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1 Introduction and outline

Effective field theories (EFTs) provide a systematic and largely model-independent param-

eterization of beyond the standard model (BSM) effects. They have taken center-stage

recently, in response to the lack of hints for BSM physics at LHC experiments, and the

attendant, and welcome, theoretical uncertainty as to the form BSM physics might take.

EFTs are well motivated and in principle, straightforward to use. In practice however,

their application is quite involved. Non-renormalizable operators give rise to vertices with

large numbers of external legs and/or derivatives, adding to the complexity of Feynman-

diagrammatic gauge theory calculations. Furthermore, the very first step in an EFT cal-

culation is the identification of the full set of independent operators. This has been the

subject of intense study in recent years [1–7].
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Ultimately, however, the quantities of interest are physical observables, obtained from

on-shell amplitudes. When calculating these observables, the inter-dependencies of var-

ious EFT operators should be manifest. Thus, we propose to bypass EFT Lagrangians

altogether, and quantify possible deviations from the SM directly at the level of physical

scattering amplitudes. We consider a low-energy theory below some scale Λ. The ampli-

tudes in this low-energy theory are constrained by Lorentz symmetry, unitarity, and Bose

or Fermi statistics. These determine the different kinematical structures that can appear

at any dimension, accompanied by the appropriate negative power of the scale Λ. Each of

these structures appears with some unknown numerical coefficient. From the Lagrangian

point of view, the number of these unknown parameters equals the number of independent

operators at a given dimension. Thus, a by-product of the on-shell computation is a count-

ing of independent EFT operators. This counting is extremely simple, since we are counting

independent terms in polynomials of the kinematic invariants, sij = (pi + pj)
2, subject to

kinematical constraints, as opposed to the Hilbert series associated with polynomials of

operators (see also [6, 8]).

We apply on-shell methods to calculate EFT amplitudes in two scenarios. In the first,

we augment the SM by a massive spin-0, gauge singlet, h, with couplings to gluons, and

consider an EFT comprised of h and the gluons.1 We calculate tree-level amplitudes with

one scalar and three gluons, as well as amplitudes with two scalars and two gluons. Thus we

reproduce some of the results of [9, 10], where Higgs plus n-gluon amplitudes were derived

for the SM dimension-5 top loop operator. However, we are interested in the most general

EFT coupling the scalar to the gluons, and our derivation captures the contributions of

additional higher-dimension operators, up to dimension 13. For our second example, we

consider a spin-1, gauge singlet, Z ′, which couples to gluons, and calculate the vector

plus three gluon amplitude, M(Z ′; ggg). We then take the massless limit to derive the

amplitudes with a massless Z ′. Throughout, we ignore quarks.

Let us sketch our approach using the single h plus three gluon amplitude, M(h; ggg),

as an example. Little group considerations determine the dependence of the amplitude

on spinor-products associated with the gluon momenta pi=1,2,3. The spinor-product factor

can be multiplied by some analytic function of the sij ’s and Λ, f(sij ; Λ). At tree level,

the only possible structures that can appear in f(sij ; Λ) are single-particle poles in the

sij ’s plus non-negative powers of the sij . The former constitute the factorizable part of

the amplitude, and are completely determined by the relevant three-point amplitudes. In

the case at hand, these are the two possible three-gluon helicity amplitudes, and M(h; gg).

Thus, they introduce three independent parameters: one for M(hgg), where only equal

gluon helicities can appear (with the convention that all external particles are incoming),

one for the + + − three-gluon amplitude, corresponding to the usual QCD coupling, and

one for the +++ three-gluon amplitude, generated by the dimension-six gluonic operator

Tr(G3). The non-negative powers of the sij ’s arise from non-renormalizable operators

involving a single h and three gluons. These constitute the non-factorizable part of the

amplitude, which is our focus here. Symmetrizing over same-helicity gluons and imposing

1h can be thought of either as the SM Higgs, or as a new spin-0 particle.
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the kinematical constraints eliminates many of the possible structures. The remaining

terms appear with unknown coefficients. These correspond to the Wilson coefficients of

EFT operators, and their number gives the number of independent operators.

Alternatively, one could derive the amplitude by writing the most general ansatz for the

function f(sij ; Λ), and requiring the correct factorization in the different possible collinear

limits [11]. With complex momenta, this correctly captures all the relevant three-point am-

plitudes, including those that vanish on-shell. In particular, it is easy to see that the only

collinear singularities arise from the QCD three-gluon couplings, while higher-dimension

operators do not introduce any collinear singularities. This generalizes the dimensional-

analysis argument of [12] that the operator Tr(G3) does not introduce any collinear singu-

larities.

As mentioned above, the + + − three-gluon amplitude is associated with the renor-

malizable QCD coupling, while the +++ amplitude corresponds to a 1/Λ2 coupling. This

behavior is generic: at leading order, amplitudes of different net helicities are generated

by operators of different dimensionality [13, 14]. We will see that this fact emerges very

simply from little group and dimensional analysis considerations. Thus, by constructing

the full set of helicity amplitudes associated with a given process, one essentially scans over

the full set of operators of interest.

To illustrate the counting of operators in this approach, consider an even simpler

example, with a massless real scalar φ, with a quartic coupling but no cubic coupling. We

can obtain the number of independent higher-dimension operators containing four φ’s by

considering the 4-φ amplitude,

M(p1, p2, p3, p4) = c4 + c6
(s12 + · · · )

Λ2
+ c8

(

s212 + · · ·
)

Λ4
+ c′8

(s12s13 + · · · )
Λ4

+ · · · (1.1)

where the c’s are dimensionless coefficients, and the ellipses stand for symmetric permu-

tations. Because of momentum conservation, the term with c6 actually vanishes, and we

can trade the last term for the term with c8. Thus we see that there is one operator at

dimension-8, and no operator at dimension-6. Indeed, at dimension-6, (∂φ)2φ2 can be

eliminated by a field redefinition. At dimension-8, the only independent operator is (∂φ)4.

As a check of our results, we used the Mathematica notebook of [4] to derive the EFT

Lagrangian for the scalar plus gluon case, as well as for the massless-vector plus gluon case.

Our counting of operators indeed reproduces the results of [4].

We stress that we do not introduce any new tools, but rather make use of well-known

on-shell methods (for reviews of the subject, see e.g. [11, 15–17]). Gauge symmetry is an

output, rather than an input, in the on-shell approach. This is evident in the counting

of independent parameters in our examples, which matches the number of independent

gauge-invariant operators. The amplitudes “know about” gauge invariance to all orders by

virtue of the aforementioned principles: Lorentz invariance, unitarity and Bose statistics.

This paper is organized as follows. In section 2 we calculate the hgg, hggg and hhgg

amplitudes, and discuss the correspondence with the EFT operators. In section 3 we

calculate the Z ′ggg amplitudes, starting from a massive Z ′, and then taking the high

energy limit to obtain the massless case. The massive-vector amplitudes split into different

– 3 –
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massless-Z ′ helicity amplitudes plus scalar amplitudes. We discuss the correspondence with

EFT operators, and the number of independent operators, in both the massive and massless

case. Appendix A summarizes the essentials of the spinor formalism we use, for both

massless and massive particles. Some details of the high-energy limit appear in appendix B.

2 Scalar plus gluon amplitudes

Here we consider amplitudes with a single spin-0, gauge singlet, h, and two or three gluons.

We neglect quarks throughout this discussion. Tree-level amplitudes with a single Higgs

and any number of gluons were derived in [9, 10], assuming the SM dimension-5 top-loop

operator
1

Λ
hGµνGµν . (2.1)

Some of our analysis reproduces these known results. Our aim however, is to generalize

these results beyond the operator eq. (2.1), to any possible higher-dimension operator,

suppressed by the appropriate power of a single scale Λ. The contribution of dimension-7

operators was inferred from Lorentz symmetry considerations in [18, 19].

2.1 The scalar plus two gluon amplitude M(h; gg)

We start with the single scalar, 2-gluon amplitude, M
(

h; ga, h1(p1)g
b, h2(p2)

)

. The most

general ansatz for this amplitude is,

M
(

h; ga, h1(p1) g
b, h2(p2)

)

= δab [12]n f−ℓ (s12; Λ) , (2.2)

where δab is a color factor, h1, h2 are the gluon helicities, n is an integer, f−ℓ is an analytic

function of mass dimension −ℓ, and s12 = (p1 + p2)
2 = m2. Since h is a scalar, the only

little group weights are carried by the gluon spinor products. We then have,

n = 2h1 = 2h2 , (2.3)

which immediately sets

M
(

h; g+g−
)

= 0 . (2.4)

The only relevant amplitude to consider is then M (h; ++) (with M (h;−−) determined

by a parity transformation). Then n = 2, and since the amplitude has mass dimension 1,

ℓ = 1 and

M
(

h; ga+(p1)g
b+(p2)

)

= δab [12]2 f−1

(

m2,Λ2
)

= δab
1

Λ
[12]2 f̃

(

m2

Λ2

)

(2.5)

where f̃ is dimensionless. Note that eq. (2.3), combined with the mass dimension of the

amplitude, gives a selection rule relating the sum of the gluon helicities to the dimension

of the coupling which generates the amplitude (see also [14]). Specifically, here

|h1 + h2| = l + 1 , (2.6)

with l = 1.
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At tree-level, the function f̃ can be written as a power series in m2. No negative power

of m2 can appear, since the amplitude must vanish for m → 0. The amplitude is therefore

given by,

M
(

h; ga+(p1)g
b+(p2)

)

= δab
[12]2

Λ

∞
∑

n=0

cn

(

m2

Λ2

)n

≡ δab
chgg5

Λ
[12]2 , (2.7)

where we rescaled the infinite series into the coefficient chgg5 . This is indeed the most general

three-point amplitude for one massive scalar and two massless vectors [20, 21].

We can now make contact with the EFT calculation. The lowest order operators medi-

ating scalar decay to two spin-1 particles are dimension-5. In a CP-conserving theory, there

is only a single such operator, namely eq. (2.1), in accord with the single real coefficient chgg5

at this order. Operators of higher dimension which contribute to the amplitude still contain

two powers of the field-strength G, but an even power of derivatives. Since we consider a

purely gluonic theory with no quarks, the EOM is DµGµν = 0. Using this and integration

by parts, there is only a single independent operator at each order in Λ, with the derivatives

acting on h and giving powers of m2. In this case, this series merely gives a rescaling of chgg5 .

In associating the amplitude eq. (2.7) with the operator eq. (2.1) we have assumed

a scalar h and CP invariance. A pseudo-scalar would couple to the operator GG̃, with

an identical result for the amplitude. In fact, a better way to organize the theory is by

grouping the scalar and pseudo-scalar into a complex field φ, with the Lagrangian [10]

φG2
SD + φ†G2

ASD , (2.8)

where the selfdual and anti-selfdual field strengths are defined as

Gµν
SD =

1

2

(

Gµν + G̃µν
)

, Gµν
ASD =

1

2

(

Gµν − G̃µν
)

, G̃µν =
i

2
ǫµνρσGρσ . (2.9)

From the EFT point of view, the amplitude we calculated corresponds to the operator

φG2
SD, since GSD generates positive helicity gluons, while GASD generates negative helicity

gluons [10, 22]. The amplitude mediated by φ†G2
ASD can be obtained from this amplitude

by reversing the gluon helicities, and switching angle and square brackets as explained

in [10]. The scalar (pseudo scalar) amplitude is then obtained as the sum (difference)

of the φ and φ† amplitudes. The φ and φ† 2-gluon decay amplitudes are identical, but,

allowing for CP-violation, the coefficient chgg5 may be complex. In any case, the 2-gluon

decay cannot distinguish between a scalar and a pseudo-scalar. This would require at least

4 independent momenta, namely a 4-gluon final state.

2.2 The scalar plus 3 gluon amplitudes M(h; ggg)

The scalar plus three-gluon amplitude can be written in terms of the three helicity brackets

and three Lorentz invariants,

M
(

h; ga, h1(p1)g
b, h2(p2)g

c, h3(p3)
)

= Cabc [12]n12 [13]n13 [23]n23 f−ℓ (s12, s23, s13; Λ)

(2.10)

– 5 –
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where −ℓ denotes the mass dimension of the function f−ℓ, and the color factor Cabc is

either fabc or dabc. Since the amplitude has mass dimension zero,

ℓ = n12 + n13 + n23 . (2.11)

Little group scaling determines the powers nij in terms of the gluon helicities,2

n12 + n13 = 2h1 , n12 + n23 = 2h2 , n13 + n23 = 2h3 . (2.12)

so

n12 = ℓ− 2h3 , n13 = ℓ− 2h2 , n23 = ℓ− 2h1 . (2.13)

As before, eq. (2.13) relates the sum of helicities to the dimension of the coupling which

generates the amplitude,

ℓ = h1 + h2 + h3 , (2.14)

so ℓ is odd, as in the 2-gluon case, and we immediately see that the amplitude must be

generated by a higher dimension operator: the only invariants associated with bosons have

mass-dimension 2, so at least one power of Λ is required.

At tree-level, since we consider only operators with a single h, the function f−ℓ is

simply a power series in the sij ’s, and the only possible poles are single poles in the sij ’s

coming from gluon propagators. This part of the amplitude factorizes as the product of

two 3-particle amplitudes, M(hgg) of eq. (2.7), and M(ggg) which we recall below. The

all-plus amplitude is thus of the form,

M
(

h; ga+(p1)g
b+(p2)g

c+(p3)
)

=
1

Λ
[12] [23] [13] Cabc×

×
[ ∞

∑

n,k,l=0

an,k,l

Λ2(n+k+l+1)
sn12s

k
13s

l
23 + factorizable

]

, (2.15)

subject to the constraint s12 + s23 + s13 = m2. Here an,k,l are dimensionless constants

which, for Cabc = fabc
(

dabc
)

, are completely symmetric (antisymmetric) in the indices

n, k, l.

Similarly, for h1 = h2 = −h3 = 1, eq. (2.13) yields the solution

M
(

h; ga+(p1)g
b+(p2)g

c−(p3)
)

=
[12]3

[13] [23]

Cabc

Λ
×

×
[ ∞

∑

n,k,l=0

bn,k,l

Λ2(n+k+l)
sn12s

k
13s

l
23 + factorizable

]

, (2.16)

where for Cabc = fabc we have bn,k,l = bn,l,k, while for Cabc = dabc, bn,k,l = −bn,l,k.

2Choosing to work with angle brackets instead, with powers m12, m13, m23 would give ℓ = −h1−h2−h3

and m12 = ℓ− 2h3 etc.
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h
P

3c+

2b+

1a+

+

−

Figure 1. Factorization of the + + + amplitude on s12. The direction of the arrow indicates the

direction of momentum flow.

2.2.1 Three-gluon vertices

To calculate the factorizable parts of the Higgs plus 3-gluon amplitudes, we need three-

gluon vertices. These can be obtained as three-gluon amplitudes with complex momenta,

for which either [ij] or 〈ij〉 vanish, such that sij = 0. Based on little group considerations

and the mass dimension of the 3-point amplitude, the ++− and +++ tree-level amplitudes

must be of the form (see e.g. [15])

M3g

(

1a+2b+3c−
)

= fabc gs
[12]3

[13] [23]
, (2.17a)

M3g

(

1a+2b+3c+
)

= fabc cggg6

[12] [13] [23]

Λ2
, (2.17b)

where cggg6 is a dimensionless coefficient, and gs is the strong coupling (up to a convention

dependent numerical coefficient). The function f−ℓ(sij) = 1 in this case, since sij = 0.

These vertices therefore receive no further contributions.

Again, we see that vertices of different net helicities arise from couplings of different

dimensions. The vertex of eq. (2.17a) is the QCD vertex, while the vertex of eq. (2.17b),

comes from the dimension-6 operator Tr
(

G3
)

. As pointed out in [14], this explains why

this operator does not affect dijet production at leading order [12, 23].3

Note that cggg6 is in principle complex, corresponding to the two operators Tr
(

G3
)

and

Tr
(

G2G̃
)

.

2.2.2 The h; + + + amplitude

We begin by computing the factorizable part of the amplitude of eq. (2.15). Consider the

s12 pole. Because we pulled out a factor of [12] we must set 〈12〉 to zero. Only the + + +

3At higher order, this is no longer the case. Thus for example the helicity structure of the tree-level 5-

gluon amplitude, or one-loop 4-gluon amplitudes, generated by this operator is not orthogonal to QCD [12].

– 7 –
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3-gluon amplitude can contribute in this case (see figure 1), and we get4

M
(

h; ga+(p1)g
b+(p2)g

c+(p3)
)

= M3g

(

1a+2b+P−
) −i

s12
Mhgg

(

3+(−P )+
)

= fabc g̃s
[12]3

[1P ] [2P ]

i

s12

chgg5

Λ
[P3]2

= fabc g̃s
[12]3

[1P ] 〈P3〉 [2P ] 〈P3〉
i

s12

chgg5

Λ
(s23 + s13)

2

= − i chgg5 gs
Λ

m4 [12] [13] [23]

s12s13s23
fabc , (2.18)

where we have used lim〈12〉→0 (s23 + s13) = m2 and P = −p1 − p2. Since the amplitude is

completely symmetric under i ↔ j we need not consider factorizations under s23 , s13.

Substituting this in eq. (2.15) we then have for the + + + amplitude,

M
(

h; ga+(p1)g
b+(p2)g

c+(p3)
)

=
[12] [13] [23]

Λ

[

− i fabc gs c
hgg
5

m4

s12s13s23
(2.19)

+
∞
∑

n,k,l=0

an,k,l f
abc + αn,k,l d

abc

Λ2(n+k+l+1)
sn12s

k
13s

l
23

]

.

Expanding the series eq. (2.19) up to n+ k + l ≤ 4, i.e., dimension 13, we get

M
(

h; ga+(p1)g
b+(p2)g

c+(p3)
)

=
[12] [13] [23]

Λ

×
[

fabc

(

− i
m4 gs c

hgg
5

s12s13s23
+

a0,0,0
Λ2

+
a1,0,0(s12 + s13 + s23)

Λ4

+
1

Λ6

(

a2,0,0
(

s212 + s213 + s223
)

+ a1,1,0(s12s13 + s12s23 + s13s23)
)

+
1

Λ8

(

a1,1,1s12s13s23

+ a0,0,3
(

s312 + s313 + s323
)

+ a0,1,2
(

s13s
2
12 + s23s

2
12 + s213s12 + s223s12 + s13s

2
23 + s213s23

)

))

+
dabc

Λ8
(s12 − s13) (s12 − s23) (s13 − s23)α0,1,2

]

. (2.20)

This result may be simplified by using momentum conservation, which implies s12 + s23 +

s23 = m2. We may also trade s212+s213+s223 for (s12 + s23 + s13)
2−2s13s12 . . ., and similarly

for the cubic polynomial. The final result for the EFT amplitude up to dimension 13 is

M
(

h; ga+(p1)g
b+(p2)g

c+(p3)
)

=
[12] [13] [23]

Λ

[

fabc

(

− i
m4 gs c

hgg
5

s12s13s23
+

a7
Λ2

+
a11
Λ6

(s12s23 + s13s23 + s12s13) +
a13
Λ8

s12s13s23

)

+ dabc
a′13
Λ8

(s12 − s13) (s12 − s23) (s13 − s23)

]

, (2.21)

4Note that the momentum in the h → 2g vertex is −P , because we take all the momenta to be incoming.

In the notation of [17], spinors with −P are related to spinors with P by a factor of i, e.g. |−P 〉 = i|P 〉 etc.

– 8 –
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h
P

2b+

3c−

1a+

+

−

(a) QCD factorization on s13 , s23.

h

P

3c−

2b+

1a+

−
+

(b) Factorization on s12 due to the ef-

fective vertex from Tr
(

G3
)

.

Figure 2. Possible factorizations of the + +− amplitude.

where we defined

a7 ≡ a0,0,0 + a1,0,0
m2

Λ2
+ a2,0,0

m4

Λ4
+ a0,0,3

m6

Λ6
, (2.22a)

a11 ≡ a1,1,0 − 2a2,0,0 + (a0,1,2 − 3a0,0,3)
m2

Λ2
, (2.22b)

a13 ≡ a1,1,1 − 3a0,1,2 + 3a0,0,3 , (2.22c)

and a′13 ≡ α0,1,2. The amplitude for a massless h is identical. We simply set m2 = 0 in

intermediate stages above, with the end result unchanged.

2.2.3 The h; + + − amplitude

Again, we begin by considering the factorizable part. In this case, both the + + + and

+−− 3-gluon amplitudes can contribute. The + +− contribution from the s13 pole (see

figure 2a) is,

M
(

h; ga+(p1)g
b+(p2)g

c−(p3)
)

= M3g

(

1a+3c−P−
) −i

s13
Mhgg

(

2b+ (−P )+
)

=
igs c

hgg
5

Λ

[12]3

[13] [23]
fabc . (2.23)

The s12 pole is shown in figure 2b and gives,

M
(

h; ga+(p1)g
b+(p2)g

c−(p3)
)

= M3g

(

1a+2b+P+
) −i

s12
Mhgg

(

3c− (−P )−
)

=
i chgg5 cggg6

Λ3

[12]3

[13] [23]

s23s13
s12

fabc . (2.24)

The full EFT amplitude is then given by

M
(

h; ga+(p1)g
b+(p2)g

c−(p3)
)

=
[12]3

[13] [23]

1

Λ

[

fabc

(

igs c
hgg
5 − i chgg5 cggg6

Λ2

s23s13
s12

)

+
∞
∑

n,k,l=0

bn,k,l f
abc + βn,k,l d

abc

Λ2(n+k+l)
sn12s

k
13s

l
23

]

, (2.25)
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Mass dimension
Operators

M(+ + +) M(+ +−)

5 — —

7 hG3
SD [1, fabc] —

9 — D2G2
SDGASD h [1, fabc]

11 D4G3
SD h [1, fabc] D4G2

SDGASD h [1, fabc; 1, dabc]

13 D6G3
SD h [1, fabc; 1, dabc] D6G2

SDGASD h [2, fabc; 1, dabc]

Table 1. Operators contributing to the h → 3g amplitude. The number of independent operators

of each type and color structure appears in brackets.

where bn,k,l = bn,l,k and βn,k,l = −βn,l,k. Computing the series in eq. (2.25) up to dimension

13, and discarding redundant terms which are related by powers of m2/Λ2 as before, we get

M
(

h;ga+(p1)g
b+(p2)g

c−(p3)
)

=
[12]3

[13] [23]

1

Λ

[

fabc

(

igsc
hgg
5 − ichgg5 cggg6

Λ2

s23s13
s12

+
b9
Λ4

s13s23

+
b11
Λ6

s12s13s23+
b13
Λ8

s213s
2
23+

b′13
Λ8

s13s23s
2
12

)

+dabcs13s23(s13−s23)

(

b′11
Λ6

+
b′′13
Λ8

s12

)]

,(2.26)

with an identical result for a massless h.

Finally, note that the scalar plus photon amplitudes, hγγ and hγγγ, can be obtained

from our results above by setting fabc = 0 and omitting δab and dabc.

2.2.4 Inferring the EFT Lagrangian

Eqs. (2.21) and (2.26) represent the EFT contribution to the h; +++ and h; ++− ampli-

tudes respectively, up to dimension 13. Apart from the couplings gs, c
ggg
6 , chgg5 , associated

with the three relevant three-particle amplitudes, the h; + + + amplitude depends on

four distinct kinematical structures, with four independent coefficients: a7, a11, a13 and

a′13. The h; + + − amplitude has six distinct kinematical structures, with six indepen-

dent coefficients: b9, b11, b
′
11, b13 b′13 and b′′13. From the EFT Lagrangian point of view,

these are associated with the coefficients of operators with a single h, three powers of the

field strength, and some number of covariant derivatives. Recalling that positive-helicity

(negative-helicity) gluons correspond to Gµν
SD (Gµν

ASD), we can infer the schematic form of

the operators, and the number of independent operators at each dimension. We display

these in table 1, where we divided the operators according to whether they contribute to

the +++ or ++− amplitudes. The number of independent operators of each type, with

color indices contracted with fabc or dabc, is indicated in parenthesis. As a check of our re-

sults, we used the Mathematica notebook of [4] to derive the scalar plus 3 gluon operators,

and verified that the results agree.

2.3 The two scalar, two gluon amplitudes M(hh; gg)

To calculate the two-h, two-gluon amplitude, it is convenient to keep the symmetry under

both h exchange and gluon exchange manifest. Therefore, we will not use momentum
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1a+

2b+

3

4

(a) Factorization on h → 2g and the 3h

vertex.

P

1a−

2b+

3

4

−

+

(b) Factorization on the dimension 5

amplitudes h → 2g. Note that there

is a crossed diagram with 3 ↔ 4.

Figure 3. Possible factorizations of the 2h → 2g amplitude.

conservation to eliminate any of the external momenta. Let us label the massless momenta

by p1 , p2, and the massive momenta by p3 and p4. There are two independent structures

which carry little group weights in this case, namely,

[12] and 〈1|p3|2] . (2.27)

Thus the 2h; 2g amplitude is of the form,

M
(

2h; ga, h1(p1)g
b, h2(p2)

)

= δab [12]n12 〈1|p3|2]k12 f−ℓ , (2.28)

where n12 , k12 are integers and f−ℓ is an analytic function of mass dimension −ℓ. Requiring

the correct helicity weights and mass dimension yields the equations,

− 2h1 = k12 − n12 , −2h2 = −k12 − n12 , ℓ = n12 + 2k12 , (2.29)

so

n12 = h1 + h2 , k12 = h2 − h1 , ℓ = 3h2 − h1 . (2.30)

Plugging these into eq. (2.30) we get the amplitudes

M
(

2h; ga+(p1)g
b+(p2)

)

= δab [12]2 f−2 , (2.31a)

M
(

2h; ga−(p1)g
b+(p2)

)

= δab 〈1|p3|2]2 f̃−4 = δab
1

4
〈1|p3 − p4|2]2 f̃−4 , (2.31b)

where in the last line we used momentum conservation to get a manifestly symmetric

expression in 3 ↔ 4. It will be convenient to define the variables

s̃ij ≡ 2pi · pj for i 6= j . (2.32)

These satisfy,

s̃12 = 2m2 + s̃34 , s̃13 = s̃24 , s̃23 = s̃14 , s̃12 + s̃13 + s̃23 = 0 . (2.33)

The functions f−2, f̃−4 can then be written as power series of the form,

an,k,l s̃
n
12s̃

k
13s̃

l
23 = an,k,ls̃

n
12

(

s̃13 + s̃24
2

)k ( s̃23 + s̃14
2

)l

, (2.34)

where the coefficients an,k,l satisfy, an,k,l = an,l,k.
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2.3.1 The 3h vertex

In order to obtain the factorizable parts of the 2h+ 2g amplitudes we will need the three-

point vertex for three massive scalars. It is easy to show that this is a constant. Let us

label the three massive momenta by p1 , p2 and p3, where pi = m2
i for i = 1, 2, 3. For

simplicity we take all three masses to be identical, mi ≡ m. The amplitude does not carry

any little group weights or indices and has mass dimension one. It is therefore a function

of s̃ij , with i, j = 1, 2, 3. Since s̃ij = m2 the amplitude is a constant, which we label c3h.

2.3.2 The hh; ++ amplitude

Let us first consider the factorizable part (see figure 3a). Gluing the scalar three-point

vertex c3h and the h → 2g amplitude from eq. (2.7) we get

M
(

2h; ga+(p1)g
b+(p2)

)

= δab
ic3h c

hgg
5

Λ

[12]2

s̃12 −m2
. (2.35)

We can now turn to the non-factorizable parts. Expanding f−2 in terms of {s̃12 , s̃13 , s̃23}
up to dimension 10, and maintaining symmetry under 1 ↔ 2 and 3 ↔ 4, we get,

M
(

2h;ga+(p1)g
b+(p2)

)

=δab
[12]2

Λ2

[

ahh0,0,0+
(s̃13+s̃23)a

hh
0,0,1

Λ2
+
s̃12a

hh
1,0,0

Λ2
(2.36)

+
s̃212a

hh
2,0,0

Λ4
+
(s̃13+s̃23)s̃12a

hh
1,0,1

Λ4
+

(

s̃213+s̃223
)

ahh0,0,2
Λ4

+
s̃13s̃23a

hh
0,1,1

Λ4

]

.

Using eq. (2.33) and adding the factorizable part from eq. (2.35) we finally have,

M
(

2h;ga+(p1)g
b+(p2)

)

=δab [12]2
[

c3hc
hgg
5

Λ

i

s̃12−m2
+
ahh6
Λ2

+
ahh8
Λ4

s̃12+
ahh8
Λ6

s̃212+
a′hh8

Λ6
s̃13s̃14

]

.

(2.37)

2.3.3 The hh; +− amplitude

The factorizable part of the hh; g+g− amplitude (see figure 3b) is,

Mhgg

(

2b+P c+
)−iδcd

P 2
Mhgg

(

1a−(−P )d−
)

=Mhgg

(

2b+P c+
) −iδcd

s̃13+m2
Mhgg

(

1a−(−P )d−
)

= i

(

chgg5

2Λ

)2

〈1|p3−p4|2]2
δab

s̃13+m2
, (2.38)

where P = p1+ p3 and we have symmetrized the helicity part. Adding the crossed channel

with 3 → 4 we get,

M
(

2h; ga−(p1)g
b+(p2)

)

= iδab 〈1|p3 − p4|2]2
(

chgg5

2Λ

)2
[

1

s̃13 +m2
+

1

s̃14 +m2

]

= i

(

chgg5

2Λ

)2

〈1|p3 − p4|2]2 δab
[

2m2 − s̃12
(s̃13 +m2) (s̃23 +m2)

]

. (2.39)
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Mass dimension
Operators

M(++) M(+−)

6 G2
SD h2 [1] —

8 D2G2
SD h2 [1] D2GSDGASD h2 [1]

10 D4G2
SD h2 [2] D4GSDGASD h2 [1]

Table 2. Operators contributing to the hhgg amplitudes. The number of independent operators

is shown in brackets.

Turning to the non-factorizable part, we expand f̃−4 of eq. (2.31b) as

M
(

2h; ga−(p1)g
b+(p2)

)

= δab
〈1|p3 − p4|2]2

Λ4

∞
∑

n,k,l=0;
0≤n+k+l

s̃n12s̃
k
13s̃

l
23

Λ2(n+k+l)
bhhn,k,l , (2.40)

where bhhn,k,l = bhhn,l,k. Computing the series in eq. (2.40) up to dimension 10 and adding the

factorizable part from eq. (2.39) we get

M
(

2h; ga−(p1)g
b+(p2)

)

= δab
〈1|p3 − p4|2]2

Λ4
(2.41)

×
[

bhh8 +
bhh10
Λ2

s̃12 −
(

chgg5 Λ

2

)2
[

2m2 − s̃12
(s̃13 +m2) (s̃23 +m2)

] ]

.

2.3.4 Inferring the EFT

The EFT contributions to the hh; ++ and hh;−− amplitudes are given in eqs. (2.37)

and (2.41). Aside from the constants chgg5 , which controls the h → 2g amplitudes, and

c3h, which controls the 3h vertex, the hh; ++ amplitude depends on four dimensionless

constants, while the hh; +− amplitude depends on two dimensionless constants. Therefore

the hh; ++ amplitude gets contributions from one operator at dimension 6, one operator at

dimension 8, and two operators at dimension 10. The hh; +− amplitude gets contributions

from one operator at dimension 8 and one at dimension 10. This agrees with the counting

obtained by using the Mathematica notebook of [4]. The results are summarized in table 2.

3 The vector plus three gluon amplitudes M(Z′; ggg)

In this section we consider amplitudes with a single massive spin-1 particle, which we denote

by Z ′, and three gluons. We will then use these to obtain the massless vector amplitudes.

Yang’s theorem forbids the massive vector decay to two gluons. For completeness, we

review the derivation of Yang’s theorem via on-shell methods following [21]. This will also

serve as a simple illustration of the spinor helicity formalism for massive particles of [21].

An amplitude with an external massive spin-1 particle can be decomposed as [21]

MI1I2 = λI1
α1
λI2
α2
M{α1,α2} = λ̃

I1
α̇1
λ̃
I2
α̇2
M̃{α̇1,α̇2} , (3.1)
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where the boldface spinors λ are spinor helicity variables for the massive momentum,

(see appendix A), and I1, I2 = 1, 2 are SU(2) indices of the little group of the massive

particle. The reduced amplitudes, M and M̃ , are symmetric in the SL (2,C) indices α and

α̇ respectively. The dotted and undotted representations of the amplitude are equivalent;

we may use the massive momentum to switch between the dotted and undotted spinors

(see eq. (A.17)).

The Z ′ plus two gluon reduced amplitude can then be written as,

M̃ α̇1α̇2

(

Z ′(p); g(p1)g(p2)
)

= [12]n12

(

λ̃n1
1 λ̃n2

2

)α̇1α̇2

f−ℓ (s12,Λ) , (3.2)

where λ̃i=1,2 is the spinor associated with the gluon momentum pi, and ni = 0, 1, 2 such

that n1 + n2 = 2. Requiring the correct little group weights and dimensionality gives the

relations

n1 + n12 = 2h1 , n2 + n12 = 2h2 , n12 − ℓ+ 2 = 1 , (3.3)

so that the full amplitude is given by

M
(

Z ′(p); ga,h1(p1)g
b,h2(p2)

)

= δab [12]h−1 [1p]2h1+1−h [2p]2h2+1−h f−h

(

m2,Λ
)

, (3.4)

where h = h1 + h2, and a, b are color indices. We have also employed the “bold” notation

of [21], where the SU(2) index of the p-spinor is suppressed, with the understanding that

the amplitude is symmetric in these indices. We see that the amplitude eq. (3.4) is anti-

symmetric under 1 ↔ 2 exchange. We conclude that it must vanish, in accord with the

spin-statistics theorem.

The amplitude Z ′
µ → 3g is therefore the first non-zero amplitude, and has no factoriz-

able part. We choose the following ansatz for the reduced amplitude,

M̃ α̇1α̇2

(

Z ′(p4); g(p1)
h1g(p2)

h2g(p2)
h3

)

= [12]n12 [13]n13 [23]n23

(

λ̃n1
1 λ̃n2

2 λ̃n3
3

)α̇1α̇2

× f−ℓ(s12, s13, s23) ,
(3.5)

where ni = 0, 1, 2 with
∑3

i=1 ni = 2 and for now we suppressed the color indices. Requiring

the correct helicity weights and mass dimension in eq. (3.5) gives,

3
∑

1=i<j

nij = ℓ− 2 , (3.6)

and

n1 + n12 + n13 = 2h1 , n2 + n12 + n23 = 2h2 , n3 + n13 + n23 = 2h3 . (3.7)

Eqs. (3.6) and (3.7) give the selection rule,

ℓ = 1 + h1 + h2 + h3 , (3.8)

with

n12 = n3 + h1 + h2 − h3 − 1 , n23 = −n2 − n3 − h1 + h2 + h3 + 1 ,

n13 = n2 + h1 − h2 + h3 − 1 , n1 = −n2 − n3 + 2 . (3.9)
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3.1 The Z′; + + + amplitude

Substituting h1 = h2 = h3 = +1 in eqs. (3.8) and (3.9) we obtain

M
(

Z ′(p4); g
a+(p1); g

b+(p2); g
c+(p3)

)

= Cabc

[

[23]2 [14]2 f ′±
−4(2; 3) + [12]2 [34]2 f ′±

−4(1; 2)

+ [13]2 [24]2 f ′±
−4(1; 3) + [12] [13] [24] [34] f±

−4(2; 3) + [13] [23] [14] [24] f±
−4(1; 2)

+ [12] [23] [14] [34] f±
−4(1; 3)

]

(3.10)

where Cabc = fabc or dabc and f−ℓ(i; j), f ′
−ℓ(i; j) are analytic functions of the sij ’s of mass

dimension−ℓ. For Cabc = dabc (Cabc = fabc) these functions are symmetric (antisymmetric)

under i ↔ j, and we use the superscript ± to denote the symmetric and antisymmetric

versions respectively. Using Schouten identities we can eliminate the first three terms to

obtain,5

M
(

Z ′(p4);g
a+(p1);g

b+(p2);g
c+(p3)

)

= (3.11)

= dabc
[

[12] [23] [14] [34]f+
−4(1;3)− [13] [23] [14] [24]f+

−4(1;2)− [12] [13] [24] [34]f+
−4(2;3)

]

,

×fabc

[

[12] [23] [14] [34]f−
−4(1;3)+[13] [23] [14] [24]f−

−4(1;2)+[12] [13] [24] [34]f−
−4(2;3)

]

,

with

f+
−4(1; 2) =

1

Λ4

(

c
(1)
8 +

s12
Λ2

c
(1)
10 +

1

Λ4

(

s212 c
(1)
12 + s13s23 c

(2)
12

)

)

+O
(

Λ−10
)

, (3.12)

f−
−4(1; 2) =

s13 − s23
Λ6

(

c
(2)
10 +

c
(3)
12

Λ2
s12

)

+O
(

Λ−10
)

, (3.13)

with the remaining functions obtained by permutations of {1, 2, 3}. Thus the amplitude

involves six independent coefficients. One coefficient with dabc at dimension 8, two coeffi-

cients at dimension 10 — one for each color structure, and three coefficients at dimension

12 — two with dabc and one with fabc.

We can now infer the structure and number of the EFT operators which contribute

to this amplitude. Using the EOM for Z ′, we can write these operators in terms of field

strengths only. The different operators then contain three powers of Gµν and a single

power of Z ′
µν , with some number of derivatives. There is one operator at dimension 8,

which is schematically Z ′G3
SD, with Z ′ denoting the Z ′ field strength, and with color indices

contracted with dabc, two operators at dimension 10, namely D2Z ′G3
SD, one with fabc and

one with dabc, and three operators of the form D4Z ′G3
SD at dimension 12 — two with dabc

and one with fabc. The effects of the lowest-order operators were considered in [24–26].

Eq. (3.11) describes the three Z ′ polarizations. The positive polarization is obtained

by taking
∣

∣4I=1
]
∣

∣4J=1
]

, the negative polarization is obtained by taking I = J = 2, and the

longitudinal polarization corresponds to the symmetric combination of I = 1, J = 2.

5The Schouten identity reads [12] [34] + [13] [42] + [14] [23] = 0, and similarly for the angle brackets.
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Above we have chosen to write the amplitude as a sum of permutations over the spinor

factors. Alternatively, we can write it such that the functions of the sij ’s are manifestly

symmetric, with

M
(

Z ′(p4); g
a+(p1); g

b+(p2); g
c+(p3)

)

=

= [12] [23] [31]× [41] 〈12〉 [24]×
[

+ fabc

(

1

s12
f−
−4(1; 2)−

1

s13
f−
−4(1; 3)−

1

s23
f−
−4(3; 2)

)

− dabc
(

1

s12
f+
−4(1; 2) +

1

s13
f+
−4(1; 3) +

1

s23
f+
−4(3; 2)

)

]

+mdabc [12] [23] [31]

[〈24〉 [24]
s23

f+
−4(2; 3)−

[14] 〈14〉
s13

f+
−4(1; 3)

]

−mfabc [12] [23] [31]

[〈24〉 [24]
s23

f−
−4(2; 3) +

[14] 〈14〉
s13

f−
−4(1; 3)

]

(3.14)

Using momentum conservation it is easy to check that the spinor prefactor [12] [23] [31]×
[41] 〈12〉 [24] is actually completely symmetric under exchange of 1,2,3, up to terms of order

m. This form of the amplitude is convenient for some purposes as we will see below.

Finally, recall that we chose to work with the dotted-indices reduced amplitude,

eq. (3.5). Using the undotted reduced amplitude would give an equivalent solution. We

will return to this point below when we discuss the massless limit.

3.2 The Z′;− − + amplitude

We now turn to the choice h1 = h2 = −h3 = −1 for the gluon helicities. Using eq. (3.9)

the amplitude is,

M
(

Z ′(p4); g
a−(p1); g

b−(p2); g
c+(p3)

)

= dabc
{

[13] [23] [14] [24]

[12]4
A+

0 (1; 2) +
[34]2

[12]2
D+

0 (1; 2)

+
1

[12]4

[

(

[23]2 [14]2 + [13]2 [24]2
)

B+
0 (1; 2) +

(

[23]2 [14]2 − [13]2 [24]2
)

B−
0 (1; 2)

]

+
[34]

[12]3

[

([23] [14] + [13] [24])C−
0 (1; 2) + ([23] [14]− [13] [24])C+

0 (1; 2)

]

,

}

(3.15)

where A+
0 (1; 2) , B

±
0 (1; 2) , C

±
0 (1; 2) , D+

0 (1; 2) are all dimensionless, analytic functions of the

sij ’s, which are symmetric or anti-symmetric under 1 ↔ 2. The symmetric (antisymmetric)

functions are denoted by a + (−) superscript. Using Schouten identities we can rewrite

the full amplitude as,

M
(

Z ′; ga−(p1); g
b−(p2); g

c+(p3)
)

= dabc
[

〈12〉2 [34]2D+
−4(1; 2)

+ 〈12〉4 [13] [23] [14] [24]A+
−8(1; 2) + 〈12〉3 [34]

(

[23] [14] + [13] [24]
)

C−
−6(1; 2)

]

× fabc

[

〈12〉2 [34]2D−
−4(1; 2) + 〈12〉4 [13] [23] [14] [24]A−

−8(1; 2)

+ 〈12〉3 [34]
(

[23] [14] + [13] [24]
)

C+
−6(1; 2)

]

, (3.16)
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with the coefficient functions,

D+
−4 =

d8
Λ4

+
d
(1)
10

Λ6
s12 +

d
(1)
12 s

2
12 + d

(2)
12 s13s23

Λ8
, D−

−4 = (s23 − s13)

(

d
(2)
10

Λ6
+

d
(5)
12 s12
Λ8

)

,

A+
−8 =

d
(3)
12

Λ8
, A−

−8 = 0 , (3.17)

C+
−6 =

d
(3)
10

Λ6
+

d
(6)
12

Λ8
s12 , C−

−6 = (s23 − s13)
d
(4)
12

Λ8
.

Again, this form of the amplitude encapsulates all three Z ′ polarizations. The number of

independent operators can be read from eq. (3.17). There is one operator at dimension 8,

of the form Z ′G3, with color indices contracted with dabc, and three operators of the form

D2Z ′G3 at dimension 10; two with dabc and one with fabc. At dimension 12 there are six

operators of the form D4Z ′G3; five with dabc and one with fabc.

3.3 The massless Z′ amplitudes

Amplitudes with a massless Z ′ can be calculated directly, much like we did for the massive

Z ′. Recall that our starting point above was the “dotted” amplitude eq. (3.5). In the

massive case, the dotted and undotted solutions are equivalent, since the different Z ′ po-

larizations are related. For a massless Z ′, the dotted form we used above gives the positive-

helicity Z ′, while the undotted form gives the negative-helicity Z ′. Other than that, the

derivation would proceed just as above, with the 4-spinors unbolded, and with m = 0.

It is instructive however to obtain the massless amplitudes by taking the massless limit

of the amplitudes we already calculated. Recall that eqs. (3.11) and (3.16) describe the

three Z ′ polarizations. Thus the massive-Z ′ amplitudes split into the positive and negative

massless-Z ′ helicities, plus the longitudinal polarization, which should coincide with the

scalar plus 3-gluon amplitudes, M(h; ggg). In the massless limit,
∣

∣4I=2
]

goes to zero (see

appendix B), so only the Z ′+ amplitudes survive in eqs. (3.11) and (3.16). This is not

surprising, since we used the dotted-indices ansatz eq. (3.5), which reduce to the positive-

helicity Z ′ amplitudes in the massless limit. It is therefore useful to rewrite the amplitudes

such that both
∣

∣4I=1
]

and
∣

∣4I=2
〉

appear, and all three polarizations are transparent in the

massless limit. Terms with |4]|4] then describe the positive polarization as before, while the

negative polarization corresponds to terms with |4〉|4〉, and the longitudinal polarization

corresponds to mixed terms with |4]|4〉. The different polarizations should appear with dif-

ferent suppressions of Λ, since in the massless limit the net helicity of the operator is related

to its dimension. Another way to say this is that amplitudes with different Z ′ helicities are

related by different factors of the mass m, corresponding to helicity flips on the Z ′ leg.

To rewrite the massive amplitudes eqs. (3.11) and (3.16), we use the momentum p4 to

convert between |4] and |4〉 (see eq. (A.17) and appendix B). Consider first M(Z ′;−−+).

Simply taking the massless limit in eq. (3.16), the three different spinor structures collapse

into a single structure, corresponding to the positive Z ′ helicity. Using eq. (A.18) we then
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rewrite the amplitude as,

M
(

Z ′; ga−(p1); g
b−(p2); g

c+(p3)
)

(3.18)

= dabc 〈12〉2 ×
[

[34]2 f̃+
−4(1; 2) + [13] [23] 〈14〉 〈24〉 f̃+

−6(1; 2)

+ [34] ([31] 〈14〉 − [32] 〈24〉)f̃−
−5(1; 2)

]

+ fabc 〈12〉2 ×
[

[34]2 f̃−
−4(1; 2) + [13] [23] 〈14〉 〈24〉 f̃−

−6(1; 2)

+ [34] ([31] 〈14〉 − [32] 〈24〉)f̃+
−5(1; 2)

]

where we redefined the coefficient functions with,

f̃+
−4(1;2)=

d8
Λ4

+
d
(1)
10

Λ6
s12+

d
(1)
12 s

2
12+d

(2)
12 s13s23

Λ8
, f̃−

−4(1;2)= (s23−s13)

(

d
(3)
10

Λ6
+
d
(4)
12

Λ8
s12

)

,

f̃+
−5(1;2)=

md
(2)
10

Λ6
+
md

(3)
12

Λ8
s12 , f̃−

−5(1;2)= (s13−s23)
md

(5)
12

Λ8
,

f̃+
−6(1;2)=

m2 s12 d
(6)
12

Λ8
, f̃−

−6(1;2)= 0 , (3.19)

where f̃±
−6 = m2A±

−8 and f̃±
−5 = mC±

−6. It is now easy to see the three spin polarizations

both in the massive and in the massless case. The positive helicity Z ′ is given by terms

with two |4] spinors, the negative helicity is given by terms with two |4〉 spinors, and the

longitudinal polarization corresponds to the mixed terms.

In the massless limit, only
∣

∣41
]

and
∣

∣42
〉

survive, so we can simply unbold the 4-spinors

in eq. (3.18). Furthermore, explicit factors of m which appear in the coefficient functions of

eq. (3.19) can be absorbed by rescaling Λ. Thus for example, we can rewrite m2 s12 d
(6)
12 /Λ

8

as s12 d
(6)
12 /Λ̃

6. This contribution is then associated with a dimension-10 operator. This is

just as expected. The mass m is not a parameter of the massless theory, and Z ′+ and Z ′−

amplitudes are generated by operators of different dimensions. Examining eq. (3.18), we

see that the [34]2 terms give M(Z ′+;−−+), while the 〈14〉 〈24〉 terms give M(Z ′−;−−+).

Thus the massless M(Z ′+;− − +) amplitude gets contributions from f̃±
−4. There is one

operator with dabc at dimension 8, two operators (one with dabc and one with fabc at

dimension 10, and three operators at dimension 12 (two with dabc and one with fabc).

The M(Z ′−;− − +) amplitude gets contributions from f̃±
−6. There is one operator with

dabc at dimension 10 and two operators, one with dabc and one with fabc at dimension 12.

In this case too we used the Mathematica notebook of [4] to derive the EFT operators

with a massless vector plus three gluon operators, and checked that the results agree. We

summarize the EFT operators and their numbers in table 3.

Finally, we can verify the relation between the amplitude with a longitudinally-

polarized Z ′ and the scalar amplitude M(h; g−g−g+). The former is easily read-off
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Mass dimension
Operators

M(+ + +) M(−−+)

8 G3
SD Z ′

SD

[

1, dabc
]

G2
ASDGSD Z ′

SD

[

1, dabc
]

10
D2G3

SD Z ′
SD

[

1, dabc; 1, fabc
]

D2G3
SD Z ′

ASD

[

1, dabc
]

D2G2
ASDGSD Z ′

ASD

[

1, dabc
]

D2G2
ASDGSD Z ′

SD

[

1, dabc; 1, fabc
]

12 D4G3
SD Z ′

SD

[

1, dabc
] D4G2

ASDGSD Z ′
ASD

[

1, dabc; 1, fabc
]

D4G2
ASDGSD Z ′

SD

[

2, dabc; 1, fabc
]

Table 3. Operators contributing to the Z ′ggg amplitude for a massless Z ′. The numbers of

independent operators per each color structure are shown in brackets. (In the table, we use Z ′ to

denote the field strength).

eq. (3.18). Only the fabc term contributes at this order,

M
(

Z ′0; ga−(p1); g
b−(p2); g

c+(p3)
)

= 〈12〉2 [34]
[

[31] 〈14〉 − [32] 〈24〉
]

×
(

f̃+
−5(1; 2) f

abc + f̃−
−5(1; 2) d

abc
)

= 〈12〉2 [31] [32] 〈12〉
(

f̃+
−5(1; 2) f

abc + f̃−
−5(1; 2) d

abc
)

=
〈12〉3

〈13〉 〈23〉s13s23
(

f̃+
−5(1; 2) f

abc + f̃−
−5(1; 2) d

abc
)

=
〈12〉3

〈13〉 〈23〉s13s23
(

fabc

(

md
(2)
10

Λ6
+

md
(3)
12

Λ8
s12

)

+
dabc d

(5)
12 m (s13 − s23)

Λ8
+ . . .

)

(3.20)

which agrees with the result eq. (2.26) upon replacing angle brackets by square brackets,

owing to the opposite gluon helicities we have. Furthermore, this contribution starts at

m/Λ6, namely at dimension-9, which is where M(h;− − +) first appears. What we are

seeing is nothing but the Higgs mechanism. The longitudinal Z ′ polarization comes from

the Goldstone boson, so in the EFT operators generating the amplitudes we can replace

Z ′
µ by ∂µh. Thus the relevant h;−−+ amplitude must come from an operator containing

at least one derivative. The first such operator is indeed the dimension-9 operator D2hG3,

which appears with fabc (see table 1).

Let us now turn to the massless limit of the Z ′; +++ amplitude. In this case we find,

M
(

Z ′; ga+(p1); g
b+(p2); g

c+(p3)
)

= (3.21)

= dabc
(

c
(1)
8

1

Λ4
+ c

(1)
10

s12
Λ6

+ c
(2)
12

s13s23
Λ8

)

[13] [23] [14] [24] + permutations

+ fabc c
(2)
10

s13 − s23
Λ6

[13] [23] [14] [24] + permutations
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+ dabc c
(1)
12

m2

Λ8
[13] [23] [12]2 〈14〉 〈24〉+ permutations

+ fabc mc
(3)
12

Λ8

[

(s12 − s13) 〈24〉 [24] + (s12 − s23) 〈14〉 [14]
]

[12] [23] [31] ,

where we absorbed some signs and a factor of 2 in the coefficients.6 It is now straightforward

to see the massless limit of this expression. All we need to do is to absorb m in the scale,

and unbold 4-spinors. The first two lines, with [14][24], give M(Z ′+; + + +), and the third

line, with 〈14〉 〈24〉, gives M(Z ′−; + + +).7 The counting and correspondence to the EFT

operators is summarized in table 3, and reproduces the results of [4].

Finally, the fourth line of eq. (3.21) gives M
(

Z ′0; + + +
)

. Note that this the lowest

order contribution to this amplitude in 1/Λ. In particular, the c
(2)
10 term in eq. (3.21) does

not contribute. We can rewrite this term as,

fabc mc
(3)
12

Λ8

(

s12s13 + s23s13 + s12s23 +O
(

m2
)

)

[12] [23] [31] = (3.22)

= fabc c
(3)
12

Λ̃7

(

s12s13 + s23s13 + s12s23 +
)

[12] [23] [31] +O
(

m2
)

,

which is the same as the dimension-11 contribution in eq. (2.21). Unlike in the Z ′;−−+

case, here the longitudinal Z ′ polarization does not reproduce the leading contribution in

h; +++, which appears at dimension-7, but only the next non-zero contribution, which is

dimension-11. This is consistent with what we expect based on the Higgs mechanism. In an

EFT operator generating the Z ′0; +++ amplitude we can replace Z ′
µ by ∂µh. Thus the cor-

responding scalar operator should contain at least one derivative. The first such operator is

D4hG3 (see table 1), with the color structure fabc. This is indeed a dimension-11 operator.

To summarize, we have seen how the massive Z ′ EFT amplitudes decompose into

three distinct amplitudes corresponding to the different Z ′ polarizations. In the massless

limit, these simply reduce to the Z ′+-helicity amplitude, the Z ′−-helicity amplitude, and

the scalar amplitude, which supplies the longitudinal Z ′ polarization.

4 Conclusions

We have used on-shell methods to derive tree-level helicity amplitudes involving a new

SM-singlet, of spin zero or one, with couplings to gluons. Specifically, we calculated h; ggg

amplitudes and hh; gg amplitudes for a scalar field h, which is either massive or massless,

up to dimension-13. We also calculated Z ′; ggg amplitudes for a massive vector Z ′, up to

dimension-12, and showed how these amplitudes decompose into the massless vector plus

scalar amplitudes.

It is straightforward to replace the gluons by photons in our results. Furthermore, the

amplitudes we calculated can be used to obtain amplitudes with the gluons replaced by

6It is easy to see, using eq. (3.14), that c
(1)
12 and c

(3)
12 can be absorbed in the remaining terms up to pieces

of order m, after symmetrizing and using the Schouten identities.
7Thus, there is no contribution to the M

(

Z′−; + + +
)

amplitude with fabc up to d ≤ 12.
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weak gauge bosons in the high-energy limit. Throughout, we ignored quarks, and it would

be interesting to extend this approach to include fermions, and in particular, to reconstruct

the full SM EFT. The calculation of EFT amplitudes at the loop level, where the effects

of renormalization and operator mixing would show up, is another obvious direction that

we plan to explore.

Our results can be used to calculate the LHC production and decay of new mas-

sive scalars or vectors coupled to the SM gluons through higher-dimension operators. In

particular, since spin information is preserved, they allow for various spin and coupling

measurements of the new particles.

As we have shown, it is easy to infer the structure of EFT amplitudes, and thereby

count the number of operators of very high dimensionality. For practical purposes how-

ever, the contributions of interest are the lowest order ones. When interpreting LHC

measurements, the EFT results are reliable only for energies sufficiently smaller than Λ.

Thus, deriving the structure of amplitudes at dimension-13 is probably just an academic,

if pleasing, exercise. Still, what on-shell methods clearly reveal is the power of Lorentz

symmetry when applied to physical quantities. Gauge-redundancies and off-shell variables

are stripped away, exposing the simplicity of the possible underlying structures of the the-

ory. In the case of EFTs, operator redundancies are stripped away too. One may therefore

wonder whether an on-shell approach to effective field theories would ultimately lead us

towards a more fundamental theory beyond the standard model.
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A Notation

We follow the conventions and notation of [17] for spinors, with the metric (+,−,−,−).

The Levi-Civita symbol is given by

ǫαβ = −ǫαβ = ǫα̇β̇ = −ǫ
α̇β̇

=

(

0 1

−1 0

)

, (A.1)

and can be used to raise and lower spinor indices, such that

ψα = ǫαβψβ , ψα = ǫαβψ
β , ǫαβǫβγ = δαγ (A.2)

with the same expression for the dotted indices.
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Inside spinor brackets, indices are contracted such that

〈λχ〉 ≡ λαχ
α = −λαχα , [λχ] ≡ λ̃α̇χ̃α̇ = −λ̃α̇χ̃

α̇ . (A.3)

To simplify the notation we introduce the “half-bracket”

λα = |p〉 , λα = 〈p| , λ̃α̇ = |p] , λ̃α̇ = [p| , (A.4)

such that lightlike momenta are given by

pαα̇ = |p〉[p| , pα̇α = |p]〈p| , (A.5)

where

pαα̇ ≡ σαα̇
µ pµ , pα̇α ≡ σµ

α̇αpµ , (A.6)

and σµαα̇ =
(

δαα̇, ~σαα̇
)

, σ̄µ
α̇α =

(

δα̇α,−~σα̇α
)

.

It is sometimes useful to have explicit expressions for the spinors. Writing,

pµ = E(1, cosφ sin θ, sinφ sin θ, cos θ),

we have,

|p〉 =
√
2E

(

s

−c

)

, [p| =
√
2E (s,−c∗) , (A.7)

where s ≡ sin
(

θ
2

)

and c ≡ cos
(

θ
2

)

eiφ.

Contracting lightlike momenta amounts to tracing over the half-brackets with a 1
2

factor

p · q = pµqµ =
1

2
pαα̇qα̇α ≡ 1

2
Tr {|p〉 [pq] 〈q|} =

1

2
〈qp〉 [pq] , (A.8)

The decomposition in eq. (A.5) is invariant under

|p〉 → ξ|p〉 , [p| → 1

ξ
[p| , (A.9)

where for real momenta ξ is just a pure phase. Eq. (A.9) is thus a U(1) little group

transformation of the lightlike momentum.

The polarizations for a massless vector are given by

[

ǫ−p (r)
]αα̇

=
√
2
|p〉[r|
[pr]

,
[

ǫ+p (r)
]αα̇

=
√
2
|r〉[p|
〈rp〉 , (A.10)

where r is a reference momentum not aligned with p, i.e., p · r 6= 0.

The polarizations eq. (A.10) are not invariant under the little group transformation

eq. (A.9). Thus, a positive helicity gluon carries helicity weight −2, while a negative helicity

gluon has helicity weight +2.

Massive momenta can be decomposed in much the same way. However, because the

determinant is not zero the decomposition will require a pair of massless spinors

pαα̇ = ψαψ̃α̇ + ηαη̃α̇ . (A.11)
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Following [21] we pack the pair into a doublet, such that

λI ≡
(

ψ η
)

, λ̃I ≡
(

ψ̃

η̃

)

, (A.12)

which enables us to write the massive momentum

pαα̇ = λα
I λ̃

α̇I ≡ |pI〉
[

pI
∣

∣ , pα̇α = −λ̃α̇Iλ
I
α ≡ −|pI ]

〈

pI
∣

∣ , (A.13)

where I = 1, 2 is an SUL (2). Note that for real momenta we have the reality conditions,

〈

pI
∣

∣

†
= −|pI ] , |pI ]

† = −
〈

pI
∣

∣ , |pI〉† =
[

pI
∣

∣ ,
[

pI
∣

∣

†
= |pI〉 . (A.14)

The little group transformation now takes the form λ̃I → W I
J λ̃

J , λI →
(

W−1
)J

I
λJ where

the W ’s are SU (2) matrices. Squaring a massive momentum gives

p2 = pαα̇pα̇α =
1

2

[

pJpI
]

〈pIpJ〉 = m2 . (A.15)

Expanding the brackets in SUL (2) invariants we get

[

pJpI
]

= ǫIJM̃ , 〈pIpJ〉 = ǫJIM , (A.16)

where M̃×M = m2 and the SUL (2) indices can be raised and lowered with the Levi-Civita

symbol, just as in (A.2), with ǫIJ = −ǫIJ and ǫ12 = 1. Forbidding opposite rephasing of

the mass parameters M̃ and M, which are not little group transformations, we can set

M̃ = M = m as in [21]. With the decomposition of the massive momentum eq. (A.13), we

can trade any dotted spinor for an undotted spinor, and vice versa,

p
∣

∣pJ
〉

= m
∣

∣pJ
]

, p
∣

∣pJ
]

= m
∣

∣pJ
〉

, [pJ |p = −m〈pJ | , 〈pJ |p = −m[pJ | . (A.17)

For amplitudes in which particles 1, 2 and 3 are massless, while 4 is massive, momentum

conservation then implies,

〈12〉 [24] + 〈13〉 [34] +m 〈14〉 = 0 , [12] 〈24〉+ [13] 〈34〉+m [14] = 0 , (A.18)

and similarly for permutations of 1, 2, 3.

B High energy limit

The massive spinor notation relies on splitting the massive momentum into two lightlike

vectors. To avoid index clutter, let us write p4 = k + q, with k2 = q2 = 0 and 2k · q = m2.

Then we can identify
∣

∣41
]

= |k],
∣

∣42
]

= |q],
∣

∣41
〉

= |q〉,
∣

∣42
〉

= −|k〉. In the massless limit,

without loss of generality, q → 0 and k → p4. Thus
∣

∣41
〉

,
∣

∣42
]

= O(m), while
∣

∣42
〉

,
∣

∣41
]

are

finite. Consider for example the square bracket
[

142
]

= [1q]. We can rewrite it as follows,

[1q] =
1

m
[1|p4|k〉 = − 1

m

(

[12] 〈2k〉+ [13] 〈3k〉
)

, (B.1)
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where in the last step we used momentum conservation. This is nothing but eq. (A.18),

written in terms of the momenta k and q. Note that there is nothing singular in the

massless limit of this equation, since the numerator of the r.h.s. is O(m2). Thus both sides

of eq. (B.1) are order m.

Similarly,

[1k] =
1

m
[1|p4|q〉 = − 1

m

(

[12] 〈2q〉+ [13] 〈3q〉
)

. (B.2)

Both sides of this equation are finite.

Finally, it is useful to write explicit examples of the various spinors. Choosing the z

axis as the direction of the massive momentum, pµ = (E, 0, 0, p), we can take,

kµ =
E + p

2
(1, 0, 0, 1) , qµ =

E − p

2
(1, 0, 0,−1) , (B.3)

with p = k+ q. In the high energy limit, E− p ≈ m2

2E . With the timelike momentum p give

by eq. (A.13) we can recover the boldface spinors with their little group indices

|p1〉 =
√

E + p

(

0

1

)

, |p2〉 =
√

E − p

(

1

0

)

, (B.4)

where we used eq. (A.7) and chose the kets such that eq. (A.16) holds. Then in the high

energy limit,
∣

∣p1
〉

, |p2〉 ,
[

p2
∣

∣ , [p1| ∼ O
(

m√
E

)

, (B.5)

while

|p1〉 ,
∣

∣p2
〉

,
[

p1
∣

∣ , [p2| ∼ O(
√
E) . (B.6)
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