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ABSTRACT: If dark matter (DM) is a fermion and its interactions with the standard model
particles are mediated by pseudoscalar particles, the tree-level amplitude for the DM-
nucleon elastic scattering is suppressed by the momentum transfer in the non-relativistic
limit. At the loop level, on the other hand, the spin-independent contribution to the cross
section appears without such suppression. Thus, the loop corrections are essential to discuss
the sensitivities of the direct detection experiments for the model prediction. The one-
loop corrections were investigated in the previous works. However, the two-loop diagrams
give the leading order contribution to the DM-gluon effective operator (xxGj, G*") and
have not been correctly evaluated yet. Moreover, some interaction terms which affect the
scattering cross section were overlooked. In this paper, we show the cross section obtained
by the improved analysis and discuss the region where the cross section becomes large.
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1 Introduction

Weakly Interacting Massive Particles (WIMPs) are popular dark matter (DM) candidates
and often appear in models beyond the standard model (BSM). A variety of models have
been studied in the literature. They typically predict scattering processes between DM
and nucleon with a sizable cross section which can be detected experimentally. There are
many DM direct detection experiments such as the LUX [1], PandaX-II [2], and XENONIT
experiments [3]. The significant DM signals have not been reported yet, and these experi-
ments give severe upper bounds on the DM-nucleon spin-independent (SI) scattering cross



section (ogr). This fact gives a strong constraint for the parameter space of the models
which predict a WIMP as a DM candidate.

A pseudoscalar coupling with fermion DM is a simple way to avoid these strong con-
straints from the DM direct detection experiments [4, 5],

Xiv°xs, (1.1)

where x is a fermion as a DM candidate and s is a scalar mediator connecting the DM
and the standard model (SM) sector. In the non-relativistic limit, this interaction term
predicts the suppression of the tree-level DM-nucleon scattering amplitude by the momen-
tum transfer. On the other hand, the amplitude for DM annihilation processes is predicted
as s-wave. Therefore the interaction term in eq. (1.1) has desirable features for WIMP
models, namely models can evade the strong constraints from the DM direct detection
experiments while keeping the annihilation cross section to explain the amount of the DM
in our universe as a thermal relic abundance.

A pseudoscalar mediator model [6] is one of the simplest models which predict the
interaction term in eq. (1.1), and its phenomenology has been widely studied [7-14]. In
the model, x is a gauge singlet fermion, and s is a gauge singlet pseudoscalar. The Higgs
sector is extended into the two-Higgs doublet models (THDMs) to make the gauge singlet
pseudoscalar interact with the SM sector at the renormalizable level. CP invariance is
assumed in the DM and the mediator sectors.!

In this model, ogr is generated at the loop level [6, 11, 13, 14]. Although og is
suppressed by the loop factors and is smaller than the current upper bounds from the direct
detection experiments, it can be larger than the neutrino floor [19] and can be detected
by the future DM direct detection experiments. Therefore it is essential to evaluate the
cross section at the loop level. However, og; has been calculated without including some
relevant interaction terms in [6, 11, 13, 14]. Moreover, two-loop diagrams which induce
the DM-gluon effective operator, xxGy, G*", have not been correctly calculated as was
mentioned in [11].

In this paper, we give a complete set for the leading order calculations in the pseu-
doscalar mediator DM model.? We take into account all of the renormalizable interaction
terms. We find that quartic interaction terms between the pseudoscalar and the SM Higgs
bosons, which have been ignored in [6, 11], are important to enhance ogy. As a result of the
enhancement, the model can be detected by the XENONnT [20], LZ [21], and DARWIN
experiments [22] in some parameter regions. We also calculate the relevant two-loop dia-
grams for the DM-gluon effective operators. In [11], the contribution was estimated from
the one-loop box diagrams by using a relation between a heavy quark scalar-type operator
and a gluon scalar-type operator [23] without justification. We find that the contributions
from the charm and bottom quarks were underestimated, while the contribution from the

'If the DM and/or the mediator sector breaks the CP invariance, the mediator can have renormalizable
interactions with the SM sector without extending the Higgs sector into the THDMs, see for example [15-18].
2y is a Dirac fermion in [6, 11, 13, 14]. In this paper, however, we consider x as a Majorana fermion to
make the model much simpler. Qualitative features are the same both in the Dirac and the Majorana cases.



top quark was overestimated in [11]. In the end, we clarify that the contribution from the
box diagrams is subdominant and the triangle diagrams dominate the scattering process.

The structure of this paper is as follows: in section 2, we introduce the gauge invariant
renormalizable model which contains the pseudoscalar mediators [6]. In section 3, we derive
the effective operators which induce the DM-nucleon SI scattering. In section 4, we show
our numerical results. We compare our result with the previous one in [11], and then search
the parameter space where og; becomes large enough to reach the prospects of the direct
detection experiments. Our conclusions are in section 5. In appendix A, we show explicit
formulas for scalar trilinear couplings which are defined in section 2. In appendix B, we
write the details of the derivation of the effective operators for SI scattering between DM
and quarks/gluon. In appendix C, we define the loop functions used in section 3.

2 Model

In this section, we briefly review the pseudoscalar mediator DM model [6]. The model
contains a gauge singlet Majorana fermion x as a DM candidate and a gauge singlet
pseudoscalar boson ag as a mediator field. The DM can be expressed using Weyl spinor 1

Y= <$> | (2.1)

The Higgs sector is also extended into a THDM, which contains two SU(2), doublet scalar
fields H; (j = 1,2) with a hypercharge Y = 1/2.
We assume a Z5 symmetry to stabilize the DM candidate. Under this Zs symmetry, x

as follows:

is odd, and all the other fields are even. The interaction terms of the DM and scalar fields
are given by

LD+ i%xaoyy‘r’x — (Vrapm + Vag + Vport) (2.2)
where

Vresowm = m3 HY Hy +m3H) Hy — m} (HIHQ + h.c.)
M
2
A

+ 5 |(H{H)? + h.c.} , (2.3)

A
+ G (HUHL)? + T2 (HYH)® + N (H{ Hy)(H} Hy) + N (H] Hy) (H}Hy)

1 A
Vo = §mzoag + %aé, (2.4)

Viort = K(iagH] Hy + h.c.) + c1a3H] Hy + cyal HY Ho. (2.5)

Here we assume CP invariance in eq. (2.2), and therefore all the parameters in eq. (2.2) are
real. We also assume a softly broken Z4 symmetry to avoid flavor changing Higgs couplings
at the tree-level. This symmetry is an extension of the softly broken Zs symmetry often



1 Ly | vk | dg | R
Type-1 + e e
Type-11 + - |+ |+
Type-X + - | = |+
Type-Y + - |+ | -

Table 1. The charge assignments of the Z; symmetry for the SM fermions, where Q% , L%, ub,
dip, and el are the i-th generation of the left-handed quark, the left-handed lepton, the right-
handed up-type quark, the right-handed down-type quark, and the right-handed charged lepton,
respectively (i = 1,2, 3).

assumed in studies of the THDMs [24-26] to avoid flavor changing scalar couplings [27].2
Under this Z4 symmetry, each field is transformed as follows:

Y =,
ag — —aop,
H, — Hy,
Hs — —Hos.

~~ ~~ ~~
© o0 I O
— o ~— —

For the SM fermions, there are four variations in charge assignments as summarized in
table 1. This Z, symmetry is softly broken by the DM mass term as well as the m3 term

As can be seen from the scalar potential, ag is mixed with the CP-odd scalar in the
THDM sector after the electroweak symmetry breaking, and thus the DM interacts with
the SM particles by exchanging the pseudoscalar particles. This interaction structure is
crucial to evade the direct detection constraints as we mentioned in the introduction.

Note that the interaction terms proportional to ¢; (i = 1,2) were not included in the
analysis of [6] and [11]. Although the existence of these interaction terms was pointed out
n [13], they also neglected these terms in their analysis. As we will see in later, however,
the effect of the co term plays an important role in a DM-nucleon scattering process for
the DM direct detection experiments.

The field definitions of the Higgs doublets are as follows:

where v; is the vacuum expectation value of each doublet field. We introduce tan 3 as the
ratio of v1 and vo,

tanf = %, v? = vl 403, (2.11)
U1

3For the analysis without any discrete symmetry to forbid the flavor changing scalar couplings, see [28].
4This Z4 symmetry is different from the Z» symmetry for the DM stability which we mentioned above.



where v ~ 246 GeV, the vacuum expectation value of the SM Higgs boson. For simplicity,
we use tg as an abbreviation for tan 3. We assume that ap has no vacuum expectation
value. Then, the scalar mass eigenstates are given from the weak eigenstates as follows:

G*\ [ cosB singf of

(Hi> N (— sin 3 cosﬁ) (¢§t ’ (2.12)
H\ [ cosa sina p1

(h) N ( sin o cosa> <p2> ’ (2.13)

Go 1 0 0 cosfB sinfB 0 m
A | =10 cosf sinf —sin 3 cos B 0 |, (2.14)
a 0 —sinf cos6 0 0 1 agp

where G* and G are would-be Nambu Goldstone bosons for W* and Z, respectively.
There is the following relation between 6 and &.°

— 2KV

2

8in20 = ———,
’ITLA - ma

(2.15)
where m, and m 4 are the mass eigenvalues of the pseudoscalar states a and A, respectively.

In the following discussion, we take the alignment limit sin(5 — o) — 1 where ar-
bitrary values of 5 are allowed from the latest LHC constraints [29, 30].5 Under this
limit, the interactions of h are similar to those of the SM-Higgs boson. We also assume
myg = mpg, = m4 to avoid constraints from the electroweak precision measurements
by enhancing the custodial symmetry. Under this setup, the free parameters of this model
are as follows:

{my, 9x, Ma, ma, 0, tg, c1, ca}. (2.16)

In the following, we briefly review the constraints on these parameters. In this paper,
we focus on the parameter regions which are allowed for all the THDM types. The lower
bound on the charged Higgs boson mass is mpy, > 580 GeV from B — X for the type-1I
THDM [31], and thus we take my = mpg, = ma = 600GeV as the benchmark point.
With this choice, we find that 8 < tg < 15 [32, 33] and take t3 = 10 as the benchmark
point. As for the light pseudoscalar mass, we find m, > my/2 from the constraint on
the Higgs branching ratio [29, 34] as discussed in section 4.3. Since the loop corrections
to ogr is smaller for the larger m,, we focus on m, < 100GeV. We have checked that

~

6 is not constrained with these parameters [9] and simply take the same value as in [11].

®Note that the overall sign disagrees with the expression shown in [6] and [11] when sin 20 is rearranged
to be tan 26.

A large difference of 8 — a from 7/2 is disfavored. The measurements of the Higgs couplings give the
most stringent bound on 8 — a. For example, |cos(8 — «)| < 0.01 is allowed for all the types of the THDM
with tg = 10 [29]. We evaluated ogsr for | cos(8 — )| < 0.01 and found that ogr takes the maximum value
in the alignment limit. We also found that og1 can be 0.4 times smaller than that of the alignment limit
for the type-II case. Since we are interested in the parameter points where os; becomes large, we took the
alignment limit throughout our analysis.



mg ma 0 | tg | a1 C2
mp/2 ~ 100 GeV | 600GeV | 0.1 | 10| 0 | —=1~1

Table 2. The parameter values and regions discussed in this paper. These values are allowed
from the bounds of the Higgs and flavor observables, LHC searches, and electroweak precision
measurements for all the THDM-types.

We also assume ¢; = 0 and —1 < ¢ < 1 in our analysis. In table 2, we summarize the
parameter values and regions considered in this paper. As discussed above, these values are
consistent with the current bounds from the Higgs and flavor observables, LHC searches,
and electroweak precision measurements for all the THDM-types. In section 4, we show
the cross section as a function of m, by determining g, to realize the thermal relic and
search the parameter region where the cross section is enhanced.

There are two pseudoscalar mediators, a and A. The interaction terms between the
DM and the mediators are

& 5o s
Laark = 15 aX7"X + i AXYX; (2.17)
where
EX = gycosh, &Y =gysind. (2.18)

The scalar trilinear couplings appear from both Vrppwm and Viory as

Virom + Voort O 3 (_;g¢aa¢aa — JparPa A — ;9¢>AA<Z5AA) : (2.19)
éd=h,H
These couplings induce the DM-nucleon SI scattering at the loop level as we will see in
section 3. The expressions of these couplings are shown in appendix A.
There are four types of the Yukawa structures depending on the Z; charge assignments
of the SM fermions.

Lvuava > Y (—2L) (6lnff + hHIf +lafi’f + SAfF), (220)
f

where f indicates the SM fermion and my is its mass. The rescaling factors ££(¢ =
h,H,a, A) under the alignment limit are shown in table 3. As can be seen, the THDM-
type dependence appears through the Yukawa couplings of H,a, and A.

3 Direct detection

If DM is a Majorana fermion, the relevant effective operators for the evaluation of the
DM-nucleon SI scattering cross section are given by

1 o 1 Yars _
Lot =5 > Cymgxxdq + 5Cc <—87TXXGﬁyG““ ”>
q=u,d,s
1
+5 > |CMxioryN0g, + CPxid o Oy, | (3.1)
q=u,d,s,c,b



&g g ¢ g e s G e e &
Twel [T U e e w e B w
Typelll | 1 1 1|3 tg tg 2 tgsy tgso | —fL —tgcy —tacy
Type-X | 1 1 1 —é —% tg f—; —f—g tgsg _%Z f—g —tgcy
Type-Y | 1 1 1 —% tg —% f—; t3se —f—g _% —tgcy f—g

Table 3. The rescaling factors of the Yukawa couplings under the alignment limit, where sy = sin 6
and ¢y = cos 0.

For proton For neutron
] 0.0153 £ 0.0110
/] 0.0191 /7, | 0.0273
2| 0.0447 1, | 0.0447

Table 4. Numerical values of matrix elements which are taken from the default value of
micrOMEGAs [36]. The left panel shows the value for the proton, and the right for the neutron.

where O}, is the twist-2 operator for quark g,
q i_ 1
Ouu = iq Dy + Doy — §9W]D q. (3.2)

We use the following relations to evaluate the SI cross section from these operators [35],

(N |mggq | N) = my f1, (3.3)
90[5 a auy
— 5 (N[ GLGH [ N) = my i, (3-4)
1 1
(V0L |8 = - (e — ko) (@ +3°)) @9)

where N stands for a nucleon (p, n), and my is its mass. The numerical values of the matrix
elements ( fﬁ ) and the second moments of the parton distribution functions (PDFs) for
the quark and anti-quark (¢ (2) and g~ (2)) are given in tables 4 and 5, respectively. The
gluon matrix element ( fjjﬂ\é ) is given as follows: [23]

fro=1->Y_fr. (3.6)

q=u,d,s

The values of ¢V (2) and gV (2) are calculated at the scale u = mz, where myz is Z boson
mass. The DM-nucleon SI scattering cross section is given by

1/ mympy 2 9
=—| ——- C 3.7
ST = — (mXerN) ICNI%, (3.7)



Second moment at u = myg
uP(2) | 0.22 | @P(2) | 0.034
dr(2) | 0.11 | d°(2) | 0.036
sP(2) | 0.026 | 37(2) | 0.026
P(2) | 0.019 | @(2) | 0.019
bP(2) | 0.012 | 8”(2) | 0.012

Table 5. Numerical values of the second moments for quark distribution functions for proton.
These values are evaluated at the scale p = my by using the CTEQ PDFs [37]. The values for
neutron are given by exchanging up and down quarks in the table.

where

3
Cy=my | Y Caffy+Calfy+7 Y (mC +mic®?) ("2 +7"(2)

q=u,d,s q=u,d,s,c,b

(3.8)

The Wilson coefficients (Cy, Cq, Cél), and Cq@)) are model dependent parts. In the rest of
this section, we calculate these Wilson coefficients at the leading order.

In the pseudoscalar mediator DM model, all of the Wilson coefficients in eq. (3.1) are
zero at the tree-level. Diagrams at the one-loop level give the leading order contributions
to Cy, C’él), and Cf). For Cg, the leading order contribution arises at the two-loop level.
Note that the gluon matrix element is defined with the one-loop factor in eq. (3.4), and
thus the contribution from Cg to ogr is the same order of magnitude as the contributions
from the other Wilson coefficients. For the later convenience, we divide C; and C¢ into
the contributions from triangle and box diagrams. We introduce the following notations.

Cy = CH 4 O, (3.9)
Cq = C81 4 O, (3.10)
1) 1)box
C,g ) — ch Jbox (3.11)
2) 2)box
CP = CfPPox, (3.12)

3.1 Triangle diagrams

In the following, we show the effective operators from the triangle diagrams shown in
figure 1.

First, we consider the triangle diagrams with the light quark (¢ = u, d, s) in the external
line. Each diagram generates the following effective interaction between DM and quark ¢,

1 o
Lor D5 Y, Cmexxaa, (3.13)
q=u,d,s
where
. gg
C;n:— Z %C¢XX' (314)
¢=h,H ¢
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Figure 1. Triangle diagrams which contribute to the DM-nucleon SI scattering. a; indicates the
pseudoscalar mediators, a and A. ¢ in the external line stands for quarks. The diagrams with each
of the light quarks (u, d, s) contribute to Yxgg. The diagrams with heavy quarks (c, b, t) contribute
to xxG},, G

The expression of the effective ¢xx coupling coefficient (¢ = h, H), Cyyy, is as follows:

—My

0
_ w2 | 9 22 2
C¢>XX (47_‘_)2 {g¢aa(§a) |:ap2 BO(p 7ma7mx):| p2:m§

0
T goan(€)? {B()(p% mm)}

Op? P2
29a4&580
ﬁ [Bi(m3, m%, m3) — By(m3,mg,my)] ¢. (3.15)
A a

The definitions of the loop functions By and Bj are given in appendix C.1.
Next, we calculate the triangle diagrams which contribute to the effective DM-gluon
coupling, Cg. There is the relation between xxGy, G*" and XQQ via [23]

A
127

mQeQQ = ——=G.,G", (3.16)

tri

where @) indicates the heavy quark (c, b, t). Using this relation, C#' can be expressed with
C’gi as follows:

. 2 .
tri tri
=Y 503, (3.17)
Q=c,b,t

where C’gi is obtained by substituting ¢ to @ in eq. (3.14).

3.2 Box diagrams

In the following, we show the effective operators from the box diagrams.

3.2.1 DM-quark scalar operators from box diagrams

We derive the contributions to Cj, Cél), and Cq@) in eq. (3.1) from the box diagrams
shown in figure 2. Because the quark in the external line is non-relativistic, we expand the
amplitude by the external quark momentum and derive the effective operators. After that,
we decompose these effective operators into the scalar and twist-2 operators as follows:

1 1
Lo D50 mgxxdq + 5 |CfY O Xid" X Of, + CPP>xid"i0"xOf, | (3.18)



T
I

I

I
L
a;
I

I

I

!

q q q

Figure 2. The box diagrams which induce the DM-quark effective operators, where a; = a, A.

The Wilson coefficients are

o= I ()’ {( 5D

(4m)2 \ v m2

X,O,mg) G(mi,m O)]

D G2 0,m2) - G2, i3, 0)]
mA
LOsad

mA

G(mi,mQA,O) G(mi,m O)]} (3.19)

a

a

- X
C(l)boxzig( v> {(gjvfa) [Xoo1(p*,m2,0,m2)— Xoo1 (p?,m3,m2,0)]
X ¢q9\2
+(§;xn‘5§>[

§A§ EASa[

mA

Xoo1(p®,m2,0,m%) — Xoo1 (p*, m3,m%,0)]

XUOl (pQ,mivm?mO)_XUOl (pQ,mivm?pO)] }7 (320)

a

B X
C(2)box:47n7’;<( ) {(5‘;5‘1) [X111(p%,m2,0,m2) — X111 (p*, m3,m2,0)]

a

X ¢4 \2
NGV

1p27mi703m14) Xlll(p m m?ébo)]

My
f ZINT
A 224N [an(p m%,m%,0)— X111 (p*,m3,m2,0)] ¢, (3.21)
mA a
where
G(mi,m%,m%) = 6X001(m§<7m3<7m%7m%) + minll(m?(’mi’m%’m%)' (3'22)

The definitions of the loop functions Xy9; and X711 are given in appendix C.2. The details
of the derivation of the coefficients in egs. (3.19)—(3.21) are given in appendix B.1.

3.2.2 DM-gluon scalar operator from box diagrams

We calculate the contribution from the box diagrams to Cg. For the box diagrams, the
procedure of the triangle diagrams cannot be applied due to the following reasons: first, for
mqQ > m,, Mg, M4, we cannot obtain the effective operators with the heavy quark YXQQ by
expanding the amplitude by the quark momentum as done in section 3.2.1. In particular,

~10 -
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Figure 3. The two-loop diagrams for the DM-gluon effective operator, where Q = ¢, b, t.

the loop calculation is mandatory for m; > m, as we will see in later. Second, even if
mqg <K My, Mg, My, the second diagrams in figure 3 are not included if we derive Cgox
from Cgox by using eq. (3.16). Thus, it is necessary to calculate the two-loop diagrams
shown in figure 3 and to read out the effective operator xxGj,G*" directly. We use
the Fock-Schwinger gauge for the gluon field [38]. This gauge enables us to calculate the
effective operator much more transparently [39]. In the end, we find the following effective

operator from these two-loop diagrams [40].

1 b —90657 m
- OX a apv | 9
Lot D 5 ( o XGuG ) (3.23)
The Wilson coefficient is given by
box __ —My (MQ\? xeQ QaF(mCQL) X ¢Q 28F(m,24)
Ca _Q:C t4327r2( v ) [(gaga) om2 +(&&d) om?
2 2
QsQ [F(mA) - F(ma)}
B S e e HCE

where

1
F(m2) = /0 dx{m(p?,mi,mz,mé)

5 (2 + 5z — 5x?)

2.2 2 2

—mg (1 =) Ya(p®, my, mg, mg)

4 (1 =22+ 22?) 9 9 9 o
ST s gy P e e ) ¢ (3.25)

The definitions of the loop functions Yi, Y2, and Y3 are shown in appendix C.3. The
expression for F(m?2)/0m?2 is shown in appendix C.5. The details of the derivation of
C’gox are given in appendix B.2.

4 Numerical analysis

In this section, we show our numerical analysis for the DM-nucleon SI scattering cross
section (ogr). We focus on the region of the parameter space where the DM thermal
relic abundance matches the measured value of the DM energy density, Qh? = 0.1198 &+
0.0015 [41]. In section 4.1, we show that it is easy to realize the correct DM energy density
by choosing g, appropriately. Using the value of g,, we calculate og;. In section 4.2, we

- 11 -
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Figure 4. The dominant annihilation diagrams at the tree-level, where f indicates the SM fermion.

m,=70 GeV, ma=600 GeV, 6=0.1, t5=10, ¢1=0, c;=1  mM,=100 GeV, m4=600 GeV, 6=0.1, t5=40, ¢;=0, c,=1

10 10
5 5
1 /\ 1 . —— Type-I
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& 080" - S 0.50¢ | [ / yp
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010/ ’/‘\‘1( 0104117 R Type-Y
0.05 i 0.05} \if [t
50 100 500 1000 500 1000
my [GeV]

Figure 5. The DM-pseudoscalar coupling g, as a function of m,. The left panel shows g, for
mq = 70GeV and tg = 10, and the right for m, = 100 GeV and tg = 40. The other parameters are
ma = 600GeV, § = 0.1, c; =0, ¢c; = 1 for both of the panels. The black solid, red dashed, blue
dot-dashed, and cyan dotted lines show the type-I, II, X, and Y, respectively. The red horizontal
line indicates g, = 1. The coupling of the type-Y turns out to be almost the same result as that of
the type-II.

show the comparison of our result with the previous one [11]. We find that the gluon
contribution through the box diagrams was drastically changed from the results in [11].
In section 4.3, we discuss the effect of the scalar quartic coupling which enhances ogj.
We find that some parameter points are within the reach of the XENONnT [20] and LZ
experiments [21].

4.1 Determination of g, through the DM thermal relic abundance

We discuss the DM pair annihilation and determine g, to realize the measured value of the
DM energy density by the thermal relic abundance. The dominant annihilation processes
are shown in figure 4. Note that the ff channel, where f is the SM fermion, depends on
the THDM-types through the rescaling factors of the Yukawa couplings, 55 and §f;. On
the other hand, the scalar channel is independent of the THDM-type.

Figure 5 shows g, as a function of m, for the four THDM-types. Here we use
micrOMEGAs [36] to calculate the DM thermal relic abundance for the determination of
gy- We find that g, becomes suddenly small around the funnel position where m, ~
Ma; /2 (a; = a, A). In these regions, the s-channel amplitude becomes very large because it
is proportional to (s— mgz —&—z’maifai)*l, where s is the invariant mass square and I'y, is the
decay width of a;. As a result, g, has to be small to obtain Qh? ~ 0.12, otherwise the relic
abundance becomes too small. The coupling also becomes small after the new annihilation
channel xx — ha opens. As can be seen in figure 5, g, suddenly begins to decrease at
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my ~ 50GeV | m, ~ 300GeV
Type-I bb ha
Type-11 bb bb
Type—X o7 T ToTT
Type-Y bb bb

Table 6. The dominant annihilation channels of each THDM-type near the funnel positions. The
parameters are m, = 100 GeV, mgq = 600GeV, § = 0.1, tg =40, c; =0, co = 1.

my ~ (mp +mg)/2. For the larger m,, the annihilation amplitude is suppressed by m 2,
and g, increases in proportion to mi We find that g, > 1 for m, > 690 GeV.

Figure 5 also shows the THDM-type dependence of g,. The type dependence appears
in the region where the annihilation channel xy — ff is dominant. For my < (mp+mg)/2,
the channel yx — ha is kinematically forbidden, and thus the type dependence appears
in gy. For the type-I, all of the Yukawa couplings are suppressed by large tg, and g,
tends to be large to keep Qh? ~ 0.12. For the type-II and the type-Y, gy is almost the
same. This is because the difference in the charged lepton sector is negligible if the down-
type quark Yukawa couplings have {3 enhancement. The annihilation channel xx — ha
dominates the process once allowed kinematically, and thus g, becomes type independent
for m, > (my, +mg)/2. Around m, ~ ma/2, however, we find the type dependence of
gy again. This is because the annihilation channel to ff through the mediator A again
dominates the annihilation process by tg enhancement. In table 6, we show the dominant
annihilation channels near the funnel positions for each of the THDM-types.

4.2 Comparison with the previous results

In the following, we compare our result with the previous one in [11] at the benchmark
point with m, = 100 GeV, my = 600GeV, 0 = 0.1, tg = 40, g, = 1, and the Yukawa
structure is the type-IL.7” We also choose ¢; = ¢ = 0 for the comparison. If the heavy
scalar masses are degenerated and ¢; = c2 = 0 under the alignment limit, then ggg,q; = 0
where a; = a, A (see, appendix A). We use LoopTools [42] in the numerical calculations of
the loop functions. Unless otherwise noted, the previous work means [11] in this section 4.2.

There are two improvements in our analysis of the triangle diagrams. First, we read
out the scalar trilinear couplings not only from Vet but also from Vrypym. We find that
the values of gpq, and grea do not change drastically at the benchmark point. On the other
hand, the value of g, 44 changes largely. However, the diagram with g4 gives the smaller
contribution than the diagrams with gp., and gpea. As a result, the numerical impact
of this improvement is negligible. Second, we include all of the triangle diagrams into
our analysis. The diagrams with gp,4 and gna4 were not included in the previous work.
However, these diagrams are also important as pointed out in [13]. In figure 6, we show the
contributions from each of the triangle diagrams to Cgi. The red dashed, blue dot-dashed,
and green dotted lines are the contributions from the haa-diagram, the haA-diagram, and

"Note that this combination of the value of tg and ma with the type-II THDM is already excluded by
LHC experiments [33]. We take this point only for the comparison.

~13 -



the hAA-diagram, respectively. The black solid line shows the total contribution from these
three triangle diagrams. As can be seen from the figure, the effect from the haa-diagram
is dominant. We also find that the effect from the haA-diagram cannot be negligible
because |ghaa| < |graal| at the benchmark point. Moreover, the relative sign between the
haa-diagram and the haA-diagram is opposite, and they partially cancel each other. At
m, = 1TeV, for example, we find that the total coefficient turns out to be 0.6 times that of
the haa-diagram. Therefore, the contribution from the triangle diagrams is overestimated
in the previous work.

As for the box diagrams, there are also two improvements. First, as we mentioned in
section 3.2.1, we perform the irreducible decomposition into the scalar and twist-2 opera-
tors. After this decomposition, we find new contributions to C;’OX which were not included
in the previous work. See, appendix B.1 for the details. We show the numerical impact
of the irreducible decomposition in the first two panels in figure 7. The black solid line
in the upper (central) panel shows C2°* derived from CP** (CP°%) without irreducible de-
composition by using the relation in eq. (3.16), which was done in the previous work. The
blue dotted lines are the same but with the irreducible decomposition. We find that the
difference between the black and blue lines is small numerically. Second, we evaluate C’gox
by calculating the two-loop diagrams shown in figure 3. The red dashed lines in figure 7
show the contributions to C’gox which are derived by the two-loop calculations. As for the
contributions from the charm and bottom quarks, we find that Cgox read out by using
eq. (3.16) is 40% of the full two-loop calculations. Therefore, the previous work underes-
timated the contributions from the box diagrams with the charm and bottom quarks to
C¢. The contribution from the top quark is shown in the last panel in figure 7. The black
solid line shows Cgox derived from CP* without irreducible decomposition by using the
relation in eq. (3.16), which was done in the previous work. We use eq. (A.3) in [11] to
evaluate C’POX.S The last panel clearly shows that the contribution from the top quark was
overestimated in the previous work. Thus, it is not justified to relate C’gox with C’g"x using
eq. (3.16).

As can be seen from figure 7, the scattering diagrams with the bottom loop give the
dominant contribution to Cgox, and thus C’gox was underestimated in the previous work.
Comparing figures 6 and 7, we find that the contribution from the box diagrams is smaller
than that from the triangle diagrams in spite of taking the large ¢z and the type-II THDM.

4.3 The DM-nucleon scattering cross section

We discuss the DM-nucleon scattering cross section numerically. In the following, we
focus on the triangle diagrams with h and search the parameter region where the ampli-
tude of these diagrams becomes large. Note that these diagrams are independent of the
THDM-types under the alignment limit, and thus the cross section is type independent
quantitatively. As shown in figure 1, there are also the triangle diagrams with H instead
of h, but the amplitude of these diagrams is suppressed by (my,/m)?.

8We have found that the overall sign of Cg‘”‘ shown in section 3.2.1 disagrees with the previous work.
In figure 7, we show the comparison with the absolute value of the coefficient.
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ma=100 GeV, my=600 GeV, 6=0.1, {g=40, c1=c2=0, gy=1 (Type-lI)

25x10""1 . . .
2.x10°M
& 1.5x10711} — — haa
3 T.x10°v¢y T3 _._. - haA
=0 5.x10712 hAA
0 Total
-5.x10712}
0 200 200 600 800 1000
my [GeV]

Figure 6. The contributions from each of the triangle diagrams to C%. The parameters are
mq = 100GeV, my = 600GeV, 0 =0.1, tg =40, c; = ca =0, and g, = 1. The THDM-type is the
type-II. The red dashed, blue dot-dashed, and green dotted lines show the contributions from the
haa-diagram, the haA-diagram, and the hAA-diagram, respectively. The black solid line shows the
total of these contributions.

A possible way to enhance ogy is to make g4, large. As can be seen from the expression
of ghaa in eq. (A.8), the contributions from ¢; and ¢y terms to gpq, are essential for small
6. In particular, the co term gives a crucial contribution to gpe, for the large ¢ regime.
Another possibility to enhance ogy is to make m, as light as possible. If m, is light, the
suppression from the loop functions of the triangle diagrams with a is weakened. However,
we cannot make m, arbitrary small. We find that m, > my, /2. The constraint on m, comes
from the bound on the branching ratio of the SM Higgs boson. In the region m, < my /2,
this model has a new decay channel of the Higgs boson, h — 2a. The decay width is given
by [6]

2 2

Ihaa 4ms
r = -nae /] - . 4.1
h=2a 32mmy, mi (4.1)

This decay width is proportional to g,?ma. Note that we are considering the large gpga
region to enhance ogr. Consequently, this decay width becomes large and gives a strong
constraint on m,. For example, we find that I'j,_,9, = 4.59 GeV at the point m, = 60 GeV,
my = 600GeV, § = 0.1, tg = 10, ¢c; = 0, and ¢ = 1. This value is much larger than the
SM Higgs width. The current bound on the Higgs branching ratio into BSM particles is
given by the ATLAS experiment [29],

BR(BSM) < 0.26. (4.2)

The result from the CMS experiment also disfavors the large branching ratio of the Higgs
boson into new particles [34]. We conclude that the parameter region m, < mj/2 is ex-
cluded.

In figure 8, we show the predicted cross section in this model. We take m, = 100 GeV,
ma = 600GeV, 0 = 0.1, tg = 10, ¢; = 0, and ¢ = 1 and show the plot in 10 GeV <
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mz=100 GeV, ma=600 GeV, 6=0.1, tg=40, c1=c2=0, gy=1 (Type-Il)
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8 2.x10720} ~ - . .
= | ~ —— by using Eq. (3.37) (reducible)
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= "~.\\ — — by the two-loop calculation
20 5x10721| S
o s
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my [GeV]

my=100 GeV, ma=600 GeV, 6=0.1, tg=40, c1=c2=0, gy=1 (Type-Il)

1.x10712 |
T T T~
>
8 5.x10713} T~
E — ~ < —— by using Eq. (3.37) (reducible)
% } ~.~~~.,_§\ S < - by using Eq. (3.37) (irreducible)
= 21077 ikl — — by the two-loop calculation
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8o s
S 4 x10713} =

200 400 600 8001000
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ma=100 GeV, my =600 GeV, 6=0.1, tg=40, c1=c2=0, gy=1 (Type-Il)

5.x10716
8
= 1x1070} by using Eq. (3.37) (reducible)
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Figure 7. The contributions from each of the box diagrams to Cgox. The parameters are m, =
100GeV, mg = 600GeV, 0 = 0.1, tg = 40, ¢; = co = 0, and g, = 1. The THDM-type is the
type-II. The upper, central, and bottom panels show the contributions from the charm, bottom,
and top quarks, respectively. The black solid lines show the contributions which are derived from
C’g"x (Q = ¢,b,t) without irreducible decomposition by using the relation in eq. (3.16). The blue
dotted lines are the same but with the irreducible decomposition. The red dashed lines show the
contributions which are derived from the two-loop calculations.
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m,=100 GeV, m,=600 GeV, 6=0.1, t3=10, ¢1=0, c,=1

et

N *
.
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-
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Figure 8. The red solid line shows the predicted SI cross section of this model with m, = 100 GeV,
ma = 600GeV, 0 = 0.1, tg3 = 10, ¢; =0, and cz = 1. The regions where g, > 1 are shown as the
gray region. The blue region is excluded by the latest result of the XENONI1T experiment [3]. The
purple, brown, and gray dotted lines indicate the future sensitivities of the XENONnT [20], LZ [21],
and DARWIN experiments [22], respectively. The yellow region is below the neutrino floor [19].

m, < 1 TeV. In the discontinuous part of the plot, we cannot find the solution of g,
which realizes Qh? ~ 0.12. The region where gy > 1 is shown as the gray region. The
current bound, future prospects, and neutrino floor of the direct detection experiments are
also shown in the figure. The blue regions are already excluded by the latest result of the
XENONIT experiment [3]. The purple, brown, and gray dotted lines indicate the future
sensitivities of the XENONNT [20], LZ [21], and DARWIN experiments [22], respectively.
The yellow regions are below the neutrino floor [19].

As can be seen, we find that g, > 1 and the cross section is larger than the upper bound
from the XENONIT experiment [3] in almost all of the region where m, < (mj + m,)/2
except for the funnel position of the light pseudoscalar, m, ~ m,/2. In addition, the
previous work [11] has pointed out that the light DM mass region is excluded by the
indirect detection experiments. From above reasons, we focus on the heavier DM mass
region, 100 GeV < m, < 1TeV, and search the parameter space where the cross section
becomes large.

In figure 9, we show the four benchmark points which have the different combinations
of cg and m,. Here, we fix the parameters at ms = 600GeV, § = 0.1, tg = 10, and ¢; = 0.
These benchmark points are all allowed from the current constraints as we mentioned in
section 2.

We show the case for |c2| = 0.5 in the upper panels, and for |ca] = 1 in the lower
panels. In each panel, the red line shows the positive co, the blue line shows the negative
c2, and the black line shows co = 0. We show the case for m, = 70 GeV in the left panels,
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m,=70 GeV m,=100 GeV
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Figure 9. The SI cross section at the four benchmark points. The upper panels show the case
for |co| = 0.5, and the lower for |ca| = 1. The left panels show the case for m, = 70 GeV, and the
right for m, = 100 GeV. The other parameters are m = 600 GeV, 6 = 0.1, tg = 10, ¢; = 0 for all
the panels. The regions where g, > 1 are shown as the gray region. The blue regions are excluded
by the latest result of the XENONI1T experiment [3]. The purple, brown, and gray dotted lines
indicate the future sensitivities of the XENONnT [20], LZ [21], and DARWIN experiments [22],
respectively. The yellow regions are below the neutrino floor [19].

and mg = 100 GeV in the right panels. The DM coupling g, becomes larger than 1 in the
gray region. The current bound, future prospects, and background of the direct detection
experiments shown in figure 9 are the same as those shown in figure 8.

From the figure, we find that og strongly depends on co. In particular, ogr becomes
large for m,, 2 400 GeV if ¢y is nonzero. This is because gpq, becomes large by the effect
of co as we mentioned above. We also find that ogr for m, = 70 GeV is larger than that
for mg = 100 GeV as is expected. At these benchmark points, we find the large region
where og; is above the neutrino floor while keeping g, < 1. For ¢z = 1, m, = 70 GeV, and
600 GeV < m, < 690GeV, ogr is above the future prospect lines of the XENONnT [20]
and LZ experiments [21] with g, < 1.

We also have checked the cross section of the different types of the THDM and found
that ogy in the large m, region is type independent.

5 Conclusions

In this paper, we have discussed the physics of the DM direct detection in the pseudoscalar
mediator DM model. The tree-level amplitude of the DM-nucleon elastic scattering in
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this model is negligible because it is proportional to the momentum transfer in the non-
relativistic limit. At the loop level, however, there are the diagrams which induce the DM-
nucleon SI scattering. Thus, it is necessary to calculate the loop corrections to compare
the model prediction with the direct detection experiments.

We have revisited the loop corrections to the cross section calculated in [11] and im-
proved their analysis with the following points. For the triangle diagrams, we read out the
scalar trilinear couplings not only from Vjrt but also from Vrppm as shown in eq. (2.19).
We also included the diagrams with the heavy mediator A into our analysis as pointed
out in [13]. As a result, we found that the scattering amplitude of the triangle diagrams
was overestimated in [11]. This is because the cancellation between the haa-diagram and
the haA-diagram is not negligible numerically. For the box diagrams, we decomposed the
effective operators into the scalar and twist-2 operators. This decomposition gives the new
contributions to the scalar operator, but we found that their effects are not significant. In
addition, we read out the DM-gluon scalar operator by calculating all the relevant two-loop
diagrams. We found that the contributions from the charm and bottom quarks to Cgox
were underestimated in [11]. On the other hand, the contribution from the top quark was
overestimated. These results clearly show that it is no longer justified to relate Cgox with
Cg>™ using eq. (3.16).

In section 4.3, we searched the region where the DM-nucleon scattering cross section
becomes large. We found the two interesting cases. First, if ¢ is nonzero, the cross section
is enhanced in the large m, region. This is because the contribution from ¢z to gp., appears
without the suppression of the mixing angle and ¢g. The interaction term proportional to
¢2 is not included in the previous works, [6], [11] and [13]. Thus, our analysis has revealed
the new possibility to detect the DM model with pseudoscalar mediators. Second, if m, is
light, the cross section also becomes large because the suppression of the loop functions is
weakened. In figure 9, we showed the cross section at the four benchmark points. There
are large regions where the cross section is above the neutrino floor while keeping the
DM-pseudoscalar coupling perturbative.

The loop corrections in the scattering processes are often crucial. The DM model of
winos, the superpartner of SU(2);, gauge bosons, is one of the examples [43—45]. In this
model, the tree-level contribution is suppressed, and there are box diagrams which induce
the SI scattering effects at the loop level. As pointed out in [13], the same situation also
happens in inelastic DM models which contain DM candidates with a tiny mass splitting.
In these models, the two-loop calculations are necessary to evaluate the cross section and
the same technique shown in this paper is available.
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A Scalar trilinear couplings

The expressions of the scalar trilinear couplings in eq. (2.19) are as follows :
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where

2
2 _ singbicg,osﬁ’ Sg_q =sin(f —a), cg_q =cos(f —a). (A7)

Taking the alignment limit, sin(f — «) — 1, we find
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In the previous work [11], they set m% = m?% = M? and ¢; = co = 0. In this case, we find
9Ha;a; = 0 where a; = a, A.

B Details of the calculations of the box diagrams

In the following, we show how to derive the effective operators from the box diagrams.

B.1 The derivation of C;’OX, Ctgl)box, and C‘gz)box

We show the details of the calculations of CJ?OX, Cél)box, and CC(IQ)bOX shown in section 3.2.1.
Note that we calculate the amplitude of the DM-quark scattering process in the zero
momentum transfer limit. Summing up the amplitude of the box diagrams shown in
figure 10, we obtain

M= (%)2&1‘%3'531531 [ﬂx(px)’yu“x(px)} [ﬁq(pq)’yyuq(pq)

dPr s
g / (2m)P [(€ +py)? = m3] (22 —mg) (> —mg)

-1 1
. [(g_pq)Q_m?I - (€+pq)2—m3} (B
where u, (py) is the DM wave function with its momentum p,, and u4(pq) is the quark
wave function with its momentum p,. We expand the terms in the bracket in eq. (B.1) by
the quark momentum and keep the leading term as follows:
-1 1 40 - pqy
C—p)?—m?  WrpP-mg 0

+0(p2). (B.2)
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Figure 10. The box diagrams and their momentum assignments.
Here we have used pg = mg. After this expansion, the amplitude of these diagrams is
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Loop functions Xgg1 and X111 are defined in appendix C.2. From this amplitude, we find
the following effective operators.

1 1 R 1
Lo = i(mxAl)qung + §A1(>’<28“7 X)(qi0,70q) + §A1(x28“v X) (@0, 7,.9)
1

+ 5 m A2) (00107 ) (@i0,70) (B.6)
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Figure 11. The diagrams which contribute to the effective operators a;a; G}, G*, where a; = a, A.

Then, we perform the irreducible decomposition to these operators.

R Oy — QDA 1
Girrg=q |0 4gwia} o+ {17217] 0+ Lo gity
1
= O}, + 19"'mqqq. (B.7)

4

Note that we drop the anti-symmetric term in the last line because it does not contribute
to the nucleon matrix element. The last term in eq. (B.7) gives the contribution to the
scalar operator Yxqq. After this decomposition, we find

Lot :%C);’O"mqix@q + %C(gl)bo")’(i(‘)“fy”xOZl, + %c§2>boxxia#iavxogy, (B.8)
where
Cbox — % (641 +m2As) (B.9)
C{box = 24, (B.10)
C{PPo* = my Ay, (B.11)

These coefficients correspond to the Wilson coefficients in egs. (3.19)—(3.21).

B.2 The derivation of Cgox

We show the details of the derivation of Cgox shown in section 3.2.2.

First, we calculate the heavy quark loops in the two-loop diagrams. In figure 11, we
show the pseudoscalar-gluon scattering diagrams. We calculate the amplitude of these
diagrams in the gluon background field theory. We use the Fock-Schwinger gauge for the
gluon field. The amplitude with the external pseudoscalar momentum ¢ is as follows:

iM =iTlq, (%) [GZVGW}, (B.12)
where
2y _ ¥ [ capw mMQ\? (QQ
)= g ] ¥ (29) 968 o
Q=c,b,t
y /1dx 32(1 — z) my - (2450 —5%)  2mp(1 -2z + 22°)
0 [mQQ —z(1 — x)¢? [m?Q —z(1 —x)?)? [mg? —z(1 —x)?)3

Note that the gluon in eq. (B.12) is the external field.
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Next, we read out the effective operator a;a;Gy,G*" from eq. (B.12) and calculate
the amplitude of the two-loop diagrams shown in figure 3. The amplitude can be expressed
using Ily,q; (¢%) as follows:

iM = Z (—€X ?z(]) [ﬂx(px)ypux(px)} [GﬁyGa#V}

a;j=a,A

dPe /
) / (2m)P [(€+py)? = m3] @ - T2 )@ 2 ) s (). (B.14)

Reading out the effective operator from this amplitude, we obtain C’g"x in eq. (3.24).

C Loop functions

In the following, we show the expressions of the loop functions used in section 3. For the
later convenience, we define € as follows:

A DN

2
=_ - + log(4m), (C.1)
where ¢ =4 — D and ~g is the Euler-Mascheroni constant.

C.1 B functions

We show the definitions of B functions (By, B1, Boo, Bi1, Boo1, Bi11) which are the same
as those in LoopTools [42].

/dDg 1 Bt M) -
@D (@—m?)[((+p)?— M7 (dmz O "D :

/dDE : = B M) (C.3)
@mD (@—m?)[(t+p)>— M7 (4w r7H A :

dPe 0,0,
/(27T)D (2 —=m?) [(£+p)? = M?]

7

= )y (9 Boo(p?,m?, M)+ pup, Bui (p?,m*, M?)] (C.4)
/ dPe 00,0,
2m)P (2=m?)[({+p)?—M?]

)
= W |:(g,u1/pp+guppu +gp,upu)B(]01 (pg,m2, M2) -l—pupupanl (p2> m27 MQ):| . (05)

The expressions of the B functions are

1 9 2

Bo(pQ,mQ, MQ) = /0 dx [g + log <m29: gy _Mm) o x))] , (C.6)
1 9 2

Bl(p27m27M2) = /O d(l?[—(l - .’B)] |:€ + IOg (m2x+ M2(1 _Mx) —p2$(1 _ x)>:| ) (07)
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m2z + M?(1 — z) — p*z(1 — z)

1
Boo(pz,mQ,MQ):/ dz
0

2
2 w2
1+1 C.8
8 [e+ * Og<m2x+M2(1—x)—p2x(1—x))}’ (C-8)
2 2 ! 2 2 MQ
B M*) dz(1 — = +1 .
n(p”,m /O z( 7) [€+ Og(m e+ M?(1—x) — pr(lx)>]’ (C9)
! (1-— M2 1— 1—
Bom(p m? M2 :/ da— 2)m’z + z) —p'a(l )]
0
12
1+1 C.10
[ Tt Og<m2x+M2(1—ac)—p2x(1—x)>}’ ( )
B (p2, m2, M2) —/ de[—(1— ) |2 +1o e (C.11)
LIPS M a 0 € & m2x+M2(lfx) fp2w(1f;r) ' '
The derivative of By with respect to p? are
0 ! z(1—x)
——= By(p?, m?, M* :/ d : 12
op? 0P, m”, M7) 0 $m2x+M2(17:1:) —p*z(l —z) (C.12)
C.2 X functions
The definitions of X functions (Xgo1, X111) are as follows:
dPe Iy
/ D 2 2 #2 ; 2\2( /2 2 (C.13)
(2m)P [(£+p)? — M?] (02 —m7)? (L2 —m3)

1
= an? [(guupp+guppu+gﬂupu)X001(PzaMQ,m%,m%)-i-pppypruﬂpQ,Mz,m%7m§)] _

X functions can be expressed using Feynman parameter integrals, and using B functions.

X, e z(l -z —y)
001 (#”, M, mi, mz) / dx/ dyM2x+m1y+m2(1—x—y)—p%(l—x)
= (erf_lm%)g [Boo1 (p?, m3, M?) — Boo1 (p*, m3, M?)]
1[0 ,
T —mZ [8 5 Boo(p®, m3, M?)| (C.14)

11—z 3
—z°(1—z—vy)
X ,M? d
111 (p?, M2, mi, m3) / x/ sz +miy +m3(l —z —y) — p?x(l — z))?

= m [Bin(p?, m?, M?) = Bin (v, m3, M)
R )
T mZ—m2op A3 Bu(p®,m3, M?). (C.15)
1 2
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C.3 Y functions

The definitions of Y functions (Y7, Y2, Y3) are as follows:

/ dDg ’€'LL o 1 Y( 2 m2 m2 m2) (C 16)
(27‘(‘)D ) + 2 21002 — m2 2 _ mg - (47T)2p'u 1P, x2 TP A g )s .
[(¢+p) 2)( 2) o
dDE ¢ i 2 2 2 2
/ (27T)D . 2 m2 2 = (47r)2pﬂy2(p ’mxamAamq), (C]_?)
[(£+p)? = m2] (2 = m?) [ez - ﬁ]
dDE ¢ i 2 2 2 2
/(QW)D . 9 mz 13 (47r)2p,uyé(p ’mxamAamq)- (C.18)
[(€+p)2 = m2) (2 = m3) |2 — ]

Y functions can be expressed using Feynman parameter integrals, and using B, C, D

functions.
1— y _2y
Yl(mi, ,m%4,m / dy/
MY+ o )Z+mA<1 y— Z)}
TILQ
:27"% [Bl(m ,m%,m3)—Bi(m} x(qu),mi)], (C.19)
A z(1—x)
1 1—y )
Yz
Yg(mi,mi,ma,mg):/ dy/ dz —~ 5
0 0 miyZ—i—m(l_qw)z—I—mi(l—y—z)}
1 9 9 m2 )
= ———— |Yi(m},mi,m%,mg)—Ca(m3,———-,m2)|, (C.20)
2 q z(l—x)
s z(1—x)
! 1y —4yz2
Vatmmd i) = [y [z ;
y 2+ ( )Z+mA(1 Yy— 2)}
— 1 2 2 2 2 > my m? m2
_m2 m2 YQ(mX,mX,mA,mq)—D?, OOm ;my wl—2) 2(1—2) 21— m),m .
A z(l-x)
(C.21)
The definitions of C5, D3 are in appendix C.4.
C.4 (5, D3 functions
The definitions of Cy and D3 functions are as follows:
dPy 0, i s 9 o
= M .22
/ @D (@ w2+ p)? — M7~ {@mptr 2w m M0, (C22)
dP( by i 2 2 ar2
= D M*). C.23
/ GNP (&= n2P 1 p)? — 37~ @ Dslem M) (C.23)
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We have some variations to express Cq, D3 functions [40].

ottt a2y = [ DO gt ar (C.21)
T o mizx+Mizx—p2z(l1—z) Op? T ’

1 —12?(1—x
D3(p27m2’M2):/0 dx[m2x—|—]\/.f22x(—p2x()1—x)]2
19 0
T 20m2 0p?
2
%((3‘;2) Bo(p%,m?, M?)
—p*+m?+ M?>
(pr+mi+M*—2p>m?2 —2p2M?—2m?M?)?

Bo(p*,m?, M?)

M2
X [(MQ—m2+p2) [—Bo(pQ,mQ,M2)+Bo(0,m2,m2)+2] —2M?log mQ}
1 1

3 (pr+mA+M*—2p?>m?2 —2p2 M2 —2m2M?)

X [—Bg(pQ,mQ,M2)+Bo(0,m2,m2)+2—(p2—m2—M2);ZJQBO(pQ,mQ,MQ)] .

(C.25)

C.5 9F(m?2)/dm? in loop functions

Y, (p?, mi, m2, mg) /Om?2 (n = 1,2,3) can be expressed in the loop functions introduced

above.
9 2.2 2 2 1 e 2 2 2 2.2 2 2
Wyl(p,mx,ma,mq) :m2 w2 am2Bo(mx,ma,mX)—Y1(p,mX,ma,mq) ,  (C.26)
a a—m L X
9 2. 2 2 2 1 0 2 2 2 2 2.2 2 2
o Yol i ) = | S Vi (R i) — Ya(oRm )|, (C.27)
a ma—m L a
9 2. 2 2 2 1 0 2 2 2 2 2.2 2 2
W}%(p’mx’mmmq) :m2 g angQ(p,mx,ma,mq)—YEg(p,mX,ma,mq) . (C.28)
a z(l-z)

The expression for F(m2)/0m2 using the loop functions is

OF (m2 ! %)
(ma):/ dx{?)Yl(pQ,mi,mg,mz)
0

om2 om2 q
5 (2+ 50 —52%) 5 o o o
—my (1= 1) 8ngQ(p s My, Mg, M)
J(1—2x+22%) 0 9 9 9 o
_ qu 333(1 _ x)3 8m(21YE))(p y My Mg mq) . (C.29)
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