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1 Introduction

String theory and in particular its application to low energy physics is experiencing a

period of new insights that question older arguments based on the landscape picture.

The swampland program [1–3] intends to extract a set of relatively simple quantitative

features that low-energy effective field theories should satisfy in order to admit a UV

completion to a consistent theory of quantum gravity (see [4] for a recent review). By

now several swampland conjectures have been proposed [5–17], which also induced further
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new developments like the emergence [18–20] of infinite distances in field space or the

appearance of towers of light strings [21–23].

In this paper we focus on two such conjectures dealing with AdS vacua. Concretely,

these are the AdS/moduli scale separation conjecture (AM-SSC) [24] and the AdS distance

conjecture (ADC) [15] (see also [25]). Roughly, these conjectures state that the mass of

certain (towers of) modes cannot be parametrically separated from the AdS radius. The

strong version of the ADC is reminiscent of observations made earlier in [26] for the class of

flux vacua without negative tension objects. Moreover, we comment on the connection of

our observations to the dS swampland conjecture [8, 9, 11, 12, 16]. The evidence for these

conjectures derives mostly from the failure of contradicting string theory constructions.

However, concerning the no-go for dS vacua in quantum gravity, there have also been

alternative arguments based on the concept of quantum breaking [27–30].

The best understood string vacua examples are at tree-level, e.g. flux vacua [31–34],

where fairly general results can be proven. In particular, for some tree-level type IIA

flux vacua one can prove the dS swampland conjecture [35], while one can more generally

exclude dS in regimes of parametric control [36]. This class of flux vacua generically

gives AdS vacua, supersymmetric or not, whose cosmological constant satisfies the AM-

SSC [37]. However, the supersymmetric solutions were argued to fail the strong version of

the ADC [15, 33].

Stringy AdS and dS vacua can also be constructed utilizing not only tree-level ingredi-

ents, but also quantum, in particular non-perturbative effects. The most famous examples

are the KKLT [38] and the large volume scenario (LVS) [39]. In both these cases, AdS

minima are found in the effective 4D potential and subsequently uplifted to dS. We will

focus on the AdS minima before the uplift mechanism.

Taken at face value, the KKLT model does not satisfy the two AdS conjectures. Since

the tree-level vacua provide strong support for the conjectures, one might think that some-

thing is wrong or inconsistent in the quantum vacuum construction. However, it has proven

to be difficult to isolate any particular shortcoming in the AdS minimum construction. Its

full ten-dimensional description has been analyzed in a series of recent papers [24, 40–46]

converging to the conclusion that the 4D effective KKLT description captures the main

aspects of this vacuum. The uplift to a dS vacuum is more subtle and new aspects of the

validity of the effective field theory in the warped throat have been investigated in [47, 48].

So while the validity of the dS vacua is still an open question, the AdS vacua seem to be

true counterexamples to the AdS swampland conjectures.

In this paper we take a different approach to this issue and analyze whether the AdS

swampland conjectures should rather be modified in such a way that these well-established

quantum AdS vacua do satisfy them.

We will start in section 2 by recalling the AdS and dS swampland conjectures, as

well as briefly describing the emergence proposal. In section 3 we briefly summarize the

manifestation of the AdS swampland conjectures for the well known tree-level flux com-

pactifications. Here one can distinguish DGKT-like models [32] with a dilute flux limit

from Freund-Rubin type compactifications, where a geometric flux becomes relevant for

moduli stabilization. Concrete examples of these two types are presented in appendix A.
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In section 4, we take a closer look at the AdS vacua of KKLT and LVS. We show that

for KKLT the relation between the lightest moduli mass and the cosmological constant

receives dominant logarithmic corrections whose origin can be understood from a simple

scaling argument. Taking these quantum corrections seriously, we introduce logarithmic

corrections to the initial AM-SSC. Moreover, in appendix B we present two scenarios of

how a small value of W0 can be achieved and what the implied KK scales will be. These

models suggest the presence of log-corrections in the ADC, as well. For the LVS we show

that the two AdS swampland conjectures also receive log-corrections. As already shown

in [49], for the AM-SSC these are subleading.

Since the swampland program forms an intricate set of intertwined statements, our

observations should nicely align with other relevant aspects of the program. In section 5 we

examine possible such connections. Once one accepts the presence of quantum corrections

for the AdS conjectures, one may also expect them for the dS swampland conjecture, in

high similarity to the log-corrections that have recently been proposed in the framework

of the trans-Planckian censorship conjecture (TCC) [16]. We also discuss the emergence

proposal both for tree-level flux models and non-perturbative AdS vacua like KKLT.

2 The swampland conjectures

Let us briefly review the conjectures that we will focus on, as well as the emergence proposal.

2.1 The AdS/moduli scale separation conjecture

The AdS/moduli scale separation conjecture (AM-SSC) [24] states that in an AdS minimum

one cannot separate the size of the AdS space and the mass of its lightest mode. Quanti-

tatively, the proposal is that the lightest modulus of non-vanishing mass has to satisfy

mmodRAdS ≤ c (2.1)

where c is an order one constant and R2
AdS ∼ −Λ−1 the size of AdS. A strong version of

this conjecture says that this relation is saturated, i.e. mmod ∼ R−1
AdS.

A simple, enlightening example is the 5-form flux supported AdS5×S5 solution of the

type IIB superstring. There, the sizes RAdS and RS5 of AdS5 and S5 are equal and both

related to the 5-form flux. The lightest modulus mass scales as mmod ∼ R−1
S5 and saturates

relation (2.1).

2.2 The AdS distance conjecture

The AdS distance conjecture (ADC) [15] states that for an AdS vacuum with negative

cosmological constant Λ, the limit Λ → 0 is at infinite distance in field space and that

there will appear a tower of light states whose masses scale as

mtower = cAdS |Λ|α (2.2)

for some constant cAdS of order one and α > 0. Moreover, for supersymmetric AdS

vacua a stronger version of the AdS distance conjecture was claimed, namely that in this
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case α = 1/2. Assuming that the tower of states is just the KK tower, the strong ADC

generalizes earlier Maldacena-Nuñez type obstructions [26] for scale separated type II AdS

flux vacua without negative tension object and rephrases them as a swampland conjecture.

In the following, we shall consider the KK tower only, leaving open the possibility of other

towers appearing.

Let us again consider AdS5 × S5. Having Λ ∼ −R−2
AdS, we are interested in RAdS

becoming large. Then the radius of S5 also becomes large and the KK modes on S5

scale as

mKK(S5) ∼ 1

R
∼ |Λ|

1
2 . (2.3)

Therefore, these KK modes constitute the tower of states for the (strong) AdS distance

conjecture with α = 1/2.

2.3 The dS swampland conjecture

For completeness, let us also recall the dS swampland conjecture. In its original formula-

tion [8] it states that

|∇V | ≥ c

Mpl
· V, (2.4)

where c is of order one. The refined version of the conjecture [11, 12] states that either the

previous inequality or

min(∇i∇jV ) ≤ − c′

M2
pl

· V (2.5)

has to hold, where min(∇i∇jV ) is the minimal eigenvalue of the Hessian matrix and c′ is

also of order one.

2.4 Emergence of infinite distance

In the framework of the swampland distance conjecture it has been observed that the

infinite distance emerges from integrating out the appearing tower of light states [18–

20, 50]. In quantitative terms, the emergence proposal claims that the 1-loop contribution

to the moduli field metric, arising from integrating out a tower of states that are lighter than

the natural cut-off of the effective theory, is proportional to the tree-level metric. Here, let

us briefly recall only the main relations. For more details we refer to the original literature.

Say one has an effective theory in D dimensions that has a tower of states with masses

mn = n∆m(φ), with a degeneracy of states at each mass level that scales like nK . Note

that the mass depends on the value of a modulus field φ. If Nsp of these states become

lighter than the species scale [51]

Λsp =
ΛUV

Nsp

1
D−2

, (2.6)

they impose a one-loop correction to the field space metric of the field φ. Here the UV

cut-off ΛUV is often chosen to be the Planck scale but could in principle be lower. The

number of species are given by

Nsp =

Λsp/∆m∑
n=1

nK ≈
(

Λsp

∆m

)K+1

. (2.7)
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The latter two relations can be inverted to give

Λsp = (ΛUV)
D−2

D+K−1 (∆m)
K+1

D+K−1 , Nsp =

(
ΛUV

∆m

) (K+1)(D−2)
D+K−1

. (2.8)

Then the one loop-correction to the field space metric for the modulus φ in D dimensions

can be written as

Gloop
φφ ∼

ΛD+K−1
sp

MD−2
pl

(
∂φ∆m(φ)

)2(
∆m(φ)

)K+3
. (2.9)

In section 5, from requiring Gloop
φφ ∼ Gtree

φφ we will determine the cut-off scale Λsp. An

analogous logic was followed in [48] for the effective theory in the warped throat.

3 Tree-level vacua

Before we turn to the well-known quantum AdS vacua, we review whether tree-level flux

vacua comply with the aforementioned AdS conjectures.1

The construction of string vacua usually starts with an assumed Ricci-flat background

equipped by extra fluxes and instantons. Then one looks for minima of the lowa energy

effective action that stabilizes the moduli in a controlled regime. In order to determine the

KK scale one has to solve an eigenvalue problem for fluctuations around the background.

However, for that purpose one actually has to use the fully backreacted metric. This is

often not possible and one hopes that a naive estimate using the initial background plus

some control arguments give already a good estimate.2

3.1 Type IIA flux models

The best understood examples of AdS minima in string theory are just type IIA and type

IIB flux compactifications on Calabi-Yau manifolds. In type IIA one can stabilize all closed

string moduli via R-R and H3 form fluxes. Classes of such concrete models have first been

analyzed in [32] and have been called DGKT models. More flux models of this type were

considered recently in [33].

A typical example for the isotropic six-torus is presented in appendix A.1, where we

also take into account that in general there exists more than just a single KK scale. In

these models one has a dilute flux limit that implies that the KK scales can be made

parametrically larger than the masses of the moduli. In the limit Λ → 0 some fluxes have

to become infinite implying that also some of the moduli become infinite. Therefore, Λ → 0

is reached at infinite distance in field space. As far as we can tell, all AdS flux models of

this type studied in [32, 33] satisfy the relation

mmod ∼ |Λ|
1
2 (3.1)

1We are indebted to Daniel Junghans and Timm Wrase for pointing out some misconceptions in an

earlier version of this paper.
2That the backreaction can be essential for seeing some precise cancellations for models with geometric

flux was nicely demonstrated (after this paper appeared) in [52].
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between the mass of the lightest modulus and the cosmological constant. This includes also

the non-supersymmetric models. Therefore, for DGKT models the AM-SSC is satisfied.

However, as also claimed in [15], the relevant supersymmetric DGKT vacua do not satisfy

the strong version of the ADC but only its weak form with α < 1/2, which is also satisfied

for the non-supersymmetric ones.

3.2 Geometric fluxes and Freund-Rubin models

Another well known class of AdS minima are Freund-Rubin [53] backgrounds. The standard

example is the 5-form flux supported AdS5×S5 solution of the type IIB superstring, whose

effective description we recall in the following.

Defining ρ = R/Mpl as the radius of the S5 in Planck units, the string scale and the

5D Planck scale are related as M8
pl = M8

s ρ
5. Going to Einstein-frame and performing

dimensional reduction of the 10D type IIB Einstein-Hilbert term and the kinetic term for

the 5-form flux on the fluxed S5, one obtains the 5D effective potential

V ∼M5
pl

(
− 1

ρ2
+
f2

ρ5

)
. (3.2)

Here f ∈ Z is the quantized 5-form flux and the first term is the contribution of the internal

curvature. The AdS minimum is at ρ3
0 = 5f2/2, where the cosmological constant is given

by Λ ∼ −ρ−2
0 M2

pl. The mass of the modulus ρ can be determined as

m2
ρ = Gρρ∂2

ρV
∣∣
0
∼
M2

pl

ρ2
0

(3.3)

with the metric on the moduli space Gρρ ∼ ρ−2. Therefore, the mass of the ρ modulus

scales in the same way as the geometric KK scale.

This seems to be a generic feature for models where curvature terms are relevant

for moduli stabilization. In the framework of 4D flux compactifications this is described

by turning on so-called geometric fluxes. A typical example of this kind is presented in

appendix A.2. As in the example before, the Λ→ 0 limit is reached at infinite distance in

field space. In these scenarios, there is no dilute flux limit and the KK scale is of the same

order as the moduli mass scale. The same feature appears for the non-geometric type IIB

flux models presented in [31, 34].

Therefore, irrespective of supersymmetry, these models satisfy both the AM-SSC and

the strong ADC.

3.3 Generic scaling of moduli masses

We will now provide a simple argument why for classical flux compactifications the moduli

masses are generally expected to scale like |Λ|
1
2 . A generic contribution to the flux induced

scalar potential scales like V = A exp(−aφ), where φ is a canonically normalized modulus.

Such terms balance against each other so that the cosmological constant is expected to also

behave as Λ ∼ − exp(−aφ). Similarly, the masses around the minimum will be given by

m2
mod ∼ ∂2

φV ∼ e−aφ (3.4)

so that mmod ∼ |Λ|1/2 is to be expected for a generic tree-level flux compactification.
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4 Non-perturbative AdS vacua

In this section, we investigate the two AdS swampland conjectures for the KKLT and the

LVS. These vacua are genuinely non-perturbative, in the sense that tree-level contributions

are balanced against non-perturbative effects.

4.1 The KKLT AdS vacuum

Let us first consider the KKLT AdS minimum [38] for the single Kähler modulus T =

τ + iθ. Here τ measures the size of a 4-cycle and θ is an axion. After stabilizing the

complex structure and axio-dilaton moduli via three-form fluxes, the effective Kähler- and

superpotential of KKLT is defined by

K = −3 log(T + T ) , W = W0 +Ae−aT . (4.1)

Here W0 < 0 is the value of the flux induced superpotential in its (non-supersymmetric)

minimum and the second term in W arises from a non-perturbative effect like a D3-brane

instanton or gaugino condensation on D7-branes. The resulting scalar potential after freez-

ing the axion reads

VKKLT =
aA2

6τ2
e−2aτ (3 + aτ) +

aAW0

2τ2
e−aτ . (4.2)

The supersymmetric AdS minimum of this potential is given by the solution of the tran-

scendental equation

A(2aτ + 3) = −3W0e
aτ (4.3)

and leads to a negative cosmological constant

Λ = −a
2A2

6τ
e−2aτ . (4.4)

In view of the ADC, we first observe that Λ→ 0 means τ →∞, which is at infinite distance

in field space. Note that on an isotropic manifold the naive geometric KK scale can be

expressed as

mKK ∼
1

τ
(4.5)

and hence is exponentially larger than any scale |Λ|α expected from the ADC (2.2).

However, one has to keep in mind that one needs an exponentially small W0. In

appendix B, we argue that this requires that the background becomes highly non-isotropic

so that the naive estimate of the KK scale (4.5) is not satisfied for the lightest KK or

winding modes. In fact for the toroidal example in appendix B.1 we find at leading order

m2
w ∼ τe−2aτ ∼ τ2|Λ| ∼ log2(−Λ) |Λ| (4.6)

and in appendix B.2 for the better controlled strongly warped throat

m2
KK ∼

1

τ2

e−
2
3
aτ

τ
1
3

∼ 1

log2(−Λ)
|Λ|

1
3 . (4.7)
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In both cases the masses scale exponentially with τ and feature log-corrections. Up to these

corrections, in the toroidal case the strong ADC is satisfied while the better controlled

warped throat scenario only satisfies the ADC with α = 1/6.

It is also known that the effective mass of the Kähler modulus τ turns out to be much

smaller than the naive KK-scale (4.5), in fact it is the lowest mass scale in the problem.

This is then the relevant scale for the AM-SSC. In the minimum of the potential one

can determine

m2
τ = KTT∂2

τV
∣∣
0

=
a2A2

6τ
(2 + 5aτ + 2a2τ2) e−2aτ (4.8)

which indeed contains the desired factor exp(−2aτ). Thus, one obtains the relation

m2
τ = −(2 + 5aτ + 2a2τ2) Λ . (4.9)

Now, neglecting log log-corrections, for large τ � 1 one can invert (4.4)

aτ = −b1 log(−Λ) + b0 (4.10)

with b1 and b0 positive constants of order one. Thus, one can express m2
τ as

m2
τ = −

(
c2

2 log2(−Λ) + c1 log(−Λ) + c0

)
Λ (4.11)

with c2 > 0. After reintroducing powers of the Planck scale and working in the limit Λ → 0,

we can express the mass in the intriguing way

mτ ∼ −c2 log

(
− Λ

M2
pl

) ∣∣Λ∣∣ 12 . (4.12)

Note that |Λ| < Mpl is required for the effective theory to be controllable. Moreover, in

the limit Λ→ 0 the mass scale still approaches zero.

Therefore, in comparison to the (classical) AM-SSC there appears a logarithmic cor-

rection. We propose

mRAdS ≤ c log(RAdSMpl) (4.13)

to be the quantum generalization of the AM-SSC. This is a weaker bound than the classical

version (2.1) so that a slight (log type) scale separation between the internal space and the

light mode is allowed.

Similarly, as shown in (4.6) and (4.7) we also found log-corrections to the ADC. There-

fore we summarize that for quantum vacua like KKLT, where a non-perturbative contribu-

tion is balanced against a tree-level one, it seems that there appears a logarithmic correction

to the result for simple perturbative vacua.

4.2 The large volume AdS vacuum

Let us analyze another prominent example, namely the large volume scenario (LVS). Recall

that here one has a swiss-cheese Calabi-Yau threefold with a large and a small Kähler

– 8 –
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modulus, τb and τs. The precise definition can be found in [39, 54]. What is important

here is the final form of the scalar potential

VLVS = λ

√
τse
−2aτs

V
− µτse

−aτs

V2
+

ν

V3
(4.14)

where the total volume is V ≈ τ
3/2
b . Let us recall a few relevant steps from the original

paper [39]. Solving the minimum condition ∂VVLVS = 0 one finds

V =
µ

λ

√
τse

aτs

(
1±

√
1− 3νλ

µ2τ
3/2
s

)
(4.15)

and from ∂τsVLVS = 0 one obtains(
1±

√
1− 3νλ

µ2τ
3/2
s

)(
1

2
− 2aτs

)
= (1− aτs) . (4.16)

Now, one proceeds by working in the perturbative regime aτs � 1, in which case the two

relations can be solved analytically, yielding the values of the moduli in the LVS minimum

τ0
s =

(
4νλ

µ2

) 2
3

, V0 =
µ

2λ

√
τ0
s e

aτ0s . (4.17)

However, plugging this back into the potential (4.14) one gets zero, indicating a sort of

extended no-scale structure. Therefore, to find the actual non-vanishing value of the po-

tential in the LVS minimum, one has to compute the next order in 1/τs [55]. The only

approximation we did is in the solution to (4.16). Thus there will be a correction to τ0
s ,

which at leading order is a just a shift by a constant τ0
s → τ0

s + c/a, which one can show

to be positive. The value of the cosmological constant will then be

Λ ∼ −3cλ2e−3c

µa τ0
s

e−3aτ0s

(
1 +O

(
1

τs

))
(4.18)

which is indeed negative.

The lightest modulus in the game is V, whose mass can be determined by first inte-

grating out τs and taking the second derivative of the effective potential with respect to V
(see also [49]). After solving ∂τsV = 0, we can write the effective potential as

Veff(V) =
1

V3

(
ν +

µ2

λ
τs(V)

3
2

(
g(V)2 − g(V)

))
(4.19)

with

g(V) = 2

(
1− aτs(V)

1− 4aτs(V)

)
=

1

2

(
1− 3

4aτs(V)
+ . . .

)
. (4.20)

Here τs depends implicitly on V. Now, using that at leading order ∂τs/∂V ≈ (aV)−1 we

realize that the leading order term (in 1/τs) again cancels3 so that

m2
V = KVV∂2

VVeff

∣∣
0
∼ λ2

µa τ0
s

e−3aτ0s

(
1 +O

(
1

τs

))
. (4.21)

3We thank Joe Conlon for pointing this out to us.
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Therefore, for the LVS AdS minimum we have found the relation

m2
V ∼ |Λ|

(
c0 +

c−1

log(−Λ)
+ . . .

)
, (4.22)

which means that in the limit Λ → 0 the LVS satisfies the strong (classical) AM-SSC.

However, also for LVS there will be subleading log-corrections. In contrast to KKLT, here

the first two coefficients are vanishing i.e. c2 = c1 = 0 which presumably is due to the

extended no-scale structure and the perturbative stabilization of V. For LVS one can have

W0 = O(1) so that the naive estimate for the KK scale is justified

m2
KK ∼

1

V
4
3

∼ 1

τ
2
3
s

e−
4
3
aτs ∼ 1

log
2
9 |Λ|

|Λ|
4
9 . (4.23)

This result is similar to the KK modes (4.7) for the KKLT model in the warped throat.

Thus, in the ADC one expects again extra quantum log corrections and α = 2/9.

5 Other swampland conjectures

In this section we discuss the implications and relations of the log-correction to other

swampland conjectures. First, following a similar reasoning as in section 3.1, we provide a

general argument for the appearance of such corrections.

5.1 Origin of log-corrections

To see the origin of the log-corrections consider a typical non-perturbative contribution to

the scalar potential, which in canonically normalized variables takes the following double-

exponential form

V ∼ Ae−cφ e−(beaφ) + Vothers . (5.1)

The other corrections can be perturbative or non-perturbative, depending on the nature

of the model. If moduli stabilization occurs such that the first term balances the terms in

Vothers, the size of the first one is expected to set the scale for the potential and the masses

in the minimum. Computing its second derivative with respect to φ one gets

m2 ∼ ∂2
φV ∼

(
c2 + 2abc eaφ − ba2 eaφ + (ab)2e2aφ

)
V . (5.2)

Inverting (5.1) one can write

eaφ ∼ −1

b
log

(
V

A

)
= −b1 log |V |+ b0 (5.3)

so that

m2 ∼ −
(
c2

2 log2(|V |) + c1 log(|V |) + c0

)
V . (5.4)

We observe that these terms take precisely the form of those that we found for KKLT

in (4.11). One can well imagine that for a full model the potential will be more complicated

so that like in LVS also further subleading corrections log−n(|V |) (n ≥ 1) will appear.

Thus, we conclude that the logarithmic corrections are genuinely related to the ap-

pearance and relevance of non-perturbative effects in the scalar potential. In the moment

that such genuinely non-perturbative vacua exist in string theory, the AdS swampland

conjectures are expected to receive log-corrections.
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5.2 Trans-Planckian censorship conjecture

If the AdS swampland conjectures receive such corrections, it is natural to expect that also

the dS swampland conjecture will be changed. Computing the first derivative of (5.1), a

natural guess would be

|∇V | ≥ V
(
c1 log (|V |) + c2

)
. (5.5)

In contrast to the AdS swampland conjectures this relation is supposed to hold not only at a

specific point in field space (namely the minimum) but at every point. It remains to be seen

whether such a strong local bound really makes sense. In any case, it is remarkable that

the right hand side could vanish for V = exp(−c2/c1), thus potentially allowing dS vacua.4

It has been recently suggested that a more “global” version might be the more general

statement. In [16] an underlying quantum gravity reason for the dS swampland conjec-

ture was proposed, namely the so-called trans-Planckian censorship conjecture (TCC). It

proposes that sub-Planckian fluctuations must stay quantum and should never become

classical in an expanding universe with Hubble constant H. More quantitatively it says∫ tf

ti

dtH < log

(
Mpl

Hf

)
, (5.6)

for more details consult [16]. Two points are to be emphasized here, namely that this

conjecture is not local (as it involves an initial and final time), and the appearance of a

logarithm on the right hand side. For a monotonically decreasing positive potential, the

authors of [16] derived from the TCC a global version of the dS swampland conjecture〈
−V ′

V

〉 ∣∣∣∣φf
φi

>
1

∆φ
log
( Vi
M

)
+

2√
(d− 1)(d− 2)

(5.7)

where
〈
−V ′
V

〉 ∣∣∣φf
φi

denotes the average of −V ′/V in the interval [φi, φf ]. Here V < M < Mpl

and M is a mass scale that can be lower than the Planck-scale.

Let us check that a potential of the generic form

V (φ) = Ae−cφ e−(beaφ) (5.8)

satisfies this averaged dS swampland conjecture. Note that for a, b, c > 0 this potential is in-

deed positive and monotonically decreasing. For the average value we can directly compute〈
−V ′

V

〉 ∣∣∣∣φf
φi

=
1

∆φ

∫ φf

φi

dφ
(
c+ ab eaφ

)
= c+

b

∆φ

(
eaφf − eaφi

)
> c− b

∆φ
eaφi > c+

1

∆φ
log

(
Vi
A

)
.

(5.9)

This has precisely the form (5.7) so that we can state that non-perturbative contributions

to the scalar potential induce the log-corrections in the TCC derived dS swampland conjec-

ture (5.7). Moreover, we observe that for the three terms in the KKLT potential (4.2), one

4Utilizing quantum effects to generate stable dS vacua has been discussed in e.g. [56, 57].
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gets the parameters c ∈ {
√

8/3,
√

2/3} which both satisfy c ≥
√

2/3, the value appearing

in (5.7).

We consider this connection to the TCC as further evidence for the appearance of

log-corrections in the various swampland conjectures.

5.3 Emergence for KKLT

Finally, we comment on the emergence proposal. Before we come to the KKLT model let

us first consider tree flux compactifications.

For compactification on S5 one needs to take heed of the degeneracy of KK modes of

mass mn = n∆m = nMpl/ρ. This is given by the dimensionality of the space of harmonic

functions of homogeneous degree n, which for the 5-sphere goes as n4. Applying our

general result (2.9) for the one-loop correction to the field space metric and setting it equal

to the tree-level metric Gtree
φφ ∼ ρ−2 we obtain Λ8

sp = M3
pl(∆m)5 = M8

pl/ρ
5. Taking the

relation between the string scale and the D dimensional Planck scale into account it follows

Λsp ∼Ms. We expect that this relation will appear for all tree-level flux compactifications

so that the cut-off of these models is simply the string scale.

Next we will analyze the implications of the emergence proposal in the KKLT setting,

both for the toroidal model and the strongly warped throat.

Emergence for toroidal KKLT. In appendix B.1 we found a (non-degenerate) tower

of states with discretized masses scaling as (4.6). At leading order in τ , the 1-loop correc-

tion (2.9) to the field space metric of the modulus τ reads

Gloop
ττ ∼

Λ3
sp

M3
pl

a2

√
aτ
eaτ . (5.10)

Imposing that this is proportional to the tree-level metric Gtree
ττ ∼ τ−2, one can determine

the value of the cut-off of the effective theory as

Λ3
sp ∼

e−aτ

τ
3
2

M3
pl . (5.11)

This is reminiscent of the dynamically generated mass scale ΛSQCD of the SYM theory that

undergoes gaugino condensation. This scale is usually given by Λ3
SQCD = e−a/g

2
M3, where

M denotes a UV cut-off scale. Noting that g−2 ∼ τ we can write the KKLT cut-off as

Λ3
sp ∼ e

− a
g2 (gMpl)

3 ∼ Λ3
SQCD . (5.12)

Thus the cut-off of the KKLT model is the scale at which the implicitly assumed gaugino

condensation of the confining gauge theory occurs, while the UV cut-off of the gauge theory

itself is not simply the Planck scale but rather M ∼ ΛUV ∼ gMpl as suggested by the weak

gravity conjecture.

Emergence for warped throat KKLT. Next we analyze our second example from

appendix B.2, where the small value of W0 is generated by a strongly warped throat. As
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shown in [48], in this case there exists a tower of highly red-shifted KK modes localized at

the tip of the throat with masses

∆mKK ∼
|Z|

1
3

τ
1
2 yUV

, (5.13)

where Z denotes the conifold (complex structure) modulus and yUV is the length of the KS

throat before it reaches the bulk Calabi-Yau. It was argued in [48] that these KK modes

are lighter than the cut-off of the effective theory and that their one-loop contribution

corrects the second (subleading) term in the Kähler potential

K = −3 log(T + T ) + c
|Z|

2
3

(T + T )
. (5.14)

Using the general relation (2.9) and setting this one-loop correction equal to the Kähler

metric Gττ (second term) one finds for the species scale

Λ3
sp ∼

|Z|
τ

3
2 yUV

M3
pl . (5.15)

Since the first term in the above Kähler potential is also present in the unwarped case, we

expect it to emerge from integrating out the tower of heavier bulk KK modes (4.5) with

mass scale ∆mKK,h ∼ 1/τ .

In the limit where the throat just fits into the warped Calabi-Yau volume, one can

determine the cut-off yUV as

yUV ∼ − log

(
|Z|
τ

3
2

)
. (5.16)

Now we stabilize the Kähler modulus τ via KKLT which gives the relations

|Z| ∼ |W0| ∼ τe−aτ , yUV ∼ τ (5.17)

so that the species scale can be expressed as

Λ3
sp ∼

e−aτ

τ
3
2

M3
pl , (5.18)

which is the same result (5.11) as for the toroidal setting. Therefore, also for the warped

throat KKLT model the relation to ΛSQCD holds.

6 Conclusions

In this paper, we have investigated the behaviour of the KKLT and LVS constructions

with regard to the AdS scale separation and distance conjectures. To this end, we have

identified the relevant towers of light states and provided two concrete examples of realizing

an exponentially small mass scale for the KKLT model. Driven by confidence in the

consistency of the aforementioned AdS vacua, we propose log-corrections to the tree-level

AdS swampland conjectures. Extending our reasoning, we expect similar log-corrections
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to the dS swampland conjecture. These might be in the same spirit as the log-corrections

that were found for the “average” of the dS swampland conjecture in the recently proposed

TCC. Whether a stronger, local version of a quantum dS swampland conjecture could

make sense is left for future analysis.

Additionally, we analyzed the consequences of imposing the emergence proposal. For

tree-level flux compactifications we found that the cut-off scale is simply the string scale.

For the KKLT model, it is remarkable that both proposed scenarios for generating an

exponentially small W0 lead to a cut-off scale reminiscent of the dynamically generated

scale for the condensing SYM theory. It is certainly encouraging that our observations

seem to fit well within the broader swampland picture.
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A KK scales in type II flux compactifications

In this appendix we present two simple though typical type IIA flux compactifications on

the isotropic T 6. The first one only contains R-R and H3-form fluxes and as expected

features a dilute flux limit that allows to separate the KK scale from the moduli mass

scale. The second one also contains geometric fluxes, in which case there will be no dilute

flux limit and the moduli masses are of the same scale as the KK modes. Freund-Rubin

type compactifications are fully fledged 10D uplifts of such effective models.

A.1 A typical DGKT model

Let us consider type IIA orientifolds with fluxes on an isotropic six-torus. Here one has

three chiral superfields {S, T, U} whose real parts are defined as

τ = r1r2 , s = e−φr3
1 , u = e−φr1r

2
2 . (A.1)

The axions do not play any role in the following and will in all examples be stabilized at

vanishing value. The Kähler potential is given as

K = −3 log(T + T )− 3 log(U + U)− log(S + S) . (A.2)

Now we turn on just R-R fluxes and H3-form flux so that the flux induced superpotential

reads

W = if0T
3 − 3if4T + ih0S + 3ih1U . (A.3)

Then there exist both supersymmetric and non-supersymmetric AdS minima. For instance

in the supersymmetric vacuum, the saxionic moduli are stabilized at

τ = κ
f

1
2

4

f
1
2

0

, s =
2κ

3

f
3
2

4

f
1
2

0 h0

, u = 2κ
f

3
2

4

f
1
2

0 h1

(A.4)
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with κ =
√

5/3. For the non-supersymmetric minima only the numerical prefactors change.

The effective masses of the moduli all scale in same way as

m2
mod ∼ −Λ ∼ f

5
2

0 h0h
3
1

f
9
2

4

M2
pl . (A.5)

Therefore the model satisfies the AM-SSC. The two KK scales are

m2
KK,1 =

M2
s

r2
1

=
M2

pl

s τ u
=
f

3
2

0 h0h1

f
7
2

4

M2
pl ,

m2
KK,2 =

M2
s

r2
2

=
M2

pl

τ u2
=
f

3
2

0 h
2
1

f
7
2

4

M2
pl .

(A.6)

To be in the perturbative regime (gs � 1) we now choose f0, h0, h1 = O(1) and f4 � 1. In

this regime the KK scales are parametrically larger than the moduli masses and one has

m2
KK,i ∼ |Λ|

7
9 , (A.7)

thus satisfying the ADC with α = 7/18, both in the supersymmetric and non-supersym-

metric case. This reflects the fact that type IIA flux compactifications admit a dilute flux

limit (where f4 →∞).

A.2 A type IIA model with geometric flux

The Freund-Rubin background AdS5 × S5 is an example of a flux compactification, where

for moduli stabilization the curvature of the internal space is essential (as seen in e.g. the

effective potential eq. (3.2)). Such backgrounds can be described by turning on geometric

flux ω in the effective theory.

As a typical simple model we consider the superpotential

W = f6 + 3f2T
2 − ω0ST − 3ω1UT . (A.8)

Then the saxions are stabilized in a supersymmetric AdS minimum at

τ =
1

3

f
1
2

6

f
1
2

2

, s = 2
f

1
2

2 f
1
2

6

ω0
, u = 2

f
1
2

2 f
1
2

6

ω1
(A.9)

and receive masses that scale as

m2
mod ∼ −Λ ∼ ω0 ω

3
1

f
1
2

2 f
3
2

6

M2
pl . (A.10)

In this case the two KK scales are

m2
KK,1 =

ω0 ω1

f
1
2

2 f
3
2

6

M2
pl , m2

KK,2 =
ω2

1

f
1
2

2 f
3
2

6

M2
pl (A.11)
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which satisfy m2
KK,1 ∼ m2

mod/ω
2
1 and m2

KK,2 ∼ m2
mod/(ω1ω2). It was shown in [52] that

taking the backreaction of the fluxes onto the metric into account, the geometric fluxes in

the denominator also cancel and parametrically one indeed finds m2
KK ∼ m2

mod. Therefore,

in such models with geometric flux there is no parametric separation of the KK scale and

the moduli masses, the same behavior that occurs for Freud-Rubin compactifications. Here

both the AM-SSC and the strong ADC are satisfied.

B KK scales for KKLT

The ultimate question is what happens with the KK scale in the KKLT scenario. As we

have seen, the naive KK scale (4.5) is not exponentially small in the Kähler modulus τ , so

that there seems to be no way that the ADC can hold. However, we have to keep in mind

that for the KKLT scenario to work one needs an exponentially small value of W0 after

stabilizing the complex structure moduli and the dilaton à la GKP [58].

B.1 A toroidal example

Let us consider again a simple toroidal type IIB model, for which we can easily compute

the KK scales directly. In this case, the real parts of the chiral superfields {S, T, U} are

defined as

τ = e−φr2
1r

2
2 , s = e−φ , u = r2/r1 . (B.1)

We turn on F3 and H3 form flux such that the superpotential is

W = ifU + ihSU2 (B.2)

with f, h positive. This freezes the axions completely and the saxions have to satisfy

us =
f

h
, (B.3)

leading to the value W0 = 2ifu of the superpotential along the minimum. Therefore, the

superpotential becomes very small for u � 1 while the dilaton stays in the perturbative

regime, i.e. eφ � 1. The KK and winding scales can be computed in terms of u and τ as

m2
KK,± =

M2
pl

τ2
u±1 , m2

w,± =
M2

pl

sτ
u±1 . (B.4)

In the regime of interest s ∼ u−1, the large radius regime, where the KK scale is smaller

than the winding scale, is given by τu� 1. As long as τ is not stabilized this can always be

satisfied by choosing τ large enough. However, in KKLT τ is fixed as W0 ∼ u ∼ τ exp(−aτ),

which implies τu � 1. Therefore, the lightest tower of states in KKLT is given by the

winding modes

m2
w,+ ∼

M2
pl

τ
u2 ∼

M2
pl

τ
|W0|2 . (B.5)

In the KKLT minimum, using (4.3) and (4.4), the winding mass becomes

m2
w,+ ∼

e−2aτ

τ
(4a2τ2 + 12aτ + 9)M2

pl

∼ (log2(−Λ)− 6 log(−Λ) + 9)|Λ| ,
(B.6)

which is of the same form as (4.11). This satisfies the strong ADC up to log corrections.
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Thus we have seen that, if we want to have an exponentially small value of W0, the

torus becomes highly non-isotropic and towers of states become exponentially light m2
w,+ ∼

M2
pl τ
−1 exp

(
−
√

8/3φu

)
in the canonically normalized field φu = −

√
3/2 log u correspond-

ing to the complex structure modulus u. This is nothing else than the tower of states that

must become light in the large φu regime due to the swampland distance conjecture.

One relevant concern is that for such large excursions in the complex structure u, the

effective theory that we used for computing complex structure moduli stabilization is not

under control anymore. For instance, as we have seen we do not satisfy τu� 1 so that one

radius of the torus becomes significantly smaller than the string length. As a consequence,

higher derivative terms in the effective action might not be negligible. Moreover, the

mass scale of these winding modes is lighter than the mass m2
u,s ∼ τ−3 of the stabilized

complex structure moduli. Therefore, this simple toroidal model can certainly not serve as

a completely convincing flux GKP compactification with W0 � 1. Nevertheless, it exhibits

an important feature, namely that W0 � 1 goes along with the occurrence of a tower of

states whose mass scales as m ∼ exp(−aτ).

B.2 The warped throat

Another option was proposed in [48], namely that a superpotential involving the complex

structure modulus Z governing the appearance of a conifold singularity can also generate

an exponentially small value for W0. If |Z| � 1 the three-cycle of the conifold becomes

very small and locally the geometry is described by a Klebanov-Strassler(KS) throat. For

our purpose we only need a couple of relations. First the superpotential in the minimum

is given by

|W0| ∼ |Z| ∼ exp

(
−2πh

gsf

)
(B.7)

where f, h are F3 and H3 fluxes supporting the strongly warped KS throat. It was shown

in [48] that there exists a tower of light KK modes localized close to the tip of the conifold

with masses

m2
KK ∼

1

y2
UV

(
|Z|
V

) 2
3

M2
pl (B.8)

where V = τ3/2 denotes the warped volume of the threefold. (Note that one must have

V|Z|2 � 1 in the strongly warped throat.) Moreover, yUV denotes the length of the warped

KS throat before it goes over to the bulk Calabi-Yau manifold. In the limit that the throat

just fits into the Calabi-Yau volume one can relate yUV to the other quantities as

yUV ∼ − log

(
|Z|
V

)
(B.9)

(see [48] for further details). It was also found that the mass scale of these KK modes is

of the same order as the mass of the complex structure Z. Thus, one is (still) at the limit

of control of the utilized effective theory. In that respect, this scenario is better controlled

than the toroidal model discussed before.
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Now using again the KKLT minimum condition (4.3) we get5 yUV ∼ aτ and can express

this exponentially small KK scale as

m2
KK ∼

|W0|
2
3

a2τ3
M2

pl ∼
(

(2aτ + 3)2

a8τ8

) 1
3
(
a2e−2aτ

τ

) 1
3

M2
pl

∼
(

1

log2(−Λ)
− 2

log3(−Λ)
+ . . .

)
|Λ|

1
3M2

pl .

(B.10)

Up to the log-term this satisfies the ADC with α = 1/6.

We note that V|Z|2 ∼ τ7/2 exp(−2aτ) which for large τ is indeed much smaller than

one. Therefore, stabilizing the Kähler modulus via KKLT is self-consistent with using

the effective theory in the warped throat. In this respect, it also behaves better than the

toroidal model from the previous subsection.
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