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1 Introduction

Integrability is the powerful tool behind the recent advances in understanding the gauge-

gravity correspondence in the planar limit (for a review see [1]). On the gauge theory

side, diagonalizing the matrix of the anomalous dimensions can be performed through

Bethe ansatz techniques [2] since the anomalous dimension matrix can be mapped to the

Hamiltonian of an integrable spin chain. The magnons play the role of the asymptotic

states and are considered as the fundamental single particle excitations propagating on

a certain BMN vaccum. Integrability of the theory implies that any scattering process

factorizes in a scattering between two magnons. As a result, the role of integrability is

instrumental in determining the spectrum of N = 4 SYM for any value of the coupling.1

On the string side, the strong coupling dual to the field theory magnons are the so-called

giant magnons [11–15]. These are semi-classical solutions of string theory on AdS5 × S5

and are described by open strings moving in a subspace of the sphere S5 with finite angular

extent. Their dispersion relation is the strong coupling limit of the exact dispersion relation

obtained from the gauge theory analysis [16]. Similar classical string configurations with

finite angular amplitude that wind infinitely many times around the orthogonal angular

direction are called single spiky strings [17–19]. Their gauge theory interpretation needs

further clarification.

Over the last years there is a lot of attention on the integrable deformations of the

AdS/CFT. Two important examples of such deformations are the β-deformations [20, 21]

1Recently, progress has also been made in the calculation of higher point correlation functions using

integrability. For an incomplete list of work in this direction see [3–10] and references therein.
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for which the magnon solution was calculated in [22] and the non-commutative theories [23].

Recent activity is coming from the null dipole deformation of the N = 4 SYM, which is

special since it has minimal non-locality along one of its light-like directions. The dual

gravity background is known as a Schrödinger space-time, it was first worked out in [24–

26] and can be obtained by performing an abelian T-duality along one of the isometries of

the five-sphere followed by a shift along a light-like direction of the AdS5 boundary and

a second T-duality along the dual coordinate of the sphere. On the field theory side, the

deformation is realised by introducing the appropriate ?-product among the fields of the

N = 4 Lagrangian. Generically, the ?-product used definition of the deformed theory can

be identified with a corresponding Drinfeld-Reshetikhin twist of the underlying integrable

structure [27, 28].

Integrability issues of the dipole-deformed CFT were discussed in detail in [29].2 The

deformation is realized as a Drinfeld-Reshetikhin twist [34, 35] of the N = 4 integrable

structure. In [29] the authors provided a test of the Schrödinger holography by matching the

anomalous dimensions of long gauge theory operators with the strong coupling prediction

of certain BMN-like strings (see also [36]). While the present paper was being written

the work [37] appeared. The authors have calculated the dispersion relation of a giant

magnon-like solution in Sch5×S5. However, their solution is fundamentally different from

ours since it is point-like in the Schrödinger space-time part of the metric unlike the ones

presented here.3

In this paper we construct semi-classical string solutions living in the Schrödinger

Sch5 × S5 spacetime, which is conjectured to be the gravity dual of a certain non-local

dipole-deformed CFT. Those solutions are the counterparts of the giant magnon and the

single spike of the undeformed AdS5×S5, since in the zero deformation limit they become

the ordinary giant magnon and single spike of the original AdS5×S5 background. We find

those solutions in an S3 subspace of the five-sphere along the direction of which the B-field

has non-zero components. Furthermore, the solutions presented here are not point like but

also extend in the Sch5 part of the metric. For the dyonic giant magnon the dispersion

relation is given by √
E2 − λ

4π2
L2M2 − J1 =

√
J2

2 +
λ

π2
sin2 p

2
(1.1)

where the angle difference ∆ϕ1 is identified with the momentum p carried by the excitation,

while for the single spike is given by

J2
1 − J2

2 =
λ

π2
sin2

[
π√
λ
E − 1

2
LM − 1

2
∆ϕ1

]
. (1.2)

The paper is organised as follows: in section 2 we present the ansatz for the solution and

discuss the boundary conditions corresponding either to the giant magnon or to the single

2Integrability of the σ-model at the classical level was discussed in [30–33], where the Schrödinger

spacetime was realized as a particular Yang-Baxter deformation of the AdS5 × S5 superstring.
3In addition to this the dispersion relation of [37] when expressed solely in terms of the conserved

quantities takes the from
(E−

√
µ2S2+J2

++4J2
φ

)2E2

E2−(µ2S2+J2
+)

= T 2 sin2 p
2

which is completely different from ours (1.1).
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spike case. After writing the solution we calculate the angular amplitudes. In section 3 we

focus on the giant magnon case by finding the finite combinations of the conserved charges

and extracting the dispersion relation. In section 4 we provide the finite combination of

global charges and the dispersion relation for the single spiky string solution. In section 5

we summarise and discuss about the possible form of the field theory operators that are dual

to the giant magnon solutions in this dipole-deformed CFT. Furthermore, we comment

on a possible, exact in λ, dispersion relation of the giant magnon solution. Our proposed

relation (5.4) when expanded agrees, in the BMN limit, with the one-loop result that is

obtained by solving the Baxter equation. Finally, an appendix contains the details of

the 10-dimensional background as well as the proof that our solution lives in a consistent

truncation of the full background.

2 Giant magnons and single spiky strings on Sch5 × S3

We consider the following truncation of the 10d Sch5×S5 metric4 on the sphere S3, which

as we explain in appendix A is consistent

ds2 = −
(

1 +
µ2

Z4

)
dT 2+

1

Z2

(
2dTdV + dZ2

)
+

1

4

[
dθ2+sin2 θdφ2+(dψ − cos θdφ)2

]
(2.1)

where ψ ∈ [0, 4π), θ ∈ [0, π] and φ ∈ [0, 2π) are the angular coordinates of the three

dimensional sphere and their ranges. The B-field is given by the following expression

B =
µ

2Z2
dT ∧ (dψ − cos θdφ) . (2.2)

In order to compare the dispersion relation of the magnon with the standard result from

the literature [11], we have to perform the following change of variables

θ = 2 η ψ = ϕ1 + ϕ2 φ = ϕ1 − ϕ2 (2.3)

where η ∈ [0, π/2], ϕ1 ∈ [0, 2π) and ϕ2 ∈ [0, 2π) are the ranges of those variables.

We now introduce the following ansatz to find classical solutions

T =κ τ + Ty(y) V =α τ + Vy(y) Z =Z0

[3pt]θ = θy(y) ψ =ωψ τ + Ψy(y) φ =ωφ τ + Φy(y) (2.4)

where we have defined the variable y as

y ≡ c σ − d τ . (2.5)

Additionally κ, α, Z0, ωψ and ωφ are constants, while Ty(y), Vy(y), θy(y), Ψy(y) and Φy(y)

are functions of σ and τ (in the combination c σ− d τ) that we will determine through the

equations of motion and the Virasoro constraints.

4We have set ` = 1 and α′ = 1.
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2.1 Equations of motion

Applying the ansatz (2.4) on the equation of motion that is coming from the variation

of (A.1) along the direction V , we end up with an equation for the function Ty(y). It is

possible to integrate this differential equation and fully determine the function

Ty(y) =
y

c2 − d2

(
AV Z

2
0 − d κ

)
(2.6)

where AV is the integration constant.

The equation of motion coming from the variation of (A.1) along the direction T , writ-

ten in terms of y, can be integrated once, providing V ′y(y) in terms of θy(y) and constants

as follows

V ′y(y) =
1

c2 − d2

[
AV

(
µ2 + Z4

0

)
−AT Z2

0 − αd+
1

2
c µ (ωψ − ωφ cos θy)

]
(2.7)

where AT is the integration constant.

In the same fashion, the equations of motion coming from the variation of (A.1) along

the directions ψ and φ (in terms of y) can be integrated to express Ψ′y(y) and Φ′y(y) in

terms of θy(y) and constants as follows

Ψ′y(y) =
1

c2 − d2

[
4

sin2 θy
(Aψ +Aφ cos θy)− dωψ −

2 c κ µ

Z2
0

]
(2.8)

Φ′y(y) =
1

c2 − d2

[
4

sin2 θy
(Aψ cos θy +Aφ)− dωφ

]
(2.9)

where Aψ and Aφ are the integration constants.

The equation of motion coming from the variation of Z will give us the following

constraint for the constant Z0

AT AV Z
4
0 − A2

V Z
6
0 + c κ (α c − 2Aψ µ) = 0 . (2.10)

Substituting the expressions (2.6), (2.7), (2.8) & (2.9) into the first Virasoro con-

straint (A.3), we obtain the following expression for θ′y(y)

(θ′y)
2 =

4

(c2 − d2)2

[
c2 + d2

d

(
Aψ ωψ +Aφ ωφ − κAT + αAV

)
−AV Z2

0

(
AV Z

2
0 − 2AT

)
−c

2

4

(
ω2
ψ − 2ωψ ωφ cos θy + ω2

φ − 4κ2 +
8ακ

Z2
0

)
− c µAV (ωψ − ωφ cos θy)

− 4

sin2 θy

(
A2
ψ + 2Aψ Aφ cos θy +A2

φ

)
− µ2A2

V +
4 c κ µ

Z2
0

Aψ

]
. (2.11)

Using (2.11) it is possible to prove that the equation of motion coming from

the variation along the direction θ is satisfied. Finally, substituting the expres-

sions (2.6), (2.7), (2.8), (2.9) and (2.11) into the second Virasoro constraint (A.3), we

obtain the following algebraic relation

Aψ ωψ +Aφ ωφ − κAT + αAV = 0 . (2.12)
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From the analysis above it is clear that once we solve (2.11) we can substitute the solution

for θy(y) in equations (2.7), (2.8) and (2.9), in order to integrate them and obtain Vy(y),

Ψy(y) and Φy(y) respectively.

The next step in the direction of solving (2.11) is to introduce a new function, namely

u(y), as follows

u ≡ cos2

(
θy
2

)
. (2.13)

Using (2.11) we can write the differential equation for u(y)

(u′)2

2
+ W(u) = 0 with W(u) = − 2

(
β6 u

3 + β4 u
2 + β2 u + β0

)
(2.14)

where

β6 = −
c ωφ

(
c ωψ + 2AV µ

)
(c2 − d2)2

(2.15)

β4 =
1

4 (c2 − d2)2

[
−4

d

(
c2 + d2

) (
Aψ ωψ +Aφ ωφ − κAT + αAV

)
(2.16)

+ c2

(
ω2
ψ + 6ωφ ωψ + ω2

φ − 4κ2 +
8ακ

Z2
0

)
+ 4AV c µ (ωψ + 3ωφ)

+ 4µ2A2
V + 4AV Z

2
0

(
AV Z

2
0 − 2AT

)
−

16 c κ µAψ
Z2

0

]
β2 =

1

4 (c2 − d2)2

[
4

d

(
c2 + d2

) (
Aψ ωψ +Aφ ωφ − κAT + αAV

)
(2.17)

− c2

(
(ωψ + ωφ)2 − 4κ2 +

8ακ

Z2
0

)
− 4AV c µ (ωψ + ωφ)

− 4µ2A2
V − 4AV Z

2
0

(
AV Z

2
0 − 2AT

)
+

16 c κ µAψ
Z2

0

− 16AφAψ

]
β0 = −

(Aψ −Aφ)2

(c2 − d2)2
. (2.18)

Notice that u(y) ∈ [0, 1].

2.2 Boundary conditions

The next important step in order to solve equation (2.14) is to impose the correct boundary

conditions. Here we are interested in a string configuration that will extend between θ = π

which defines an equator of S3 and some other angle θ0 that will be determined dynamically

from the equation of motion for θ (or equivalently u). From the requirement of finiteness

for Ψ′y, Φ′y at θ = π we are led to the following first constraint

Aψ = Aφ . (2.19)

Requiring the function Ty from equation (2.6) to vanish, we fix the constant AV

AV =
d κ

Z2
0

. (2.20)
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Since the θ = π is an end point for the string configuration, we impose that θ′y and V ′y at

θ = π are zero and not just finite (as Ψ′y, Φ′y). Combining those two conditions with (2.10)

and (2.19) it is possible to fully determine the three remaining constants, namely AT , Z0

and Aφ. The expressions for the constants AT and Z0 are the following

AT =
1

2Z4
0

[
c µZ2

0 (ωψ + ωφ) + 2 d
(
κµ2 + κZ4

0 − αZ2
0

) ]

Z2
0 =

2 d2 κµ2

c µ
[
4Aφ − d (ωψ + ωφ)

]
− 2α c2 + 2αd2

. (2.21)

Finally substituting in the condition θ′y(π) = 0 the value of the constants AV , AT and Z0

we end up with a second order algebraic equation for Aφ with solutions that characterize

the classical string configurations of the giant magnon and the single spike

Aφ =
1

4µ

[
2 c α + dµ (ωψ + ωφ)

]
giant magnons (2.22)

Aφ =
c α

2µ
single spiky strings . (2.23)

Combining the values of the constants we have already determined and the Virasoro con-

straint (2.12), we calculate the values of κ2 for the giant magnon and the single spike

κ2 =
4α2 + µ2 (ωψ + ωφ)2

4µ2
giant magnons (2.24)

κ2 =
α2

µ2
single spike strings . (2.25)

It should be mentioned that taking the limit Z0 → ∞ from (2.21) (that corresponds to

the limit of zero deformation µ → 0) and using the corresponding expression for the Aφ
((2.22) for the magnon and (2.23) for the spike) we determine the value of the constant α.

Substituting this value in (2.22) and (2.23) we obtain the value of the constant Aφ in the

undeformed case that is analyzed in [14]

α = 0 ⇒ Aφ =
1

4
d (ωψ + ωφ) giant magnons (2.26)

α =
c µ (ωψ + ωφ)

2 d
⇒ Aφ =

1

4

c2 (ωψ + ωφ)

d
single spike strings . (2.27)

Substituting (2.19), (2.20), (2.21), (2.22) and (2.23) in the definitions for the coefficients

β0 (2.18) and β2 (2.17) of the potential W in (2.14) we conclude that

β0 = β2 = 0 (2.28)

while the coefficients β4 (2.16) and β6 (2.15) obey the following relation

β4 + β6 = −
4A2

φ

(c2 − d2)2 . (2.29)

– 6 –
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In the following, since the quantity c2−d2 is positive for the magnons and negative for

the spikes, we introduce the quantity v with value v ≡ d/c for the magnons and v ≡ c/d

for the spikes. Also we define Ω ≡ ωψ/ωφ.

In order to determine the dispersion relations for the giant magnons and the single

spikes we need to solve the differential equation (2.14), which after using the boundary

conditions reduces to

(u′)2

2
+ W(u) = 0 with W(u) = − 2u2 (β4 + β6 u) . (2.30)

2.3 Solution and some useful integrals

In this subsection we will discuss the solution of equation (2.30) with β4 > 0 and β6 < 0,

in such a way that β4 + β6 < 0 and (2.29) is satisfied.5 Since the internal sphere S3 is not

deformed by the presence of µ the solution is simple and given by the following

u(y) =
β4

|β6|
1

cosh2
(√
β4 y

) . (2.31)

In the calculation of the conserved quantities for the giant magnon and the single spike we

will need the following two definite integrals

I1 ≡
∫ +∞

−∞
u(y) dy =

2
√
β4

|β6|
(2.32)

I2 ≡
∫ +∞

−∞

u(y)

1− u(y)
dy =

2√
|β4 + β6|

arcsin

(√
β4

|β6|

)
. (2.33)

2.4 Angular amplitudes of the solution

In order to compute the dispersion relations for the giant magnon and the single spike it is

essential to construct and compute the angular amplitudes along the directions of ψ and

φ. For this we need to integrate equations (2.8) and (2.9) over y ∈ (−∞,∞). Rewriting

those equations in terms of the variable u through (2.13) and using (2.19) we arrive to the

following simple expressions

Ψ′y =
1

c2 − d2

(
2Aφ

1 − u
− dωψ −

2 c κ µ

Z2
0

)
(2.34)

Φ′y =
1

c2 − d2

(
2Aφ
1− u

− dωφ

)
. (2.35)

From the analysis of the previous subsection 2.3 we know that for the solution u = u(y),

given in (2.31), the integral of 1/(1 − u) diverges and therefore both ∆ψ and ∆φ are di-

vergent quantities. Motivated by the archetypical giant magnon dispersion relation of [11],

we introduce the following combination

∆ϕ1 ≡
∆ψ + ∆φ

2
=

∫ +∞

−∞

Ψ′y + Φ′y
2

dy (2.36)

that remains finite for the case of the giant magnons while it diverges for the case of the

single spikes.

5We do not consider the cases with β4 ≤ 0 since they do not satisfy the boundary conditions. See also

the discussion and analysis in [14] for the zero deformation case.
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3 Giant magnons

In this section we calculate the conserved charges for the giant magnon solution and con-

struct the finite linear combinations of those conserved quantities that will lead us to

the dispersion relation. The four conserved charges, coming from the derivatives of the

Polyakov action with respect to ∂τT , ∂τV , ∂τψ and ∂τφ, for the giant magnon solution

(that is characterized by the value (2.22) for Aφ) become

pT
T

=
1

2µΩ

√
4α2 Ω2 + µ2 (1 + Ω)2 ω2

ψ (3.1)

pV
T

=
α

µ2
(3.2)

pψ
T

=
(1 + Ω) ωψ

4 Ω
−

ωψ
2 (1 − v2) Ω

u(y) (3.3)

pφ
T

=
(1 + Ω) ωψ

4 Ω
−
µωψ + 2α v

2µ (1 − v2)
u(y) (3.4)

∆ϕ1 =
2αΩ + µ v (1 + Ω) ωψ

2 c µ (1 − v2) Ω
I2 . (3.5)

The four charges6 E , M, Jψ and Jφ that are obtained by integrating the momenta

in (3.1), (3.2), (3.3) and (3.4), respectively diverge because of the constant term and only

∆ϕ1 converges, since the integral in (2.33) converges. Taking inspiration from the disper-

sion relation of the undeformed giant magnon, it is possible to construct linear combination

of conserved quantities that will lead us to the following dispersion relation(√
E2 − µ2M2 − J1

)2
− J 2

2 = 4 sin2 ∆ϕ1

2
(3.6)

where we have used that

J1 = (Jψ + Jφ) & J2 = (Jψ − Jφ) . (3.7)

4 Single spikes

In this section we calculate the conserved charges for the single spike solution, in the same

fashion as we did for the giant magnons. The four conserved charges for the single spike

solution (that is characterized by the value (2.23) for Aφ) become

pT
T

=
α

µ v
(4.1)

pV
T

=
2α − µ v (1 + Ω) ωφ

2µ2 v
(4.2)

pψ
T

=
v ωφ

2 (1 − v2)
u(y) (4.3)

pφ
T

=
2α − µ v ωφ
2µ (1 − v2)

u(y) (4.4)

∆ϕ1 =
(1 + Ω) ωφ

2 d
I3 −

1

2 d

(
2α v

µ (1 − v2)
+ (1 + Ω) ωφ

)
I2 (4.5)

6Here and in the following we use the notation E ≡ E/T , M≡M/T , Jψ ≡ Jψ/T and Jφ ≡ Jφ/T .
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where I3 in a non-convergent integral.7 Taking inspiration from the dispersion relation of

the undeformed single spike in S3 of [18], it is possible to construct linear combinations of

conserved quantities that will lead us to the following dispersion relation

1

4

(
J 2

1 − J 2
2

)
= sin2

[
1

2
(E − µM−∆ϕ1)

]
. (4.7)

5 Discussion

In this paper we have derived semi-classical string solutions living in the Schrödinger Sch5×
S5 spacetime which is conjectured to be the gravity dual of the non-local CFT coming under

the name null dipole CFT. Our solutions are the counterparts of the giant magnon and

single spike solutions of the undeformed AdS5 × S5 background. This claim is supported

by the fact that in the limit where the deformation parameter µ→ 0 our solutions become

those of the giant magnon and single spike solutions of the original AdS5×S5 background.

The same is true when the string solution, and as a result the dual operator, does not

carry momentum along the X− direction, i.e. M = 0. The solutions presented here live

in an S3 subspace of the five-sphere along the directions of which the B-field has non-zero

components. We have explicitly checked that the submanifold we have used is a consistent

sector of classical string theory on Sch5 × S5.

The string solutions we have found are open string solutions which have infinite energy

and angular momentum. Their end points are situated on the equator of the three-sphere

S3 and for the case of the magnon their angle difference ∆ϕ1 is to be identified with

the momentum p carried by the excitation. In the case of the dyonic giant magnon the

dispersion relation is given by√
E2 − λ

4π2
L2M2 − J1 =

√
J2

2 +
λ

π2
sin2 p

2
(5.1)

while for the single spike is given by

J2
1 − J2

2 =
λ

π2
sin2

[
π√
λ
E − 1

2
LM − 1

2
∆ϕ1

]
(5.2)

where we have used that

µ =

√
λ

2π
L (5.3)

where L is the parameter defining the ?-product in field theory [29].

Based on (5.1) one may boldly conjecture that the exact in λ (in the strict infinite

J →∞ limit, of course) dispersion relation of a single particle excitation — see also (5.13)

7That integral is defined as

I3 ≡
∫ +∞

−∞

1

1− u(y)
dy (4.6)

and we need to eliminate it by a suitable linear combination of the other conserved quantities.

– 9 –



J
H
E
P
0
2
(
2
0
1
8
)
1
7
3

— in the infinite J →∞ limit will be given by8√
E2 − λ

4π2
L2M2 − J =

√
1 +

λ

π2
sin2 p

2
, J →∞. (5.4)

In order to be able to compare with the known field theory results, which are available only

at one-loop order, one should take the momentum of the excitation small, i.e. p = 2πn
J and

the coupling to scale in such a way that the quantity λ′ will also be small, i.e. λ′ = λ
J2 � 1

and expand (5.4) around the BMN-like reference state of [29]. Keeping only the linear

terms in the λ′ expansion we get

E =

(
1 + J +

λn2

2J2
+ . . .

)
·
(

1 +
λL2M2

8π2J2
+ . . .

)
, (5.5)

where the dots denote terms of order higher or equal to λ′2. This prediction should be

compared to the one-loop result obtained from the Baxter equation which reads [36]

∆ = E − (J + 1) =
λL2M2

8π2J
+

(
λn2

2J2
+
λLMn

πJ2
+
λL2M2

8π2J2
+

λ

J2
O(L4M4)

)
. (5.6)

Comparing (5.5) and (5.6) one easily sees that the string theory prediction correctly re-

produces the first, second and fourth term of the field theory result failing to reproduce all

other terms. Although (5.4) is conjectured to be exact in the λ expansion it is valid only

in the J →∞ limit. We now argue that all the terms in (5.6) that can not be reproduced

by the string prediction are actually suppressed by powers of 1√
J

. Indeed, in order to be

feasible to compare the string result with the field theory perturbative expansion the first

term in (5.6) should be small. For this to happen not only λ
J2 � 1 but also L2M2J ∼ 1.

This can be seen by multiplying and dividing the first term of (5.6) by J in order to ex-

press it terms of the effective coupling λ
J2 . Now the condition L2M2J ∼ 1 implies that the

quantity LM should scale as LM ∼ 1√
J

in the large J expansion. As a result all terms

beyond the second term in (5.6) are suppressed by powers of 1√
J

and as such can never be

obtained from (5.4) which is inherently valid in the infinite angular momentum limit. It

would be interesting to calculate finite size correction to the dispersion relation (5.4).

One is thus temped to interpret the solution with dispersion relation (5.4) as the

dispersion relation of single particle excitations which propagate with momentum p along

a certain pseudovaccum/reference state, the strong coupling dual of which is the BMN-like

point-like string of [29]. The latter resembles the BMN string of the undeformed AdS5×S5

background. In the supegravity limit (p = 0) our solution becomes point-like and identical

to the one presented in [29].

One can further speculate on the form of the field theory operators which are dual to

our string solutions. As discussed in [29], the Schrödinger/null-dipole CFT correspondence

8A more conservative and general but less predictive proposal would be to multiply the sin2 p
2

by a func-

tion depending on the coupling λ, as well as on the deformation parameter L, namely
√
E2 − λ

4π2 L2 M2 −

J =
√

1 + f(λ,L)λ

π2 sin2 p
2
. This function should have the asymtotics f(λ =∞, L) = 1 and should be com-

puted order by order in string or field theory perturbation theory.
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can have two equivalent descriptions. One can either consider closed string theory with

periodic boundary conditions on the Schrödinger background or, equivalently, open string

theory with twisted boundary conditions on the original AdS5×S5 background. On the field

theory side the first choice is to employ conformal operators whose elementary constituents

are the same as in N = 4 SYM and which transform under local gauge transformations.

Their form is as follows

O = tr Φ̂1 . . . Φ̂J (5.7)

where the hatted fields are those obtained after the Seiberg-Witten map and read

Φ(x) = P exp

∫ x

x+LΦ

dv A−(v) · Φ̂(x) · P exp

∫ x−LΦ

x
dv A−(v). (5.8)

The integration of the Wilson lines is along the light ray connecting the points x and x±LΦ

and LΦ = LRΦ
2 is half of the dipole length of the field Φ having R-charge RΦ. For more

details one can refer to [29]. The corresponding spin chain is periodic and as a consequence

dual to the closed string theory on the deformed background.

An alternative basis which is more convenient in describing the ground state on which

the giant magnon propagates is that of the light-ray operators defined by a number of fields

located along a light-ray, namely [38]

O(x1, . . . , xJ) = tr Z̃x1(0) . . . Z̃xJ (0) (5.9)

where we have defined the tilded fields as

Φ̃x(0) = P exp

∫ x

0
dv A−(v) · Φ̂(x) · P exp

∫ 0

x
dv A−(v). (5.10)

Notice that the field Φ̂(x)→ U−1(x)Φ̂(x)U(x) transforms under the gauge transformations

as a local field situated at the space-time point x while the field Φ̃x(0)→ U−1(0)Φ̃x(0)U(0)

transforms as a local field situated at the space-time point 0.

In this basis of operators the ground state dual to the BMN-like string of [29] will have

the form

O0 =

∫ J∏
i=1

dxi ψ0(x1, . . . , xJ)O(x1, . . . , xJ) (5.11)

for a certain wavefunction ψ0(z1, . . . , zJ). This state belongs to an SL(2) closed subsector

and its eigenvalues for an arbitrary number J of fields Z has been calculated in [29] by

using the Baxter equation in this sector. In what follows, we will assume that the (5.11)

has a well-defined limit when the number of scalar fields becomes arbitrary large, i.e. when

J →∞. Our conjecture is that the giant magnon solutions of this work will be dual to the

following field theory operator

Omagnon =

∫ ∏
i

dxi ψ0(. . . , xl−1, xl, xl+1 . . .)Op(. . . xl−1, xl, xl+1 . . .) (5.12)

where

Op(. . . xl−1, xl, xl+1 . . .) =
∑
l

eipl

(
. . . Z̃xl−1

(0)Φ̃xl(0)Z̃xl+1
(0)) . . .

)
. (5.13)
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As discussed below (5.10) the fields Φ̃x(0) transform under gauge transformations as if they

were all located at the same point 0. As a result (5.13) has striking similarity with the

magnon operator in N = 4 SYM where all fields are sitting at the same point too. Let us

also mention that l in (5.13) labels the position of the impurity Φ̃xl(0) in the long string

of Z̃xi(0)’s and that the space-time points xi of (5.13) used in the definition of the tilded

fields (5.10) are not necessarily ordered along the light-ray on which they are defined.

In this approach the scalar field Φ̂ is one of the scalars of the three-sphere S3 and is

sitting in the lth site of the infinitely long string of the Z’s. A couple of important comments

are in order. Firstly, the operator in (5.12) involves a single excitation Φ and thus is dual to

the string solution with J2 = Jψ−Jφ = 0 (see also (5.1)). The operator dual to the dyonic

magnon of (5.1) is a bound state of J2 scalar fields propagating coherently with momentum

p. Secondly, we should stress that unlike the pseudovacuum (5.11) the operator of (5.13)

does not belong to the SL(2) subsector and as a result for a generic impurity one can not use

the integrability related Baxter equation to calculate its dimension as has been done in [29]

for operators in the aforementioned closed sector. Furthermore, although not apparent the

operator of (5.13) contains infinitely many derivatives acting on the scalar fields which are

obtained upon Taylor expanding the Wilson lines that are present in the definition of the

tilded fields (5.10). Finally, in the limit where one switches the deformation off µ → 0

the operator (5.12) becomes the usual N = 4 magnon operator since the wavefunction ψ0

becomes a product of δ-functions at the same space-time point.

A number of important questions remain to be answered. It would be interesting

to calculate the dimensions of the operators in (5.12) from the field theory side using

integrability techniques or even using Feynman diagrams. Additionally, the precise nature

of the pseudovacuum on which the excitations propagate should be clarified. Furthermore,

it would be very interesting to see how integrability of the theory manifests itself in the

scattering of the giant magnon solutions we have found in this work. This may shed some

light to the validity of the interpretation of our solutions as single particle asymptotic

states whose world-sheet scattering matrix can be subsequently evaluated and compared

with the Drinfeld-Reshetikhin twisted S-matrix of the deformed theory. One might be

also be tempted to try to use the algebra of the theory in order to compute the exact in

the coupling dispersion relation and scattering matrix along the lines of [16]. Finally, it

would be nice to evaluate finite size correction to the dispersion relation of giant magnons

and spikes.
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A Polyakov action and a consistent truncation

The Polyakov form of the string action is given by the following standard expression9

SP = − T
2

∫
dτdσ

(√
−hhαβ gαβ − εαβ bαβ

)
(A.1)

9The string tension T is related to the ’t Hooft coupling as T =
√
λ

2π
.
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where

gαβ = GMN ∂αx
M ∂βx

N & bαβ = BMN∂αx
M ∂βx

N (A.2)

are the pullbacks of the metric and the B-field on the string worldsheet and the tensor

density εαβ is defined according to the convention ε01 = 1. With hαβ we denote the

worldsheet metric and we choose the conformal gauge where hαβ = ηαβ . The construction is

also supplemented by the Virasoro constraints, which are obtained by differentiating (A.1)

with respect to hαβ ,

GMN

(
∂τx

M ∂τx
N + ∂σx

M ∂σx
N
)

= 0 & GMN ∂τx
M ∂σx

N = 0 . (A.3)

The momentum pM that is canonically conjugate to the coordinate xM is given by the

following expression

pM =
∂L
∂ẋM

(A.4)

where ẋM ≡ ∂τxM .

The 10d Sch5 × S5 metric is given by the following expression [29, 33]

ds2 = −
(

1 +
µ2

Z4

)
dT 2 +

1

Z2

(
2dTdV + dZ2 − ~X2dT 2 + d ~X2

)
+ ds2

S5

B2 =
µ

Z2
dT ∧ (dχ+ ω) . (A.5)

The metric in the five-sphere is written as an S1-fibration over CP2

ds2
S5 = (dχ+ ω)2 + ds2

CP2 with ds2
CP2 = dη2 + sin2 η

(
Σ2

1 + Σ2
2 + cos2 ηΣ2

3

)
. (A.6)

where the Σi (i = 1, 2, 3) and ω are defined as follows

Σ1 ≡
1

2
(cosψ dθ − sinψ sin θ dφ) Σ2 ≡

1

2
(sinψ dθ + cosψ sin θ dφ)

Σ3 ≡
1

2
(dψ − cos θ dφ) and ω ≡ sin2 ηΣ3 . (A.7)

It can be explicitly checked that the following ansatz

T =κ τ + Ty(y) V =α τ + Vy(y) Z =Z0
~X =χ = 0

[3pt]θ = θy(y) ψ =ωψ τ + Ψy(y) φ =ωφ τ + Φy(y) η =
π

2
(A.8)

satisfies the equations of motion coming from (A.1) and the Virasoro constraints from (A.3).

While the equations of motion for ~X and η are trivially satisfied, special care should be

taken for the equation of motion for χ, since in order to be satisfied we need to use

equations (2.8) & (2.9). Equipped by the preceding analysis we set ~X = χ = 0 and η = π
2

in equations (A.5) and (A.6) and obtain the consistent truncation ansatz of (2.1) and (2.2).

Finally, we would like to stress that interchanging the ansatz for χ and ψ as follows

χ =
1

2
(ωψ τ + Ψy(y)) and ψ = 0 (A.9)

lead us to the same differential equations and dispersion relations.
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