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Introduction. In the Standard Model (SM) the production of a pair of Higgs bosons

at a hadron collider proceeds dominantly through the annihilation of gluons. As there

is no direct coupling between the Higgs boson and gluons this process is mediated by

intermediate massive quark loops. The top-quark loop contributions dominate by far, due

to the large Yukawa coupling. Bottom-quark loops only contribute at the 1 % level to the

total cross section at leading order (LO) and can thus safely be neglected in most situations.

The scattering amplitudes relevant for the calculation of the top-quark contributions up

to next-to-next-to leading order (NNLO) are known in the approximation of an infinitely

heavy top-quark (commonly referred to as the HEFT approximation) [1–6]. However,

the validity of this approximation is questionable for Higgs boson pair production due

to the large momentum transfer required to produce the Higgs bosons. Techniques to

systematically improve upon it were extensively studied in [4, 5, 7–10]. The full result,

which is exact in the mass of the top-quark, was known only to leading order (LO) [11–13]

until recently. This is due to the complexity of computing the next-to-leading order (NLO)

virtual corrections which feature two-loop, four-point integrals with both massive internal

propagators and massive external lines. They have recently been calculated through the

numerical evaluation of all relevant two-loop integrals as part of the full NLO calculation

in [14, 15].

At small transverse momenta pHH
⊥ of the Higgs boson pair, the accuracy of any

fixed-order calculation is spoiled by the presence of large logarithms of the form

αn
s

[
log(pHH

⊥ /mHH)
]m

. They can be resummed to all orders using analytical resummation

techniques which have been applied to Higgs boson pair production in [16]. Alternatively,

parton shower simulations can be employed. In addition to providing a reliable transverse

momentum spectrum at small pHH
⊥ , they also provide results that are fully differential in
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the kinematics of any soft and collinear QCD radiation. Standard techniques exist for the

consistent matching of NLO fixed order calculations to parton shower simulations [17, 18].

They were recently applied to Higgs boson pair production in reference [19], where the

MC@NLO and POWHEG matching techniques were used to combine the fixed-order NLO

calculation with the Pythia parton shower [20, 21]. The results of [19] suggest that the

parton shower matching can have sizeable effects not only in the region of small pHH
⊥ , but

also in the region of large pHH
⊥ , where one would expect the fixed-order calculation to

be reliable and the approximations inherent to parton shower simulations to break down.

These effects even exceed the scale uncertainties of the fixed-order calculation.

In this publication we aim to critically assess the origin and size of the aforementioned

effects and associated uncertainties. For this purpose we implemented a fully generic and

process independent NLO subtraction along with the corresponding parton shower match-

ing techniques for loop-induced processes in the Monte Carlo event generator Sherpa [22].

This allows us to perform our studies using the two different showers that are implemented

in Sherpa [23, 24] within the same parton shower matching framework.

This publication is structured as follows. In section 1 we describe in detail the setup

of our calculation along with a brief review of the MC@NLO matching technique and

the parton showers we used for our studies. We present the results of our simulations in

section 2, focusing on the origin and size of uncertainties that are inherent to the matching

technique applied. We also point out crucial differences that arise when going from the

HEFT approximation to the full calculation. Our conclusions are presented in section 3.

1 Calculational setup

1.1 Fixed-order NLO calculation

For the virtual two-loop amplitude we utilize the result of reference [14, 15], retaining

the full finite top-quark mass effects. This amplitude was obtained by numerically eval-

uating all relevant 2-loop 4-point Feynman diagrams with up to 4 scales. We adopt the

input parameters of reference [15], with GF = 1.1663787 × 10−5 GeV−2, the mass of the

top-quark set to mt = 173 GeV, the Higgs boson mass set to mH = 125 GeV, and their

widths neglected. We also adopt the choice of reference [15] for the factorization and renor-

malization scales µF = µR = mHH/2. Perturbative uncertainties in the fixed-order part

of the calculation are estimated by independently varying these scales through factors of

0.5 and 2. All studies are performed with hadronic center-of-mass energy
√
s = 14 TeV.

The NLO virtual amplitude is provided in the literature in the form of an interpolation

grid in two Mandelstam variables, based on a fixed number of pre-computed phase-space

points [19]. We extract the finite part of the UV renormalized virtual amplitude in the

Conventional Dimensional Regularization (CDR) scheme with residual IR singularities sub-

tracted according to the Catani and Seymour scheme [25], as required by the Sherpa event

generator, using relations (2.5) and (2.6) of reference [19].

The leading order one-loop squared amplitudes for the Born process and real emission

contributions are provided by OpenLoops [26]. For the evaluation of tensor and scalar one-

loop integrals, we employ the Collier library [27], CutTools [28], and OneLOop [29, 30].
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For the regularization and numerical cancellation of infrared divergences in the real-

emission part of the calculation we employ the dipole subtraction scheme of Catani and

Seymour [25]. We have re-implemented this scheme within Sherpa in a fully generic and

process-independent way for loop-induced processes. This implementation is qualitatively

equivalent to the implementation in one of Sherpa’s internal matrix element generators

Amegic++ [31, 32], apart from the fact that color- and spin-correlated amplitudes are

to be provided externally through generic interfaces. Through a dedicated interface to

OpenLoops and the aforementioned tools, NLO calculations for loop-induced SM processes

are thus fully automated (given the availability of the virtual two-loop corrections) in

Sherpa and will become available in a public version of the code.

We have validated our implementation in Sherpa by comparing our results for the total

cross section, for the differential Higgs boson pair invariant mass distributions, and for the

differential single Higgs boson transverse momentum distributions to those published in

reference [15].

1.2 Parton showers

We consider two parton showers for matching to the fixed-order NLO calculation. Both

algorithms are dipole-type showers in which QCD radiation is generated coherently off

color dipoles spanned by pairs of pre-existing partons. Both showers are publicly available

as part of the Sherpa event generator package.

Due to the dipole character of the parton showers, their splitting kernels can be used

for the purpose of fixed-order NLO subtraction, thus simplifying the implementation of

parton shower matching. The CS shower [23] directly uses the splitting kernels of the

original Catani-Seymour subtraction scheme for parton evolution. The Dire shower [24]

uses splitting kernels that are modified in such a way as to reproduce the collinear anoma-

lous dimensions of the DGLAP equations. For NLO matching to the Dire shower, we use

a modified version of the original Catani-Seymour subtraction scheme that reflects these

changes in the splitting kernels [33]. The kernels of both showers approximate real emission

amplitudes arbitrarily well in the limit of soft and collinear momenta. Away from the soft

and collinear regions, however, they differ.

A further crucial difference between the two algorithms is the choice of evolution vari-

able, which we generically denote by t in the following. The choice of evolution variable

together with the shower starting scale µPS dictates how much of the phase space away

from the soft and collinear regions is available to the parton shower since the starting scale

implements the following phase space constraint:

t < µ2PS. (1.1)

For the discussion of the evolution variables we focus on the first (hardest) emission in the

production of a color-neutral final state of invariant mass Q2 = m2
HH . We illustrate the

kinematics of the first emission, producing a final state parton with momentum pj from the

collision of two incoming massless partons with momenta pa and pb, in figure 1. It is useful

to consider the variables v and w, which are closely related to the standard Mandelstam
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pa

pb

pj

H
H

Q

Figure 1. Definition of kinematic variables in the first emission.

variables t̂ = (pa − pj)2, û = (pb − pj)2, and ŝ = (pa + pb)
2:

v =
papj
papb

=
−t̂
ŝ
≥ 0, w =

pbpj
papb

=
−û
ŝ
≥ 0. (1.2)

Due to momentum conservation ŝ+ t̂+ û = Q2 which implies,

v + w =

(
1− Q2

ŝ

)
< 1⇒ vw <

1

4
. (1.3)

In terms of v and w, the evolution variable in Dire is given by

tDire

Q2
=

(papj)(pbpj)

(papb)2
= vw. (1.4)

The functional form (1.4) implies that tDire < Q2

4 due to equation (1.3). It follows that for

a parton shower starting scale of µ2PS = Q2

4 , Dire behaves like a “power shower” in the sense

that it populates the full phase space since tDire < Q2

4 and thus (1.1) is trivially fulfilled.

In the CS shower, the evolution variable is given by

tCSS

Q2
=

vw

1− (v + w)
. (1.5)

This implies that, for a given kinematic configuration, tCSS is typically larger than tDire,

such that for a given value of µPS the emission phase space of the CS shower is more

restricted than that of Dire. It is worth noting that µ2PS = Q2

4 in particular does not

correspond to a “power shower” when employing the CS shower. This choice in fact

severely constrains the emission phase space, since v + w can get close to 1 and thereby

give rise to large values of tCSS.

1.3 NLO parton shower matching

In the following we will focus on the MC@NLO matching prescription [17] using the no-

tation of [34] with no distinction between fixed-order NLO subtraction terms D(S) and

parton shower matching terms D(A) since we use the parton shower splitting kernels both

for parton evolution and for infrared subtraction and keep all phase space constraints ex-

plicit. We thus denote the sum of subtraction terms as a function of the real emission phase

space by D(φR), where the real emission phase space φR = φB × φ1 can be decomposed
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into the Born phase space φB and an extra one-particle emission phase space φ1. We then

define the fixed-order differential seed cross sections B̄(φB) and H(φR) in terms of the

leading order (Born) term B(φB), the UV-subtracted virtual corrections V (φB), and the

real-emission contributions R(φR) by

B̄(φB) = B(φB) + V (φB) +

∫
D(φR)Θ(µ2PS − t(φR)) dφ1

= B(φB) + V (φB) + I(φB), (1.6)

H(φR) = R(φR)−D(φR)Θ(µ2PS − t(φR)) , (1.7)

where t(φR) is the map from a kinematic real emission configuration to the parton shower

evolution variable t. The Heaviside function Θ(µ2PS − t(φR)) in (1.7) implements the con-

straint (1.1). For notational convenience, we will omit the explicit φR-dependence and write

t(φR) = t in the following. In terms of the quantities introduced above, the fixed-order

total NLO cross section is given by

σNLO =

∫
B̄(φB) dφB +

∫
H(φR) dφR. (1.8)

In MC@NLO, we generate events according to

σMC@NLO =∫
B̄(φB)

[
∆(t0, µ

2
PS) +

∫
∆(t, µ2PS)

D(φB, φ1)

B(φB)
Θ(µ2PS − t)Θ(t− t0) dφ1

]
︸ ︷︷ ︸

S-events

dφB

+

∫
H(φR)︸ ︷︷ ︸
H-events

dφR, (1.9)

where t0 is the infrared cutoff scale of the parton shower and the modified Sudakov form

factor ∆(t0, t1), which gives the probability for no emission to occur between scales t0 and

t1 for the first parton shower step, is given by

∆(t0, t1) = exp

[
−
∫ t1

t0

D(φR)

B(φB)
dφ1

]
(1.10)

= exp

[
−
∫
D(φR)

B(φB)
Θ(t1 − t)Θ(t− t0) dφ1

]
. (1.11)

The first line of (1.9) corresponds to events that have Born kinematics at the level of the

fixed-order seed event with weight B̄ (S-events). They either don’t undergo any emission

above the infrared parton shower cutoff scale t0 (first term in the square bracket) or they

undergo their hardest emission at some scale t between µ2PS and t0 (second term in the

square bracket). The second line of (1.9) corresponds to events with real-emission kine-

matics at the level of the fixed-order seed event and weight H (H-events). All events are

treated further by the parton shower precisely as in the leading order case, apart from the

S-events that haven’t undergone any emission, which are kept as they are.
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Since the square bracket in (1.9) integrates to 1, the total cross section and any ob-

servable that is insensitive to QCD radiation is unaltered in MC@NLO compared to the

fixed-order NLO result. In fact, it can be shown that a MC@NLO event sample will re-

produce the fixed-order NLO result event to order αS relative to the Born for any infrared

safe observable [17]. The parametric NLO accuracy is therefore not spoiled by the parton

shower matching.

1.4 Parton shower matching uncertainties

As stated in the previous section, NLO parton shower matching according to the MC@NLO

method preserves the parametric accuracy of the fixed-order NLO calculation. Deviations

from fixed-order results can numerically be nonetheless significant [34]. Such differences

reflect genuine parton shower matching uncertainties, they can be particularly prominent

for observables that are sensitive to real emission configurations and thereby to the interplay

between parton shower emissions and fixed-order real emission configurations. We will

therefore focus on the pHH
⊥ distribution in the following section, comparing MC@NLO

matched parton shower simulations to fixed-order results with both the Dire and the CS

shower.

In order to formally compare the MC@NLO result to a fixed-order prediction for this

spectrum, we first consider a generic observable O that is insensitive to kinematic Born

configurations. For such an observable we need to take into account H-events and parton

shower emissions off S-events. At order αS relative to the Born we have

〈O〉 =

∫
B̄(φB)∆(t, µ2PS)

D(φB, φ1)

B(φB)
Θ(µ2PS − t)O(φR) dφB dφ1

+

∫
H(φR)O(φR) dφR, (1.12)

where the first integral corresponds to S-events in which the parton shower has generated

a non-vanishing value of O and the second integral corresponds to H-events, where a non-

vanishing value of O is implied by the real-emission kinematics of the fixed-order seed

event. In the tail of the distribution where we can neglect the Sudakov suppression and

set ∆ = 1, we obtain after plugging in the definition of H:

〈O〉 =

∫ [
B̄(φB)−B(φB)

] D(φB, φ1)

B(φB)
Θ(µ2PS − t)O(φR) dφB dφ1

+

∫
R(φR)O(φR) dφR. (1.13)

To order αs we have B̄ = B and the first integral cancels as required by the matching con-

ditions, thus restoring the fixed-order result. This explicitly demonstrates how variations

in the parton shower contributions induced by S-events are subtracted by the MC@NLO

subtraction terms D in the definition of H. Numerically, however, this cancellation can be

severely spoiled, potentially leading to large deviations from the fixed-order result. For the

deviations to be significant the term on the first line of equation (1.13) must be similar in

size to the fixed-order term on the second line of (1.13). One can therefore expect large

deviations from the fixed-order calculation only if both of the following conditions are met:
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1) The factor B̄ − B dressed with the parton shower splitting kernels (DB in (1.13)) is

comparable in magnitude relative to the real-emission matrix elements in R. This

depends on the size of the NLO corrections that enter B̄ and on the splitting kernels

in the phase space region of hard emissions.

2) The phase space of interest is accessible to the parton shower so that the first integral

in (1.13) has support in that region. This depends on the choice of µPS and on the

shower (through the functional form of t(φR)).

The formally sub-leading contributions originating from the parton shower matching

in the first integral in (1.13) are, to a large extent, controlled by the choice of µPS. To

access the matching uncertainties we will therefore vary this parameter by factors 2 and

0.5. With two different parton showers at our disposal we have an additional handle on

these uncertainties through the functional form of t(φR). The nominal choice for µPS in

the CS shower will be µPS = mHH/2, in line with µR and µF . As outlined above, such

a choice would open up the entire emission phase space in case of the Dire shower. Our

nominal choice for the Dire shower will therefore be µPS = mHH/4, which allows us to

perform both up and downwards variations.

Based on the argument presented above, one might expect to see large parton shower

contributions in the high-pT tails of other processes with large K-factors. However, it is

important to note that for such effects to be visible the B̄ − B factor must remain large,

relative to the real-emission matrix element, also when multiplied by the parton shower

splitting kernels. In single Higgs boson production through gluon fusion, for example, one

might anticipate a large shower contribution in the tail of the Higgs transverse momentum

spectrum due to the large NLO K-factor. However, in this case the parton shower splitting

kernels underestimate the real-emission matrix elements significantly, such that the parton

shower contributions in the tail are very small in an MC@NLO-matched calculation [34, 35].

For the parton showers considered in this work, this holds even when taking into account

the full top mass dependence in the real-emission matrix elements, which reduce the size of

R by more than an order of magnitude in the tail of the transverse momentum distribution.

2 Results

2.1 Leading order results

We start our discussion with predictions obtained in the most simple setup, using leading

order matrix elements for inclusive Higgs boson pair production supplemented by a parton

shower. This type of simulation will be referred to as “LO+PS” in what follows. Since the

transverse momentum of the Higgs boson pair is zero at leading order, any non-zero value

of this observable is entirely generated by the parton shower. As a reference, we use a

fixed-order prediction obtained by simulating the process p p→ H H j with leading order

matrix elements.

Figure 2 and 3 show the result of our comparison both in the HEFT approximation

and in the full theory, respectively. Comparing the full SM and the HEFT approximation,

– 7 –



J
H
E
P
0
2
(
2
0
1
8
)
1
7
6

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2
d

σ
/

d
pH

H
⊥

[p
b/

G
eV

] √
s = 14 TeV

HEFT

SHERPA+HHGRID+OPENLOOPS

pp→ HH + j
pp→ HH + CS shower
pp→ HH + CS shower, µPS =

√
s

101 102 103

pHH
⊥ [GeV]

0.8

1.6

R
at

io

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

d
σ

/
d

pH
H
⊥

[p
b/

G
eV

] √
s = 14 TeV

HEFT

SHERPA+HHGRID+OPENLOOPS

pp→ HH + j
pp→ HH + Dire shower

101 102 103

pHH
⊥ [GeV]

0.8

1.6

R
at

io

Figure 2. Parton shower predictions for the pHH
⊥ spectrum in a LO+PS type simulation compared

to a fixed-order calculation in the HEFT approximation. The uncertainty band around the fixed-

order result is obtained by varying µF and µR. Uncertainties on the LO+PS results are obtained

by varying µPS.

we observe qualitatively different parton shower effects. In the HEFT approximation,

both parton showers significantly underestimate the fixed order spectrum in the tail of the

distribution. Even if the full phase space is made available to the showers they do not

reproduce the slowly falling transverse momentum spectrum predicted by the fixed-order

HEFT matrix elements. To show this for the CS shower we display also LO+PS results

obtained by setting the parton shower starting scale to the hadronic center-of-mass energy

µPS =
√
s. In the case of the Dire shower, the full phase space is already available for

µPS = mHH/2, which corresponds to the upper edge of the uncertainty band.

In the full SM, by contrast, for large enough values of the parton shower starting scale

µPS both parton showers overestimate the fixed-order prediction. For the CS shower, this

effect is restricted to smaller transverse momenta, due to the choice of evolution variable.

If we lift any phase space restriction in the CS shower, by setting µPS =
√
s, we observe

that in the tail of the distribution the shower overestimates the fixed-order predictions by

more than an order of magnitude. The upper edge of the Dire shower uncertainty band

also overestimates the fixed-order prediction, although this feature is not as pronounced as

for the CS shower.

It is therefore evident that the Born matrix elements dressed with splitting kernels can

strongly overestimate the real emission matrix elements in the full SM and strongly un-

derestimate the real emission matrix elements in the HEFT. The former effect is, however,

to a certain extent limited by the phase space constraint implemented through the parton

shower starting scales.

Naively, the large differences between the HEFT and the full SM simulations may seem

surprising. However, the high-energy behaviour of the HEFT real emission amplitudes is

unphysical because the momentum transfers vastly exceed the top-quark masses which have

been integrated out in the HEFT approximation. As a result, the spectrum calculated at

fixed-order falls off extremely slowly in the HEFT and the parton shower kernels thus tend
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Figure 3. Parton shower predictions for the pHH
⊥ spectrum in a LO+PS type simulation compared

to a fixed-order calculation in the full SM. The uncertainty band around the fixed-order result is

obtained through variations of µF and µR. Uncertainties on the LO+PS results are obtained by

varying µPS.

to underestimate the spectrum in the tail. A similar slow fall off can been observed in

the HEFT approximation for the Higgs boson transverse momentum in single Higgs boson

production [36–40].

2.2 NLO results

We start the discussion of NLO-matched parton shower simulations with the results of a

HEFT treatment, shown in figure 4. As discussed in section 2.1 (and shown in figure 2)

the combination of Born matrix elements and parton shower splitting kernels strongly un-

dershoot the full real-emission matrix elements when employing the HEFT approximation.

We therefore expect the tail of the distributions to converge to the fixed-order result both

for the CS shower and the Dire shower. As shown in figure 4, this is indeed the case. In ad-

dition to a more precise description of the tail (compared to the LO+PS type simulations)

we observe a reduction of the parton shower starting scale uncertainties. The individual

variations of H and S-event contributions are of order one for some values of pHH
⊥ but

cancel to a large extent in the sum.

Moving on to the discussion of results in the full SM, we remind the reader of our

findings in the corresponding LO+PS type simulations. In the full SM, the parton shower

splitting kernels in combination with Born matrix elements overestimate the real-emission

matrix elements (see figure 3). The parton shower effects in the tail of the pHH
⊥ distribution

are therefore large. As shown in figure 5, this also holds at NLO. The parton shower

matched results converge to the fixed order result in the tail for nominal choices for µPS.

Upward variation of µPS, however, (indicated by the upper edge of the blue uncertainty

bands) lead to parton shower effects of up to +100 % even in the tail of the distribution.

As shown in the lower panels of figure 5, the excesses in the tail are indeed generated by

parton shower emissions off S-events. The extent of these effects is limited by the phase

space available to the parton shower, as determined by the choice of µPS and the functional
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Figure 4. Parton shower NLO matching effects on the pHH
⊥ spectrum in the HEFT approximation.

The left panel shows results obtained with the CS shower, while the results on the right were

generated with the Dire shower. The uncertainty band around the fixed-order result is obtained

through variations of µF and µR. Uncertainties on the MC@NLO predictions are obtained by

varying µPS.

form of the evolution variable. We observe that results generated using the Dire shower,

particularly for larger values of µPS, have a different shape than those generated with the

CS shower.

For the MC@NLO algorithm, by construction, the large parton shower effects in the

tail should be cancelled to first order in αS . As outlined in section 1.4, any mis-cancellation

is due to a numerically large discrepancy between B and B̄. We demonstrate this explicitly

in figure 6, where we show modified Dire MC@NLO with B substituted for B̄, leading to a

complete cancellation of the first integral in (1.13). This procedure eliminates large parts

of the excess in the tail independently of µPS, as anticipated. Variations in S- and H-event

contributions remain large, as shown in the lower panels of figure 6, but they cancel in the

sum. The procedure of replacing B̄ with B would, of course, spoil the NLO accuracy of

any inclusive observable but allows us here to demonstrate the origin of the discrepancy

between the showered and fixed-order results in the tail of the pHH
⊥ distribution.

In the HEFT approximation one may naively expect effects of similar size in the

tail of the distributions. As demonstrated using a LO+PS simulation and as shown in

figure 2, however, the fixed-order real emission contributions completely dominate in this

region. The bulk of the contributions in the tail are hence generated by the second integral

of (1.13). As a result, the relative impact of parton shower effects in the tail remains small

as shown in figure 4.

2.3 Comparison to the literature

In figure 7 we compare our results for the pHH
⊥ spectrum to the NLO parton shower

matched results presented in reference [19]. These results were obtained with the Pythia 8
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Figure 5. Parton shower NLO matching effects on the pHH
⊥ spectrum in a full SM calculation. The

left panel shows results obtained with the CS shower, while the results on the right were generated

with the Dire shower. The uncertainty band around the fixed-order result is obtained through

variations of µF and µR. Uncertainties on the MC@NLO predictions are obtained by varying µPS.
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we replaced the S-event differential seed cross section B̄ by B. The uncertainty band around the

fixed-order result is obtained through variations of µF and µR. Uncertainties on the MC@NLO

predictions are obtained by varying µPS.
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Figure 7. Comparison with NLO parton shower matched results from the literature. The lower

panels show ratios to the fixed-order prediction and cover a wider range of pHH
⊥ than the upper

panel. The uncertainties on parton shower matched predictions were obtained by varying µPS.

shower [20, 21] interfaced to MadGraph5 aMC@NLO [41, 42] and POWHEG BOX [43]

for matching according to the MC@NLO method and the POWHEG method [18], respec-

tively. In MadGraph5 aMC@NLO the nominal value of µPS is set randomly in the interval

[0.1HT /2, HT /2], where HT is the sum of the transverse masses of the Higgs bosons. For

the simulations based on MadGraph5 aMC@NLO and Pythia we show uncertainty bands

that were obtained by varying the nominal parton shower starting scale by factors of 2

and 0.5. The POWHEG matching prescription can be recovered within the MC@NLO

framework by setting the parton shower starting scale to the collider energy µPS =
√
s and

by setting D = R [34]. Therefore, lacking a natural equivalent to µPS in the POWHEG

framework, we compare only to nominal POWHEG predictions produced with the hdamp

parameter set to 250 GeV, as described in [19].

Focusing on the region pHH
⊥ > 100 GeV, we note that all MC@NLO predictions consid-

ered here are generally compatible within the uncertainty bands. However, the agreement

between the nominal results of our simulations and the fixed-order result is much better in

the tail. The POWHEG results exhibit a very large excess in the tail that is not covered by

the uncertainty bands of our Sherpa predictions. Similar discrepancies between MC@NLO
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and POWHEG have been observed in the context of other processes [34, 35] and can be

attributed to the large phase space available to the parton shower as a result of setting

µPS =
√
s and the numerically large discrepancy between B̄ and B [44]. As described in

section 1.2, the former can be achieved in Dire by setting µPS = mHH/2, which is rep-

resented by the upper edge of the uncertainty band around the Dire prediction. We note

that the shape of this curve is in fact most similar to the POWHEG prediction in the tail

of the distribution.

Comparing the different uncertainty bands themselves, we observe large differences.

The shape of uncertainty bands obtained with MadGraph5 aMC@NLO and with the CS

shower are somewhat similar with a peak around 300 GeV but the size of the uncertainty

band around the MadGraph5 aMC@NLO result is much larger throughout. The uncer-

tainties on the Dire prediction describe a more evenly shaped band.

Differences in the region of small transverse momenta are not fully covered by the µPS-

variation bands. Although we expect these variations to be indicative of NLO-matching

uncertainties, we do not expect them to cover all parton shower uncertainties. These

include, but are not limited to, ambiguities in the choice of a kinematic recoil scheme

and ambiguities in the choice of the renormalization scales for the strong coupling in the

splitting kernels.

In figure 8 we show a comparison to the calculation of reference [16] which employed

analytic next-to-leading-log (NLL) resummation techniques instead of parton showers. We

observe good agreement within the uncertainties except near the peak region and the region

around pHH
⊥ = 100 GeV where we find discrepancies of about 5 % that are not fully covered

by our uncertainty bands. Taking into account the resummation scale uncertainties on the

analytic results (not shown in figure 8), which are of the order of 3 % in the peak region

and 10 % near pHH
⊥ = 100 GeV [16], we consider the observed agreement satisfactory.

2.4 Other observables

Having discussed the Higgs boson pair transverse momentum at length, we briefly discuss

parton shower effects on a number of other observables.

Lorentz invariant observables that depend only on the momenta of the Higgs bosons are

not affected by the parton shower. The kinematics of the Higgs boson pair is only altered

by emissions off dipoles spanned by two initial state partons. The recoil generated by such

an emission affects the Higgs boson pair only through a Lorentz boost. Lorentz-invariant

quantities like the Higgs boson pair invariant mass are therefore not affected by the parton

shower. Our simulations were checked by inspecting the Higgs boson pair invariant mass

distributions, we observe agreement within the statistical uncertainties of well below one

percent.

Figure 9 shows the leading jet transverse momentum pj⊥. As opposed to the Higgs

boson pair, the parton emitted in the hardest emission off an S-event and the final state

parton in an H event is affected strongly by secondary emissions because the kinematics

are altered by final-final and final-initial dipoles. Such emissions decorrelate the leading

jet and the Higgs boson pair momenta. Parton shower effects are therefore qualitatively

different. The effect of the parton shower are generally moderate and the spectrum remains
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Figure 8. Comparison with results of the analytic resummation calculation of reference [16].

Uncertainties on the NLO parton shower matched results were obtained by varying µPS.

compatible with the fixed-order prediction within the scale uncertainties. It is worth noting

that even the full µPS-variation bands remain within the uncertainty bands of the fixed-

order calculation.

This picture drastically changes when considering observables that are more sensitive

to high multiplicity final states. As an example we consider the differential HT distribution,

defined as the scalar sum of jet transverse momenta:

HT =
∑
i

pji⊥ ,

where the index i labels all jets in the respective event. In a parton shower event, the

total energy is typically distributed among a larger number of jets than in a fixed-order

calculation. Their scalar contributions to HT are added, giving rise to larger values of HT

than for the fixed-order NLO calculation. We show this effect in figure 9. Comparing the

Dire and CS shower predictions, we note that the uncertainty bands overlap but that the

shower starting scale variations are much larger for the CS shower.

In figure 10 we show the azimuthal separation between the Higgs bosons ∆φHH . At

leading order, the momenta of the Higgs bosons are perfectly correlated due to momen-

tum conservation. Only in events with additional radiation can one observe a non-trivial

distribution of the azimuthal separation between the Higgs bosons. As shown in figure 10,

parton shower corrections to the fixed-order result are mostly covered by the fixed-order

uncertainties except in the region of ∆φHH = π which corresponds to back-to-back config-

urations and which is sensitive to soft QCD emissions.

Also shown in figure 10 is the transverse momentum of a randomly chosen Higgs boson.

The effect of a parton shower emission on the transverse momentum of a given Higgs boson
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and on the transverse momentum of a randomly selected Higgs boson (right panel). The uncertainty

band around the fixed-order result is obtained through variations of µF and µR. Uncertainties on

the MC@NLO predictions are generated by varying µPS.

is random, either decreasing or increasing its value. If the distribution was completely flat,

any parton shower effects would therefore average out. Since the distribution is falling,

the parton shower effects of increasing the transverse momenta of low-p⊥ Higgs bosons is

not counter-balanced by the effect of decreasing the transverse momenta of high-p⊥ Higgs

bosons, thus inducing a slope relative to the fixed-order result. This effect is small but

clearly visible in figure 10.

3 Conclusions

We have presented a study of NLO parton shower matching uncertainties in Higgs boson

pair production through gluon fusion at the LHC. We assessed these uncertainties by
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matching the fixed-order NLO calculation to two dipole shower algorithms in the Sherpa

event generator according to the MC@NLO framework. The interplay between fixed-order

real emission contributions and parton shower emissions was studied in detail through

variations of the parton shower starting scale. We find large matching uncertainties that

exceed the fixed-order uncertainties even in regions of phase space where the fixed-order

calculation is well motivated and where parton shower matching effects are expected to be

small. Our nominal predictions are in good agreement with the fixed-order result in these

regions, however. A comparison to MC@NLO matched results from the literature revealed

qualitative differences which are, nevertheless, compatible within the large uncertainties.

We observe larger differences in a comparison to POWHEG predictions in the tail of the

transverse momentum spectrum, where POWHEG overestimates the fixed-order spectrum

by a factor of 2. We find reasonable agreement throughout between our results and those

obtained through analytic resummation techniques.
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