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1 Introduction

Rare kaon decays have been playing a crucial role in flavour physics, and more generally in

particle physics. Since they proceed through strangeness-changing neutral currents, they

are quite suppressed in the standard model (SM), and thus offer a window through which

we might possibly catch a glimpse of new physics (NP). This research subject has been

thoroughly reviewed in ref. [1], where a detailed list of references can be found. It is again

becoming quite timely nowadays, thanks to experiments like NA62 at the CERN SPS,

planning to collect, already in 2018, the data required in order to measure the decay rate
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of K+ → π+νν with a precision of 10 % of its SM prediction [2, 3], and KOTO at J-PARC,

aiming at measuring the decay rate of KL → π0νν, at around the SM sensitivity in a first

stage [4–6].

The study of these rare decay modes of the kaon is of particular interest in view of the

present situation in particle physics. Indeed, while no direct evidence for physics beyond

the SM was found during the first run of the LHC, there are some interesting indirect

hints for NP in the flavour sector, mainly from neutral-current decays of the B meson into

di-lepton channels. Here, the very recent result on the R(K∗) ratio measured by LHCb [7]

has confirmed the deviations from µ/e universality in neutral currents of the b → s`+`−

type, ` = e, µ, already observed previously in B → K`+`− decays [8],

R(K) =
Br[B → Kµ+µ−]

Br[B → Ke+e−]
= 0.745+0.090

−0.074 ± 0.036. (1.1)

This result disagrees with the theoretically clean SM prediction RSM(K) = 1.0003 ±
0.0001 [9, 10] by 2.6σ. Further confirmation of this anomaly also comes from B → K∗µ+µ−,

where an angular observable called P ′5 [11], deviates from its SM value with a significance

of 2–3σ, depending on the way hadronic uncertainties are evaluated [12–15]. Typical NP

explanations for the measured B → K∗µ+µ− observables require, for instance, Z ′ vec-

tor bosons [16–33] or leptoquarks [34–43], in order to generate non-SM contributions to

current-current effective interactions like (s̄γαPLb)(µ̄γ
αµ).

The rare processes K± → π±`+`− and KS → π0`+`− are analogous to those men-

tioned in eq. (1.1), and appear thus as particularly suitable in order to uncover possible

violations of lepton-flavour universality (LFUV) in the kaon sector [44]. The experimental

programs of NA62 [45] (for charged kaon decays) and of LHCb [46, 47] (for KS decays) offer

quite interesting prospects in this regard. Trying, in parallel, to improve our theoretical

understanding of these processes therefore constitutes a quite timely undertaking. It is

thus not surprising that efforts in this directions have also become part of the agenda of

the lattice-QCD community [48–50].

From the experimental point of view, the situation has evolved in a rather spectacular

manner during the last two decades (the present situation is briefly summarized in ta-

ble 1), especially as far as the two K± → π±`+`− channels, where the branching fractions

are largest, are concerned. These branching fractions have been measured in refs. [51–

54] and the decays have subsequently been studied more precisely with high statistics in

refs. [55–57], these more recent experiments providing also detailed information on the

decay distribution. The latest PDG averages for the branching fractions are [58]

Br[K+ → π+e+e−] = (3.00± 0.09)× 10−7,

Br[K+ → π+µ+µ−] = (9.4± 0.6)× 10−8, (1.2)

where the error on the muonic mode includes a scale factor S = 2.6 due to the conflict with

the result reported upon in ref. [52]. These values lead to RK± [PDG] = 0.313(71), where

RK± ≡
Br[K± → π±µ+µ−]

Br[K± → π±e+e−]
. (1.3)
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exp. ref. mode number of events

BNL∗ [51] K+ → π+e+e− ∼ 500

BNL-E865∗ [55] K+ → π+e+e− 10 300

NA48/2∗ [56] K± → π±e+e− 7 263

BNL-E787 [52] K+ → π+µ+µ− ∼ 200

BNL-E865 [53] K+ → π+µ+µ− ∼ 400

FNAL-E871 [54] K± → π±µ+µ− ∼ 100

NA48/2∗ [57] K± → π±µ+µ− 3120

NA48/1 [59] KS → π0e+e− 7

NA48/1 [60] KS → π0µ+µ− 6

Table 1. Experimental situation concerning the decay modes K± → π±`+`− and KS → π0`+`−.

The experiments marked with an asterisk also provide information on the decay distribution.

Taking only the high-precision data collected by the NA48/2 Collaboration [56, 57] into

account, one obtains instead the almost two times more accurate result RK± [NA48/2] =

0.309(43). In the neutral-kaon sector, the observed decay rates are [59, 60]

Br[KS → π0e+e−]mee>0.165 GeV = [3.0+1.5
−1.2(stat)± 0.2(syst)]× 10−9,

Br[KS → π0µ+µ−] = [2.9+1.5
−1.2(stat)± 0.2(syst)]× 10−9. (1.4)

These measurements have not yet reached the level of precision already available in the

case of the charged kaon.

At the theoretical level, the situation for the CP-conserving decays K±(KS) →
π±(π0)`+`− is less favourable than for the K → πνν̄ modes. Indeed, whereas the lat-

ter are dominated by short distances, the former are governed by the long-distance process

K → πγ∗ → π`+`− [61–63], involving a weak form factor, W+(z) in the case of K± → π±γ∗,

and WS(z) in the case of KS → π0γ∗. These form factors are given by the matrix elements

of the electromagnetic current between a kaon state and a pion state, in the presence of

the weak interactions, considered at first order in the Fermi constant. The correspond-

ing momentum transfer squared, the di-lepton invariant mass squared s = zM2
K , is small

enough, it ranges from 4m2
` to (MK −Mπ)2, where m` is the mass of the charged lep-

ton, so that these processes can be treated within the framework of chiral perturbation

theory (ChPT) [64–67]. Conservation of the electromagnetic current implies a vanishing

contribution at lowest order, O(E2) in the chiral expansion. A non-vanishing form factor is

generated at next-to-leading order, both by pion and kaon loops, as well as by order O(E4)

counterterms. The main feature of this one-loop representation of the form factor is the

appearance of a unitarity cut on the positive real-s axis, due to the two-pion intermediate

state (there is also a cut due to the opening of the KK̄ channel, but the later is located

far enough from the kinematic region of interest, so that its contribution can be, for all

practical purposes, approximated by a polynomial). The corresponding absorptive part

(discontinuity) is given by the product of the pion electromagnetic form factor F πV (s) with
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the P -wave projection fKπ→π
+π−

1 (s) of the weak Kπ → π+π− amplitude ((K,π) stands

for either (K±, π∓) or (KS , π
0)), both taken at tree level. These basic properties of the

one-loop form factor already suggest some simple ways to improve upon this result and to

collect some O(E6) effects. Specifically, in ref. [63], the O(E2) Kπ → π+π− vertex was

replaced by the phenomenologically well-known Dalitz-plot expansion of the K → ππ+π−

amplitude, and a slope was added to the pion form factor. Furthermore, slopes b+,S in

the di-lepton invariant mass squared s, required by the data, but also by order O(E6)

counterterm contributions, were included in the weak form factors W+,S(z), in addition to

the constant terms a+,S ∝W+,S(0), already generated by the O(E4) counterterms. There

are, however, several reasons to go beyond the approximations considered by the authors

of ref. [63]:

• The parameters a+,S and b+,S appear merely as phenomenological constants, which

have to be fixed from the available data. We will provide an update of the situation

using the most recent data on the decay distributions. At this stage, one may already

observe that the value (1.3) obtained for RK± is rather different from the one quoted

in ref. [63], RK± = 0.167(36), and based on the older data from refs. [52] and [51].

This quite substantial increase in the value of RK± confirms the prediction RK± >∼
0.23 made by the authors of ref. [63]. We will also test for potential effects of the data

on the value of the curvature (quadratic slope) of the K± → π±π+π− Dalitz plots.

• Final-state rescattering effects are only partially taken into account by the parameter-

ization of the form factors W+,S(z) proposed in ref. [63]. In particular, the one-loop

P -wave projections of the weak Kπ → π+π− amplitudes also involve pion rescatter-

ing in the crossed channels. Since the two pions are in the P wave, these are not

expected to be as large as, for instance, in the case of the K → ππ amplitudes [1],

where the pions are in the S wave. Nevertheless, they could have an impact on the

shape of the form factor, and hence on the determinations of b+ and bS .

• The phenomenological values of a+ and b+ are comparable in size, whereas, from

naive chiral counting, one would expect b+ to be substantially smaller than a+. A

theoretical explanation of |b+/a+| ∼ 1 is still lacking.

• Let us close this list with the most important point. The potential detection of any

manifestation of LFUV hinges on the possibility to obtain independent information

on a+ and b+, such as to be able to make a prediction for the ratio RK± . This

definitely requires to go beyond the low-energy expansion itself.

In order to address these issues, we improve the existing theoretical description of the

form factors W+(z) and WS(z) in several ways:

• We provide complete order O(E6) representations of these form factors. They are

obtained as the result of a two-step recursive procedure. The first step reproduces

the one-loop representations of ref. [61]. The second step includes, besides the ef-

fects already accounted for by the representation of ref. [63], all one-loop pion-pion

rescattering effects, both in the pion form factor and in the K → 3π vertex.
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• We extend the previous representation of W+(z) beyond the low-energy domain upon

using a simple parameterization of the pion form factor that describes the data over

a large energy range including the region of the ρ(770) resonance. Since no data are

available as far as the K+π− → π+π− scattering amplitude is concerned (existing

data only concern the decay region, in the form of Dalitz-plot expansions), we pro-

ceed by applying a unitarization procedure to the O(E4) P -wave projection of this

amplitude. These two items allow us to construct the absorptive part of the form

factor W+(z) arising from two-pion intermediate states. The form factor W+(z) itself

is then recovered through an unsubtracted dispersion relation. Upon comparing the

behaviour of this “exact” form factor at small values of z with its low-energy expan-

sion, we obtain sum rules for the parameters a+ and b+, which we can then compare

to their direct determinations from data.

• We model contributions due to other intermediate states, which occur at higher

thresholds, by an infinite sum of single-resonance states, with couplings tuned such

as to correctly reproduce the known high-energy behaviour of the form factor in

quantum chromo-dynamics (QCD).

For completeness, we should mention that there are other theoretical studies [68–

70] of the form factors W (z) that go beyond the low-energy expansion. In ref. [68], a

two-parameter representation for W+(z) is proposed, combining the lowest-order chiral ex-

pression with resonance exchanges. In ref. [69] the form factors are described within the

large-Nc treatment of weak hadronic matrix elements, see ref. [71] and references quoted

therein, matching the quadratic cut-off dependence of the low-energy contribution with the

logarithmic one from the short-distance part. Finally, the authors of [70] give a representa-

tion of the form factors in terms of meson form factors, but the issue of the matching with

the short-distance part is not addressed. For a recent account on the theoretical situation

of the K → π`+`− amplitudes, see ref. [72].

The content of this paper is consequently organized as follows. In section 2, we first

discuss general features of the weak form factors W+,S(z) in QCD, and then address more

specifically their short-distance behaviour. Long-distance properties of the form factors

are described in section 3, where we recall the results of the existing one-loop calcula-

tions [61, 73], as well as the beyond-one-loop representation of ref. [63]. Phenomenological

aspects linked to the determination of a+ and b+ from the recent high-precision data are

the subject of section 4. Starting from a discussion of the analyticity properties of the form

factors, we next construct (section 5) a two-loop representation that accounts for all ππ

rescattering effects at this order. We compare this representation of the form factors with

the one used in ref. [63], and discuss the impact on the determination of the parameters

a+,S and b+,S . Section 6 constitutes the main part of the paper as far as the issues raised

above are concerned. There, we construct a dispersive model for the form factor W+(z).

The corresponding absorptive part includes the contribution, now not restricted to low en-

ergies, of the ππ intermediate states, and an infinite sum over zero-width resonances, with

couplings chosen such as to provide matching with the short-distance behaviour established

previously in section 2. Assuming unsubtracted dispersion relations, we evaluate the pa-
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rameters a+ and b+ through the corresponding sum rules. A final section summarizes our

results and provides our conclusions, as well as critical comments and some perspectives

for the future. Numerical values for various input parameters are collected in appendix A.

Technical details related to the content of section 5 are displayed in appendix B.

2 Theory overview

In this section, we provide background material concerning the theoretical aspects of the

amplitudes describing the weak Kπ → `+`− transitions in the standard model, which will

also allow us to set up the notation to be used in this study. We first start with the

description within the effective four-fermion theory below the electroweak scale, and turn

next to the short-distance behaviour of the form factors in three-flavour QCD.

2.1 The structure of the form factors in three-flavour QCD

In the standard model, weak non-leptonic ∆S = 1 transitions of hadrons are described, at

a low-energy scale, i.e. below the charm threshold, and at first order in the Fermi constant

GF , by an effective lagrangian L∆S=1(x) given by [74–79]

L∆S=1(x) = −GF√
2
V ∗usVud

6∑
I=1

CI(ν)QI(x; ν). (2.1)

This expression involves the current-current four-quark operators Q1 and Q2, as well as the

QCD penguin operators Q3,. . .Q6. At lowest order in both the fine-structure constant α

and the Fermi constant GF , and from a low-energy (long distance) point of view, the two

CP-conserving transitions K±(k) → π±(p)`+(p`+)`−(p`−) and KS → π0(p)`+(p`+)`−(p`−)

proceed through the one-photon exchange process K → πγ∗, so that their amplitudes will

involve the weak form factors W+,S(z), z = s/M2
K , s ≡ (k − p)2 = (p`+ + p`−)2, defined as

(we use the notation W (z) to stand for either W+(z) or WS(z), whenever the discussion

applies to both channels)

W (z; ν)

16π2
×
[
z(k + p)ρ −

(
1− M2

π

M2
K

)
(k − p)ρ

]
= i

∫
d4x 〈π(p)|T{jρ(0)L∆S=1(x)}|K(k)〉.

(2.2)

In terms of these form factors the amplitudes read

A(K → π`+`−) = −e2 × ū(p`−)γρv(p`+)× (k + p)ρ × W (z; ν)

16π2M2
K

. (2.3)

Here, jρ(x) stands for the electromagnetic current corresponding to the three lightest quark

flavours (eq denotes their charges in unit of the positron charge),

jρ(x) =
∑

q=u,d,s

eq(q̄γρq)(x). (2.4)

Electroweak quark-penguin operators, as well as the mixing of Q1,. . .Q6 with them, give

contributions of order O(α2GF ) to the amplitudes, and will not be considered here.
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The four-quark operators and their Wilson coefficients CI(ν) depend on the QCD

renormalization scale ν, and their evolution with respect to this scale is given by the

renormalization-group equations

ν
dQI(x; ν)

dν
= −

6∑
J=1

γI,J(αs)QJ(x; ν), ν
dCI(ν)

dν
= +

6∑
J=1

γJ,I(αs)CJ(ν). (2.5)

The pure QCD anomalous-dimension matrix γ̂(αs) for three flavours, whose matrix ele-

ments γI,J(αs) occur in these equations, is known at leading-order (LO) and next-to-leading

(NLO) accuracy,

γ̂(αs) = γ̂(0)αs
4π

+ γ̂(1)
(αs

4π

)2
+ · · · , (2.6)

and the corresponding coefficients γ
(0)
I,J and γ

(1)
I,J can be found in refs. [74–76, 79] and [80–84],

respectively. At this stage, let us make two remarks.

First, we should stress that the form factors W+;S(z; ν) defined by eq. (2.2) depend

actually on the QCD renormalization scale ν. Indeed, although the two composite operators

involved in this definition are separately finite,

ν
d

dν
jρ(x) = 0, ν

d

dν

6∑
I=1

CI(ν)QI(x; ν) = 0, (2.7)

the electromagnetic current because it is conserved, the lagrangian L∆S=1 for strangeness

changing non-leptonic transitions by explicit renormalization of the four-quark operators

and renormalization group evolution of the Wilson coefficients, as given in eq. (2.5),

their time-ordered product is singular at short distances, and needs to be renormal-

ized [85, 86]. Indeed, in the short-distance analysis of the K → π`+`− transitions, two

mixed quark-lepton four-fermion operators, having the factorized form of a quark current

times a leptonic current,

Q7V = (s̄idi)V−A(¯̀̀ )V , Q7A = (s̄idi)V−A(¯̀̀ )A, (2.8)

are also encountered, and provide an additional contribution to the effective lagrangian [77,

85–87]:

Llept
∆S=1(x) = −GF√

2
V ∗usVud [C7V (ν)Q7V (x) + C7AQ7A(x)] . (2.9)

The presence of the axial-current operator Q7A reflects the contribution of the Z0 and of

W -box diagrams, which also contribute to Q7V . More importantly, however, the operator

Q7V as well receives the contribution from the electromagnetic-penguin type of diagram,

with heavy quarks in the loop, as discussed in [85, 86]. This contribution will induce,

already at order O(α0
s), i.e. even before QCD corrections are applied, a dependence on the

renormalization scale ν in the Wilson coefficient C7V , which can be expressed as

ν
dC7V (ν)

dν
=

α

αs(ν)

6∑
J=1

γJ,7(αs)CJ(ν) =
α

4π

6∑
J=1

[
γ

(0)
J,7 +O(αs)

]
CJ(ν). (2.10)
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As revealed by their structures, the two operators Q7V and Q7A are finite, and do not

depend on the renormalization scale ν, as long as only QCD corrections are considered,

which will be the case here. At lowest order, the coefficients γJ,7 are given by [85–88]

γ
(0)
1,7 = −16

9
Nc γ

(0)
2,7 = −16

9
γ

(0)
3,7 = +

16

9
γ

(0)
4,7 = +

16

9
Nc γ

(0)
5,7 = γ

(0)
6,7 = 0

(2.11)

for three active flavours u, d, s. Their values at next-to-leading order are also available

from the literature [89]. The Wilson coefficient C7A does not depend on ν. Moreover,

it is proportional to the very small quantity τ ≡ −VtdV ∗ts/VudV ∗us, |τ | ∼ 1.6 · 10−3, and

the contribution of Q7A can be neglected as long as one does not discuss issues related

to the violation of CP or processes that are short-distance dominated. Keeping only the

contribution from Q7V , the amplitudes in eq. (2.3) actually read

A(K± → π±`+`−) = −e2ū(p`−)γµv(p`+)

× (k + p)µ
[
W+(z; ν)

16π2M2
K

+
GF√

2
V ∗usVud ×

C7V (ν)

4πα
fK
±π∓

+ (zM2
K)

]
,

A(KS → π0`+`−) = −e2ū(p`−)γµv(p`+)

× (k + p)µ
[
WS(z; ν)

16π2M2
K

− GF√
2
V ∗usVud ×

C7V (ν)

4πα
fKSπ

0

+ (zM2
K)

]
. (2.12)

They involve the form factors fKπ+ (s), defined as (the plus sign applies for (K,π) =

(K±, π∓), and the minus sign for (K,π) = (KS , π
0), in agreement with the phase con-

vention chosen in eq. (2.2))

〈π(p)| (s̄ γµd)(0)|K(k)〉 = ±[(k + p)µf
Kπ
+ (s) + (k − p)µfKπ− (s)], (2.13)

and normalized to fKπ+ (0) = 1 in the limit where the up, down and strange quarks have

equal masses. The contribution from Q7A, which we have omitted, would also involve

the form factors fKπ− (s), but multiplied by the lepton mass and the leptonic pseudoscalar

density. The amplitudes being observables, they should no longer depend on the scale ν.

This means that the scale dependence coming from the short-distance singularity of the

form factor W (z; ν) within three-flavour QCD has to cancel the ν-dependence of the Wilson

coefficient C7V (ν) generated at the electroweak scale,

dW+,S(z)

dν
= 0, W+,S(z) ≡W+,S(z; ν)± 16π2M2

K

(
GF√

2
V ∗usVud

)
C7V (ν)

4πα
fKπ+ (zM2

K).

(2.14)

We will come back to this issue in greater detail in section 2.2 below.

Second, notice that throughout we are working within the framework provided by

pure QCD with three flavours of light quarks. Knowledge on the manner how three-flavour

QCD is embedded into the full standard model is not required. In particular, the four-

quark operators evolve, at all scales, according to the three-flavour matrix of anomalous

dimensions γ̂(αs) (truncated, in practice, at NLO). Actually, from this point of view, the

only input from the SM which is required, besides, of course, the structure of the effective

– 8 –
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Figure 1. The diagram corresponding to the leading short-distance contribution to the operator-

product expansion of the time-ordered product in eq. (2.15). The external lines correspond to the

insertion of the current jµ(x) (wiggly line) and of the quark fields d and s̄. The circled vertex

materializes the insertion of a four-quark operator QI , I = 1, . . . , 6.

lagrangian itself, as given by eqs. (2.1) and (2.9), are the “initial” values of the Wilson

coefficient CI(ν0), I = 1, . . . 6, and C7V (ν0) at some scale ν0 slightly above 1 GeV, but in

any case below the charm threshold.

2.2 Properties of the form factors at high momentum transfer

This subsection is devoted to the discussion of the behaviour of the form factors W+,S(z; ν)

at high momentum transfer, z → −∞, within the framework of three-flavour QCD. For

this purpose, we consider the short-distance properties (in what follows, qµ is an Euclidean

four-vector, q2 < 0, whose components become all simultaneously large) of the time-ordered

product of the electromagnetic current with the various four-quark operators QI that ap-

pear in L∆S=1,

lim
q→∞

i

∫
d4x eiq·xT{jµ(x)QI(0; ν)}. (2.15)

One can identify several contributions with the appropriate quantum numbers to the cor-

responding operator-product expansion (OPE). The leading contribution occurs at order

O(q2), and consists of the term

(qµqν − q2ηµν)[s̄γν(1− γ5)d]. (2.16)

It is shown in figure 1, and corresponds to a perturbative intermediate state, made up by

a light-flavour quark-antiquark pair. In the absence of QCD corrections, only the tree-

level four-quark operators are involved. Gluonic corrections also contribute to this class of

short-distance behaviour. They will both renormalize the four quark operators and build

up the Wilson coefficient for the O(q2) term in the OPE. At order O(q), one encounters

several possibilities, e.g. (Dτ denotes the QCD covariant derivative)

{(qτηµλ − qληµτ ) , εµνλτqν} × {[s̄γλ(1− γ5)(Dτd)] , [(Dτ s̄)γλ(1− γ5)d]}, (2.17)

and so on. We will only consider the leading contribution, at order O(q2), and without

QCD corrections, although we briefly comment on the latter below.

In the case of the two current-current operators Q1 and Q2, it is then enough to study

the leading short-distance behaviour of (i, j, k, l denote colour indices)

lim
q→∞

i

∫
d4x eiq·xT{(ūγµu)(x)[(s̄iuj)V−A(ūkdl)V−A](0)} × T jl

I ik, (2.18)
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with T jl
1 ik = δliδ

j
k for Q1, and T jl

2 ik = δji δ
l
k for Q2. The evaluation of the loop diagram is

straightforward. With dimensional regularization, one finds

lim
q→∞

i

∫
dDx eiq·xT{(ūγµu)(x)[(s̄iuj)V−A(ūkdl)V−A](0)}

= δkj (s̄iαdlβ) [γρ(1− γ5)γσγµγτγρ(1− γ5)] βα

× 1

4

1

D − 1

[
(2−D)qσqτ − q2ηστ

]
ν4−D
MS J(q2) +O(q), (2.19)

with (ν stands for the renormalization scale in the MS scheme, νMS ≡ νeγE/2/
√

4π, and

D = 4− 2ε)

ν4−D
MS J(q2) =

1

(4π)D/2
[Γ(1− ε)]2Γ(ε)

Γ(2− 2ε)

(
ν2
MS

−q2

)ε
=

1

(4π)2

[
1

ε
+ 2− ln

(−q2

ν2

)]
+O(D − 4).

(2.20)

The discussion of the penguin operators Q3 and Q4 actually turns out to be quite similar

to the one for the operators Q1 and Q2. Indeed, from the expressions of these operators,

Q3 = (s̄idi)V−A
∑

q=u,d,s

(q̄jqj)V−A, Q4 = (s̄idj)V−A
∑

q=u,d,s

(q̄jqi)V−A, (2.21)

one sees that there are two ways to perform the contraction with the current jµ shown in

figure 1. The first one consists in contracting with the quark bilinears occurring in the sum

over flavours. From the point of view of the colour structures, this contraction corresponds

to T jl
1 ik for Q3, and to T jl

2 ik for Q4. However, since the quark masses are irrelevant for

the leading short-distance behaviour, this leads to the sum of three identical contributions,

weighted by the corresponding quark charges. But since eu + ed + es = 0, this weighted

sum vanishes. There only remains to consider the second possibility, where the contraction

is done with the d (or s̄) quark from the term in front of the flavour sum, and with the d̄

(or s) quark from the second (or third) term of this sum. But this amounts to the same

computation as before for Q1 and for Q2. The colour structure now corresponds to T jl
2 ik

for Q3, and to T jl
1 ik for Q4. Furthermore, instead of multiplying by eu, one multiplies by

ed + es = −eu. Finally, for the remaining operators Q5 and Q6 one obtains a vanishing

result. This is due to their (V − A) ⊗ (V + A) structure, which makes the factor arising

from the Dirac matrices vanish, whether one uses the naive dimensional regularization

(NDR) [90] or the ’t Hooft-Veltman (HV) [91, 92] scheme. The product of Dirac matrices

in eq. (2.19) can also be simplified, but this time the result will depend on which scheme

is being used. After minimal subtraction, one obtains

lim
q→∞

i

∫
d4x eiq·xT{jµ(x)QI(0)}= [qµqρ−q2ηµρ]×s̄γρ(1−γ5)d× 1

4π

[
ξI00−ξI01 ln

−q2

ν2

]
+O(q),

(2.22)

with ξ5,6
00 = ξ5,6

01 = 0,

ξ1
01 =

1

4π

8

9
Nc, ξ2

01 =
1

4π

8

9
, ξ1

00 =
1

4π
×


16
27 Nc NDR

40
27 Nc HV

, ξ2
00 =

1

4π
×


16
27 NDR

40
27 HV

,

(2.23)
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and

ξ3
01 =− 1

4π

8

9
, ξ4

01 =− 1

4π

8

9
Nc, ξ3

00 =
1

4π
×


−16

27 NDR

−40
27 HV

, ξ4
00 =

1

4π
×


−16

27 Nc NDR

−40
27 Nc HV

.

(2.24)

Note that in the presence of QCD corrections, this expression becomes

lim
q→∞

i

∫
d4x eiq·xT{jµ(x)QI(0; ν)} = [qµqρ − q2ηµρ]× [s̄γρ(1− γ5)d](0)

× 1

4π
ξI(αs; ν

2/q2) + O(q) , (2.25)

where the general form of the Wilson coefficient reads

ξI(αs ; ν2/q2) =
∑
p≥0

p+1∑
r=0

ξIprα
p
s(ν) lnr(−ν2/q2). (2.26)

The result of the OPE with the complete lagrangian (2.1) then writes as

lim
q→∞

i

∫
d4x eiq·xT{jµ(x)L∆S=1(0)} =

(
−GF√

2
V ∗usVud

)
[qµqρ − q2ηµρ]× s̄γρ(1− γ5)d

× 1

4π

4∑
I=1

CI(ν) ξI(αs ; ν2/q2) + O(q) . (2.27)

The preceding short-distance analysis tells us that the OPE of the time-ordered prod-

uct of the (three-flavour) electromagnetic current with L∆S=1 is dominated by the same

axial-current operator s̄γρ(1−γ5)d that also appears in the expression of Q7V . Furthermore,

it also exhibits a short-distance singularity, which is renormalized by minimal subtraction,

leaving over a dependence on the MS renormalization scale ν. At the level of the dimen-

sionally regularized form factor itself, this translates into

lim
z→−∞

W+,S(z; ν) = ±16π2M2
K

(
GF√

2
V ∗usVud

)
× fKπ+ (zM2

K)

4π

4∑
I=1

CI(ν) ξI(αs ; ν2/zM2
K)

(2.28)

and implies that the scale-dependence of the form factors is given by

ν
dW+,S(z; ν)

dν
= ±16π2M2

K

(
GF√

2
V ∗usVud

)
× fKπ+ (zM2

K)

4π
ν
d

dν

∑
I

CI(ν) ξI(αs ; ν2/zM2
K).

(2.29)

Turning now toward the condition (2.14), we find that it is indeed satisfied at order O(α0
s),

where it reads

ν
d

dν

[
W+,S(z; ν)

16π2M2
K

± GF√
2
V ∗usVud ×

C7V (ν)

4πα
fKπ+ (zM2

K)

]

= ±
(
GF√

2
V ∗usVud

)
fKπ+ (zM2

K)

4π

6∑
I=1

γ(0)
I,7

4π
+ 2ξI01

CI(ν), (2.30)
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since the comparison with eq. (2.11) shows that

ξI01 = − 1

4π
· 1

2
γ

(0)
I,7 . (2.31)

One may actually turn the preceding argument around, and, starting with the requirement

that eq. (2.14) be satisfied, obtain information on the Wilson coefficients ξI(αs ; ν2/s) on

the right-hand sides of eqs. (2.27). Indeed, from

ν
d

dν
ξI(αs ; ν2/s) = 2

∑
p≥0

p+1∑
r=0

pξIprβ(αs)α
p−1
s (ν) lnr(−ν2/s)

+ 2
∑
p≥0

p+1∑
r=0

rξIprα
p
s(ν) lnr−1(−ν2/s), (2.32)

one deduces that

ν
d

dν

[
W+,S(z; ν)

16π2M2
K

± GF√
2
V ∗usVud ×

C7V (ν)

4πα
fKπ+ (zM2

K)

]
(2.33)

= ±
(
GF√

2
V ∗usVud

)
fKπ+ (zM2

K)

4π

6∑
I=1

γ(0)
I,7

4π
+ 2ξI01

CI(ν)

±
(
GF√

2
V ∗usVud

)
fKπ+ (zM2

K)

4π
αs(ν)

×
6∑
I=1

CI(ν)

 γ
(1)
I,7

(4π)2
+ 2ξI11 +

6∑
J=1

γ
(0)
IJ

4π
ξJ00 + ln

(
−ν

2

s

)[
4ξI12 +

6∑
J=1

γ
(0)
IJ

4π
ξJ01

]+O(α2
s).

The combination on the left-hand side will thus be scale independent at NLO provided

that in addition to (2.31) the relations

ξI11 = −1

2

γ
(1)
I,7V

(4π)2
− 1

2

6∑
J=1

γ
(0)
IJ

4π
ξJ00 ξI12 = −1

4

6∑
J=1

γ
(0)
IJ

4π
ξJ01 (2.34)

hold. Performing the calculation gives, for instance,

ξI12 =
1

(4π)2

4

27

(
Nc −

1

Nc

)
× (0 , −8 , +11 , Nf , 0 , Nf ) , (2.35)

where the number of active flavours is Nf = 3. The coefficients ξIp0 are not constrained by

this type of argument. They can only be determined by an explicit calculation of QCD

corrections to the diagram of figure 1, which we will however not attempt to perform here.

Before closing this section, let us briefly leave our three-flavour world, and consider

how the preceding discussion is modified in the presence of a fourth quark flavour, which

corresponds to the situation considered in lattice calculations [48–50]. For mc < ν < mb,

the effective lagrangian reads

L∆S=1 =−GF√
2
V ∗usVud

{
(1−τ)

[
C1(ν)

(
Q1(x;ν)−Q(c)

1 (x;ν)
)

+C2(ν)
(
Q2(x;ν)−Q(c)

2 (x;ν)
)]

+ τ

6∑
I=1

CI(ν)QI(x;ν)

}
, τ ≡− V

∗
tsVtd

V ∗usVud
. (2.36)
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The operators appearing in this expression are

Q
(q)
1 = (s̄iqj)V−A(q̄jdi)V−A Q

(q)
2 = (s̄iqi)V−A(q̄jdj)V−A, (2.37)

with the understanding that Q
(u)
1 ≡ Q1, Q

(u)
2 ≡ Q2 and, moreover, that in the QCD

penguin operators the sums over the quarks q, as in eq. (2.21), span the whole range of still

active flavours, i.e. q = u, d, s, c in the present case. Likewise, the electromagnetic current

is the one corresponding to four active flavours. Repeating the same exercise as before,

one now obtains (recall that all quarks are considered to be massless)

lim
q→∞

i

∫
d4x eiq·xT{jρ(x)L∆S=1(0)}=

=

(
−GF√

2
V ∗usVud

)
(s̄iαdlβ)(0) [γρ(1−γ5)γσγµγτγρ(1−γ5)]βα×

1

4

1

D−1

[
(2−D)qσqτ−q2ηστ

]
×ν4−D

MS J(q2)

{
T jl

1 ik [C1(ν)(eu−(1−τ)ec)+τC3(ν)(eu+ed+es+ec)+τC4(ν)(ed+es)]

+T jl
2 ik [C2(ν)(eu−(1−τ)ec)+τC3(ν)(ed+es)+τC4(ν)(eu+ed+es+ec)]

}
δkj +O(q)

=

(
−GF√

2
V ∗usVud

)
(s̄iαdlβ)(0) [γρ(1−γ5)γσγµγτγρ(1−γ5)]βα×

1

6

1

D−1

[
(2−D)qσqτ−q2ηστ

]
×ν4−D

MS J(q2)τ
{

[C1(ν)+C3(ν)−C4(ν)]T jl
1 ik+[C2(ν)−C3(µ)+C4(ν)]T jl

2 ik

}
δkj +O(q).

(2.38)

The scale dependence is now proportional to the small quantity τ , defined after eq. (2.11).

To the extent that CP-violating effects are not considered, these contributions can be safely

omitted for all practical purposes. But strictly speaking, the absence of a short-distance

singularity in the form factor holds only, in the case of four active flavours, within this

approximation. This picture is consistent with the fact that, above the charm threshold,

the Wilson coefficient C7V of the operator Q7V is also proportional to τ [89].

3 Low-energy expansion of the weak form factors

In this section, we recall the properties of the form factors W+,S(z) from the point of view

of their low-energy expansion. We first give their expressions at one loop and discuss some

of their properties. We consider next the regime where z � 1 (s�M2
K), so that the pion

loops remain as the only sources of non-analyticity. In this regime, we then briefly discuss

the description of the form factors proposed in ref. [63].

3.1 The form factors at one loop

Since the K± → π±γ∗ and KS → π0γ∗ transition form factors vanish at lowest order [61],

the low-energy expansions of the form factors W+,S(z) start at order one loop. These

one-loop expressions have been computed in ref. [61] as far as the octet component is

concerned. The contribution of the 27-plet has only been worked out more recently, in
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ref. [73]. In a notation slightly different from the one used in these references, the resulting

expressions read

W+,S;1L(z) = GFM
2
Ka

CT-1L
+,S +

8π2

3

M2
K

M2
π

{
αtree

+,S

[
z − 4 M

2
π

M2
K

z
J̄ππ(zM2

K)− 1

48π2

]

+ α̃tree
+,S

[
z − 4

z
J̄KK(zM2

K)− 1

48π2

]}
. (3.1)

The function J̄ππ is defined defined as (λ(x, y, z) denotes the Källen function)

J̄ab(s) =
s

16π2

∫ ∞
sab

dx

x

1

x− s− i0
λ

1/2
ab (x)

x
, sab ≡ (Ma +Mb)

2, λab(s) ≡ λ(s,M2
a ,M

2
b ),

(3.2)

for Ma = Mb = Mπ. Explicit expressions for this function are given in refs. [65–67]. The

first term in eq. (3.1) gathers the contributions from the O(E4) counterterms,

aCT-1L
+,S =

(
− 1√

2
V ∗usVud

)(
g8w

(8)
+,S + g27w

(27)
+,S

)
, (3.3)

which can be expressed in terms of low-energy constants defined in ref. [93] and chiral

logarithms (µχ denotes the renormalization scale in the effective low-energy theory) as

w
(8)
+ =

64π2

3
[N r

14(µχ)−N r
15(µχ) + 3Lr9(µχ)]− 1

6
ln
M2
π

µ2
χ

− 1

6
ln
M2
K

µ2
χ

,

w
(8)
S = −32π2

3
[2N r

14(µχ) +N r
15(µχ)] +

1

3
ln
M2
K

µ2
χ

,

(3.4)

and

w
(27)
+ = −32

3
π2 [Rr13(µχ)− 2Rr15(µχ)− 4Lr9(µχ)] +

13

18
ln
M2
π

µ2
χ

+
13

18
ln
M2
K

µ2
χ

,

w
(27)
S =

32

3
π2Rr13(µχ)− 5

18

3M2
K − 2M2

π

M2
K −M2

π

ln
M2
π

µ2
χ

− 1

18

M2
K − 6M2

π

M2
K −M2

π

ln
M2
K

µ2
χ

.

(3.5)

These combinations of counterterms and chiral logarithms do not depend on µχ:

dw
(8,27)
+,S /dµχ = 0. The second and third terms in the expression (3.1) come from the

pion and kaon loops, respectively. αtree
+ (αtree

S ) corresponds to the P -wave projection

of the amplitude of the reaction K+π− → π+π− (KSπ
0 → π+π−) at order O(E2) in

the low-energy expansion, and coincides with the linear slope, evaluated at lowest order.

of the Dalitz plot of the decay K± → π±π+π− (KS → π+π−π0). The interpretation

of the quantity α̃tree
+ (α̃tree

S ) is similar, but in terms of the amplitude for the reaction

K+π− → K+K− (KSπ
0 → K+K−). In this case there is no decay region, and α̃tree

+ and

α̃tree
S rather correspond to subtheshold parameters in the expansions of the amplitudes

for K+π− → K+K− and KSπ
0 → K+K− around the centres of their respective Dalitz

plots (s = M2
K +M2

π/3, t = u). In terms of the two constants g8 and g27 that describe the
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K → ππ amplitudes at lowest order [1], one has (for the numerical values, see table 3 in

appendix A)

αtree
+ = α̃tree

+ =

(
−GF√

2
V ∗usVud

)
M2
π

(
g8 −

13

3
g27

)
= −0.36M2

πGF = −8.16 · 10−8, (3.6)

and

αtree
S =

(
−GF√

2
V ∗usVud

)
M2
π

(
5

3
g27 ×

3M2
K − 2M2

π

M2
K −M2

π

)
= −0.24M2

πGF = −5.36 · 10−8,

α̃tree
S =

(
−GF√

2
V ∗usVud

)
M2
π

(
−2g8 +

g27

3
× M2

K − 6M2
π

M2
K −M2

π

)
= +1.11M2

πGF = +25.15 · 10−8.

(3.7)

As already mentioned in the introduction, the physical region of the decays K±(KS) →
π±(π0)`+`− corresponds to 4m2

`/M
2
K ≤ z <∼ 0.5. In this range of values the function

J̄KK(zM2
K) is well described by its Taylor expansion at z = 0. Performing this expansion

in the contribution from the kaon loops, and keeping terms at most linear in z, allows to

rewrite the one-loop form factors as

W+,S;1L(z) = GFM
2
K(a1L

+,S+b1L
+,Sz)+

8π2

3

M2
K

M2
π

αtree
+,S

z − 4 M
2
π

M2
K

z
J̄ππ(zM2

K) +
1

24π2

 . (3.8)

Notice that a1L
+,S and b1L

+,S correspond to the values of the form factors and of their slope,

respectively, at z = 0,

GFM
2
Ka

1L
+,S = W+,S;1L(0), GFM

2
Kb

1L
+,S = W ′+,S;1L(0)− 1

60

(
M2
K

M2
π

)2

αtree
+,S . (3.9)

The one-loop expressions of the constants a1L
+,S and b1L

+,S that result from this simple exer-

cise read

a1L
+,S = aCT-1L

+,S + a1L;ππ
+,S + a1L;K̄K

+,S

a1L;ππ
+,S = −

αtree
+,S

6M2
πGF

, a1L;K̄K
+,S = −

α̃tree
+,S

6M2
πGF

(3.10)

b1L
+,S = b1L;K̄K

+,S =
α̃tree

+,S

60M2
πGF

.

Predicting the values of a1L
+,S from their one-loop expressions requires some knowledge of

the O(E4) counterterms, in particular N14 and N15, which occur in the dominant octet

part. Several proposal have been made [93–97] in order to extend the determination of the

low-energy constants through resonance saturation in the strong sector [98, 99] to the weak

sector. Unfortunately, these extensions involve unknown parameters (see also the discus-

sion at the beginning of section 6.2 below), thus requiring additional assumptions. This
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Figure 2. The Feynman diagrams contributing to the non-trivial analyticity properties of the

form factors W+,S;1L(z) at one loop. The external wiggly line corresponds to the insertion of the

electromagnetic current jµ(x). Thin lines represent charged pions, and thicker blue lines are kaons

(only charged kaons contribute in the loop). The circular blob stands for a strong vertex, and the

filled square for the weak vertex.

unfortunate situation introduces an uncontrolled model dependence in the predictions that

can be made within this framework. The prospects for a phenomenological determination

of some of these constants from (real or virtual) radiative kaon decays have been discussed

in the recent account [100]. In this context, we also recall the “octet dominance hypothesis”

discussed in refs. [61, 68], which corresponds to the assumption that the (scale independent)

combination N r
15(µχ)− 2Lr9(µχ) vanishes, thus predicting w

(8)
+ + w

(8)
S ∼ 1

6 ln
M2
K

M2
π

.

This brief description of the structure of the one-loop expressions of the form factors

(we refer the reader to the original articles for further details) brings us to a few remarks:

• As already noticed in ref. [61], there are substantial differences in the structures of

the two form factors W+;1L(z) and WS;1L(z), and therefore also between a1L
+ and a1L

S .

In particular, pion loops are suppressed by the ∆I = 1/2 rule in WS;1L(z), but kaon

loops are about three times as important as in W+;1L(z) (in absolute value).

• Besides providing tiny slopes b1L
+,S , the kaon loops also contribute to a1L

+,S , see

eqs. (3.6)–(3.10): a1L;K̄K
+ = +0.06, a1L;K̄K

S = −0.19. These contributions are pro-

portional to α̃tree
+ and α̃tree

S , respectively. Higher-order corrections will move α̃tree
+,S to

their phenomenological values α̃+,S , which are however not known, see the discussion

after eq. (3.5). Assuming, for the sake of illustration, that this change is of about the

same size as the change from αtree
+,S to α+,S , i.e. α̃+ ∼ 2.5α̃tree

+ and α̃S ∼ 1.3α̃tree
S (see

eqs. (3.17) and (3.18) below), we would conclude that the kaon loops could contribute

to a+ (aS) at the level of ∼ +0.15 (∼ −0.25). Of course, this argument is at best

indicative of the fact that contributions from kaon loops to a+,S , in contrast to b+,S ,

could be substantial. Besides, higher-order corrections will also produce other effects

on the form factors than the simple replacement of α̃tree
+,S by α̃+,S , but their impact

on a+,S are however more difficult to estimate without an explicit computation.

• It is also possible, and of interest for the sequel, to look at the one-loop form factors in

terms of their analyticity properties, which follow from the structure of the Feynman

diagrams shown in figure 2. These properties can be expressed in the form of a

once-subtracted dispersion relation

W+,S;1L(z) = GFM
2
Ka

1L
+,S +

zM2
K

π

∫ ∞
0

dx

x

ImW+,S;1L(x/M2
K)

x− zM2
K − i0

, (3.11)
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with the discontinuity along the positive real-z axis provided by one-loop unitarity.

Since at this order the only intermediate states are π+π− and K+K−, see figure 2,

it reads

1

16π2M2
K

ImW+,S;1L(s/M2
K) =

θ(s− 4M2
π)× s− 4M2

π

s
λ
−1/2
Kπ (s)× F πV (s)|O(E2) × fKπ→π

+π−
1 (s)|O(E2)

+ θ(s− 4M2
K)× s− 4M2

K

s
λ
−1/2
Kπ (s)× FK±V (s)|O(E2) × fKπ→K

+K−
1 (s)|O(E2), (3.12)

where F πV (s)|O(E2) = FK
±

V (s)|O(E2) = 1 (neutral kaons do not contribute at this order

since FK
0

V (s)|O(E2) = 0), λKπ(s) ≡ λ(s,M2
K ,M

2
π) (cf. eq. (3.2)), and

fKπ→π
+π−

1 (s)|O(E2) =
αtree

+,S

96πM2
π

× λ1/2
Kπ(s)

√
1− 4M2

π

s
,

fKπ→K
+K−

1 (s)|O(E2) =
α̃tree

+,S

96πM2
π

× λ1/2
Kπ(s)

√
1− 4M2

K

s
, (3.13)

are the P -wave projections mentioned after eq. (3.5). The expressions of

ImW+,S;1L(s/M2
K) also show that one subtraction is necessary, but sufficient, in

order to obtain a convergent dispersive integral. Performing this integration leads to

W+,S;1L(z) = GFM
2
Ka

1L
+,S +

8π2

3

M2
K

M2
π

{
αtree

+,S

[
z − 4 M

2
π

M2
K

z
J̄ππ(zM2

K) +
1

24π2

]

+ α̃tree
+,S

[
z − 4

z
J̄KK(zM2

K) +
1

24π2

]}
. (3.14)

Expanding the contribution from the kaon loop as before allows to cast this expres-

sion into the form given in eq. (3.8). Some information is lost within this dispersive

approach, namely the way how a1L
+,S , which appears here as a mere subtraction con-

stant, decomposes into its various components, as displayed in eq. (3.10). The issue

raised in the preceding item of this list, having to do with local contributions from

the kaon loops, can therefore not be addressed within this dispersive approach.

• On the other hand, extending the absorptive parts beyond their lowest-order expres-

sions (3.12) provides a starting point for establishing the structure of the form factors

at two loops (beyond two loops, also intermediate states with more than two mesons

need to be considered). Furthermore, one may restrict the contributions to the ab-

sorptive parts to two-pion states from the outset, and include the other two-mesons

states (K̄K, but also, for instance Kπ) into the subtraction polynomial, which be-

comes a first-order polynomial in z at two loops. The explicit construction of the

two-loop form factors along these lines will be the subject of section 5.
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3.2 The form factors beyond one loop

We now come to the expressions of the form factors considered in ref. [63]. They go beyond

the one-loop expressions discussed in the preceding subsection, and read

W+,S;b1L(z) = GFM
2
K(a+,S + b+,Sz) (3.15)

+
8π2

3

M2
K

M2
π

[
α+,S + β+,S

M2
K

M2
π

(z − z0)

](
1 +

M2
K

M2
V

z

)z − 4 M
2
π

M2
K

z
J̄ππ(zM2

K) +
1

24π2

 ,
with z0 = 1/3 + M2

π/M
2
K ≡ s0/M

2
K and MV = 775.5 MeV. Their structure is easy to

understand from the representation (3.8) of the one-loop form factors, as already described

in the introduction. The pion form factor, which reduces to unity at lowest order in the

low-energy expansion, is extended by the addition of a term linear in z, with a slope given

by M2
K/M

2
V . The same kind of modification is also implemented in the K+π− → π+π−

(KSπ
0 → π+π−) vertex: the parameters α+ and β+ (αS and βS) correspond to the linear

slope and to one of the quadratic slopes (curvatures), respectively, describing the Dalitz plot

of the decay K± → π±π+π− (KS →→ π+π−π0). Expressed in terms of the parameters

introduced in refs. [101–103], α+ and β+ read

α+ = β1 −
β3

2
+
√

3γ3, β+ = 2
(
ξ1 + ξ3 − ξ′3

)
. (3.16)

Using the values determined from data in ref. [104], one obtains (errors have been added

quadratically, and the numerical values we use are collected in appendix A for the reader’s

convenience)

α+ = −20.84(74) · 10−8, β+ = −2.88(1.08) · 10−8. (3.17)

These values are quite similar to the ones given in ref. [63] (the authors of this last reference

use the notation of ref. [105]; ref. [106] gives the correspondence between the two sets of

parameters) and used in order to analyze the data in refs. [55–57]. Notice that the linear

slope α+ is determined quite accurately, at less than 4%, whereas the curvature β+ is only

known with a relative precision of about 35%. Likewise, the parameters αS and βS read

αS = − 4√
3
γ3 = −6.81(74) · 10−8, βS =

8

3
ξ′3 = −1.5(1.1) · 10−8. (3.18)

The numerical values again follow from ref. [104], see appendix A. They differ somewhat

from those that were available to the authors of ref. [63], αS = −5.5(5) · 10−8 and βS =

+0.5(1.3) · 10−8.

While the form factors W+,S;b1L(z) capture some contributions that arise at order

two loops, they do account for all two-loop corrections. This issue will be discussed in

detail in section 5 below. Notice also that the relations given in eq. (3.9) generalize in a

straightforward manner to the representation (3.15),

GFM
2
Ka+,S = W+,S;b1L(0), GFM

2
Kb+,S = W ′+,S;b1L(0)− 1

60

(
M2
K

M2
π

)2(
α+,S − β+,S

s0

M2
π

)
.

(3.19)
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Figure 3. The left-hand plot shows the data for |W+(z)|2, in units of 10−11, in the electron mode

from the NA48/2 experiment [56] (filled squares, in blue) and from the BNL-E865 experiment [55]

(filled circles, in red). The right-hand plot shows the same data, but with the error bars of two

points, one for each experiment, around z = 0.3, rescaled by a factor of 2.35. Throughout, only the

statistical uncertainties are shown.

In the sequel, we will also consider other representations of W+,S(z) than the one-loop

or beyond-one-loop ones. For each of these representations, we will define correspond-

ing parameters a+,S and b+,S upon extending the relations (3.19) to the form factor

under consideration.

4 Extraction of a+,S and b+,S from recent data

As already mentioned in the introduction, the main recent feature as far as the data are

concerned is the availability of quite precise information on the decay distributions for

the charged-kaon channels K± → π±`+`−, see table 1. The relation between the decay

distribution with respect to the di-lepton invariant mass squared s and the corresponding

form factor is given by (recall that λ(x, y, z) denotes the Källen or triangle function, whereas

MK stands either for MK± or for MKS )

dΓ+,S

dz
=

α2MK

12π(4π)4
λ3/2(1, z,M2

π/M
2
K)

√
1− 4m2

`

zM2
K

(
1 +

2m2
`

zM2
K

)
|W+,S(z)|2, z ≡ s

M2
K

.

(4.1)

Here, we will limit our attention to the results coming from the high-statistics experi-

ments [55, 56] for the electron mode, and [57] for the muon mode. For the electron chan-

nel, the experimental data for |W+(z)| are shown on figure 3. The NA48/2 data [56, 57]

are available on the HEPData repository [107, 108].1 Data points for the E865 experi-

ment [55] do not seem to be available on a public repository. For both experiments, the

uncertainties given for the individual data points are statistical only. For the systematic

uncertainties in the determinations of a+ and b+, we refer the reader to the experimental

articles quoted in table 1. These data have been confronted with various ansätze for the

1Only the statistical uncertainties are provided, systematic uncertainties are not included.
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form factor W+(z), from a simple constant plus linear (in z) type of parameterization,

Wlin(z) = GFM
2
Kf0(1 + δz), with however little theoretical content, to theoretically more

elaborate models [63, 68–70]. In the present study, we will only consider the “beyond one

loop” form factor of ref. [63].

Fitting the expression (3.15) of the form factor, with the values (3.17) as input, to the

data of ref. [55], we obtain{
a+ = −0.589(13)stat(1)α+(5)β+

b+ = −0.646(54)stat(16)α+(2)β+
, χ2/d.o.f = 11.6/18 [e+e−, E865 data], (4.2)

in reasonable agreement, although with somewhat larger uncertainties, with the values

given in table 1 of ref. [55]. Repeating the exercise with the data of ref. [56] leads to the

rather surprising outcome{
a+ = +0.491(12)stat(1)α+(5)β+

b+ = +1.691(57)stat(16)α+(2)β+
, χ2/d.o.f = 28.3/19 [e+e−, NA48/2 data]. (4.3)

Thus, whereas the BNL-E865 data favour the “negative” solution [63], b+ <∼ a+ < 0, the

NA48/2 data rather point toward the “positive” one, b+ > a+ > 0, which, with b+ about

three times as large as a+, is more difficult to understand from a theoretical point of view,

as already explained in the introduction. Looking however for a second minimum in the

NA48/2 data, we indeed find one, corresponding to the negative solution, with only a

slightly higher value of χ2,{
a+ = −0.585(12)stat(1)α+(5)β+

b+ = −0.779(54)stat(16)α+(2)β+
, χ2/d.o.f = 33.0/19 [e+e−, NA48/2 data]. (4.4)

These values then also agree with those quoted in table 2 of ref. [56]. Incidentally, a second

minimum of the χ2 function corresponding to the positive solution is also present in the

BNL-E865 data, but with a value χ2/d.o.f = 42.0/18 it is clearly much less favoured in this

case. The same feature is also present in the data collected by the NA48/2 collaboration

in the muon mode [57]: the two solutions read{
a+ = +0.384(40), b+ = +2.081(147), χ2/d.o.f = 12.1/15

a+ =−0.598(39), b+ =−0.768(144), χ2/d.o.f = 15.2/15
, [µ+µ−, NA48/2 data].

(4.5)

The two results (4.2) and (4.4) are quite compatible as far as a+ is concerned, while

the agreement is somewhat less good for b+. One might contemplate the possibility of a

combined fit of the two data sets in the electron mode. While the negative solution is clearly

favoured by this combined fit, the quality of the latter is not very good: χ2/d.o.f ∼ 62/39

(for the positive solution, we find χ2/d.o.f ∼ 95/39). Looking more closely at the data, we

observe that each individual data point of one experiment is compatible, at the 1σ level,

with at least one data point of the other one, except for two points, one for each experiment,

which are not compatible, again at the 1σ level, with any point of the other experiment.
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Figure 4. The evolution of the minimum value of the χ2 function with β+, for the data in the

electron mode collected (from bottom to top) by BNL-E865 [55], by NA48/2 [56], and for the

combination of the two sets. In the case of ref. [56], the minimum of the χ2 function corresponding

to the positive solution for a+ and b+ is also shown (dashed curve).

These two points are located slightly at the left [NA48/2] and on the right [BNL-E865] of

the value z = 0.3, see figure 3 (one might also observe that z = 0.32 corresponds to the

threshold of the two-pion intermediate state; on the other hand, the acceptances of the

two experiments do not show any peculiar behaviour in the region of this threshold; it is

thus not clear whether one can establish a link with the discrepancy between the two data

sets at z ∼ 0.3). If, for instance, we increase the error bars of these two data points by

a scaling factor of 2.35, such as to make them compatible, the quality of the fit improves

substantially, giving as outcome (for comparison, the (relative) minimum corresponding to

the positive solution occurs now at χ2/d.o.f = 74.3/39){
a+ = −0.593(9)stat(1)α+(6)β+

b+ = −0.675(40)stat(16)α+(2)β+
, χ2/d.o.f = 45.7/39. (4.6)

Up to now, we have analyzed the data with the form factor in eq. (3.15), but for

fixed values, as given in eq. (3.17), of the “external parameters” α+ and β+. As already

observed, the value of α+ is determined quite accurately, the precision on β+ being much

lower. Redoing the fits for various values of β+ with decreasing values of |β+|, see figure 4,

we notice that moving β+ a few standard deviations away from the central value in eq. (3.17)

somewhat improves the quality of the fits. The effect is quite mild in the case of the BNL-

E865 data, but somewhat more pronounced in the case of the NA48/2 data. This leads

us to consider the possibility of fitting simultaneously a+, b+, and β+. Performing this fit

on each experiment separately, we obtain the results in table 2 (only the statistical errors

are given).

In agreement with the trend shown by figure 4, the NA48/2 data yield values of β+ that

tend to be larger than the value quoted in eq. (3.17), obtained from a global fit to the data

on the Dalitz-plot structure of the K → πππ decays. One also observes that the χ2 function
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Experiment a+ b+ β+ · 108 χ2/d.o.f

[e+e−, E865] −0.573(23) −0.662(57) −0.72(2.55) 10.8/17

[e+e−, NA48/2] −0.535(20) −0.771(65) +6.52(3.00) 22.4/18

[µ+µ−, NA48/2] −0.40(10) −1.10(21) +14.3(7.9) 15.2/14

Table 2. Results of the χ2 fits with three parameters in each experiment. Only the statistical

errors are given.

is quite flat, in the vicinity of its minimum, in the β+ direction, which leads to rather large

ranges of values. Finally, the values of a+ and b+ produced by this three-parameter fit

to the data come out quite similar to the ones obtained from the two-parameter fits, with

however, as could be expected, somewhat larger statistical uncertainties (the effect is,

however, more pronounced in the muon mode). If we fit the combined NA48/2 and E865

data (after the rescaling of the statistical uncertainties discussed above) in the electron

mode, the 1σ interval of values allowed for β+ becomes narrower,
a+ = −0.561(13)

b+ = −0.694(40)

β+ · 108 = +2.20(1.92)

, χ2/d.o.f = 38.3/38 [NA48/2 + E865], (4.7)

but confirms the trend toward larger values of β+ than those extracted from the K →
πππ data.

We conclude this study with the following observations:

• The NA48/2 data show a marginal preference for the positive solution, in contrast

to the BNL-E865 data, which clearly favour the negative one.

• The data in the electron mode from the two experiments are compatible (up to two

data points, one from each experiment, which require a rescaling of their error bars)

and can be combined. The combined fit clearly favours the negative solution.

• All fits show a moderate improvement when somewhat larger values of β+ (smaller

values of |β+|) are considered. Taking the rather conservative attitude of letting β+

increase by up to two standard deviations from its value in eq. (3.17), i.e. −4 <∼
β+ · 108 <∼ −0.7, leads to the range of values (as |β+| decreases, |a+| also decreases,

while |b+| increases)

a+ = −0.561(9)stat(1)α+(+0.04
−0.02)β+ , b+ = −0.695(39)stat(17)α+(2)β+ . (4.8)

We finally close this section with a few words about the decay KS → π0`+`−. As shown

in table 1, our experimental knowledge of these processes is much more scarce, and comes

from the data collected by the NA48/1 collaboration in refs. [59] (electron mode) and [60]

(muon mode), and analysed using the expression of the form factor from ref. [63], as given

in Eq, (3.15). A combined analysis of the branching ratios of the two lepton modes using
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the values of αS and of βS quoted in ref. [63] gives [60] either aS = −1.6+2.1
−1.8, bS = 10.8+5.4

−7.7

or aS = −1.91+1.6
−2.4, bS = −11.3+8.8

−4.5. Using the more recent values of αS and of βS given

in eq. (3.18), we obtain instead the two possibilities aS = −1.29(3.15), bS = 17.8(10.6)

and aS = 1.28(3.16), bS = −17.6(10.6). In both cases, due to the large uncertainties, the

situation is not very conclusive, even as far as the signs of aS and bS are concerned.

5 The two-loop representation of the form factors

The discussion at the end of section 3.1 suggests a dispersive procedure for the construction

of the form factors, based on the extension at next-to-next-to-leading order of the relation

given in eq. (3.12). The successive steps allowing for such a construction, based on chiral

counting, analyticity and unitarity, have been described in detail in refs. [109, 110] in the

case of the pion form factor, and our task will be to adapt them to the present situation.

As far as analyticity is concerned, the form factors W+,S(z) are analytic in the complex-

z plane with cuts along the positive real axis, starting at z = 4M2
π/M

2
K . The discontinuity

along these cuts is provided by unitarity. For our present purposes, we need only consider

the contributions from two pion intermediate states, which is sufficient in order to account

for the analyticity properties of the form factors in the range of values of z relevant for the

processes K±(KS) → π±(π0)`+`−. As compared to the case of the treatment of the pion

form factor in refs. [109, 110], we also need to deal with the fact that the kaon becomes an

unstable state in the presence of weak interactions. This has some general consequences as

far as the analyticity properties are concerned. In particular, the absorptive and dispersive

parts of W+,S(z) for z real are not real, and W+,S(z) do not satisfy the property of real

analyticity [111], unlike, for instance, the electromagnetic form factor of the pion or of the

kaon. As far as their analyticity properties are concerned, the form factors W+;S(z) are

actually quite akin to the form factor fηπ+ (s) describing the isospin-violating τ → ηπντ
second-class transition, which is discussed in detail in ref. [112]. Many aspects related to

the analyticity properties of fηπ+ (s) can be directly transcribed to W+;S(z). For instance,

the discussion in ref. [112] on the absence of anomalous thresholds in fηπ+ (s) applies, mutatis

mutandis, also to W+;S(z).

While the use of dispersive methods might appear as questionable in the presence of

an unstable kaon, one should however recall that the computation of the form factors to

two loops within chiral perturbation theory rests on the evaluation of Feynman diagrams,

which have well-defined analyticity properties. A careful analysis [113, 114] shows that

these analyticity properties can be reproduced within a dispersive framework upon letting

the kaon mass squared become a free variable M
2
K . One starts with a value of M

2
K which

lies below the three-pion threshold (the fact that the kaon is also unstable due to its decay

into two pions plays no role in the present discussion), so that the kaon becomes stable (with

respect to its decay into three pions), and dispersion relations can be implemented. At

the end, one moves M
2
K above the three-pion threshold through an analytic continuation,

providing the kaon mass squared with a small positive imaginary part, M
2
K → M2

K + iδ,

δ → 0+. It has in particular been shown [115, 116] that this analytic continuation can be

performed without encountering singularities in the case where the masses of the charged
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and neutral pions are equal. We will assume this to be the case in the sequel, isospin-

breaking effects being far from our present concern. The situation where the difference

between the masses of the neutral and charged pions is taken into account would anyhow

require a separate analysis.

5.1 Construction of the form factors to two loops

Having described the overall framework, let us now turn toward the explicit implementation

of the procedure. The starting point of the construction is provided by unitarity. Since the

partial-wave projections fKπ→π
+π−

1 (s) at next-to-leading order have a more complicated

analytic structure than at the lowest order [117], [112], it is necessary to consider first

the situation where MK < 3Mπ, as discussed previously. This will be understood to be

the case from now on. Then the absorptive part of the form factor is real (it coincides

with its imaginary part), and the unitarity condition at two loops, restricted to two-pion

intermediate states, reads

AbsW+,S;2L(s/M2
K)|ππ

16π2M2
K

=
s− 4M2

π

s
θ(s− 4M2

π)Re

[
F πV (s)∗ × fKπ→π

+π−
1 (s)

λ
1/2
Kπ(s)

]
O(E6)

=
s− 4M2

π

s
θ(s− 4M2

π)×
[

ReF πV (s)
∣∣
O(E4)

×
fKπ→π

+π−
1 (s)

∣∣
O(E2)

λ
1/2
Kπ(s)

+ F πV (s)
∣∣
O(E2)

× Re
fKπ→π

+π−
1 (s)

∣∣
O(E4)

− fKπ→π+π−
1 (s)

∣∣
O(E2)

λ
1/2
Kπ(s)

]
(5.1)

=
s− 4M2

π

s
θ(s− 4M2

π)×
[
α+,S

96πM2
π

× ReF πV (s)
∣∣
O(E4)

+ ψ+,S(s)

]
× σπ(s),

where we have written, for s > 4M2
π ,

fKπ→π
+π−

1 (s)
∣∣
O(E2)

λ
1/2
Kπ(s)

=
α+,S

96πM2
π

× σπ(s),

Re
fKπ→π

+π−
1 (s)

∣∣
O(E4)

λ
1/2
Kπ(s)

=

[
α+,S

96πM2
π

+ ψ+,S(s)

]
× σπ(s), (5.2)

where σπ(s) =

√
1− 4M2

π
s .

The structure of the absorptive parts of the form factors W+,S;2L displayed in eq. (5.1)

corresponds to the analyticity properties of the two-loop Feynman diagrams shown in

figure 5. Notice that whereas the partial-wave projection fKπ→π
+π−

1 (s) is proportional to

λ
1/2
Kπ(s) at lowest-order, this is no longer the case at next-to-leading order. Furthermore,

the prescription of endowing M2
K with an infinitesimal positive imaginary part then also

specifies a suitable determination of λ
1/2
Kπ(s). The pion form factor at next-to-leading order

can be written as [65, 66, 109, 110] (as far as notation is concerned, we follow the last of

these references)

ReF πV (s)
∣∣
O(E4)

= 1 + aπV s+ 16πϕ+−;+−
1;ππ (s)Re J̄ππ(s), (5.3)
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Figure 5. The Feynman diagrams contributing to the non-trivial analyticity properties of the form

factors W+,S(z) at two loops, restricted to two-pion intermediate states. The meaning of the lines

and of the vertices is as in figure 2. The second diagram, with the vertex topology, has a complex

absorptive part.

with

ϕ+−;+−
1;ππ (s) =

β

96π

s− 4M2
π

F 2
π

, aπV =
1

6

(
〈r2〉πV +

β

24π2M2
π

)
, (5.4)

where ϕ+−;+−
1;ππ (s) is the lowest-order P -wave projection of the amplitude for π+π− → π+π−

scattering, β being identified with the slope of this amplitude in its expansion around the

center of its Dalitz plot, whereas 〈r2〉πV denotes the mean square of the charge radius of

the pion, and

θ(s− 4M2
π) Re J̄ππ(s) =

8π

σπ(s)
Im J̄2

ππ(s), Im J̄ππ(s) =
σπ(s)

16π
θ(s− 4M2

π). (5.5)

Then one has

s− 4M2
π

sλ
1/2
Kπ(s)

θ(s− 4M2
π)× ReF πV (s)

∣∣
O(E4)

× fKπ→π+π−
1 (s)

∣∣
O(E2)

=
1

6

α+,S

M2
π

s− 4M2
π

s
(1 + aπV s) Im J̄ππ(s) +

1

72

β · α+,S

M2
π

(s− 4M2
π)2

sF 2
π

Im J̄ 2
ππ(s) . (5.6)

It is interesting to notice that the quantity λ
1/2
Kπ(s) does no longer occur in the right-hand

side of this last formula. There remains then to compute

σπ(s)
s− 4M2

π

s
θ(s− 4M2

π)× ψ+,S(s), (5.7)

where ψ+,S(s) describes the one-loop correction to Re fKπ→π
+π−

1 (s), see eq. (5.2). This

computation, while straightforward, constitutes the most involved part of the calculation

of the absorptive parts of the form factors as given by the right-hand side of eq. (5.1). The

details of this calculation will not be given here, but are collected, for the interested reader,

in appendix B, together with the notation. Here we simply display the final expressions of
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the form factors at two-loop accuracy in the low-energy expansion,

W+,S;2L(s/M2
K) =GFM

2
K

(
a+,S+b+,S

s

M2
K

)
+

8π2

3

M2
K

M2
π

[
α+,S(1+aπV s)+β+,S

s−s0
M2
π

][
s−4M2

π

s
J̄ππ(s)+

1

24π2

]
+

8π2

3

M2
K

M2
π

[
∆α+,S−∆β+,S

s0
M2
π

][
s−4M2

π

s

(
J̄ππ(s)− 1

96π2

s

M2
π

)
+

1

240π2

s

M2
π

]
+ ∆β+,S

s

M2
π

[
s−4M2

π

s
J̄ππ(s)+

1

24π2

]
+

4π2

9
β ·α+,S

M2
K

F 2
π

[
(s−4M2

π)2

sM2
π

J̄ 2
ππ(s)− 1

576π2

s

M2
π

]
− 1

16π2F 2
π
×

3∑
i=0

[
K̄

(λ;0)
i (s)pi(s)−K̄(λ;0)′

i (0)[∆Kπp
(−1)
i +sp̄i(0)]− s

2
K̄

(λ;0)′′
i (0)∆Kπp

(−1)
i

]
− 1

16π2F 2
π
×

3∑
i=0

∆2
Kπ

M2
π
qi

[
K̄

(λ;1)
i (s)

s
−K̄(λ;1)′

i (0)− s

2
K̄

(λ;1)′′
i (0)

]
, (5.8)

and comment on this result with a few remarks:

• The origin of the coefficients ∆α+,S and ∆β+,S is discussed after eq. (B.7) and their

expression given explicitly in eqs. (B.37) and (B.38).

• The absorptive parts of the functions K̄
(λ;0,1)
i (s), i = 2, 3, which are given by the

functions ki(s) defined in eq. (B.13), develop an imaginary part for s > 4M2
π when MK

takes it physical value. This feature is at the origin of some of the general properties

of the form factors discussed at the beginning of this subsection, like the loss of real

analyticity. More specifically, the latter follows from the analyticity properties of the

second type of Feynman diagrams, with the vertex topology, depicted in figure 5, and

which produce the contributions involving the functions K̄
(λ;0,1)
i (s) for i = 2, 3.

• For the same reasons, the constants a+,S and b+,S are in general complex. Their

imaginary parts are generated for the first time at the two-loop level, and are thus

chirally suppressed. They arise through Feynman graphs with the vertex topology,

but also through Feynman graphs without absorptive parts, of the type shown in

figure 6. Moreover they will be proportional to the phase space for the K → πππ

transition, which is also small. Due to this double suppression, these imaginary parts

can be neglected in practice, and will, in particular, not impinge on the analysis

in section 4, given the present (and, probably, future) statistical uncertainties of

the data.

• Uncommon features, like circular cuts in the complex plane, intersecting the usual

unitarity and left-hand cuts on the real axis, also show up in the analyticity properties

of the partial-wave projections fKπ→π
+π−

1 (s) computed from the one-loop amplitudes.

Their existence follows from the general analysis made in ref. [117], and they are

discussed more specifically in refs. [82, 115] and [112].

– 26 –



J
H
E
P
0
2
(
2
0
1
9
)
0
4
9

Figure 6. A Feynman diagram that does not contribute to the absorptive parts of the form factors

W+,S(z) at two loops, but which gives imaginary parts to a+,S and to b+,S . The meaning of the

lines and of the vertices is as in figure 2.

5.2 Comparing W+,S;2L(z) and W+,S;b1L(z)

The one-loop expression for W+(z) does not give a very good description of the data. If the

latter are fitted, as in section 4, with W+;1L(z), keeping a+ as a free variable, the quality of

the fit deteriorates tremendously. Typically, the value at the minimum of the χ2 function

is in the range between 300 and 500. The representation W+;b1L(z) thus constitutes a real

improvement in the description of the data. Likewise, one may legitimately ask oneself to

which extent the full two-loop expression W+;2L(z) constructed above would further modify

this picture.

In comparing the full two-loop representations (5.8) of the form factors with the ex-

pressions (3.15) of ref. [63], we notice that the latter are essentially reproduced by the first

line of eq. (5.8), which follows if in eq. (5.1) we restrict the pion form factor and the P -wave

projections to their polynomial parts:

ReF πV (s)|O(E4) → 1 + aπV s, Re fKπ→π
+π−

1 (s)|O(E4) →
M2
K

M2
π

[
α+,S + β+,S

s− s0

M2
π

]
, (5.9)

taking, for aπV , the estimate aπV = 1/M2
V given by vector-meson dominance. What is

missing in order to completely reproduce the expressions of the form factors W+,S;b1L(z)

is the term proportional to the product β+,S × aπV , which does not occur in eq. (5.8).

This term actually represents a contribution of order three loops, whence its absence from

eq. (5.8). Furthermore, if we go once more through the fits in section 4 with this term

omitted from eq. (3.15), the outcomes for a+,S and b+,S are barely changed, so that, from a

phenomenological point of view, this term is not important in the region of z corresponding

to the phase space of the K → π`+`− transitions.

We may now proceed with the quantitative comparison between the full two-loop

expressions given by eq. (5.8) and the form factors of ref. [63]. This comparison is shown in

figure 7 for the modulus squared of W+;2L(z) and W+;b1L(z), for two sets of values for the

parameters a+, b+ and β+. This difference remains quite small, and in any case well below

the present statistical uncertainties of the data. This feature is shared for other values of

the parameters taken in the ranges discussed in section 4. Differences between W+;2L(z)

and W+;b1L(z) are visible only for values of z above 0.4, i.e. toward the upper end of phase

space, where the statistical uncertainties are also largest. The comparison of WS;2L(z) and

of WS;b1L(z) leads to similar conclusions. The determinations of the parameters a+,S and
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Figure 7. Comparison between |W+;2L(z)|2 (upper solid and dashed lines, in blue) and |W+;b1L(z)|2
(lower solid and dashed lines, in red) for a+ = −0.593, b+ = −0.675, β+ = −2.88 ·10−8 (solid lines),

and for a+ = −0.580, b+ = −0.683, β+ = −0.85 · 10−8 (dashed lines). The data points shown on

the figure are those of ref. [56].

b+,S from data will thus not be modified in any substantial way if, instead of W+,S;b1L(z),

one uses, in section 4, the full two-loop amplitudes W+,S;2L(z).

6 W+(z) beyond the low-energy expansion

While the two-loop representations of the form factors, or the truncated versions thereof

proposed in ref. [63], provide an appropriate description of the experimental data in terms

of two sets of parameters a+,S and b+,S , the latter cannot be predicted within the low-

energy framework considered in sections 2 and 5. In order to obtain predictions for them, it

is necessary to set up a phenomenological description of the form factors that goes beyond

the low-energy framework. If such a description of the form factors becomes available, the

values of the constants a+,S and b+,S can then be obtained through the definitions given in

eq. (3.19). The purpose of the present section is to proceed with such a phenomenological

construction of the form factor W+(z).

Building on the results obtained so far, we will propose a simple model for the form

factor W+(z) that accounts for rescattering effects in the two-pion intermediate state be-

yond the framework set by the low-energy expansion, and, at the same time, provides a

matching to the short-distance behaviour investigated in section 2.2. Consequently, our

model will consist of three parts,

W+(z) = W ππ
+ (z) +W res

+ (z; ν) +W SD
+ (z; ν). (6.1)
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Before going into the details of their respective evaluations, let us briefly describe the

physical content of each of these parts.

As already mentioned, the first part describes the contribution from the two-pion

intermediate state to W+(z). It is constructed upon assuming, in analogy with the elec-

tromagnetic form factor of the pion F πV (s) [98, 118], that it is given by an unsubtracted

dispersion integral,

W ππ
+ (z) =

∫ ∞
4M2

π

dx
ρππ+ (x)

x− zM2
K − i0

. (6.2)

The absorptive part consists of the two-pion spectral density ρππ+ (s), and is obtained upon

inserting a two-pion intermediate state in the representation of the form factor given in

eq. (2.2),

ρππ+ (s) = 16π2M2
K ×

s− 4M2
π

s
θ(s− 4M2

π)× F π∗V (s)× fK
±π∓→π+π−

1 (s)

λ
1/2
Kπ(s)

. (6.3)

In order to evaluate this absorptive part, we require two ingredients: a representation of

the pion form factor F πV (s), and a representation of the P -wave projection fKπ→ππ1 (s),

which both extend to the whole energy range set by the cut singularity of W+(z). We will

provide an explicit realization of these two quantities in subsection 6.1 below. For the time

being, let us just notice that for the convergence of the unsubtracted dispersive integral it

is sufficient that their product is bounded by, say, a constant for large values of s.

Above this lowest threshold, several intermediate states will contribute to the disconti-

nuity of W+(z) in the 1-GeV region and beyond. Considering only two-meson intermediate

states, the next thresholds will come from K+π− or K0π0 intermediate states, followed by

K0K̄0, K+K−, and so on. As the energy increases, the number of possible exclusive inter-

mediate states grows, and they eventually merge into the inclusive contribution provided

by the QCD continuum, as discussed in section 2.2. We will describe this process in terms

of an infinite tower of equally-spaced zero-width resonances

W res
+ (z; ν) =

fK
±π∓

+ (zM2
K)

4π

∫ ∞
M2

dx
ρres

+ (x; ν)

x− zM2
K − i0

, (6.4)

where M ∼ 1 GeV is the scale of the lowest resonance occurring in this tower. The main

task facing us will be to find an appropriate Regge-type resonance model,

ρres
+ (s; ν) ∝

∞∑
n=1

M2µn(ν)δ(s− nM2), (6.5)

which reproduces the correct QCD short-distance properties of the form factor. This issue

will be adressed in section 6.2. In particular, the dependence of W res
+ (z; ν) on the short-

distance scale ν has to match the same dependence that appears in the third part on the

right-hand side of eq. (6.1), simply given by the factorized contribution coming from the

Q7V operator,

W SD
+ (z; ν) = 16π2M2

K

(
GF√

2
V ∗usVud

)
C7V (ν)

4πα
fK
±π∓

+ (zM2
K). (6.6)

This last contribution is evaluated in section 6.3.
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6.1 The contribution from the two-pion state

Assuming we have a representation of the form (6.2) at our disposal, the contributions aππ+

and bππ+ from the two-pion intermediate state to the coefficients a+ and b+, respectively,

are obtained through two sum rules that follow from the definitions given in eq. (3.19),

GFM
2
Ka

ππ
+ = W ππ

+ (0) =

∫ ∞
0

dx

x
ρππ+ (x), GFM

2
Kb

ππ
+ = W ππ′

+ (0) = M2
K

∫ ∞
0

dx

x2
ρππ+ (x).

(6.7)

As far as the convergence of the integral in (6.2) is concerned, it depends on the be-

haviour of both the pion form factor F πV (s) and the partial wave projection fKπ→π
+π−

1 (s)

for large values of s. As already mentioned, in order to evaluate the sum rules in eq. (6.7),

we need representations of the pion form factor F πV (s) and of the partial-wave projection

fπ
+π−→K+π−

1 (s) that extend beyond their low-energy expansions. There exist several “uni-

tarization” procedures that precisely allow to do this. One of them, the inverse-amplitude

method (IAM) [119, 120], gives quite reasonable results when applied to ππ scattering in

the P -wave and to the pion form factor [121, 122] in the region of the ρ meson. The result,

F πV (s) =
1

1− s

M2
V

− β

6F 2
π

(s− 4M2
π) J̄ππ(s)

, (6.8)

obtained starting from the one-loop low-energy expression of F πV (s), provides a rather sim-

ple representation of F πV (s). Its phase is the phase of the P -wave projection of the ππ

scattering amplitude, as required by Watson’s final-state theorem, and it reproduces the

one-loop expression of F πV (s) for small values of s. Furthermore, it exhibits a resonant

behaviour at the expected value of the energy squared, i.e. s ∼ M2
ρ . It is quite easy to

understand in simple terms how this last property emerges from the representation (6.8).

Neglecting at first the contribution from the pion loops, materialized by the term pro-

portional to β in the denominator, this expression reduces to the well-known VMD form

F πV (s)|VMD = M2
V /(M

2
V − s). It has the expected pole at s = M2

V ∼M2
ρ , and the real part

of the pion-loop contribution will slightly change the real part of the pole position, while

the imaginary part of the pion loop will move it from the real axis to the second Riemann

sheet, leading to the resonant behaviour shown in figure 8.

We next turn toward the partial-wave projection fK
+π−→π+π−

1 (s), to which we wish to

apply the same procedure. Starting from its one-loop expression obtained in appendix B,

and neglecting the contributions from the circular cuts, the IAM-unitarized version of

fK
+π−→π+π−

1 (s) reads (ψloop
+ (s) is defined in eq. (B.15))

fK
+π−→π+π−

1 (s) =

[
α+

96πM2
π

]2
×λ1/2

Kπ(s)

√
1− 4M2

π
s

1

96πM2
π

[
α+−β+ s−s0

M2
π

]
−ψloop

+ (s)+Reψloop
+ (s0)+(s−s0)Reψloop ′

+ (s0)

. (6.9)

We will further simplify this expression upon keeping only the contribution of the unitarity

or right-hand cut of ψloop
+ (s) into account, i.e. the first term on the right-hand side of
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Figure 8. The left-hand plot shows the absolute value |FπV (s)| at one loop (dashed line) and its IAM

unitarized version (solid line), as a function of s/M2
π , for s ≥ 4M2

π and for MV = Mρ = 775 MeV

(notice that M2
ρ = 31M2

π) and β = 1.11. The right-hand plot shows the real (dashed line) and

imaginary (solid line) parts of the IAM unitarized pion form factor.

eq. (B.15). The remaining terms give only a small correction in comparison. We thus end

up with

fK
+π−→π+π−

1 (s) =

α+

96πM2
π

×λ1/2
Kπ(s)

√
1− 4M2

π
s

1− β+
α+

s−s0
M2
π

− β
6

s−4M2
π

F 2
π

[
J̄ππ(s)−Re J̄ππ(s0)

]
+
β

6

s0−4M2
π

F 2
π

(s−s0)Re J̄ ′ππ(s0)

.

(6.10)

If we transpose the discussion that follows eq. (6.8) to the representation (6.10), we observe

that, when the contributions from the pion loops are discarded, the “bare” pole is located

at a value of s given by spole = s0 + (α+/β+)M2
π . For the values given in eq. (3.17), i.e.

α+/β+ ∼ 7, this gives spole ∼ 12M2
π . In order to obtain a pole located at spole ∼ M2

ρ , one

needs a higher value of the ratio α+/β+, say α+/β+ ∼ 25. In view of the error bars of the

numerical values of α+ and β+, this can be achieved most economically upon increasing

β+ by about two standard deviations from its central value in eq. (3.17). Assigning even

part of the effect to an increase of the absolute value of α+ would represent a much more

significant deviation from its value in (3.17). At this stage one might recall the discussion

in section 4, where it was already noticed that upon keeping β+ as a free variable to be

fitted to the data, the outcome was favouring values deviating from the one in (3.17) by a

similar amount. It would certainly appear as somewhat far-fetched to ground the reason for

preferring larger values of β+ on the simple characteristics of the IAM-unitarized partial

wave fK
+π−→π+π−

1 (s). Nevertheless, the concordance, on this issue, with the analysis

presented in section 4 is definitely interesting and noteworthy.2 In figure 9, we illustrate

2For the sake of completeness, let us mention that the Dalitz plot of the K+ → π+π+π− transition

has been measured with high precision by the NA-48/2 Collaboration [123]. These results were published

after ref. [104]. Using only ref. [123] does not allow for a separate determination of α+ and β+ but

only of the ratio α+/β+. In terms of the Dalitz plot parameters g, h and k of ref. [123], one obtains

α+/β+ ∼ −g/(h− 3k) = 6.53(1) in agreement with the value obtained from eq. (3.17).
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Figure 9. The absolute value of fπ
+π−→K+π−

1 (s)/λ
1/2
Kπ(s)

√
1− 4M2

π

s as given in eq. (6.10) (Breit-

Wigner shaped curves, in red) vs. the one-loop counterpart (straight lines, in blue), as a function of

s/M2
π , for s ≥ 4M2

π and for α+ = −20.84 · 10−8, β = 1.11, whereas β+ is increased from its central

value in eq. (3.17) by 1.5 standard deviation (β+ = −1.26 · 10−8, left-hand plot), 1.88 standard

deviation (β+ = −0.85 ·10−8, the value retained in the text, central plot), and 2 standard deviations

(β+ = −0.72 · 10−8, right-hand plot).

the evolution of |fK+π−→π+π−
1 (s)| as given in eq. (6.10) for different values of β+ and for

s ≥ 4M2
π . Notice also that the approximation considered in eq. (6.10) preserves Watson’s

final-state theorem, and the phases of F πV (s) and of fK
+π−→π+π−

1 (s) should be identical.

For the choice β = 1.11 (this value of β is itself chosen such as to match the phase of the

pion form factor to the phase of the P -wave projection of the ππ amplitude, both obtained

upon unitarization of their one-loop expressions by the IAM method), this is the case for

β+ = −0.85 · 10−8.

The numerical evaluation of the two sum rules in eq. (6.7) for these values of β and of

β+ then gives

aππ+ = −1.58, bππ+ = −0.76. (6.11)

In this approach, the overall negative sign of these numbers is driven by the negative sign

of α+. The result for b+ comes out relatively close to the values extracted from the data

in section 4, whereas the absolute value of a+ is about twice as large. Of course, in both

cases there are other contributions which we need to discuss before being in a position of

making a more definite statement.

Let us finally notice that the same approach can also be implemented in order to

evaluate the contribution from the two-pion state to aS and bS . It suffices to make the

appropriate replacements in eq. (6.10). We first notice that a ratio αS/βS ∼ 25 lies (almost)

within reach for the values indicated in eq. (3.18), e.g. αS ∼ −7.5 · 10−8, βS ∼ −0.3 · 10−8.

The resulting values of aππS and bππS would then also be negative, and about three times

smaller in absolute value than those obtained for aππ+ and bππ+ in eq. (6.11).

6.2 Intermediate states with higher thresholds

In section 2.2, we have established the high-energy behaviour of the dimensionally renor-

malized form factor, see eq. (2.28). Reproducing this behaviour is necessary in order to

obtain an amplitude that does no longer depend on the short-distance renormalization scale

ν once the contribution from the local factorized operator Q7V is added. This behaviour
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is, however, not reproduced by the contribution of the ππ intermediate state that we have

just studied. It has therefore to come from the remaining infinite number of intermediate

states, with higher and higher thresholds, and which eventually end up into the perturba-

tive contribution of quarks and gluons at short distances. One might attempt to describe

some of these additional intermediate states in a similar treatment as the one adopted here

for the two-pion states. This holds, in particular, for the next thresholds, due to Kπ and

to K̄K intermediate states. We leave such improvements for future work. Here, we will

adopt a simpler point of view, where the additional intermediate states are described by

zero-width resonance states. Such a picture would naturally emerge, for instance, from the

perspective of the limit where the number of colours Nc becomes large [124, 125]. Contri-

butions of this type are depicted on figure 10, and would produce a form factor with the

following expression

W res
+ (z; ν) =

∑
V=φ···

fV g̃V
s−M2

V + i0
+

∑
V=K∗···

gV f̃V
s−M2

V + i0
. (6.12)

The first sum runs over resonances with quantum numbers JPC = 1−−, I = 1, S = 0. It

starts here with the φ(1020), since the ρ meson is already contained in the contribution of

the ππ intermediate states that we have discussed previously. The second sum runs over

the resonances with quantum numbers JP = 1−, I = 1/2, S = ±1, and starts with the

K∗(892). The strong couplings fV and gV are fixed, for instance, by the widths of the

decays like φ→ e+e− and K∗ → Kπ, respectively. Information on the weak couplings f̃V
and g̃V is, however, not available. This represents the usual difficulty in obtaining reliable

estimates of the low-energy constants in the weak sector through resonance saturation [93–

97]. Another difficulty lies in the fact that the correct short-distance behaviour (2.28) can

only be recovered upon considering an infinite number of resonances [125]. This second

difficulty can be dealt with upon using available techniques [126–128] to construct resonance

models with spectra of the Regge-type, and with residues that can be tuned such as to

build up harmonic sums that can often be resummed exactly and, moreover, reproduce

the prescribed asymptotic behaviour. We will present such a construction in the case of

interest here.

In order to set the stage, let us go back to the calculation in section 2.2. It teaches us

that a dispersive representation of the type

W+(z) =
fK
±π∓

+ (zM2
K)

4π

∫
dx

ρM (x)

x− zM2
K − i0

, ρM (s) = Aθ(s−M2)

√
1− M2

s
, (6.13)

would fulfill the required conditions. Here A is a normalization constant, and M is a

mass scale which corresponds to the onset of the perturbative continuum due to the quark

loop, and which we would like to identify with a typical resonance scale M ∼ 1 GeV. Of

course, the above dispersive integral does not converge, and we first need to consider the

dimensionally regularized version of the spectral density ρM (s), namely [129]

ρM (s;D) = A(D)(4π)2−D
2

(
M2

ν2
MS

)D
2
−2 Γ

(
3
2

)
Γ
(
D
2 − 1

2

) ( s

M2
− 1
)D

2
−2
√

1− M2

s
θ(s−M2),

(6.14)
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Figure 10. The diagrams for the exchange of zero-width resonances (double line). The external

lines correspond to the insertion of the current jµ(x) (wiggly line) and to the kaon (thick line)

and pion (thin line). The circular blob denotes a strong coupling vertex, and the square box a

weak coupling vertex. The diagram on the left corresponds to the exchange of resonances with

JPC = 1−−, I = 1, S = 0, like the ρ or the φ(1020) meson. The resonances exchanged in the

diagram on the right have quantum numbers JP = 1−, I = 1/2, S = ±1, like the K∗(892).

where the function A(D) is only constrained by the condition A(4) = A, A(D) = A+ (D−
4)A′ + · · · , and A′ parameterizes the scheme-dependence arising from the Dirac matrices

in the calculation of section 2.2. The divergence of the dispersive integral is then contained

in the value of the integral at z = 0,

∫
dx

ρM (x;D)

x
= A(D)(4π)2−D

2

(
M2

ν2
MS

)D
2
−2 Γ

(
3
2

)
Γ
(
D
2 − 1

2

) Γ
(
D
2 − 1

2

)
Γ
(
2− D

2

)
Γ
(

3
2

)
= A(D)(4π)2−D

2

(
M2

ν2
MS

)D
2
−2

Γ

(
2− D

2

)
= A

[ −2

D − 4
− γE + ln(4π)− ln

M2

ν2
MS

− 2A′/A+ · · ·
]
. (6.15)

After renormalization in the MS scheme, one therefore finds

W+(z; ν) = fK
±π∓

+ (zM2
K) (6.16)

× 1

4π

[
zM2

K

∫
dx

x
θ(x−M2)

√
1− M2

x

A

x− zM2
K − i0

−A ln
M2

ν2
− 2A′

]
.

The limit of large space-like values of z gives

lim
z→−∞

W+(z; ν)/fK
±π∓

+ (zM2
K) =

1

4π

[
2(A−A′ −A ln 2)−A ln

−zM2
K

ν2

]
. (6.17)

The short-distance behaviour given in eq. (2.28) is then recovered in this case with the

choices

A = 16π2M2
K

(
GF√

2
V ∗usVud

)∑
I

CI(ν)ξI01,

A′ = −16π2M2
K

(
GF√

2
V ∗usVud

)∑
I

CI(ν)

[
1

2
ξI00 − (1− ln 2)ξI01

]
. (6.18)
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Actually, the dispersive integral (6.13) with ρM (x;D) can be done explicitly (w ≡
−zM2

K/M
2):∫

dx
ρM (x;D)

x− zM2
K

= A(D)(4π)2−D
2

(
M2

ν2
MS

)D
2
−2

Γ

(
2− D

2

)
× 2F1

(
1 , 2− D

2
3
2

∣∣∣∣∣− w
)
.

(6.19)

For the definition and properties of the hypergeometric function 2F1, we refer the reader

to ref. [130]. The properties (6.15) and (6.17) can then be directly recovered from those of

this function, see e.g. [130, eq. 15.8.2],

2F1

(
1 , 2− D

2
3
2

∣∣∣∣∣− w
)

=

 1 +O(w) [w → 0]

π
3
2

2 sin(π 4−D
2 )

1
Γ( 4−D

2 )Γ(D−1
2 )

w−
4−D
2

[
1 +O(w−1)

]
[w → +∞]

.

(6.20)

It is possible to reproduce the salient properties of the simple model discussed above

through a Regge-type resonance model of the form

ρKπres (s;D) =A(D)(4π)2−D
2

(
M2

ν2
MS

)D
2
−2

Γ

(
2−D

2

)∑
n≥1

M2µn(D)δ(s−nM2),

∫
dx

ρKπres (x;D)

x+wM2
=A(D)(4π)2− d

2

(
M2

ν2
MS

)D
2
−2

Γ

(
2−D

2

)∑
n≥1

µn(D)

(n+w)
,

(6.21)

provided one can find a set of functions µn(D) that satisfies the following requirements:

• ∑n≥1
µn(D)
n = 1

• µn(D) =
D→4

(D − 4)µ̄n +O
(
(D − 4)2

)
• ξ(w) ≡∑n≥1

µ̄n
n(n+w) converges

• ξ(w) ∼
w→+∞

lnw

As we now show, a solution, by far not unique, to this list of requirements can then be

constructed in the form

µn(D) = a(D)n
D−4
2 + b(D)n2

(
D

2
− 1

)n
, (6.22)

for suitably chosen functions a(D) and b(D). Indeed, starting from the inverse Mellin

representation

1

1 + w
n

=

c1+i∞∫
c1−i∞

du

2iπ

(w
n

)−u π

sinπu
, (6.23)

valid for 0 < c1 < 1, and making use of the sums

∞∑
n=1

n
D−4
2

+u−1 = ζ

(
6−D

2
− u
)
,

∞∑
n=1

(
D

2
− 1

)n
nu+1 = Li−1−u

(
D

2
− 1

)
, (6.24)
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one obtains

∞∑
n=1

[
an

D−4
2 + bn2

(
D

2
− 1

)n] 1

n+ w

=

c2+i∞∫
c2−i∞

du

2iπ
w−u

π

sinπu

[
a ζ

(
6−D

2
− u
)

+ bLi−1−u

(
D

2
− 1

)]
, (6.25)

with 0 < c2 <
4−D

2 . Here ζ(x) is the Riemann ζ-function and Liy(x) denotes the polyloga-

rithm function, defined as Liy(x) =
∑

n>0 x
nn−y for |x| < 1 and arbitrary complex y, and

by analytic continuation for other values of x. The integrand in the relation (6.25) has a

pole at u = 0, coming from the pre-factor only, since the terms inside the square brackets

are well behaved at u = 0, with Li−1(x) = x/(1−x)2. According to the Converse Mapping

Theorem [131, 132], from this pole at u = 0, located on the left of the fundamental strip

0 < c2 <
4−D

2 , one deduces that

∞∑
n=1

[
an

D−4
2 + bn2

(
D

2
− 1

)n] 1

n+ w
∼
w→0

a ζ

(
6−D

2

)
+ 2b

D − 2

(D − 4)2
. (6.26)

Since ζ(3−D/2− u)→ −1/(u− 2 +D/2) + · · · for u→ 2−D/2, while Li−1−u(D/2− 1)

remains finite as this limit is taken, the integrand has also a pole at u = 4−D
2 , due to the

first term in the square brackets. In this case, the pole being located on the right of the

fundamental strip 0 < c2 <
4−D

2 , the Converse Mapping Theorem allows us to state that

∞∑
n=1

[
an

D−4
2 + bn2

(
D

2
− 1

)n] 1

n+ w
∼

w→∞
a

π

sin
(
π 4−D

2

) w− 4−D
2 . (6.27)

We thus conclude that we are able to build a Regge-type resonance model, defined by

eq. (6.22), with

a(D) =

√
π

2

Γ
(

4−D
2

)
Γ
(
D−1

2

) and b(D) =
1

2

(D − 4)2

D − 2

[
1−

√
π

2 ζ
(

6−D
2

)
Γ
(

4−D
2

)
Γ
(
D−1

2

)] , (6.28)

and which satisfies all the required properties. The part of the integral that remains finite

in the limit D → 4 can be resummed explicitly, and we find∫
dx

ρres(x;D)

x− zM2
K

= A(D)(4π)
4−D
2

(
M2

ν2
MS

)D−4
2

Γ

(
4−D

2

)
−A [γE + ψ(1 + w)] +O(D− 4),

(6.29)

where the di-gamma function ψ arises through the sum

∞∑
n=1

w

n(n+ w)
= γE + ψ(1 + w). (6.30)

Actually, considering more generally the poles when u equals a negative integer, the Con-

verse Mapping Theorem gives

∞∑
n=1

[
a(D)n

D−4
2 + b(D)n2

(
D

2
− 1

)n] 1

n+ w
∼
w→0

N∑
p=0

(−1)pcp(D)wp+O(wN+1), (6.31)
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with the coefficients cp(D) given by c0(D) = 1 and, for p > 0, by

cp(D) = a(D) ζ

(
6 + 2p−D

2

)
+ b(D) Lip−1

(
D

2
− 1

)
[p ≥ 1]. (6.32)

In the limit where D → 4, one obtains

Γ

(
4−D

2

)
cp(D)→ ζ(p+ 1), (6.33)

which indeed corresponds to eq. (6.29).

Summarizing, we end up, after minimal subtraction, with the expression

W res
+ (z; ν) =

fK
±π∓

+ (zM2
K)

4π

× 16π2M2
K

(
GF√

2
V ∗usVud

)∑
I

CI(ν)

{
ξI00 − ξI01

[
ln
M2

ν2
+ ψ

(
1− z M

2
K

M2

)]}
. (6.34)

Accordingly, the corresponding contributions to a+ and b+ read (cf. eq. (3.19)),

GFM
2
Ka

res
+ (ν) = W res

+ (0; ν), GFM
2
Kb

res
+ (ν) = W res ′

+ (0; ν), (6.35)

i.e.

ares
+ (ν) =

fK
±π∓

+ (0)

4π
× 16π2

(
1√
2
V ∗usVud

)∑
I

CI(ν)

{
ξI00 − ξI01

[
ln
M2

ν2
− γE

]}
,

bres
+ (ν) =

fK
±π∓

+ (0)

4π
× 16π2

(
1√
2
V ∗usVud

)
π2

6

M2
K

M2

∑
I

CI(ν) ξI01

+
fK
±π∓

+ (0)

4π
× λ+

M2
K

M2
π

× 16π2

(
1√
2
V ∗usVud

)∑
I

CI(ν)

{
ξI00 − ξI01

[
ln
M2

ν2
− γE

]}
. (6.36)

The expression of bres
+ (ν) involves the slope at the origin λ+ of the form factor fK

±π∓
+ (s).

It is defined in eq. (A.1), and numerical values for both fK
±π∓

+ (0) and λ+ are given in

eq. (A.3).

We draw attention here to the fact that only the order O(α0
s) contribution to the

short distance behaviour of W (s; ν) is reproduced by the resonance model. This means

that eq. (6.34) satisfies both (2.14) and (2.28) at order O(α0
s) only, which implies that

some scale dependence will remain. We could improve on this aspect upon including

O(αs) corrections, which are almost completely determined from the renormalization-group

analysis in section 2.2. We would then need to build a resonance model that reproduces

both the correct ln(−s/ν2) and ln2(−s/ν2) behaviours at high energy. We leave such an

improvement for a future study.
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6.3 The contribution from the factorized Q7V operator

It remains to evaluate the last contribution, due to W SD
+ (z; ν). From its definition in

eq. (6.6), combined with eq. (3.19), we obtain right away

aSD
+ (ν) =

fK
±π∓

+ (0)

4π
× 16π2

(
1√
2
V ∗usVud

)
C7V (ν)

α

bSD
+ (ν) =

fK
±π∓

+ (0)

4π
× λ+

M2
K

M2
π

× 16π2

(
1√
2
V ∗usVud

)
C7V (ν)

α
. (6.37)

Values for C7V can be found in ref. [89]. In particular, we use C
(NDR,HV)
7V (1 GeV)/α =

(−0.037, 0.000). Here we have set τ = 0, i.e. we have identified C7V with z7V , and we have

chosen Λ
(4)

MS
= 300 MeV. In order to investigate the dependence of the sums ares

+ (ν)+aSD
+ (ν)

and bres
+ +bSD

+ (ν) on the short-distance scale ν, we use the lowest-order evolution equations,

neglecting the mixing with the penguin operators, i.e.

C7V (ν)

α
=
C7V (ν0)

α
+

16

99

[
1−
(
α
(3)
s (ν)

α
(3)
s (ν0)

)−11/9
]
C+(ν0)

αs(ν0)
− 8

45

[
1−
(
α
(3)
s (ν)

α
(3)
s (ν0)

)−5/9
]
C−(ν0)

αs(ν0)
,

(6.38)

where C±(ν) = C2(ν)± C1(ν) and

C+(ν) =

(
α

(3)
s (ν)

α
(3)
s (ν0)

)−2/9

C+(ν0) , C−(ν) =

(
α

(3)
s (ν)

α
(3)
s (ν0)

)4/9

C−(ν0). (6.39)

Here α
(3)
s stands for the running QCD coupling for Nf = 3 active flavours,

α
(Nf )
s (ν) =

12π

(33− 2Nf )t(Nf )(ν)
, t(Nf )(ν) ≡ 2 ln(ν/Λ

(Nf )

MS
), (6.40)

and for the numerical evaluation, we use Λ
(3)

MS
= 340 MeV and the following input values [89]

C+(1 GeV) =

{
0.771 NDR

0.735 HV
, C−(1 GeV) =

{
1.737 NDR

1.937 HV
(6.41)

6.4 Evaluations of a+ and b+

Collecting the various contributions to a+ and to b+ from the model proposed in this

section, we end up, according to eq. (3.19), with the following expressions:

a+ =

∫ ∞
0

dx

x

ρππ+ (x)

GFM2
K

+
fK
±π∓

+ (0)

4π
×16π2

(
1√
2
V ∗usVud

){
C7V (ν)

α
+
∑
I

CI(ν)

[
ξI00−ξI01

(
ln
M2

ν2
−γE

)]}
,

b+ =

∫ ∞
0

dx

x2
ρππ+ (x)

GF
+
fK
±π∓

+ (0)

4π
×16π2

(
1√
2
V ∗usVud

)
π2

6

M2
K

M2

∑
I

CI(ν)ξI01

+
fK
±π∓

+ (0)

4π
×λ+

M2
K

M2
π
×16π2

(
1√
2
V ∗usVud

){
C7V (ν)

α
+
∑
I

CI(ν)

[
ξI00−ξI01

(
ln
M2

ν2
−γE

)]}

− 1

60

(
M2
K

M2
π

)2

α+

(
1− β+

α+

s0
M2
π

)
. (6.42)
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Figure 11. The evolution of a+ and b+ with respect to ν in both NDR and HV schemes, for

M = 1 GeV.

Numerically, for 1 GeV 6 ν 6 2 GeV, M = 1 GeV, and considering only contributions from

C1 and C2, one obtains

a+ = −1.58 +

{
[−0.10, 0.03] NDR

[−0.14, 0.07] HV
b+ = −0.76 +

{
[−0.04, 0.03] NDR

[−0.07, 0.03] HV
. (6.43)

The residual ν-dependence of a+ and b+ is depicted in figure 11.

This result should mainly be viewed as a first serious attemp to evaluate a+ and b+.

Improvements, for instance on the description of W ππ
+ (z), or the inclusion of QCD correc-

tions in W res
+ (z), are clearly required before realistic error bars can be assigned to the values

displayed in eq. (6.42). We come back to these issues in the next section. Nevertheless, we

find it encouraging that the outcome of the rather simple approach followed in the present

section comes rather close to the values obtained from the experimental data in section 4.

This is particularly true for b+.

7 Summary, conclusions, outlook

In this final section, we wish to summarize the content of this article, going successively

through the main aspects of the issues that have been addressed, roughly following the list

of items given at the end of the introduction. For each item, we provide conclusions and/or

critical remarks, as well as an outline of perspectives for future improvements.

7.1 Extracting a+,S and b+,S from recent data

Our first concern was to establish the values of the constants a+,S and b+,S that are provided

by recent experimental data. In the case of K± → π±e+e−, we have shown that a combined

fit to the data on the decay distribution from the two high-statistics experiments BNL-

E865 and NA48/2 clearly favours the solution where a+ and b+ are both negative, with

|a+| and |b+| comparable in size.

We have also performed fits to the data keeping, in addition to a+ and b+, the curvature

β+ of the K± → π±π+π− Dalitz plot as a free parameter, and have found that somewhat

– 39 –



J
H
E
P
0
2
(
2
0
1
9
)
0
4
9

smaller (in absolute value) values than those obtained by direct determinations from K →
πππ data are preferred.

In order to make comparisons between different approaches more convenient, we have

introduced intrinsic definitions of the coefficients a+,S and b+,S in terms of the values of

the form factors and of their slopes at the origin z = 0.

7.2 The low-energy expansion of the form factors to two loops

The extraction of a+,S and b+,S from data was done using the expressions W+,S;b1L(z) of the

form factors given in ref. [63]. Our second concern was then to establish whether two-loop

corrections not accounted for by these expressions might have an effect on these determi-

nations.

We have provided the full two-loop expression of the form factors, taking only the

singularities due to two-pion intermediate states into account, in analogy with ref. [63].

These two-loop expressions are based on the complete one-loop expression of the partial-

wave projections fKπ→π
+π−

1 (s), which include also ππ rescattering in the crossed channels.

These features are not accounted for by the expressions of W+,S;b1L(z) given in ref. [63].

From a numerical point of view, these effects turn out to be quite small in the region

of z corresponding to the phase space for the K → π`+`− decays. In practice, one may

thus use the simpler form Wb1L(z) in order to analyze the data, instead of the full two-loop

expression W2L(z), without significant impact on the determinations of a+,S and b+,S . This

also strongly suggests that still higher-order corrections are quite small and are likely not

to modify the picture in any substantial way.

We have also pointed out that the existing one-loop calculations suggest that kaon

loops could possibly have a sizeable effect on a+ and aS . However, making a quantita-

tive statement on this issue would require a complete two-loop calculation in the usual

framework of three-flavour chiral perturbation theory, including the computation of those

Feynman graphs that do not exhibit non-trivial analyticity properties.

7.3 Contribution from the two-pion state

We have addressed the phenomenological evaluation of the contribution from the two-

pion state to a+ and b+ upon writing an unsubtracted dispersion relation for the form

factor W+(z), from which sum rules for a+ and b+ can be obtained. The absorptive

part of the dispersion relation is provided by the electromagnetic form factor of the pion

F πV (s) and by the P -wave projection fKπ→π
+π−

1 (s) of the K±π∓ → π+π− amplitude. For

these, we have used a very simple approach, where these two quantities are constructed

through unitarization with the inverse amplitude method of their one-loop expressions in

the chiral expansion. Nevertheless, this simple description leads to numerical results that

lie in the ballpark of the values extracted from data. Constructing or using more realistic

representations of F πV (s) and of fKπ→π
+π−

1 (s) is certainly an aspect where improvements

are possible.

Indeed, there exist in the literature more elaborate representations of the electromag-

netic form factor of the pion that describe data in a wide range of momentum transfer,

see for instance refs. [109, 118, 133–139] for a representative sample. In the case of the
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partial waves fKπ→π
+π−

1 (s), recourse to a similar data driven description is unfortunately

not possible. Moreover, the simple IAM unitarization procedure we have considered does

not appropriately account for their full analyticity structure. More involved methods, like

numerical implementation of the Khuri-Treiman representation [140], which has been used

in other instances, see for instance refs. [112, 141, 142], are available and would represent

a significant improvement in the description of these partial waves beyond the low-energy

region. It would also be interesting to see whether the problem caused, within the IAM, by

the too small value of α+/β+ persists when a different unitarization method is considered.

Another interesting possibility would be to also include the KK intermediate states into

the dispersive representation, which however requires a two-channel analysis [143].

7.4 Matching with the short-distance regime

Whereas the form factors W+(z) and WS(z) are clearly dominated by low- or intermediate-

energy physics, the time-ordered product of the electromagnetic current with the lagrangian

density for |∆S| = 1 transitions is singular at short distances and needs to be renormalized.

This renormalization is implemented through the operator Q7V and its Wilson coefficient

C7V (ν). As a result, the form factors behave, in the asymptotic Euclidean region, as

∼ ln(−s/ν2), where ν is the renormalization scale. At the phenomenological level, this

short-distance behaviour results from the pile-up of more and more complicated intermedi-

ate states, with higher and higher thresholds, until the region where the QCD continuum

sets in is reached. We have described this process through a, necessary infinite, set of zero-

width resonances. In the absence of QCD corrections, we have shown that it is possible to

adjust the couplings of these resonances such as to reproduce the correct high-energy be-

haviour. Working only at lowest order leaves a rather strong sensitivity to the subtraction

scale. Extending the resonance model in order to account also for the order O(αs) QCD

effects in the high-energy part, which are to a large extent known from the renormaliza-

tion group argument given in section 2.2, would probably reduce this dependence on the

short-distance scale.

7.5 Conclusion

This study was undertaken with the aim of exploring the possibility to achieve a de-

termination of the constants a+,S and b+,S , describing the decay distribution of the

K±(KS)→ π±(π0)`+`− decay modes, such as to assess, through confrontation with present

and forthcoming experimental data, the amount (if any!) of violation of lepton flavour

universality in the kaon sector. We hope that our study demonstrates that such a deter-

mination based on a phenomenological approach is possible, with a reasonable amount of

theoretical work, and that there is room for improvement in several of the aspects that

contribute to it. Such an endeavour would then be complementary to existing and future

efforts to address this issue through numerical simulations of QCD on the lattice [48–

50]. We plan to come back to some of the aspects involved in such a phenomenological

determination and discussed above in future work.
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A Numerical values

In this appendix, we provide the numerical input values for several quantities that have

been used in the text. For the reader’s convenience, some of them have been gathered in

table 3. In addition, we also need the values of the form factors fK
±π∓

+ (s) and fKSπ
0

+ (s),

and of their derivatives, at the origin s = 0:

fK
±π∓

+ (s) = fK
±π∓

+ (0)

[
1 + λ+

s

M2
π

+ · · ·
]
, fKSπ

0

+ (s) = fKSπ
0

+ (0)

[
1 + λS

s

M2
π

+ · · ·
]
.

(A.1)

We have taken their values from the analysis of ref. [144], which gives

|Vus × fK
±π∓

+ (0)| = 0.2168(4), |Vus × fKSπ
0

+ (0)| = 0.2107(10), (A.2)

whereas λ+ = λS = 0.990(5)×λ′+, where λ′+ is the slope of the f+ form factor as measured

in K`3 decays, λ′+ = 24.82(1.10) · 10−3. Using the value of Vus given in table 3, this gives

fK
±π∓

+ (0) = 0.964, fKSπ
0

+ (0) = 0.937, λ+ = λS = 24.57(1.09) · 10−3. (A.3)

For the subthreshold parameters α and β of the ππ−scattering amplitudes, we have used

α = 1.38, β = 1.11. (A.4)

These values belong to the ranges determined from data in ref. [145].

B The computation of ψ+,S(s)

In this appendix, we compute the function ψ+,S(s), which describes the one-loop correction

to Re fKπ→π
+π−

1 (s), the real parts of the P -wave projections of the amplitudes for the

processes Kπ → π+π−, where Kπ stands either for K+π− or for KSπ
0, see eq. (5.2). In

order to obtain ψ+,S(s), one thus first needs to construct these amplitudes at one loop.

This can be done, for MK < 3Mπ, within an iterative construction, following the method
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Fπ 92.2 MeV pion decay constant, PDG

Mπ 139.45 MeV charged pion mass, PDG

MK+ 493.677 MeV charged kaon mass, PDG

MKS 497.648 MeV neutral kaon mass, PDG

GF 1.166 · 10−5 GeV−2 Fermi constant, PDG

Vud 0.97417(21) CKM matrix element, PDG

Vus 0.2248(6) CKM matrix element, PDG

g8 3.61± 0.28 K → ππ amplitudes

g27 0.297± 0.028 V. Cirigliano et al. [1]

α1 +93.16± 0.36

β1 −27.06± 0.43 K → πππ

α3 −6.72± 0.46

β3 −2.22± 0.47 Dalitz-plot parameters

γ3 +2.95± 0.32

ξ1 −1.83± 0.30 J. Bijnens et al. [104]

ξ3 −0.17± 0.16

ξ′3 −0.56± 0.42

Table 3. Numerical values used for the various input parameters. The first seven entries are taken

from ref. [58], and the values of the constants g8 and g27 come from ref. [1]. The fit of ref. [104]

provides the values for the K → πππ Dalitz-plot parameters α1, . . . ξ
′
3, which are given in units

of 10−8.

that has been described several times, e.g. in refs. [146–149] and [110, 115]. Indeed, up to

and including two loops, the two amplitudes in question have the general structure

M(s, t, u) = P(s, t, u) + 16π [W0(s) + 3(t− u)W1(s)] + 16π [W0;t(t) + 3(u− s)W1;t(t)]

+16π [W0;u(u) + 3(t− s)W1;u(u)] +O(E8). (B.1)

The absorptive parts of the functions W0,1(s) are given in terms of the absorptive parts

along the right-hand cut of the lowest S and P partial-wave projections of the corresponding

Kπ → π+π− amplitudes:

AbsW0(s) = Abs fKπ→π
+π−

0 (s) θ(s− 4M2
π) +O(E8),

AbsW1(s) =
Abs fKπ→π

+π−
1 (s)

4qππ(s)qKπ(s)
θ(s− 4M2

π) +O(E8), qab(s) ≡
λ1/2(s,M2

a ,M
2
b )

2
√
s

. (B.2)

Similar expressions hold for the remaining functions W0,1;t(s) and W0,1;u(s), involving the

absorptive parts of the amplitudes in the crossed s↔ t and s↔ u channels, respectively. If

only two-pion intermediate states are considered, then the absorptive parts of the various

functions appearing in the formula (B.1) will be given, at one loop, by the products of

tree-level amplitudes for ππ scattering and for the processes Kπ → π+π−, which are

simply first-order polynomials in the Mandelstam variables. In particular, the lowest-order

Kπ → π+π− amplitudes are expressed in terms of the Dalitz-plot parameters α1,3, β1,3 and
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γ3, in the nomenclature of refs. [103] and [104]. The lowest-order ππ scattering amplitudes

are likewise expressed in terms of the two subthreshold parameters α and β [146, 147]. The

projection on the P partial wave is given by

fKπ→π
+π−

1 (s)≡ 1

32π

∫ +1

−1
d(cosθ)cosθM(s,cosθ)

= 4W1(s)qKπ(s)qππ(s)+
1

16q2
Kπ(s)q2

ππ(s)

∫ t+(s)

t−(s)
dt(2t+s−3s0)

× 1

32π
[P(s, t,3s0−s−t)−P(s,3s0−s−t, t)]

+
1

16q2
Kπ(s)q2

ππ(s)

∫ t+(s)

t−(s)
dt(2t+s−3s0)

×
[
W0;t(t)−W0;u(t)+3(2s+t−3s0)

[
W1;u(t)−W1;t(t)

]]
+O(E8), (B.3)

where

s0 = M2
π +

M2
K

3
, t− u = 4qKπ(s)qππ(s) cos θ, t±(s) =

3s0 − s
2

± 2qKπ(s)qππ(s).

(B.4)

Restricting oneself to the contributions from two-pion intermediate states only, one can

then write{
W0;t(t)−W0;u(t) + 3(2s+ t− 3s0)

[
W1;u(t)−W1;t(t)

]}
O(E4)

=

= − 1

16π

1

F 2
π

[
w(0) + w(1)t+ w(2)t2 − 1

6

α+,S

M2
π

β(t− 4M2
π)s

]
J̄ππ(t). (B.5)

The coefficients w(n) depend on the Dalitz-plot parameters, and are different for each

amplitude. They are given in eqs. (B.32) and (B.33) below. At order O(E4), and for

s > 4M2
π , the function W1(s) is given by

W1(s) =
1

6

α+,S

M2
π

× ϕ+−;+−
1;ππ (s) J̄ππ(s), (B.6)

where ϕ+−;+−
1;ππ (s), given in eq. (5.4), is a polynomial of first order in s. At next-to-leading

order, the contribution involving the polynomial P(s, t, u) can be given the following pa-

rameterization:

1

2
[P(s, t, u)− P(s, u, t)] =

1

2

[
(α+,S + ∆α+,S)

t− u
M2
π

+ (β+,S + ∆β+,S)
(t− u)(s− s0)

M4
π

]
(B.7)

This form of the polynomial part corresponds to the most general one allowed by the chiral

counting and crossing. The contributions ∆α+,S and ∆β+,S are then fixed such that the

expansion of the real part of the partial wave at s = s0 is entirely given by the Dalitz-plot

parameters, up to terms quadratic in the difference s− s0,

Re fKπ→π
+π−

1 (s)
∣∣
O(E4)

=
1

96π

1

M2
π

[
α+,S + β+,S

s− s0

M2
π

+O((s− s0)2)

]
× λ1/2

Kπ(s)σπ(s).

(B.8)
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In other words, writing

ψ+,S(s) = +
1

96π

1

M2
π

[
∆α+,S + (β+,S + ∆β+,S)

s− s0

M2
π

]
+ ψloop

+,S (s), (B.9)

one requires

1

96π

1

M2
π

{∆α+,S ; ∆β+,S} =

{
−Reψloop

+,S (s0) ; −M2
π

d

ds
Reψloop

+,S (s)
∣∣∣
s=s0

}
, (B.10)

which amounts to

ψ+,S(s) = +
1

96π

β+,S

M2
π

s− s0

M2
π

+ψloop
+,S (s)−Reψloop

+,S (s0)− (s−s0)
d

ds
Reψloop

+,S (s)
∣∣∣
s=s0

. (B.11)

The expression of ψ+,S(s), and hence of ψloop
+,S (s), can be obtained from eq. (B.3), combined

with the decomposition (B.5). The corresponding integrals of J̄ππ(t) can be done explicitly,

and are given by [115, 116]

∫ t+(s)

t−(s)
dt tn Re J̄ππ(t) =

λ
1/2
Kπ(s)

π

[
κ

(n)
0 (s)k0(s) + κ

(n)
1 (s)k1(s) + κ

(n)
2 (s)k2(s) + κ

(n)
3 k3(s)

]
(B.12)

in terms of the functions

k0(s) =
1

16π
σπ(s), k1(s) =

1

16π
Lππ(s),

k2(s) =
1

16π
σπ(s)s

Mππ(s)

λ
1/2
Kπ(s)

, k3(s) = − 1

16π
M2
π

Mππ(s)

λ
1/2
Kπ(s)

Lππ(s). (B.13)

The expressions for the functions κ
(n)
i (s) are given in eqs. (B.18), (B.19), (B.20), and (B.34)

below. We have checked that they agree with the ones given in [115].

The functions Lππ(s) and Mππ(s) are given, for s > 4M2
π and with ∆Kπ ≡M2

K −M2
π ,

by

Lππ(s) = ln
1− σπ(s)

1 + σπ(s)
, (B.14)

Mππ(s) = − ln

[
1− ∆Kπ

s
+
λ

1/2
Kπ(s)

s

]
− ln

[
1− ∆Kπ

s
− λ

1/2
Kπ(s)

s

]−1

= −2 ln

[
1− ∆Kπ

s
+
λ

1/2
Kπ(s)

s

]
+ ln

4M2
π

s
.

One may notice that the functions k2(s) and k3(s) involve λ
1/2
Kπ(s) only through the ra-

tio Mππ(s)/λ
1/2
Kπ(s), which does not depend on the choice of the sign of λ

1/2
Kπ(s). One
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then obtains

ψloop
+,S (s) =

1

6

α+,S

M2
π

×ϕ+−;+−
1;ππ (s)×Re J̄ππ(s) (B.15)

− 1

λKπ(s)

1

16π2F 2
π

s

s−4M2
π

3∑
i=0

ki(s)

σπ(s)

{
w

(0)
+,S

(
(s−3s0)κ

(0)
i (s)+2κ

(1)
i (s)

)
+w

(1)
+,S

(
(s−3s0)κ

(1)
i (s)+2κ

(2)
i (s)

)
+w

(2)
+,S

(
(s−3s0)κ

(2)
i (s)+2κ

(3)
i (s)

)
+

1

3
βα+,S

s

M2
π

[
2M2

π(s−3s0)κ
(0)
i (s)− 1

2
(s−M2

K−11M2
π)κ

(1)
i (s)−κ(2)

i (s)

]}
.

Introduce next the functions

K̄i(s) ≡
s

π

∫ ∞
4M2

π

dx

x

ki(x)

x− s− i0 , (B.16)

whose absorptive parts are given by Abs K̄i(s) = ki(s) θ(s − 4M2
π). In the first two cases,

one easily finds expressions in terms of J̄ππ(s) [147, 149],

K̄0(s) = J̄ππ(s), K̄1(s) =
1

2

s

s− 4M2
π

[
16π2J̄ 2

ππ(s)− 4J̄ππ(s) +
1

4π2

]
. (B.17)

What is actually required is a set of functions with absorptive parts given, for s > 4M2
π , by

ki(x)/λKπ(s), or by ki(x)/sλKπ(s), or even ki(x)/s2λKπ(s). Indeed, the functions κ
(n)
i (s),

for i = 0, 1, 2, are not polynomials in s, but have the following general structure,

κ
(n)
i (s) = κ̄

(n)
i (s) + c

(n)
i

∆Kπ

s
+ d

(n)
i

∆2
Kπ

s2
, (B.18)

where κ̄
(n)
i (s) are now polynomials in s, displayd in eq. (B.34) below, and c

(n)
i , d

(n)
i are

numerical coefficients. Actually, the only non vanishing d
(n)
i coefficients are

d
(3)
1 = M4

π∆Kπ/4 d
(2)
2 = M2

π∆Kπ/6 d
(3)
2 = M2

π(3M2
K + 5M2

π)∆Kπ/12, (B.19)

while the non vanishing coefficients c
(n)
i read

c
(2)
0 =−7

9
M2
π∆Kπ c

(3)
0 =− 1

72
M2
π∆Kπ(81M2

K+239M2
π)

c
(1)
1 =−1

2
M2
π c

(2)
1 =−1

2
M2
π(M2

K+M2
π) c

(3)
1 =−1

4
M2
π(2M4

K+7M2
KM

2
π+M4

π)

c
(0)
2 =−1

2
c

(1)
2 =−∆Kπ

4
c

(2)
2 =−1

6
(M2

K+5M2
π)∆Kπ

c
(3)
2 =− 1

24
(3M4

K+34M2
KM

2
π+59M4

π)∆Kπ. (B.20)

Writing

λKπ(s) = (s−M2
+)(s−M2

−), M± = MK ±Mπ (B.21)
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and using the decomposition of products of fractions, one obtains

1

M2
+−M2

−
Abs

[
K̄i(s)−K̄i(M2

+)

s−M2
+

− K̄i(s)−K̄i(M2
−)

s−M2
−

]
=

ki(s)

λKπ(s)
θ(s−4M2

π),

(B.22)

1

M2
+−M2

−
Abs

[
1

s−M2
+

(
K̄i(s)

s
− K̄i(M

2
+)

M2
+

)
− 1

s−M2
−

(
K̄i(s)

s
− K̄i(M

2
−)

M2
−

)]
=

ki(s)

sλKπ(s)
θ(s−4M2

π),

(B.23)

and

1

M2
+ −M2

−
Abs

[
1

M2
+(s−M2

+)

(
K̄i(s)

s
− K̄i(M

2
+)

M2
+

)
− 1

M2
−(s−M2

−)

(
K̄i(s)

s
− K̄i(M

2
−)

M2
−

)
−
(

1

M2
+

− 1

M2
−

) ¯̄Ki(s)

s2

]
=

ki(s)

s2λKπ(s)
θ(s− 4M2

π), (B.24)

with, in this last case,

¯̄Ki(s) =
s2

π

∫ ∞
4M2

π

dx

x2

ki(x)

x− s− i0 = K̄i(s)− sK̄′i(0). (B.25)

This suggests to introduce the following functions:

K̄
(λ;0)
i (s) =

1

4

[
M2
π

s−M2
+

(
K̄i(s)−

s

M2
+

K̄i(M
2
+)

)
− M2

π

s−M2
−

(
K̄i(s)−

s

M2
−
K̄i(M

2
−)

)]
≡ s

π

∫ ∞
4M2

π

dx

x

MKM
3
π

λKπ(x)

ki(x)

x−s−i0 , (B.26)

K̄
(λ;1)
i (s) =

1

4

[
M4
π

M2
+(s−M2

+)

(
K̄i(s)−

s

M2
+

K̄i(M
2
+)

)
− M4

π

M2
−(s−M2

−)

(
K̄i(s)−

s

M2
−
K̄i(M

2
−)

)

+
4MKM

5
π

(M2
K−M2

π)2

¯̄Ki(s)

s

]

≡ s

π

∫ ∞
4M2

π

dx

x

MKM
5
π

xλKπ(x)

ki(x)

x−s−i0 , (B.27)

which are, at least partly, characterized by

Abs K̄
(λ;p)
i (s) =

(
M2
π

s

)p
MKM

3
π

λKπ(s)
ki(s), K̄

(λ;p)
i (0) = 0. (B.28)

As mentioned before, in the cases i = 0 and i = 1, one can establish explicit expressions in

terms of the function J̄ππ(s), cf. eq. (B.17), with, in addition,

¯̄K0(s) = J̄ππ(s)− 1

96π2

s

M2
π

,

¯̄K1(s) =
1

2

s

s− 4M2
π

[
16π2J̄ 2

ππ(s)− 4J̄ππ(s) +
1

4π2

]
+

1

32π2

s

M2
π

.
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In the cases i = 2 and i = 3, no explicit expressions are known, except in the case

MK = Mπ [147], and one has to use their dispersive representations. With these functions

at disposal, one can now construct a function whose discontinuity reproduces the right-

hand side of eq. (5.1). Recalling the contribution already evaluated in eq. (5.6), one ends

up with the following two-loop representation of the form factor in an energy range where

singularities due to other states that two-pion states can be described by a subtraction

polynomial of first order in s,

W+,S;2L(s/M2
K)

16π2M2
K

=

(
−GF√

2
V ∗usVud

)(
A+,S + B+,S

s

M2
K

)
(B.29)

+
1

6

1

M2
π

[
α+,S(1 + aπV s) + ∆α+,S + (β+,S + ∆β+,S)

s− s0

M2
π

]
s− 4M2

π

s
J̄ππ(s)

+
1

36

β · α+,S

M2
π

(s− 4M2
π)2

sF 2
π

J̄ 2
ππ(s)− 1

16π2F 2
π

×
3∑
i=0

[
K̄

(λ;0)
i (s)pi(s) + K̄

(λ;1)
i (s)

∆2
Kπ

sM2
π

qi

]
.

In this last expression, the following quantities have been introduced:

q0 = q3 = 0 q1 =
1

2

Mπ

MK
∆Kπw

(2)
+,S q2 =

1

3

∆Kπ

MKMπ

[
w

(1)
+,S + (M2

K +M2
π)w

(2)
+,S

]
, (B.30)

and

MKM
3
πpi(s) =

2∑
n=0

w
(n)
+,S

[
d

(n)
i

∆2
Kπ

s
+2

(
κ

(n+1)
i (s)−d(n+1)

i

∆2
Kπ

s2

)
(B.31)

+(s−3s0)

(
κ

(n)
i (s)−d(n)

i

∆2
Kπ

s2

)]
+

1

3
βα+,S

s

M2
π

[
2M2

π(s−3s0)κ
(0)
i (s)− 1

2
(s−M2

K−11M2
π)κ

(1)
i (s)−κ(2)

i (s)

]
.

Explicit expressions of the polynomials pi(s), as well as of the coefficients ∆α+,S and ∆β+,S

defined in eq. (B.10) can be found below. The important feature of eq. (B.29) one should

stress is that, apart from the two subtraction constants A+,S and B+,S , all other quantities

are known experimentally, either from low-energy ππ scattering [α, β] or from the Dalitz

plots of the decays K → ππ+π−. The very last step is to trade the subtraction constants

A+,S and B+,S for the phenomenological constants a+,S and b+,S . This is done upon

expanding the expression (B.29) to first order in s, and making the identifications given

in eq. (3.19). This then leads to the two-loop expressions of the form factors displayed in

eq. (5.8) of the main text.

To close this appendix, we provide explicit expressions for a certain number of quanti-

ties which are required in order to make use of some formulas given in the text. We start

with the coefficients w
(n)
+,S introduced in eq. (B.5), and which depend on the channel under
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consideration. They read

w
(0)
+ =− 4

3

(
β1−

1

2
β3

)
βs0+

5

6

(
β1−

1

2
β3+

3

5

√
3γ3

)
αs0−

5

6

(
α1−

1

2
α3

)
(4β−α)M2

π ,

w
(1)
+ =

β

2

(
β1−

1

2
β3−
√

3γ3

)(
s0

M2
π

+
4

3

)
+

5

2

(
α1−

1

2
α3

)
β− 5

6

(
β1−

1

2
β3+

3

5

√
3γ3

)
α,

w
(2)
+ =− β

3M2
π

(
β1−

1

2
β3−2

√
3γ3

)
(B.32)

for the channel K+π−, and

w
(0)
S = − 2α√

3
γ3s0,

w
(1)
S =

8

9

√
3βγ3 +

2
√

3

3
γ3β

s0

M2
π

+
2√
3
αγ3,

w
(2)
S = − 8

9M2
π

√
3βγ3, (B.33)

for the channel KSπ
0. Next, we consider the κ

(n)
i (s), which were defined in eq. (B.12) in

terms of integrals of the functions J̄ππ(t), After the decomposition in eqs. (B.18), (B.19),

(B.20) one needs to know the polynomials κ̄
(n)
i (s), which read

κ̄
(0)
0 = 3, κ̄

(1)
0 =

1

4
(−5s+5M2

K+11M2
π), κ̄

(2)
0 =

7

9
(s−M2

K)2+
9

2
M2
π(M2

K+M2
π−s)

κ̄
(3)
0 =

721

144
s2M2

π−
1442

144
M2
KM

2
πs−

231

16
M4
πs+

883

144
M4
KM

2
π+

195

16
M2
KM

4
π

+
153

16
M6
π+

9

16
(M2

K−s)3,

κ̄
(0)
1 =

1

2
, κ̄

(1)
1 =

1

4
(M2

K+M2
π−s), κ̄

(2)
1 =

1

6

[
(s−M2

K)2−M2
π

(
5s+2M2

π−7M2
K

)]
,

κ̄
(3)
1 =

M2
π

24

[
25s2−(56M2

K+53M2
π)s+43M4

K+67M2
KM

2
π−53M4

π

]
+

1

8
(M2

K−s)3,

κ̄
(0)
2 =

1

2
, κ̄

(1)
2 =

1

4

(
2M2

K−s
)
,

κ̄
(2)
2 =

1

6

[
s2−s(3M2

K+4M2
π)+3(M4

K+2M2
KM

2
π−M4

π)
]
,

κ̄
(3)
2 =

M2
π

12

[
11s2−10s(3M2

K+2M2
π)+30M4

K+18M2
KM

2
π−24M4

π

]
− 1

8
(s3−4s2M2

K+6sM4
K−4M6

K),

κ̄
(0)
3 = 1, κ̄

(1)
3 =M2

π , κ̄
(2)
3 = 2M4

π , κ̄
(3)
3 = 5M6

π . (B.34)
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The explicit expressions of the polynomials pi(s) defined in eq. (B.31) read:

MKM
3
πp0(s) =

w
(0)
+,S

2

(
s−M2

K−7M2
π

)
+
w

(1)
+,S

36

[
11s2−22sM2

K−90M2
πs+11M4

K+90M2
KM

2
π+27M4

π−56M2
π

∆2
Kπ

s

]
+
w

(2)
+,S

72

[
−25s3+75M2

Ks
2+229M2

πs
2−75M4

Ks−458M2
KM

2
πs−783M4

πs

+25M6
K+335M4

KM
2
π+ 571M2

KM
4
π+349M6

π−2M2
π(53M2

K+155M2
π)

∆2
Kπ

s

]
−βα+,S

[
11s3

216M2
π
− s2

108M2
π

(11M2
K+81M2

π)

+
s

216M2
π

(11M4
K+162M2

KM
2
π+531M4

π)− 7

27
∆2
Kπ

]
MKM

3
πp1(s) =−w(0)

+,SM
2
π

(
1+

∆Kπ

s

)
+
w

(1)
+,S

12

[
s2−2M2

Ks−8M2
πs+M4

K+10M2
KM

2
π−11M4

π−6M2
π

∆2
Kπ

s

]
+
w

(2)
+,S

12

[
−s3+3s2(M2

K+3M2
π)−3M4

Ks−20M2
KM

2
πs−27M4

πs+M6
K

+17M4
KM

2
π+29M2

KM
4
π− 35M6

π−6M2
π(M4

K+3M2
KM

2
π−2M4

π)
∆Kπ

s

]
−βα+,S

[
s3

72M2
π
− s2

36M2
π

(M2
K+4M2

π)+
s

72M2
π

(M4
K+10M2

KM
2
π+37M4

π)

− 1

12
(M2

K−9M2
π)∆Kπ

]
MKM

3
πp2(s) =−w(0)

+,SM
2
π

(
1−2

∆Kπ

s

)
(B.35)

+
w

(1)
+,S

12

[
s2−3M2

Ks−7M2
πs+3M4

K+12M2
KM

2
π−15M4

π−(M2
K+11M2

π)
∆2
Kπ

s

]
+
w

(2)
+,S

12

[
−s3+4s2(M2

K+2M2
π)−2s(3M4

K+11M2
KM

2
π+11M4

π)

+4(M6
K+6M4

KM
2
π+ 6M2

KM
4
π−10M6

π)−(M4
K+16M2

KM
2
π+31M4

π)
∆2
Kπ

s

]
−βα+,S

[
s3

72M2
π
− s2

72M2
π

(3M2
K+7M2

π)+
s

24M2
π

(M4
K+4M2

KM
2
π+11M4

π)

− ∆Kπ

72M2
π

(M4
K+10M2

KM
2
π+85M4

π)+
1

18

∆3
Kπ

s

]
MKM

3
πp3(s) =w

(0)
+,S(s−M2

K−M2
π)+w

(1)
+,SM

2
π(s−M2

K+M2
π)+2w

(2)
+,SM

4
π(s−M2

K+2M2
π)

+
βα+,S

6
s(3s−3M2

K−5M2
π).

Some of these expressions contain terms proportional to 1/s. It is useful to separate these

terms from the ones that remain regular for s→ 0,

pi(s) = p̄i(s) + p
(−1)
i

∆Kπ

s
. (B.36)
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We can now evaluate the coefficients ∆α+,S and ∆β+,S defined in eq. (B.10). With

the numerical input provided in table 3 (we do not distinguish between the charged and

the neutral pion masses), we then obtain

103 ·∆α+ = 4.35
(
α1 −

α3

2

)
α− 5.47

(
α1 −

α3

2

)
β

+ 18.5

(
β1 −

β3

2

)
α+ 26.7

(
β1 −

β3

2

)
β

+ 19.3γ3α− 95.9γ3β

= −1.62 · 10−5 ,

103 ·∆β+ = +0.55
(
α1 −

α3

2

)
α− 6.65

(
α1 −

α3

2

)
β

+ 4.33

(
β1 −

β3

2

)
α+ 3.48

(
β1 −

β3

2

)
β

+ 4.50γ3α+ 9.52γ3β

= −8.22 · 10−6 ,

(B.37)

and

102 ·∆αS = −2.53γ3α+ 12.7γ3β

= 3.00 · 10−7 ,

102 ·∆βS = −0.59γ3α− 1.18γ3β

= −6.16 · 10−8 .

(B.38)
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