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1 Introduction

Theoretical predictions for experiments at the LHC [1, 2] as well as at future colliders such

as the FCC [3] demand knowledge of precise radiative corrections. Precise experimental

measurements are to be interpreted with sufficient precision of theoretical predictions. The

problem of calculating such radiative corrections is associated, in particular, with the need

to compute Feynman integrals depending on several kinematic variables and/or masses.

Over the past few decades enormous progress has been made in solving the problem of

evaluating Feynman integrals.

However, for further progress in the analytic evaluation of Feynman integrals, especially

integrals depending on several kinematic variables and masses, new mathematical methods
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need to be elaborated. In this respect, more and more attention is paid to methods based on

solving different kinds of recurrence relations. The first result obtained in this approach was

analytic evaluation of the two-loop propagator integral with massless propagators [4]. In

this paper, an analytic result for the integral was derived by solving the recurrence relation

with respect to the power of a propagator. A systematic approach for evaluating Feynman

integrals by solving the recurrence relation with respect to the power of a propagator was

described in ref. [5].

In ref. [6], a method for evaluating Feynman integrals based on the recurrence relations

with respect to the space-time dimension d was suggested. It turns out that hypergeometric

functions appearing in the solution of the recurrence relations with respect to d [7, 8] have

fewer arguments than in the results for these integrals obtained by other methods. For

example, the results obtained in refs. [9, 10] using the Mellin-Barnes integration technique,

and in ref. [11] using the negative dimension method are expressed in terms of hypergeo-

metric functions with more arguments than those obtained for these integrals by solving

dimensional recurrence relations.

In ref. [12], new relationships between the Feynman integrals with different kinematic

variables were discovered. A method of deriving functional equations from algebraic rela-

tions for products of propagators was recently proposed in ref. [13]. At the one-loop level

some functional relationships were also considered in refs. [14, 15].

It was shown that these relationships, or in other words functional equations, can be

used to express Feynman integrals in terms of integrals with fewer variables. In ref. [16], the

functional equations were used to obtain relations between integrals appearing in radiative

corrections for different physical processes.

An important step in evaluating radiative corrections for physical processes is the

Laurent expansion in the ε = (4−d)/2 of the analytic results for Feynman integrals. Quite

essential progress in this field was made in many papers. See, for example, [17–22]. Up to

now the Laurent expansion of Feynman integrals in ε is not a completely solved problem.

Even at the one-loop level only the first several terms in the ε expansion of the four- and

higher point functions are known. The existing results [23, 24] are not so easy to generalize

for integrals depending on several masses and/or several external off-shell momenta.

It is evident that for the ε expansion the simplicity of the analytical results for dimen-

sionally regularized integrals is rather important. For this reason the method based on the

solution of recurrence relations and the method of functional reduction suggested in this

article can be very useful.

In the present paper, we propose a framework for systematically reducing Feynman

integrals depending on several kinematic variables and masses to a combination of integrals

with fewer variables. This framework is based on solving the functional equations for

Feynman integrals proposed in refs. [12, 13, 25]. The main steps of our approach will be

illustrated on the one-loop integrals with massless propagators.

In a sense, the application of functional equations for evaluating integrals is analogous

to the use of recurrence relations with respect to some discretely changing parameters,

like space-time dimension d or power of a propagator. Applying such recurrence relations,

one can reduce an integral to a set of basis integrals which are in fact boundary values
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of the integrals of interest. Using functional equations one can reduce an integral to a

combination of integrals with fewer variables, i.e. integrals defined on some hypersurfaces.

In other words, these integrals can be interpreted as a kind of boundary integrals.

This paper is organized as follows.

In section 2, we briefly discuss the method of discovering functional equations for

Feynman integrals and describe the methods of obtaining their solutions. As an illustrative

example, we consider the solution of the functional equation for the one-loop propagator

integral with arbitrary masses.

In section 3, the one-loop integral associated with the triangle Feynman diagram with

massless internal propagators is considered. We present the functional equation for this

integral and describe its solution. The analytic result for the integral appearing in the

solution of thefunctional equation is obtained as a solution of the dimensional recurrence

relation. A particular case of the functional equation for the triangle integral is considered.

In section 4, we present the functional equations for the one-loop scalar integral asso-

ciated with the Feynman diagram with four external legs. A two step procedure, based on

functional equations, for reducing the integral depending on six variables to a combination

of integrals depending on three variables is described. For these integrals, depending on

three variables, an analytic result as a solution of the dimensional recurrence relation is

presented. Functional reduction of the box integral for several particular cases of kinematic

variables is considered. The first few terms in the Laurent expansion around d = 4 and

d = 6 for these integrals are given.

In section 5, we report our conclusions and discuss future applications of functional

equations for evaluating Feynman integrals corresponding to diagrams with massive inter-

nal lines and with more external legs and loops.

In appendix A, we present definitions and explicit formulae for the Gram determinants

and polynomials occurring in the paper. In appendix B, a derivation of the analytic result

for the one-loop integral with massless internal propagators with particular emphasis on

its dependence on the small imaginary part needed for the correct analytic continuation

of the integral is presented. In appendix C, the series and integral representations for the

hypergeometric functions used in the paper are given.

2 Functional equations and their solution

At the present time, there are three methods for deriving functional equations for Feynman

integrals. The method proposed in ref. [12] is based on exploiting recurrence relations

obtained by the method of generalized recurrence relations [6]. By choosing some kinematic

variables, one can eliminate most complicated integrals from the recurrence relation so that

the sum of remaining terms represents the functional equation. The second method is based

on algebraic relations for a sum of products of propagators [13]. Integrating such sums with

respect to a common to all propagators momentum gives a functional equation. The third

method is based on the use of algebraic relations for modified propagators [13]. Integrating

an algebraic relation depending on modified propagators with respect to a common to all

propagators momentum, transforming the resulting integrals to integrals over Schwinger
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parameters and then mapping these integrals to the required Feynman integrals by choosing

auxiliary parameters from deformed propagators lead to a functional equation.

The following questions arise naturally: how to solve the functional equations and how

to use them for simplifying evaluation of Feynman integrals? We shall try to answer these

questions in the next sections of this paper.

2.1 Definitions and methods of solution

A functional equation can be considered as an equation involving independent variables,

known functions, unknown functions and some constants [26]. In a functional equation the

unknown is a function. Rather often, the functional equation connects a function with its

value for some other arguments. There is a vast literature on functional equations [26–32].

Solution of a functional equation is a rather difficult problem. However, there is a number

of the most frequently used methods for its solution. A systematic description of such

methods is given in ref. [26]. Many methods described in this book and also in refs. [27, 32]

can be used for solving the functional equations for Feynman integrals. To our opinion,

the most suitable methods are

1. Replacement of variables by given values

2. Transforming one or several variables

3. Using a more general equation

4. Treating some variables as constants

5. Iterative methods

6. Reduction by means of analytical techniques (differentiation, integration etc.)

7. Mixed methods

All these methods to some extent can be used for solving functional equations for Feynman

integrals. In the present paper, the methods 1, 3 and 5 will be exploited.

2.2 Solution of the functional equation for the propagator integral

As an illustration of the first method from the above list, we shall consider the solution of

the functional equation for the one-loop scalar propagator integral:

I
(d)
2 (m2

i ,m
2
j ; sij) =

∫
ddk1

iπd/2
1

[(k1 − pi)2 −m2
i + iη][(k1 − pj)2 −m2

j + iη]
, (2.1)

where iη is the small imaginary part which fixes the analytic continuation of the integral.

Here and in what follows the scalar invariants sij are defined in terms of external momenta

pj , pi by

sij = (pi − pj)2. (2.2)

In refs. [12, 13], the following relationship for this integral was derived:

I
(d)
2 (m2

i ,m
2
j , sij) = x1I

(d)
2 (m2

j ,m
2
0, sj0) + x2I

(d)
2 (m2

i ,m
2
0, si0), (2.3)
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where

x1 =
m2
j −m2

i + sij

2sij
±
√

4sijm2
0 − λij

2sij
,

x2 =
m2
i −m2

j + sij

2sij
∓
√

4sijm2
0 − λij

2sij
,

(2.4)

si0 =
2sij(m

2
i +m2

0)− λij
2sij

±
m2
j −m2

i − sij
2sij

√
4sijm2

0 − λij ,

sj0 =
2sij(m

2
j +m2

0)− λij
2sij

±
m2
j −m2

i + sij

2sij

√
4sijm2

0 − λij .
(2.5)

λij = −s2ij −m4
i −m4

j + 2sijm
2
i + 2sijm

2
j + 2m2

im
2
j . (2.6)

Equation (2.3) can be interpreted as a functional equation for the integral I
(d)
2 (m2

i ,m
2
j ; sij),

which is considered as a function of three continuous variables sij , m
2
i , m

2
j . To solve

equation (2.3), we will exploit a method, which was used for the solution of Sincov’s

equation [33, 34]:

f(x, y) = f(x, z)− f(y, z). (2.7)

Setting in this equation z = 0 and assuming that the function f(x, z) is not singular at

this point, we obtain the general solution

f(x, y) = g(y)− g(x), (2.8)

where

g(x) = f(x, 0). (2.9)

Thus, using the fact that the left-hand side of equation (2.7) does not depend on z, we

express the function f(x, y) as a combination of its “boundary values”.

It is easy to see that the functional equation (2.3) is rather similar to Sincov’s equa-

tion (2.7). Since at m2
0 = 0 the invariants si0, sj0 and the integral I

(d)
2 are not singular,

one may set in equation (2.3) m2
0 = 0. At m2

0 = 0 equation (2.3) becomes

I
(d)
2 (m2

i ,m
2
j , sij) = x1I

(d)
2 (m2

j , 0, sj0) + x2I
(d)
2 (m2

i , 0, si0), (2.10)

where

x1 =
m2
j −m2

i + sij

2sij
±
√
−λij

2sij
,

x2 =
m2
i −m2

j + sij

2sij
∓
√
−λij

2sij
,

(2.11)

si0 =
2sijm

2
i − λij

2sij
±
m2
j −m2

i − sij
2sij

√
−λij ,

sj0 =
2sijm

2
j − λij

2sij
±
m2
j −m2

i + sij

2sij

√
−λij .

(2.12)
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Therefore, relation (2.10) represents the integral depending on three variables in terms of

integrals depending on two variables.

Expression (2.10) is a solution of equation (2.3) for arbitrary value of the mass m2
0.

Indeed, substituting (2.10) in both sides of equation (2.3), simplifying arguments (2.12) of

integrals, after simple algebraic transformations, we find that on the right-hand side the

integrals I
(d)
2 depending on m2

0 are canceled. The remaining two terms on the right-hand

side are canceled by the two terms from the left-hand side.

Notice that to reduce Feynman integrals to simpler ones, the question whether expres-

sion (2.10) is a general solution of the functional equation (2.3) or not is not relevant. For

our purposes it is enough to have a particular solution reducing complicated integral to a

combination of integrals with fewer variables. Other sets of particular solutions will lead

to another representation of the complicated integral in terms of simpler ones. These sets

of integrals may be related, for example, by analytic continuation or some transformation

analogous to the known transformations for hypergeometric functions.

It should be noted that xj , sj0 in equations (2.4), (2.5) and xj , sj0 in equations (2.11),

(2.12) do not depend on iη that can lead to ambiguity in choosing the sign of the square root.

Nevertheless, the functional equation will be valid for any choice of sign. The signs in xj , xj
are to be properly correlated with the sings in sj0, sj0. The possibility to choose different

signs of the square root means that there are two different representations of the integral

in terms of simpler integrals. The integrals on the right-hand side of these two different

representations depend on different sets of arguments. Excluding the initial integral from

these equations will give a functional equation for integrals with fewer arguments. As it

was already shown in ref. [12], this kind of functional relations may be used for the analytic

continuation of integrals with fewer variables.

We conclude this section with various remarks. First, it is interesting to note that

the position of the threshold sij = (mi + mj)
2 for the integral on the left-hand side of

equation (2.10) corresponds to the positions of thresholds si0 = m2
i and sj0 = m2

j for

integrals on the right-hand side.

Second, we notice that the functional equations can be used not only for reducing

complicated integrals to their “boundary integrals” but also for analytic continuation of

these “boundary integrals”.

Third, to find an analytic expression for the simple integrals, which cannot be simplified

anymore by using functional equations, one should use other computational methods. In

the next sections, we will use dimensional recurrence relations for the triangle and box

integrals at the final stage of calculation.

3 Functional reduction of the integral I
(d)
3

In the present paper, the functional equation and its solution for the one-loop triangle

integral with all internal masses equal to zero will be considered. To solve the functional

equation for this integral, we will use the functional equation for the integral with mas-

sive lines:

I
(d)
3 (m2

1,m
2
2,m

2
3; s23, s13, s12) =

1

iπd/2

∫
ddk1

P1P2P3
, (3.1)
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where

Pi = (k1 − pi)2 −m2
i + iη. (3.2)

3.1 Derivation of functional equation for the integral I
(d)
3 and its solution

To derive the functional equation for the integral (3.1), one can exploit the algebraic relation

for the products of three propagators [13]:

1

P1P2P3
=

x1

P0P2P3
+

x2
P1P0P3

+
x3

P1P2P0
. (3.3)

As it was shown in ref. [13], relation (3.3) is valid if

p0 = x1p1 + x2p2 + x3p3, (3.4)

and the parameters m2
0, xj obey the following system of equations:

x1 + x2 + x3 = 1, (3.5)

x1x2s12 + x1x3s13 + x2x3s23 − x1m2
1 − x2m2

2 − x3m2
3 +m2

0 = 0. (3.6)

Solving this system of equations for x1,x2, we have

x1 = 1− Λ3 − x3, x2 = Λ3, (3.7)

where Λ3 is the root of the equation

A3Λ
2
3 +B3Λ3 + C3 = 0, (3.8)

with
A3 = s12,

B3 = x3(s13 + s12 − s23)−m2
1 +m2

2 − s12,
C3 = x23s13 + (m2

3 −m2
1 − s13)x3 +m2

1 −m2
0. (3.9)

Integration of relationship (3.3) with respect to the momentum k1 gives a functional equa-

tion for the one-loop integral I
(d)
3 with arbitrary masses:

I
(d)
3 (m2

1,m
2
2,m

2
3; s23, s13, s12) = (1− Λ3 − x3)I(d)3 (m2

0,m
2
2,m

2
3; s23, s30, s20)

+ Λ3I
(d)
3 (m2

1,m
2
0,m

2
3; s30, s13, s10)

+ x3I
(d)
3 (m2

1,m
2
2,m

2
0; s20, s10, s12), (3.10)

where s12, s13, s23 are independent scalar invariants and sj0 are given by

s10 = (p1−p0)2 = (m2
1−m2

2+s12)Λ3+(m2
1−m2

3+s13)x3+m2
0−m2

1,

s20 = (p2−p0)2 = (m2
1−s12−m2

2)Λ3+(m2
1−m2

3−s12+s23)x3+m2
0−m2

1+s12,

s30 = (p3−p0)2 = (m2
1−s13+s23−m2

2)Λ3+(m2
1−m2

3−s13)x3+m2
0−m2

1+s13. (3.11)
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Setting m1 = m2 = m3 = m0 = 0 in equations (3.10), (3.11) and replacing sij → qij in

order to avoid confusion in the notation, give the functional equation for the massless case

I
(d)
3 (0, 0, 0; q23, q13, q12) = (1− λ3 − z3)I(d)3 (0, 0, 0; q23, q30, q20)

+ λ3I
(d)
3 (0, 0, 0; q30, q13, q10) + z3I

(d)
3 (0, 0, 0; q20, q10, q12), (3.12)

where

q10 = q12λ3 + q13z3,

q20 = −q12λ3 + (q23 − q12)z3 + q12,

q30 = (q23 − q13)λ3 − q13z3 + q13, (3.13)

the parameter z3 is arbitrary and λ3 is a solution of the quadratic equation:

q12λ
2
3 + [z3(q13 + q12 − q23)− q12]λ3 + z3(z3 − 1)q13 = 0. (3.14)

The right- hand side of equation (3.12) depends on an arbitrary parameter z3. However,

to exploit this arbitrariness for obtaining a solution of the equation in terms of simpler

integrals by the method used for finding a solution of Sincov’s equation is not possible.

One cannot reduce the number of variables simultaneously in all functions I
(d)
3 by choosing

z3. To find a solution of equation (3.12), one can use an approach described in [26].

Namely, we will find a solution for the integral with massless propagators from a more

general functional equation which can be obtained from formula (3.10). As was noted in

ref. [32], it can happen that solving a more general equation can be easier than solving a

particular case of this equation. Setting m2
1 = m2

2 = m2
3 = 0 in equation (3.10) but keeping

m0 different from zero, we find:

I
(d)
3 (0, 0, 0; s23, s13, s12) = (1− Λ3 − x3)I(d)3 (m2

0, 0, 0; s23, s30, s20) (3.15)

+ Λ3I
(d)
3 (0,m2

0, 0; s30, s13, s10) + x3I
(d)
3 (0, 0,m2

0; s20, s10, s12),

where

s10 = s12Λ3 + s13x3 +m2
0,

s20 = −s12Λ3 + (s23 − s12)x3 +m2
0 + s12,

s30 = (s23 − s13)Λ3 − s13x3 +m2
0 + s13, (3.16)

and Λ3 is the solution of the equation:

s12Λ
2
3 + [x3(s13 + s12 − s23)− s12]Λ3 + x3(x3 − 1)s13 −m2

0 = 0. (3.17)

We note that in the obtained equation there are more arbitrary parameters than in equa-

tion (3.12) and also new kinds of integrals, namely, integrals with one massive internal line.

It is expected that the solution sought may be found by choosing arbitrary parameters x3,

m0. Compared with Sincov’s equation, it is not so easy to find values of the arbitrary

parameters leading to the reduction in the number of independent variables for all the

– 8 –
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integrals simultaneously. The reduction in the number of variables can take place if by

choosing parameters x3, m0, some of the variables will become zero or equal to each other.

One can enumerate all possible relations of this kind:

sj0 = 0, s10 ± s20 = 0, s10 ± s30 = 0, s20 ± s30 = 0,

sj0 ±m2
0 = 0, sj0 ± s12 = 0, sj0 ± s13 = 0, sj0 ± s23 = 0. (3.18)

Probably there are some other conditions leading to the reduction in the number of vari-

ables, but we will restrict ourselves only to the conditions given in equation (3.18). Strictly

speaking, at the expense of two parameters one can fulfill two conditions from (3.18). Ful-

filling two conditions from the list (3.18) does not ensure simultaneous reduction in the

number of variables for all three functions in equation (3.15). However, we will try to find

whether it is still possible to choose two arbitrary parameters and fulfill three conditions

from the list (3.18). Out of 33 equations from the list (3.18) we created 5456 different sys-

tems of equations with 3 equations in each system. Solutions of these systems of equations

and analysis of these solutions were performed using MAPLE. It turns out that for some

values of m2
0, x3 three conditions from the list (3.18) were fulfilled. In particular, one of

such solution reads

x3 = r
(3)
123, m2

0 = µ123, (3.19)

where

µijk =
sijsiksjk

s2ij + s2ik + s2jk − 2sijsik − 2sijsjk − 2siksjk
= rijk|m2

1=m
2
2=m

2
3=0 = rijk,

r
(i)
jkl =

∂ rjkl
∂m2

i

∣∣∣∣
m2

j=m
2
k=m

2
l =0

. (3.20)

The definition of rijk is given in appendix A. For x3, m
2
0 given in (3.19) the following

conditions were fulfilled:

s10 = s20 = s30 = −m2
0. (3.21)

Substituting these values of sj0 and m0 into equation (3.15), we find

I
(d)
3 (0, 0, 0; s23, s13, s12)

= r
(1)
123 ξ

(d)
3 (r123; s23) + r

(2)
123 ξ

(d)
3 (r123; s13) + r

(3)
123 ξ

(d)
3 (r123; s12), (3.22)

where

ξ
(d)
3 (rijk; sij) = I

(d)
3 (0, 0, rijk; − rijk,−rijk, sij). (3.23)

Explicit expressions for r
(i)
jkl are given in appendix A. Thus, the solution of the functional

equation (3.15) at m2
1 = m2

2 = m2
3 = 0 is a sum of three terms, each of which is proportional

to the same integral ξ
(d)
3 depending on two variables different for each term. We notice

that µijk is a kind of effective mass depending on kinematic invariants.

– 9 –



J
H
E
P
0
2
(
2
0
1
9
)
1
7
3

3.2 Verification of the solution of the functional equation

The obtained expression for the integral I
(d)
3 given in equation (3.22) is in fact the solution

of the equation (3.12). In order to prove this, we substitute the expression for I
(d)
3 from

the equation (3.22) into left- and right- hand sides of equation (3.12). The integrals I
(d)
3

on the right-hand side of (3.12) depend on different sets of variables, but it turns out that

all these integrals are combinations of integrals ξ
(d)
3 depending on the same effective mass,

i.e. the following relations hold:

µ123 = µ023 = µ103 = µ120. (3.24)

Relations (3.24) are easy to prove by replacing sij in (3.20) by qij , taking into account (3.13)

and using the relation in equation (3.14). Due to relations (3.24) the number of ξ
(d)
3

functions in equation (3.12) reduces from 12 to 6. On the right-hand side of this equation

the contributions proportional to ξ
(d)
3 (µ123; q10), ξ

(d)
3 (µ123; q20), ξ

(d)
3 (µ123; q30) drop out after

the algebraic simplifications. The remaining contributions proportional to ξ
(d)
3 (µ123; q23),

ξ
(d)
3 (µ123; q13), ξ

(d)
3 (µ123; q12) cancel against the terms on the left-hand side of the equation.

Thus, having solved the functional equation, we expressed the function I
(d)
3 with three

variables in terms of functions depending on two variables. As we will see in the next

subsection, the integral ξ
(d)
3 is easier to evaluate than the initial integral. It should be noted

that both the Feynman parameter representation for the integral ξ
(d)
3 and the dimensional

recurrence relation are simpler for this integral than for the initial integral I
(d)
3 .

To conclude this section, we consider a particular case of equation (3.22), namely, the

case when one of the kinematic invariants, say s12, is equal to zero. In this case, I
(d)
3 is a

linear combination of three massless functions ξ
(d)
3 (0; sij)

I
(d)
3 (0, 0, 0; 0, s13, s12) =

s13
s13 − s12

ξ
(d)
3 (0; s13) +

s12
s12 − s13

ξ
(d)
3 (0; s12). (3.25)

The expression for ξ
(d)
3 (0; sij) can be obtained from the recurrence relation with respect to

the spacetime dimension d, which one can find, for example, in ref. [6]:

(d− 2)ξ
(d+2)
3 (m2; q2) = −2m̃2ξ

(d)
3 (m2; q2)− ξ(d)2 (q2), (3.26)

where

ξ
(d)
2 (q2) =

1

iπd/2

∫
ddk1

[k21 + iη][(k1 − q)2 + iη]
=
−π

3
2 (−q̃ 2)

d
2
−2

2d−3Γ
(
d−1
2

)
sin πd

2

, (3.27)

q̃ 2 = q2 + 4iη, (3.28)

m̃ 2 = m2 − iη. (3.29)

We draw attention to the coefficient in front of the small imaginary part iη in equa-

tion (3.28). The value of this coefficient is important for the analytic continuation of the

results in those cases when I
(d)
2 was used in their derivation. Expression (3.27) can be

considered as a limiting case of the propagator integral I
(d)
2 with equal internal masses.
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Detailed derivation of equation (3.27) is given in appendix B. The importance of the coef-

ficient in front of iη for the analytic continuation of the one-loop box integral was noticed

in refs. [35, 36].

Setting m2 = 0 in equation (3.26) and taking into account (3.27), yield

ξ
(d)
3 (0; q2) = − 1

(d− 4)
ξ
(d−2)
2 (q2) = − 2(d− 3)

q2(d− 4)
ξ
(d)
2 (q2). (3.30)

Substituting (3.30) in (3.25), we find:

I
(d)
3 (0, 0, 0; 0, s13, s12) =

−2(d− 3)

(d− 4)(s13 − s12)

[
ξ
(d)
2 (s13)− ξ(d)2 (s12)

]
. (3.31)

Evaluating the Feynman parameter integral for the I
(d)
3 gives the same result. Expres-

sion (3.30) will be used in the next section for calculating the box type integral.

3.3 Analytic evaluation of the integral ξ
(d)
3

The analytic expression for the integral ξ
(d)
3 (m2; q2) can be derived by many different

methods. For example, by direct evaluation of the Feynman parameter integral

ξ
(d)
3 (m2; q2) = −Γ

(
3− d

2

)∫ 1

0

∫ 1

0

z1dz1dz2[
(q2z22 − q2z2 −m2)z21 +m2 − iη

]3− d
2

, (3.32)

or by solving dimensional recurrence relation (3.26) with respect to d. We prefer to use the

latter method because it is easier to keep the trace of the term iη at all steps of derivation.

To solve the dimensional recurrence relation, we employ the method described in ref. [7].

For |q2| ≤ |4m2| the solution of the recurrence relation (3.26) reads

ξ
(d)
3 (m2; q2) = − 1

2m2
ξ
(d)
2 (q2) 2F1

[
1, d−22 ;
d−1
2 ;

−q̃ 2

4m̃2

]
+

(−m̃2)d/2

Γ
(
d−2
2

) C3(q
2, d), (3.33)

where C3(q
2, d) is a periodic function C3(q

2, d) = C3(q
2, d + 2). For this function one can

obtain a differential equation with respect to q2. It can be derived from the differential

equation for ξ
(d)
3 (m2, q2). In ref. [37], it was shown that the derivatives with respect to

kinematic variables for the Feynman integrals can be written in terms of integrals with

shifted space-time dimension d and additional powers of propagators. In our case, the

derivative reads:

∂

∂q2
ξ
(d)
3 (m2;q2) =

1

iπ
d+2
2

∫
dd+2k1

((k1−p1)2+iη)2((k1−p2)2+iη)2((k1−p3)2−m2+iη)
, (3.34)

where the values of the kinematic invariants sij = (pi − pj)2 must correspond to those of

the integral I
(d)
3 in (3.23). With the help of the recurrence relations presented in ref. [6]

the integral on the right-hand side of (3.34) can be reduced to the set of basis integrals.

This reduction results in the first-order inhomogeneous differential equation:

∂

∂q2
ξ
(d)
3 (m2; q2) =

−(q2 + 2m2)

q2(q2 + 4m2)
ξ
(d)
3 (m2; q2)

− (d− 3)

q̃ 2(q2 + 4m2)
ξ
(d)
2 (q2) +

d− 2

2m̃2q2(q2 + 4m2)
ξ
(d)
1 (m2), (3.35)
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where

ξ
(d)
1 (m2) =

1

iπd/2

∫
ddk1

k21 −m2 + iη
= − π(m̃2)

d
2
−1

Γ
(
d
2

)
sin πd

2

. (3.36)

Substitution of ξ
(d)
3 (m2; q2) from (3.33) into (3.35) yields

q2
∂C3(q

2, d)

∂q2
+

(q2 + 2m2)

q2 + 4m2
C3(q

2, d) +
Γ
(
d
2

)
(−m̃2)d/2+1 (q2 + 4m2)

ξ
(d)
1 (m2) = 0. (3.37)

Note that the term with ξ
(d)
1 (m2) in (3.37) is invariant with respect to the shift d→ d+ 2,

as it must be. Equation (3.37) can be solved by MAPLE. The solution

C3(q
2, d) =

−Γ
(
d
2

)
ξ
(d)
1 (m2)√

q2(q2 + 4m2)(−m̃2)d/2+1
ln
(

2m2 + q2 +
√

(q2 + 4m2)q2
)

+
K√

q2(q2 + 4m2)
, (3.38)

depends on a constant of integration K, which may be fixed from the comparison of equa-

tion (3.33) with the value of ξ
(d)
3 (m2, q2) taken at q2 = 0. Substitution of q2 = 0 into the

Feynman parameter integral (3.32) yields

ξ
(d)
3 (m2; 0) = −Γ

(
3− d

2

)∫ 1

0

z1dz1[
(1− z21)m2 − iη

]3− d
2

=
(d− 2)

4m4
ξ
(d)
1 (m2). (3.39)

Since ξ
(d)
3 (m2; 0) and the term with 2F1 at q2 = 0 are finite, the contribution proportional

to the periodic function C3(q
2, d) must also be finite. Taking the limit q2 → 0 we find that

the contribution coming from the term with C3(q
2, d) will be finite if

K =
Γ
(
d
2

)
ξ
(d)
1 (m2)

(−m̃2)d/2+1
ln(2m2). (3.40)

Substitution of (3.40), (3.38) in (3.33) yields

ξ
(d)
3 (m2; q2) = − 1

2m2
ξ
(d)
2 (q2) 2F1

[
1, d−22 ;
d−1
2 ;

−q̃ 2

4m̃2

]

+
(d− 2)ξ

(d)
1 (m2)

2m2
√
q2(q2 + 4m2)

ln

(
1 +

q2 +
√
q2(q2 + 4m2)

2m2

)
. (3.41)

This expression is valid for |q̃2/4/m̃2| < 1. The results for ξ
(d)
3 (m2; q2) in other kine-

matic regions can be related to (3.41) by analytic continuations of the hypergeometric

function 2F1.

Relations (3.22) and (3.41) have been checked for several values of kinematic variables

by numerical program [38] for evaluating loop integrals. We found complete agreement for

both space-like and time-like values of the kinematic variables sij .
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3.4 The ε expansion of the integral I
(d)
3

Analytic evaluation of the integral I
(d)
3 for various kinematic regions as well as its ε =

(4 − d)/2 expansion was considered in numerous papers [17, 39–45]. To obtain the ε

expansion of the integral I
(d)
3 depending on three variables, in our approach we need to

know ε expansion of the integral ξ
(d)
3 depending only on two variables. In order to get the

first term in the ε expansion of the integral ξ
(d)
3 , the hypergeometric function 2F1 in (3.41)

must be expanded up to the order O(ε2). Using the HypExp package [20], we find

2F1

[
1, 1− ε ;
3
2 − ε ;

z

]
=

−Y
(1− Y )(1 + Y )

×
{

2 ln(Y )− ε
[
ln2 Y + 4 lnY + 4Li2(1− Y )

]}
+O(ε2), (3.42)

where

Y =
1− y
1 + y

, y =

√
z

z − 1
. (3.43)

Substituting (3.42) into (3.41), we find

ξ
(4−2ε)
3 (m2; q2) =

1

2R

[
ln2 Y + 2 lnY ln

(
−q̃2

m̃2

)
+ 4Li2(1− Y )

]
+O(ε), (3.44)

where

Y = 1 +
q̃2 +R

2m̃2
, R =

√
q̃2(q̃2 + 4m̃2). (3.45)

The leading term in ε for the integral I
(d)
3 (0, 0, 0; s23, s13, s12) can now be obtained by

substituting (3.44) into equation (3.22). The resulting expression has been checked for

several values of kinematic variables by numerical program [38] for evaluating loop integrals.

We found complete agreement for both space-like and time-like values of the kinematic

variables sij .

4 Functional reduction of the integral I
(d)
4

In this section we will consider the analytic evaluation of the one-loop integral with mass-

less internal lines associated with the Feynman diagram with four external legs. At d = 4

the analytic result was presented in refs. [46–48]. For particular values of kinematic vari-

ables, analytic evaluation of this integral for arbitrary d was considered, for example, in

refs. [35, 36, 49, 50]. Until now, in d-dimensions the analytic result for this integral for all

external legs fully off-shell has been known in terms of multiple hypergeometric series [9, 10]

evaluated by using the Mellin-Barnes technique. In the present paper, such a result is de-

rived using a combination of functional equations and dimensional recurrence relations.

4.1 Derivation of functional equation for the integral I
(d)
4 and its solution

In the present paper, we will be concerned with the solution of the functional equation for

the box integral with massless internal propagators. However, to find a solution for the

integral with all massless internal propagators, we will use the functional equation for the
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integral with massive internal lines. For this reason, we start our consideration with the

functional equation for the box integral with all massive internal lines

I
(d)
4

(
m2

1,m
2
2,m

2
3,m

2
4; s12, s23, s34, s14, s24, s13

)
=

1

iπd/2

∫
ddk1

P1P2P3P4
, (4.1)

where

Pi = (k1 − pi)2 −m2
i + iη. (4.2)

The functional equation for this integral may be obtained from the algebraic relation [13]:

1

P1P2P3P4
=

x1
P0P2P3P4

+
x2

P1P0P3P4
+

x3
P1P2P0P4

+
x4

P1P2P3P0
. (4.3)

Here the momentum p0 is a combination of p1, . . . , p4

p0 = x1p1 + x2p2 + x3p3 + x4p4, (4.4)

and m2
0, xj must satisfy the following conditions:

x1 + x2 + x3 + x4 = 1, (4.5)

x1x2s12 + x1x3s13 + x1x4s14 + x2x3s23 + x2x4s24 + x3x4s34

− x1m2
1 − x2m2

2 − x3m2
3 − x4m2

4 +m2
0 = 0. (4.6)

The solution of this system for x1,x4 is

x1 = Λ4, x4 = 1− x2 − x3 − Λ4, (4.7)

where Λ4 is a root of the quadratic equation,

A4Λ
2
4 +B4Λ4 + C4 = 0, (4.8)

with

A4 = s14,

B4 = (s24 − s12 + s14)x2 + (s34 − s13 + s14)x3 +m2
1 −m2

4 − s14,
C4 = s24x

2
2 + (s34 − s23 + s24)x2x3 + (m2

2 −m2
4 − s24)x2 + s34x

2
3

+ (m2
3 −m2

4 − s34)x3 +m2
4 −m2

0. (4.9)

Integrating relation (4.3) with respect to the momentum k1, we obtain the functional

equation for the one-loop box integral I
(d)
4 with massive internal propagators

I
(d)
4 (m2

1,m
2
2,m

2
3,m

2
4; s12, s23, s34, s14, s24, s13)

= x1I
(d)
4 (m2

0,m
2
2,m

2
3,m

2
4; s20, s23, s34, s40, s24, s30)

+ x2I
(d)
4 (m2

1,m
2
0,m

2
3,m

2
4; s10, s30, s34, s14, s40, s13)

+ x3I
(d)
4 (m2

1,m
2
2,m

2
0,m

2
4; s12, s20, s40, s14, s24, s10)

+ x4I
(d)
4 (m2

1,m
2
2,m

2
3,m

2
0; s12, s23, s30, s10, s20, s13), (4.10)
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where s12, s23, s34, s14, s24, s13 are arbitrary scalar invariants, and si0 are defined by

s10 = Λ4(m
2
4 − s14 −m2

1) + x3(m
2
4 −m2

3 − s14 + s13) + x2(m
2
4 −m2

2 − s14 + s12)

+ s14 +m2
0 −m2

4,

s20 = Λ4(m
2
4 −m2

1 − s24 + s12) + x3(m
2
4 −m2

3 − s24 + s23) + x2(m
2
4 −m2

2 − s24)
+ s24 +m2

0 −m2
4,

s30 = Λ4(m
2
4 −m2

1 − s34 + s13) + x3(m
2
4 −m2

3 − s34) + x2(m
2
4 −m2

2 − s34 + s23)

+ s34 +m2
0 −m2

4,

s40 = Λ4(s14 +m2
4 −m2

1) + x3(s34 +m2
4 −m2

3) + x2(s24 +m2
4 −m2

2)

+m2
0 −m2

4. (4.11)

Here m0, x2, x3 are arbitrary parameters. Setting in (4.10) and (4.11) all masses to zero

and replacing sij → qij , xi → zi give

I
(d)
4 (0, 0, 0, 0; q12, q23, q34, q14, q24, q13) = z1I

(d)
4 (0, 0, 0, 0; q20, q23, q34, q40, q24, q30)

+ z2I
(d)
4 (0, 0, 0, 0; q10, q30, q34, q14, q40, q13)

+ z3I
(d)
4 (0, 0, 0, 0; q12, q20, q40, q14, q24, q10)

+ z4I
(d)
4 (0, 0, 0, 0; q12, q23, q30, q10, q20, q13), (4.12)

where z2, z3 are arbitrary parameters, qi0 are defined as:

q10 = −λ4q14 + z3(q13 − q14) + z2(q12 − q14) + q14,

q20 = (q12 − q24)λ4 + z3(q23 − q24)− z2q24 + q24,

q30 = (q13 − q34)λ4 − z3q34 + z2(q23 − q34) + q34,

q40 = λ4q14 + z3q34 + z2q24, (4.13)

and λ4 is the solution of the quadratic equation:

a4λ
2
4 + b4λ4 + c4 = 0, (4.14)

with

a4 = q14,

b4 = (q24 − q12 + q14)z2 + (q34 − q13 + q14)z3 − q14,
c4 = q24z

2
2 + (q34 − q23 + q24)z2z3 − q24z2 + q34z

2
3 − q34z3. (4.15)

In order to find a solution of equation (4.12), we will exploit another functional equation,

a more general one. Such an equation will be obtained from equation (4.10), setting in it

m1 = m2 = m3 = m4 = 0 but retaining m0 different from zero. In this case,

I
(d)
4 (0,0,0,0;s12,s23,s34,s14,s24,s13) =x1I

(d)
4 (m2

0,0,0,0;s20,s23,s34,s40,s24,s30)

+x2I
(d)
4 (0,m2

0,0,0;s10,s30,s34,s14,s40,s13)

+x3I
(d)
4 (0,0,m2

0,0;s12,s20,s40,s14,s24,s10)

+x4I
(d)
4 (0,0,0,m2

0;s12,s23,s30,s10,s20,s13), (4.16)
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where

s10 = s14 +m2
0 − s14Λ4 + (s12 − s14)x2 + (s13 − s14)x3,

s20 = s24 +m2
0 + (s12 − s24)Λ4 − x2s24 + (s23 − s24)x3,

s30 = (s13 − s34)Λ4 + s34 +m2
0 + (s23 − s34)x2 − s34x3,

s40 = m2
0 + s14Λ4 + s24x2 + s34x3, (4.17)

and Λ4 is the solution of the quadratic equation

s14Λ
2
4 + [(s24 − s12 + s14)x2 + (s34 − s13 + s14)x3 − s14]Λ4

+ s24x
2
2 + (s34 − s23 + s24)x2x3 − s24x2 + s34x

2
3 − s34x3 −m2

0 = 0. (4.18)

In a manner similar to that for the integral I
(d)
3 , we make a list of possible equations for

invariants s0j . It turns out that by choosing x2, x3 and m2
0, one may fulfill the following re-

lations:

s10 = s20 = s30 = s40 = −m2
0 = −r1234|m1=m2=m3=m4=0 . (4.19)

Substituting (4.19) into equation (4.16), we find

I
(d)
4 (0, 0, 0, 0; s12, s23, s34, s14, s24, s13)

= r
(1)
1234 B

(d)
234(µ4) + r

(2)
1234 B

(d)
134(µ4) + r

(3)
1234 B

(d)
124(µ4) + r

(4)
1234 B

(d)
123(µ4), (4.20)

where

B
(d)
ijk(µ4) = I

(d)
4 (0, 0, 0, µ4; sij , sjk,−µ4,−µ4,−µ4, sik). (4.21)

µ4 = r1234|m1=m2=m3=m4=0 = r1234.

r
(i)
jkls =

∂ rjkls
∂m2

i

∣∣∣∣
m2

j=m
2
k=m

2
l =m

2
s=0

. (4.22)

The explicit expressions for rjkls, r
(i)
jkls are given in appendix A. Notice that the function

B
(d)
ijk(µ4) is totally symmetric in i, j, k and depends only on four variables, namely µ4, sij ,

sjk and sik.

At the next step we will try to reduce integrals B
(d)
ijk with four variables to a combination

of integrals with fewer variables. To achieve this goal, we will again use equation (4.10).

Setting in this equation

m2
1 = m2

2 = m2
3 = 0, m2

4 = µ4, s34 = s14 = s24 = −µ4, (4.23)

leads to the relation

I
(d)
4 (0, 0, 0, µ4; sij , sjk,−µ4,−µ4,−µ4, sik)

= x1I
(d)
4 (m2

0, 0, 0, µ4; s20, sjk,−µ4, s40,−µ4, s30)

+ x2I
(d)
4 (0,m2

0, 0, µ4; s10, s30,−µ4,−µ4, s40, sik)

+ x3I
(d)
4 (0, 0,m2

0, µ4; sij , s20, s40,−µ4,−µ4, s10)

+ x4I
(d)
4 (0, 0, 0,m2

0; sij , sjk, s30, s10, s20, sik). (4.24)
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Here the parameters xr, m
2
0 are required to obey the following conditions:

x1 + x2 + x3 + x4 = 1,

x1x2sij + x1x3sik + x2x3sjk − µ4x4(2− x4) +m2
0 = 0. (4.25)

In order to find conditions on arbitrary parameters for which the number of variables in

all integrals on the right-hand side of (4.24) is simultaneously diminishing, we will follow

the same strategy which was employed for the functional reduction of the integral I
(d)
3 . We

have compiled a list of equations similar to the list (3.18). Out of equations from this list

we made all possible systems of equations consisting of 3 and 4 equations in each system.

Taking into account relations (4.25), all these systems were solved for xj , m
2
0 by computer

algebra system MAPLE. In particular, it was discovered that a reduction in the number

of variables occurs at x4 = 0 and sj0, m
2
0 given by

s10 = s20 = s30 = −m2
0 = −µijk, s40 = µijk − µ4. (4.26)

Substituting these values into equation (4.24), we get

B
(d)
ijk(µ4) = r

(i)
ijk ξ

(d)
4 (µijk, µ4; sjk) + r

(j)
ijk ξ

(d)
4 (µijk, µ4; sik) + r

(k)
ijk ξ

(d)
4 (µijk, µ4; sij), (4.27)

where

ξ
(d)
4 (µijk, µ4; sij) = I

(d)
4 (0, 0, µijk, µ4; sij ,−µijk, µijk − µ4,−µ4,−µ4,−µijk), (4.28)

and µijk is defined in equation (3.20). The explicit expressions for r
(i)
jkl are given in ap-

pendix A. Thus, in equation (4.27) we achieved a reduction of the integral B
(d)
ijk(µ4) with one

massive internal line to a combination of integrals depending on three kinematic variables.

Substituting B
(d)
ijk(µ4) from equation (4.27) into equation (4.20) yields

I4(0, 0, 0, 0; s12, s23, s34, s14, s24, s13) (4.29)

= r
(1)
1234

[
r
(2)
234ξ

(d)
4 (µ234, µ4; s34) + r

(3)
234ξ

(d)
4 (µ234, µ4; s24) + r

(4)
234ξ

(d)
4 (µ234, µ4; s23)

]
+ r

(2)
1234

[
r
(1)
134ξ

(d)
4 (µ134, µ4; s34) + r

(3)
134ξ

(d)
4 (µ134, µ4; s14) + r

(4)
134ξ

(d)
4 (µ134, µ4; s13)

]
+ r

(3)
1234

[
r
(1)
124ξ

(d)
4 (µ124, µ4; s24) + r

(2)
124ξ

(d)
4 (µ124, µ4; s14) + r

(4)
124ξ

(d)
4 (µ124, µ4; s12)

]
+ r

(4)
1234

[
r
(1)
123ξ

(d)
4 (µ123, µ4; s23) + r

(2)
123ξ

(d)
4 (µ123, µ4; s13) + r

(3)
123ξ

(d)
4 (µ123, µ4; s12)

]
.

We have not found relationships reducing ξ
(d)
4 to simpler integrals with fewer arguments.

Thus, using the two step functional reduction, we expressed the integral depending on

six variables in terms of integrals ξ
(d)
4 depending only on three variables. The analytic

expression for the integral ξ
(d)
4 will be presented in subsection 4.4.

4.2 Verification of the solution of the functional equation

Now we will show that the obtained expression (4.29) is the solution of the functional

equation (4.12). Substituting I
(d)
4 from (4.29) into the right- and left-hand sides of rela-

tion (4.12) we obtain 60 terms. The arguments of these functions are the ratios of rather big
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polynomials containing various powers of square roots of some other polynomials. However,

after complicated simplifications of these arguments they became rather compact and it

turns out that the situation regarding the integral I
(d)
4 is similar to the case of the integral

I
(d)
3 . The effective masses µijkr for all the ξ

(d)
4 integrals in equation (4.12) are the same, i.e.

µ1234 = µ0234 = µ1034 = µ1204 = µ1230. (4.30)

On the right- hand side of the equation, after complicated algebraic simplifications of the

coefficients in front of the ξ
(d)
4 integrals, 40 terms with a rather nontrivial dependence on

the parameters z2, z3, cancel each other. The remaining 10 terms were exactly canceled

by 10 terms from the left-hand side.

4.3 Reduction equations for I
(d)
4 with particular values of variables

In practical applications the integral I
(d)
4 is needed for some kinematic variables sij equal

to zero [35, 36, 48, 51–53]. For this reason it would be interesting to study possible sim-

plifications of relation (4.29) for these particular values of the kinematic variables. In this

section, we will use the shorthand

I
(d)
4 (s12, s23, s34, s14, s24, s13) ≡ I(d)4 (0, 0, 0, 0; s12, s23, s34, s14, s24, s13). (4.31)

a) The case s12 = s23 = 0. Substituting these values into equation (4.29), yields

2(s13s24−s14s24+s14s34+s224−s24s34)I
(d)
4 (0,0,s34,s14,s24,s13)

= (s13s24−s14s24+2s14s34−s24s34)

×
[
r
(1)
134ξ

(d)
4 (µ134,µ2h;s34)+r

(3)
134ξ

(d)
4 (µ134,µ2h;s14)+r

(4)
134ξ

(d)
4 (µ134,µ2h;s13)

]
+s13s24 ξ

(d)
4 (0,µ2h;s13)−s14s24 ξ(d)4 (0,µ2h;s14)

−s34s24 ξ(d)4 (0,µ2h;s34)+2s224 ξ
(d)
4 (0,µ2h;s24), (4.32)

where

µ2h =
−s13s224

4(s13s24 − s14s24 + s14s34 + s224 − s24s34)
. (4.33)

The considered case is the most complicated one. The number of terms in (4.32) is

less than in the general case but the remaining integrals are of the same complexity.

b) The case s12 = s34 = 0. This case is simpler than the previous one.

(s13 − s14 − s23 + s24)I
(d)
4 (0, s23, 0, s14, s24, s13)

= s13 ξ
(d)
4 (0, µ2e; s13)− s14 ξ(d)4 (0, µ2e; s14)

+ s24 ξ
(d)
4 (0, µ2e; s24)− s23 ξ(d)4 (0, µ2e; s23), (4.34)

where

µ2e =
s14s23 − s13s24

4(s13 − s14 − s23 + s24)
. (4.35)

As we will see in the next subsection each integral on the right-hand side of (4.34) is

a combination of Gauss hypergeometric functions.
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c) The case s12 = s23 = s34 = 0. Substituting these invariants sij into equation (4.29),

we find

(s13 − s14 + s24)I
(d)
4 (0, 0, 0, s14, s24, s13)

= s13ξ
(d)
4 (0, µ1m; s13)− s14ξ(d)4 (0, µ1m; s14) + s24ξ

(d)
4 (0, µ1m; s24), (4.36)

where

µ1m = − s13s24
4(s13 − s14 + s24)

. (4.37)

d) The case s12 = s23 = s34 = s14 = 0. Substitution of these values into (4.29) yields

I
(d)
4 (0, 0, 0, 0, s24, s13) =

s13
(s13 + s24)

ξ
(d)
4 (0, µ0m; s13) +

s24
(s13 + s24)

ξ
(d)
4 (0, µ0m; s24),

(4.38)

where

µ0m = − s13s24
4(s13 + s24)

. (4.39)

We see that in all the cases but a) the integrals I
(d)
4 are combinations of integrals

ξ
(d)
4 (0, µ4, sij) with different arguments. The analytic expression for this integral will

be given in the next subsection.

4.4 Analytic evaluation of the integral ξ
(d)
4

An analytic result for the integral ξ
(d)
4 (µ3, µ4; sij) can be derived by many different methods.

For example, it can be evaluated by direct integration of the Feynman parameter integral

ξ
(d)
4 (µ3, µ4; sij) = Γ

(
4− d

2

)∫ 1

0

∫ 1

0

∫ 1

0
dx1dx2dx3x

2
1x2h

d
2
−4

4 , (4.40)

where

h4 = x21x
2
2x3(x3 − 1)sij − µ3x21x22 + (µ3 − µ4)x21 + µ4 − iη. (4.41)

However, we prefer to exploit the recurrence relation with respect to the space-time di-

mension d. There are several reasons for using this method. First, it is easier to keep the

trace of the small imaginary term iη; and second, the resulting expressions usually have a

rather compact form in terms of rapidly converging hypergeometric series.

The dimensional recurrence relation for the integral ξ
(d)
4 can be obtained from the

results for the integral with the general kinematics given in refs. [6, 54]

(d− 3)ξ
(d+2)
4 (µijk, µ4; sij) = −2µ4ξ

(d)
4 (µijk, µ4; sij)− ξ

(d)
3 (µijk; sij). (4.42)

The solution of this equation can be obtained by using the method described in ref. [7]

and it reads

ξ
(d)
4 (µ3, µ4; sij) =

1

2

∞∑
r=0

(
d−3
2

)
r

(−µ̃4)r+1
ξ
(d+2r)
3 (µ3; sij) +

(−µ̃4)d/2

Γ
(
d−3
2

) C4(sij , d). (4.43)
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Differentiating relation (4.43) with respect to sij and taking into account equation (3.35),

we obtain

sij
∂ξ

(d)
4 (µ3, µ4; sij)

∂sij
= −(sij + 2µ3)

(sij + 4µ3)
ξ
(d)
4 (µ3, µ4; sij) +

2(d− 3)

(sij + 4µ3)(sij + 4µ4)
ξ
(d)
2 (sij)

+
(d− 2)

4µ3µ4(sij + 4µ3)
ξ
(d)
1 (µ3) 2F1

[
1, d−32 ;
d−2
2 ;

µ̃3
µ̃4

]

+
(−µ̃4)d/2

Γ
(
d−3
2

) [sij ∂C4(sij , d)

∂sij
+

(sij + 2µ3)

(sij + 4µ3)
C4(sij , d)

]
. (4.44)

On the other hand, we can write this derivative of ξ
(d)
4 with respect to sij in terms of the

d+ 2 dimensional integral with additional powers of propagators [37]

∂

∂sij
ξ
(d)
4 (µ3, µ4; sij) =

1

iπ
d+2
2

∫
dd+2k1

P 2
1P

2
2P3P4

, (4.45)

where

P1 = (k1 − p1)2 + iη, P2 = (k1 − p2)2 + iη,

P3 = (k1 − p3)2 − µ3 + iη, P4 = (k1 − p4)2 − µ4 + iη. (4.46)

The kinematic invariants sij = (pi − pj)
2 in (4.46) are to be the same as those for the

integral (4.28). After applying the recurrence relations [6, 54] to reduce this integral to a

set of basis integrals, we obtain for ξ
(d)
4 the first-order differential equation

sij(sij+4µ3)
∂

∂sij
ξ
(d)
4 (µ3,µ4;sij) =−(sij+2µ3)ξ

(d)
4 (µ3,µ4;sij)

+
2sij(d−3)

(sij+4µ4)s̃ij
ξ
(d)
2 (sij)−

2µ4(d−3)

µ̃4(sij+4µ4)
I
(d)
2 (0,µ4;−µ4)

+
(d−3)

2µ̃4
I
(d)
2 (µ3,µ4;µ3−µ4)−

(d−2)

4µ̃3µ̃4
ξ
(d)
1 (µ3). (4.47)

The integrals I
(d)
2 in this formula can be simplified by employing the functional equation

derived in ref. [25]

I
(d)
2 (m2

1,m
2
2; s12) =

s12 −m2
2 +m2

1

2s12
I
(d)
2

(
m2

1,m
2
1;

(s12 −m2
2 +m2

1)
2

s12

)
+
s12 −m2

1 +m2
2

2s12
I
(d)
2

(
m2

2,m
2
2;

(s12 −m2
1 +m2

2)
2

s12

)
. (4.48)

Using this relation, we find

I
(d)
2 (µ3, µ4;µ3 − µ4) = I

(d)
2 (µ3, µ3; 4(µ3 − µ4)), (4.49)

I
(d)
2 (0, µ4;−µ4) = I

(d)
2 (0, 0;−4µ4). (4.50)
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The analytic result for the integral I
(d)
2 with equal masses is well known [55, 56]

I
(d)
2 (m2,m2; q2) =

(d− 2)

2m2
ξ
(d)
1 (m2) 2F1

[
1, 2− d

2 ;
3
2 ;

q2

4m2

]
. (4.51)

A combination of equations (4.44), (4.47) yields the first order differential equation for

C4(sij , d):

sij(sij + 4µ3)
∂

∂sij
C

(d)
4 (sij , d)− (sij + 2µ3)C

(d)
4 (sij , d)−K4a −

K4b

sij + 4µ4
, (4.52)

where

K4a = −
Γ
(
d−1
2

)
2µ24(−µ̃4)d/2

ξ
(d)
1 (µ3) 2F1

[
1, d−12 ;

d
2 ;

µ̃3
µ̃4

]
+

Γ
(
d−1
2

)
(−µ̃4)d/2+1

I
(d)
2 (µ3, µ4;µ3 − µ4)

=
−π1/2Γ

(
d
2

)
2(−µ̃4)d/2+2K

ξ
(d)
1 (µ4),

K4b =
4Γ
(
d−1
2

)
(−µ̃4)d/2

I
(d)
2 (0, 0;−4µ4), K =

√
1− µ̃3

µ̃4
. (4.53)

The solution of equation (4.52) is

C4(sij , d) = K4aκa +K4bκb +
κc
R
, (4.54)

where κc is a constant of integration,

κa = − 1

R
ln (2µ3 + sij +R) (4.55)

κb = − 1

R

∫ sij

0

dx
√
x(x+ 4µ3)

x(x+ 4µ3)(x+ 4µ4)

=
−1

4µ4
√
µ3(sij + 4µ3)

F1

(
1

2
, 1,

1

2
,
3

2
;− sij

4µ4
,− sij

4µ3

)
=

1

4µ4(sij + 4µ3)Z
ln

(
1− Z
1 + Z

)
, (4.56)

and

R =
√
sij(sij + 4µ3), Z =

(
sij(µ4 − µ3)
µ4(sij + 4µ3)

)1/2

. (4.57)

The constant of integration κc is easy to fix from the finiteness condition for C4(sij , d) as

sij → 0:

κc = K4a ln 2µ3. (4.58)

Finally, combining all the contributions, we find

C4(sij , d) =
π1/2Γ

(
d
2

)
2(−µ̃4)d/2+2

ξ1(µ4)

 ln
(
1−Z
1+Z

)
(sij + 4µ3)Z

+
ln
(

1 +
sij+R
2µ3

)
KR

 . (4.59)

– 21 –



J
H
E
P
0
2
(
2
0
1
9
)
1
7
3

The analytic result for the first sum in equation (4.43) can be obtained with the help

of equation (3.41), and it is

1

2

∞∑
r=0

(
d−3
2

)
r

(−µ̃4)r+1
ξ
(d+2r)
3 (µ3; sij) = − (d− 2)

4µ̃3µ̃4R
ln

(
1 +

sij +R

2µ3

)
ξ
(d)
1 (µ̃3) 2F1

[
1, d−32 ;
d−2
2 ;

µ̃3
µ̃4

]

+
1

2µ̃3µ̃4

(
µ̃3

s̃ij + 4µ̃3

)1
2

ξ
(d)
2 (sij)F1

(
d− 3

2
,
1

2
, 1,

d− 1

2
;
−s̃ij
4µ̃3

,
−s̃ij
4µ̃4

)
. (4.60)

Substituting (4.60), (4.59) into equation (4.43) yields

ξ
(d)
4 (µ3,µ4;sij) =

π
1
2 Γ
(
d
2

)
2µ24Γ

(
d−3
2

)ξ(d)1 (µ4)

 ln
(
1−Z
1+Z

)
(sij+4µ3)Z

+
ln
(

1+
sij+R
2µ3

)
KR


− (d−2)

4µ3µ4R
ξ
(d)
1 (µ3)2F1

[
1, d−32 ;
d−2
2 ;

µ̃3
µ̃4

]
ln

(
1+

sij+R

2µ3

)

+
1

2µ3µ4

(
µ̃3

s̃ij+4µ̃3

)1
2

ξ
(d)
2 (sij)F1

(
d−3

2
,
1

2
,1,

d−1

2
;
−s̃ij
4µ̃3

,
−s̃ij
4µ̃4

)
. (4.61)

Performing an analytic continuation of the hypergeometric function 2F1 in (4.61), we get

ξ
(d)
4 (µ3,µ4;sij) =

π
1
2 Γ
(
d
2

)
2µ24Γ

(
d−3
2

) ξ
(d)
1 (µ4)

(sij+4µ3)Z
ln

(
1−Z
1+Z

)

+
(d−2)(d−4)

4µ3µ4R
ξ
(d)
1 (µ3)2F1

[
1, d−32 ;

3
2 ;

1− µ̃3
µ̃4

]
ln

(
1+

sij+R

2µ3

)

+
1

2µ3µ4

(
µ̃3

s̃ij+4µ̃3

)1
2

ξ
(d)
2 (sij)F1

(
d−3

2
,
1

2
,1,

d−1

2
;
−s̃ij
4µ̃3

,
−s̃ij
4µ̃4

)
. (4.62)

This result is valid in the region∣∣∣∣1− µ̃3
µ̃4

∣∣∣∣ < 1,

∣∣∣∣ s̃ij4µ̃3

∣∣∣∣ < 1,

∣∣∣∣ s̃ij4µ̃4

∣∣∣∣ < 1. (4.63)

From this expression we can obtain the value in any kinematic region by an analytic con-

tinuation of the 2F1 Gauss hypergeometric function [57] and the F1 Appell hypergeometric

function [58, 59].

The terms with logarithms in (4.62) depend on the square roots R and Z, which are

independent of the small imaginary addition iη. But this causes no problems because the

logarithms are multiplied by the factors 1/R, 1/Z, and due to this fact it does not matter

which sign to choose for R and Z. The sign should be taken the same for the argument of

the logarithm and for the factor in front of the logarithm.

Now let us consider the integral ξ
(d)
4 at s12 = 0. The value of this integral can be

derived from the Feynman parameter integral

ξ
(d)
4 (µ3, µ4; 0) = −(d− 2)

8µ̃23µ̃4
ξ
(d)
1 (µ̃3) 2F1

[
1, d−32 ;
d−2
2 ;

µ̃3
µ̃4

]
+

π3/2 µ̃
d/2−3
4

4µ3Γ
(
d−3
2

)
sin πd

2

K − 1

K
. (4.64)

This result coincides with that obtained from (4.62) in the limit sij → 0.
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At the end of this section, we present the analytic expression for the integral

ξ
(d)
4 (0, µ4, sij), which emerged in our consideration of particular cases of functional re-

lations for the integral I
(d)
4 . The result for this integral can be obtained either as a solution

of the dimensional recurrence relation

ξ
(d+2)
4 (0, µ4; sij) = − 2µ̃4

d− 3
ξ
(d)
4 (0, µ4; sij) +

2

sij(d− 4)
ξ
(d)
2 (sij), (4.65)

which follows from equation (4.42) taken at µijk = 0 and ξ
(d)
3 replaced by ξ

(d)
2 , according to

equation (3.30), or by performing an analytic continuation of the relation (4.62). In both

cases the same result was obtained

ξ
(d)
4 (0, µ4; sij) =

(d− 3)

2sijµ4
ξ
(d)
2 (−4µ4) ln

(
1 +

s̃ij
4µ̃4

)
+

(d− 3)

(d− 4)sijµ4
ξ
(d)
2 (sij) 2F1

[
1, d−42 ;
d−2
2 ;

−s̃ij
4µ̃4

]
. (4.66)

It is important to note that for evaluating analytic results for all the three particular cases

the only function, namely ξ
(d)
4 (0, µ4; sij), is required. This is one of the advantages of our

functional reduction method.

4.5 The ε expansion of I
(d)
4 for particular values of variables

In this subsection, we will present the leading term in the expansion of the integral I
(d)
4 for

particular cases b), c) and d) considered in subsection 4.3. We reserve derivation of the ε

expansion of the integral I
(d)
4 for general kinematics for a future publication.

To obtain the ε = (4 − d)/2 expansion of I
(d)
4 for the cases b), c) and d), we need

to know the first terms in the expansion only for the integral ξ
(d)
4 (0, µ4; sij). Plugging

expansions for the 2F1 function, obtained by using the HypExp package [20], and for the

integral ξ
(d)
2 into equation (4.66), we find

ξ
(4−2ε)
4 (0, µ4; sij) = −Γ(1 + ε)

2ε2µ4sij

{
1− εLij − ε2

[
π2

3
− 1

2
L2
ij − Li2

(
1 +

s̃ij
4µ̃4

)]}
+O(ε),

(4.67)

where

Lij = ln(−s̃ij). (4.68)

We compared numerical values derived from this formula with the results obtained by the

numerical program SecDec [38] and found complete agreement for both the space- and

time- like values of the scalar invariants sij .

Using equation (4.67), it is easy to derive from equations (4.34), (4.36), (4.38) the

leading term in the ε expansion for the integral I
(d)
4 for three particular cases b), c) and d).
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For the case b) we find:

I
(4−2ε)
4 (0, s23, 0, s14, s24, s13) =

2

(s14s23 − s13s24) ε

{
L13 − L14 − L23 + L24

+ ε

[
Li2

(
1 +

s̃14
4µ̃2e

)
−Li2

(
1+

s̃13
4µ̃2e

)
−Li2

(
1+

s̃24
4µ̃2e

)
+Li2

(
1+

s̃23
4µ̃2e

)
+

1

2

(
L2
14 − L2

13 − L2
24 + L2

23

)]}
. (4.69)

Here and in formulae below we used Lij defined in equation (4.68).

For the case c) the leading term in ε is:

I
(4−2ε)
4 (0, 0, 0, s14, s24, s13) =

2Γ(1 + ε)

s13s24ε2

{
1 + ε(L14 − L13 − L24)

+ ε2
[
Li2

(
1 +

s̃13
4µ̃1m

)
+ Li2

(
1 +

s̃24
4µ̃1m

)
− Li2

(
1 +

s̃14
4µ̃1m

)
+

1

2
L2
13 −

1

2
L2
14 +

1

2
L2
24 − 2ζ2

]}
. (4.70)

For the case c), when all external legs are on-shell, we get

I
(4−2ε)
4 (0, 0, 0, 0, s24, s13) =

4Γ(1 + ε)

s13s24ε2

{
1− ε

2
[L13 + L24] +

ε2

2
[L13L24 − 5ζ2]

}
+O(ε).

(4.71)

We compared the numerical results obtained from (4.69), (4.70), (4.71) and the results

obtained by the numerical program SecDec [60] and found perfect agreement within the

errors declared in this program for both the time- and space- like invariants sij .

Next we turn to the derivation of the small ε expansion for the integral I
(d)
4 taken at

d = 6− 2ε.

From equations (4.65), (4.67) we obtain the first term in the expansion of the integral

ξ
(6−2ε)
4 (0, µ4; sij) for small ε = (6− d)/2

ξ
(6−2ε)
4 (0, µ4; sij) =

1

sij

[
Li2

(
1 +

s̃ij
4µ̃4

)
− ζ2

]
+O(ε). (4.72)

The integral I
(6−2ε)
4 for the case b) reads:

I
(6−2ε)
4 (0,s23,0,s14,s24,s13) =

1

s13−s14−s23+s24

[
Li2

(
1+

s̃13
4µ̃2e

)
(4.73)

−Li2

(
1+

s̃14
4µ̃2e

)
+Li2

(
1+

s̃24
4µ̃2e

)
−Li2

(
1+

s̃23
4µ̃2e

)]
+O(ε).

The integrals I
(6−2ε)
4 for the cases c) and d) read
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I
(6−2ε)
4 (0, 0, 0, s14, s24, s13) =

−4µ̃1m
s13s24

[
Li2

(
1 +

s̃13
4µ̃1m

)
−Li2

(
1 +

s̃14
4µ̃1m

)
+ Li2

(
1 +

s̃24
4µ̃1m

)
− ζ2

]
+O(ε),

I
(6−2ε)
4 (0, 0, 0, 0, s24, s13) =

−1

2(s13 + s24)

[
ln2

(
s̃24
s̃13

)
+ 6ζ2

]
+O(ε). (4.74)

We notice that in all three cases the integrals have neither infrared nor ultraviolet diver-

gences, as it must be. The result (4.74) agrees with the one presented in ref. [61].

We have check that the results for the ε expansion of the I
(d)
4 integrals at d = 4 − 2ε

and d = 6− 2ε obey the following relations:

I
(d+2)
4 (0, 0, 0, 0, s24, s13)

=
−2µ̃0m
(d− 3)

I
(d)
4 (0, 0, 0, 0, s24, s13)−

8µ̃0m
(d− 4)s13s24

[
ξ
(d)
2 (s13) + ξ

(d)
2 (s24)

]
, (4.75)

I
(d+2)
4 (0, 0, 0, s14, s24, s13) =

−2µ̃1m
(d− 3)

I
(d)
4 (0, 0, 0, s14, s24, s13)

− 8µ̃1m
(d− 4)s13s24

[
ξ
(d)
2 (s13)− ξ(d)2 (s14) + ξ

(d)
2 (s24)

]
, (4.76)

I
(d+2)
4 (0, s23, 0, s14, s24, s13) =

−2µ̃2e
(d− 3)

I
(d)
4 (0, s23, 0, s14, s24, s13)

− 8µ̃2e
(d− 4)(s13s24 − s14s23)

[
ξ
(d)
2 (s13)− ξ(d)2 (s14)− ξ(d)2 (s23) + ξ

(d)
2 (s24)

]
, (4.77)

where

µ̃0m = µ0m − iη,
µ̃1m = µ1m − iη,
µ̃2e = µ2e − iη. (4.78)

5 Conclusions and outlook

In this paper, we have developed a systematic approach for calculating Feynman integrals

with several kinematic variables and masses. It is based on the iterative use of functional

equations. The functional equations are used for reducing Feynman integrals to a combi-

nation of integrals with fewer variables. Integrals appearing after the last step of functional

reduction were evaluated by using the method of dimensional recurrence relations devel-

oped in [6, 7].

The approach was applied for calculating one-loop triangle and box integrals with

massless internal propagators. Our final reduction formulae for these integrals are given

in equations (3.22), (4.29). A striking feature of both relations is the fact that the inte-

grals with massless internal propagators were expressed in terms of integrals with massive

internal propagators. Notice that at the second step of the functional reduction for the

box integral we performed functional reduction already for the integral with a massive

internal propagator.
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Integrals appearing after the last iteration of the functional reduction were evaluated

by using the dimensional recurrence relations. A distinctive feature of these recurrence

relations is that they are the first order inhomogeneous equations and the inhomogeneous

part has only one term. This significantly simplified their solution.

There are many directions for future applications of the proposed method. First of all,

we are going to apply our approach to the reduction of massless one-loop scalar integrals

associated with diagrams with five and six external legs.

Also, the method can be extended without problems to the one-loop integrals with

massive internal propagators.

Another important direction for future research will be the extension of the method of

functional reduction to the evaluation of multiloop integrals. One can easily write down

functional equations for multiloop integrals, but to elaborate a systematic algorithm one

should solve a number of problems. At the present time, we are working on the solution

of these problems.
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A Definition of the coefficients in the reduction relations

In this appendix, we give the definition of the Gram determinants and explicit formulae

for polynomials occurring in equations (3.22), (4.20), (4.29).

∆n ≡ ∆n({p1,m1}, . . . {pn,mn}) =

∣∣∣∣∣∣∣∣∣∣
Y11 Y12 . . . Y1n
Y12 Y22 . . . Y2n

...
...

. . .
...

Y1n Y2n . . . Ynn

∣∣∣∣∣∣∣∣∣∣
, (A.1)

Yij = m2
i +m2

j − sij , (A.2)

Gn−1 ≡ Gn−1(p1, . . . , pn) = −2

∣∣∣∣∣∣∣∣∣∣
S11 S12 . . . S1 n−1
S21 S22 . . . S2 n−1

...
...

. . .
...

Sn−1 1 Sn−1 2 . . . Sn−1 n−1

∣∣∣∣∣∣∣∣∣∣
, (A.3)

Sij = sin + sjn − sij , (A.4)

where s2ij = (pi− pj)2, pi are combinations of external momenta flowing through i-th lines,

respectively, and mi is the mass of the i-th line. Where no confusion can arise, we simply

– 26 –



J
H
E
P
0
2
(
2
0
1
9
)
1
7
3

refer to the above functions as ∆n, Gn−1. We will also use an indexed notation for ∆n and

Gn−1

λi1i2...in = ∆n({pi1 ,mi1}, {pi2 ,mi2}, . . . , {pin ,min}),
gi1i2...in = Gn−1(pi1 , pi2 , . . . , pin). (A.5)

Our results depend on the ratios of λi1i2...in and gi1i2...in and, therefore, it is convenient to

introduce the notation

rij...k = −
λij...k
gij...k

. (A.6)

The imaginary part of r is rather simple. Using

n∑
j=1

∂jλi1...in = −gi1...in = −Gn−1, (A.7)

one shows that to all orders in η

λi1i2...in({m2
r − iη}) = λi1i2...in({m2

r}) + igi1i2...in η, (A.8)

and, therefore, the causal η prescription for r is (with the same η for all masses)

rij...k|m2
j−iη

= rij...k|m2
j
− iη. (A.9)

For the reader’s convenience we present below explicit expressions for the ratios of

Gram determinants and their derivatives occurring in the reduction formulae for the inte-

grals I
(d)
3 and I

(d)
4 :

r
(i)
ijk =

2sjk(sjk − sij − sik)
gijk

,

r
(j)
ijk =

2sik(sik − sij − sjk)
gijk

,

r
(k)
ijk =

2sij(sij − sik − sjk)
gijk

,

r̃njk = −
λnjk
gnjk

= rnjk − iη, (A.10)

r
(i)
ijkn =

1

gijkn
[2sijsjkskn + 2sijsjnskn − 2sijs

2
kn + 2siksjksjn − 2siks

2
jn

+ 2siksjnskn − 2s2jksin − 4sjksjnskn + 2sjksjnsin + 2sjksknsin],

r
(j)
ijkn =

1

gijkn
[2sijsikskn − 2sijs

2
kn + 2sijsknsin − 2s2iksjn + 2siksjksin

+ 2siksjnskn + 2siksjnsin − 4siksknsin + 2sjksknsin − 2sjks
2
in],

r
(k)
ijkn =

1

gijkn
[2sijsiksjn − 2s2ijskn + 2sijsjksin + 2sijsjnskn − 4sijsjnsin

+ 2sijsknsin − 2siks
2
jn + 2siksjnsin + 2sjksjnsin − 2sjks

2
in],
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r
(n)
ijkn =

1

gijkn
[2sijsiksjn − 2s2ijskn − 4sijsiksjk + 2sijsikskn + 2sijsjkskn

+ 2sijsjksin − 2s2iksjn + 2siksjksjn + 2siksjksin − 2s2jksin],

r̃ljkn = −
λljkn
gljkn

= rljkn − iη, (A.11)

where

gnjk = 2(s2nj + s2nk + s2jk − 2snjsnk − 2snjsjk − 2snksjk),

λnjk = −2snjsjksnk + iηgnjk, (A.12)

gljkn = 4s2ljskn + 4sljslksjk − 4sljslksjn − 4sljslkskn − 4sljslnsjk

+ 4sljslnsjn − 4sljslnskn − 4sljsjkskn − 4sljsjnskn + 4sljs
2
kn

+ 4s2lksjn − 4slkslnsjk − 4slkslnsjn + 4slkslnskn − 4slksjksjn

+ 4slks
2
jn − 4slksjnskn + 4s2lnsjk + 4slns

2
jk − 4slnsjksjn

− 4slnsjkskn + 4sjksjnskn, (A.13)

λljkn = −2sljslksjnskn − 2sljslnsjkskn − 2slkslnsjksjn

+ s2ljs
2
kn + s2lks

2
jn + s2lns

2
jk + iηgljkn. (A.14)

B Explicit dependence of the integral I
(d)
2 on iη

In this appendix, we describe derivation of the analytic dependence of the one-loop mass-

less propagator integral (3.27) on the small imaginary part iη added to the propagators.

Expression (3.27) can be obtained as a leading term of the analytic result for the integral

I
(d)
2 (m2,m2; q2) =

∫
ddk1

[iπd/2]

1

((k1 − q)2 −m2 + iη)(k21 −m2 + iη)
, (B.1)

taken at m2 = 0 and η → 0. The integral (B.1) can be obtained as a solution of the

dimensional recurrence relation

2(d− 1)I
(d+2)
2 (m2,m2; q2)− (q2 − 4m̃2)I

(d)
2 (m2,m2; q2) + 2ξ

(d)
1 (m2) = 0. (B.2)

At |q2| > 4|m̃2| the solution of this equation reads [6]

I
(d)
2 (m2,m2; q2) =

−π3/2

2d−3Γ
(
d−1
2

)
q4 sin πd

2

(
q2

q2 − 4m̃2

) 3
2 (
−q2 + 4m̃2

) d
2

− 2π m̃d−2

q2Γ
(
d
2

)
sin πd

2

2F1

[
1, 12 ;
d
2 ;

4m̃2

q2

]
. (B.3)

This expression agrees with the one presented in ref. [56]. For the massless case in expres-

sion (B.3) we must set m2 = 0 or

m̃2 = −iη. (B.4)
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As η → 0, the second term in equation (B.3) is exponentially small compared to the first

term and, therefore, it can be neglected. Thus, the leading contribution to the integral

I
(d)
2 (0, 0; q2) reads

I
(d)
2 (0, 0; q2) =

1

iπd/2

∫
ddk1

[(k1 − q)2 + iη][k21 + iη]

=
−π

3
2 (−q2 − 4iη)

d
2
−2

2d−3Γ
(
d−1
2

)
sin πd

2

+O(max(|η|, |η|(d−2)/2)). (B.5)

We simplified the first term in (B.3) by dropping terms proportional to η, keeping the

structure of the branch point in the vicinity of q2 = 0. The leading term in (B.5) is in

agreement with (3.27).

C Useful formulae for the 2F1 and F1 functions

For the sake of completeness, we present in this appendix useful formulae for the Appell

F1 and Gauss 2F1 hypergeometric functions.

C.1 The 2F1 Gauss hypergeometric function

a) Series representation:

2F1 (α, β, γ, x) =
∞∑
m=0

(α)m(β)m
(γ)m

xm

m!
(C.1)

b) Integral representation:

2F1

[
α, β ;

γ ;
x

]
=

Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0
duuβ−1(1− u)γ−β−1(1− ux)−α,

Re(β) > 0, Re(γ − β) > 0. (C.2)

C.2 The F1 Appell function

a) Series representation

F1(α, β, β
′, γ; x, y) =

∞∑
n=0

(α)n (β)n
(γ)n

xn

n!
2F1

[
α+ n, β′ ;

γ + n ;
y

]
. (C.3)

F1(α, β, β
′; γ; x, y) =

∞∑
n=0

∞∑
m=0

(α)n+m(β)n(β′)m
(γ)n+m n!m!

xnym, (C.4)

b) Integral representation

F1(α, β, β
′; γ; x, y) =

Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

uα−1(1− u)γ−α−1

(1− ux)β(1− uy)β′ du (C.5)
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c) Analytic continuation for the Appell function F1 at large argument x [58, 59]:

F1(α,β,β
′,γ;x,y) =

Γ(γ)Γ(β−α)

Γ(β)Γ(γ−α)
(−x)−αF1

(
α,1+α−γ,β′,1+α−β, 1

x
,
y

x

)
(C.6)

+
Γ(γ)Γ(α−β)

Γ(α)Γ(γ−β)
(−x)−β G2

(
β,β′,α−β,1+β−γ;−1

x
,−y

)
,

where

G2(a1, a2, b1, b2;x, y) =

∞∑
m=0

∞∑
n=0

(a1)m(a2)n(b1)n−m(b2)m−n
xm

m!

yn

n!
, |x| < 1, |y| < 1.

(C.7)
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