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1 Introduction

Inspired by Witten’s twistor string theory [1], enormous advances have been made in

understanding the mathematical structures behind scattering amplitudes. Among them,

the tree-level S-matrix in many theories is expressed as a multiple contour integral in a large

class of new formulations, e.g. [2–6] (see also [7] for a recent review). Along this line, recent

progress was achieved by Cachazo, He and Yuan (CHY) who proposed a new framework

where any tree-level scattering amplitudes in massless field theories in arbitrary spacetime

dimensions is reformulated as a multiple integral over the moduli space of Riemann spheres

with n marked points [8–11]. The integral is completely localized on the zeroes of the

scattering equations that are independent of the theory. Various worldsheet models were

constructed based on ambitwistor strings [12–15] that provide in particular an approach to

extend the CHY formalism to loop level [16–20].

As the backbone of the CHY formalism, the scattering equations are universal for

all theories and play a fundamental role in this content. It is thus important to reveal

mathematical structures behind the scattering equations. In the single-soft limit, expand-

ing the scattering equations as well as other ingredients of CHY formulas around the soft

momentum provides a beautiful framework to produce various soft theorems in many the-

ories, for example the soft graviton theorem up to sub-sub-leading order [10, 21–24]. More
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interestingly, based on the special behavior of the solutions of the scattering equations

in the double-soft limit, many new universal double-soft theorems were obtained [25–27].

Similarly, the collinear limits of the amplitudes were also investigated up to sub-leading

order in Yang-Mills, gravity and cubic scalar theories [28]. It was found that the solutions

of the scattering equations can be interpreted as the zeros of the Jacobi polynomials in

a two-parameter family of kinematics [29]. In the so-called “positive region” of the space

of kinematic invariants, the scattering equations can be interpreted as the equilibrium

equations for a stable system of n−3 particles on a finite real interval [30].

Very recently, an investigation of the high-energy limit of the scattering equations has

been initiated [31]. It was observed that in multi-Regge kinematics (MRK) where the final

state particles are strongly ordered in rapidity, each solution of the scattering equations

displays the same hierarchy as the rapidity ordering. More remarkably, in four dimensions

in the spinor-helicity formalism, the scattering equations can be exactly solved at the

leading order in the multi-Regge limit for each “helicity configuration” for any number of

external particles. As a result, multi-Regge factorization of gluon amplitudes was exactly

derived from the scattering equations.

It is natural to expect a similar simplification to appear in gravity in the multi-Regge

limit. Indeed, a compact formula for n graviton scattering at tree level in MRK was

obtained from t-channel unitarity methods by Lipatov more than three decades ago [32, 33].

This paper aims at extending the analysis in [31] from gauge theory amplitudes to Einstein

gravity theory with a goal to provide a new alternative understanding of the high-energy

limit of gravitational scattering. We first translate the Lipatov formula in the spinor-helicity

language, and then derive it using the four-dimensional scattering equations. While the

framework presented in [31] is applicable to graviton amplitudes because of the universality

of the scattering equations, this is highly non-trivial since graviton amplitudes have a rather

complicated structure even in the MHV sector.

This paper is organized as follows. In section 2 we briefly review the multi-Regge factor-

ization of tree-level graviton amplitudes and the scattering equation formalism, which are

the two most important ingredients of this paper. In section 3 we derive the factorized form

of graviton amplitudes in the multi-Regge regime. We start by studying amplitudes in the

MHV sector in section 3.1, and then extend the analysis to all helicity sectors in section 3.2.

We include two appendices with technical proofs omitted throughout the main text.

2 Preliminaries

The goal of this paper is to perform an investigation of the multi-Regge behavior of tree-

level scattering amplitudes in Einstein gravity in the framework of the scattering equations.

Therefore, we provide a brief review of multi-Regge kinematics and the scattering equations

in this section before presenting the main result in subsequent sections. We follow the

notations of ref. [31] in this paper.

– 2 –
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2.1 Multi-Regge kinematics

For a 2 → (n−2) scattering, multi-Regge kinematics is defined as the regime where the

final-state particles are strongly ordered in rapidity while having comparable transverse

momenta, i.e.,

y3 ≫ y4 ≫ · · · ≫ yn and |k⊥3 | ≃ |k⊥4 | ≃ . . . ≃ |k⊥n |, (2.1)

where k⊥a denote the transverse momenta, and in four dimensions we define the complexified

transverse momenta as k⊥a = kxa + ikya. Employing lightcone coordinates ka = (k+a , k
−
a , k

⊥
a )

with k±a = k0a ± kza, the strong ordering in rapidity is equivalent to a strong ordering in

k+-components as follows:

k+3 ≫ k+4 ≫ · · · ≫ k+n . (2.2)

It is convenient to work in the center-of-momentum frame where two incoming particles

are back-to-back on the z-axis,

k1 = (0,−κ; 0), k2 = (−κ, 0; 0) , κ ≡
√
s, (2.3)

where s is the square of the center-of-mass energy, and we take a convention of considering

all momenta outgoing.

In this kinematical regime, the tree-level scattering amplitude in gravity takes a sur-

prisingly simple factorized form: any n graviton amplitude is given by only one Feynman

graph with two kinds of effective vertices (see figure 1) [32, 33]. More precisely, one has

Mn ≃ −s2 C(2; 3) −1

|q⊥4 |2
V(q4; 4; q5) · · ·

−1

|q⊥n−1|2
V(qn−1;n−1; qn)

−1

|q⊥n |2
C(1;n) , (2.4)

where we define qa =
∑a−1

i=2 ki with 4 ≤ a ≤ n. Here some overall factor including the

Gravitational constant κ2 = 8πGN has been stripped off. The effective graviton-graviton-

Reggeon1 vertex reads

Γµν,αβ ≡ ΓµαΓνβ + ΓµβΓνα, (2.5)

which is manifestly a double copy of the gluon-gluon-(Reggeized gluon) vertex defined as

Γµα
23 = −ηµα +

2(kµ1 k
α
2 − kµ3k

α
1 )

s
+ s23

2kα1 k
µ
1

s2
, (2.6)

Γµα
1n = −ηµα +

2(kµ2 k
α
1 − kµnkα2 )

s
+ s1n

2kα2 k
µ
2

s2
. (2.7)

Similarly, the effective Reggeon-Reggeon-graviton vertex can also be obtained as the double

copy of gauge theory vertices:

Γµν
i (qi, qi+1) ≡ 2

(

Cµ
i C

ν
i −Nµ

i N
ν
i

)

, (2.8)

where Cµ is the famous Lipatov vertex of (Reggeized gluon)-(Reggeized gluon)-gluon in

QCD [34]

Cµ
i (qi, qi+1) = −(q⊥i )

µ − (q⊥i+1)
µ +

(

2q2i+1

s1i
− s2i

s

)

kµ1 −
(

2q2i
s2i

+
s1i
s

)

kµ2 (2.9)

1In this paper, Reggeon denotes ‘Reggeized graviton’.
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Figure 1. The factorized form of a tree-level amplitude of gravitons in multi-Regge kinematics.

with (q⊥)µ ≡ (0, 0; q⊥), while Nµ is the so-called QED Bremsstrahlung vertex:

Nµ
i (qi, qi+1) =

√

q2i q
2
i+1

(

kµ1
s1i

− kµ2
s2i

)

. (2.10)

The contractions between vertices and the polarization tensors of external gravitons

give the gravitational impact factor and gravitational Lipatov vertex appearing in for-

mula (2.4), i.e.,

C(2; 3) = Γµν,αβ(k2, k3) ǫ
µν
2 (k2)ǫ

αβ
3 (k3),

C(1;n) = Γµν,αβ(k1, kn) ǫ
µν
1 (k1)ǫ

αβ
n (kn),

V(qi, i, qi+1) = Γi,µν(qi, qi+1) ǫ
µν
i (ki).

(2.11)

At this point, we would like to make some comments on the effective vertices (2.5)

and (2.8) in gravity in MRK. These effective vertices have also been derived from an

effective action (cf. e.g. [35–37]). It is extremely remarkable that the double copy relation

between gravity and gauge theories was uncovered for the first time in MRK. In general

kinematics, Kawai, Lewellen and Tye (KLT) found that a closed string amplitude can

be expressed in terms of sums of products of two open string amplitudes [38]. In the

field theory limit, the KLT relation naturally implies the double copy relation between

amplitudes in gravity and Yang-Mills.

In the following we would like to translate the Lipatov formula (2.4) to modern lan-

guage, say spinor-helicity variables. In four dimensions, any massless momentum can be

written as a product of two spinors with opposite chirality, i.e. kαα̇i = λα
i λ̃

α̇
i . To be explicit,

– 4 –
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in this paper two-component spinors are defined as

λ1 = −λ̃1 =

(

0√
κ

)

, λ2 = −λ̃2 =

(√
κ

0

)

,

λa =
1

√

k+a

(

k+a
k⊥a

)

, λ̃a =
1

√

k+a

(

k+a
k⊥

∗

a

)

, 3 ≤ a ≤ n.

(2.12)

Similarly, we can also write the polarization vectors in terms of spinor-helicity variables as

follows:

ǫ+,αα̇
i =

λα
x λ̃

α̇
i

〈x i〉 , ǫ−,αα̇
i =

λα
i λ̃

α̇
x

[i x]
, (2.13)

where it is free to choose the reference spinor λx or λ̃x. A polarization tensor can be

expressed in terms of the symmetric-traceless tensor product of two polarization vectors.

Therefore we can write the graviton polarization tensor in spinor variables as2

ǫ+,αα̇ββ̇
i =

λα
x λ̃

α̇
i

〈x i〉
λβ
y λ̃

β̇
i

〈y i〉 + (x ↔ y), (2.14)

ǫ−,αα̇ββ̇
i =

λα
i λ̃

α̇
x

[i x]

λβ
i λ̃

β̇
y

[i y]
+ (x ↔ y), (2.15)

where x and y stand for arbitrary reference spinors.

Using the spinor-helicity variables defined above, it is easy to compute the gravitational

impact factors and Lipatov vertices defined in (2.11). A straightforward calculation gives

C(2+; 3+) = C(2−; 3−) = 0, C(2−; 3+) = C(2+; 3−) = 1,

C(1+;n+) = C(1−;n−) = 0, C(1−;n+) = C(1+;n−)∗ =

(

k⊥
∗

n

k⊥n

)2

,
(2.16)

and

V
(

qa; a
+; qa+1

)

= V
(

qa; a
−; qa+1

)∗
=

q⊥
∗

a

(

q⊥
∗

a q⊥a+1 − q⊥a q
⊥∗

a+1

)

q⊥a+1

(k⊥a )
2

=
q⊥

∗

a

(

k⊥a q
⊥∗

a − k⊥
∗

a q⊥a
)

q⊥a+1

(k⊥a )
2

. (2.17)

We see from (2.16) that helicity is conserved by the impact factors, like in gauge theory.

2.2 Scattering equation formalism

The aim of this paper is to show that the multi-Regge limit of graviton amplitudes sum-

marized in the previous section can be elegantly derived from the scattering equations. Let

us continue to review the scattering equation formalism in the following. The cornerstone

is of course the scattering equations [8, 9, 39–44]

fa =
∑

b 6=a

ka · kb
σa−σb

= 0 , a ∈ {1, 2, . . . , n}, (2.18)

2This representation for graviton polarization tensors satisfies ǫ+i · ǫ−i ≡ ǫ
+,µν
i ǫ

−

i,µν = 1.
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where σa ∈ CP
1 denote the positions of the punctures in the moduli space M0,n of Rie-

mann spheres with n marked points. The scattering equations are invariant under Möbius

transformations, and only n−3 of the n equations are independent.

In four dimensions, the use of spinor-helicity variables usually leads to significant

simplifications. Indeed, it has been shown that in four dimensions the scattering equations

can be decomposed into different ‘helicity sectors’. One of constructions is [13]

Ē α̇
I = λ̃α̇

I −
∑

i∈P

tIti
σI−σi

λ̃α̇
i = 0, I ∈ N ,

Eα
i = λα

i −
∑

I∈N

titI
σi−σI

λα
I = 0, i ∈ P,

(2.19)

where N is a subset of {1, . . . , n} with length k ∈ {2, . . . , n−2} and P is the corresponding

complement. We refer to equations (2.19) as the four-dimensional scattering equations of

sector k; an important property is that only the equations in the sector k are needed for

Nk−2MHV amplitudes. Similarly, the system of the four-dimensional scattering equations

owns a GL(2,C) = SL(2,C)×GL(1,C) symmetry.

As shown in the previous section, the multi-Regge limit is most naturally defined in

terms of lightcone variables. It is thus natural to write the scattering equations in terms of

lightcone coordinates. While one can get equations with lightcone coordinates by simply

substituting (2.12) into the spinor-valued scattering equations (2.19), we show that one

can obtain a nicer form by fixing the redundancy and rescaling variables and equations.

First, let us use the GL(2,C) redundancy to fix four variables as follows:

σ1 = 0, σ2 = t2 → ∞, t1 = −1. (2.20)

Here we always use the convention where {1, 2} ⊆ N, and we define N ≡ N\{1, 2}. More-

over, we follow the convention that elements of P and N are denoted by small and capital

letters respectively, e.g. i ∈ P and I ∈ N. Second, we perform a rescaling for the ta
variables as follows:

ti = τi

√

k+i
κ
, tI = τI

√

κ k+I

k⊥I
. (2.21)

Then let us also perform a rescaling for the scattering equations according to:

S1
i ≡ 1

λ1
i

E1
i , S2

i ≡ λ1
i

k⊥i
E2
i ; S̄ 1̇

I ≡ λ2
I Ē 1̇

I , S̄ 2̇
I ≡ λ1

I Ē 2̇
I ;

S̄ 1̇
1 ≡ λ2

1 Ē 1̇
1 , S̄ 2̇

1 ≡ λ2
1 Ē 2̇

1 ; S̄ 1̇
2 ≡ λ1

2 Ē 1̇
2 , S̄ 2̇

2 ≡ λ1
2 Ē 2̇

2 .

(2.22)

As a consequence, we obtain a set of equations that contain only the terms linear in k+a .

– 6 –
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Explicitly, we have

S1
i = 1 + τi −

∑

I∈N

τiτI
σi−σI

k+I
k⊥I

= 0,

S̄ 1̇
I = k⊥I −

∑

i∈P

τiτI
σI−σi

k+i = 0,

S̄ 1̇
1 = −

∑

i∈P

τi
σi
k+i = 0,

S̄ 1̇
2 = −κ−

∑

i∈P

τik
+
i = 0,

S2
i = 1 +

k+i
k⊥i

τi
σi

− k+i
k⊥i

∑

I∈N

τiτI
σi−σI

= 0;

S̄ 2̇
I = k⊥

∗

I − k+I
k⊥I

∑

i∈P

τiτI
σI−σi

k⊥
∗

i = 0;

S̄ 2̇
1 = −κ−

∑

i∈P

τi
σi
k⊥

∗

i = 0;

S̄ 2̇
2 = −

∑

i∈P

τik
⊥∗

i = 0.

(2.23)

We would like to emphasize that no limit has been applied to these equations, and they are

completely equivalent to the four-dimensional scattering equations in (2.19), up to fixing

the GL(2,C) redundancy according to (2.20) and performing the rescaling in (2.21).

In terms of lightcone variables, the formula for tree-level Nk−2MHV graviton ampli-

tudes reads [13]

Mn,k = −s2

(

∫ n
∏

a=3

dτadσa
τ3a

)(

∏

I∈N

(k⊥I )
3

k+I
δ2
(

S̄ α̇
I

)

)(

∏

i∈P

1

k+i k
⊥
i

δ2
(

Sα
i

)

)

I(GR)
n,k . (2.24)

If we assume that gravitons 1 and 2 carry negative helicity and use N and P to collect the

babels of negative and positive helicity gravitons, the integrand function in formula (2.24)

takes the following simple form:

I(GR)
n,k = det′ Hdet′H, (2.25)

where det′ denotes the minor with any one column and row deleted, and H is the symmetric

k × k matrix defined as

H12 = −1, H1I = − τI
σI

k+I
k⊥I

, H2I = τI , HIJ =
τIτJ

σI−σJ

(

k+I
k⊥I

− k+J
k⊥J

)

for I 6= J, (2.26)

Haa = −
∑

b∈N,b 6=a

Hab, a ∈ N, (2.27)

and the H is the symmetric (n−k)× (n−k) matrix:

Hij =
τiτj

σi−σj

(

k+i k
⊥∗

j − k+j k
⊥∗

i

)

for i 6= j, (2.28)

Hii = −
∑

j∈P,j 6=i

Hij . (2.29)

In formula (2.24), we have eliminated four of the scattering equations and identify them

with the momentum conservation delta-functions, i.e.,

δ2
(

S̄ α̇
1

)

δ2
(

S̄ α̇
2

)

= δ4

(

n
∑

a=1

kµa

)

. (2.30)
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3 Gravitational scattering in MRK

The goal of this section is to present an alternative derivation of the multi-Regge factor-

ization of graviton amplitudes based on the scattering equations.

It was conjectured in [31] that in MRK all solutions of the scattering equations satisfy

1

σa−σb
≃ 1

σa
when a < b, τa = O(k⊥a ). (3.1)

Expanding the formula for graviton amplitudes (2.24) to leading power in MRK according

to (3.1), it gets significantly simplified

Mn,k ≃ −s2

(

∫ n
∏

a=3

dτadζa
τ2a ζ

2
a

)(

∏

I∈N

(k⊥I )
2 δ2

(

S̄ α̇
I

)

)(

∏

i∈P

1

(k⊥i )
2
δ2
(

Sα
i

)

)

det′H det′H,

(3.2)

where the new variables are defined as

ζa ≡ k+a
k⊥a

τa
σa

, 3 ≤ a ≤ n . (3.3)

Here we fix {3, n} ⊆ P as a convention. The leading order approximation of the scattering

equations in the multi-Regge limit is given by

S1
i = 1 + τi

(

1 +
∑

I∈N<i

ζI

)

= 0 , S̄ 1̇
I = k⊥I + τI

∑

i∈P<I

ζi k
⊥
i = 0 ,

S2
i = 1 + ζi

(

1−
∑

I∈N>i

τI

)

= 0 , S̄ 2̇
I = k⊥

∗

I − ζI
∑

i∈P>I

τi k
⊥∗

i = 0.

(3.4)

They have the following unique solution:

τI =
k⊥I
q⊥I+1

∏

J∈N>I

q⊥J
q⊥J+1

, ζI =

(

k⊥I
q⊥I

)∗(
∏

J∈N<I

q⊥J+1

q⊥J

)∗

,

τi = −
(

∏

I∈N<i

q⊥I
q⊥I+1

)∗

, ζi = −
∏

I∈N>i

q⊥I+1

q⊥I
.

(3.5)

In the following we show that we can obtain the multi-Regge factorization of graviton

amplitudes by localizing integrals in (3.2) to the unique solution (3.5).

In [31], it is shown that for any function F(τa, ζa) of τa and ζa we have

∫ n
∏

a=3

dζadτa
ζaτa

∏

I∈N

δ2
(

S̄ α̇
I

)

∏

i∈P

δ2
(

Sα
i

)

F(ζa,τa) = (−1)n





∏

I∈N

1

|k⊥I |2
q⊥I q

⊥∗
I+1

q⊥∗
I q⊥I+1



F(ζa,τa)
∣

∣

∣

(3.5)
.

(3.6)

For gluon amplitudes, F is just a constant factor without the dependence of ζa and

τa [31], i.e.,

F (YM) = −s

(

∏

i∈P

1

k⊥i

)(

∏

I∈N

k⊥I

)

. (3.7)
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This paper focuses on the gravitational scattering whose F function takes

F (GR) = −s2

(

∏

i∈P

1

(k⊥i )
2

1

ζiτi

)

det′H

(

∏

I∈N

(k⊥I )
2

ζIτI

)

det′ H. (3.8)

The main task of the rest part of the paper is to calculate this quantity on the support of

the unique solution (3.5) of the four-dimensional scattering equations in MRK.

3.1 MHV sector

Let us first consider the F function defined in (3.8) in the MHV sector. The experience from

the MHV sector will be useful for evaluating the determinants in other NkMHV sectors.

In this case, P = {3, . . . , n}, the solution (3.5) becomes ζi = τi = −1, and we have

Hij = (k⊥j ζj) (k
⊥∗

i τi) = (k⊥i k
⊥
j )xi when i > j, (3.9)

Hij = (k⊥i k
⊥
j )xj when i < j, (3.10)

Hii = −
∑

j∈P,j 6=i

Hij = (k⊥i )
2
(

xi + vi
)

, (3.11)

where we define

xa ≡ k⊥
∗

a

k⊥a
, va ≡ k⊥a q

⊥∗

a − q⊥a k
⊥∗

a

(k⊥a )
2

. (3.12)

Let us choose to delete the first column and row corresponding to the particle label ‘3’

from the matrix H. Then the reduced determinant can be written as

det′ H =
1

(k⊥3 )
2

(

∏

i∈P

(k⊥i )
2

)

det φ̄, (3.13)

with

φ̄ =

















x4+v4 x5 · · · xn−1 xn
x5 x5+v5 · · · xn−1 xn
...

...
. . .

...
...

xn−1 xn−1 · · · xn−1+vn−1 xn
xn xn · · · xn xn

















. (3.14)

This matrix is nothing but the leading order approximation of Hodges’ matrix3 [45, 46] in

the multi-Regge limit. We can observe a lot of nice properties. In particular, a conspicuous

feature is that the entries φ̄ij are equal when j < i for each i-th row. As we now show in

the following, this implies further simplification.

By performing some elementary row/column transformations of matrix, we have

det φ̄ = det φ̄′, (3.15)

3For arbitrary external kinematics, in the MHV sector, the four-dimensional scattering equations have

only one set of independent of solutions and the formula (2.24) is simply reduced to Hodges’ formula where

the MHV amplitude of gravitons is given by the determinant of a symmetric matrix.
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with

φ̄′ =

















v4 x5−x4−v4 · · · xn−1−x4−v4 xn−x4
0 v5 · · · xn−1−x5 xn−x5
...

...
. . .

...
...

0 0 · · · vn−1 xn−xn−1

xn 0 · · · 0 xn

















. (3.16)

This is almost an upper triangular matrix. We find it remarkable that we can nicely

compute its determinant by employing the so-called the matrix determinant lemma (cf. [47,

48], see also appendix A of this paper). We first simply decompose the matrix into an upper

triangular part and a matrix that has only non-zero element xn in the lower left corner.

To be more precise, we write

φ̄′ = ϕ+ µ νT with µ = (0, . . . , 0, 1)T, ν = (xn, 0, . . . , 0)
T, (3.17)

where ϕ is nothing but the matrix φ̄′ with replacing the first element of the last row xn by

zero. Then by making use of the matrix determinant lemma, we have

det φ̄′ =
(

detϕ
)(

1 + νTϕ−1µ
)

= v4 v5 · · · vn−1 xn

(

1 + xn
(

ϕ−1
)

1,n−3

)

. (3.18)

In general, it seems difficult to exactly find the inverse of the matrix ϕ. Fortunately, it is

not hard to obtain the entry (ϕ−1)1,n−3 by induction (see appendix B for the details of the

derivation),

(ϕ−1)1,n−3 = −k⊥3 + k⊥n
k⊥∗

n

. (3.19)

Plugging it into (3.18) immediately gives

det φ̄′ = −k⊥3
k⊥n

v4 v5 · · · vn−1 xn. (3.20)

Noting

V(qi, i+, qi+1) = q⊥
∗

i vi q
⊥
i+1, V(1−;n+) = x2n, (3.21)

and equations (3.20), (3.13), (3.8) and (3.6), we have

Mn(1
−, 2−) = −s2 C(2−; 3+) −1

|q⊥4 |2
V(q4, 4+, q5) · · ·

−1

|q⊥n |2
C(1−;n+). (3.22)

We derive the correct multi-Regge factorization of any MHV amplitude. In order to extend

the analysis in the MHV sector to other helicity sectors, at this point let us summarize

some key technical ideas that have been used above. First, we can transform the matrix

into a near upper triangular form by some elementary row and column operations since

the matrix has a special structure in MRK. Then the matrix determinant lemma can be

used to compute its determinant. We show in the next section that this technique is useful

for any other helicity configuration.
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3.2 All helicity configurations

Let us first consider the positive helicity part P. In MRK, the entries of (n−k) × (n−k)

matrix H take

Hij = (k⊥j ζj) (k
⊥∗

i τi) = (k⊥i τi) (k
⊥
j ζj)xi, for i > j (3.23)

Hij = (k⊥j τj) (k
⊥
i ζi)xj = (k⊥i τi) (k

⊥
j ζj) cij , cij =

ζiτj xj
ζjτi

, for i < j. (3.24)

For diagonal elements, we have

Hii = −
∑

j∈P<i

Hij −
∑

j∈P>i

Hij

= −(τik
⊥∗

i )
∑

j∈P,j<i

ζj k
⊥
j − (ζik

⊥
i )

∑

j∈P,j>i

τj k
⊥∗

j

= −τik
⊥∗

i

∑

j∈P,j<i

ζj k
⊥
j + ζik

⊥
i

∑

j∈P,j≤i

τj k
⊥∗

j

= (k⊥i ζi) (k
⊥
i τi)

(

xi + ui
)

, (3.25)

where one has used the momentum conservation (2.30) in the third line, and ui is defined

as

ui ≡
∑

j∈P<i

(

τj k
⊥
j

τi k⊥i
xj −

ζj k
⊥
j

ζi k⊥i
xi

)

. (3.26)

Using the scattering equations (3.4) and their solution (3.5), one can obtain

ui = vi =
k⊥i q

⊥∗

i − q⊥i k
⊥∗

i

(k⊥i )
2

. (3.27)

Let us choose to delete the first column and row corresponding to particle label ‘3’,

then the reduced determinant becomes nicely

det′ H =

(

∏

i∈P,i 6=3

(k⊥i )
2ζi τi

)

detH
′
, (3.28)

where

H
′
=

















vi1+xi1 ci1i2 ci1i3 · · · ci1n
xi2 vi2+xi2 ci2i3 · · · ci2n
xi3 xi3 vi3+xi3 · · · ci3n
...

...
...

. . .
...

xn xn xn · · · xn

















. (3.29)

Here labels satisfy 3 < i1 < i2 < · · · < n. In the case of the MHV sector, since cij = xj
(i < j), this matrix is identical to the matrix φ̄ in (3.14). More remarkably, they have

a similar structure and share many properties. As a consequence, we can use the same
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technique to calculate the determinant as in the MHV sector. Here we summarize the

result as follows (see appendix B for a detailed derivation):

det′ H =

(

∏

i∈P

(k⊥i )
2 ζi τi

)

xn

q⊥4 q
⊥
n

∏

i∈P
i 6=3,n

vi. (3.30)

Let us now discuss the k × k matrix H. It is reasonable to expect that the similar

structure appears in this matrix such that we can compute its determinant using the

matrix determinant lemma. Let us first compute the entries of the H in MRK

H12 = −1, H1I = −ζI , (3.31)

HI2 =
(

xIτI
)

x∗I , H2I = c2I ζI , c2I ≡ τI
ζI
, (3.32)

HIJ =
(

xIτIζJ
)

x∗I , I > J (3.33)

HIJ = cIJ
(

xIτIζJ
)

x∗I , cIJ ≡ ζIτJ
τIζJ

, I < J (3.34)

H22 = −H12 −
∑

I∈N

H2I , (3.35)

HII = −H1I − H2I −
∑

J∈N<I

HIJ −
∑

J∈N>I

HIJ . (3.36)

By using the scattering equations (3.4) and their unique solution (3.5), it is easy to obtain

H22 = 1−
∑

I∈N

τI =
∏

I∈N

q⊥I
q⊥I+1

, (3.37)

HII = ζI

(

1−
∑

J∈N>I

τJ

)

− τI

(

1 +
∑

J∈N<I

ζJ

)

= xIζIτI (v
∗
I + x∗I). (3.38)

Then we have

det′H =

(

∏

I∈N

xIζIτI

)

detH′, (3.39)

where one choose to remove the first column and row corresponding to particle label ‘1’,

and H
′ is defined as

H
′ =

















H22 c2I1 c2I2 · · · c2Im
x∗I1 v∗I1+x∗I1 cI1I2x

∗
I1

· · · cI1Imx
∗
I1

x∗I2 x∗I2 v∗I2+x∗I2 · · · cI2Imx
∗
I2

...
...

...
. . .

...

x∗Im x∗Im x∗Im · · · v∗Im+x∗Im

















, (3.40)

where I1 < · · · < Im ∈ N, m = k−2. This matrix again displays a similar structure as φ̄

in (3.14). Hence we can calculate its determinant by the similar technique based on the

matrix determinant lemma. The final result is

det′ H =

(

∏

I∈N

xIζIτI

)

∏

I∈N

v∗I . (3.41)
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The details of the derivation can be found in appendix B.

Putting everything together, we obtain that any NkMHV amplitude of graviton fac-

torizes as

Mn ≃ −s2 C(2; 3) −1

|q⊥4 |2
V(q4; 4; q5) · · ·

−1

|q⊥n−1|2
V(qn−1;n−1; qn)

−1

|q⊥n |2
C(1;n) , (3.42)

with

V(qi, i+, qi+1) = q⊥
∗

i vi q
⊥
i+1 =

q⊥
∗

i

(

k⊥i q
⊥∗

i − k⊥
∗

i q⊥i
)

q⊥i+1

(k⊥i )
2

, (3.43)

V(qI , I−, qI+1) = q⊥I v
∗
I q

⊥∗

I+1 =
q⊥I

(

k⊥
∗

I q⊥I − k⊥I q
⊥∗

I

)

q⊥
∗

I+1

(k⊥
∗

I )2
, (3.44)

in agreement with Lipatov formula (2.4).

Let us conclude this section by making some comments. First, we have assumed in pre-

vious sections that the two incoming particles 1 and 2 carry the same helicity. Here we show

that all conclusions hold for the case where the gravitons 1 and 2 have opposite helicities.

For example, let us consider amplitude Mn with helicity configuration (1+, 2−, . . . , n−).

In this case, in MRK, we have

Mn(1
+, 2−, . . . , n−) = Mn(1

−, 2−, . . . , n+)

(

1

(1n)8

∣

∣

∣

∣

MRK

)

. (3.45)

The factor (1n)−8 combines with the impact factor C(1+;n−) to give

(

1

(1n)8

∣

∣

∣

∣

MRK

)

C(1−;n+) = C(1−;n+)∗ = C(1+;n−). (3.46)

Second, we would like show that the helicity is conserved in gravitational impact factors,

like gauge theory. As an example, we consider amplitude Mn(1
−, 2−, 3−, 4+, . . .). In the

multi-Regge limit, we have

Mn(1
−, 2−, 3−, 4+, . . .) = Mn(1

−, 2−, 3+, 4−, . . .)

(

1

(3 4)8

∣

∣

∣

∣

MRK

)

(3.47)

= Mn(1
−, 2−, 3+, 4+, . . .)

(

− (k⊥4 )
2 q⊥4 q

⊥∗

5

(k⊥
∗

4 )2 q⊥
∗

4 q⊥5

)(

1

(3 4)8

∣

∣

∣

∣

MRK

)

.

This shows that the amplitude Mn(1
−, 2−, 3−, 4+, . . .) is suppressed in MRK since

(

1

(3 4)8

∣

∣

∣

∣

MRK

)

≃ O
(

(

k+4 /k
+
3

)4
)

. (3.48)

Finally, let us see what happens in the case where particles with other spins in supergravity

are involved. For example, in case of one pair of gravitinos, e.g. (1−
G̃
, n+

G̃
)

Mn(1
−

G̃
, n+

G̃
, . . .) = Mn(1

−, n+, . . .)

( −1

(1n)

∣

∣

∣

∣

MRK

)

. (3.49)
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Similarly, a combination of the factor (1n)−1 and the impact factor C(1+;n−) gives

( −1

(1n)

∣

∣

∣

∣

MRK

)

C(1−;n+) =

(

k⊥
∗

n

k⊥n

)3/2

= C(1−
G̃
;n+

G̃
), (3.50)

which exactly agrees with the result in [32, 33]. It is also easy to obtain the result for

other cases where particles with other spins in the supergravity multiplet are involved in

the same way.

4 Conclusions

We have initiated the investigation of the gravitational scattering in the multi-Regge regime

in the framework of the scattering equations. Unlike gauge theory, the evaluation of the

determinants of the two matrices is involved in the formula of graviton amplitudes. In

general, it seems impossible to obtain the exact compact results of these determinants even

in the MHV sector. We have shown that the two matrices get greatly simplified in the

multi-Regge limit, and finally we can obtain compact expressions for any NkMHV sector

for any number of external particles. As a consequence, we provide an elegant derivation

of the tree-level multi-Regge factorization of gravitational scattering amplitudes.

It should be emphasized that our analysis in this paper is based on the asymptotic

behaviour of the solutions to the scattering equations in the multi-Regge limit. In [31], it

is conjectured that all solutions of the scattering equations admit the same hierarchy as

the rapidity ordering in MRK, as shown in (3.1) in this paper. While we do currently not

have a rigorous mathematical proof, the result in this paper provides very strong support

to the validity of the conjecture. As a next step, it would also be interesting to investigate

the multi-Regge limit of amplitudes for more theories along this path.

While this paper has been concentrated on the multi-Regge limit, it would be inter-

esting to study graviton amplitudes in various generalizations of MRK, where two or more

produced particles have comparable rapidities. We leave this study for future work.
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A Matrix determinant lemma

Let A be an invertible matrix, u and v be two column vectors. Then the matrix determi-

nant lemma states that [47] (cf. also [48])

det
(

A+ uvT
)

=
(

1 + vTA−1u
)

det(A). (A.1)
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Proof. Let us first see the special case of the identity matrix, i.e.A = 1. Note
(

1 0

vT 1

)(

1+ uvT u

0 1

)(

1 0

−vT 1

)

=

(

1 u

0 1 + vTu

)

. (A.2)

This ends the proof for the case of A = 1. Then from

A+ uvT = A
(

1+A−1uvT
)

, (A.3)

we can prove the lemme, i.e.,

det
(

A+ uvT
)

= det
(

A
)

det
(

1+A−1uvT
)

= det(A)
(

1 + vTA−1u
)

. (A.4)

B Proof of three identities

This appendix provides the details of deriving three identities used in section 3,

i.e. eqs. (3.19), (3.30) and (3.41).

B.1 Equation (3.19)

In this section, we focus on the following triangular matrix:

ϕ =

















v4 x5−x4−v4 · · · xn−1−x4−v4 xn−x4
0 v5 · · · xn−1−x5 xn−x5
...

...
. . .

...
...

0 0 · · · vn−1 xn−xn−1

0 0 · · · 0 xn

















. (B.1)

Our goal is to find (ϕ−1)1,n−3. Let us denote the last column of the inverse of this matrix

as α = (α4, α5, . . . , αn)
T, and then it satisfies the following equation

ϕα = (0, 0, . . . , 1)T. (B.2)

In the following we show that its solution is

αi =
k⊥i
k⊥∗

n

, i = n, n−1, . . . , 5 (B.3)

α4 = −k⊥3 + k⊥n
k⊥∗

n

. (B.4)

First, we can easily get from xnαn = 1

αn =
1

xn
=

k⊥n
k⊥∗

n

. (B.5)

Then we assume all αj with j > i are given by (B.3), and let us solve αi from the following

equation:

viαi +
n
∑

j=i+1

(xj − xi)αj = 0. (B.6)
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Plugging the values of αj (j > i) given in (B.3) into this equation gives

αi = − 1

vi

n
∑

j=i+1

(xj − xi)αj =
k⊥i
k⊥∗

n

, (B.7)

which agrees with eq. (B.3). Finally, solving the last equation gives eq. (3.19), i.e.,

(ϕ−1)1,n−3 ≡ α4 = − 1

v4

(

n
∑

j=5

(xj − x4)αj − v4

n−1
∑

j=5

αj

)

= −k⊥3 + k⊥n
k⊥∗

n

. (B.8)

B.2 Equation (3.30)

In the following we consider the reduced determinant of the Hk×k whose indices take values

from the set P.

First fo all, it is useful to introduce a new notation related to particle labels: Iℓi ∈ N

denotes the smallest number that satisfies Iℓi > i ∈ P. For example, ℓ3 = 1 because

3 < I1 ∈ N. Then, by abuse of multiple subscripts, we can rewrite ζi and τi in terms of ζI
and τI as follows:

τi =



















−
k⊥

∗

Iℓi

q⊥
∗

Iℓi

ζ−1
Iℓi

, if i < Im,

−
∏

1≤l≤m

q⊥
∗

Il

q⊥
∗

Il+1

, if i > Im,

ζi =











−
k⊥Iℓi
q⊥
Iℓi

τ−1
Iℓi

, if i < Im,

−1, if i > Im.

(B.9)

Let us also rewrite the matrix (3.29):

H
′
=

















vi1+xi1 ci1i2 · · · ci1ip ci1n
xi2 vi2+xi2 · · · ci2ip ci2n
...

...
. . .

...
...

xip xip · · · vip+xip cipn
xn xn · · · xn xn

















, (B.10)

where particle labels in P have been reordered as 3 < i1 < · · · < ip < n with p = (n−k)−2.

By performing some elementary row and column transformations, we have

detH
′
= detH

′′
, H

′′
=

















vi1 ci1i2−xi1−vi1 · · · ci1ip−xi1−vi1 ci1n−xi1
0 vi2 · · · ci2ip−xi2 ci2n−xi2
...

...
. . .

...
...

0 0 · · · vip cipn−xip
xn 0 · · · 0 xn

















. (B.11)

Using the matrix determinant lemma, we have

detH
′
= xn

(

∏

i∈P,i 6=3,n

vi

)

(

1 + xn
(

Φ̄
−1

)

1,p+1

)

, (B.12)
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where Φ̄ is nothing but H
′′
with replacing the first element of the last row xn by zero.

Now our task becomes to calculate the entry in the upper right corner of the inverse of the

matrix Φ̄. Let us denote the last column of the inverse of Φ̄ as:

(αi1 , αi2 , . . . , αip , αn)
T. (B.13)

Clearly, αi1 = (Φ̄−1)1,p+1. Then it can be determined by the following linear equations:

Φ̄ (αi1 , αi2 , . . . , αn)
T = (0, 0, . . . , 1)T. (B.14)

The solution is

αj = −
k⊥j
k⊥∗

n

ζj , i1 < j ≤ n, (B.15)

αi1 = x∗n

(

k⊥3
k⊥n

ζ3 − 1

)

. (B.16)

Plugging (B.15) into (B.12) immediately leads to

detH
′
= −xn

(

∏

i∈P,i 6=3,n

vi

)

k⊥3
k⊥n

ζ3 τ3 . (B.17)

We immediately obtain (3.30) by inserting detH
′
into (3.28).

We show how to obtain (B.15) and (B.16) by induction in the following. First, it is

very easy to obtain αn from equation (B.14),

αn = x∗n = − k⊥n
k⊥∗

n

ζn, (B.18)

where one uses the solution of the MRK scattering equations, ζn = −1. As a next step,

we assume all αj ’s (j > i) are given by (B.15), and then let us solve αi which satisfies the

following equation:

viαi +
∑

j∈P,j>i

(

cij − xi
)

αj = 0, i > i1. (B.19)

Using the definition of cij and αj given by (B.15), we have

∑

j∈P,j>i

(

cij − xi
)

αj =
∑

j∈P,j>i

(

− ζiτj
τi

k⊥
∗

j

k⊥∗

n

+ xi
k⊥j
k⊥∗

n

ζj

)

=
ζi
k⊥∗

n

∑

j∈P,j>i

(

−
τjk

⊥∗

j

τi
+ xi

ζjk
⊥
j

ζi

)

=
ζi
k⊥∗

n

(

− Ti
τi

+
xiZi

ζi

)

, (B.20)

where we denote

Ti =
∑

j∈P,j>i

τjk
⊥∗

j , Zi =
∑

j∈P,j>i

ζjk
⊥
j . (B.21)

Next, we calculate these tow terms for two cases respectively: the label i is bigger than the

label of any negative-helicity particle or not.
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• Let us first consider the case of the label i is less than the largest label carried by

negative-helicity particles, i.e. i < Im. In this case, we have

Ti =
∑

j∈P,i<j<Iℓi

τjk
⊥∗

j +
∑

j∈P,j>Iℓi

τjk
⊥∗

j (B.22)

= τi
∑

i<j<Iℓi

k⊥
∗

j +
k⊥

∗

Iℓi

ζIℓi
(B.23)

= τi
∑

i<j<Iℓi

k⊥
∗

j − τi q
⊥∗

Iℓi
(B.24)

= −τi q
⊥∗

i+1. (B.25)

Here we used the scattering equations S̄ 2̇
I = 0, (3.4), in the second line (B.23), and

the solution (B.9) in the third line (B.24). Similarly, for Zi we have

Zi = −
∑

j∈P,j≤i

ζjk
⊥
j (B.26)

= −
∑

j∈P,j<Iℓi

ζjk
⊥
j +

∑

j∈P,i<j<Iℓi

ζjk
⊥
j (B.27)

=
k⊥Iℓi
τIℓi

+ ζi
∑

j∈P,i<j<Iℓi

k⊥j (B.28)

= −ζi q
⊥
Iℓi

+ ζi
∑

j∈P,i<j<Iℓi

k⊥j (B.29)

= −ζi q
⊥
i+1 (B.30)

• In the other case, i.e. i > Im, it is easy to obtain

Ti = τi
∑

i<j≤n

k⊥
∗

j = −τi q
⊥∗

i+1, (B.31)

Zi = −ζi
∑

i<j≤n

k⊥j = −ζi q
⊥
i+1. (B.32)

In both cases, as expected, we obtain the same results for Ti and Zi. By inserting them

into (B.20), we find

∑

j∈P,j>i

(

cij − xi
)

αj =
ζi
k⊥∗

n

(

− Ti
τi

+
xiZi

ζi

)

=
k⊥i
k⊥∗

n

vi ζi . (B.33)

Finally, equation (B.19) can be solved exactly by

αi = − k⊥i
k⊥∗

n

ζi, (B.34)

which proves (B.15).
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As a final step, we prove (B.16) via finding αi1 which satisfies

vi1αi1 +
∑

j∈P,j>i1

(

ci1j − xi1 − vi1
)

αj + vi1αn = 0. (B.35)

Noting that

∑

j∈P,j>i1

(

ci1j − xi1 − vi1
)

αj =
ζi1
k⊥∗

n

(

− Ti1
τi1

+ (xi1 + vi1)
Zi1

ζi1

)

= −
q⊥i1
k⊥∗

n

vi1 ζi1 , (B.36)

we have

αi1 =
q⊥i1
k⊥∗

n

ζi1 − x∗n = −x∗n

(

k⊥3
k⊥n

ζ3 τ3 + 1

)

, (B.37)

which ends the proof.

B.3 Equation (3.41)

Let us now discuss another part corresponding to the set N. Our goal is to evaluate the

determinant of the following matrix:

H
′ =

















H22 c2I1 c2I2 · · · c2Im
x∗I1 v∗I1+x∗I1 cI1I2x

∗
I1

· · · cI1Imx
∗
I1

x∗I2 x∗I2 v∗I2+x∗I2 · · · cI2Imx
∗
I2

...
...

...
. . .

...

x∗Im x∗Im x∗Im · · · v∗Im+x∗Im

















(B.38)

with

H22 =
∏

I∈N

q⊥I
q⊥I+1

, c2I =
τI
ζI
, cIJ =

ζIτJ
τIζJ

for I < J. (B.39)

Using a little linear algebra, it is easy to find

detH′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H22 c2I1−H22 c2I2−H22 · · · c2Im−H22

0 v∗I1 (cI1I2−1)x∗I1 · · · (cI1Im−1)x∗I1 − x∗I1xImv
∗
Im

0 0 v∗I2 · · · (cI2Im−1)x∗I2 − x∗I2xImv
∗
Im

...
...

...
. . .

...

x∗Im 0 0 · · · v∗Im

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (B.40)

By the matrix determinant lemma, we have

detH′ = H22

(

∏

I∈N

v∗I

)

(

1 + x∗Im
(

Φ
−1

)

1,m+1

)

, (B.41)

where

Φ =

















H22 c2I1−H22 c2I2−H22 · · · c2Im−H22

0 v∗I1 (cI1I2−1)x∗I1 · · · (cI1Im−1)x∗I1 − x∗I1xImv
∗
Im

0 0 v∗I2 · · · (cI2Im−1)x∗I2 − x∗I2xImv
∗
Im

...
...

...
. . .

...

0 0 0 · · · v∗Im

















. (B.42)
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Thus now our task is to calculate the last entry in the first row of the inverse of this matrix.

As we will see in the following, the similar technique used in previous sections also works

in this case.

Let us denote the first row of the inverse of the Φ as:

(ᾱ0, ᾱ1, . . . , ᾱm) (B.43)

They can be determined by the following linear equations:

(ᾱ0, ᾱ1, . . . , ᾱm)Φ = (1, 0, . . . , 0) (B.44)

The solution of this equation is

ᾱ0 =
1

H22
=

∏

I∈N

q⊥I+1

q⊥I
, (B.45)

ᾱa = ᾱ0 xIaτIa for 1 ≤ a < m, (B.46)

ᾱm =
(

ᾱ0 − 1
)

xIm . (B.47)

In the following, we prove them by induction. First of all, it is very easy to obtain ᾱ0 and

ᾱ1 by solving the first two equations in (B.44). In next step, we assume all ᾱb’s (b < a)

are given by (B.45) and (B.46), then let us solve ᾱa which satisfies the following equation:

v∗Iaᾱa +
(

c2Ia − H22

)

ᾱ0 +
a−1
∑

r=1

(

cIrIa − 1
)

x∗Ir ᾱr = 0 for 1 < a < m. (B.48)

Here we first consider the second term on the left-hand side of the equation. By observing

the solution of the MRK scattering equations, (3.5), we find that H22 and c2I can be

written as

H22 =
∏

I∈N

q⊥I
q⊥I+1

=
q⊥Ia
k⊥Ia

(

a−1
∏

l=1

q⊥Il
q⊥Il+1

)

τIa , (B.49)

c2Ia =
τIa
ζIa

=
q⊥∗
Ia

k⊥∗
Ia

(

a−1
∏

l=1

q⊥∗
Il

q⊥∗
Il+1

)

τIa . (B.50)

Therefore we have
(

c2Ia − H22

)

ᾱ0 =
(

ha − h′a
)

ᾱ0 xIaτIa , (B.51)

where

ha =
k⊥Iaq

⊥∗

Ia
(

k⊥
∗

Ia

)2

(

a−1
∏

l=1

q⊥
∗

Il

q⊥
∗

Il+1

)

, h′a =
q⊥Ia
k⊥

∗

Ia

(

a−1
∏

l=1

q⊥Il
q⊥Il+1

)

. (B.52)

Let us now turn to the last term on the left-hand side of (B.48). Comparing to the

solution of the MRK scattering equations (3.5), we have

τIr =
k⊥Irq

⊥
Ia+1

k⊥Iaq
⊥
Ir+1

(

a
∏

l=r+1

q⊥Il
q⊥Il+1

)

τIa , r < a . (B.53)
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This leads to

(

cIrIa − 1
)

x∗Ir ᾱr =
(

cIrIa − 1
)

x∗Ir ᾱ0 xIr
k⊥Irq

⊥
Ia+1

k⊥Iaq
⊥
Ir+1

(

a
∏

l=r+1

q⊥Il
q⊥Il+1

)

τIa

=
(

fra − gra
)(

ᾱ0 xIaτIa
)

, (B.54)

where we introduce some short-handed notations:

gra =
k⊥Irq

⊥
Ia+1

k⊥
∗

Ia
q⊥Ir+1

(

a
∏

l=r+1

q⊥Il
q⊥Il+1

)

, (B.55)

fra =
k⊥Irq

⊥
Ia+1

k⊥
∗

Ia
q⊥Ir+1

(

a
∏

l=r+1

q⊥Il
q⊥Il+1

)

cIrIa =
k⊥Iak

⊥∗

Ir
q⊥

∗

Ia
(

k⊥
∗

Ia

)2
q⊥

∗

Ir

(

a−1
∏

l=r

q⊥
∗

Il

q⊥
∗

Il+1

)

. (B.56)

Therefore, equation (B.48) becomes

v∗Iaᾱa +
[

(

ha − h′a
)

+
a−1
∑

r=1

(

fra − gra
)

]

(

ᾱ0 xIaτIa
)

= 0 for 1 ≤ a < m. (B.57)

Then by performing a lot of straightforward calculations, we obtain

ha +
a−1
∑

r=1

fra =
k⊥Iaq

⊥∗

Ia
(

k⊥
∗

Ia

)2 , (B.58)

h′a +
a−1
∑

r=1

gra =
q⊥Ia
k⊥

∗

Ia

. (B.59)

By plugging them into (B.57) gives immediately

ᾱa =
(

ᾱ0 xIaτIa
)

. (B.60)

As a final step, we can obtain ᾱm by solving the following equation:

v∗Imᾱm +
(

c2Im − H22

)

ᾱ0 +
m−1
∑

r=1

(

cIrIm − 1
)

x∗Ir ᾱr −
m−1
∑

r=1

x∗IrxImv
∗
Imᾱr = 0. (B.61)

For the second and the third terms, we have

(

c2Im − H22

)

ᾱ0 +
m−1
∑

r=1

(

cIrIm − 1
)

x∗Ir ᾱr = −v∗Imᾱ0 xImτIm . (B.62)

For the last term, we have

m−1
∑

r=1

x∗IrxImv
∗
Imᾱr =

m−1
∑

r=1

x∗IrxImv
∗
Imᾱ0 xIrτIr = v∗Imᾱ0 xIm

m−1
∑

r=1

τIr . (B.63)

Using the scattering equations (3.4) and their unique solution (3.5), we have

m−1
∑

r=1

x∗IrxImv
∗
Imᾱr = v∗Imᾱ0 xIm

(

1− H22 − τIm

)

. (B.64)
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Finally, we find

ᾱm = ᾱ0 xIm
(

1− H22

)

= xIm
(

ᾱ0 − 1
)

. (B.65)

Plugging it into (B.41) gives

detH′ =
∏

I∈N

v∗I . (B.66)
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