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1 Introduction

Grand Unified Theories (GUTs) [1–5] are well motivated extensions of the Standard Model

(SM), explaining the coincidental cancellation of SM gauge anomalies, and stabilizing the

vacuum at high energy [6]. GUT theories predict gauge coupling unification at a high

scale MGUT ∼ 1016 GeV. Supersymmetric GUTs [7–12] do so automatically [13], but also

typically require a light supersymmetric spectrum which has so far eluded experimen-

tal verification. By contrast, non-supersymmetric GUTs achieve gauge coupling unifica-

tion through intermediate mass scales and fields that guide the gauge couplings towards

unification, [14–20].

Gauge coupling unification in non-supersymmetric theories can therefore occur through

multiple steps. One of the most well known examples of an intermediate scale model is

the Pati-Salam (PS) model [2, 21]. As opposed to fully unified models such as SU(5) or

SO(10), PS models can survive at relatively low energies, because they do not induce rapid
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proton decay [22]. Primordial monopoles created at such low scales have been shown to be

inflated away in models with a low scale strong phase transition [23, 24]. A low PS scale is

phenomenologically attractive, as it implies that unification has low energy consequences

which can be constrained by precision data and collider experiments. Furthermore, PS

symmetry breaking can in principle lead to a first order phase transition [25], so long as

the post-inflation reheating temperature is larger than the breaking scale, which is favoured

by the parameters of the theory.

Inhomogeneous cosmic phase transitions are associated with stochastic gravitational

wave (GW) spectra. Such gravitational radiation is an important mechanism through which

energy is dissipated when bubbles of the new vaccuum collide. The associated gravitational

power spectrum is therefore a function of the set of parameters which govern the thermal

evolution of the phase transition: the latent heat normalized to the radiation density, α, the

speed of the transition β/H, the transition temperature Tn and the velocity of the bubble

wall upon collision vw. In this work, we compute the thermal parameters of a PS phase

transition. We motivate an effective model with three free parameters, which describes

the broken direction in the scalar potential and its most important thermal contributions.

We study this parameter space, and show that the PS transition may lead to a stochas-

tic spectrum which is observable in the next generation of ground-based interferometer

experiments, such as the Einstein Telescope [26–30], and the Cosmic Explorer [31].

Ground-based interferometer experiments are sensitive to GW spectra with relatively

low PS transition scales MPS ∼ O(105) GeV. As such, there are several low-energy experi-

mental directions which may probe the PS-GW parameter space. Firstly, collider searches

for right-handed neutrinos and gauge bosons become significant for low values of the scale

MPS. Moreover, further low-energy constraints may come from the neutrino sector, as the

SM neutrino masses are determined by vL and vR and they have strong contributions to

lepton flavour violating processes. Lastly, a GW result may inform future experimental

efforts in determining the lifetime of the proton, which we have currently used to set a

lower bound on MPS.

Complementarity studies of GW from cosmic phase transitions [32–37] have earlier

focused on electroweak scale transitions in hidden sectors [35, 38–42], and collider sig-

natures [43–45] and electroweak precision tests [46–48] of larger Higgs sectors. The re-

sults in this work adds the study of a phase transition within a well-motivated frame-

work, and promises a new avenue for dialogue between gravitational wave and models of

particle physics.

The structure of this paper is as follows. In section 2 we describe the model, its field

content, finite temperature potential and the conditions for gauge coupling unification.

Section 3 contains the study of the phase transition and the spectrum of gravitational

waves it produces, highlighting the optimal scenario for visibility of the GW spectrum in

the next-generation of experiments. We then run this scenario through some low energy

probes in section 4, including neutrino masses, lepton flavour violation, collider searches

and proton decay. We conclude in section 5 with a summary of the findings and a brief

discussion on selected topics for expansion.
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2 A first order Pati-Salam phase transition

The Pati-Salam model [2] is a good candidate for a first order phase transition which

peaks within the frequency windows of the next generation of ground-based interferometer

experiments. It can admit a low energy symmetry breaking scale, MPS < 107 GeV, which

implies that the stochastic spectrum peaks within the experimental reach, fpeak . 103

Hz [49]. The model also has a fairly large gauge coupling constant, g4 & 0.8, which

increases the strength of the phase transition. Moreover, the rank of the broken group,

SU(4), is larger than e.g. the electroweak phase transition, such that more latent heat is

released [35].

The symmetry group of the PS model is GPS = SU(4)c × SU(2)L × SU(2)R. This

unifies the quarks and leptons of a given chirality for each generation into merely two

representations of the group. The matter content in this model is therefore embedded in

the representations

{4,2,1} ↔

(
u1 u2 u3 ν

d1 d2 d3 e

)
, {4,1,2∗} ↔

(
dc1 dc2 dc3 ec

−uc1 −uc2 −uc3 −νc

)
. (2.1)

This gauge group and matter content are manifestly left-right symmetric, invariant

under exchanges of SU(2)L ↔ SU(2)R. Manifest left-right symmetry (also known as D-

parity) forces gL = gR, which makes gauge coupling unification an impossible task. We

will thus explicitly break this symmetry by adding purely right-handed fields at the PS

scale that ensure gL 6= gR and gauge coupling unification can occur.

We therefore construct a model with a PS and a left-right (LR) symmetric group,

GLR = SU(3)c × SU(2)L × SU(2)R × U(1)B−L [50–52], as intermediate scales from an

unified UV model, e.g. SO(10), with the breaking chain,

SO(10)→ GPS → GLR → GSM, (2.2)

where GSM = SU(3)c × SU(2)L × U(1)Y . Upon the construction of this model we aim to

achieve gauge coupling unification and at the same time keep the PS breaking scale low

MPS < 107 GeV.

2.1 Scalar field content

The minimum set of scalar fields for a valid PS model needs to be sufficient to trigger

spontaneous symmetry breaking (SSB) of every step in the breaking chain. This requires

the following set of fields

Φ = {1,2,2}, ∆R = {10,1,3}, Ξ1 = {15,1,1}, (2.3)

which trigger the symmetry breaking of GSM, GLR and GPS respectively. In addition we

add a few more scalar fields. A left handed triplet field ∆L = {10,3,1}, which gives

masses to the neutrinos via type II seesaw [53, 54]. A right-handed coloured triplet, ΩR =

{15,1,3}, to explicitly break manifest LR symmetry. And two adjoint coloured fields,

Ξ2,3 = {15,1,1} to help with gauge coupling unification.
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At the scale at which the PS group is broken, when Ξ1 acquires a vacuum expectation

value (vev), 〈Ξ1〉 = v, the off-diagonal gauge bosons G, the scalar fields ΩR, Ξ2,3 and

coloured components of ∆LR get integrated out, with the following masses1

M2
G ≈

1

6
g2

4v
2, M2

Ξ2,3
≈ v2,

M2
ΩR
≈ ρ2

1v
2 − µ2

ΩR
, M2

∆⊥L,R
≈ v2,

(2.4)

where ρ1 is a portal coupling between ΩR and Ξ1. The component of Ξ1 that acquires the

vev (Ξv1) gets a mass MΞv1
=
√

2λ1v ≡MPS, with λ1 its quartic coupling.

After PS symmetry breaking, the remaining scalar fields decompose into representa-

tions of the LR group as

Φ = {1,2,2} → φ = {1,2,2, 0},
∆L = {10,3,1} → δL = {1,3,1,−2},
∆R = {10,1,3} → δR = {1,1,3,−2},

The field δR is now responsible for the breaking of the LR group into GSM, and the vev

of φ triggers electroweak symmetry breaking. Additionally, the field δL acquires a vev at

the same time, which has consequences for neutrino masses, as we will see later. The vevs

of these fields can be expressed as

〈φ〉 =
1√
2

(
vu 0

0 vd

)
, 〈δL〉 =

1√
2

(
0 0

vL 0

)
, 〈δR〉 =

1√
2

(
0 0

vR 0

)
, (2.5)

where the SM vev is the combination v2
SM = v2

u + v2
d.

Lastly, after LR symmetry breaking, the gauge bosons associated with SU(2)R and

U(1)B−L, as well as the δR and δL fields get masses that look like

M2
WR
≈ 1

4
g2
Rv

2
R, M2

ZR
≈ 1

4
(g2
B−L + g2

R)(v2
SM + 4v2

R)

M2
δR
≈ λRv2

R − µ2
δR
, M2

δL
≈ λLRv

2
R − µ2

δL

(2.6)

with the approximation that MWR
� MWL

and MZR � MZL and their mixing is

negligible [55].

2.2 Gauge coupling unification

Much of the motivation for Pati-Salam models comes from their ultraviolet completion in

SO(10) or E6, where all fermions are unified into a single representation of the group [3–5].

Although we will not worry about the details of the UV completion beyond the GUT

scale, we enforce the unification of the gauge couplings as it implies a relation between

the different energy scales which is the source of complementarity between low energy and

gravitational wave searches.

1See appendix A for the full scalar potential of this model.
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The one-loop gauge Renormalization Group Equations (RGEs) for the gauge

couplings are

µ
dga
dµ

=
ba

16π2
g3
a, (2.7)

for a each element in a direct product of Lie groups, and ba a parameter that controls the

slope of the RGE flow for ga and depends on group properties and the field content as [56]

ba =
2

3

∑
f

S(Raf )d⊥(Raf ) +
1

3

∑
s

S(Ras)d⊥(Ras)−
11

3
C2(Ga) (2.8)

where C2(Ga) is the Casimir of the group Ga, Rf and Rs the representations of fermion and

spinor fields, respectively, S(Ri) is the Dynkin index of the representation Ri and d⊥(Ri)
its dimension in the groups orthogonal to Ga.

Equation (2.7) can be solved analytically for each step of the breaking chain, and

iterated from MGUT to MZ by using matching conditions at each scale. In fact for αa = g2a
4π

and t = 1
2π log µ the solution becomes a linear system of equations of the form

α−1
i (MZ) = α−1

GUT +

m∑
j=1

bji∆tj (2.9)

for m steps in the breaking chain, i = 1, 2, 3 labels the SM gauge couplings and

∆tj = tj − tj−1.

The mechanism to achieve gauge coupling unification described above relies on the

assumption that after each symmetry breaking, there is an Effective Field Theory remaining

where many of the fields of the full theory have been integrated out, and these fields have

all masses equal to the symmetry breaking scale. This is not generally the case and thus

the matching conditions at each energy scale depend on the masses of these fields through

the threshold corrections [57, 58]

α−1
i (µ) = α−1

j (µ)− λij(µ) (2.10)

with αj and αi the couplings of the theory before and after SSB, respectively. The threshold

corrections at each scale can be computed as [59]

λij(µ) =
1

12π

(
(C2(Gj)− C2(Gi))− 21

∑
g

S(Rg) log
Mg

µ

+ 8
∑
f

S(Rf ) log
Mf

µ
+
∑
s

S(Rs) log
Ms

µ

)
(2.11)

where g, f and s label the vector, fermion and scalar fields integrated out at µ, and Mi are

their masses.

The masses of the fields in the intermediate scales, eqs. (2.4)–(2.6), are mostly fixed by

the symmetry breaking conditions and the structure of the potential, and these contribute

towards the threshold corrections whenever their masses stray from the respective scales

at which they are integrated out. The mass of the field ΩR, integrated out at the PS scale,
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Figure 1. Gauge coupling running for the model for MPS = 5× 105 GeV at one loop. The changes

in slopes around MPS and MGUT and discontinuities at MGUT are due to threshold corrections.

causes considerable threshold corrections since its mass is dominated by its portal coupling

to Ξ1, as it will be seen later when we discuss gravitational waves. Lastly most the masses

of the fields at the GUT scale are unconstrained, since they depend on the field content

and SSB mechanism at the GUT scale, which we do not consider here. Hence we take the

liberty of setting these masses to values that assist in achieve gauge coupling unification

within the desired ranges of relevant mass scales.

After adding threshold corrections we find that in our scenario with gauge coupling

unification can be achieved for any value of MPS ∈ (2.9 × 103, 2.25 × 107) GeV, and the

remaining scales and couplings can be obtained in terms of MPS. The ranges for other

relevant quantities are

MLR(MPS) ∈ (90.2, 2.25× 107) GeV

MGUT(MPS) ∈ (1.4× 1016, 2.9× 1016) GeV

g4(MPS) ∈ (0.75, 1.01) (2.12)

Figure 1 shows the one-loop RGE evolution of the gauge couplings in this model, for

the choice of MPS = 105 GeV, which we will later motivate as the optimal choice for the

detection of gravitational waves. As can be noticed in the figure, around MPS and MGUT

there are changes in slopes and discontinuities in the matching on the gauge couplings.

These are a consequence of the threshold corrections described above, where the strong

effect of the SO(10) corrections can be readily spotted.
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2.3 Thermal potential

As described in the previous subsections, the Pati-Salam symmetry is broken when Ξ1

acquires a vacuum expectation value. In the absense of new fermions charged under SU(4)C ,

the resulting phase transition can be described by the Pati-Salam gauge coupling, the portal

couplings between Ξ1 and other scalars, and the scalar field potential in the Ξ1 direction.

The only portal coupling that can be large without undesirable low energy consequences

is the mixed quartic between Ξ1 and ΩR. Here we will consider this term to set the

effective mass of the ΩR field. As described in the previous subsection, the SU(4)C gauge

coupling constant is fixed as a function of the PS mass. Then, our parameter space is

limited to the two parameters in the Ξ1 potential, and a single portal coupling.2 With

these considerations in mind we can approximate the scalar potential as follows

VΞ1 = −µ2
Ξ1

Ξ†1Ξ1 + λ1[Ξ†1Ξ1]2 + Ξ†1Ξ1

(
ρ1ΩRΩ†R

)
. (2.13)

It is convenient to reparametrize the zero-temperature scalar potential in terms of the

overall scale and vev,

V0 = Λ4

(
−1

2

(
φ

v

)2

+
1

4

(
φ

v

)4

+
ρ1

2

v2

Λ4

(
φ

v

)2

ΩRΩ†R

)
, (2.14)

with µ2
Ξ1

= λ1v
2, λ1 = (Λ/v)4 and Ξv1 = φ. We will see that the strength of the phase

transition can be effectively determined based on the zero-temperature ratio v/Λ and the

size of the portal coupling ρ1 [35].

At one loop, we consider Coleman-Weinberg contributions and thermal corrections to

the potential (2.14),

VT 6=0 =
∑
i

T 4

2π2
niJB

(
m2
i + Πi

T 2

)
(2.15)

VCW = nGB
m4

GB

64π2

(
log

[
m2

GB

µ2

]
− 5

6

)
+
∑
i 6=GB

ni
m4
i

64π2

(
log

[
m2
i

µ2

]
− 3

2

)
.

In the above equation, the sum is over all bosons (ni denotes the multiplicity factors),

GB refers to gauge bosons, µ is the renormalization scale (in our analysis, we will assume

µ ∼ T ),3 and the mass terms are field dependent and given by4

m2
φ = 3

Λ4

v4
φ2 − Λ4

v2
(2.16)

m2
G =

Λ4

v4
φ2 − Λ4

v2
(2.17)

m2
GB =

g2
4

6
φ2 (2.18)

m2
ΩR
≈ ρ1φ

2 , (2.19)

2We consider only renormalizable operators, and leave the case of Pati-Salam phase transitions in the

presence of large non-renormalizable operators in the scalar potential to future work.
3Alternatively, one could have chosen µ ∼MPS. This choice gives numerically and qualitatively similar

results.
4Radiative corrections to the tree level masses due to CW contributions have no appreciable effect at

the target accuracy.
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for the physical field φ, Goldstone modes G, gauge bosons GB and the scalar ΩR respec-

tively. We also include Debye masses, given by [60], to delay the breakdown of perturbation

theory at high temperature. The Debye masses can be approximated in the high temper-

ature limit as5

Πφ =
3

4

Λ4

v4
T 2 +

g2
4

8
T 2 +

45

12
ρ1T

2 (2.20)

ΠGB =
47g2

4

36
T 2. (2.21)

Note that we have assumed the combination of the Debye mass and the mass parameter,

ΠΩR − µ2, is negligible compared to the field dependent mass mΩR . In the next sections,

we use the full 1-loop thermal potential in the φ direction,

V (φ, T ) = V0(φ) + VCW(φ, µ) + VT 6=0(φ, T ) (2.22)

to find the thermal parameters of the phase transition.

3 Gravitational wave spectrum from a PS phase transition

3.1 Strength of the phase transition

At high temperature T � v, the scalar potential (2.22) has a single minimum at Ξ = 0.

As the sector cools, a second minimum develops with Ξ 6= 0. The minima are degenerate

at the critical temperature,

VTC (0) = VTC (φC). (3.1)

Some intuition for the strength of the gravitational wave signal can be developed from the

ratio φC/TC for different parameter choices. In figure 2 this ratio is shown for different

values of the portal coupling ρ1 the ratio of zero temperature variables v/Λ. Here we have

fixed the gauge coupling according to the relation in the previous subsection (2.12) and set

MPS = 105 GeV. It is seen that the ratio peaks at around φC/TC = 5 for large v/Λ, and

portal coupling strength of around ρ1 ∼ 10−1. This can be understood in the following

way: as ρ1 increases, two competing effects occur. The thermal mass term increases, such

that the critical temperature is lower. At the same time, the Coleman-Weinberg potential

contributes an effective interaction term, which drives the value of φC smaller. The CW

potential depends on ρ2
1, while the thermal potential depends on ρ1 in the high temperature

limit. Ultimately, the behavior of φC/TC results from the balance of the two effects.

3.2 Gravitational wave spectrum

To find the thermal parameters governing the phase transition, we find classical solutions

to the Euclidean equations of motion (the scalar bounce solution), which describe the

nucleation of an O(3) bubble of the true vacuum in a medium of the false vacuum. We solve

the Euclidean equations of motion by varying the initial conditions via a simple bisection

5Going beyond the high temperature limit for the Debye masses requires solving a self consistency

condition, which is outlined in ref. [61].
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Figure 2. Strength of the phase transition expressed in the parameters φC/TC , as a function of

the tree-level combination v/Λ and the portal coupling ρ1. In this plot, MPS = 105 GeV. For

simplicitly, all other portal couplings have been set to zero.
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Figure 3. Behaviour of thermal parameters with Lagrangian parameters ρ1 and v/Λ. The left

panel shows the speed of the transition as captured by β/H. It is seen that β/H is minimized for

portal coupling ∼ 3 × 10−1 and large v/Λ ∼ 5. In the center, the latent heat which is largest for

portal coupling ∼ 10−1 and large v/Λ. The right panel shows the nucleation temperature, which

does not vary much as a result of the fixed scale MPS = 105 GeV.

method. We give more details on our calculation of the thermal parameters in appendix B.

The thermal parameters can be used to predict the stochastic gravitational wave spectrum

using a combination of analytic and lattice studies, as reviewed in appendix C.

Informed by the results in figure 2, we vary the portal coupling between 0.1 < ρ1 < 0.5

and the ratio of scales 2 < v/Λ < 6 and calculate the nucleation temperature TN as well

as the thermal parameters α and β/H. The results of our parameter scan are smoothed

using a local quadratic regression with tri-cube weights [62]. We show the behaviour of

the thermal parameters with v/Λ and ρ1 in figure 3. It is seen that the latent heat α
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Figure 4. The sound wave (in black) and turbulence (in blue) spectra of a Pati-Salam phase

transition for the benchmark points described in the text. Here we have assumed vw = 1 as

motivated in appendix C. To find the peak of the turbulence spectrum, which depends on two

scales, we used the fiducial value TN = 105 GeV. The colour scaling denotes the peak frequency

for the sound wave spectrum; the peak frequency of the turbulence spectrum is expected to be

smaller but of the same order of magnitude for these benchmarks. The thicker line shows the peak

sensitivity of the Einstein telescope [26].

asymptotes for large v/Λ and reaches a maximum for ρ1 ∼ O(10−1) which is expected

from the behaviour of the order parameter shown in figure 2. Likewise, the speed of the

transition β/H also reaches a minimum value for v/Λ ∼ 5 and coupling ρ1 ∼ 3 × 10−1.

The nucleation temperature is mostly determined by the scale MPS, but shows a small

dependence on the coupling strength ρ1.

The thermal parameters can be used to find the stochastic gravitational wave spec-

tra, a calculation we review in appendix C. We plot contours of peak amplitude of the

gravitational wave spectra in the (β/H,α) plane in figure 4, with a selection of benchmark

points from our study. The benchmarks shown here represent an evenly spaced grid with

ρ1 = {1, 2, 3, 4, 5}× 10−1 and v/Λ = {2, 3, 4, 5, 6}. The colour scaling in this plot gives the

frequency at the peak of the sound wave spectrum, which is the dominant contribution.

For reference, the thicker dashed line in figure 4 gives the anticipated peak sensitivity

of the Einstein telescope [26]. We expect the sound wave peak to be visible at the Einstein

telescope [26] for β/H ∼ O(103), Tn . 105 GeV and α & 0.07 [47] with the Cosmic

Explorer [31] allowing slightly higher values of (Tn × β/H).
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4 Complementarity with low energy probes

A Pati-Salam model with MPS = 105 GeV, such as studied in the previous section, has

many other observational consequences. Through gauge coupling unification, a fixed value

of MPS also fixes the remaining scales and the gauge couplings. The values of these for

MPS = 105 GeV are

MLR ∼ 1.2× 104 GeV,

MGUT ∼ 1.91× 1016 GeV,

g4 ∼ 0.88,

gGUT ∼ 0.96. (4.1)

Using these values in this section we will study some low-energy signatures of this

model, such as neutrino masses, lepton flavour violation, collider searches and proton decay.

4.1 Neutrino masses

As required by the observation of neutrino oscillations [63–67], left-handed neutrinos have

non-vanishing masses. However, studies of the CMB by the Planck satellite have imposed

a strong upper limit on the sum of the neutrino masses
∑
mν < 0.23 eV [68]. Left-right

symmetric models, such as the intermediate step of the model described in section 2,

naturally contain a right-handed neutrino field N and a left-handed triplet δL, which can

make the active neutrinos light via type I and type II seesaw mechanisms [53, 54]. The

mass matrix of neutrinos in this scenario is

Mν =

(
ML MD

MT
D MR

)
, (4.2)

where MD is the Dirac-type mass of the neutrinos and ML and MR are the left and

right-handed Majorana masses. The former mass arises from the Yukawa coupling of the

neutrino field to the SM Higgs after electroweak symmetry breaking, whereas the latter

masses are generated dynamically through the vacuum expectation values of δL/R, denoted

by vL and vR respectively. In the limit of small active-sterile mixing, we can write the light

left-handed neutrino masses as

mνL 'ML −MDM
−1
R MT

D, (4.3)

and the masses of the heavy right-handed neutrinos is mN ' MR. This relation can be

expressed in terms of the various vevs from eq. (2.5) by taking ML = ζvL, MR = ζvR and

MD = yνvSM as

mνL ' ζvL − y
2
ν

v2
SM

ζvR
, (4.4)

where yν is the Yukawa coupling of the neutrinos and ζ is the coupling of the scalar triplets

δL and δR to the lepton fields, which we have taken to be equal, ζL = ζR = ζ as a relic of

D parity from the GUT scale. In models with breaking of LR manifest symmetry the vev
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vL can be obtained as a function of the scale of the scale of D-parity breaking [18, 69, 70].

In this scenario, D-parity is broken already at the GUT scale, and the only coupling of δL
to the field responsible is through ΩR. Hence we can express vL as [18]

vL ≈
η

M2

v2
SMvRM

2
ΩR

M2
GUT

≈ ηρ1

M2

v2
SMvRv

2

M2
GUT

, (4.5)

with η the coupling between δL and ΩR (see appendix A) and M the dimensionful cou-

pling between ΩR and the D-parity breaking field. Identifying MLR ≡ vR, we can rewrite

eq. (4.4) as

mνL '
v2

SM

MLR

(
ζ
ηρ1

M2

v2M2
LR

M2
GUT

− yν
ζ

)
. (4.6)

Electroweak precision data restricts vL . 5 GeV in order to keep the electroweak ρ

parameter under control [71]. This translates into an upper limit on η
M2 . 8.2×1014 GeV−1.

The parameter M controls the splitting between the GUT scale and the mass of ΩR,

which we want to remain at around MPS (cf. eq. (2.4)). M is then constrained as M .
1.6× 10−12 GeV and it thus forces a strong upper bound on η . 2.03× 10−9.

The parameters ζ and yν are unconstrained in this model, but MLR depends on the

Pati-Salam scale MPS via gauge coupling unification. For the gravitational wave scenario

studied in the previous section, MPS = 105 GeV, MLR ∼ 12 TeV and ρ1 ∼ 0.3. For the

maximum values allowed for M and η, the condition that the sum of neutrino masses is

below the CMB limit [68] becomes

yν > ζ(−1.54× 10−11 + 1.001ζ) (4.7)

There is another contribution to neutrino masses that we have not considered here

arising from loop corrections involving heavy leptoquarks [72]. These contributions are

rather small and do not modify the conclusions of eq. (4.6) significantly. Therefore we will

not discuss them any further.

The mixing of sterile to active neutrinos Θ is the source of many of the contributions

from heavy neutrinos to low energy observables, including electroweak precision observables

(EWPO), which set a upper limit of |Θ|2 . 10−3. This mixing is given by Θ = MDM
−1
R ,

cf. eq. (4.3), which using the parameters ζ and yν transforms into

yν < 1.562 ζ. (4.8)

4.2 Lepton flavour violation

Neutral lepton flavour violation is present in the Standard Model, through oscillations

of neutrinos via their mixing matrix [73, 74]. Charged lepton flavour violation, however,

cannot be mediated in the SM, and so any observation of these processes would be a

smoking gun for BSM physics [75–78].

Many decay and conversion processes have been studied that violate lepton flavour,

such as the photonic penguins, µ → eγ, τ → eγ, τ → µγ, three-body penguins and box

diagrams, l− → l−l+l− and µ−e conversion in nuclei [79]. Searches for these processes have
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been performed by several experiments and they have set upper limits on their branching

ratios [80–90]. The most constraining of these are the limits on µ → eγ, by the MEG

collaboration [80], µ → eee, by the SINDRUM experiment [83], and µ − e conversion in

nucleii, by SINDRUM-II [90], which are

BR(µ→ eγ) < 4.2× 10−13,

BR(µ→ eee) < 1.0× 10−12,

RAu(µ− e) < 8× 10−13. (4.9)

In left-right symmetric models the gauge bosons WR and the scalars δL,R can mediate

these processes, and one can approximate their branching fractions as [18, 91]

BR(µ→ eγ) ∼ 1.5× 10−7|Θ∗eIΘµI |2
(
gR
gL

)4( mN

mWR

)4(1 TeV

MWR

)4

,

BR(µ→ eee) ∼ 1

2
|Θ∗eIΘµI |2|ΘeI |4

(
gR
gL

)4( mN

mWR

)4
(
M4
WR

M4
δR

+
M4
WR

M4
δL

)
,

RN (µ− e) ∼ 0.73× 10−9XN |Θ∗eIΘµI |2
(
gR
gL

)4( mN

mWR

)4(1 TeV

MδR

)4
(

log
m2
δR

m2
µ

)2

,

(4.10)

where the nuclear form factor XN has the value XAu = 1.6 [18] and Θ is the active-sterile

neutrino mixing matrix.

In this model we have made the simplifying assumption that MδL ∼ MδR ∼ MLR,

and also we have that MWR
= 1

2gRMLR and MN = ζMLR. If we take the scenario that

maximizes the detection of gravitational waves, MPS = 105 GeV, then MLR = 12.15 ×
103 GeV, gL = 0.627 and gR = 0.376. The active-sterile mixings are not fixed by the

scenario, but electroweak precision data has put an upper limit on their values which, as a

conservative limit, we can take as |ΘαI |2 < 10−3 [92]. This results in the branching ratios

BR(µ→ eγ) ∼ 3.43× 10−10ζ4,

BR(µ→ eee) ∼ 6.15× 10−9ζ4,

RN (µ− e) ∼ 2.71× 10−12ζ4, (4.11)

which then gives an upper limit for ζ so as to satisfy the limits in eq. (4.9), ζ < 0.113, due

to the most constraining of the observables, namely µ→ eee.

Future experiments measuring µ−e conversion, such as COMET [93] and Mu2e [94] aim

to reach the limit of RN (µ−e) < 10−16. A positive signal from either of those experiments

would fix ζ for this model, which would strengthen our predictions and motivation for the

complementarity with gravitational wave detection. If no such signal is found, the new

limits would further constrain the value of ζ. Taking the form factor XAl = 0.8 [18] this

new upper limit would drop to ζ < 0.093.
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4.3 Collider searches

Low scale Pati-Salam and left-right symmetric models predict light exotic particles that

can be visible at the LHC. In particular, the lightest exotic states produced in our model

after LR symmetry breaking are the heavy right-handed neutrinos Nj , the right-handed

gauge bosons WR and ZR and the left-handed scalar triplet δL, with masses in (2.6).

Right handed neutrinos can be produced directly on-shell at the LHC from the decay

of a WL boson. The primary process for detection of right-handed neutrinos at the LHC

is pp→W → Nl→Wll→ lljj, where the two final state leptons have the same sign [95].

ATLAS and CMS reported exclusion limits on searches for same sign dilepton final states

for mass ranges of 100 GeV < MN < 500 GeV [96] and 20 GeV < MN < 1600 GeV [97],

respectively. In the heavy mass range, above the Z resonance, MN > 90 GeV, CMS has

the strongest exclusion power which is almost linear in the MN − |ΘeN |2 plane, so its limit

can be approximated as
MN

|ΘeN |2
& 1.5 TeV. (4.12)

This can be translated to the parameters of our model using the relations MN h ζvR
and ΘeN ∼ yνvSM

ζvR
and for the chosen value of MPS = 105 GeV, as

y2
ν < 1.98× 104ζ3 for ζ > 7.4× 10−3. (4.13)

In addition to the same sign dilepton search, CMS reported results on searches for

heavy neutrinos in three lepton final states [98]. The limits of the search for MN > 100 GeV

are rather similar to the dilepton search. For smaller masses below the Z resonance, the

exclusion limits of this search are among the strongest in the literature on par with the

results of DELPHI [99], and it effectively excludes all neutrino masses for ΘeN > 10−5. So

we have the constraint

yν < 0.156 ζ for ζ < 7.4× 10−3. (4.14)

In the case that the gauge boson WR can be produced at the LHC, another channel

opens for the production of right-handed neutrinos where the WR takes the place of WL

in the decay chain. In this channel, the two leptons in the final states can have either the

same or opposite signs, depending on the Majorana or Dirac nature of the neutrinos [70].

Both ATLAS and CMS reported strong exclusion limits for WR and N in searches with two

same and opposite sign leptons and two jets final states [100, 101]. The limits from both

experiments reach up to MWR
> 4.7 TeV for 500 GeV< MN < 3 TeV, for the simplified

model where gL = gR and maximal coupling |Θ| = 1.

However, in the cases where gL 6= gR, as it is our model, the constraint is slightly

relaxed. In order to assess the effect of these searches on our model we make a very rough

comparison of the number of events predicted in our model for the same-sign eejj signal

region with the measured data by ALTAS and CMS at 36 fb−1 [100, 101]. The cross-section

of this model for this process can be estimated to be (to leading order in ζ)6

σ(pp→WR → eejj) ≈ 5.356 y−2
ν ζ4 fb (4.15)

6We use the expressions mentioned in [70] for the production cross section of WR as well as the branching

ratios of WR and N .
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ATLAS and CMS reported a number of observed events of 11 and 4, and predicted

background events 11.2 and 2.6, respectively. Using the reported efficiencies for the high

WR mass region of 0.54 (ATLAS) and 0.57 (CMS) we find that, at 95% CL

yν < 4.010 ζ2 − 77.222 ζ4 (ATLAS),

yν < 4.500 ζ2 − 86.539 ζ4 (CMS).
(4.16)

The other heavy gauge boson in the theory with a mass low enough to be relevant for

collider searches is ZR. High mass resonance searches in the dilepton invariant mass from

ATLAS and CMS have imposed strong constraints on the mass of ZR [102, 103]. Both

experiments give a simplified model limit in the range MZR > (3.5, 4.0) TeV. It has been

shown that for models with gL 6= gR the limits on Z ′ resonances are much weaker [104]. In

any case, for MPS = 105 GeV, the mass of MZR in our model is fixed to MZR ≈ 14.5 TeV

and hence it is not affected from the current experimental limits.

Finally let us consider searches for triplet scalar bosons δL. Most relevant to us are

searches for doubly charged scalar bosons, δ++
L , in same sign diboson final states [105]. The

lower limits set by such searches are of the order of a few hundred GeV, depending on the

vev vL. Similarly to the ZR case above, for MPS = 105 GeV, MδL ≈ MLR = 12.152 TeV,

and thus the limits do not affect the outcome of this model.

So far the LHC experiments have reported analyses on 36 fb−1 of collected data. The

increased sensitivity of future upgrades of the LHC will impose stronger constraints on

the masses of exotic states. The high-luminosity LHC (HL-LHC) is projected to collect

up to 1 ab−1 of data at 14 TeV, and the hypothetical upgrade to the Very Large Hadron

Collider (VLHC) will push the energy frontier to 100 TeV with a projected luminosity of

10 ab−1 [106]. Discovery of any of N , WR, ZR or δL in either HL-LHC or VLHC would

conclude in strong evidence towards a LR symmetric model at low scales, which motivates

a low scale PS phase transition leading to a GW spectra observable in the next generation

of experiments.

4.4 Proton decay

Unified theories typically introduce baryon number violating operators, which render the

proton unstable and can lead to rapid proton decay [107–109]. This is certainly true

for SO(10) models, whose off-diagonal gauge and scalar bosons couple to both quarks and

leptons an can mediate nucleon decays [20, 110, 111]. This is not the case, however, for Pati-

Salam models, where the gauge sector preserves baryon and lepton number independently

and only selected scalar sectors can mediate the transition, none of which we include in

our model [22].

Therefore, the only source of proton decay in our model arises from the leptoquarks

at the GUT scale. The half-life of the proton in this scenario, with mass mp, then can be

approximated as [20, 112]

τp ≈
(4π)2

λ4
X

M4
X

m5
p

, (4.17)

where MX ∼ MGUT is the mass scale of the mediator and λX its coupling to the quarks

and leptons, which corresponds to gGUT for a gauge mediator.
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Proton decay transitions can occur in a number of different channels, e.g. p → e+π0,

p → e+K0, etc. [113, 114]. The most constraining limit was imposed by the Super-

Kamiokande collaboration to the process p → e+π0, with a half-life lower bound of

τp > 1.29× 1034 years [115].

In our particular scenario, with the optimal PS scale for gravitational wave detection,

MPS = 105 GeV, gauge coupling unification fixes MGUT ∼ 1.9 × 1016 and gGUT ∼ 0.96,

which gives a proton half-life of τp ∼ 7 × 1035 years, larger than the experimental limit.

This prediction for proton decay is not too far from the SuperK bound and in fact it is

fairly close to the projected limit expected to be reached by HyperK [116] of τ > 1.3×1035

years. A positive measurement of proton decay is the smoking gun for unified theories, in

particular if the measured decay rate is close to the predicted in our model, it would further

motivate the scenario with MPS = 105 GeV where the peak amplitude of GW spectra is

within sensitivity of the Einstein telescope. Otherwise, if proton decay is not observed, a

stronger upper limit of the half-life of the proton would fall within range of our prediction

and therefore a more detailed calculation of the decay rate and RGE evolution would need

to be performed in order to assess the survivability of the model.

5 Discussion and conclusion

The Pati-Salam phase transition is a unique candidate for a gravitational wave spectrum

which peaks within the frequency windows of ground-based interferometer experiments. If

such a signal is observed, complementarity with low-energy experiments can be used to

probe the Pati-Salam parameter space.

The strength of the phase transition and the corresponding gravitational wave signal

depend most importantly on the degrees of freedom with a large coupling to the broken

direction. Therefore, we considered an effective model with four free parameters: the PS

gauge coupling g4, the PS scale MPS, the portal coupling ρ1, and the ratio of parameters

in the tree-level scalar potential v/Λ. We found that an observation of a broken power-law

spectrum of gravitational waves which peaks for f ∼ [10−1000] can be explained by a Pati-

Salam model with scale MPS ∼ 105 GeV. An argument from gauge coupling unification

fixes the Pati-Salam coupling g4 as a function of this scale. The amplitude of the power

spectrum, then, is a function of the portal coupling and the zero-temperature combination

(v/Λ). As was demonstrated in section 3, the peak of the spectrum may be observable if at

least one of the portal couplings is sizable (ρ1 & 0.1), and for particular zero-temperature

parameters in the scalar potential (v/Λ & 2).

For a Pati-Salam scale of MPS ∼ 105 GeV, many of the low energy constraints de-

scribed in section 4 impose limits on the parameters yν and ζ.7 We summarize these

constraints in figure 5, including collider constraints for decays of heavy neutrinos (blue

and orange), decays of WR (green), the cosmological limit on the neutrino masses (purple),

7In addition to these limits, low-energy neutrino constraints have a weak dependence on the scalar portal

coupling ρ1 through eq. (4.5).
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Figure 5. Exclusion limits on the parameters ζ and yν by the searches for heavy neutrinos in lljj

(blue) and 3l final states (orange), searches for WR bosons (green), LFV (red), EWPO (brown) and

the cosmological limit on neutrino masses (purple). Dashed and dotted lines mark the expected

sensitivity of future experiments. Here we have set MPS = 105 GeV which in turn determines

MLR ∼ 1.2× 104 GeV.

LFV constraints (red) and the limit from EWPO (brown).8 As can be seen in the figure,

a large part of the parameter space is excluded by several searches. However, there is still

a narrow band where this model parameters are allowed. The future projections of several

experiments are depicted with dashed and dotted lines, with the projected limit on µ − e
conversion from COMET and Mu2e in dashed red, and the limits for WR searches in dashed

green (HL-LHC) and dotted green (VLHC). These future searches will be able to explore

the parameter space more thoroughly and further constrain the model. The included set

of low energy probes is but a subset of the possible relevant phenomenological observables

of PS and LR models, which we have chosen to elucidate the complementarity with GW

searches. We defer the computation of other relevant observables, such has neutrinoless

double beta decay or electric dipole moments to further work.

Finally we note that phase transitions in models of Grand Unified Theories are often

associated with the formation of cosmic defects. One-dimensional defects, cosmic strings,

may decay into gravitational radiation [117, 118]. However, cosmic strings associated with

8The calculation of many of these constraints was done in using approximate methods, so these exclusion

limits are subject to a more precise analysis which we leave to the subject of future investigation.

– 17 –



J
H
E
P
0
2
(
2
0
1
9
)
0
8
3

the energy scales studied in this work — MPS ∼ 105 GeV — will have a dimensionless

string tension of Gµ ∼ 10−29 and will therefore not lead to any observational signatures.

Primordial monopoles created during the PS phase transition can be reduced to acceptable

limits during late time inflation [24]. Light monopoles may be produced at colliders [119],

however PS monopoles have a mass of the order ∼ 106 GeV [120] which is beyond the reach

of current experimental searches by ATLAS [121] and MoEDAL [122].
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A Scalar potential

The scalar potential of the Pati-Salam model at zero temperature can be written as

V0 = VΞ1 + VΞ2 + VΞ2 + VΩR + V∆L
+ V∆R

+ VΦ

+ VΞΞ + VΞΨ + VΩRΨ + V∆∆ + V∆Φ (A.1)

where VΨ refers to the terms in the potential that contain only the field Ψ, and these are

VΨ = −µ2
ΨTr[Ψ†Ψ] + λΨ|Tr[Ψ†Ψ]|2 + λ′ΨTr[Ψ†ΨΨ†Ψ], (A.2)

with Ψ = Ξ1,Ξ2,Ξ3,ΩR,∆L,∆R. Since the fundamental representation of SU(2) is real,

the field Φ̃ = τ2Φ∗τ2 transforms as Φ. Henceforth we call Φ1 = Φ and Φ2 = Φ̃. The

self-interaction term VΦ now looks like

VΦ =
∑
ij

−µ2
ijTr[Φ†iΦj ] +

∑
ijkl

λijklTr[Φ†iΦj ]Tr[Φ†kΦl] + λ′ijklTr[Φ†iΦjΦ
†
kΦl]. (A.3)

The term VΞΞ contains interactions among Ξ(1,2,3) of the form

VΞΞ =
∑
ijkl

λijklTr[Ξ†iΞj ]Tr[Ξ†kΞl] + λ′ijklTr[Ξ†iΞjΞ
†
kΞl] (A.4)

where (i, j, k, l) = (1, 2, 3) and not all i, j, k, l are equal. The term VΞΨ contains the portal

couplings of the fields Ξi with the rest and they are of the type

VΞΨ =
∑
i

Tr[Ξ†iΞi]

ρi1Tr[Ω†RΩR] + ρi2Tr[∆†L∆L] + ρi3Tr[∆†R∆R] +
∑
jk

ρijkTr[Φ†jΦk]


+ Tr

Ξ†iΞi

ρ′i1Ω†RΩR + ρ′i2∆†L∆L + ρ′i3∆†R∆R +
∑
jk

ρ′ijkΦ
†
jΦk


+ ρ′′i Tr[Ξ†iΩR∆†R∆R] +

∑
jk

ρ′′ijkTr[Ξ†iΩRΦ†jΦk]. (A.5)
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The term VΩΨ is fairly similar to VΞΨ and looks like

VΩΨ = Tr[Ω†RΩR]

η1Tr[∆†L∆L] + η2Tr[∆†R∆R] +
∑
jk

ηijkTr[Φ†jΦk]


+ Tr

Ω†RΩR

η′1∆†L∆L + η′2∆†R∆R +
∑
jk

η′ijkΦ
†
jΦk

 . (A.6)

The last two terms, V∆∆ and V∆Φ have the same form as in LR symmetric models

V∆∆ = λ∆Tr[∆†L∆L]Tr[∆†R∆R] + λ′∆Tr[∆†L∆L∆†R∆R], (A.7)

V∆Φ =
∑
ij

Tr[Φ†iΦj ]
(
λLijTr[∆†L∆L] + λRijTr[∆†R∆R]

)
+
∑
ij

Tr
[
Φ†iΦj

(
λ′Lij∆

†
L∆L + λ′Rij∆

†
R∆R + λLRij∆

†
L∆R

)]
. (A.8)

This scalar potential contains all possible terms allowed by the gauge symmetries. In

the work above we have chosen to remove a few of them setting their couplings to zero,

e.g. all portal couplings vanish ρij = ρ′ij = ρ′′ij = ρijk = ρ′ijk = 0 save for the first one, that

we have renamed in the text as ρ11 = ρ1 6= 0.

B Thermal parameters

The nucleation temperature, which approximates the collision temperature very well when

the phase transition occurs quickly, is conventionally defined as the temperature for which

a volume fraction e−1 is in the true vacuum state. This corresponds approximately to

p(tN )t4N = 1 (B.1)

where p(t) is the nucleation probability per unit time per unit volume, and where tN is the

nucleation time. The nucleation probability can be calculated from the bounce solution as,

p(T ) = T 4 e−SE/T (B.2)

where SE is the Euclidean action evaluated on the bounce which approximates a tanh

function and can be solved by bisection or perturbing a tanh ansatz [123, 124].9

The speed of the phase transition can be calculated from the rate of change of the

euclidean action
β

H
= T

d(SE/T )

dT
(B.3)

Lastly, the most important parameter governing the amplitude of the relic gravitational

waves will be the latent heat released in the transition (normalized to the radiation density)

α =
∆V − T∆dV/dT

ρ∗

∣∣∣∣
Tn

(B.4)

where ρ∗ = π2g∗T
4/30.

9In our analysis, we assume a radiation dominated universe to relate the nucleation temperature and

time. See, however, [30].

– 19 –



J
H
E
P
0
2
(
2
0
1
9
)
0
8
3

C Gravitational wave spectrum

The gravitational wave spectrum from a cosmic phase transition can be expressed as a sum

of three contributions,

ΩGW (f)h2 = Ωcoll(f)h2 + Ωsw(f)h2 + Ωturb(f)h2 (C.1)

denoting contribution from collision of scalar shells, the collision of the sound shells and

the turbulence respectively. Lattice simulations indicate that all three spectra can be

captured by a broken power law, with a peak frequency and amplitude dependent on the

thermal parameters at collision: (T∗, β/H, vw) and (β/H,α, vw) respectively. The collision

term is expected to dominate for so-called runaway bubble walls whose Lorentz boost factor

approaches infinity. It was recently realized that vacuum transitions in which gauge bosons

gain a mass are not expected to runaway [125]. This is confirmed by simple condition that

the mean field potential lifts the PS breaking minimum above the symmetric one [126].

However, vw at collision is still expected to be large, and in our analysis we use vw → 1.

For non-runaway transitions, the sound wave contribution is expected to dominate [127,

128], although recent work has suggested that lattice simulations may overestimate this

contribution [30]. In this work, we calculate the thermal parameters from first principles

and consider the peak sound wave amplitude analytically fitted to lattice simulations to be

an approximation of the GW spectrum. It is given by [33],

h2Ωsw = 8.5× 10−6

(
100

g∗

)−1/3

Γ2Ū4
f

(
β

H

)−1

vwScol(f) (C.2)

where Ū2
f ∼ (3/4)κfα is the rms fluid velocity and Γ ∼ 4/3 is the adiabatic index. For

vw → 1, the efficiency parameter is well approximated by [129],

κf ∼
α

0.73 + 0.083
√
α+ α

(C.3)

and the spectral shape is

Ssw =

(
f

fsw

)3

 7

4 + 3
(

f
fsw

)2


7/2

(C.4)

with peak frequency

fsw = 8.9× 10−7Hz
( zp

10

) 1

vw

(
β

H

)(
TN
Gev

)( g∗
100

)1/6
, (C.5)

where zp is a simulation derived factor which we take to be 6.9 from [33]. The power

spectrum from the turbulence contribution is

h2Ωturb = 3.354× 10−4

(
β

H

)−1( κεα

(1 + α

)3/2(100

g∗

)1/3

vwSturb(f) (C.6)
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where ε is the fraction of the energy in the plasma is expressed as turbulence; in our results,

we use ε = 0.05. The spectral form is given by

Sturb =
(f/fturb)3

[1 + (f/fturb)]11/3(1 + 8πf
h∗

)
. (C.7)

The Hubble rate at the transition temperature as well as the peak frequency are given by

h∗ = 16.5µHz

(
TN

100 GeV

)(
g∗

100

)1/6

(C.8)

fturb = 27µHz
1

vw

(
TN

100 GeV

)
β

H

(
g∗

100

)1/6

(C.9)

respectively. Recent work [30] has shown that it is difficult to satisfy the criteria that

the phase transition completes and the sound waves last longer than a Hubble time. The

consequence of this is that the sound waves are likely overestimated and the turbulence is

likely underestimated. The suppression of the sound wave peak is naively estimated to be

suppressed by a factor [30]

HR̄

Ūf
∼
(
β

H

)−1

× α−1 × (8π)1/3

3
4κf

= [6− 7.5] (C.10)

where we have used the relation for the rms fluid velocity UF ∼ 3
4κfα. The last equality

holds for the points in our scan, which have 0.07 < α < 0.09. However, the precise

suppression factor is subject to future lattice simulations. Similarly, [30] argued that the

turbulence factor has been underestimated, however much uncertainty remains about the

precise form of the turbulence spectrum in general.
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[52] G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation

of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].
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