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1 Introduction

Recent investigations of scattering amplitudes in gauge theories and gravity revealed a

wealth of mathematical structures and surprising connections between different theories.

For gravitational theories in D spacetime dimensions, traditional methods for tree ampli-

tudes and loop integrands naively give rise to an exasperating proliferation of terms. Still,

the final answers for these quantities across various loop- and leg orders take a strikingly

simple form: the dependence on the spin-two polarizations can often be reduced to squares

of suitably chosen gauge-theory quantities.

The study of double-copy structures in perturbative gravity originates from string the-

ory, where Kawai Lewellen and Tye (KLT) identified universal relations between open-

and closed-string tree-level amplitudes [1]. The KLT relations have been later on reformu-

lated in a field-theory framework by Bern, Carrasco and Johansson (BCJ) [2–4] such as to

flexibly address multiloop integrands. In this way, numerous long-standing questions on

the ultraviolet properties of supergravity theories have been resolved [5–10], bypassing the

spurious explosion of terms in intermediate steps.

This double-copy approach to gravitational amplitudes takes a particularly elegant

form once a hidden symmetry of gauge-theory amplitudes is manifested — the duality

between color and kinematics due to BCJ [2]. At tree level, the BCJ duality in gauge

theories has not only been explained and manifested in string theories [11–16] but also

extends to various constituents of string-theory amplitudes [17–22]. In particular, the

following terms in the gauge-field effective action of the open bosonic string1 in D spacetime

dimensions preserve the BCJ duality to the order of α′2 [18],

SYM+F 3+F 4 =

∫
dDx Tr

{
1

4
Fµν F

µν +
2α′

3
Fµ

ν Fν
λ Fλ

µ +
α′2

4
[Fµν , Fλρ][F

µν , F λρ]

}
,

(1.1)

where Fµν and α′ denote the non-abelian field strength and the inverse string tension,

respectively. In presence of the effective action (1.1), KLT formulae and BCJ double-

copy representations known from Einstein gravity extend2 to gravitational tree amplitudes3

from α′R2 + α′2R3 operators [18] involving higher powers in the Riemann curvature R.

The schematic notation R2 and R3 for operators in the gravitational effective action is

understood to comprise additional couplings of a B-field and a dilaton ϕ (such as e−2ϕR2)

known from the low-energy regime of the closed bosonic string [25].

The interplay of higher-mass-dimension operators D2mFn and D2mRn in string the-

ories with the BCJ duality and double copy is well understood from the worldsheet de-

1The low-energy effective action of the open bosonic string involves another operator ∼ ζ2α
′2F 4 at the

mass dimensions in (1.1) which will not be discussed in this article. Said ζ2α
′2F 4-operator is also known

from the superstring and cannot be reconciled with the BCJ duality [18].
2See [23, 24] for earlier work on the interplay of the KLT relations at the three- and four-point level with

gravitational matrix elements of R2, R3 operators and F 3, F 4-deformed gauge-theory amplitudes.
3In slight abuse of terminology, we will usually refer to the matrix elements from higher-mass-dimension

operators as “amplitudes”. In the case at hand, we will be interested in contributions from single- or

double-insertions of α′R2 operators and single-insertions of α′
2
R3.
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scription of tree-level amplitudes [18, 20–22]. Also, D-dimensional amplitudes of the F 3

operator and their double copy have been studied in the CHY formalism [26]. The purpose

of this work is to explore a complementary approach and to manifest the BCJ duality of the

α′F 3 +α′2F 4 operators directly from the Feynman rules of the action (1.1). We will follow

some of the ideas in earlier work on ten-dimensional super-Yang-Mills (SYM) [14, 15, 27, 28]

and realize the BCJ duality at the level of Berends-Giele currents [29] — up to the order of

α′2. Further studies of the BCJ duality from a Feynman-diagram perspective, in particular

at the level of off-shell currents in axial gauge, can be found in [30, 31].

We will reorganize the Feynman-diagrammatics of (α′F 3+α′2F 4)-deformed Yang-Mills

(YM) theory such as to find an explicit off-shell realization of the BCJ duality. The key idea

is to remove the deviations from the BCJ duality by applying a concrete non-linear gauge

transformation to the generating series of Berends-Giele currents. Our starting point for the

currents is Lorenz gauge, and their transformed versions which obey the color-kinematics

duality are said to implement BCJ gauge in (α′F 3 + α′2F 4)-deformed YM theory.4

Particular emphasis will be put on the locality properties of our construction, i.e.

the absence of spurious kinematic poles in the gauge-theory constituents. Like this, the

gravitational amplitudes from α′R2 +α′2R3 operators obtained via double copy reflect the

propagator structure of cubic-vertex diagrams and facilitate loop-level applications based

on the unitarity method [32–36]. Moreover, locality of the gauge-theory building blocks will

be crucial for one of our main results: a kinematic derivation of the BCJ relations [2] among

color-ordered amplitudes of (YM+F 3+F 4) [18], a manifestly gauge invariant formulation

of the BCJ duality.

Finally, the complexity of the Berends-Giele currents of (YM+F 3+F 4) will be system-

atically shortened by adapting techniques [14, 15, 37, 38] from ten-dimensional SYM. Our

manipulations resemble BRST integration by parts of the pure-spinor superstring [39] and

allow for manifestly cyclic amplitude representations as well as streamlined expressions for

the gauge parameter towards BCJ gauge.

The results of this work on the currents and amplitudes of (YM+F 3+F 4) are valid

up to and including the order of α′2. At higher orders in α′, effective operators includ-

ing α′3D2F 4 as provided by the bosonic string are required to maintain the BCJ dual-

ity [18, 21]. Moreover, our results hold in any number D of spacetime dimensions: apart

from the critical dimension D = 26 of the bosonic string and the phenomenologically inter-

esting situation with D = 4, this allows for a flexible unitarity-based investigation of loop

integrands in various dimensions and dimensional regularization, see e.g. [40, 41].

By its close contact with Lagrangians, the construction in this work resonates with

recent developments in scalar theories with color-kinematics duality and double-copy struc-

tures [42, 43]: for the color-kinematics duality of the non-linear sigma model (NLSM) of

Goldstone bosons [42], a Lagrangian origin along with the structure constants of a kine-

matic algebra has been identified in [44]. This new formulation of the NLSM can be derived

from higher dimensional YM theory [45], and a string-inspired higher-derivative extension

4See [27, 28] for generating series of Berends-Giele currents, their non-linear gauge transformations and

BCJ gauge in ten-dimensional SYM.
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of the NLSM5 [46] has been recently obtained from the analogous dimensional reduction

of α′F 3 in a companion paper [47]. In view of these connections, we hope that the notion

of BCJ gauge inspires a reformulation of the (YM+F 3+F 4)-Lagrangian (1.1) where —

similar to [44] — the D-dimensional kinematic algebra is manifest.6

Another source of motivation for this work stems from the renewed interest in the

gravitational α′R2 + α′2R3 interactions in D 6= 4 dimensions. While R3 is well-known to

be the first (non-evanescent) two-loop counterterm for pure gravity [52, 53], the evanescent

one-loop counterterm R2 was recently found to contaminate dimensional regularization

at two loops [54, 55]. Moreover, evanescent matrix elements of R2 are closely related to

certain anomalous amplitudes of N = 4 supergravity [56] through the double copy [57].

Finally, when viewed as ambiguities in defining quantum theories, matrix elements of higher

dimensional operators can be crucial to restore symmetries when using a non-ideal regulator

for loop amplitudes [58]. We hope that our D-dimensional double-copy representations for

tree-level amplitudes of (α′R2 +α′2R3)-deformed gravity shed further light into these loop-

level topics: either by unitarity or by using the BCJ-gauge currents as building blocks for

loop amplitudes that universally represent tree-level subdiagrams.7

1.1 Outline

This work is organized as follows: in section 2, we review the basics of Berends-Giele

recursions, the BCJ duality as well as the double copy and establish the associated elements

of notation. Section 3 is dedicated to amplitudes of (YM+F 3+F 4) in different types of

Berends-Giele representations including a systematic reduction of the rank of the currents.

In section 4, an explicit off-shell realization of the BCJ duality is obtained from the Berends-

Giele setup. Finally, section 5 relates this realization of the BCJ duality to non-linear gauge

freedom and combines the off-shell ingredients from the previous section to manifestly local

amplitude representations of (YM+F 3+F 4) and gravity with α′R2 + α′2R3 operators. A

derivation of the BCJ relations to the order of α′2 from purely kinematic arguments is

given in section 5.2.

2 Review and notation

In this section, we set up notation and review the key ideas and applications of Berends-

Giele recursions for tree-level amplitudes in YM theory, in particular

• the resummation of Berends-Giele currents to obtain perturbiner solutions to the

non-linear field equations

• manifestly cyclic Berends-Giele representations of YM amplitudes involving currents

of smaller rank than naively expected.

5Said higher-derivative extension of the NLSM is defined by the ζ2α
′2-order of abelian Z-theory [46].

6See [48, 49] for earlier Lagrangian-based approaches to the BCJ duality and [50] for a connection with

the Drinfeld double of the Lie algebra of vector fields. Also see [51] for the kinematic algebra in the self-dual

sectors of D = 4 YM theory and gravity.
7See for instance [59–62] for the use of tree-level Berends-Giele currents in D > 4-dimensional loop

amplitudes of gauge theories with maximal and half-maximal supersymmetry.
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We will also review the BCJ duality and the double copy from a perspective which later

on facilitates the implementation of these features in tree amplitudes and Berends-Giele

currents of (YM+F 3+F 4) as well as gravity with α′R2 + α′2R3 operators.

2.1 Berends-Giele recursions

An efficient approach to determine the tensor structure of D-dimensional tree amplitudes

in pure YM theory has been introduced by Berends and Giele in 1987 [29]. The key idea

of the reference is to recursively combine all color-ordered Feynman diagrams involving

multiple external on-shell legs and a single off-shell leg. This recursion is implemented via

currents Jµ12...p that depend on the polarization vectors eµi and lightlike momenta kµi of the

external particles i = 1, 2, . . . , p subject to the following on-shell constraints

ei · ki = ki · ki = 0 ∀ i = 1, 2, . . . . (2.1)

While Latin letters i, j, . . . refer to external-state labels, Lorentz-indices µ, ν, . . . = 0, 1, . . . ,

D−1 are taken from the Greek alphabet.

Currents of arbitrary multiplicity can be efficiently computed from the Berends-Giele

recursion [29]

Jµi = eµi , sPJ
µ
P =

∑
XY=P

[JX , JY ]µ +
∑

XY Z=P

{JX , JY , JZ}µ , (2.2)

where

[JX , JY ]µ = (kY · JX)JµY − (kX · JY )JµX +
1

2
(kµX − k

µ
Y )(JX · JY ) (2.3)

{JX , JY , JZ}µ = (JX · JZ)JµY −
1

2
(JX · JY )JµZ −

1

2
(JY · JZ)JµX . (2.4)

The external states have been grouped into multiparticle labels or words P = 12 . . . p. We

will represent multiparticle labels by capital letters P,Q,X, Y, . . . and denote their length,

i.e. the number of labels in P = 12 . . . p, by |P | = p. The summation over XY = P on the

right-hand side of (2.2) instructs to deconcatenate P into non-empty words X = 12 . . . j

and Y = j+1 . . . p with j = 1, 2, . . . , p−1 and therefore generates |P |−1 terms.8 Similarly,

XY Z = P encodes 1
2(|P |−1)(|P |−2) deconcatenations into non-empty words X = 12 . . . j,

Y = j+1 . . . l and Z = l+1 . . . p with 1 ≤ j < l ≤ p−1.

Moreover, the right-hand side of (2.2) involves multiparticle momenta kP through

Mandelstam invariants or inverse propagators sP

kµP=12...p = kµ1 + kµ2 + . . .+ kµp , sP =
1

2
k2
P . (2.5)

Finally, the brackets in (2.3) and (2.4) capture the cubic and quartic Feynman vertices of

pure YM theory in Lorenz gauge. As depicted in figure 1, the role of the deconcatenations

XY = P and XY Z = P in (2.2) is to connect lower-rank currents JµX , J
ν
Y and JλZ via

Feynman vertices in all possible ways that preserve the color order of the on-shell legs in

the word P = 12 . . . p.

8For instance, the summation over XY = P with P = 1234 of length four incorporates the pairs

(X,Y ) = (123, 4), (12, 34) and (1, 234).
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1

2

p

... . . .PJµ12...p ↔ =
∑

XY=P

p

j+1

... Y

j

2

1

... X

. . .

p

l+1

... Z

j

2

1

... X

. . .

l
...

j+1

Y+
∑

XY Z=P

Figure 1. Berends-Giele currents Jµ12...p of rank p combine the diagrams and propagators of a

color-ordered (p+1)-point YM tree amplitude with an off-shell leg. . . . The sums in (2.2) gather all

combinations of cubic and quartic Feynman vertices that preserve the color order. Like this, Jµ12...p
can be computed from quadratic contributions ∼ Jν12...jJλj+1...p with j = 1, 2, . . . , p−1 and trilinear

ones ∼ Jν12...jJλj+1...lJ
ρ
l+1...p with 1 ≤ j < l ≤ p−1.

Accordingly, color-ordered on-shell amplitudes at n = p+1 points are recovered by

taking the off-shell leg in the rank-p current JµP on shell: this on-shell limit is implemented

by contraction with the polarization vector Jµn = eµn of the last leg and removing the prop-

agator s−1
12...p in the p-particle channel of JµP which would diverge by n-particle momentum

conservation k2
12...p → (−kn)2 = 0 [29],9

AYM(1, 2, . . . , n−1, n) = s12...n−1J
µ
12...n−1J

µ
n . (2.6)

For instance, the rank-two current due to (2.2) with X = 1 and Y = 2 yields the following

representation of the three-point amplitude

s12J
µ
12 = (k2 · e1)eµ2 − (k1 · e2)eµ1 +

1

2
(kµ1 − k

µ
2 )(e1 · e2) (2.7)

AYM(1, 2, 3) = s12J
µ
12J

µ
3 = (k2 · e1)(e2 · e3)− (k1 · e2)(e1 · e3) +

1

2
(e1 · e2)e3 · (k1−k2) ,

where cyclicity may be manifested via e3 ·k2 = −e3 ·k1 by means of on-shell constraints and

momentum conservation. Note that Berends-Giele formulae similar to (2.6) have been given

9Here and in later equations of this work, we keep both instances of a contracted Lorentz index in the

uppercase position to avoid interference with the multiparticle labels of the currents. The signature of the

metric is still taken to be Minkowskian, regardless of the position of the indices.
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for tree amplitudes in ten-dimensional SYM [38], doubly-ordered amplitudes of bi-adjoint

scalars [63] and worldsheet integrals for tree-level scattering of open strings [64].

The symmetry properties [JX , JY ] = −[JY , JX ] and {JX , JY , JZ} + cyc(X,Y, Z) = 0

of the brackets in (2.3) and (2.4) imply that the currents in (2.2) obey shuffle symme-

try [27, 65]10

JµP�Q = 0 ∀ P,Q 6= ∅ . (2.8)

As pointed out in [28], the amplitude formula (2.6) propagates the shuffle symmetry of the

currents to the Kleiss-Kuijf (KK) relations [66, 67]

AYM((P�Q), n) = 0 ∀ P,Q 6= ∅ , (2.9)

where the words P and Q involve external-state labels 1, 2, . . . , n−1. In the same way as

shuffle symmetry (2.8) leaves (p−1)! independent permutations of rank-p currents Jµ12...p,

KK relations (2.9) allow to expand color-ordered amplitudes in an (n−2)!-element

set [66, 67],

JµP1Q = (−1)|P |Jµ
1(P̃�Q)

, AYM(P, 1, Q, n) = (−1)|P |AYM(1, (P̃�Q), n) , (2.10)

where P̃ = p|P | . . . p2p1 denotes the reversal of the word P = p1p2 . . . p|P |.

2.2 Perturbiners as generating series of Berends-Giele currents

The Berends-Giele construction of the previous section can be related to solutions of the

non-linear field equations: generating series of Berends-Giele currents turn out to solve the

equations of motion from the action SYM of pure YM theory

SYM =
1

4

∫
dDx Tr(FµνFµν) ,

δSYM

δAλ
= [∇µ,Fλµ] . (2.11)

We use the following conventions in deriving the Lie-algebra valued gluon field Aµ and its

non-linear field strength Fµν from a connection ∇µ,

∇µ = ∂µ − Aµ , Fµν = −[∇µ,∇ν ] = ∂µAν − ∂νAµ − [Aµ,Aν ] . (2.12)

The relation of tree-level amplitudes with solutions of the field equations via generating

series goes back to the “perturbiner” formalism [68–72]. In these references, generating

series of MHV amplitudes are derived from self-dual YM theory, see [73] for supersymmet-

ric extensions. The connection between perturbiner solutions and the dimension-agnostic

Berends-Giele currents of [29] was established in [27, 28] and will now be reviewed.

10The shuffle product P�Q of words P = p1p2 . . . p|P | and Q = q1q2 . . . q|Q| is recursively defined by

P�∅ = ∅�P = P , P�Q = p1(p2 . . . p|P |�Q) + q1(q2 . . . q|Q|�P ) .

All currents or amplitudes in this work are understood to obey a linearity property JµX+Y = JµX +JµY when

formal sums of words appear in a subscript, e.g. Jµ1�2 = Jµ12+21 = Jµ12 + Jµ21 from 1�2 = 12 + 21.

– 7 –
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Lorenz gauge ∂µAµ = 0 simplifies the equations of motion [∇µ,Fλµ] = 0 to the wave

equation with the notation � = ∂µ∂
µ for the d’Alembertian,

�Aλ = [Aµ, ∂µAλ] + [Aµ,Fµλ] (2.13)

= 2[Aµ, ∂µAλ] + [∂λAµ,Aµ] +
[
[Aµ,Aλ],Aµ

]
.

One can derive formal solutions to (2.13) by means of the perturbiner ansatz

Aµ(x) =
∑
i

Jµi t
aieki·x +

∑
i,j

Jµijt
aitajekij ·x +

∑
i,j,l

Jµijlt
aitaj talekijl·x + . . .

=
∑
P 6=∅

JµP t
P ekP ·x , where t12...p = t1t2 . . . tp . (2.14)

The summation variables i, j, l, . . . = 1, 2, 3, . . . refer to external-particle labels in an un-

bounded range, and we have introduced a compact notation
∑

P 6=∅ for sums over nonempty

words P = 12 . . . p in passing to the second line. The dependence on the spacetime coor-

dinates xµ enters through plane waves11 ekP ·x, see (2.5) for the multiparticle momenta kP .

The color degrees of freedom in (2.14) are represented through matrix products of the Lie-

algebra generators tai whose adjoint indices a1, a2, . . . are associated with an unspecified

gauge group.

Upon insertion into the second line of (2.13), the perturbiner ansatz (2.14) can be

verified to solve the non-linear field equations [∇µ,Fλµ] = 0 if its coefficients JµP obey

the Berends-Giele recursion (2.2). Hence, generating series of Berends-Giele currents are

formal solutions to the field equations.12 By the shuffle symmetry (2.8) of the currents JµP ,

the matrix products taitaj of the Lie-algebra generators on the right-hand side of (2.14)

conspire to nested commutators, and the perturbiner solution is guaranteed to be Lie-

algebra valued [74].

As a convenient reorganization of the Berends-Giele recursion (2.2), one can write the

field equations as in the first line of (2.13) and insert a separate perturbiner expansion for

the non-linear field strength,

Fµν(x) =
∑
P 6=∅

Bµν
P tP ekP ·x ⇒ Bµν

P = kµPJ
ν
P − kνPJ

µ
P −

∑
P=XY

(JµXJ
ν
Y − JνXJ

µ
Y ) . (2.15)

The expressions for the field-strength currents Bµν
P in terms of JλQ are determined by

the definition (2.12) of Fµν , and their non-linear terms
∑

P=XY J
[µ
X J

ν]
Y have already been

studied in [75]. Then, inserting (2.14) and (2.15) into (2.13) yields a simpler but equivalent

form of the recursion (2.2) [28]

JµP =
1

2sP

∑
P=XY

[
(kY · JX)JµY + JνXB

νµ
Y − (X ↔ Y )

]
. (2.16)

11The conventional form of plane waves eik·x with an imaginary unit in the exponent can be recovered

by redefining the momenta in this work as k → ik. The equations in the main text follow the conventions

where external momenta are purely imaginary in order to keep factors of i from proliferating.
12Strictly speaking, contributions with several factors of taj referring to the same external leg j need to

be manually suppressed by adding nilpotent symbols to the perturbiner ansatz [68]. For ease of notation, we

do not include these symbols into the equations in the main text, and all terms with repeated appearance

of a given external leg are understood to be suppressed.
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Jµ123, B
µν
123 ↔

3

2

1

. . . =

2

1

s12

3

s123
· · · +

3

2

s23

1

s123 . . .

Figure 2. By pairing up the two types of Berends-Giele currents Jµ12...p and Bµν12...p, only cubic-

vertex diagrams have to be considered in their recursive construction from lower-rank currents. In

the depicted example at rank p = 3 with an additional off-shell leg. . . , only two cubic diagrams of

s-channel and t-channel type contribute to the four-point amplitude obtained from s123J
µ
123J

µ
4 .

The trilinear term {JX , JY , JZ} in (2.4) which represents the quartic vertex of the YM

Lagrangian has been absorbed into the non-linear part of the field-strength current Bµν
P

in (2.15). The leftover deconcatenations P = XY in (2.16) can be interpreted as describing

cubic diagrams, see figure 1. Let us illustrate this statement with the four-point amplitude

s123J
µ
123J

µ
4 derived from a rank-three current via (2.6): the two deconcatenations (X,Y ) =

(12, 3) and (1, 23) in the recursion (2.16) for Jµ123 can be viewed as the two cubic diagrams

in figure 2 where appropriate contributions from the quartic vertex (2.4) are automatically

included.

Note that the Lorenz-gauge condition and the field equations imply the relations

kP · JP = 0 , kµPB
µν
P =

∑
XY=P

(JµXB
µν
Y − J

µ
YB

µν
X ) (2.17)

including transversality of the gluon polarizations for single-particle labels P = i. More-

over, the non-linear gauge symmetry of the action (2.11) under δΩAµ = ∂µΩ− [Aµ,Ω] and

δΩFµν = −[Fµν ,Ω] acts on the currents via

δΩJ
µ
P = kµPΩP −

∑
XY=P

(JµXΩY −JµY ΩX) , δΩB
µν
P = −

∑
XY=P

(Bµν
X ΩY −Bµν

Y ΩX) . (2.18)

The scalar currents ΩP are defined by the perturbiner expansion Ω(x) =
∑

P 6=∅ΩP t
P ekP ·x

of the gauge scalar in δΩ. We will later on spell out a choice of gauge-scalar currents ΩP

which manifests the BCJ duality at the level of Berends-Giele currents.

Another specific choice of ΩP → Ωlin
P allows to track the effect of linearized gauge

transformations eµi → kµi on the ith leg of the Berends-Giele currents in (2.18): one can

line up the replacement eµi → kµi with a set of gauge transformations that preserves Lorenz

gauge. The condition δΩlin(∂µAµ) = ∂µ(δΩlinAµ) = 0 then translates into the recursion [27]

Ωlin
P =

1

2sP

∑
XY=P

((kY · JX)Ωlin
Y − (kX · JY )Ωlin

X ) (2.19)

which needs to be supplemented with the initial conditions Ωlin
j → δi,j if the linearized

gauge transformations eµi → kµi only applies to the ith leg. Precursors of the formula (2.19)

for linearized gauge transformations of Berends-Giele currents can be found in [65].
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MX,Y,Z ←→

y2 yq−1
. . .

y1 yq

Y

...

z1

zr−1

zr

Z
...

xp

x2

x1

X

Figure 3. Diagrammatic interpretation of the building block MX,Y,Z in (2.20) with multiparticle

labels X = x1x2 . . . xp, Y = y1y2 . . . yq and Z = z1z2 . . . zr.

2.3 Manifestly cyclic reformulation

Given that the Berends-Giele formula (2.6) for color-ordered amplitudes AYM(1, 2, . . . , n)

singles out the last leg n which is excluded from the current Jµ12...n−1, cyclic invariance in the

external legs is obscured. We shall now review a reorganization of the Berends-Giele cur-

rents for YM tree amplitudes such that the nth leg enters on completely symmetric footing.

Moreover, the subsequent rewritings reduce n-point amplitudes to shorter Berends-Giele

currents of rank ≤ n
2 instead of the rank-(n−2) currents in the recursion (2.2) for Jµ12...n−1.

The backbone of the manifestly cyclic Berends-Giele formulae is the building block [28]

MX,Y,Z =
1

2

(
JµXB

µν
Y JνZ + JµYB

µν
Z JνX + JµZB

µν
X JνY

)
=

1

2
JµXB

µν
Y JνZ + cyc(X,Y, Z) (2.20)

composed of three currents with multiparticle labels X,Y, Z each of which represents tree-

level subdiagrams. The resulting diagrammatic interpretation of MX,Y,Z is depicted in

figure 3, and the definition (2.20) along with Bµν
X = −Bνµ

X implies permutation antisym-

metry MX,Y,Z = −MY,X,Z and MX,Y,Z = MY,Z,X expected from the cubic vertex in the

figure.

Using kP · JP = 0 and kX + kY + kZ = 0, it was shown in [28] that the n-point

amplitude (2.6) can be rewritten as

AYM(1, 2, . . . , n−1, n) =
∑

XY=12...n−1

MX,Y,n =
n−2∑
j=1

M12...j, j+1...n−1, n . (2.21)

As demonstrated in appendix A.2, momentum conservation kP + kQ = 0 and (2.17) imply

the following identity ∑
XY=P

MX,Y,Q =
∑

XY=Q

MP,X,Y , (2.22)
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which will be referred to as “integration by parts”13 and reads as follows in simple examples,

M12,3,4 = M1,2,34 , M123,4,5 = M12,3,45 +M1,23,45

M1234,5,6 = M123,4,56 +M12,34,56 +M1,234,56 (2.23)

M123,45,6 +M123,4,56 = M12,3,456 +M1,23,456 .

By repeated application to the amplitude representation (2.21), one can derive the following

manifestly cyclic representations

AYM(1, 2, 3, 4) =
1

2
M12,3,4 + cyc(1, 2, 3, 4)

AYM(1, 2, . . . , 5) = M12,3,45 + cyc(1, 2, 3, 4, 5) (2.24)

AYM(1, 2, . . . , 6) =
1

3
M12,34,56 +

1

2
(M123,45,6 +M123,4,56) + cyc(1, 2, . . . , 6)

AYM(1, 2, . . . , 7) = M123,45,67 +M1,234,567 + cyc(1, 2, . . . , 7) .

Note in particular that the rank of the currents in the manifestly cyclic n-point ampli-

tudes (2.24) is bounded by14
⌊
n
2

⌋
rather than n−2 as expected from the recursions (2.2)

or (2.16) for Jµ12...n−1. In section 3, similar expressions with manifest cyclicity and Berends-

Giele currents of maximum rank
⌊
n
2

⌋
will be given for the deformed (YM+F 3+F 4) theory.

2.4 BCJ duality

The organization of the Berends-Giele recursion (2.16) in terms of cubic-vertex diagrams

as exemplified in figure 2 resonates with the BCJ duality between color and kinematics [2]:

according to the BCJ duality, scattering amplitudes in non-abelian gauge theories can be

represented in a manner such that color degrees of freedom can be freely interchanged

with the kinematic variables. While “color” refers to contractions of structure constants

faiaiak , polarizations and momenta are referred to as “kinematics”, and the notion of “freely

interchanging” will be shortly made precise. The three-index structure of the contracted

structure constants can be visualized via cubic-vertex diagrams with a factor of faiaiak for

each vertex and contractions of the adjoint indices along the internal edges. Similarly, the

kinematic dependence on eµi , k
µ
i should also be organized in terms of cubic diagrams to

manifest the BCJ duality.

The non-linear extension
∑

XY=P J
[µ
X J

ν]
Y of the field-strength current Bµν

P in (2.15) ab-

sorbs the contributions from the quartic vertex Tr[Aµ,Aν ][Aµ,Aν ] in the YM action (2.11).

This can be seen from that fact that the non-linear terms have fewer propagators than

the rest of (2.16). Hence, the use of field-strength currents amounts to inserting 1 =
k2P
k2P

such that a quartic vertex is “pulled apart” into two cubic vertices connected by the “fake”

13This terminology goes back to the fact that the building block (2.20) and the amplitude represen-

tation (2.21) descend from ten-dimensional SYM [28, 38]: in the setup of these references, (2.22) is a

consequence of BRST integration by parts in pure-spinor superspace [39].
14Earlier examples of such economic and manifestly cyclic Berends-Giele representations have been in-

vestigated in [76], but the construction in the reference requires a mixture of quadratic, cubic and quartic

combinations of Berends-Giele currents instead of a single building block (2.20).
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2

1

3

4

=
(k1 + k2)2

(k1 + k2)2

2

1

3

4

= (k1 + k2)2

2

1

3

4

Figure 4. Quartic vertices can always be reorganized in products of cubic vertices, i.e. gauge-theory

amplitudes can always be parametrized in terms.

propagator k2
P . The choice of the channel P in 1 =

k2P
k2P

has to be compatible with the color

dressing fabef ecd of the quartic vertex, where ambiguities arise from the Jacobi relations

fabef ecd + facef edb + fadef ebc = 0 . (2.25)

In figure 4, this situation is visualized in a four-point tree-level context, but there is no

limitation to cubic-diagram parametrizations of n-point tree amplitudes as well as multiloop

integrands [3, 4]. Although the BCJ duality conjecturally applies to loop integrands [3, 4],

we shall focus on its well-established tree-level incarnation.

Of course, contributions from the higher-order vertices of (Tr F 3)- and (TrF 4)-type can

also be cast into a cubic-graph form by repeated insertions of 1 =
k2P
k2P

. For the action (1.1) of

(YM+F 3+F 4), the color structure of the F 3 and F 4 operators also boils down to contracted

structure constants [18], and the ambiguities due to Jacobi identities (2.25) arise in this

situation as well. In the subsequent review of the BCJ duality, the color-dressed tree-level

amplitudes

Mn =
∑

ρ∈Sn−1

Tr(ta1taρ(2)taρ(3) . . . taρ(n))A(1, ρ(2), ρ(3), . . . , ρ(n)) (2.26)

may refer to pure YM (A → AYM), to its (α′F 3 +α′2F 4)-deformation (A → AYM+F 3+F 4)

or to any other generalization that obeys the BCJ duality. Once the kinematic dependence

of (2.26) is absorbed into cubic diagrams I, J,K, . . . , one can choose a parametrization [2]

Mn =
∑
I∈Γn

CI NI∏
e∈internal
edges of I

se
, (2.27)

where Γn denotes the set of cubic tree-level graphs with n external legs. The color factors

CI represent the contracted structure constants that arise from the traces in (2.26). The

kinematic numerators NI are combinations of eµi and kµi that can be assembled from the

Berends-Giele currents of the theory. Finally, the propagators s−1
e comprise Mandelstam

variables (2.5) for the multiparticle momenta in the internal edges e of the graph I.

The parametrization (2.27) is said to manifest the BCJ duality if all the symmetries

of the color factors CI carry over to the kinematic numerators NI . More specifically [2]:

• If two graphs I and Î are related by a single flip of a cubic vertex, antisymme-

try faiajak = f [aiajak] implies the color factors to have a relative minus sign. In a
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kinematics

color

NI +NJ +NK = 0

CI + CJ + CK = 0
. . .

. .
.

. .
.

. . .
NI

CI

,

. . .

. .
.

. .
.

. . .NK

CK

,

. . .

. .
.

. .
.

. . .NJ

CJ

Figure 5. Triplets of cubic graphs I, J,K whose color factors C· and kinematic factors N· are both

related by a Jacobi identity if the duality between color and kinematics is manifest. The dotted

lines at the corners represent arbitrary tree-level subdiagrams and are understood to be the same

for all of the three cubic graphs.

duality-satisfying representation (2.27), the kinematic numerators exhibit the same

antisymmetry properties under flips:

C
Î

= −CI =⇒ N
Î

= −NI . (2.28)

• For each triplet of graphs I, J,K where the Jacobi identities (2.25) lead to the van-

ishing of triplets CI + CJ + CK , the BCJ duality requires the corresponding triplet

of kinematic numerators to vanish as well

CI + CJ + CK = 0 =⇒ NI +NJ +NK = 0 . (2.29)

As visualized in figure 5, such triplets of cubic graphs only differ by a single propa-

gator.

In later sections, we will construct local representatives of the kinematic numerators NI

in (2.27) of (YM+F 3+F 4) which do not exhibit any poles in sP and obey the BCJ duality

up to and including the order of α′2. By the Jacobi identities (2.25) of the color factors,

the numerators are still far from unique after imposing locality, and generic choices at

n ≥ 5 points will fail to obey some of the kinematic Jacobi relations (2.29). Hence, finding

a manifestly color-kinematics dual parametrization (2.27) requires some systematics in

addressing quartic and higher-order vertices via 1 =
k2P
k2P

. The additional requirement of

locality is particularly restrictive, and we will see that suitable gauge transformations (2.18)

of the Berends-Giele currents in (YM+F 3+F 4) give rise to local solutions, generalizing the

construction in ten-dimensional SYM [28].

Still, the very existence of duality satisfying kinematic numerators is sufficient to derive

BCJ relations among color-ordered amplitudes [2]

n−1∑
j=2

(k23...j · k1)A(2, 3, . . . , j, 1, j+1, . . . , n) = 0 . (2.30)

By combining different relabellings of (2.30), any color-ordered amplitude can be expanded

in a basis of size (n−3)!. BCJ relations were shown to apply to A → AYM+F 3+F 4 up to and
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1

ρ(2)

ρ ∈ perm(2, 3, . . . , n−1)

. . . . . .

ρ(3) ρ(4) ρ(n−2)

n

ρ(n−1)

←→ N1|ρ(2,3,...,n−1)|n

Figure 6. When the BCJ duality is manifest, the master numerators N1|ρ(2,3,...,n−1)|n associated

with the depicted (n−2)!-family of half-ladder diagrams generate all other kinematic numerators

via Jacobi relations.

including the order of α′2 [18] by isolating suitable terms in the monodromy relations of

open-string tree-level amplitudes [11, 12]. For a variety of four-dimensional helicity config-

urations, kinematic numerators of YM+F 3 subject to Jacobi relations (2.29) can be found

in [18]. We will derive generalizations to helicity-agnostic expressions in D dimensions and

include the α′2 order of (YM+F 3+F 4).

Kinematic antisymmetry relations (2.28) and Jacobi identities (2.29) leave (n−2)! in-

dependent instances of NI . A basis of kinematic numerators under these relations can be

assembled from the “half-ladder” diagrams depicted in figure 6 which are characterized by

a fixed choice of endpoints 1 and n as well as permutations ρ ∈ Sn−2 of the remaining legs

2, 3, . . . , n−1. We will denote the basis numerators of the half-ladder diagrams in figure 6

by N1|ρ(2,3,...,n−1)|n and refer to them as “master numerators”.

2.5 Double copy

The BCJ duality allows to convert cubic-graph parametrizations (2.27) of gauge-theory

amplitudes into gravitational ones: once the gauge-theory numerators NI satisfy the same

symmetry properties as the color factors CI (i.e. flip antisymmetry (2.28) and kinematic

Jacobi identities (2.29)), then the double-copy formula

Mgrav
n =

∑
I∈Γn

NI ÑI∏
e∈internal
edges of I

se
(2.31)

enjoys linearized-diffeomorphism invariance. In case of undeformed YM theory, (2.31)

yields tree-level amplitudes of Einstein-gravity including B-fields, dilatons and tentative

supersymmetry partners [2, 48]. The polarizations of external gravitons, B-fields or dilatons

in the jth leg are obtained by projecting the tensor products eµj ẽ
ν
j in (2.31) to the suitable

irreducible representation of the Lorentz group.

In case of (YM+F 3+F 4)-numerators, the gravitational amplitudes descend from a de-

formation of the Einstein-Hilbert action by higher-curvature operators of α′R2 +α′2R3 [18]

as seen in the low-energy effective action of the closed bosonic string [25], see section 5.4

for details. The tilde along with the second copy ÑI of the gauge-theory numerator NI

indicates that the ith external gravitational state may arise from the tensor product of

different polarization vectors eµi and ẽµi .
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In the same way as (2.31) is obtained from gauge-theory amplitudes (2.27) by trading

color for kinematics, CI → ÑI , one can investigate the converse replacement NI → C̃I :

Mφ3

n =
∑
I∈Γn

CI C̃I∏
e∈internal
edges of I

se
. (2.32)

This double copy of color factors (with C̃I comprising structure constants f̃ b̃ib̃j b̃k of pos-

sibly different Lie algebra generators t̃b̃) describes tree amplitudes of biadjoint scalars

φ = φa|b̃t
a⊗ t̃b̃ with a cubic interaction fa1a2a3 f̃ b̃1b̃2b̃3φa1|b̃1φa2|b̃2φa3|b̃3 [77]. The two species

ta and t̃b̃ admit a two-fold color decomposition (2.26), and we define its doubly-partial am-

plitudes m(·|·) by peeling off two traces with possibly different orderings ρ, τ ∈ Sn−1 [77],

m(1, ρ(2, . . . , n)|1, τ(2, . . . , n)) = Mφ3

n

∣∣∣
Tr(ta1 t

aρ(2) ...t
aρ(n) )Tr(t̃b̃1 t̃

b̃τ(2) ...t̃
b̃τ(n) )

. (2.33)

Doubly-partial amplitudes compactly encode a solution to all the kinematic Jacobi rela-

tions: when reducing the gravitational amplitude (2.31) to the master numerators intro-

duced in figure 6, the coefficients are analogous (n−2)!× (n−2)! families of (2.33)

Mgrav
n =

∑
ρ,τ∈Sn−2

N1|ρ(2,...,n−1)|nm(1, ρ(2, . . . , n−1), n|1, τ(2, . . . , n−1), n)Ñ1|τ(2,...,n−1)|n .

(2.34)

The gauge-theory analogue (with C1|ρ(2,...,n−1)|n referring to the half-ladder diagrams as in

figure 6)

Mn =
∑

ρ,τ∈Sn−2

C1|ρ(2,...,n−1)|nm(1, ρ(2, . . . , n−1), n|1, τ(2, . . . , n−1), n)N1|τ(2,...,n−1)|n (2.35)

is equivalent to expansions of color-ordered amplitudes in terms of master numera-

tors [14, 77]

A(ρ(1, 2, . . . , n)) =
∑

τ∈Sn−2

m(ρ(1, 2, . . . , n)|1, τ(2, . . . , n−1), n)N1|τ(2,...,n−1)|n . (2.36)

Representations of the form in (2.34) to (2.36) arise naturally from the (α′ → 0)-limit of

string-theory amplitudes [14, 19, 20, 63] and the CHY formalism [77].

By comparing the representations (2.27) and (2.35) of color-dressed gauge-theory am-

plitudes, we conclude that the Jacobi relations among the cubic diagrams in figure 5 can be

traced back to the properties of the doubly-partial amplitudes. By the symmetric role of

N· and C· in (2.35), this applies to the Jacobi relations of both color factors and kinematic

numerators.

Doubly-partial amplitudes obey BCJ relations (2.30) in both of their entries and admit

bases of (n−3)!× (n−3)! elements [77]. The matrix inverse of such a basis appears in the

more traditional formulation of the gravitational double copy at tree level: the (α′ → 0)

limit of the string-theory KLT relations [1] yields the following manifestly diffeomorphism

invariant rewriting of (2.31),

Mgrav
n =

∑
ρ,τ∈Sn−3

A(1, ρ(2, . . . , n−2), n−1, n)S(ρ|τ)1Ã(1, τ(2, . . . , n−2), n, n−1) . (2.37)
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The all-multiplicity form of the (n−3)! × (n−3)! KLT-matrix S(ρ|τ)1 has been studied

in [78, 79] and furnishes the inverse of doubly-partial amplitudes (2.33) [77],

S(ρ|τ)1 = −m−1(1, ρ(2, . . . , n−2), n−1, n|1, τ(2, . . . , n−2), n, n−1) . (2.38)

Alternatively, one can obtain the KLT matrix from the recursion [46, 79]

S(2|2)1 = k1 · k2 , S(A, j|B, j, C)1 = kj · (k1 + kB)S(A|B,C)1 . (2.39)

The subscript 1 indicates that the entries of (2.38) not only depend on the momenta

k2, . . . , kn−2 subject to permutations ρ, τ but also on k1.

Similarly, the doubly-partial amplitudes (2.33) can be generated from a Berends-Giele

formula analogous to (2.6) [63]

m(P, n|Q,n) = sPφP |Q , (2.40)

where P and Q are permutations of legs 1, 2, . . . , n−1, and the doubly-ordered currents

φP |Q obey the following recursion [63]:

φi|j = δij , sPφP |Q =
∑

XY=P

∑
AB=Q

(φX|AφY |B − φY |AφX|B) . (2.41)

We will often gather rank-r currents (2.41) in the following (r−1)!× (r−1)! matrix

Φ(P |Q)1 = φ1P |1Q = S−1(P |Q)1 . (2.42)

Examples for the output of the recursions (2.39) and (2.41) include Φ(2|2)1 = s−1
12 and

S(ρ(2, 3)|τ(2, 3))1 =

(
s12(s13+s23) s12s13

s12s13 s13(s12+s23)

)
(2.43)

Φ(ρ(2, 3)|τ(2, 3))1 =
1

s123

(
s−1

12 +s−1
23 −s−1

23

−s−1
23 s−1

13 +s−1
23

)
.

We will later on use the matrices S(P |Q)1 and Φ(P |Q)1 to relate shuffle independent

Berends-Giele currents to kinematic numerators subject to Jacobi identities.

3 Perturbiners and Berends-Giele representations for F 3 and F 4

In this section, we apply the Berends-Giele methods of sections 2.1 to 2.3 to the deformed

(YM+F 3+F 4) theory known from the low-energy regime of open bosonic strings. The

tree-level amplitudes following from the action

SYM+F 3+F 4 =

∫
dDx Tr

{
1

4
Fµν Fµν +

2α′

3
Fµν Fνλ Fλµ +

α′2

4
[Fµν ,Fλρ][Fµν ,Fλρ]

}
(3.1)
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reproduce the leading orders α′0, α′1 in the low-energy expansion of bosonic-string ampli-

tudes [80], and a well-defined sector of the α′2 order: the effective action of both bosonic

and supersymmetric open strings comprises an operator α′2ζ2TrF 4 which can be cleanly

distinguished from (3.1) by its transcendental prefactor ζ2 = π2

6 [81–83]. Up to and includ-

ing the order of α′2, the amplitudes computed from (3.1) obey BCJ relations (2.30) while

the α′2ζ2TrF 4-operator excluded from (3.1) is incompatible with the BCJ duality [18]. As

explained in the reference, these BCJ relations to the order of α′2 rely on the interplay

between single-insertions of the α′2TrF 4-operator in (3.1) and double-insertions of α′TrF 3.

More generally, the accompanying multiple zeta values are instrumental to identify

the D2mFn-operators in string effective actions that admit color-kinematics dual repre-

sentations. For instance, the entire single-trace gauge sector of the heterotic string obeys

BCJ relations [20]. The subsector of open-bosonic-string amplitudes compatible with the

BCJ duality was identified in [21], and the amplitude contributions without any zeta-value

coefficient were derived from a field-theory Lagrangian [22].

The subsequent Berends-Giele recursions for the amplitudes of (3.1) follow a two-fold

purpose: on the one hand, they will be used to generate economic and manifestly cyclic

amplitude representations along the lines of section 2.3. On the other hand, they set the

stage for

• an off-shell realization of the BCJ duality in section 4

• a kinematic proof of the BCJ relations in section 5.2

• a construction of manifestly local gauge-theory numerators subject to kinematic Ja-

cobi relations in section 5.3.

All of these results hold to the order of α′2 and are based on a non-linear gauge transfor-

mation of the generating series of Berends-Giele currents similar to (2.18).

3.1 Berends-Giele recursions for F 3 and F 4

Our Berends-Giele approach to (YM+F 3+F 4) follows the lines of section 2.2 to derive

recursions for the currents from the non-linear equations of motion. The field variation of

the action (3.1) is given by15

δSYM+F 3+F 4

δAλ
= [∇µ,Fλµ] + 2α′[∇µ, [Fµν ,Fνλ]] + 2α′

2
[
∇µ,

[
[Fµλ,Fρσ],Fρσ

]]
(3.2)

and augments (2.11) by α′-corrections. In Lorenz gauge ∂µAµ = 0, setting (3.2) to zero

amounts to a wave equation analogous to (2.13),

�Aλ = [Aµ, ∂µAλ] + [Aµ,Fµλ] + 2α′
{

[∇µFµν ,Fνλ] + [Fµν ,∇µFνλ]
}

(3.3)

+ 2α′
2
{[

[∇µFµλ,Fρσ],Fρσ
]

+
[
[Fµλ,∇µFρσ],Fρσ

]
+
[
[Fµλ,Fρσ],∇µFρσ

]}
.

15It is convenient to use δ
δAλ

Tr(FµνX) = δλµ[∇ν , X] − δλν [∇µ, X] in intermediate steps of deriving (3.2).

The extensions of this lemma to Fµν-dependent quantities X follows straightforwardly from the Leibniz rule.
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Since we will only be interested in the amplitude contributions up to the order of α′2, we

can simplify (3.3) by dropping terms of order α′3 and higher. At the first order in α′, this

allows to replace ∇µFµν = 2α′[Fρσ,∇ρFσν ] +O(α′2) = −α′[Fρσ,∇νFρσ] +O(α′2) such that

�Aλ = [Aµ, ∂µAλ] + [Aµ,Fµλ] + 2α′[Fµν ,∇µFνλ] + 4α′
2[

[Fµλ,Fρσ],∇µFρσ
]

+O(α′
3
) .

(3.4)

This form of the field equations gives rise to an efficient Berends-Giele recursion: we will

study formal solutions of (3.4) modulo α′3 that descend from a perturbiner ansatz

Aµ =
∑
P 6=∅

AµP t
P ekP ·x , Fµν =

∑
P 6=∅

FµνP tP ekP ·x , (3.5)

where Lorenz gauge and the definition Fµν = −[∇µ,∇ν ] of the field strength imply

kP ·AP = 0 , FµνP = kµPA
ν
P − kνPA

µ
P −

∑
P=XY

(AµXA
ν
Y −AνXA

µ
Y ) . (3.6)

In comparison to the perturbiners (2.14) and (2.15) of undeformed YM theory, the Berends-

Giele currents have been renamed as JµP → AµP and Bµν
P → FµνP in order to distinguish

these α′-dependent quantities from the YM currents in (2.16) and (2.15),

JµP = lim
α′→0

AµP , Bµν
P = lim

α′→0
FµνP . (3.7)

In the same way as the Berends-Giele recursion of undeformed YM theory benefits from

field-strength currents Bµν
P , the perturbiner solutions to (3.4) are conveniently expressed

in terms of the additional auxiliary currents

∇µFνλ =
∑
P 6=∅

F
µ|νλ
P tP ekP ·x , [Fµν ,Fλρ] =

∑
P 6=∅

G
µν|λρ
P tP ekP ·x . (3.8)

By their definition in (3.8), the auxiliary currents are determined by AµP and FµνP ,

F
µ|νλ
P = kµPF

νλ
P −

∑
P=XY

(AµXF
νλ
Y −A

µ
Y F

νλ
X )

G
µν|λρ
P =

∑
P=XY

(FµνX F λρY − F
µν
Y F λρX ) , (3.9)

in the same way as the FµνP in (3.6) boil down to the elementary currents AµP . All the

above currents can be shown to obey shuffle symmetry

AµP�Q = FµνP�Q = F
µ|νλ
P�Q = G

µν|λρ
P�Q = 0 ∀ P,Q 6= ∅ (3.10)

by repeating the arguments for the currents JµP and FµνP of pure YM theory [27, 65].

With the above definitions, the Berends-Giele recursion induced by the field equa-

tion (3.4) takes the simple form

Aµi = eµi (3.11)

AµP =
1

2sP

∑
P=XY

[
(kY ·AX)AµY +AνXF

νµ
Y + 2α′F νλX F

ν|λ
Y

µ + 4α′
2
G
νµ|ρσ
X F

ν|ρσ
Y − (X ↔ Y )

]
.
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In analogy to (2.6), the leading orders α′≤2 of the tree amplitudes resulting from the

action (3.1) are then given by

AYM+F 3+F 4(1, 2, . . . , n−1, n) = s12...n−1A
µ
12...n−1A

µ
n +O(α′

3
) . (3.12)

For instance, the rank-two current due to (3.11) with X = 1 and Y = 2 and the resulting

three-point amplitude read

s12A
µ
12 = (k2 · e1)eµ2 − (k1 · e2)eµ1 +

1

2
(kµ1 − k

µ
2 )(e1 · e2)

+ α′(kµ1 − k
µ
2 )
[
(k1 · k2)(e1 · e2)− (k1 · e2)(k2 · e1)

]
(3.13)

AYM+F 3+F 4(1, 2, 3) =
[
(k2 · e1)(e2 · e3) + cyc(1, 2, 3)

]
+ 2α′(k2 · e1)(k3 · e2)(k1 · e3) .

The last term of the three-point function illustrates a fundamental difference between the

tensor structure of YM amplitudes and their F 3 corrections: contractions of the type (k ·e)n

do not occur in n-point amplitudes of YM [84–86]. Hence, the expressions for AYM+F 3+F 4

in this work do not belong to the class of D2mFn amplitudes that are accessible from the

open superstring through a combination of color-ordered SYM trees [17].

By the shuffle symmetry (3.10) of the currents, the amplitude representation (3.12) can

be used to demonstrateAYM+F 3+F 4(1, 2, . . . , n) to also obey the Kleiss-Kuijf relations (2.9).

The α′1-order of our results up to and including n = 6 points has been checked to match

the D-dimensional CHY formulae of16 [26]. The D = 4 helicity components of the CHY

expressions17 in turn have been verified to agree with the results of [88–90].

We emphasize that the form of the recursion in (3.11) only involves deconcatenations

P = XY into two words X,Y rather than three-word expressions with P = XY Z as

seen in (2.2). Hence, the amplitudes (3.12) naturally arise in a cubic-graph parametriza-

tion (2.27) as visualized in figure 7. The cubic-graph organization extends to the order

of α′2, although each term of the TrF 4 vertex in (3.1) involves at least four powers of

the Aµ field. Still, the quartic-vertex origin of the terms G
νµ|ρσ
X F

ν|ρσ
Y in (3.11) is visible

through the absence of single-particle currents G
µν|λρ
i = 0 since there is no deconcatenation

XY = i in (3.9). Like this, the part G
νµ|ρσ
X F

ν|ρσ
Y of the recursion (3.11) can only contribute

at minimum length |X|+ |Y | = 3, i.e. to amplitudes (3.12) at multiplicity n ≥ 4.

Note that the equation of motion (3.2) translates into the following expression for the

tensor divergence of FµνP :

kλPF
λµ
P =

∑
P=XY

[
AλXF

λµ
Y + 2α′F νλX F

ν|λ
Y

µ + 4α′
2
G
νµ|ρσ
X F

ν|ρσ
Y − (X ↔ Y )

]
+O(α′

3
) . (3.14)

3.2 Manifestly cyclic Berends-Giele representations

This section is dedicated to a reformulation of the Berends-Giele formula (3.12) for

AYM+F 3+F 4 such as to manifest cyclicity and to reduce the maximum rank of the Berends-

Giele constituents (3.11) on the right-hand side. This amounts to identifying a deformation

16We are grateful to Song He and Yong Zhang for providing the analytic expressions.
17See [87] for a systematic study of the reduction of CHY formulae to D = 4 dimensions.

– 19 –



J
H
E
P
0
2
(
2
0
1
9
)
0
7
8

Aµ123, F
µν
123,

F
µ|νλ
123 , G

µν|λρ
123

↔

} 3

2

1

YM
+F3

+F4
. . . =

2

1

s12

3

s123
· · · +

2

1

3

· · ·

+

2

1

3

· · · +

2

1

3

· · · +

2

1

3

+

2

1

3

· · · + (1↔ 3) + O(α′3)

Figure 7. Berends-Giele currents Aµ12...p, F
µν
12...p, F

µ|νλ
12...p and G

µν|λρ
12...p of rank p combine the diagrams

and propagators expected in a color-ordered (p+1)-point tree amplitude of (YM+F 3+F 4) with an

off-shell leg. . . . Vertices marked with a white and black dot represent the first and second order

in α′ on the right hand side of (3.11), i.e. the cubic-graph parametrization of α′F 3 and α′
2
F 4

insertions.

MX,Y,Z ←→ + +

. . .

Y

...Z
... X

. . .

Y

...Z
... X

. . .

Y

...Z
... X

Figure 8. In the diagrammatic interpretation of the building block MX,Y,Z in (3.15), the central

vertex can either be of YM type (first term), of (α′F 3)-type (white dot) or of (α′
2
F 4)-type (black

dot). The blobs labelled by X,Y, Z represent currents of (YM+F 3+F 4).

of the cyclic MX,Y,Z building block in (2.20) that preserves the structure of the economic

and manifestly cyclic amplitude representations (2.24) up to and including the order of

α′2. The desired cyclic building block analogous to MX,Y,Z reads

MX,Y,Z =
1

2

(
AµXF

µν
Y AνZ + cyc(X,Y, Z)

)
− 2α′FµνX F νλY F λµZ

+

(
α′

2
F
µ|νλ
X F νλY AµZ + 2α′

2
G
µν|λρ
X F

µ|λρ
Y AνZ ± perm(X,Y, Z)

)
(3.15)

+

(
α′2

2
G
µν|λρ
X FµνY F λρZ − 2α′

2
FµνX F

µ|λρ
Y F

ν|λρ
Z + cyc(X,Y, Z)

)
,

where the notation ±perm(X,Y, Z) instructs to add five permutations with alternating

signs and enforces permutation antisymmetry MX,Y,Z = −MY,X,Z = MY,Z,X . The dia-

grammatic interpretation of the building block (3.15) can be found in figure 8.

– 20 –



J
H
E
P
0
2
(
2
0
1
9
)
0
7
8

In analogy with (2.21), the amplitude formula (3.12) can be rewritten as

AYM+F 3+F 4(1, 2, . . . , n−1, n) =
∑

XY=12...n−1

MX,Y,n +O(α′
3
) (3.16)

=
n−2∑
j=1

M12...j, j+1...n−1, n +O(α′
3
) .

To first order in α′, the equivalence with (3.12) is proven to all multiplicities in ap-

pendix A.1. At second order in α′2, (3.16) has been checked analytically to multiplicity

n = 6 and numerically up to and including n = 8. In the same way as we are only interested

in the orders α′≤2 of the amplitudes (3.16), we will consistently drop terms at the orders

α′≥3 in later equations of this work and skip the disclaimer O(α′3) for ease of notation.

Amplitude representations with manifest cyclicity and lower-rank Berends-Giele cur-

rents can be obtained by an integration-by-parts property that takes the same form

as (2.22), ∑
XY=A

MX,Y,B =
∑

XY=B

MA,X,Y , (3.17)

starting with M12,3,4 = M1,2,34, see (2.23) for higher-point examples. At the order of α′,

a general proof of (3.17) can be found in appendix A.2. At the order of α′2, (3.17) has

been checked analytically at |A| + |B| ≤ 6 as well as numerically at |A| + |B| ≤ 8 and is

conjectural at higher multiplicity.

By applying (3.17) to the amplitude representation (3.16), one gets manifestly cyclic

expressions analogous to (2.24),

AYM+F 3+F 4(1, 2, 3, 4) =
1

2
M12,3,4 + cyc(1, 2, 3, 4)

AYM+F 3+F 4(1, 2, . . . , 5) = M12,3,45 + cyc(1, 2, 3, 4, 5) (3.18)

AYM+F 3+F 4(1, 2, . . . , 6) =
1

3
M12,34,56 +

1

2
(M123,45,6 + M123,4,56) + cyc(1, 2, . . . , 6)

AYM+F 3+F 4(1, 2, . . . , 7) = M123,45,67 + M1,234,567 + cyc(1, 2, . . . , 7) ,

as well as

AYM+F 3+F 4(1, 2, . . . , 8) =
1

2
(M1234,567,8 + M1234,56,78 + M1234,5,678)

+ M123,456,78 + cyc(1, 2, . . . , 8)

AYM+F 3+F 4(1, 2, . . . , 9) = M1234,567,89 + M1234,56,789 + M1234,5678,9

+
1

3
M123,456,789 + cyc(1, 2, . . . , 9) (3.19)

AYM+F 3+F 4(1, 2, . . . , 0) =
1

2
(M12345,6789,0 + M12345,678,90 + M12345,67,890 + M12345,6,7890)

+ M1234,567,890 + M1234,5678,90 + cyc(1, 2, . . . , 0) .
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The rational prefactors of non-prime multiplicities n = 4, 6, 8, 9 avoid overcounting of cubic

diagrams when combinations of currents are invariant under less than n cyclic shifts i →
i+1. Integration by parts (3.17) can be used to bypass such prefactors in expressions like

AYM+F 3+F 4(1, 2, 3, 4) = M12,3,4 + M23,4,1

AYM+F 3+F 4(1, 2, . . . , 6) = M12,34,56 + M23,45,61 + M123,45,6 + M123,4,56 (3.20)

+ M234,56,1 + M234,5,61 + M345,61,2 + M345,6,12 ,

also see [28, 37, 38] for the antecedents of these representations in ten-dimensional SYM.

Similarly, the all-multiplicity series of cyclic representations

AYM+F 3+F 4(1, 2, . . . , n) =
1

2(n−3)

n−2∑
j=2

n−1∑
l=j+1

M12...j, j+1...l, l+1...n + cyc(1, 2, . . . , n) (3.21)

can be imported from ten-dimensional SYM [17].

3.3 Gauge algebra of F 3 + F 4 building blocks

The action of non-linear gauge transformations δΩAµ = ∂µΩ− [Aµ,Ω] is not altered by the

higher-mass-dimension operators in the action (3.1). Hence, given perturbiner components

ΩP for the gauge scalars Ω, the α′-deformed currents of the previous subsection follow the

transformations of the YM currents (2.18),

δΩA
µ
P = kµPΩP−

∑
XY=P

(AµXΩY−AµY ΩX) , δΩF
µν
P = −

∑
XY=P

(FµνX ΩY−FµνY ΩX)

(3.22)

δΩF
µ|νλ
P = −

∑
XY=P

(F
µ|νλ
X ΩY−Fµ|νλY ΩX) , δΩG

µν|λρ
P = −

∑
XY=P

(G
µν|λρ
X ΩY−Gµν|λρY ΩX) .

One can therefore verify non-linear gauge invariance of the amplitude formula (3.12) by

repeating the arguments of the undeformed gauge theory: among the three terms in the

gauge variation

δΩ(s12...n−1A12...n−1 ·An) = s12...n−1

{
(A12...n−1 · kn)Ωn + Ω12...n−1(k12...n−1 ·An)

+
∑

12...n−1=XY

(ΩYA
µ
X − ΩXA

µ
Y )Aµn

}
, (3.23)

the first one vanishes by the Lorenz-gauge condition k12...n−1 ·A12...n−1 = 0 and the second

one due to transversality kn · An = 0 (using momentum conservation kµ12...n−1 = −kµn in

both cases). The currents in the second line of (3.23) have multiplicity |X|, |Y | ≤ n−2 and

are therefore regular as s12...n−1 → 0, so multiplication with s12...n−1 causes this term to

vanish as well. This rests on the reasonable assumption that the gauge scalars ΩP descend

from a perturbiner and can only have poles in sQ for subsets Q ⊆ P .

By the Leibniz property of δΩ, momentum conservation and the expression (3.14) for

contractions of the form kµPF
µν
P , one can infer the non-linear gauge transformation of the
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building blocks (3.15). The result is most conveniently expressed in terms of a scalar

quantity ΩX,Y,Z,W = Ω[X,Y,Z,W ] which is totally antisymmetric in four multiparticle labels

X,Y, Z,W ,

δΩMX,Y,Z =
∑

X=PQ

ΩP,Q,Y,Z +
∑
Y=PQ

ΩP,Q,Z,X +
∑
Z=PQ

ΩP,Q,X,Y (3.24)

ΩX,Y,Z,W = ΩXMY,Z,W − ΩYMZ,W,X + ΩZMW,X,Y − ΩWMX,Y,Z .

While the α′ → 0 limit of (3.24) descends from BRST variations of superspace building

blocks in ten-dimensional SYM theory [28], a proof to the first order in α′ is given in

appendix A.3. At the order of α′2, we have tested (3.24) to the order of |X|+ |Y |+ |Z| = 6.

Based on the gauge algebra (3.24) and permutation antisymmetry ΩX,Y,Z,W =

Ω[X,Y,Z,W ], one can check the non-linear gauge invariance of the manifestly cyclic am-

plitude representations in (3.18), (3.19) and (3.21). In particular, this will be exploited in

later sections to evaluate the MX,Y,Z in BCJ gauge which is tailored to manifest the BCJ

duality via local numerators.

4 Kinematic Jacobi identities in off-shell diagrams

The purpose of this section is to manifest the BCJ duality between color and kinematics

in off-shell diagrams of (YM+F 3+F 4). We will construct local solutions to the kinematic

Jacobi relations (2.29) in the subdiagram with an off-shell leg drawn in figure 9. This

amounts to assigning kinematic numerators to the cubic-vertex diagram in the figure which

share the symmetries of the associated color factors

Cb123...p = fa1a2cf ca3dfda4e . . . fyap−1zfzapb . (4.1)

The adjoint indices a1, a2, . . . , ap refer to p on-shell legs, and an off-shell leg is associated

with a free adjoint index b carried by the rightmost factor in (4.1).

When identifying the dotted off-shell line in figure 9 with an external on-shell leg, we

recover the half-ladder diagrams of figure 6 that define the master numerators at n = p+1

points. Accordingly, permutations of figure 9 in 2, 3, . . . , p will be associated with the

master numerators in an off-shell setup: cubic diagrams which are not of half-ladder form

or do not have leg 1 and the off-shell leg. . . at their endpoints can be reached from (p−1)!

permutations of figure 9 through a sequence of Jacobi identities.

In specific examples of (4.1) at rank p ≤ 5, antisymmetry faiajak = f [aiajak] and Jacobi

identities (2.25) imply the so-called Lie symmetries for the color factors,

0 = Cb12... + Cb21... , 0 = Cb123... + Cb231... + Cb312...

0 = Cb1234... − Cb1243... + Cb3412... − Cb3421... (4.2)

0 = Cb12345... − Cb12354... − Cb12453... + Cb12543... + Cb45321... − Cb45312... .

The ellipsis in the subscript of each term indicates that lower-rank symmetries in the first

labels extend to higher rank. For instance, Cb12 = fa1a2b = −fa2a1b = −Cb21 can be shown

– 23 –



J
H
E
P
0
2
(
2
0
1
9
)
0
7
8

2

1

s12

3

s123

4

s1234

. . .

p

s12...p. . . ←→

{ aµ12...p, f
µν
12...p,

f
µ|νλ
12...p, g

µν|λρ
12...p

Figure 9. This section is dedicated to constructing local and Jacobi-satisfying kinematic repre-

sentatives for the depicted cubic diagram of (YM+F 3+F 4). The notation aµ12...p, f
µν
12...p, f

µ|νλ
12...p and

g
µν|λρ
12...p will be introduced in subsection 4.1 and refers to four types of such solutions at different

mass dimensions.

to persist at any rank p > 2 by contraction with f ba3cf ca4d . . . fxap−1yfyapz which yields

Cz123...p = −Cz213...p. The generalization of the Lie symmetries (4.2) to higher rank will be

spelt out in (4.28) and can be checked to leave (p−1)! independent permutations of Cb123...p

at rank p.

We will now describe the construction of local kinematic factors for (YM+F 3+F 4) with

the same Lie symmetries of (4.2) which imply kinematic Jacobi relations. The recursive

procedure presented in this section closely follows the steps of [15], where local superspace

building blocks with Lie symmetries have been constructed for ten-dimensional SYM.

4.1 Local multiparticle polarizations up to rank three

As we already saw for the Berends-Giele currents of the previous section, each cubic vertex

of (YM+F 3+F 4) may introduce powers of α′0, α′1 or α′2 into the kinematic factors. We no

longer distinguish these contributions from the individual vertices (as done by the white

and black circles in figure 7 and 8) and collectively refer to all contributions at orders

α′≤2 through the off-shell diagram in figure 9. We will start from the numerators in the

Berends-Giele recursion (3.11) to construct solutions to the kinematic Jacobi identities —

i.e. realizations of the Lie symmetries in (4.2) — up to the order of α′2.

Kinematic representatives for the diagram in figure 9 with Lie symmetries will be

referred to as multiparticle polarizations and denoted by lowercase parental letters aµ12...p,

fµν12...p, f
µ|νλ
12...p and g

µν|λρ
12...p . This notation will help to distinguish the local multiparticle

polarizations from the Berends-Giele currents AµP , FµνP , F
µ|νλ
P and G

µν|λρ
P with kinematic

poles. In the same way as all the four species of Berends-Giele currents enter the cyclic

building block MX,Y,Z in (3.15), we will later on see that the analogous four species of

multiparticle polarizations can be combined to Jacobi-satisfying kinematic numerators NI

in the sense of section 2.4.

At rank one, the local multiparticle polarizations are defined to match their Berends-

Giele counterparts which include the transverse polarization vectors eµi and do not exhibit

any kinematic poles,

aµi = eµi = Aµi , fµνi = kµi e
ν
i − kνi e

µ
i = Fµνi

f
µ|νλ
i = kµi f

νλ
i = F

µ|νλ
i , g

µν|λρ
i = 0 = G

µν|λρ
i . (4.3)
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aµ12, f
µν
12 , f

µ|νλ
12 , g

µν|λρ
12 ←→

2

1

s12 · · · ,

Figure 10. Diagrammatic interpretation of two-particle polarizations aµ12, f
µν
12 , f

µ|νλ
12 , g

µν|λρ
12 .

The simplest multiparticle polarization aµ12 at rank two is defined by isolating the numerator

in the Berends-Giele current (3.13),

aµ12 =
1

2

[
(k2·a1)aµ2 − (k1·a2)aµ1 + aν1f

νµ
2 − a

ν
2f

νµ
1 + 2α′(fνλ1 f

ν|λµ
2 − fνλ2 f

ν|λµ
1 )

]
, (4.4)

where the absence of contributions at order α′2 is plausible by the valence of the Feynman

vertices from α′2F 4. The alternative presentation of (4.4) as aµ12 = s12A
µ
12 generalizes to

the following two-particle polarizations at higher mass dimension,

fµν12 = kµ12a
ν
12 − kν12a

µ
12 − (k1 · k2)(aµ1a

ν
2 − aν1a

µ
2 ) = s12F

µν
12

f
µ|νλ
12 = kµ12f

νλ
12 − (k1 · k2)(aµ1f

νλ
2 − a

µ
2f

νλ
1 ) = s12F

µ|νλ
12 (4.5)

g
µν|λρ
12 = (k1 · k2)(fµν1 fλρ2 − f

µν
2 fλρ1 ) = s12G

µν|λρ
12 .

The local multiparticle polarizations are still proportional to their Berends-Giele counter-

parts since the latter only describe a single cubic diagram, see figure 10. By the shuffle

symmetry Aµ12 = −Aµ21 of Berends-Giele currents or the antisymmetry Cb12 = −Cb21 of the

dual color factors (4.1), we have

aµ12 = −aµ21 , fµν12 = −fµν21 , f
µ|νλ
12 = −fµ|νλ21 , g

µν|λρ
12 = −gµν|λρ21 . (4.6)

Starting from rank three, Berends-Giele currents involve multiple cubic diagrams. Mul-

tiparticle polarizations for the individual diagrams can be built by isolating one of the two

deconcatenations (X,Y ) = (12, 3) and (X,Y ) = (1, 23) in (3.11) that contribute to Aµ123.

The numerator w.r.t. s−1
12 s
−1
123 stems from (X,Y ) = (12, 3) and reads

âµ123 =
1

2

[
(k3 · a12)aµ3 − (k12 · a3)aµ12 + aν12f

νµ
3 − a

ν
3f

νµ
12 (4.7)

+ 2α′(fνλ12 f
ν|λµ
3 − fνλ3 f

ν|λµ
12 ) + 4α′

2
g
νµ|ρσ
12 f

ν|ρσ
3

]
,

where a formal antisymmetry under exchange of labels 12 ↔ 3 can be manifested by

adding 0 = −2α′2g
νµ|ρσ
3 f

ν|ρσ
12 . The Berends-Giele numerator âµ123 should ideally share the

symmetries (4.2) of the color factor Cb123. Indeed, antisymmetry âµ123 = −âµ213 in the first

two indices is inherited from the property (4.6) of the rank-two input. However, the first

non-trivial kinematic Jacobi identity for the triplet of cubic diagrams in figure 11 requires

âµ123 + âµ231 + âµ312 to vanish, which is not the case. Still, the obstruction takes a special

form, where one can factor out the overall momentum kµ123 and isolate a scalar quantity

h123 that captures the deviation from the Lie symmetries

âµ123 + âµ231 + âµ312 = 3kµ123h123 . (4.8)
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aµ123, f
µν
123, f

µ|νλ
123 , g

µν|λρ
123 ←→

2

1

s12

3

s123
· · ·

Jacobi identity: 0
!

= + +

2

1

3

· · ·

3

2

1

· · ·

1

3

2

· · ·

Figure 11. Diagrammatic interpretation of three-particle polarizations aµ123, f
µν
123, f

µ|νλ
123 , and g

µν|λρ
123

subject to kinematic Jacobi relations such as aµ123 + cyc(1, 2, 3) = 0.

Amusingly, the explicit form of

6h123 =

(
1

2
aµ1f

µν
2 aν3 − 2α′

2
fµν1 f

µ|λρ
2 f

ν|λρ
3 + cyc(1, 2, 3)

)
− 2α′fµν1 fνλ2 fλµ3 +

α′

2

(
f
µ|νλ
1 fνλ2 aµ3 ± perm(1, 2, 3)

)
(4.9)

= M1,2,3

can be reproduced from the cyclic building block of (3.15). Already the left-hand side

of (4.8) implies permutation-antisymmetry h123 = h[123], so a redefinition of the Berends-

Giele numerator (4.7) via

aµ123 = âµ123 − k
µ
123h123 (4.10)

yields the desired Lie symmetries of the color factors,

aµ123 = −aµ213 , aµ123 + aµ231 + aµ312 = 0 . (4.11)

As we will see, the appearance of the overall momentum kµ123 in the correction (4.10) to

âµ123 is essential to absorb the analogous improvements of Berends-Giele currents into a

non-linear gauge transformation (3.22).

Given a multiparticle polarization aµ12...p at rank p, the construction of its analogues

fµν12...p, f
µ|νλ
12...p and g

µν|λρ
12...p at higher mass dimension involves contact terms ∼ sij that preserve

the Lie symmetries. For instance, the rank-three generalizations of (4.5)

fµν123 = kµ123a
ν
123 − (k12 · k3)aµ12a

ν
3 − (k1 · k2)(aµ1a

ν
23 − a

µ
2a

ν
13)− (µ↔ ν)

f
µ|νλ
123 = kµ123f

νλ
123 − (k12 · k3)(aµ12f

νλ
3 − fνλ12 a

µ
3 ) (4.12)

− (k1 · k2)(aµ1f
νλ
23 − a

µ
23f

νλ
1 − a

µ
2f

νλ
13 + aµ13f

νλ
2 )

g
µν|λρ
123 = (k12 · k3)(fµν12 f

λρ
3 − f

λρ
12 f

µν
3 ) + (k1 · k2)(fµν1 fλρ23 − f

µν
23 f

λρ
1 − f

µν
2 fλρ13 + fµν13 f

λρ
2 )

are easily checked to reproduce the symmetries (4.11) of aµ123. These contact terms are the

local equivalents of the deconcatenation terms in the Berends-Giele currents FµνP , F
µ|νλ
P and

G
µν|λρ
P in (3.6) and (3.9), see section 5.1 for more details and [15] for superspace analogues.
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While the difference between aµ123 and âµ123 in (4.10) drops out from the definition (4.12)

of fµν123, it will be crucial at higher rank to always build fµν12...p, f
µ|νλ
12...p and g

µν|λρ
12...p from the

redefined fields subject to Lie symmetries.

4.2 Local multiparticle polarizations at rank four and five

The numerators of the Berends-Giele recursion (3.11) serve as a starting point to construct

higher-rank multiparticle polarizations for the diagrams in figure 9 that satisfy the Lie

symmetries (4.2) of the dual color factors. The higher-rank systematics of the redefinition

in (4.10) is most conveniently illustrated via examples at p = 4, 5.

Given the multiparticle polarizations at rank three in (4.10) and (4.12), their Lie

symmetries imply that the rank-four object

âµ1234 =
1

2

[
(k4 · a123)aµ4 − (k123 · a4)aµ123 + aν123f

νµ
4 − a

ν
4f

νµ
123

+ 2α′(fνλ123f
ν|λµ
4 − fνλ4 f

ν|λµ
123 ) + 4α′

2
g
νµ|ρσ
123 f

ν|ρσ
4

]
(4.13)

obeys âµ1234 = −âµ2134 and âµ1234 + âµ2314 + âµ3124 = 0. However, the Lie symmetry at rank four

is not yet satisfied by (4.13), and in contrast to (4.8), it is not possible to factorize kµ1234

from âµ1234− â
µ
1243 + âµ3412− â

µ
3421. Instead, we will need redefinitions âµ1234 → a′µ1234 → aµ1234

in two steps, where an intermediate object a′µ1234 is built from permutations of the scalar

hijk in the rank-three redefinition, see (4.9),

a′µ1234 = âµ1234 − (k12 · k3)aµ3h124 − (k1 · k2)(aµ2h134 − aµ1h234) . (4.14)

The pattern of subtractions in (4.14) has been inferred by mimicking BRST transformations

in ten-dimensional pure-spinor superspace [15], and it should be possible to give a similar

motivation from a study of linearized gauge variations. The key benefit of the redefinition

in (4.14) is that the deviation from the rank-four Lie symmetry now takes a factorized form

a′µ1234 − a
′µ
1243 + a′µ3412 − a

′µ
3421 = 4kµ1234h1234 , (4.15)

see (4.25) for convenient representations of the scalar h1234. The left-hand side of (4.15)

along with a′µ1234 = −a′µ2134 and a′µ1234 + a′µ2314 + a′µ3124 = 0 imply the symmetries h1234 =

−h2134 = h3412 = −h3421 and h1234 + h2314 + h3124 = 0. Like this, the redefinition

aµ1234 = a′µ1234 − k
µ
1234h1234 (4.16)

leads to the desired Lie symmetries

aµ1234 = −aµ1234 , aµ1234 + aµ2314 + aµ3124 = 0 , aµ1234 − a
µ
1243 + aµ3412 − a

µ
3421 = 0 . (4.17)

This final form of the multiparticle polarization aµ1234 can be used to construct its coun-

terparts at higher mass dimensions, where the Lie-symmetry preserving contact terms
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in (4.12) generalize to18

fµν1234 = kµ1234a
ν
1234 − (k123 · k4)aµ123a

ν
4 − (k12 · k3)(aµ12a

ν
34 + aµ124a

ν
3)

− (k1 · k2)(aµ13a
ν
24 + aµ14a

ν
23 + aµ134a

ν
2 − a

µ
234a

ν
1)− (µ↔ ν)

f
µ|νλ
1234 = kµ1234f

νλ
1234 −

[
(k123 · k4)aµ123f

νλ
4 + (k12 · k3)(aµ12f

νλ
34 + aµ124f

νλ
3 ) (4.18)

+ (k1 · k2)(aµ13f
νλ
24 + aµ14f

νλ
23 + aµ134f

νλ
2 − a

µ
234f

νλ
1 )− (aµP f

νλ
Q ↔ aµQf

νλ
P )
]

g
µν|λρ
1234 = (k123 · k4)fµν123f

λρ
4 + (k12 · k3)(fµν12 f

λρ
34 + fµν124f

λρ
3 )

+ (k1 · k2)(fµν13 f
λρ
24 + fµν14 f

λρ
23 + fµν134f

λρ
2 − f

µν
234f

λρ
1 )− (fµνP fλρQ ↔ fµνQ fλρP ) .

At higher rank, analogous redefinitions in two steps âµ123...p → a′µ123...p → aµ123...p will be

sufficient to attain Lie symmetries, i.e. there are no additional intermediate steps at p > 4.

For instance, the Lie-symmetry satisfying multiparticle polarizations (4.16) and (4.18) at

rank four can be used to recursively construct a rank-five quantity

âµ12345 =
1

2

[
(k5 · a1234)aµ5 − (k1234 · a5)aµ1234 + aν1234f

νµ
5 − a

ν
5f

νµ
1234

+ 2α′(fνλ1234f
ν|λµ
5 − fνλ5 f

ν|λµ
1234 ) + 4α′

2
g
νµ|ρσ
1234 f

ν|ρσ
5

]
(4.19)

subject to the symmetries (4.17) in its first four labels. The rank-five Lie symmetry can

be enforced by first performing subtractions analogous to (4.14) and [15],

a′µ12345 = âµ12345 − (k123 · k4)aµ4h1235 − (k12 · k3)(aµ3h1245 + aµ34h125 − aµ12h345)

− (k1 · k2)(aµ2h1345 + aµ23h145 + aµ24h135 − aµ1h2345 − aµ13h245 − aµ14h235) , (4.20)

and then identifying a rank-five scalar h12345 along the lines of (4.15),

a′µ12345 − a
′µ
12354 + a′µ45123 − a

′µ
45213 − a

′µ
45312 + a′µ45321 = 5kµ12345h12345 . (4.21)

Note that a′µ12345 only satisfies Lie symmetries in its first four labels, as one can check via

h1234 = −h2134 and h1234 + h2314 + h3124 = 0 as well as h123 = h[123]. This endows the

resulting h12345 on the right-hand side with the same Lie symmetries in its first four legs

and an additional reflection property h12345+h45312 = 0. On these grounds, the redefinition

aµ12345 = a′µ12345 − k
µ
12345h12345 (4.22)

leads to the desired Lie symmetries in all the five labels

aµ12345 = −aµ12345 , aµ12345 + aµ23145 + aµ31245 = 0 , aµ12345 − a
µ
12435 + aµ34125 − a

µ
34215 = 0

aµ12345 − a
µ
12354 + aµ45123 − a

µ
45213 − a

µ
45312 + aµ45321 = 0 .

(4.23)

18As an example for the antisymmetrization prescriptions in (4.18), the subtraction of (aµP f
νλ
Q ↔ aµQf

νλ
P )

extends the term aµ123f
νλ
4 to the combination aµ123f

νλ
4 − aµ4fνλ123.
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The remaining multiparticle polarizations are given by

fµν12345 = kµ12345a
ν
12345 − (k1234 · k5)aµ1234a

ν
5 − (k123 · k4)(aµ1235a

µ
4 + aµ123a

ν
45)

− (k12 · k3)(aµ1245a
ν
3 + aµ124a

ν
35 + aµ125a

ν
34 + aµ12a

ν
345)

− (k1 · k2)(aµ1345a
ν
2 + aµ134a

ν
25 + aµ135a

ν
24 + aµ145a

ν
23 (4.24)

+ aµ13a
ν
245 + aµ14a

ν
235 + aµ15a

ν
234 + aµ1a

ν
2345)− (µ↔ ν) ,

and similar expressions for f
µ|νλ
12345 and g

µν|λρ
12345 can be inferred by analogy with (4.18) or from

the all-rank formula (4.31).

We emphasize that the expressions for the scalars h12...p result from a fully constructive

procedure, i.e. they can be read off from (4.8), (4.15) and (4.21) after factoring out kµ12...p.

Similar to (4.9), one can use the cyclic building block (3.15) to rewrite

h1234 =
1

24
(2s12M12,3,4 + s13M13,2,4 − s14M14,2,3 − s23M23,1,4 + s24M24,1,3 + 2s34M34,1,2)

= +
1

48

(
(k123 · a4)M1,2,3 − (k234 · a1)M2,3,4 + (k134 · a2)M1,3,4 − (k124 · a3)M1,2,4

)
+

1

8
(s12M12,3,4 + s34M34,1,2) (4.25)

and similar expressions for h12345 are spelt out in appendix B.1.

4.3 Local multiparticle polarizations at higher rank

The recursive construction of multiparticle polarizations will now be summarized in terms

of all-rank formulae that closely follow their superspace antecedents [15] but incorporate

α′-corrections. The Lie symmetries of aµ12...q, f
µν
12...q, f

µ|νλ
12...q and g

µν|λρ
12...q at lower rank q = p−1

propagate to the first p−1 labels of the following quantity:

âµ12...p =
1

2

[
(kp · a12...p−1)aµp − (k12...p−1 · ap)aµ12...p−1 + aν12...p−1f

νµ
p − aνpf

νµ
12...p−1

+ 2α′(fνλ12...p−1f
ν|λµ
p − fνλp f

ν|λµ
12...p−1) + 4α′

2
g
νµ|ρσ
12...p−1f

ν|ρσ
p

]
. (4.26)

When reinstating the vanishing term 0 = −2α′2g
νµ|ρσ
p f

ν|ρσ
12...p−1, this expression exhibits

formal antisymmetry under exchange of labels 12 . . . p−1 ↔ p. In order to isolate the

deviations from the Lie symmetries at rank p, one first has to subtract19

a′µ12...p = âµ12...p −
p−1∑
j=2

(k12...j−1 · kj)
∑

j+1,j+2...p−1
=X�Y

(
h12...(j−1)Y pa

µ
jX − hjY pa

µ
12...(j−1)X

)
, (4.27)

with hi = hij = 0 as well as hijk and hijkl defined in (4.9) and (4.25), respectively.

These subtractions vanish at rank p ≤ 3, and their instances at p = 4, 5 are spelt out

in (4.14) and (4.20), respectively. These equations might be helpful to see an example

19OS is grateful to Carlos Mafra for identifying the property j+1, j+2 . . . p−1 = X�Y of the words X,Y

in the second sum of (4.27).
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of the summation prescription of the form a1a2 . . . ak = X�Y in (4.27): for a given k-

particle label a1a2 . . . ak, the sum runs over all the 2k pairs of words X and Y whose shuffle

product contains a1a2 . . . ak, for instance20 (X,Y ) = (∅, ∅) in case of k = 0 as well as

(X,Y ) = (a1, ∅) and (X,Y ) = (∅, a1) in case of k = 1.

The outcome of (4.27) still obeys the Lie symmetries in the first p−1 labels and is

claimed to factorize kµ12...p when probing the rank-p Lie symmetry:

a′µ12...n+1[n+2[...[2n−1[2n,2n+1]]...]]−a
′µ
2n+1,2n,...n+2[n+1[...[3[21]]...]] : p = 2n+1 odd

a′µ12...n[n+1[...[2n−2[2n−1,2n]]...]]+a
′µ
2n,2n−1,...n+1[n[...[3[21]]...]] : p = 2n even

}
= pkµ12...ph12...p .

(4.28)

The symmetries of the scalar h12...p induced by the left-hand side ensure that the final form

aµ12...p = a′µ12...p − k
µ
12...ph12...p (4.29)

of the multiparticle polarizations obeys all the Lie symmetries of the color factor (4.1),

0 =

{
aµ12...n+1[n+2[...[2n−1[2n,2n+1]]...]] − a

µ
2n+1,2n,...n+2[n+1[...[3[21]]...]] : p = 2n+1 odd

aµ12...n[n+1[...[2n−2[2n−1,2n]]...]] + aµ2n,2n−1,...n+1[n[...[3[21]]...]] : p = 2n even
.

(4.30)

Hence, when interpreted as the kinematic numerator of the off-shell diagram in figure 9,

the multiparticle polarization aµ12...p in (4.29) obeys kinematic Jacobi identities.

The remaining multiparticle polarizations fµν12...p, f
µ|νλ
12...p and g

µν|λρ
12...p of higher mass di-

mension are obtained by the following generalization of (4.12), (4.18) and (4.24)

fµν12...p = kµ12...pa
ν
12...p −

p∑
j=2

(k12...j−1 · kj)
∑

j+1,j+2...p
=X�Y

aµ12...j−1Xa
ν
jY − (µ↔ ν)

f
µ|νλ
12...p = kµ12...pf

νλ
12...p −

 p∑
j=2

(k12...j−1 · kj)
∑

j+1,j+2...p
=X�Y

aµ12...j−1Xf
νλ
jY − (aµP f

νλ
Q ↔ aµQf

νλ
P )


(4.31)

g
µν|λρ
12...p =

p∑
j=2

(k12...j−1 · kj)
∑

j+1,j+2...p
=X�Y

fµν12...j−1Xf
λρ
jY − (fµνP fλρQ ↔ fµνQ fλρP ) ,

see the explanation above for the summation prescription j+1, j+2 . . . p = X�Y . The

pattern of contact terms on the right-hand side preserves the Lie symmetries in all the

p labels and will be connected with Berends-Giele currents in section 5.1. In the next

section, these four Jacobi-satisfying kinematic representatives (4.29) and (4.31) of the off-

shell diagram in figure 9 will be combined to on-shell numerators of (YM+F 3+F 4).

20As a rank-two example of the above summation prescription, a1a2 = X�Y allows for the four choices

of (X,Y ), namely (a1a2, ∅), (∅, a1a2), (a1, a2), (a2, a1).
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Aµ,BCJ
1234 ←→

2

1

s12

3

s123

4

s1234

. . .

3

2

+
s23

1

s123

4

s1234

. . .

4

3

+
s34

2

s234

1

s1234

. . .

3

2

+
s23

4

s234

1

s1234. . .

2

1

+

3

4

...

s12 s34

s1234

Figure 12. Cubic-diagram expansion of the rank-four Berends-Giele current Aµ,BCJ
1234 built from

multiparticle polarizations.

5 BCJ gauge and BCJ numerators for (YM+F 3+F 4)

5.1 Berends-Giele currents in BCJ gauge

In this section, we relate the Jacobi-satisfying numerators for cubic off-shell diagrams as

constructed in the previous section to gauge-transformed Berends-Giele currents. The idea

is to compare the Lorenz-gauge currents AµP , F
µν
P , F

µ|νλ
P and G

µν|λρ
P of section 3.1 with al-

ternative currents Aµ,BCJ
P , . . . , G

µν|λρ,BCJ
P obtained from multiparticle polarizations. More

precisely, these alternative currents are defined by combining cubic diagrams in the usual

color-ordered manner and dressing them with multiparticle polarizations and propagators.

The simplest examples are Aµ,BCJ
1 = eµ1 as well as

Aµ,BCJ
12 =

aµ12

s12
, Aµ,BCJ

123 =
aµ123

s12s123
+

aµ321

s23s123
(5.1)

Aµ,BCJ
1234 =

1

s1234

{
aµ1234

s12s123
+

aµ3214

s23s123
+
aµ1234 − a

µ
1243

s12s34
− aµ4321

s34s234
− aµ2341

s23s234

}
,

and similar definitions apply to Fµν,BCJ
... , Fµ|νλ,BCJ

... , Gµν|λρ,BCJ
... with aµ... → fµν... , f

µ|νλ
... , gµν|λρ...

on the right-hand side of (5.1). The rank-two currents are degenerate with Aµ,BCJ
12 = Aµ12,

while the redefinitions of numerators aµ12...p at ranks p ≥ 3 by h12...p introduce differences

between AµP from the recursion (3.11) and the alternative currents in (5.1).

At rank three, there are two cubic diagrams contributing to Aµ,BCJ
123 after dropping the

distinction between order-α′0, α′1, α′2 vertices in figure 7, and the five cubic diagrams at

rank four are depicted in figure 12. The numerator for the last cubic diagram of Aµ,BCJ
1234 in

the figure with propagators (s12s34s1234)−1 is defined to be aµ1234 − a
µ
1243 by its relation to

half-ladder numerators via Jacobi identities.21

More generally, each cubic diagram contributing to Aµ,BCJ
12...p can be derived from the

half-ladder topology via kinematic Jacobi relations. The half-ladder numerators at rank

21The Lie symmetry aµ1234 − a
µ
1243 = −(aµ3412 − a

µ
3421) ensures that this numerator changes sign when

trading 12↔ 34 by a flip of the central cubic vertex and therefore obeys (2.28).
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p in turn can be expanded in the (p−1)!-element basis {aµ1ρ(23...p), ρ ∈ Sp−1} by their Lie

symmetries (4.30). As already noted in a superspace context [15, 19], currents and master

numerators are related by the inverse of the (p−1)!× (p−1)! KLT matrix in (2.42),

Aµ,BCJ
1ρ(23...p) =

∑
σ∈Sp−1

Φ(ρ|σ)1 a
µ
1σ(23...p) , Fµν,BCJ

1ρ(23...p) =
∑

σ∈Sp−1

Φ(ρ|σ)1 f
µν
1σ(23...p) (5.2)

F
µ|νλ,BCJ
1ρ(23...p) =

∑
σ∈Sp−1

Φ(ρ|σ)1 f
µ|νλ
1σ(23...p) , G

µν|λρ,BCJ
1ρ(23...p) =

∑
σ∈Sp−1

Φ(ρ|σ)1 g
µν|λρ
1σ(23...p) .

The cubic-graph expansion endows the alternative currents AµBCJ
P , . . . , G

µν|λρ,BCJ
P with

the same shuffle relations (3.10) as the Lorenz-gauge currents AµP , . . . , G
µν|λρ
P . Hence, the

former also descend from Lie-algebra valued perturbiners [74] such as

Aµ,BCJ =
∑
P 6=∅

Aµ,BCJ
P tP ekP ·x , Fµν,BCJ =

∑
P 6=∅

Fµν,BCJ
P tP ekP ·x . (5.3)

By direct comparison of the currents AµP , F
µν
P and Aµ,BCJ

P , Fµν,BCJ
P , the redefinitions of the

multiparticle polarizations via h12...p conspire to shuffle symmetric scalars H12...p,

Aµ,BCJ
123 = Aµ123 + kµ123H123 , Fµν,BCJ

123 = Fµν123

Aµ,BCJ
1234 = Aµ1234 −A

µ
1H234 +H123A

µ
4 + kµ1234H1234 (5.4)

Fµν,BCJ
1234 = Fµν1234 − F

µν
1 H234 +H123F

µν
4 ,

for instance

H123 =
h123

s123

(
1

s23
− 1

s12

)
=

M1,2,3

6s123

(
1

s23
− 1

s12

)
(5.5)

H1234 =
1

s1234

{
h1234

(
1

s34s234
− 1

s12s123

)
−h3214

s23

(
1

s123
− 1

s234

)
+

1

4

(
M12,3,4

s34
−M34,1,2

s12

)
+

1

12

(
(k123·a4)

M1,2,3

s123

(
1

s12
− 1

s23

)
+(k234·a1)

M2,3,4

s234

(
1

s34
− 1

s23

))
(5.6)

+
1

24s12s34
[M1,2,3(k123·a4)−M1,2,4(k124·a3)−M1,3,4(k134·a2)+M2,3,4(k234·a1)]

}
.

An alternative expression for H1234 can be found in appendix B.2.

Given that Hi = Hij = 0, the redefinitions (5.4) up to rank four line up with the

general form of a non-linear gauge transformation (3.22)

Aµ,BCJ
P = AµP + kµPHP −

∑
XY=P

(AµXHY −AµYHX)

Fµν,BCJ
P = FµνP −

∑
XY=P

(FµνX HY − FµνY HX) (5.7)

F
µ|νλ,BCJ
P = F

µ|νλ
P −

∑
XY=P

(F
µ|νλ
X HY − Fµ|νλY HX)

G
µν|λρ,BCJ
P = G

µν|λρ
P −

∑
XY=P

(G
µν|λρ
X HY −Gµν|λρY HX)
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with gauge parameters ΩP → HP . These transformations are checked to apply to all

currents up to and including rank five, see appendix B.3 for the explicit form of H12345,

and the existence of suitable H12...p is conjectural at higher rank p ≥ 6.

As the punchline of (5.7), the local Jacobi-satisfying numerators for off-shell diagrams

are related to Lorenz-gauge currents through a non-linear gauge transformation gener-

ated by

Ω =
∑
i,j,l

Hijlt
itjtlekijl·x +

∑
i,j,l,m

Hijlmt
itjtltmekijlm·x + . . . =

∑
|P |≥3

HP t
P ekP ·x . (5.8)

In the next sections, the local multiparticle polarizations will be used to manifest the BCJ

duality between color and kinematics in tree-level amplitudes of (YM+F 3+F 4). Hence,

the transformed currents AµBCJ
P , . . . , G

µν|λρ,BCJ
P related by (5.2) are said to be in BCJ

gauge [27, 28]. Note that the first perturbiner solutions to the field equations of ten-

dimensional SYM were actually constructed in BCJ gauge [91].

5.2 Kinematic derivation of the BCJ relations

As a first application of BCJ-gauge currents, we derive the BCJ relations (2.30) of

AYM+F 3+F 4 amplitudes by inverting their correspondence (5.2) with multiparticle polar-

izations. The same sequence of arguments has been applied to derive BCJ relations for

tree amplitudes of ten-dimensional SYM from superspace currents in BCJ gauge [28], and

we adapt the reasoning of the reference to the bosonic amplitudes up to the α′2-order.

At rank p, inversion of (5.2) relates multiparticle polarizations to BCJ-gauge cur-

rents via

aµ1σ(23...p) =
∑

τ∈Sp−1

S(σ|τ)1A
µ,BCJ
1τ(23...p) , fµν1σ(23...p) =

∑
τ∈Sp−1

S(σ|τ)1 F
µν,BCJ
1τ(23...p) (5.9)

f
µ|νλ
1σ(23...p) =

∑
τ∈Sp−1

S(σ|τ)1 F
µ|νλ,BCJ
1τ(23...p) , g

µν|λτ
1σ(23...p) =

∑
τ∈Sp−1

S(σ|τ)1G
µν|λτ,BCJ
1τ(23...p) ,

where S(σ|ρ)1 denotes the KLT matrix defined in (2.39). The Lie symmetries of the

numerators of the BCJ-gauge currents ensure that the Mandelstam invariants from S(σ|ρ)1

cancel all of their kinematic poles on the right-hand sides of (5.9). However, when repeating

these matrix multiplications with Lorenz-gauge currents AµP , some of the kinematic poles in

(m ≥ 3)-particle channels persist22 in
∑

τ∈Sp−1
S(σ|τ)1A

µ
1τ(23...p) with p ≥ 3. Hence, it is a

peculiarity of BCJ-gauge currents that local objects are obtained from matrix multiplication

with S(σ|ρ)1. Similarly, the pole s−1
12...p in the p-particle channel drops out from the following

rank-p combinations of BCJ-gauge currents,

aµ12 = s12A
µ,BCJ
12 ,

aµ123

s12
= s23A

µ,BCJ
123 − s13A

µ,BCJ
213 (5.10)

aµ1234

s12s123
+

aµ3214

s23s123
= s34A

µ,BCJ
1234 − s24(Aµ,BCJ

1324 +Aµ,BCJ
3124 ) + s14A

µ,BCJ
3214 ,

22For instance, the product
∑
τ∈S2

S(2, 3|τ)1A
µ
1τ(23) = s12(s23A

µ
123 − s13A

µ
213) can be thought of as a

Lorenz-gauge analogue of aµ123 and exhibits a pole in s123 with residue ∼ s12kµ123h123.
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i.e. they are non-singular as s12...p → 0 but obviously exhibit poles in lower-multiplicity

channels such as s−1
12...p−1. The same is true for the rank-five expression

1

s1234

(
aµ12345

s12s123
+

aµ32145

s23s123
− aµ43215

s34s234
− aµ23415

s23s234
+
aµ12345 − a

µ
12435

s12s34

)
(5.11)

= s45A
µ,BCJ
12345 − s35A

µ,BCJ
(12�4)35 + s25A

µ,BCJ
(43�1)25 − s15A

µ,BCJ
43215 .

This can be used to derive BCJ relations among color-ordered (YM+F 3+F 4) amplitudes.

We exploit that the amplitude formula (3.12) is invariant under non-linear gauge transfor-

mations — see section 3.3 — and can therefore be written in terms of BCJ-gauge currents,

AYM+F 3+F 4(1, 2, . . . , n−1, n) = s12...n−1A
µ,BCJ
12...n−1A

µ
n . (5.12)

The right-hand side is nonzero and finite by the interplay of the vanishing Mandelstam

invariant s12...n−1 and the compensating (n−1)-particle pole of Aµ,BCJ
12...n−1. If the propaga-

tor s−1
12...n−1 cancels in a linear combination of currents, then multiplication with s12...n−1

yields vanishing expressions in the n-particle momentum phase space. For instance, since

s23A
µ,BCJ
123 −s13A

µ,BCJ
213 = aµ123/s12 does not have the pole s−1

123 of the individual currents, the

quantity s123a
µ
123/s12 = s123(s23A

µ,BCJ
123 − s13A

µ,BCJ
213 ) vanishes by four-particle momentum

conservation. In combination with the amplitude formula (5.12), this implies the four-point

BCJ relation (2.30)

0 =
s123a

µ
123

s12
= s123(s23A

µ,BCJ
123 − s13A

µ,BCJ
213 )

= s23AYM+F 3+F 4(1, 2, 3, 4)− s13AYM+F 3+F 4(2, 1, 3, 4) . (5.13)

Similarly, the rank-(p ≤ 5) combinations in (5.10) and (5.11) with regular s12...p → 0 limit

imply the following five- and six-point BCJ relations after multiplication with the vanishing

(p = n−1)-point Mandelstam invariant s12...p,

0 = s1234

(
aµ1234

s12s123
+

aµ3214

s23s123

)
= s34AYM+F 3+F 4(1, 2, 3, 4, 5)

−s24(AYM+F 3+F 4(1, 3, 2, 4, 5)+AYM+F 3+F 4(3, 1, 2, 4, 5))+s14AYM+F 3+F 4(3, 2, 1, 4, 5)

0 =
s12345

s1234

(
aµ12345

s12s123
+
aµ32145

s23s123
− aµ43215

s34s234
− aµ23415

s23s234
+
aµ12345−a

µ
12435

s12s34

)
(5.14)

= s45AYM+F 3+F 4(1, 2, 3, 4, 5, 6)−s35AYM+F 3+F 4((1, 2�4), 3, 5, 6)

+s25AYM+F 3+F 4((4, 3�1), 2, 5, 6)−s15AYM+F 3+F 4(4, 3, 2, 1, 5, 6) .

This calls for an all-multiplicity formula for analogous combinations with regular behaviour

as s12...p → 0: the right-hand sides of (5.10) can be generated through the S-map [15, 28]

Aµ,BCJ
S[P,Q] =

|P |∑
i=1

|Q|∑
j=1

(−1)i−j+|P |−1spiqjA
µ,BCJ
(p1p2...pi−1�p|P |p|P |−1...pi+1)piqj(qj−1...q2q1�qj+1...q|Q|)

(5.15)
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involving words P = p1p2 . . . p|P | and Q = q1q2 . . . q|Q|. BCJ gauge of the currents implies

that the S-map defined in (5.15) removes the pole in sPQ [15] and therefore paves the way

for the following form of the BCJ relations [28]

0 = (−1)|P |−1sPQA
µ,BCJ
S[P,Q]A

µ
n

=

|P |∑
i=1

|Q|∑
j=1

(−1)i−jspiqjAYM+F 3+F 4((p1p2 . . . pi−1�p|P | . . . pi+1), pi, qj , (qj−1 . . . q1�qj+1 . . . q|Q|), n) .

(5.16)

Suitable choices of P and Q in (5.16) reproduce various representations of the BCJ rela-

tions [2, 11, 12, 92]. Setting P = 1 and Q = 23 . . . n−1, for instance, one recovers a form

of the BCJ relations

0 =

n−1∑
j=2

(−1)js1jAYM+F 3+F 4(1, j, (j−1, j−2, . . . , 3, 2�j+1, . . . , n−1), n) (5.17)

which is equivalent to (2.30) by the KK relations AYM+F 3+F 4((X�Y ), n) = 0 ∀ X,Y 6= ∅.

5.3 Local Jacobi-satisfying numerators

In this section, we will exploit the multiparticle polarizations of (YM+F 3+F 4) to construct

local and Jacobi-satisfying cubic-diagram numerators. The most direct approach is to

expand the BCJ-gauge current in the amplitude representation (5.12) via (5.2),

AYM+F 3+F 4(1, τ(2, . . . , n−1), n) =
∑

ρ∈Sn−2

s12...n−1Φ(τ |ρ)1a
µ
1ρ(23...n−1)e

µ
n , τ ∈ Sn−2 ,

(5.18)

where the formally vanishing Mandelstam invariant in s12...n−1Φ(τ |ρ)1 cancels in each entry

of the inverse KLT matrix (see the recursion in (2.41) and (2.42)). From the remaining

propagators in Φ(τ |ρ)1, the expressions aµ1ρ(23...n−1)e
µ
n will be shown below to take the role

of master numerators of the half-ladder diagrams depicted in figure 6. The (n−2)! KK-

independent permutations of AYM+F 3+F 4 in (5.18) incorporate each cubic diagram at least

once and therefore define all of the numerators.

In order to demonstrate that the numerators in (5.18) obey kinematic Jacobi identities,

we bring it into the form of the general amplitude representation (2.36) with manifest color-

kinematics duality,

AYM+F 3+F 4(σ(1, 2, . . . , n)) =
∑

ρ∈Sn−2

m(σ|1, ρ(2, . . . , n−1), n)aµ1ρ(23...n−1)e
µ
n , σ ∈ Sn .

(5.19)

Consistency with (5.18) can be conveniently checked by expressing Φ(τ |ρ)1 with τ, ρ ∈ Sn−2

as a putative (n+1)-point doubly-partial amplitude −m(1, τ, n, n+1|1, ρ, n+1, n) via (2.38)

and (2.42). By its Berends-Giele representation (2.40) [63], the latter can be written as

Φ(τ |ρ)1 = −s12...nφ1τn|n1ρ = −
∑

XY=1τn

∑
AB=n1ρ

(φX|AφY |B − φY |AφX|B) . (5.20)
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NX,Y,Z ←→
yq

. . .

y3
y2

y1

xp

. . .

x3

x1

x2

zr

. . .

z3
z2

z1

Figure 13. Diagrammatic interpretation of the local building block NX,Y,Z with multiparticle

labels X = x1x2 . . . xp, Y = y1y2 . . . yq and Z = z1z2 . . . zr referring to three off-shell half-ladder

diagrams that are connected by the central vertex. Note that we no longer distinguish between the

orders of α′ carried by the individual cubic vertices and therefore suppress the white and black dots

of figure 8.

Since φP |Q vanishes unless P is a permutation of Q, the only contribution arises from the

deconcatenations with A = n and Y = n leading to

s12...n−1Φ(τ |ρ)1 = −s12...n−1(φ1τ |nφn|1ρ − φn|nφ1τ |1ρ) = m(1, τ, n|1, ρ, n) . (5.21)

Hence, (5.19) at σ = (1, τ, n) reduces to (5.18). For other choices of σ in turn, va-

lidity of (5.19) follows from the KK relations of both sides. Hence, by the discussion

around (2.36), the cubic-diagram numerators of (5.18) are composed from the masters

aµ1ρ(23...n−1)e
µ
n as dictated by Jacobi identities.

Note that the cubic-diagram numerators in (5.18) and (5.19) are not crossing sym-

metric, i.e. their functional form in terms of polarizations and momenta depends on the

position of the singled-out legs 1 and n in the diagram.

In the same way as the manifestly cyclic representations of section 3.2 assemble n-

point amplitudes from Berends-Giele currents of maximum rank
⌊
n
2

⌋
, we will next spell

out alternative numerators in terms of lower-rank multiparticle polarizations. In analogy

to the cyclic building block MX,Y,Z in (3.15) composed of Lorenz-gauge currents, we define

the local combination

NX,Y,Z =
1

2

(
aµXf

µν
Y aνZ + cyc(X,Y, Z)

)
− 2α′fµνX fνλY fλµZ

+

(
α′

2
f
µ|νλ
X fνλY aµZ + 2α′

2
g
µν|λρ
X f

µ|λρ
Y aνZ ± perm(X,Y, Z)

)
(5.22)

+

(
α′2

2
g
µν|λρ
X fµνY fλρZ − 2α′

2
fµνX f

µ|λρ
Y f

ν|λρ
Z + cyc(X,Y, Z)

)

to describe the cubic diagram in figure 13 (see figure 8 for the analogous diagrammatic

interpretation of MX,Y,Z).

There is an ambiguity in relating cubic diagrams to the combinations NX,Y,Z in (5.22):

each of the n−2 cubic vertices may be associated with the central vertex in figure 13, e.g.
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1

a1
a2

. . .

ap n bq

. . .

b2

n−1

b1

X = 1a1a2 . . . ap Z = (n−1)b1 . . . bq

N1a1a2...ap|n|bq ...b2b1n−1 = (−1)qN1a1...ap, n, (n−1)b1...bq ←→

Figure 14. An alternative choice of master numerators composed of multiparticle polarizations of

smaller rank as compared to (5.19). The external legs a1, a2, . . . , ap, b1, b2, . . . , bq are permutations

of 2, 3, . . . , n−2 where p+q = n−3 and p = 0, 1, . . . , n−3.

all of N123,4,5, N12,3,45 and N1,2,543 describe the same cubic diagram. A valid (n−2)!-set of

NX,Y,Z to serve as the master numerators for half-ladder diagrams is given by

N1a1a2...ap|n|bq ...b2b1n−1 = (−1)qN1a1a2...ap, n, (n−1)b1b2...bq . (5.23)

As a defining property of these master numerators N..., the central vertex of figure 13 is

always chosen to be adjacent to leg n which therefore enters in a single-particle slot. As

depicted in figure 14, the numerators in (5.23) describe half-ladder diagrams with endpoints

1 and n−1, where the location of leg n decides about the partition into the three subdia-

grams associated with the slots of NX,Y,Z . The remaining labels a1, a2, . . . , ap, b1, b2, . . . , bq
are a permutation of 2, 3, . . . , n−2 with p+q = n−3. Together with the n−2 different

choices of p = 0, 1, . . . , n−3, this exhausts the total of (n−2)! permutations of the larger

set 2, 3, . . . , n−2, n.

The collection of N1a1a2...ap|n|bq ...b2b1n−1 in (5.23) and figure 14 can be used as an

alternative to the master numerators aµ1ρ(23...n−1)e
µ
n in (5.19). As a practical advantage of

the N..., their constituents in (5.22) only require multiparticle polarizations of maximal rank

n−2 instead of the rank-(n−1) quantities aµ1ρ(23...n−1). As demonstrated in appendix C,23

they yield Jacobi-satisfying amplitude representations of the form (2.36),

AYM+F 3+F 4(σ(1, 2, . . . , n)) =
n−2∑
j=1

∑
ρ∈Sn−3

N1ρ(23...j)|n|ρ(j+1...n−2)n−1

×m(σ|1, ρ(2, 3, . . . , j), n, ρ(j+1, . . . , n−2), n−1) . (5.24)

Note that the α′ → 0 order of (5.24) follows from the field-theory limit of the pure-spinor

superstring based on the amplitude representations of [14, 63] and the superspace gauge

described in [27].

Moreover, one can further reduce the maximum rank of the multiparticle polarizations

by a generalization of the integration-by-parts relation (3.17). The latter still holds when

23Also see [14, 63] for Jacobi-satisfying superspace numerators in ten-dimensional SYM with the same

combinatorial structure as (5.22) and (5.23).
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the MA,B,C are constructed from BCJ gauge currents24 and multiplied by KLT matrices

for the slots A,B,C, so the rank-(n−2) cases in (5.24) can be reduced as follows

N123|5|4 = N123,5,4 =
1

s45

[
(k12 · k3)N12,3,54 + (k1 · k2)(N1,23,54 +N13,2,54)

]
N1234|6|5 = N1234,6,5 =

1

s56

[
(k123 · k4)N123,4,65 + (k12 · k3)(N124,3,65 +N12,34,65) (5.25)

+ (k1 · k2)(N1,234,65 +N134,2,65 +N13,24,65 +N14,23,65)
]
.

The n-point generalization involves the summation prescription of the form a1a2 . . . ap =

X�Y that has been introduced in section 4.3

N12...n−2|n|n−1 = N12...n−2,n,n−1 =
1

sn−1,n

n−2∑
j=2

(k12...j−1 · kj)
∑

j+1,j+2...n−2
=X�Y

N12...j−1X,jY,n(n−1) .

(5.26)

The right-hand sides of (5.25) and (5.26) at n ≥ 5 can be assembled from multiparticle

polarizations of maximum rank n−3, and the spurious poles in sn−1,n cancel after com-

bining all the terms. The same strategy applies to permutations of N12...n−2|n|n−1 and

N1|n|23...(n−2)(n−1) in 2, 3, . . . , n−2. Like this, the n-point amplitude representation (5.24)

with manifest BCJ duality and local numerators is completely determined by multiparticle

polarizations of rank n−3. For instance, the explicit construction of multiparticle polar-

izations up to rank five in section 4 is sufficient to pinpoint all the eight-point numerators

in (5.24).

Note that the special footing of legs 1, n−1 and n in (5.24) breaks the crossing sym-

metry even more heavily than the numerators in (5.19). Still, one can restore crossing

symmetry by averaging over all choices of singling out legs i, j, k ∈ {1, 2, . . . , n} instead of

1, n−1 and n.

5.4 Relation to string-theory and gravity amplitudes

A major motivation for the construction of (YM+F 3+F 4) numerators with manifest lo-

cality stems from their connection with gravitational quantities through the double copy.

Following the lines of [18], the double copy of AYM+F 3+F 4 to amplitudes from higher-

curvature operators α′R2 +α′2R3 can be extracted from the string-theory KLT relations [1]

(also see [23, 24]): the leading α′-orders of the open-bosonic-string amplitudes

A open
bosonic

(σ) = AYM+F 3+F 4(σ) + ζ2Asuper−F 4(σ) +O(α′
3
) (5.27)

comprise our results for AYM+F 3+F 4 (and the aforementioned contribution from the su-

persymmetrizable F 4-operator which is incompatible with the BCJ duality and can be

distinguished by its coefficient ζ2 [18]). By the interplay with the trigonometric factors in

24This follows from the fact that the difference of the left- and right-hand side of (3.17) is invariant under

non-linear gauge transformations (3.24).
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the KLT formula, both copies of Asuper−F 4(σ) drop out from relevant orders of the closed

bosonic string [21],

M closed
bosonic

=
∑

ρ,τ∈Sn−3

AYM+F 3+F 4(1, ρ, n−1, n)S(ρ|τ)1ÃYM+F 3+F 4(1, τ, n, n−1) +O(α′
3
) ,

(5.28)

where S(ρ|τ)1 is the field-theory KLT matrix defined in (2.39) and the permutations ρ, τ

act on 2, 3, . . . , n−2. Hence, to the orders considered, the right-hand side of (5.28) describes

amplitudes from the low-energy effective action of the closed bosonic string [25]

S closed
bosonic

∼
∫

dDx
√
g

{
R− 2(∂µϕ)2 − 1

12
H2 +

α′

4
e−2ϕ

[
RµνλρR

µνλρ − 4RµνR
µν +R2

]
+α′

2
e−4ϕ

[
1

16
RµναβR

αβ
λρR

λρ
µν −

1

12
RµναβR

νλ
βρR

λµ
ρα

]
+O(α′

3
)

}
, (5.29)

where ϕ denotes the dilaton and H = dB is the field strength of the B-field. In spite of

the dilaton admixtures via e−2ϕ, e−4ϕ, the operators along with the first and second order

of α′ are collectively referred to as R2 and R3. While the R2 operator can be reconciled

with up to sixteen supercharges [93], the R3 operator is not supersymmetrizable [94].

Given the multitude of propagators in KLT formulae of the form (5.28), the locality

properties of gravity amplitudes are more transparent in representations involving Jacobi-

satisfying numerators as in (2.34). For instance, our master numerators for (YM+F 3+F 4)

in (5.19) and (5.24) admit a realization of the double-copy structure via

MGR+R2+R3 =
∑

ρ∈Sn−2

(aµ1ρ(23...n−1)e
µ
n) ÃYM+F 3+F 4(1, ρ(2, 3, . . . , n−1), n)+O(α′

3
)

=

n−2∑
j=1

∑
ρ∈Sn−3

N1ρ(2...j)|n|ρ(j+1...n−2)n−1 ÃYM+F 3+F 4(1, ρ(2, . . . , j), n, ρ(j+1, . . . , n−2), n−1)

+O(α′
3
) ,

(5.30)

where each term has the propagator structure of cubic diagrams. The subscript GR+R2 +

R3 is just a schematic shorthand for the amplitudes generated by the action (5.29) to the

orders of α′2. As emphasized in [18], the α′2-order of (5.30) receives contribution from both

single-insertions of R3 operators and double-insertions of R2 operators.

In D = 4 spacetime dimensions, the R2 contribution to (5.29) is the topological Gauss-

Bonnet term. The components at the first order in α′ of (5.30) with graviton helicities are

therefore guaranteed to vanish. Still, the double insertions of R2 contribute to the α′2-order

of graviton components in four dimensions since the prefactor of e−2ϕ in (5.29) allows for

dilaton exchange [18].

On the right-hand side of (5.28) or (5.30), the α′2 order receives both symmetric and

asymmetric contributions: terms of the form AYM+F 3+F 4

∣∣
α′
ÃYM+F 3+F 4

∣∣
α′

where both

gauge-theory halves contribute a factor of α′ have been carefully analyzed in D = 4 helicity

components [18]. Our results on the α′2-order of AYM+F 3+F 4 and its master numerators
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additionally deliver the contributions to D-dimensional amplitudes of GR+R2 +R3, where

both powers of α′ stem from the same gauge-theory factor. These contributions involving

AYM+F 3+F 4

∣∣
α′2

explain25 the departure of MGR+R2+R3

∣∣
α′2

from the double copy of the

first α′-order AYM+F 3+F 4

∣∣
α′

which has already been observed in certain D = 4 helicity

components [18]. Hence, there is no need to consider higher orders from the α′-expansion

of the sin(πα
′

2 ki ·kj) terms in the string-theory KLT relations as speculated in the reference.

At the order of α′, one may extract new representations26 for supersymmetrized ma-

trix elements of R2 from (5.30) by trading AYM+F 3+F 4 for color-ordered amplitudes of

ten-dimensional SYM and their dimensional reductions. These supersymmetrizations play

a key role in recent studies of divergences and duality anomalies of N = 4 supergrav-

ity [57, 58].

6 Conclusions and outlook

In this work, we have studied various representations for tree-level amplitudes of D-

dimensional gauge theories with α′F 3 + α′2F 4 deformations. Our main results concern

the emergence of the BCJ duality between color and kinematics up to the order of α′2

which is driven by the interplay of the F 3 and F 4-operators [18] and independent on the

choice of gauge group. While the BCJ duality has originally been explained by the re-

alization of the α′F 3 + α′2F 4 operators from the open bosonic string, our work takes a

different approach by identifying the seeds of the duality in the Berends-Giele currents of

(YM+F 3+F 4).

We study the Berends-Giele currents of (YM+F 3+F 4) in the perturbiner formal-

ism [68–72], where non-linear gauge transformations can be mapped to reparametrizations

of the scattering amplitudes [27]. First of all, these currents are used to construct manifestly

cyclic amplitude representations, where the rank of the contributing currents is systemati-

cally reduced. Moreover, we pinpoint a specific non-linear gauge transformation up to the

order of five on-shell legs in a single current which rearranges the naive Feynman-diagram

output of the action such as to manifest the BCJ duality. Like this, we derive the BCJ

relations among color-ordered amplitudes to the order of α′2 from purely kinematic consid-

erations. Furthermore, two kinds of explicit cubic-diagram parametrizations are given for

(YM+F 3+F 4)-amplitudes where the manifestly local numerators obey kinematic Jacobi

relations.

Our construction is inspired by superspace kinematic factors of ten-dimensional

SYM [27, 28] whose properties were inferred from the conformal-field-theory description

of the pure-spinor superstring [14, 15, 37]. We identify extensions of these superspace-

inspired structures to higher orders in α′ and to operators F 3, F 4 that do not admit any

supersymmetrization. It would be interesting to find a conformal-field-theory derivation of

the local multiparticle polarizations that drive our BCJ-duality-satisfying amplitude rep-

25We are grateful to Johannes Brödel for helpful discussions on this point and checking a representative

four-dimensional helicity example.
26Note that alternative representations with 8 supercharges on both chiral halves can be extracted from

the low-energy limit of one-loop string amplitudes in K3 orbifolds [95, 96].
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resentations. One possible starting point is to combine the worldsheet description of the

bosonic string with the off-shell techniques of [16]. Alternatively, it might be helpful to

identify a vertex-operator origin of the CHY formulae for F 3 amplitudes [26]27 along with

generalizations to higher orders in α′.

A complementary approach to the α′F 3 + α′2F 4 operators of the bosonic string is

suggested by the recent double-copy description of bosonic-string amplitudes [22]: after

peeling off the worldsheet integrals that are common with superstring amplitudes, an all-

order family of α′-corrections of the bosonic string can be traced back to a massive gauge

theory dubbed (DF )2 + YM. The latter has been constructed in [97] by imposing the BCJ

duality on a collection of dimension-six interactions between gauge bosons and massive

scalars, and it should reproduce the (YM+F 3+F 4)-amplitudes in this work upon low-

energy expansion. It would be interesting to study our results from the (DF )2 + YM-

perspective and to generalize them to arbitrary orders in α′ by integrating out its massive

modes.

Convenient and Jacobi-satisfying representations of tree-level subdiagrams are helpful

for loop integrands of string- and field-theory amplitudes, see e.g. [59–62]. Our results might

guide the organization of tensor structures of loop amplitudes in bosonic and heterotic

string theories. This in turn could give input on loop integrands of half-maximal super-

gravity and their interplay with evanescent matrix elements and anomalies [54, 55, 57, 58].
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A Properties of the cyclic building blocks

In this appendix, we prove several properties of the building block MA,B,C defined in (3.15)

to first order in α′. These proofs are based on transversality kP ·AP = 0 and the truncation

27Note that the CHY half-integrands Pn in [26] with a puncture zj ∈ C on the Riemann sphere for each

external state j = 1, 2, . . . , n and zi,j = zi − zj may be reproduced from the first order in α′ of

Pn(zj , kj , ej) =
aµ12...n−1e

µ
n

z1,2z2,3 . . . zn−1,nzn,1

∣∣∣∣
(α′)1

+ perm(2, 3, . . . , n−1) .
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of (3.14) to the first order in α′,

kλPF
λµ
P =

∑
P=XY

[
AλXF

λµ
Y + 2α′F νλX F

ν|λ
Y

µ − (X ↔ Y )
]

+O(α′
2
) . (A.1)

Moreover, we will use the generalization of (A.1) to higher mass dimension,

kµPF
λ|µν
P =

∑
P=XY

[
AµXF

λ|µν
Y + FµνX FµλY − (X ↔ Y )

]
+O(α′) , (A.2)

which follows from the definition [∇µ,∇λ] = −Fµλ and a corollary of the equations of

motion, [∇µ, [∇λ,Fµν ]] = [∇λ, [∇µ,Fµν ]] + [[∇µ,∇λ],Fµν ] = −[Fµλ,Fµν ] +O(α′). By the

Jacobi identity [∇α, [∇µ,∇ν ]] + cyc(µ, ν, α) = 0, the currents of higher mass dimension

have the symmetries

F
α|µν
P + F

µ|να
P + F

ν|αµ
P = 0 . (A.3)

This can be inserted into (A.2) to find

kµPF
µ|νλ
P =

∑
P=XY

[
AµXF

µ|νλ
Y − 2FµνX FµλY − (X ↔ Y )

]
+O(α′) . (A.4)

By virtue of (A.1), (A.2) and (A.4), one can rewrite any contraction of FµνP and F
µ|νλ
P with

the corresponding momentum kP in terms of deconcatenations. We will always work to

first order in α′, but we will split the proofs into different orders for the convenience of the

reader.

A.1 Appearance in the amplitudes

The first property we wish to prove is∑
XY=12...n−1

MX,Y,n = s12...n−1A
µ
12...n−1A

µ
n =

∑
XY=12...n−1

Aµ[X,Y ]A
µ
n , (A.5)

where, as a special case of (3.15),

MX,Y,n =
1

2

(
AµXF

µν
Y Aνn +AµY F

µν
n AνX +AµnF

µν
X AνY

)
− 2α′FµνX F νλY F λµn

+
α′

2

(
F
µ|νλ
X F νλY Aµn + F

µ|νλ
Y F νλn AµX + Fµ|νλn F νλX AµY

− Fµ|νλX F νλn AµY − F
µ|νλ
Y F νλX Aµn − Fµ|νλn F νλY AµX

) (A.6)

and

Aµ[X,Y ] =
1

2

(
AµY (kY ·AX)−AµX(kX ·AY ) +AνXF

νµ
Y −A

ν
Y F

νµ
X

)
+ α′(F νλX F

ν|λµ
Y − F νλY F

ν|λµ
X ) .

(A.7)

We first focus on the zeroth order of α′. Notice how the last two terms on the first line

of (A.7), when contracted with Aµn, exactly match the first and third terms on the first line
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of (A.6). To see that the remaining terms are equal to each other, we notice that

AµY F
µν
n AνX = AµYA

ν
X(kµnA

ν
n − kνnAµn)

= −AµYA
ν
X(kµXA

ν
n + kµYA

µ
n − kνXAµn − kνYAµn)

= (AY ·An)(kY ·AX)− (AX ·An)(kX ·AY ) ,

(A.8)

where we have used momentum conservation kµn = −kµX − kµY and transversality. This

matches with the missing terms at the α′0 order of (A.7), upon contraction with Aµn.

We now show that the same matching occurs between the terms of order α′ in both

expressions. Equating them leads to

∑
XY=12...n−1

−2FµνX F νλY F λµn︸ ︷︷ ︸
G

+
1

2

Fµ|νλX F νλY Aµn︸ ︷︷ ︸
A

+F
µ|νλ
Y F νλn AµX︸ ︷︷ ︸

E

+Fµ|νλn F νλX AµY︸ ︷︷ ︸
C

−Fµ|νλX F νλn AµY︸ ︷︷ ︸
F

−Fµ|νλY F νλX Aµn︸ ︷︷ ︸
B

−Fµ|νλn F νλY AµX︸ ︷︷ ︸
D




=
∑

XY=12...n−1

(F νλX F
ν|λµ
Y Aµn − F νλY F

ν|λµ
X Aµn) .

(A.9)

When using the Jacobi identity (A.3), two of the terms on the left-hand side combine to

cancel exactly the two on the right-hand side:∑
XY=12...n−1

1

2
(A + B) =

∑
XY=12...n−1

(−F ν|λµX F νλY Aµn + F
ν|λµ
Y F νλX Aµn) . (A.10)

Now we have to make sure that the remaining terms C, D, E, F and G on the left-hand

side of (A.9) cancel each other. The first two can be rewritten as∑
XY=12...n−1

1

2
(C + D) = F ν|λµn

∑
XY=12...n−1

(AµXF
νλ
Y −A

µ
Y F

νλ
X )

= −kνnF λµn (F
µ|νλ
12...n−1 − k

µ
12...n−1F

νλ
12...n−1)

= −kνnF λµn F
µ|νλ
12...n−1 ,

(A.11)

using the form F
ν|λµ
n = kνnF

λµ
n of the single-particle current as well as momentum conser-

vation kµ12...n−1 = −kµn and kµnF
µν
n = 0 in passing to the third line, cf. (A.2).

The other two terms combine in a similar way,∑
XY=12...n−1

1

2
(E + F) = F νλn

∑
XY=12...n−1

(AµXF
ν|µλ
Y −AµY F

ν|µλ
X )

= F νλn kµ12...n−1F
ν|µλ
12...n−1 − F

νλ
n

∑
XY=12...n−1

(FµλX FµνY − F
µλ
Y FµνX )

= −F νλn kµnF
ν|µλ
12...n−1 − 2

∑
XY=12...n−1

F νλn FµλX FµνY (A.12)

=
∑

XY=12...n−1

{
−1

2
(C + D) + 2G

}
,
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where the second line follows from (A.2). In passing to the third line, we have again

used momentum conservation and exploited antisymmetry F νλn = F
[νλ]
n . Hence, the state-

ment (A.5) is proved to first order in α′.

A.2 Integration by parts

The second property of MA,B,C we want to prove is the integration-by-parts identity∑
A=XY

MX,Y,B =
∑

B=XY

MA,X,Y , (A.13)

which translates into the following claim at the zeroth order in α′,∑
A=XY

(AµXF
µν
Y AνB +AµY F

µν
B AνX +AµBF

µν
X AνY )

−
∑

B=XY

(AµAF
µν
X AνY +AµXF

µν
Y AνA +AµY F

µν
A AνX) = O(α′) .

(A.14)

We can rewrite the second term ∼ AXAY in the first line using the antisymmetry of FµνB
and the definition (3.6) of FµνA :

∑
A=XY

AµY F
µν
B AνX =

∑
A=XY

1

2
FµνB (AµYA

ν
X −AνYA

µ
X)

=
1

2
FµνB FµνA − F

µν
B kµAA

ν
A . (A.15)

The analogous sum in the second line of (A.14) has a similar term related by A↔ B,

−
∑

B=XY

AµY F
µν
A AνX = −1

2
FµνA FµνB + FµνA kµBA

ν
B , (A.16)

where FµνA FµνB cancels against (A.15). For the remaining terms FµνA kµBA
ν
B −F

µν
B kµAA

ν
A, we

apply momentum conservation kµA + kµB = 0 and the relation (A.1) for kµAF
µν
A ,

∑
A=XY

AµY F
µν
B AνX−

∑
B=XY

AµY F
µν
A AνX = −FµνA kµAA

ν
B+FµνB kµBA

ν
A

= −
∑

A=XY

(AµXF
µν
Y AνB−A

µ
Y F

µν
X AνB)+

∑
B=XY

(AµXF
µν
Y AνA−A

µ
Y F

µν
X AνA)

−2α′
∑

A=XY

(FµλX F
µ|λν
Y −FµλY F

µ|λν
X )AνB+2α′

∑
B=XY

(FµλX F
µ|λν
Y −FµλY F

µ|λν
X )AνA .

(A.17)

Inserting this into (A.14) and ignoring the O(α′)-term in the last line, we conclude that

the property (A.13) is indeed satisfied to zeroth order in α′.

We now show that the property is still valid at the first order in α′. In doing that,

we have to combine the last term of (A.17) with the O(α′)-terms in the MA,B,C of (A.13).
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Hence, the leftover task is to prove that

0 =
∑

A=XY

(F
µ|λν
X FµλY − F

µ|λν
Y FµλX )AνB − 2FµνX F νλY F λµB

+
1

2

Fµ|νλX F νλY AµB︸ ︷︷ ︸
M

+F
µ|νλ
Y F νλB AµX︸ ︷︷ ︸

I

+F
µ|νλ
B F νλX AµY︸ ︷︷ ︸

E

−Fµ|νλX F νλB AµY︸ ︷︷ ︸
J

−Fµ|νλY F νλX AµB︸ ︷︷ ︸
N

−Fµ|νλB F νλY AµX︸ ︷︷ ︸
F




−
∑

B=XY

(F
µ|λν
X FµλY − F

µ|λν
Y FµλX )AνA − 2FµνA F νλX F λµY

+
1

2

Fµ|νλA F νλX AµY︸ ︷︷ ︸
G

+F
µ|νλ
X F νλY AµA︸ ︷︷ ︸

C

+F
µ|νλ
Y F νλA AµX︸ ︷︷ ︸

K

−Fµ|νλA F νλY AµX︸ ︷︷ ︸
H

−Fµ|νλX F νλA AµY︸ ︷︷ ︸
L

−Fµ|νλY F νλX AµA︸ ︷︷ ︸
D


 .

(A.18)

Let us start by using the Jacobi identity (A.3) to rewrite the following terms:

∑
A=XY

1

2
(M + N) =

∑
A=XY

(F
µ|λν
Y FµλX − F

µ|λν
X FµλY )AνB (A.19)

∑
B=XY

1

2
(C + D) =

∑
B=XY

(F
µ|λν
Y FµλX − F

µ|λν
X FµλY )AνA . (A.20)

The right-hand sides cancel the first two terms inside the sums in (A.18) over A = XY

and B = XY . Then, using the recursive definition of F
µ|νλ
P in (3.9), we can write

∑
A=XY

1

2
(E + F) = F

ν|λµ
B

∑
A=XY

(AµXF
νλ
Y −A

µ
Y F

νλ
X )

= F
ν|λµ
B (kµAF

νλ
A − F

µ|νλ
A ) .

(A.21)

Since the contribution from G + H takes the same form with A↔ B, the terms F
ν|λµ
B F

µ|νλ
A

cancel from the combination∑
A=XY

1

2
(E + F)−

∑
B=XY

1

2
(G + H) = kµAF

νλ
A F

ν|λµ
B − kµBF

νλ
B F

ν|λµ
A . (A.22)
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Also, using Jacobi identity (A.3) as well as (A.2), we have∑
A=XY

1

2
(I + J) = F νλB

∑
A=XY

(−AµXF
ν|λµ
Y +AµY F

ν|λµ
X )

= F νλB

(
kµAF

ν|µλ
A −

∑
A=XY

(FµλX FµνY − F
µλ
Y FµνX )

)

= kµAF
νλ
B F

ν|µλ
A − 2

∑
A=XY

F νλB FµλX FµνY

(A.23)

and using the same manipulations∑
B=XY

1

2
(K + L) = kµBF

νλ
A F

ν|µλ
B − 2

∑
B=XY

F νλA FµλX FµνY . (A.24)

The terms of the form kµ· F
νλ
· F

ν|µλ
· cancel between (A.22), (A.23) and (A.24) by momentum

conservation kA+kB = 0. Finally, the contributions of the form
∑

A=XY F
νλ
B FµλX FµνY cancel

between (A.23), (A.24) and the leftover terms of (A.18). This concludes our proof of the

integration-by-parts identity (A.13) to the order of α′.

A.3 Gauge algebra

Finally, we want to see how a non-linear gauge transformation (3.22) acts on MX,Y,Z . To

zeroth order in α′, we get

δΩMX,Y,Z =
1

2
δΩ(AµXF

µν
Y AνZ + cyc(X,Y, Z)) +O(α′)

=
1

2

(
kµXΩXF

µν
Y AνZ −

∑
X=AB

(AµAΩB −AµBΩA)FµνY AνZ

−
∑
Y=AB

(FµνA ΩB − FµνB ΩA)AµXA
ν
Z +AµXF

µν
Y kνZΩZ

−
∑
Z=AB

(AνAΩB −AνBΩA)AµXF
µν
Y + cyc(X,Y, Z)

)
+O(α′) .

(A.25)

Let us look at the terms which are not inside a sum. We can start by grouping all the ones

with the same Ω· coefficient, and use momentum conservation kµX + kµY + kµZ = 0:

kµXΩXF
µν
Y AνZ + kνXΩXF

µν
Z AµY + cyc(X,Y, Z) (A.26)

= −ΩX

(
FµνY AνZ(kµY + kµZ) +AµY F

µν
Z (kνY + kνZ)

)
+ cyc(X,Y, Z) .

We then rewrite these four terms via

−ΩXk
µ
Y F

µν
Y AνZ = −ΩX

∑
Y=AB

(AµAF
µν
B −A

µ
BF

µν
A )AνZ +O(α′)

−ΩXF
µν
Y kµZA

ν
Z = −1

2
ΩXF

µν
Y (kµZA

ν
Z − kνZA

µ
Z) (A.27)

= −1

2
ΩXF

µν
Y FµνZ − ΩXF

µν
Y

∑
Z=AB

AµAA
ν
B
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and the same identities with (Y ↔ Z). In the first line, we rewrote kµY F
µν
Y using the zeroth

order in α′ of (A.1). The last two lines of (A.27) are based on the antisymmetry of FµνY and

the definition (3.6) of FµνZ . Notice that FµνY FµνZ cancels in the antisymmetrization w.r.t.

Y ↔ Z in (A.26). Hence, all the leftover terms in (A.25) involve a sum over deconcatena-

tions, either
∑

X=AB or one of (X ↔ Y,Z). We collect all the expressions from the cyclic

permutations in (A.25) where the sum is
∑

X=AB

δΩMX,Y,Z =
1

2

∑
X=AB

(
(ΩAA

µ
B − ΩBA

µ
A)FµνY AνZ +AµZ(ΩAF

µν
B − ΩBF

µν
A )AνY

+AµY F
µν
Z (ΩAA

ν
B − ΩBA

ν
A) + ΩY

[
(AµAF

µν
B −A

µ
BF

µν
A )AνZ − F

µν
Z AµAA

ν
B

]
− ΩZ

[
(AµAF

µν
B −A

µ
BF

µν
A )AνY − F

µν
Y AµAA

ν
B

])
+ cyc(X,Y, Z) +O(α′) .

(A.28)

It turns out that the coefficient of each of the Ω’s inside the above sum can be identified

as some MP,Q,R with various combinations of the three words:

δΩMX,Y,Z =
∑

X=AB

(
ΩAMB,Y,Z − ΩBMA,Y,Z + ΩYMA,B,Z − ΩZMY,A,B

)
+ cyc(X,Y, Z) +O(α′) .

(A.29)

The object inside the sum over X = AB is totally antisymmetric in A,B, Y, Z and can be

identified as ΩA,B,C,D as defined in (3.24). Hence, the zeroth order of the gauge transfor-

mation (A.25) can be written as

δΩMX,Y,Z =
∑

X=AB

ΩA,B,Y,Z +
∑
Y=AB

ΩA,B,Z,X +
∑
Z=AB

ΩA,B,X,Y +O(α′) . (A.30)

We now want to extend the proof of (A.30) to the first order in α′. First of all, terms of

O(α′) have been neglected when inserting (A.1) into the first term of (A.27). Therefore,

we carry forward the following terms in δΩMX,Y,Z ,

ΩX

∑
Z=AB

(FµλA F
µ|λν
B − FµλB F

µ|λν
A )AνY ± perm(X,Y, Z)

= −ΩZ

∑
X=AB

(FµλA F
µ|λν
B − FµλB Fµ|λν)AνY (A.31)

+ ΩY

∑
X=AB

(FµλA F
µ|λν
B − FµλB F

µ|λν
A )AνZ + cyc(X,Y, Z) ,

where we have spelt out all the terms of the same form
∑

X=AB as in (A.28). This needs to

be combined with the gauge variation of the O(α′) terms in the definition (3.15) of MX,Y,Z :

L = −2δΩ(FµνX F νλY F λµZ )

= 2
∑

X=AB

(FµνA ΩB − FµνB ΩA)F νλY F λµZ + cyc(X,Y, Z)
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G =
1

2
δΩ(F

µ|νλ
X F νλY AµZ)± perm(X,Y, Z)

=
1

2

( ∑
X=AB

(F
µ|νλ
A ΩB − Fµ|νλB ΩA)F νλY AµZ

−
∑
Y=AB

(F νλA ΩB − F νλB ΩA)F
µ|νλ
X AµZ + ΩZk

µ
ZF

µ|νλ
X F νλY

−
∑
Z=AB

(AµAΩB −AµBΩA)F
µ|νλ
X F νλY ± perm(X,Y, Z)

)
.

(A.32)

The only term in (A.32) which is not yet in the form of a deconcatenation sum will now

be rewritten via momentum conservation kµX + kµY + kµZ = 0:

ΩZk
µ
ZF

µ|νλ
X F νλY = −ΩZk

µ
XF

µ|νλ
X F νλY︸ ︷︷ ︸

C

−ΩZk
µ
Y F

µ|νλ
X F νλY︸ ︷︷ ︸

D

. (A.33)

The first term calls for the relation (A.2),

C = −2ΩZ

∑
X=AB

(AµAF
ν|µλ
B −AµBF

ν|µλ
A + FµλA FµνB − F

µλ
B FµνA )F νλY , (A.34)

which we combined with the Jacobi identity (A.3). In the other term we use the defini-

tion (3.9) of the currents F
µ|νλ
Y ,

D = −ΩZF
µ|νλ
X

(
F
µ|νλ
Y +

∑
Y=AB

(AµAF
νλ
B −A

µ
BF

νλ
A )

)
. (A.35)

The first term F
µ|νλ
X F

µ|νλ
Y cancels under the antisymmetrization w.r.t. X,Y, Z of (A.32),

D± perm(X,Y, Z) = −ΩY

∑
X=AB

(AµAF
νλ
B −A

µ
BF

νλ
A )F

µ|νλ
Z ± perm(X,Y, Z) , (A.36)

such that all the terms in the quantity G have been expressed via deconcatenation sums:

G =
1

2

∑
X=AB

(
− (F

µ|νλ
A ΩB − Fµ|νλB ΩA)F νλAµZ

− (F νλA ΩB − F νλB ΩA)F
µ|νλ
Z AµY − 2ΩZ(AµAF

ν|µλ
B −AµBF

ν|µλ
A )F νλY

− 2ΩZ(FµλA FµνB − F
µλ
B FµνA )F νλY − ΩY (AµAF

νλ
B −A

µ
BF

νλ
A )F

µ|νλ
Z

− (AµAΩB −AµBΩA)F
µ|νλ
Y F νλZ ± perm(X,Y, Z)

)
.

(A.37)

Once we convert the permutation sum in (A.37) to a cyclic one,

f(X,Y, Z) + perm(X,Y, Z) = f(X,Y, Z)− f(X,Z, Y ) + cyc(X,Y, Z) , (A.38)
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the result for G is perfectly lined up with (A.31) and the expression for L in (A.32). Hence,

the overall O(α′) contribution to the gauge variation of MX,Y,Z in (3.15) reads

δΩMX,Y,Z |α′1 =
1

2

∑
X=AB

{
2(FµνA ΩB − FµνB ΩA)F νλY F λµZ

− 1

2
(F

µ|νλ
A ΩB − Fµ|νλB ΩA)F νλY AµZ +

1

2
(F

µ|νλ
A ΩB − Fµ|νλB ΩA)F νλZ AµY

− 1

2
(F νλA ΩB − F νλB ΩA)F

µ|νλ
Z AµY +

1

2
(F νλA ΩB − F νλB ΩA)F

µ|νλ
Y AµZ

− 1

2
(AµAΩB −AµBΩA)F

µ|νλ
Y F νλZ +

1

2
(AµAΩB −AµBΩA)F

µ|νλ
Z F νλY

+ ΩY

[
(FµλA F

µ|λν
B − FµλB F

µ|λν
A )AνZ −

1

2
(AµAF

νλ
B −A

µ
BF

νλ
A )F

µ|νλ
Z

+ (AµAF
ν|µλ
B −AµBF

ν|µλ
A )F νλZ + (FµλA FµνB − F

µλ
B FµνA )F νλZ

]
+ ΩZ

[
−(FµλA F

µ|λν
B − FµλB F

µ|λν
A )AνY +

1

2
(AµAF

νλ
B −A

µ
BF

νλ
A )F

µ|νλ
Y

− (AµAF
ν|µλ
B −AµBF

ν|µλ
A )F νλY − (FµλA FµνB − F

µλ
B FµνA )F νλY

]}
+ cyc(X,Y, Z) .

(A.39)

The coefficients of ΩA, ΩB, ΩX and ΩY are identified as the O(α′) terms of MA,B,C . Hence,

with the definition (3.24) of ΩA,B,Y,Z , the expression in (A.39) condenses to

δΩMX,Y,Z

∣∣
α′1

=
∑

X=AB

ΩA,B,Y,Z

∣∣
α′1

+ cyc(X,Y, Z) (A.40)

and confirms (A.30) to also hold at the first order in α′.

B The explicit form of gauge scalars towards BCJ gauge

B.1 The local building block h12345

In this appendix, we spell out two representations of the local rank-five scalar h12345 that

arises in the redefinition (4.21) towards the multiparticle polarization aµ12345. The scalar

h12345 can be expressed in terms of the local building blocks NX,Y,Z defined in (5.22) which

are composed from multiparticle polarizations at rank ≤ 3,

h12345 =
1

10

[
N123,4,5 +N453,2,1 +N12,3,45

]
+

1

60

[
N1,2,3 (k123 · a45)−N3,4,5 (k345 · a12)

]
+

1

240

{
(k1234 · a5)

[
2N12,3,4 +N13,2,4 −N14,2,3 −N23,1,4 +N24,1,3 + 2N34,1,2

]
− (k1235 · a4)

[
2N12,3,5 +N13,2,5 −N15,2,3 −N23,1,5 +N25,1,3 + 2N35,1,2

]
− (k2345 · a1)

[
2N54,3,2 +N53,4,2 −N52,4,3 −N43,5,2 +N42,5,3 + 2N32,5,4

]
+ (k1345 · a2)

[
2N54,3,1 +N53,4,1 −N51,4,3 −N43,5,1 +N41,5,3 + 2N31,5,4

]}
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− 1

240
(k1245 · a3)

[
N1,4,5 (k145·a2)−N2,4,5 (k245·a1)−N1,2,4 (k124·a5) +N1,2,5 (k125·a4)

]
+

1

40
(k1245 · a3)

[
N12,4,5 −N45,1,2

]
. (B.1)

A more compact expression can be attained by additionally employing lower-rank scalars

hijk and hijkl,

h12345 =
1

10

[
N123,4,5+N453,2,1+N12,3,45

]
+

1

40
(k1245·a3)

[
N12,4,5+N45,2,1

]
+

1

10

[
h1234 (k1234·a5)−h1235 (k1235·a4)−h5432 (k2345·a1)+h5431 (k1345·a2)

]
+

1

40
(k1245·a3)

[
h452 (k245·a1)−h451 (k145·a2)+h124 (k124·a5)−h125 (k125·a4)

]
+

1

10

[
h123 (k123·a45)−h453 (k345·a12)

]
. (B.2)

B.2 An alternative expression for H1234

The gauge scalar H1234 in (5.6) which relates Berends-Giele currents in Lorenz and BCJ

gauge via (5.4) admits the following alternatively representation

s1234H1234 =
1

48
(k123 · a4)M1,2,3

(
3

s123

(
1

s12
− 1

s23

)
+

1

s234

(
1

s34
− 1

s23

)
+

2

s12s34

)
+

1

48
(k234 · a1)M2,3,4

(
1

s123

(
1

s12
− 1

s23

)
+

3

s234

(
1

s34
− 1

s23

)
+

2

s12s34

)
+

1

48
(k134 · a2)M1,3,4

(
1

s123

(
1

s23
− 1

s12

)
+

1

s234

(
1

s34
− 1

s23

)
− 2

s12s34

)
+

1

48
(k124 · a3)M1,2,4

(
1

s123

(
1

s12
− 1

s23

)
+

1

s234

(
1

s23
− 1

s34

)
− 2

s12s34

)
+

1

8
s12M12,3,4

(
− 1

s123s12
+

1

s234s34
+

2

s12s34

)
+

1

8
s34M34,1,2

(
− 1

s123s12
+

1

s234s34
− 2

s12s34

)
− 1

8
M32,1,4

(
1

s123
− 1

s234

)
− 1

8
s14M14,3,2

(
1

s123s23
− 1

s234s23

)
.

(B.3)

B.3 The Berends-Giele version H12345

In this appendix, we spell out the rank-five generalization of the gauge scalars HP in (5.5)

that relate Berends-Giele currents in Lorenz and BCJ gauge via (5.7). M

s12345H12345 =
1

s1234s234

(
h23415
s23

−h34215
s34

)
+

1

s1234s123

(
h23145
s23

−h12345
s12

)
−h12345−h12435

s1234s12s34

+
N123,4,5

5s12s45

(
3

2s123
+

1

s345

)
− 1

5s123s23s45

(
3

2
N231,4,5+N541,3,2

)
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+
(
k1234·a5

)N34,1,2−N12,3,4

4s12s34

(
1

2s1234
+

1

5s345

)
+

1

5s123s45

(
N23,1,45

s23
−N12,3,45

s12

)
+
(
k1234·a5

)
h1234

(
1

5s12s45

(
3

2s123
+

1

s345

)
+

1

2s1234

(
1

s123s12
− 1

s234s34

))
+
(
k1235·a4

)h2135
5s12

(
3

2s123s45
+

1

s345

(
1

s45
− 1

s34

))
+
(
k1234·a5

)h3214
2s23

(
3

5s123s45
+

1

s1234

(
1

s123
− 1

s234

))
+
(
k123·a45

)h123
5s45

(
3

2s123

(
1

s12
− 1

s23

)
+

1

s345s12

)
+
(
k145·a23

) h415
5s123s23s45

+
(
k1235·a4

) 3h2315
10s123s23s45

+
(
k1245·a3

) h5412
5s123s23s45

−
(
k1234·a5

)[(
k123·a4

)h123
4

(
1

s12s34

(
1

2s1234
+

1

5s345

)
+

1

s1234s123

(
1

s12
− 1

s23

))
+
(
k234·a1

)h342
4

(
1

s12s34

(
1

2s1234
+

1

5s345

)
+

1

s1234s234

(
1

s34
− 1

s23

))
−
(
k124·a3

)
h124+

(
k134·a2

)
h341

4s12s34

(
1

2s1234
+

1

5s345

)]
−
(
k1245·a3

)
20s123s12s45

(
N12,4,5−N45,1,2+

(
k124·a5

)
h124−

(
k125·a4

)
h125

−
(
k145·a2

)
h451+

(
k245·a1

)
h452

)
+(12345→ 54321) . (B.4)

C Deriving a BCJ representation for (YM+F 3+F 4) amplitudes

This appendix is dedicated to the proof of (5.24), an n-point amplitude representation for

(YM+F 3+F 4) with manifest BCJ duality. In comparison to (5.19), the local master numer-

ators are built from multiparticle polarizations of lower rank. We start by deriving (5.24)

in the color-ordering σ = 1, 2, . . . , n from the amplitude representation in (3.16): by non-

linear gauge invariance, one can transform the Berends-Giele currents from Lorenz gauge

to BCJ gauge, M1P,n−1Q,n →
∑

β,π Φ(P |β)1Φ(Q|π)n−1N1β,n−1π,n and rewrite (3.16) as

AYM+F 3+F 4(1, 2, 3, . . . , n−1, n) =

n−2∑
j=1

(−1)n−jM12...j, n−1n−2...j+1, n

=
n−2∑
j=1

(−1)n−j
∑

β∈Sj−1

∑
π∈Sn−2−j

Φ(23 . . . j|β)1Φ(n−2 . . . j+1|π)n−1N1β, n−1π, n

= −
n−2∑
j=1

∑
β∈Sj−1

∑
π∈Sn−2−j

φ12...j|1βφn−1,n−2...j+1|n−1πN1,β|n|π̃,n−1 ,

(C.1)

where β and π are understood to act on 2, 3, . . . , j and n−2, n−3, . . . , j+1, respectively. In

passing to the last line, we have converted N1β, n−1π, n = −N1β, n, n−1π = (−1)n−j−1N1,β|n|π̃,n−1

via (5.23), where π̃ = π(j+1), . . . , π(n−2) is the reversal of π = π(n−2), π(n−3) . . . π(j+1).
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Now, it remains to check that the coefficients of the N... are identical in (5.24)

and (C.1). The coefficients in (5.24) can be rewritten using the Berends-Giele recur-

sion (2.40) and (2.41) for doubly-partial amplitudes [63],

m(1, 2, . . . , n−1, n|1, ρ(2, 3, . . . , j), n, ρ(j+1, . . . , n−2), n−1)

= s12...n−1φ12...n−1|ρ(j+1)...ρ(n−2),n−1,1,ρ(2)...ρ(j)

=
∑

XY=12...n−1
AB=ρ(j+1)...ρ(n−2),n−1,1,ρ(2)...ρ(j)

(φX|AφY |B − φY |AφX|B) (C.2)

= −φ123...j|1ρ(2)ρ(3)...ρ(j)φj+1...n−2,n−1|ρ(j+1)...ρ(n−2)n−1

= −φ123...j|1ρ(2)ρ(3)...ρ(j)φn−1,n−2...j+1|n−1ρ(n−2)...ρ(j+1) .

In the third step, we have used that any deconcatenation 12 . . . n−1 = XY will have 1 and

n−1 in different words X and Y , such that ρ(j+1) . . . ρ(n−2), n−1, 1, ρ(2) . . . ρ(j) = AB

must also be deconcatenated in a manner where n−1 and 1 are separated. One would

otherwise get a vanishing current φP |Q where P is not a permutation of Q. The only

admissible deconcatenation in (C.2) is A = ρ(j+1) . . . ρ(n−2), n−1 and B = 1, ρ(2) . . . ρ(j).

After combining (C.2) with (5.24), the leftover task is to demonstrate the matching of the

permutation sums∑
ρ∈Sn−3

N1ρ(23...j)|n|ρ(j+1...n−2)n−1φ123...j|1ρ(2)ρ(3)...ρ(j)φn−1,n−2...j+1|n−1ρ(n−2)...ρ(j+1)

=
∑

β∈Sj−1

∑
π∈Sn−2−j

φ12...j|1βφn−1,n−2...j+1|n−1πN1,β|n|π̃,n−1 . (C.3)

We exploit once more that φP |Q vanishes unless P is a permutation of Q. Hence, the first

line can only contribute via permutations ρ ∈ Sn−3 that do not mix the sets 2, 3, . . . , j

and j+1, . . . , n−2, i.e. that factorize into β ∈ Sj−1 acting on 2, 3, . . . , j and π ∈ Sn−2−j
acting on n−2, . . . , j+1 as seen in the second line. Finally, the relative flip between the

permutation π in the second current and π̃ in the N... in the second line of (C.3) ties in

with the analogous reversal of ρ(j+1), ρ(j+2), . . . ρ(n−2) in the first line.

So far, we have shown that (5.24) and (C.1) agree when σ = 1, 2, . . . , n. Given

that the special footing of legs 1, n−1, n in the master numerators N1,β|n|π̃,n−1 is in-

ert under permutations of 2, 3, . . . , n−2, one can literally repeat the above steps for

σ = 1, τ(2, 3, . . . , n−2), n−1, n with τ ∈ Sn−3. Like this, (5.24) is demonstrated to hold for

a BCJ basis of AYM+F 3+F 4(σ). For more general choices of σ, both sides of (5.24) obey

the same BCJ relations, so the arguments of the proof extend to any σ ∈ Sn.
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