2) gauge theory

with 7 flavors and 1 antisymmetric tensor, which is given by [4]

FIMS =
1

2
m0(a2

1 + a2
2) +

1

12

2∑

I=1

2∑

J=1

| ± aI ± aJ |3

− 1

12

2∑

I=1

7∑

i=1

| ± aI +mi|3 −
1

12
| ± a1 ± a2 +mAS|3

=FCFT +
1

6

2∑

I=1

7∑

i=1

⌈∣∣ aI ±mi

∣∣⌉3
+

1

6

⌈∣∣ a1 ± a2 ±mAS

∣∣⌉3
(4.1)

in the Weyl chamber of Sp(2) gauge group a1 ≥ a2 ≥ 0. Here, we denote

FCFT =
1

6
(a3

1 + a3
2) +

1

2
m0(a2

1 + a2
2)− 1

2

7∑

i=1

m2
i (a1 + a2)−mAS

2a1, (4.2)

where we omitted the terms which do not depend on the Coulomb branch parameters. In

the parameter region a1, a2 � |mf | with f = 1, · · · 7, the IMS prepotential (4.1) reduces

to this FCFT. We can compute the effective coupling of this phase by taking the second

derivative of this expression as

∂2FCFT

∂a2
1

= a1 +m0,
∂2FCFT

∂a1∂a2
= 0,

∂2FCFT

∂a2
2

= a2 +m0. (4.3)

This implies that the invariant Coulomb moduli parameters should be defined as

ã1 = a1 +m0, ã2 = a2 +m0 (4.4)

and that (4.2) is indeed valid at the CFT phase a1, a2 � |mi| (i = 0, 1, · · · , 7). The

prepotential at the CFT phase (4.2) can be rewritten in terms of the invariant Coulomb

moduli parameters (4.4) as

FCFT =
1

6
(ã1

3 + ã2
3)−mAS

2ã1 −
1

2

7∑

i=0

mi
2(ã1 + ã2). (4.5)

Now, we add more terms to the IMS prepotential in such a way that it becomes

invariant under the Weyl reflections of the enhanced global symmetry E8 × SU(2). The
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7 flavor masses mf (f = 1, · · · 7) and the instanton mass m0 can be interpreted as E8

fugacity similar to the rank one case while mAS is the fugacity for SU(2) part. Similar to

the discussion in section 2, the terms

1

6

2∑

I=1

7∑

i=1

⌈∣∣ aI ±mi

∣∣⌉3
=

1

6

2∑

I=1

7∑

i=1

⌈∣∣ ãI −m0 ±mi

∣∣⌉3
(4.6)

in (4.1) indicates that we need the terms in the 248 dimensional representation of E8

F(248,1) =
1

6

2∑

I=1

∑

w∈248×1

⌈∣∣ ãI + w · ~m
∣∣⌉3
. (4.7)

Also, the term

1

6

⌈∣∣ a1 + a2 ±mAS

∣∣⌉3
=

1

6

⌈∣∣ ã1 + ã2 + 2m0 ±mAS

∣∣⌉3
(4.8)

in (4.1) indicates that we need the terms in the 3875 dimensional representation of E8

F(3875,2) =
1

6

∑

w∈3875×2

⌈∣∣ ã1 + ã2 + w · ~m
∣∣⌉3
. (4.9)

because 2m0 corresponds to the highest weight state of this representation as mentioned

in (A.14) and the term ±mAS corresponds the 2 dimensional representation of the SU(2).

On the contrary, the term

F(1,2) =
1

6

⌈∣∣ a1 − a2 ±mAS

∣∣⌉3
=

1

6

⌈∣∣ ã1 − ã2 ±mAS

∣∣⌉3
(4.10)

in (4.1) is already invariant under the global symmetry and thus do not need further terms.

On top of that, it turns out that we need two more types of terms

F(1,3) =
1

6

⌈∣∣ ã1 ± 2mAS

∣∣⌉3
(4.11)

and

F(30380,3) =
1

6

∑

w∈30380×3

⌈∣∣ 2ã1 + ã2 + w · ~m
∣∣⌉3
. (4.12)

The necessity of these two terms will be discussed in the following subsections.

In summary, we propose that the complete prepotential is given by

F = FCFT + F(248,1) + F(3875,2) + F(1,2) + F(1,3) + F(30380,3) (4.13)

where each term is defined in (4.5), (4.7), (4.9), (4.10), (4.11), and in (4.12).

Here, we consider the case mAS = 0 to give a consistency check. In this case, it is known

that the Seiberg-Witten curve of the rank 2 En theory is factorized into the two curves

for rank one theory [34]. The partition function is also known to be factorized [58]. These
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indicate that our complete prepotential should also become the sum of two prepotentials

for rank one case. That is,

F(mAS = 0) =
1

6
(ã1

3 + ã2
3)− 1

2
mi

2(ã1 + ã2) +
1

6

2∑

I=1

7∑

i=1

⌈∣∣ ãI −m0 ±mi

∣∣⌉3
. (4.14)

Furthermore, it is expected that the physical Coulomb branch is given as the copies of the

rank one case (2.42),

2ãI − w · ~m ≥ 0, ∀w ∈ 3875 (I = 1, 2)

3ãI − w · ~m ≥ 0, ∀w ∈ 147250 (I = 1, 2) (4.15)

together with

ã1 ≥ ã2 (4.16)

coming from the choice of the Weyl chamber of the Sp(2) gauge group. Analogous to (2.43),

we see that

ãI ≥ 0 (I = 1, 2)

3ãI − w · ~m ≥ 0, ∀w ∈ 30380 (I = 1, 2) (4.17)

are satisfied in the expected physical Coulomb moduli (4.15). All these are enough to show

that F(3875,2), F(1,2), F(1,3), and F(30380,3) indeed vanish in the expected physical Coulomb

moduli (4.15) and (4.16) if mAS = 0. Therefore, we have shown that our prepotential (4.13)

indeed reduces to (4.14) in the expected physical Coulomb moduli if mAS = 0. Moreover,

the analogous computation in appendix E indicates that

∂F(mAS = 0)

∂ãI
≥ 0 (I = 1, 2) (4.18)

is satisfied in the expected physical Coulomb moduli while the equality is saturated at

the boundary of (4.15). This implies that the expected physical Coulomb moduli (4.15)

and (4.16) are indeed the correct physical Coulomb moduli space for mAS = 0.

4.2 Consistency with dualities

As in section 3.2, we can give support for the complete prepotential of the Sp(2) gauge the-

ory with 7 flavors and a hypermultiplet in the antisymmetric representation given in (4.13)

by reproducing the IMS prepotentials of the dual theories. The rank 2 E8 theory has two

dual gauge theory descriptions. One is the SU(3) gauge theory with 8 flavors and the CS

level κ = ±2 and the other is the quiver gauge theory [1]− SU(2)− SU(2)− [5], where [n]

is the n hypermultiplets in fundamental representation. We look at the prepotentials in

the dual descriptions one by one.
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Duality between Sp(2)+1AS+7F and SU(3)2+8F . First we consider the duality

to the SU(3) gauge theory with 8 flavors and the CS level κ = 2. The duality map for the

marginal theories by adding one flavor on the both sides has been obtained in [8]. It is

straightforward to obtain the duality map for the current case and it is given by

mSp
0 =

5

4
mSU

0 −
1

4

7∑

i=1

mSU
i −

3

4
mSU

8 , (4.19)

mSp
AS = −1

2
mSU

8 +
1

2
mSU

0 −
1

2

7∑

i=1

mSU
i , (4.20)

mSp
i = mSU

i +
1

4
mSU

0 −
1

4

7∑

i=1

mSU
i +

1

4
mSU

8 , (i = 1, 2, · · · 7) (4.21)

aSp
I = aSU

I +
1

4
mSU

0 −
1

4

7∑

i=1

mSU
i +

1

4
mSU

8 . (I = 1, 2) (4.22)

Therefore, inserting the duality map (4.19)–(4.22) into the prepotential (4.13) yields the

complete prepotential for the SU(3) gauge theory with 8 flavors and the CS level κ = 2.

Since we are interested in the weak coupling region of the SU(3) gauge theory we con-

sider the region mSU
0 � |mSU

f |, |aSU
I |. Then various terms in the prepotential are simplified

in the following way.

F(248,1) →
1

6

2∑

I=1

8∑

i=1

⌈∣∣ aSU
I −mSU

i

∣∣⌉3
(4.23)

F(3875,2) →
1

6

8∑

i=1

⌈∣∣ aSU
1 + aSU

2 +mSU
i

∣∣⌉3

=
1

6

8∑

i=1

⌈∣∣−aSU
3 +mSU

i

∣∣⌉3
(4.24)

F(1,2) →
1

6

(
aSU

1 + aSU
2 −

1

2
mSU

0 +
1

2

8∑

i=1

mSU
i

)3

(4.25)

F(1,3) → 0 (4.26)

F(30380,3) → 0. (4.27)

Then, the prepotential in the weak coupling region reduces to

FSU(3)
weak =

1

6

(
2
(
aSU

1

)3 − 3
(
aSU

1

)2
aSU

2 − 3aSU
1

(
aSU

2

)2)

+
1

2
mSU

0

((
aSU

1

)2
+ aSU

1 aSU
2 +

(
aSU

2

)2)

− 1

2
aSU

1 aSU
2

8∑

i=1

mSU
i −

1

2

(
aSU

1 + aSU
2

) 8∑

i=1

(
mSU
i

)2
,

+
1

6

2∑

I=1

8∑

i=1

⌈∣∣ aSU
I −mSU

i

∣∣⌉3
+

1

6

8∑

i=1

⌈∣∣−aSU
3 +mSU

i

∣∣⌉3
,

(4.28)
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where we ignored the terms which do not depend on the Coulomb branch moduli. This is

exactly the IMS prepotential

FSU(3)
IMS =

1

4
mSU

0

(
(aSU

1 )2 + (aSU
2 )2 + (aSU

3 )2
)

+
1

3

(
(aSU

1 )3 + (aSU
2 )3 + (aSU

3 )3
)

+
1

6

(
(aSU

1 − aSU
2 )3 + (aSU

1 − aSU
3 )3 + (aSU

2 − aSU
3 )3

)
,

− 1

12

3∑

i=1

8∑

j=1

∣∣aSU
i −mSU

j

∣∣3
(4.29)

for the SU(3) gauge theory with 8 flavors and the CS level κ = 2. Also, note that the

prepotential of the form F(1,2) was important to perform one flop transition in order to

move from the CFT region to the weak coupling region of the SU(3) gauge theory.

Duality between Sp(2) + 1AS + 7F and [1] − SU(2) − SU(2) − [5]. The Sp(2)

gauge theory with 7 flavors and with 1 antisymmetric tensor is dual to the quiver gauge

theory [1]−SU(2)(1)−SU(2)(2)− [5]. In order to obtain the duality map between them, we

first consider the duality between the SU(3) gauge theory considered above and this SU(2)

quiver gauge theory through the 5-brane web as in figure 13. Figure 13(a) is a 5-brane

web for the 5d N = 1 SU(3) gauge theory with Chern-Simons level 2 and with Nf = 8

flavors. Figure 13(b) is a 5-brane web obtained from 13(a) by a sequence of Hanany-Witten

transitions. Figure 13(c) is a 5-brane web for 5d N = 1 SU(2) quiver gauge theory. The

diagram in 13(b) and in 13(c) are related by the S-duality transformation and can be used

to compare the parameters in the two gauge theories. This 5-brane analysis shows that

the duality map between the SU(3) gauge theory and the SU(2) quiver gauge theory is

given by

mSU
0 = Λ1 + Λ2 +m

(1)
1 +m

(2)
0

mSU
i = Λ1 −m(2)

i , (i = 1, 2, · · · , 5)

mSU
i = −Λ1 − Λ2 + (−1)imbif, (i = 6, 7)

mSU
8 = Λ2 +m

(1)
1 ,

aSU
1 = Λ2 + a(1),

aSU
2 = −Λ1 − Λ2 − a(1) + a(2),

aSU
3 = Λ1 − a(2), (4.30)

where we introduced

Λ1 ≡ −
1

6
m

(1)
0 +

1

6
m

(1)
1 −

1

3
m

(2)
0 +

1

3

5∑

k=1

m
(2)
k ,

Λ2 ≡
1

3
m

(1)
0 −

1

3
m

(1)
1 +

1

6
m

(2)
0 −

1

6

5∑

k=1

m
(2)
k (4.31)

to simplify the expression. The upper indices with bracket (n) is the label to indicate the

SU(2)(n) gauge group of the quiver gauge theory.
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(c)

Figure 13. (a). 5-brane web for 5d N = 1 SU(3) gauge theory with Chern-Simons level 2 and

with Nf = 8 flavors. (b). 5-brane web after sequence of Hanany-Witten transition. (c). 5-brane

web for 5d N = 1 SU(2) quiver gauge theory.

Then, combining (4.30) with (4.19)–(4.22), we obtain the duality map between Sp(2)

gauge theory and and the quiver gauge theory. After transformation of the Weyl group of

E8, the duality map is given as

mSp
i = m

(2)
i , (i = 0, 1, · · · , 5)

mSp
j = mbif + (−1)j

(
1

2
m

(1)
0 +

1

2
m

(1)
1 +m

(2)
0

)
, (j = 6, 7)

mSp
AS =

1

2
m

(1)
0 −

1

2
m

(1)
1 +m

(2)
0 ,
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ã1 = a(1) + 2m
(2)
0 +m

(1)
0 ,

ã2 = a(2) − a(1) +
1

2
m

(1)
0 +

1

2
m

(1)
1 + 2m

(2)
0 , (4.32)

where we note ãI = aSp
I + mSp

0 (I = 1, 2). After substituting them into the prepoten-

tial (4.13), we consider the weak coupling region m
(1)
0 ,m

(2)
0 � |m(1)

f |, |m
(2)
f |, |a(1)|, |a(2)|.

Then, only small number of terms remains as follows:

F(248,1) →
1

6
(a(2) − a(1) − 1

2
m

(1)
0 −

1

2
m

(1)
1 )3 +

1

6

⌈∣∣ a(1) −m(1)
1

∣∣⌉3

+
1

6

⌈∣∣ a(2) − a(1) ±mbif

∣∣⌉3

F(3875,2) →
1

6

5∑

i=1

⌈∣∣ a(2) ±m(2)
i

∣∣⌉3

F(1,2) →
1

6
(2a(1) − a(2) −m(2)

0 )3

F(1,3) →
1

6

⌈∣∣ a(1) +m
(1)
1

∣∣⌉3

F(30380,3) →
1

6

⌈∣∣ a(1) + a(2) ±mbif

∣∣⌉3
. (4.33)

Combined with FCFT, we find that the complete prepotential reduces to

Fweak =
7

6
(a(1))3 − (a(1))2a(2) +

1

6
(a(2))3 +

1

2

2∑

I=1

m
(I)
0 (a(I))2

+
1

6

⌈∣∣ a(1) ±m(1)
1

∣∣⌉3
+

1

6

5∑

i=1

⌈∣∣ a(2) ±m(2)
i

∣∣⌉3
+

1

6

⌈∣∣ a(1) ± a(2) ±mbif

∣∣⌉3
(4.34)

in the weak coupling region, where we ignored the constant terms independent of Coulomb

branch parameters a(1) and a(2). We find that it agrees with the IMS prepotential

FIMS =

2∑

I=1

(
4

3
(a(I))3 +

1

2
m

(I)
0 (a(I))2

)

− 1

12
|a(1) ±m(1)

1 |3 −
1

12

5∑

i=1

|a(2) ±m(2)
i |3 −

1

12
|a(1) ± a(2) ±mbif|3 (4.35)

for the quiver gauge theory [1] − SU(2)(1) − SU(2)(2) − [5] up to the constant terms.

Here, we make two comments. First, note that the terms F(1,3) and F(30380,3) in (4.13),

which we did not give derivation there, turn out to be necessary to reproduce this IMS

prepotential correctly. Second, we find from (4.33) that

FCFT = FIMS −
1

6

(
a(2) − a(1) − 1

2
m

(1)
0 −

1

2
m

(1)
1

)3

− 1

6
(2a(1) − a(2) −m(1)

0 )3 (4.36)

in the CFT region. This indicates that, at the region a(1), a(2) > 0, m
(1)
j = 0 (j =

0, 1), m
(2)
i = 0 (i = 0, 1, · · · , 5), the IMS prepotential FIMS is different from the correct

prepotential FCFT. In this massless region, FIMS agree with FCFT only in the subspace of

the Coulomb moduli, a(1) = 0.
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4.3 Consistency with RG flows

It is known that Sp(2) gauge theory with an antisymmetric and 7 flavors (Sp(2)+1AS+7F)

has three different RG flows [6]: (i) Sp(2) + 1AS + 6F with E7 × SU(2) global sym-

metry, (ii) Sp(2) + 7F with SO(14) × U(1) global symmetry, and (iii) the quiver theory

SU(2)0−SU(2)−[5] with E8 global symmetry. We take these three decoupling limits and

show that our complete prepotential for Sp(2) + 1AS + 7F naturally produces all the

complete prepotentials for three theories with the expected enhanced global symmetries.

Flow to Sp(2) + 1AS + 6F. Let us first take the limit to Sp(2) gauge theory with an

antisymmetric and 6 flavors. It is achieved by decoupling a flavor. Namely, we take one of

mass of flavors of FSp(2)+1AS+7F to infinity, say m7, together with m
Sp(2)+1AS+7F
0 ,

m7, m
Sp(2)+1AS+7F
0 →∞, while m

Sp(2)+1AS+7F
0 −m7 ≡ mSp(2)+1AS+6F

0 fixed. (4.37)

From here on, we drop the superscripts for Sp(2) + 1AS + 6F so that m0 refers to

m
Sp(2)+1AS+6F
0 . As shown in the previous subsection, the structure of the complete prepo-

tential for Sp(2) + 1AS + 7F takes the form

FE8×SU(2) = FCFT + F(248,1) + F(3875,2) + F(1,2) + F(1,3) + F(30380,3). (4.38)

As we are decoupling a flavor, the SU(2) global symmetry part coming from an anti-

symmetric is not altered. It is therefore similar to the decoupling of the rank-1 theory,

SU(2) + NfF. Recall that the prepotential become a sum of two Sp(1) theories in the

massless limit of antisymmetric matter. It then follows that the invariant Coulomb branch

parameters of Sp(2) + 1AS + 6F theory become

ãI = aI +
1

2
m0. (4.39)

We note that, as in the rank-1 case, in the decoupling limit (4.37), FSp(2)+1AS+7F
(248,1) gives rise

to the terms associated with the fundamental representation of E7 and also terms which

contribute to FSp(2)+1AS+6F
CFT ,

FE8×SU(2)
(248,1) → FE7×SU(2)

(56,1) +
1

6

2∑

I=1

(aI −m7)3, (4.40)

where

FE7×SU(2)
(56,1) =

1

6

2∑

I=1

(
6∑

i=1

⌈∣∣∣∣ ãI ±
1

2
m0 ±mi

∣∣∣∣
⌉3

+
∑

{si=±1}
even+

⌈∣∣∣∣ ãI +
1

2

6∑

k=1

skmk

∣∣∣∣
⌉3
)
. (4.41)

Here we have neglected constant terms. As in the Nf = 7 case where E8 is realized as the

embedding of E8 ⊃ SO(16) ⊃ SO(14)×U(1), the E7 symmetry is also realized through the

following embedding

E7 ⊃ SO(12)×U(1)

56 = 121 + 12−1 + 320, (4.42)
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where the first term of (4.41) represents the fundamental representation of SO(12) with the

opposite U(1) charges appearing as the coefficients of m0, and the second term of (4.41)

represents the spinor representation of SO(12) without U(1) charges.

With the second term in the r.h.s. of (4.40), one finds that the decoupling a flavor

yields

FE8×SU(2)
(248,1) + FE8×SU(2)

CFT → FE7×SU(2)
(56,1) + FE7×SU(2)

CFT , (4.43)

where

FE7×SU(2)
CFT =−m2

AS ã1 +
2∑

I=1

[
1

3
ã3
I −

1

4
m2

0ãI −
1

2

6∑

k=1

m2
kãI

]
. (4.44)

In a similar fashion, one can show that the decoupling limit (4.37) on the complete

prepotential for Sp(2) + 1AS + 7F theory leads to the complete prepotential for Sp(2) +

1AS + 6F theory with the expected properties, E7 × SU(2) global symmetry and the

factorized prepotential form as the sum of two rank-1 theories in the massless mAS limit,

FSp(2)+1AS+7F
E8×SU(2) → FE7×SU(2)

CFT + FE7×SU(2)
(56,1) + FE7×SU(2)

(133,2) + FE7×SU(2)
(1,2) + FE7×SU(2)

(56,3)

= FSp(2)+1AS+6F
E7×SU(2) , (4.45)

whose explicit forms are given in appendix D.

Flow to Sp(2) + 7F. Now consider the RG flow to Sp(2) + 7F. It is achieved by

decoupling the antisymmetric matter contribution from the complete prepotential for

Sp(2) + 1AS + 7F given in (4.13). We take

mAS , m
Sp(2)+1AS+7F
0 →∞, while m

Sp(2)+1AS+7F
0 − 2mAS ≡ mSp(2)+7F

0 fixed. (4.46)

In this decoupling limit, one finds that the prepotentials for Sp(2) gauge theory with 7

flavors is given by

FSp(2)+7F =
1

2
a3

1 + a1a
2
2 +

1

6
a3

2 +
1

2
m0(a2

1 + a2
2)− 1

2

7∑

i=1

m2
i (a1 + a2)

+
1

6

⌈∣∣ a1 ±m0

∣∣⌉3
+

1

6

2∑

I=1

7∑

i=1

⌈∣∣ aI ±mi

∣∣⌉3

+
1

6

∑

{si=±1},
odd+

⌈∣∣∣∣ a1 + a2 +
1

2
m0 +

1

2

7∑

i=1

simi

∣∣∣∣
⌉3

+
1

6

∑

1≤i<j≤7

⌈∣∣ 2a1 + a2 +m0 ±mi ±mj

∣∣⌉3
. (4.47)

Notice that terms in the prepotential (4.47) are organized as the representations of SO(14)×
U(1)I , where the SO(14) symmetry is associated with 7 mass parameters mi and the U(1)
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is associated with the instanton mass m0 of Sp(2) + 7F theory. Namely, the complete

prepotential for Sp(2) + 7F theory (4.47) is of the form

FSp(2)+7F
SO(14)×U(1) = FCFT + Fsinglet + FF + FS + Frk-2, (4.48)

where FCFT refers to the first line of (4.47), and Fsinglet +FF +FS +Frk-2 refer the singlet,

fundamental, spinor, and rank-2 antisymmetric representations of SO(14). We note that

this complete prepotential (4.47) agrees with the one obtained by a successive decouplings

of two flavors from the complete prepotential for Sp(2) gauge theory with 9 flavors, given

in (3.13). (See also appendix C for the details.) Hence, we confirm that the decoupling

limit (4.46) yields FSp(2)+1AS+7F
E8×SU(2) → FSp(2)+7F

SO(14)×U(1).

Flow to SU(2)0−SU(2)−[5]. The RG flow to SU(2)0−SU(2)−[5] is achieved as follows:

as Sp(2) + 1AS + 7F is dual to the quiver [1]−SU(2)(1)−SU(2)(2)−[5], this quiver theory

also enjoy an E8×SU(2) global symmetry. We can then decouple the flavor associated with

the SU(2)(1) gauge theory. As before, the masses of the first SU(2)(1) are labeled as m
(1)
0

m
(1)
1 and the masses of the second SU(2)(2) are labeled as m

(2)
0 and m

(2)
i (i = 1, · · · , 5).

We then take

m
(1)
0 →∞ and m

(1)
1 → −∞, while m

(1)
0 +m

(1)
1 fixed. (4.49)

Or equivalently, from Sp(2) + 1AS + 7F, we take the limit

mAS →∞ and a1 →∞, while a1 −mAS fixed. (4.50)

Now take the limit from (4.13). With new Coulomb moduli parameter ãnew
1 := ã1 −mAS ,

we find the complete prepotential for SU(2)0−SU(2)−[5] shows an E8 global symmetry [9]11

as follows:

6FSU(2)0−SU(2)−[5]
E8

=ã3
1 + ã3

2 − 3

7∑

k=0

m2
k(ã

2
1 + ã2

2) +
⌈∣∣ ã1 − ã2

∣∣⌉3

+
∑

~w∈248

⌈∣∣ ã2 + ~w · ~m
∣∣⌉3

+
∑

~w∈3875

⌈∣∣ ã1 + ã2 + ~w · ~m
∣∣⌉3

+
∑

~w∈30380

⌈∣∣ 2ã1 + ã2 + ~w · ~m
∣∣⌉3
, (4.51)

where we have omitted irrelevant constant part and dropped the superscript, ãnew
1 → ã1.

We note here that one can also take m
(1)
0 ,m

(1)
1 → ∞, while m

(1)
0 − m

(1)
1 fixed. Or

equivalently, from Sp(2) + 1AS + 7F, we take m0,m3 → ∞, while m0 −m3 fixed. This

decoupling limit hence leads to

SU(2)π−SU(2)−[5] or Sp(2) + 1AS + 6F. (4.52)
11We checked that the 7-brane analysis based on the 5-brane web [8] for the quiver theory

SU(2)0−SU(2)−[5] also supports the E8 global symmetry of the quiver theory, whose 7-brane configuration

in one of 5-brane loop as A8X[2,−1]C, where A,X[2,−1], and C represent [1, 0], [2,−1], and [1, 1] 7-branes,

respectively [59].
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5 Conclusion

In the paper, we proposed “complete” prepotential for 5d N = 1 gauge theories which

covers all the parameter regions of the theories. This new prepotential is defined over the

extended Kähler cone of the 5d theories. Hence, it includes non-perturbative contributions

and, of course, reproduces the Intriligator-Morrison-Seiberg’s (perturbative) prepotential

in the weak coupling limit. Global symmetry enhancement and UV-duality of 5d N = 1

gauge theories are also captured in our complete prepotential. For that, we introduced the

invariant Coulomb branch moduli which are shifted Coulomb branch parameters with the

instanton mass parameter, so that the Coulomb branch moduli are invariant under the Weyl

reflections of enhanced global symmetry. The complete prepotential manifests enhanced

global symmetry, when written in terms of the invariant Coulomb branch parameters

To obtain the complete prepotential, we mainly used 5-brane web configurations of a

given 5d theory to keep track of possible flop transitions in the 5-brane web. It can be

systematized by taking into account the Weyl reflections of enhanced global symmetry. We

also used Gopakumar-Vafa invariants or Nekrasov partition functions defined on R3,1×S1,

to obtain the same complete prepotential by taking the decompactification limit where the

radius R of an S1 are very large. Along the way, we observed that the boundary of the

physical Coulomb branch where monopole string tensions vanish, corresponds to the gauge

bosons and string junctions being massless. We observed that the contributions to the

complete prepotential come from some of BPS hypermultiplets in the Gopakumar-Vafa

invariant. From geometry, the same complete prepotential was obtained by considering

volume of Mori cone generators.

As concrete examples, we discussed 5d gauge theories of rank-1 and -2, and worked

out the form of the complete prepotentials explicitly in the main text and also in appendix.

In particular, the complete prepotentials for two pure SU(2) = Sp(1) gauge theories with

distinct discrete theta angles, show not only distinct global symmetries E1 = SU(2) and

Ẽ1 = U(1), respectively, but also different flop structure. Pure SU(2)π gauge theory has a

flop which allows an RG flows to the non-Lagrangian E0 theory. For rank-2 gauge theories,

we obtained the complete prepotentials for Sp(2) gauge theories of Nf ≤ 9. For the Nf = 9

case, the enhanced global symmetry is SO(20), and when expressed in terms of the invariant

Coulomb branch parameters, the corresponding complete prepotential is SO(20) manifest

as expected. As it is the prepotential invariant under the enhanced global symmetry, it is

also the complete prepotential for its dual theories. In other words, it is the prepotential for

SU(3) 1
2

gauge theory of Nf = 9 flavors and also for [3]−SU(2)−SU(2)−[4] quiver theory,

as they are all UV-dual to the Sp(2) gauge theory with Nf = 9 flavors. As another rank-

2 example, we presented the complete prepotential for the Sp(2) gauge theories of one

antisymmetric and Nf ≤ 7 flavors, which is also known as 5d rank-2 ENf+1 theories. The

complete prepotentials for these rank-2 theories are expressed in terms of polynomials that

are invariant under Weyl group symmetry of the enhanced global symmetry and also tend

to involve higher dimensional representations of ENf+1 symmetry. As a consistency check,

we discussed RG flows that lead to less number of hypermultiplets and we cross-checked

the prepotentials by considering different decoupling limits to reach the same theories of

less number of hypermultiplets.
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Though we did not discuss all the rank-2 theories, one can straightforwardly apply

our method to obtain the complete prepotential for those rank-2 theories which are not

discussed here. In principle, it is applicable to other 5d higher rank superconformal theories.

If both 5-brane webs and enhanced global symmetry of the 5d gauge theories are known,

our method is exhaustive. For those theories whose 5-brane configurations are not yet

known, one may still apply our method to find the corresponding prepotential, but there

could be some missing terms that disappear in the weak coupling. On the other hand,

our method might be useful for constructing or finding a 5-brane configuration for such

theories which have yet to be found. As it suggests existence of possible flops which a

proper 5-brane web should have, our method thus provides some consistency checks in

attempting to construct new/unknown 5-brane configurations.
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A Convention for representation of E8

Throughout the paper, we use the convention that the simple roots αk (k = 1, 2, · · · , 8) of

E8 are expressed in terms of orthonormal basis ei (i = 0, 1, · · · , 7) as

α1 =
1

2
(e0 + e1 − e2 − e3 − e4 − e5 − e6 − e7),

α2 = e1 + e2,

αi = ei−1 − ei−2 (i = 3, 4, 5, 6, 7, 8). (A.1)

The Weyl reflection on a weight w is generated by

w → w − (w · αi)αi (i = 1, 2, · · · , 8). (A.2)
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Introducing the mass vector as

~m =
7∑

i=0

miei, (A.3)

we can identify a weight w with the linear combination of masses ~m · w. Then, the Weyl

reflection can be reinterpreted as a transformation on masses:

α1 :





mi → mi −
1

4

(
m0 +m1 −

7∑

j=2

mj

)
, i = 0, 1

mi → mi +
1

4

(
m0 +m1 −

7∑

j=2

mj

)
, i = 2, 3, 4, 5, 6, 7

(A.4)

α2 : m1 ↔ −m2 (A.5)

αi : mi−1 ↔ mi−2 (i = 3, 4, 5, 6, 7, 8). (A.6)

Or, combining these transformations, we write the E8 Weyl reflection as

mi ↔ mj (A.7)

mi ↔ −mj (for i 6= j) (A.8)

mi → mi −
1

4

7∑

k=0

mk (Simultaneously for all i). (A.9)

We take the Weyl chambers by imposing

~m · αi ≥ 0 (i = 1, 2, · · · , 8), (A.10)

which can be written explicitly as

~m · α1 = m0 +m1 −
7∑

k=2

mk ≥ 0,

~m · α2 = m1 +m2 ≥ 0,

~m · αi = mi−1 −mi−2 ≥ 0 (i = 3, 4, · · · 8), (A.11)

or equivalently,

m7 ≥ m6 ≥ m5 ≥ m4 ≥ m3 ≥ m2 ≥ |m1|,

m0 ≥
7∑

k=2

mk −m1. (A.12)

The fundamental weights µi (i = 1, 2, · · · , 8) are specified by imposing that their

corresponding highest weight wµi satisfy

wµi · αj = δij . (A.13)
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More explicitly, we have

~m · wµ1 =2m0, ~m · wµ2 =
5

2
m0 +

1

2

7∑

i=1

mi, ~m · wµ3 =
7

2
m0 −

1

2
m1 +

1

2

7∑

i=2

mi,

~m · wµ4 =5m0 +

7∑

k=3

mk, ~m · wµ5 =4m0 +

7∑

k=4

mk, ~m · wµ6 =3m0 +

7∑

k=5

mk,

~m · wµ7 =2m0+m7+m6, ~m · wµ8 =m0 +m7. (A.14)

Since any weight can be obtained by subtracting the simple roots from the highest

weight, (A.14) are the largest among all the weights in each representation in the Weyl

chamber defined as in (A.10):

~m · wµi ≥ ~m · w ∀w ∈ µi. (A.15)

We introduce the characters for each fundamental representation µi as

χµi(~m) =
∑

w∈µi

exp [−Rw · ~m] . (A.16)

In the massless limit, they give the dimension of each representation:

χµ1(0) = 3875, χµ2(0) = 147250, χµ3(0) = 6696000,

χµ4(0) = 6899079264, χµ5(0) = 146325270, χµ6(0) = 2450240,

χµ7(0) = 30380, χµ8(0) = 248. (A.17)

Based on these dimensions of the representations, we also use the notation 248 for µ8,

3875 for µ1 and so on. Decomposing the representation 248 of E8 into the representations

of the subgroup E8 ⊃ SO(16),

248→ 120 + 128. (A.18)

The weights w ∈ 120 of SO(16) are explicitly given as

~m · w = ±mi ± mj (0 ≤ i 6= j ≤ 7), (A.19)

which are in fact 112 in total, but we also took into account 8 Cartans which are of zero

weights ~m · w = 0. The weights w ∈ 128 are explicitly given as

~m · w =
1

2

7∑

i=0

simi (si = ±1), (A.20)

where even number of si take the value si = 1 while the remaining si take the value si = −1.
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B Prepotentials for rank-1 theories

Here, we list the complete prepotentials for the rank-1 SU(2) = Sp(1) gauge theories of Nf

flavors (SU(2) +NfF) associated with ENf+1 enhanced global symmetry. (We also include

the prepotential for E0 theory.) We denote by ã the invariant Coulomb branch parameter

and by a the usual Coulomb branch parameter which appears in the IMS prepotential,

ã = a+ m0
8−Nf . m0 are instanton mass and mi masses of Nf flavors.

SU(2) + 7F: E8 global symmetry, ã = a+m0.

6FE8 = ã3 − 3
7∑

k=0

m2
k ã +

∑

0≤i<j≤7

⌈∣∣ ã±mi ±mj

∣∣⌉3

+
∑

{si=±1},
even+

⌈∣∣∣∣ ã +
1

2

7∑

k=0

skmk

∣∣∣∣
⌉3

. (B.1)

SU(2) + 6F: E7 global symmetry, ã = a+ 1
2m0.

6FE7 = 2 ã3 − 3

(
1

2
m2

0 +
6∑

k=1

m2
k

)
ã +

6∑

i=1

⌈∣∣∣∣ ã±
1

2
m0 ± mi

∣∣∣∣
⌉3

+
∑

{si=±1},
even+

⌈∣∣∣∣ ã +
1

2

6∑

k=1

skmk

∣∣∣∣
⌉3

. (B.2)

SU(2) + 5F: E6 global symmetry, ã = a+ 1
3m0.

6FE6 = 3 ã3 −
(
m2

0 + 3

5∑

k=1

m2
k

)
ã +

5∑

i=1

⌈∣∣∣∣ ã−
1

3
m0 ± mi

∣∣∣∣
⌉3

+
∑

{si=±1},
even+

⌈∣∣∣∣ ã +
1

6
m0 +

1

2

5∑

k=1

skmk

∣∣∣∣
⌉3

+

⌈∣∣∣∣ ã +
2

3
m0

∣∣∣∣
⌉3

. (B.3)

SU(2) + 4F: E5 = SO(10) global symmetry, ã = a+ 1
4m0.

6FE5 = 4 ã3 − 3

5∑

k=1

x2
k ã +

∑

{si=±1},
odd+

⌈∣∣∣∣ ã +
1

2

5∑

i=1

si xi

∣∣∣∣
⌉3

, (B.4)

where

x1 =
1

2
m0,

x2 =
1

2
(−m1 +m2 +m3 +m4), x3 =

1

2
(m1 −m2 +m3 +m4),

x4 =
1

2
(m1 +m2 −m3 +m4), x5 =

1

2
(m1 +m2 +m3 −m4), (B.5)

with
5∑

k=1

x2
k =

1

4
m2

0 +

4∑

k=1

m2
k .
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SU(2) + 3F: E4 = SU(5) global symmetry, ã = a+ 1
5m0.

6FE4 = 5 ã3 − 3
5∑

k=1

x2
k ã +

∑

1≤i<j≤5

⌈∣∣ ã + xi + xj
∣∣⌉3
, (B.6)

where

x1 =
2

5
m0,

x2 = − 1

10
m0 −

1

2
(m1 +m2 +m3), x3 = − 1

10
m0 −

1

2
(m1 −m2 −m3),

x4 = − 1

10
m0 −

1

2
(−m1 +m2 −m3), x5 = − 1

10
m0 −

1

2
(−m1 −m2 +m3), (B.7)

subject to
5∑

k=1

xk = 0 .

SU(2) + 2F: E3 = SU(3)× SU(2) global symmetry, ã = a+ 1
6m0.

6FE3 = 6 ã3 − 3
( 3∑

k=1

x2
k + 2y2

)
ã +

3∑

i=1

⌈∣∣ ã + xi ± y
∣∣⌉3
, (B.8)

where

x1 =
1

3
m0 , x2 = −1

6
m0 +

1

2
(m1 −m2) , x3 = −1

6
m0 −

1

2
(m1 −m2) ,

y =
1

2
(m1 +m2) . (B.9)

SU(2) + 1F: E2 = SU(2)×U(1) global symmetry, ã = a+ 1
7m0.

6FE2 = 7 ã3 − 6

(
x2 +

1

7
y2

)
ã +

⌈∣∣∣∣ ã +
4

7
y

∣∣∣∣
⌉3

+

⌈∣∣∣∣ ã± x−
3

7
y

∣∣∣∣
⌉3

, (B.10)

where

x =
1

4
m0 +

1

4
m1 , y = −1

4
m0 +

7

4
m1 , (B.11)

and the last term is an SU(2) doublet, invariant under x↔ −x.

Pure SU(2)0: E1 = SU(2)I global symmetry, ã = a+ 1
8m0.

6FE1 = 8 ã3 − 3

8
m2

0 ã . (B.12)
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Pure SU(2)π: Ẽ1 = U(1)I global symmetry, ã = a.

6F
Ẽ1

= 8 a3 + 3m2
0 a+

⌈∣∣ a+
1

2
m0

∣∣⌉3
. (B.13)

These complete prepotentials for SU(2) gauge theory with Nf flavors can be summa-

rized as

6FENf+1
= (8−Nf ) ã3 − 3

(
1

8−Nf
m2

0 +

Nf∑

k=1

m2
kg
)
ã +

∑

~w∈µNf+1

⌈∣∣ ã + ~w · ~m
∣∣⌉3
, (B.14)

where

ã = a+
1

8−Nf
m0 , (B.15)

and µNf+1 is the fundamental weight of the Lie algebra of the ENf+1 enhanced global

symmetry (µ8 = 248, µ7 = 56, µ6 = 27, µ5 = 16, µ4 = 10, µ3 = (3,2), µ2 = 2− 3
7

+

1 4
7
). In terms of the Coulomb branch parameter, a, the complete prepotentials (B.14) are

expressed as

6FENf+1
= 3m0a

2 + (8−Nf )a3 − 3

Nf∑

k=1

m2
ka+

∑

~w∈µNf+1

⌈∣∣∣∣ a+
1

8−Nf
m0 + ~w · ~m

∣∣∣∣
⌉3

.

(B.16)

Finally, we can take a decoupling limit from the Ẽ1 theory to get the E0 theory which

is non-Lagrangian.

E0 theory:

FE0 =
3

2
a3
E0
, (B.17)

where aE0 is defined in terms of the parameters of the Ẽ1 theory in (B.13),

aE0 ≡ aẼ1
+

1

6
m0Ẽ1

. (B.18)

C Prepotentials for Sp(2) + (Nf ≤ 9) F

As in rank-1 case, we list the complete prepotentials for 5d Sp(2) gauge theory with Nf ≤ 9

flavors, which include the prepotential for pure Sp(2)0, Sp(2)π, SU(3)4 gauge theories, and

also for non-Lagrangian theory of the geometry F6 ∪ P2.
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Sp(2) + 9F: SO(20) global symmetry, ã1 = a1 +m0 and ã2 = a2.

FSO(20) = FCFT + F20 + F190 + F512 + F15504, (C.1)

where

6FCFT = ã3
1 − 2ã3

2 + 6 ã1 ã
2
2 − 3

9∑

i=0

m2
i (ã1 + ã2) , (C.2)

6F20 =
9∑

i=0

⌈∣∣ ã2 ±mi

∣∣⌉3
, (C.3)

6F190 =
∑

0≤i<j≤9

⌈∣∣ ã1 ±mi ±mj

∣∣⌉3
, (C.4)

6F512 =
∑

{si=±1},
odd+

⌈∣∣ ã1 + ã2 +
1

2

9∑

i=0

simi

∣∣⌉3
, (C.5)

6F15504 =
∑

0≤ii<i2<···<i5≤9

⌈∣∣ 2ã1 + ã2 ±mi1 ±mi2 ±mi3 ±mi4 ±mi5

∣∣⌉3
. (C.6)

Sp(2) + 8F: SO(16)× SU(2)I global symmetry, ã1 = a1 + 1
2m0 and ã2 = a2.

FSO(16)×SU(2) = FCFT + F(16,2) + F(120,1) + F(128,1) + F(560,1), (C.7)

where

6FCFT = 2ã3
1 + 6 ã1 ã

2
2 −

3

2
m2

0ã1 − 3
8∑

i=1

m2
i (ã1 + ã2) , (C.8)

6F(16,2) =
8∑

i=1

⌈∣∣ ã1 ±
1

2
m0 ±mi

∣∣⌉3
, (C.9)

6F(120,1) =

8∑

i=1

⌈∣∣ ã2 ±mi

∣∣⌉3
, (C.10)

6F(128,1) =
∑

{si=±1},
odd+

⌈∣∣ ã1 + ã2 +
1

2

8∑

i=1

simi

∣∣⌉3
, (C.11)

6F(560,1) =
∑

1≤ii<i2<i3≤8

⌈∣∣ 2ã1 + ã2 ±mi1 ±mi2 ±mi3

∣∣⌉3
. (C.12)

For Nf ≤ 7, there is no global symmetry enhancement and global symmetry remains

as SO(2Nf )×U(1)I , and thus the invariant Coulomb branch parameters are not required.

It is then convenient to define terms which frequently appear in the complete prepotential,

6FCFT = (10−Nf ) a3
1 + 6 a1 a

2
2 + (8−Nf ) a3

2

+ 3m0(a2
1 + a2

2)− 3

Nf∑

i=1

m2
i (a1 + a2) , (C.13)
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6Fsinglet =
⌈∣∣ a1 ±m0

∣∣⌉3
, (C.14)

6FF =
2∑

I=1

Nf∑

i=1

⌈∣∣ aI ±mi

∣∣⌉3
, (C.15)

6FC =
∑

{si=±1},
odd+

⌈∣∣∣∣ a1 + a2 +
1

2
m0 +

1

2

Nf∑

i=1

simi

∣∣∣∣
⌉3

, (C.16)

6Frk-` =
∑

1≤ii<i2<···<i`≤Nf

⌈∣∣ 2a1 + a2 +m0 ±mi1 ±mi2 ± · · · ±mi`

∣∣⌉3
. (C.17)

Here the subscript F or C denotes the fundamental or the conjugate spinor representation

of GF , respectively, and the index rk-` of Frk-` to denote the rank-` representation of the

global symmetry group GF . Then the complete prepotentials for Sp(2) gauge theory with

Nf ≤ 7 flavors are given as follows.

Sp(2) + 7F:

FSO(14)×U(1) = FCFT + Fsinglet + FF + FC + Frk-2, (C.18)

Sp(2) + 6F:

FSO(12)×U(1) = FCFT + FF + FC + Frk-1, (C.19)

Sp(2) + 5F:

FSO(10)×U(1) = FCFT + FF + FC + Frk-0, (C.20)

Sp(2) + (1 ≤ Nf ≤ 4) F:

FSO(2Nf )×U(1) = FCFT + FF + FC . (C.21)

Sp(2)π: Sp(2) gauge theory with the discrete theta angle θ = π.

Fθ=π = FCFT =
5

3
a3

1 + a1a
2
2 +

4

3
a3

2 +
1

2
m0 (a2

1 + a2
2). (C.22)

Sp(2)0: Sp(2) gauge theory with the discrete theta angle θ = 0.

Fθ=0 = FCFT + FC

=
5

3
a3

1 + a1a
2
2 +

4

3
a3

2 +
1

2
m0 (a2

1 + a2
2) +

1

6

⌈∣∣∣∣ a1 + a2 +
1

2
m0

∣∣∣∣
⌉3

. (C.23)

SU(3)4: recall that Sp(2) + 1F gauge theory also has a decoupling limit to SU(3)4 gauge

theory, which is achieved by taking aI → ∞ and m1,m0 → −∞ with m0 = m1. The

resulting prepotential is the complete prepotential for SU(3)4 gauge theory:

F =
5

3
a3

1 +
1

2
a2

1a2 +
3

2
a1a

2
2 +

4

3
a3

2 +m0(a2
1 + a1a2 + a2

2) +
1

6

2∑

I=1

⌈∣∣ aI +m0

∣∣⌉3
. (C.24)
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Here one can take further decoupling [6] from either Sp(2)0 or SU(3)4 gauge theory to

obtain a non-Lagrangian theory of the geometry F6 ∪ P2. From Sp(2)0 gauge theory, it is

achieved by taking m0 → −∞ and aI → ∞, while bI ≡ aI + 1
8m0 are kept finite. From

SU(3)4 gauge theory, it is achieved by taking m0 → −∞ and aI →∞, while bI ≡ aI + 1
4m0

are kept finite. The prepotential for the theory of geometry F6 ∪ P2 is then given by

F6 ∪ P2:

FF6∪P2
=

11

6
b31 +

1

2
b21b2 +

3

2
b1b

2
2 +

3

2
b32 . (C.25)

D Prepotentials for Sp(2) + 1AS + (Nf ≤ 7)F

We list the complete prepotential for the Sp(2) gauge theories with one antisymmetric and

Nf flavors (Sp(2)+1AS+NfF) associated with ENf+1×SU(2) enhanced global symmetry.

(The prepotential for SU(3)6 or rank-2 E0 theory is also included.) Like rank-1 cases, the

invariant Coulomb branch parameters for each flavor is given by

ãI = aI +
1

8−Nf
m0. (I = 1, 2) (D.1)

In the limit where mAS → 0, the complete prepotential becomes a sum of two copies of

rank-1 prepotentials F(ã1, ã2)→ FENf+1
(ã1) + FENf+1

(ã2) [34, 58].

Sp(2) + 1AS + 7F:

FE8×SU(2) = FCFT + F(248,1) + F(3875,2) + F(1,2) + F(1,3) + F(30380,3), (D.2)

where

6FCFT =− 6m2
AS ã1 +

2∑

I=1

[
ã3
I − 3

7∑

k=0

m2
kãI

]
, (D.3)

6F(248,1) =

2∑

I=1

∑

wE8
∈248

⌈∣∣ ãI + ~wE8 · ~m
∣∣⌉3

(D.4)

=

2∑

I=1

[ ∑

0≤i<j≤7

⌈∣∣ ãI ±mi ± mj

∣∣⌉3
+

∑

{si=±1},
even+

⌈∣∣∣∣ ãI +
1

2

7∑

k=0

skmk

∣∣∣∣
⌉3
]
,

6F(3875,2) =
∑

wE8×SU(2)∈(3875,2)

⌈∣∣ ã1 + ã2 + ~w · ~m
∣∣⌉3

=
∑

0≤i≤j≤7

⌈∣∣ ã1 + ã2 ±mi ±mj ±mAS

∣∣⌉3

+
∑

0≤i1<i2<i3<i4≤7

⌈∣∣ ã1 + ã2 +±mi1 ±mi2 ±mi3 ±mi4 ±mAS

∣∣⌉3

+
∑

{si=±1},
odd +

7∑

i=0

⌈∣∣∣∣ ã1 + ã2 + simi ±mAS +
1

2

7∑

k=0

skmk

∣∣∣∣
⌉3

, (D.5)
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6F(1,2) =
∑

wE8×SU(2)∈(1,2)

⌈∣∣ ã1 − ã2 + ~w · ~m
∣∣⌉3

=
⌈∣∣ ã1 − ã2 ±mAS

∣∣⌉3
, (D.6)

6F(1,3) =
∑

wE8×SU(2)∈(1,3)

⌈∣∣ ã1 + ~w · ~m
∣∣⌉3

=
⌈∣∣ ã1 ±mAS

∣∣⌉3
, (D.7)

6F(30380,3) =
∑

wE8×SU(2)∈(30380,3)

⌈∣∣ 2ã1 + ã2 + ~w · ~m
∣∣⌉3

=
∑

0≤i<j≤7

⌈∣∣ 2ã1 + ã2 ±mi ±mj ± 2mAS

∣∣⌉3

+
∑

{si=±1},
odd +

7∑

k=0

⌈∣∣∣∣ 2ã1 + ã2 + skmk ± 2mAS +
1

2

7∑

i=0

simi

∣∣∣∣
⌉3

+
∑

0≤i1<i2<i3<i4≤7

⌈∣∣ 2ã1 + ã2 ±mi1 ±mi2 ±mi3 ±mi4 ± 2mAS

∣∣⌉3

+

7∑

k=0

∑

0≤i1<i2≤7,
j1 6=k 6=j2

⌈∣∣ 2ã1 + ã2 ± 2mk ±mii ±mi2 ± 2mAS

∣∣⌉3
(D.8)

+
∑

0≤i1<···<i6≤7

⌈∣∣ 2ã1 + ã2 ±mi1 ± · · · ±mi6 ± 2mAS

∣∣⌉3

+
∑

{si=±1}
even +

∑

0≤k1,k2≤7

⌈∣∣∣∣ 2ã1+ã2+sk1mk1 +sk2mk2 ± 2mAS+
1

2

7∑

i=0

simi

∣∣∣∣
⌉3

.

We have used the decomposition

E8 ⊃ SO(16)

248 = 120 + 128

3875 = 135 + 1820 + 1920

30380 = 120 + 1920 + 7020 + 8008 + 13312. (D.9)

Sp(2) + 1AS + 6F:

FE7×SU(2) = FCFT + F(56,1) + F(133,2) + F(1,2) + F(56,3), (D.10)

where

6FCFT =− 6m2
AS ã1 +

2∑

I=1

[
2 ã3

I − 3

(
1

2
m2

0 +
6∑

k=1

m2
k

)
ãI

]
, (D.11)

6F(56,1) =
2∑

I=1

(
6∑

i=1

⌈∣∣∣∣ ãI ±
1

2
m0 ±mi

∣∣∣∣
⌉3

+
∑

{si=±1}
even+

⌈∣∣∣∣ ãI +
1

2

6∑

k=1

skmk

∣∣∣∣
⌉3
)
, (D.12)

6F(133,2) =
∑

{si=±1}
odd+

⌈∣∣∣∣ 2ã1 + ã2 +
1

2

6∑

k=1

skmk ±mAS

∣∣∣∣
⌉3
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+
∑

i≤i<j≤6

⌈∣∣ ã1 + ã2 ±mi ±mj ±mAS

∣∣⌉3

+
⌈∣∣ ã1 + ã2 ±m0 ±mAS

∣∣⌉3
, (D.13)

6F(1,2) =
⌈∣∣ ã1 − ã2 ±mAS

∣∣⌉3
, (D.14)

6F(56,3) =

6∑

i=1

⌈∣∣ 2ã1 + ã2 ±
1

2
m0 ±mi ± 2mAS

∣∣⌉3

+
∑

{si=±1}
even+

⌈∣∣∣∣ 2ã1 + ã2 +
1

2

6∑

k=1

skmk ± 2mAS

∣∣∣∣
⌉3

. (D.15)

We have used the decomposition

E7 ⊃ SO(12)×U(1)

56 = 121 + 12−1 + 320

133 = 321 + 32−1 + 660 + 1−2 + 10 + 12. (D.16)

Sp(2) + 1AS + 5F:

FE6×SU(2) = FCFT + F(27,1) + F(27,2) + F(1,2) + F(1,3), (D.17)

where

6FCFT = −6m2
AS ã1 +

2∑

I=1

[
3 ã3

I − 3

(
1

3
m2

0 +

5∑

k=1

m2
k

)
ãI

]
, (D.18)

6F(27,1) =
2∑

I=1

(⌈∣∣∣∣ ãI +
2

3
m0

∣∣∣∣
⌉3

+
5∑

i=1

⌈∣∣∣∣ ãI −
1

3
m0 ±mi

∣∣∣∣
⌉3

+
∑

{si=±1}
even+

⌈∣∣∣∣ ãI +
1

6
m0 +

1

2

5∑

k=1

skmk

∣∣∣∣
⌉3
)
, (D.19)

6F(27,2) =

⌈∣∣∣∣ ã1 + ã2 −
2

3
m0 ±mAS

∣∣∣∣
⌉3

+
5∑

i=1

⌈∣∣∣∣ ã1 + ã2 +
1

3
m0 ±mi ±mAS

∣∣∣∣
⌉3

+
∑

{si=±1}
odd+

⌈∣∣∣∣ ã1 + ã2 −
1

6
m0 +

1

2

5∑

k=1

skmk ±mAS

∣∣∣∣
⌉3

, (D.20)

6F(1,2) =
⌈∣∣ ã1 − ã2 ±mAS

∣∣⌉3
, (D.21)

6F(1,3) =
⌈∣∣ 2ã1 + ã2 ± 2mAS

∣∣⌉3
. (D.22)

We have used the decomposition

E6 ⊃ SO(10)×U(1)

27 = 10− 1
3

+ 16 1
6

+ 1 2
3

27 = 10 1
3

+ 16− 1
6

+ 1− 2
3
. (D.23)
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Sp(2) + 1AS + 4F:

FE5×SU(2) = FCFT + F(16,1) + F(10,2) + F(1,2), (D.24)

where, with the E5 chemical potential xi given in (B.5),

6FCFT = −6m2
AS ã1 +

2∑

I=1

[
4 ã3

I − 3
5∑

k=1

x2
k ãI

]
, (D.25)

6F(16,1) =

2∑

I=1

∑

{si=±1},
odd+

⌈∣∣∣∣ ãI +
1

2

5∑

k=1

si xi

∣∣∣∣
⌉3

, (D.26)

6F(10,2) =

5∑

i=1

⌈∣∣ ã1 + ã2 ± xi ±mAS

∣∣⌉3
, (D.27)

6F(1,2) =
⌈∣∣ ã1 − ã2 ±mAS

∣∣⌉3
. (D.28)

Sp(2) + 1AS + 3F:

FE4×SU(2) = FCFT + F(10,1) + F(5,2) + F(1,2), (D.29)

where, with the chemical potential xi given in (B.7),

6FCFT = −6m2
AS ã1 +

2∑

I=1

[
5ã3
I − 3

5∑

k=1

x2
k ãI

]
, (D.30)

6F(10,1) =

2∑

I=1

∑

i≤i<j≤5

⌈∣∣ ãI + xi + xj
∣∣⌉3
, (D.31)

6F(5,2) =
5∑

i=1

⌈∣∣ ã1 + ã2 − xi ±mAS

∣∣⌉3
, (D.32)

6F(1,2) =
⌈∣∣ ã1 − ã2 ±mAS

∣∣⌉3
. (D.33)

Sp(2) + 1AS + 2F:

FE3×SU(2) = FCFT + F(3,2,1) + F(3,1,2) + F(1,1,2), (D.34)

where

6FCFT = −6m2
AS ã1 +

2∑

I=1

[
6 ã3

I − 3

(
3∑

k=1

x2
k + 2y2

)
ãI

]
, (D.35)

6F(3,2,1) =

2∑

I=1

3∑

i=1

⌈∣∣ ãI + xi ± y
∣∣⌉3
, (D.36)

6F(3,1,2) =

2∑

I=1

3∑

i=1

⌈∣∣ ãI − xi ±mAS

∣∣⌉3
, (D.37)

6F(1,1,2) =
⌈∣∣ ã1 − ã2 ±mAS

∣∣⌉3
. (D.38)

The SU(3) chemical potentials x1, x2, x3, subject to
∑3

k=1 xk = 0, and the SU(2) chemical

potential y are given in (B.9).
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Sp(2) + 1AS + 1F:

FE2×SU(2) = FCFT + F(14/7+2−3/7,1) + F(21/7,2) + F(10,2), (D.39)

where

6FCFT = −6m2
AS ã1 +

2∑

I=1

[
7 ã3

I − 3

(
x2 +

1

7
y2

)
ãI

]
, (D.40)

6F(14/7+2−3/7,1) =
2∑

I=1

(⌈∣∣∣∣ ãI +
4

7
y

∣∣∣∣
⌉3

+

⌈∣∣∣∣ ãI ± x−
3

7
y

∣∣∣∣
⌉3)

, (D.41)

6F(21/7,2) =

⌈∣∣∣∣ ã1 + ã2 ± x+
1

7
y ±mAS

∣∣∣∣
⌉3

, (D.42)

6F(10,2) =
⌈∣∣ ã1 − ã2 ±mAS

∣∣⌉3
, (D.43)

The SU(2) chemical potential x and the U(1) chemical potential y are defined in (B.11).

Sp(2)0 + 1AS: ãI = aI + 1
8m0.

6FE1×SU(2) =− 6m2
AS ã1 +

2∑

I=1

[
8 ã3

I −
3

8
m2

0 ãig
]

+

⌈∣∣∣∣ ã1 + ã2 ±
1

4
m0 ±mAS

∣∣∣∣
⌉3

+
⌈∣∣ ã1 − ã2 ±mAS

∣∣⌉3
. (D.44)

Decoupling one antisymmetric by taking taking mAS ,m0 →∞ while m
Sp(2)0

0 ≡ m0−2mAS

kept finite, we obtain the complete prepotential for pure Sp(2)0 gauge theory (C.23).

Sp(2)π + 1AS: ãI = aI .

6F
Ẽ1×SU(2)

=− 6m2
AS a1 +

2∑

I=1

[
8 a3

I + 3m0 a
2
I

]

+
2∑

I=1

⌈∣∣∣∣ aI +
1

2
m0

∣∣∣∣
⌉3

+
⌈∣∣ a1 ± a2 ±mAS

∣∣⌉3
. (D.45)

If we decouple an antisymmetric by taking mAS ,m0 → ∞ while m
Sp(2)π
0 ≡ m0 − 2mAS

kept finite, then we get the complete prepotential for pure Sp(2)π gauge theory (C.22).

On the other hand, if we decouple an antisymmetric by taking m0 → −∞, aI → ∞ while

aI + 1
6m0 ≡ bI kept finite, then one can see that mAS is naturally identified as 1

2m0 of

SU(3)6, and it is straightforward to obtain the complete prepotential for pure SU(3)6 gauge

theory [6, 8] as follows.

SU(3)6:

FSU(3)6 = −1

4
m2

0 b1 +
3

2
b31 +

3

2
b32 +

1

6

⌈∣∣ b1 − b2 ±
1

2
m0

∣∣⌉3
. (D.46)
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Notice that the prepotential (D.46) has
⌈∣∣ · · ·

∣∣⌉3
, which implies a further flop. It is, in fact,

possible to take a flop transition on the web diagram for the pure SU(3)6 gauge theory, as

depicted in figure 87(b) in [8]. We note that if we take the infinite coupling limit m0 → 0,

then the complete prepotential for pure SU(3)6 gauge theory reduces to two copies of that

for E0 theory, as expected:

FSU(3)6 → 3

2
b31 +

3

2
b32 = FE0(b1) + FE0(b2) . (D.47)

E Derivation of physical Coulomb moduli for rank-1 E8 SCFT

In this appendix, we derive the physical Coulomb moduli for rank-1 E8 CFT, which corre-

sponds to SU(2) = Sp(1) gauge theory with Nf = 7 flavors. The physical Coulomb moduli

are defined as the region of Coulomb moduli where the monopole tensions are positive:

∂FE8

∂a
=
∂FE8

∂ã
≥ 0. (E.1)

In order to compute such region, we first concentrate on the specific Weyl chamber

given in (A.12). In this chamber, it is straightforward to show that the term in (2.32) sat-

isfies

ã +
1

2

7∑

i=0

simi ≥ 0 , unless s0 = s1 = · · · = s7 = −1. (E.2)

This indicates that, due to the definition (2.11), the following term in (2.32) simplifies as

∑

{si=±1},
even+

⌈∣∣∣∣ ã +
1

2

7∑

k=0

skmk

∣∣∣∣
⌉3

=

⌈∣∣∣∣ ã−
1

2

7∑

k=0

mk

∣∣∣∣
⌉3

=

⌈∣∣∣∣ a+
1

2
m0 −

1

2

7∑

k=1

mk

∣∣∣∣
⌉3

, (E.3)

in the considered Weyl chamber. Analogously, one can show that the term in (2.32) satisfies

ã + s1mi + s2mj ≥ 0 unless





i = 0, j = 1, s0 = −1,

or

i = 0, j ≥ 2, s0 = −1, sj = −1.

(E.4)

This indicates that the following term in (2.32) simplifies as

∑

0≤i<j≤7

⌈∣∣ ã±mi ± mj

∣∣⌉3
=
⌈∣∣ ã−m0 ±m1

∣∣⌉3
+

7∑

j=2

⌈∣∣ ã−m0 − mj

∣∣⌉3

=
⌈∣∣ a+ m1

∣∣⌉3
+

7∑

i=1

⌈∣∣ a− mi

∣∣⌉3
. (E.5)

In summary, in the Weyl chamber given in (A.12), the prepotential (2.32) simplifies as

FE8 =
1

6
(a+m0)3 − 1

2

7∑

k=0

m2
k (a+m0)

+
1

6

⌈∣∣ a+ m1

∣∣⌉3
+

1

6

7∑

i=1

⌈∣∣ a− mi

∣∣⌉3
+

1

6

⌈∣∣∣∣ a+
1

2
m0 −

1

2

7∑

k=1

mk

∣∣∣∣
⌉3

. (E.6)
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Now, starting from the region with large a, we gradually reduce the value of a. In the

region a ≥ |m1|, the structure is quite simple:

∂FE8

∂a
=





∂F 0
E8

∂a
a ≥ m7,

∂F 0
Ek+1

∂a
mk−1 ≤ a ≤ mk (k = 3, · · · , 7),

∂F 0
E2

∂a
|m1| ≤ a ≤ m2,

(E.7)

where we defined

F 0
En+1

≡ 1

2

(
m0 −

7∑

k=n+1

mk

)
a2 +

8− n
6

a3 − 1

2

n∑

k=1

m2
ka. (E.8)

As discussed in appendix B, we observe that this is the prepotential in the CFT phase of

the En+1 theory when we identify the combination m0 −
∑7

k=n+1mk to be the instanton

mass parameter for the En+1 theory. This can be interpreted that reducing a is equiva-

lent to decoupling the flavor. By considering all the region above one by one, it is also

straightforward to show that (E.1) is satisfied for a ≥ |m1|.
In order to investigate the remaining parameter region a ≤ |m1|, we consider the

following three cases:

Case 1 : m1 ≤ 0,

Case 2 : m1 ≥ 0, m0 −
7∑

i=1

mi ≥ 0,

Case 3 : m1 ≥ 0, m0 −
7∑

i=1

mi ≤ 0.

For Case 1, the prepotential (E.6) at the remaining parameter region is given by

∂FCase 1
E8

∂a
=
∂F 0

E1

∂a
≥ 0 for 0 ≤ a ≤ −m1 (E.9)

with the inequality saturated at a = 0. For Case 2, the prepotential (E.6) at the remaining

parameter region is given by

∂FCase 1
E8

∂a
=
∂F 0

Ẽ1

∂a
≥ 0 for 0 ≤ a ≤ m1 (E.10)

with the inequality saturated at a = 0, where actually F 0
Ẽ1

= F 0
E1

. Since m0−
∑7

i=1mi ≥ 0

is automatically satisfied in Case 1 due to (A.12), the results in Case 1 and Case 2 can be

summarized that the physical Coulomb moduli is given by

a ≥ 0 if − 1

6

(
m0 −

7∑

i=1

mi

)
≤ 0. (E.11)
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For Case 3, the parameter region should be further divided into two parts as

∂FCase 3
E8

∂a
=





∂F 0
Ẽ1

∂a
−1

2

(
m0 −

7∑

i=1

mi

)
≤ a ≤ m1,

∂F 0
E0

∂a
a ≤ −1

2

(
m0 −

7∑

i=1

mi

)
.

(E.12)

In this case, a non-trivial condition is obtained

∂FCase 3
E8

∂a
≥ 0 ⇔ a ≥ −1

6

(
m0 −

7∑

i=1

mi

)
. (E.13)

Rephrasing this result for Case 3, the physical Coulomb moduli is

a ≥ −1

6

(
m0 −

7∑

i=1

mi

)
if − 1

6

(
m0 −

7∑

i=1

mi

)
≥ 0. (E.14)

Combining the results (E.11) and (E.14), we conclude that the physical Coulomb moduli

is given by

a ≥ 0 and a ≥ −1

6

(
m0 −

7∑

i=1

mi

)
, (E.15)

or equivalently,

2ã ≥ 2m0 and 3ã ≥ 5

2
m0 +

1

2

7∑

i=1

mi (E.16)

in the Weyl chamber (A.12).

Finally, we discuss the conditions for physical Coulomb moduli in the different Weyl

chambers of the E8. Such conditions can be obtained by acting the Weyl reflection to (E.16)

by taking into account that ã is invariant under the Weyl group symmetry. From (A.14),

we observe that the right hand side of (E.16) is the highest weight of the representation

µ1 and µ2, respectively. By acting the Weyl reflection, the weights in each representation

appear.12 Thus, the conditions (E.16) can be extended to the whole parameter regions as

2ã ≥ w · ~m for ∀w ∈ µ1, 3ã ≥ w · ~m for ∀w ∈ µ2. (E.17)

This is the physical Coulomb moduli for rank-1 E8 theory.

In this physical Coulomb moduli, we can derive several non-trivial inequalities. For

example, from (E.16), we can deduce that

ã ≥ 0, 2ã ≥ m0 +m7, 3ã ≥ 2m0 +m7 +m6, (E.18)

12Not all the weights can be obtained by the Weyl reflection of the highest weight. However, the conditions

corresponding to such weights can be obtained from the other conditions corresponding to the weights

obtained from the Weyl reflection to the highest weight. Therefore, the results does not depend on whether

or not we include such weights.
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are satisfied in the Weyl chamber (A.12). From (A.14), we observe that the right hand

side in (E.18) is the highest weight of representation 1, µ8 and µ7, respectively. Again, by

acting the Weyl reflection, the weights in each representation appear, and thus,

ã ≥ 0, 2ã ≥ w · ~m for ∀w ∈ µ8, 3ã ≥ w · ~m for ∀w ∈ µ7. (E.19)

Combining all the inequalities in (E.17) and (E.19), we reproduce (2.42).

F Partition function for 5d Sp(2) + 9F from elliptic genus

There are several ways to obtain partition function for 5d N = 1 Sp(2) gauge theory with

Nf = 9 flavors. One of the methods [55] is based on ADHM quantum mechanics using the

Jeffrey-Kirwan method. It would be also possible to compute it based on 5-brane web of the

type discussed in [13, 35] and apply the (refined) topological vertex method [31, 60, 61].

Here, we derive it from the elliptic genus and express it in terms of Gopakumar-Vafa

invariants as in (2.36). As discussed in [56, 57], the elliptic genus for 6d N = 1 Sp(1) gauge

theory with Nf = 10 flavors and with a tensor reproduces the partition function for 5d

N = 1 Sp(2) gauge theory with Nf = 10 flavors up to duality map. Then, the partition

function for Nf = 9 flavors can be obtained by decoupling limit from them.

The elliptic genus Zk for strings are given as follows [56, 57, 62].

For k = 0:

Z0 = PE(F0), (F.1)

F0 =
[0, 1

2 ]t,q(e
−2α + e2α) + [0, 0]t,q(e

−α + eα)
∑9

i=0(e−mi + emi)

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )

(
e2πiτ

1− e2πiτ
+

1

2

)
.

(F.2)

For k = 1:

Z1 = − η2

θ(ε1,2)

4∑

I=1

η2

θI(ε+ ± α)

10∏

l=1

θI(ml)

η
, (F.3)

with ε± = 1
2(ε1 ± ε2), θi(x) := θi(x; τ).

For k = 2:

Z2 =
2∑

s=1

η6

2θ1(ε1)θ1(ε2)θ1(ε1 ± 2((−1)sε+ + α))θ1(ε2 ± 2((−1)sε+ + α))
(F.4)

· η2

θ1(−2α)θ1(2(−1)sε+ + 2α)
·

10∏

l=1

θ1(ml ± ((−1)sε+ + α))

η2

+

4∑

I=1

2∑

s=1

η4

4θ1(ε1)θ1(ε2)θ1(2εs)θ1(2ε+ − 2εs)

η4

θI(ε+ ± α± εs
2 )
·

10∏

l=1

θI(ml ± εs
2 )

η2

+
∑

(I,J,K)∈S

η8θI(0)θI(2ε+)

4θ1(ε1)2θ1(ε2)2θI(ε1)θI(ε2)θJ(ε+ ± α)θK(ε+ ± α)
·

10∏

l=1

θJ(ml)θK(ml)

η2
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where S = {(2, 2, 1), (3, 3, 1), (4, 4, 1), (2, 3, 4), (3, 4, 2), (4, 2, 3)}.

For k = 3:

Z3 =−
4∑

i=1

2∑

s=1

θJIi(± εs
2 )θJIi(2ε+ ± εs

2 )
∏10
l=1 θI(ml)θi(ml ± εs

2 )

2η18θ1(ε1,2)2θ1(2εs)θ1(2ε+ − 2εs)θJIi(ε1,2 ± εs
2 )θI(ε+ ± α)θi(ε+ ± α± εs

2 )

−
2∑

s=1

θ1(2ε+ ± εs)θ1(±εs)
∏10
l=1 θI(ml)θI(ml ± εs)

η18θ1(ε1,2)2θ1(2εs)θ1(2ε+ − 2εs)θ1(ε1,2 ± 2εs)θI(ε+ ± α)θI(ε+ ± α± εs)

−
2∑

s=1

θI(2ε+ ± (ε+ + (−1)sα))θI(±(ε+ + (−1)sα))

η18θ1(ε1,2)2θI(ε+ ± α)θI(ε1,2 ± (ε+ + (−1)sα))θ1(ε1,2 ± 2(ε+ + (−1)sα))

×
∏10
l=1 θI(ml)θ1(ml ± (ε+ + (−1)sα))

θ1(2ε+ + 2(−1)sα)θ1(2(−1)s+1α)

− 1

η18

4∏

k=2

θk(0)θk(2ε+)

θk(ε1,2)

∏

I 6=I′

∏10
l=1 θI(ml)

θ1(ε1,2)θI(ε+ ± α)
(F.5)

with

J =




1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1


 . (F.6)

Then, the partition function is give as

Z = Z0

∞∑

k=1

Zkφ
k. (F.7)

Here, φ is the tensor branch moduli, which is related to the invariant Coulomb moduli of

5d gauge theory Ã1 as

φ = Ã1e
−πiτ (F.8)

Also, we identify

e−α = Ã2. (F.9)

Suppose we rewrite the partition function in the form

Z = PE

( ∞∑

k=0

FkÃ1
k

)
, (F.10)

with F0 given in (F.1). Fk (k = 1, 2, 3) can be written in terms of Zk (k = 1, 2, 3) as

F1 = Z1e
−πiτ ,

F2 =

(
Z2 −

1

2
Z1

2 − 1

2
Z1(∗ → 2∗)

)
e−2πiτ ,

F3 =

(
Z3 +

1

3
Z1

3 − Z1Z2 −
1

3
Z1(∗ → 3∗)

)
e−3πiτ . (F.11)
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Here, (∗ → n∗) means the following simultaneous rescaling of all the variables

(α,mi, εs, τ)→ (nα, nmi, nεs, nτ). (F.12)

We find that elliptic genus Zk (k ≥ 1) can be expanded in terms of eπiτ as

Zk =
∞∑

n=0

Z
(2n−k)
k e(2n−k)πiτ (F.13)

Therefore, Fk can be also expanded in terms of eπiτ as

Fk =

∞∑

n=0

F (2n−k)
k e(2n−2k)πiτ (F.14)

The decoupling limit is

eπiτ → 0 (F.15)

while fixing Ã1 (instead of φ). Before taking this limit, the terms with negative power of eπiτ

in Fk should be converted into the terms with positive power by using the transformation

PE

(
[jL, jR]t,q

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )
Q

)
→ PE

(
[jL, jR]t,q

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )
Q−1

)
, (F.16)

which is interpreted as performing the flop transition. Then, the decoupling limit ends up

with picking up the constant term:

Fk → F (0)
k . (F.17)

Therefore, the partition function for 5d N = 1 Sp(2) gauge theory with Nf = 9 flavors is

given as

Z = PE

( ∞∑

k=0

F (0)
k Ã1

k

)
. (F.18)

The each coefficient F (0)
k is given in terms of Z

(n)
k introduced in (F.13) as

F (0)
1 = Z

(1)
1 ,

F (0)
2 = Z

(2)
2 − 1

2
(Z

(1)
1 )2 − Z(−1)

1 Z
(3)
1 − 1

2
Z

(1)
1 (∗ → 2∗),

F (0)
3 = Z

(3)
3 +

(
1

3
(Z

(1)
1 )3 + 2Z

(−1)
1 Z

(1)
1 Z

(3)
1 + (Z

(−1)
1 )2Z

(5)
1

)

−
(
Z

(−1)
1 Z

(4)
2 + Z

(1)
1 Z

(2)
2 + Z

(3)
1 Z

(0)
2 + Z

(5)
1 Z

(−2)
2

)
− 1

3
Z

(1)
1 (∗ → 3∗), (F.19)

where we used (F.11). Also, F (0)
0 can be read off from (F.1) as

F (0)
0 =

[0, 1
2 ]t,q(e

−2α + e2α) + [0, 0]t,q(e
−α + eα)

∑9
i=0(e−mi + emi)

2(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )

→ [0, 1
2 ]t,qÃ2

2 + [0, 0]t,qÃ2χ20

(t
1
2 − t− 1

2 )(q
1
2 − q− 1

2 )
, (F.20)

where we used the flop transition (F.16). From these expressions, we obtain the partition

function for 5d N = 1 Sp(2) gauge theory with Nf = 9 flavors given in section 3.4.
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