
J
H
E
P
0
2
(
2
0
1
8
)
1
5
7

Published for SISSA by Springer

Received: January 15, 2018

Accepted: February 19, 2018

Published: February 26, 2018

Green-Schwarz automorphisms and 6D SCFTs

Fabio Apruzzi,a,b Jonathan J. Heckmanb and Tom Rudeliusc

aDepartment of Physics, University of North Carolina,

Chapel Hill, NC 27599, U.S.A.
bDepartment of Physics and Astronomy, University of Pennsylvania,

Philadelphia, PA 19104, U.S.A.
cJefferson Physical Laboratory, Harvard University,

Cambridge, MA 02138, U.S.A.

E-mail: fabio.apruzzi@unc.edu, jheckman@sas.upenn.edu,

rudelius@g.harvard.edu

Abstract: All known interacting 6D superconformal field theories (SCFTs) have a tensor

branch which includes anti-chiral two-forms and a corresponding lattice of string charges.

Automorphisms of this lattice preserve the Dirac pairing and specify discrete global and

gauge symmetries of the 6D theory. In this paper we compute this automorphism group

for 6D SCFTs. This discrete data determines the geometric structure of the moduli space

of vacua. Upon compactification, these automorphisms generate Seiberg-like dualities,

as well as additional theories in discrete quotients by the 6D global symmetries. When

a perturbative realization is available, these discrete quotients correspond to including

additional orientifold planes in the string construction.

Keywords: Conformal Field Models in String Theory, Discrete Symmetries, F-Theory,

Field Theories in Higher Dimensions

ArXiv ePrint: 1707.06242

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP02(2018)157

mailto:fabio.apruzzi@unc.edu
mailto:jheckman@sas.upenn.edu
mailto:rudelius@g.harvard.edu
https://arxiv.org/abs/1707.06242
https://doi.org/10.1007/JHEP02(2018)157


J
H
E
P
0
2
(
2
0
1
8
)
1
5
7

Contents

1 Introduction 2

2 Green-Schwarz automorphisms 5

2.1 N = (2, 0) theories 8

2.2 N = (1, 0) theories 9

2.2.1 A-type endpoints 11

2.2.2 D-type endpoints 13

2.3 Higgs branch tuning 14

2.4 RG flows 14

3 Tensor branch moduli space 15

3.1 Tessellating RT 18

3.2 Forbidden zones 20

4 Compactification 21

4.1 Descendants of the 6D Weyl group 21

4.1.1 4D theories 22

4.1.2 2D theories 23

4.2 Discrete quotients of a 6D SCFT 23

4.2.1 4D N = 2 SCFTs and generalized quivers 27

4.2.2 A-type SΓ theories 29

4.2.3 D-type SΓ theories 32

4.2.4 E-type SΓ theories 38

5 Conclusions 42

A Anomaly polynomial and Green-Schwarz redundancy 43

A.1 All Green-Schwarz terms via analytic continuation 45

A.2 Examples 47

A.2.1 Rank Q E-string theory 47

A.2.2 SO(10)-Sp(1) 49

A.2.3 SU(N1)-SU(N2) 50

A.2.4 Sp(1)-SO(10)-Sp(1) 50

– 1 –



J
H
E
P
0
2
(
2
0
1
8
)
1
5
7

1 Introduction

Six-dimensional supeconformal field theories (SCFTs) provide a higher-dimensional per-

spective on many aspects of lower-dimensional quantum field theories. A canonical exam-

ple of this phenomenon is the compactification of theories with N = (2, 0) supersymmetry

to four dimensions. Reduction on a T 2 yields a geometric perspective on S-duality for

N = 4 Super Yang-Mills theory, and compactification on a more general Riemann surface

leads to N = 2 generalizations of S-duality [1–4]. Similar considerations hold for compact-

ifications to lower-dimensional systems. The comparatively large number of 6D theories

with N = (1, 0) supersymmetry recently classified in references [5–7] (see also [8–10]) pro-

vides a vast generalization of this paradigm to lower-dimensional physical theories with

less supersymmetry. For earlier work on the construction and study of 6D SCFTs, see for

example [11–24]. Given this, it is important to isolate calculable quantities for these theo-

ries and their compactified lower-dimensional descendants. For a partial list of references

on this topic, see e.g. [25–70].

One of the robust “topological” elements of all (2, 0) theories is its Dirac pairing for

string charges. These pairings are classified by the Dynkin diagrams of the simply laced

algebras, a fact which is transparent in the IIB realization of these theories via compactifi-

cation on C2/ΓADE, with ΓADE an ADE discrete subgroup of SU(2). The resolution of this

orbifold singularity yields a geometric realization of the corresponding ADE root system,

and upon compactification on a T 2 yields an N = 4 Super Yang-Mills theory with ADE

gauge group.

The geometry of the root lattice also dictates the structure of the moduli space. For

example, letting W denote the Weyl group, the (2, 0) tensor branch moduli space decom-

poses into a positive cone R5T /W, where T is the number of N = (2, 0) tensor multiplets

(see e.g. [71]). This structure persists for lower-dimensional compactifications. For ex-

ample, the Coulomb branch of N = 4 Super Yang-Mills theory with gauge group G is

R6T /WG. As another example, compactification to two-dimensional theories provides a

natural analogue of this in which the Weyl group defines an orbifold CFT, with twisted

sectors given by its conjugacy classes (see e.g. [72, 73]).

In this paper we determine the analogous structure for all 6D SCFTs realized via F-

theory compactification. More precisely, we shall be interested in the discrete gauge and

global symmetries associated with the lattice of string charges.

The main tool at our disposal is the topological nature of the Green-Schwarz-Sagnotti-

West terms present in the tensor branch deformation of a 6D SCFT [74–77]. These cou-

plings take the schematic form:

L6D ⊃
∫
µi,gB

(i) ∧ Tr(F (g) ∧ F (g)), (1.1)

Here, B(i) is an anti-chiral two-form with i an index labelling the (1, 0) tensor multiplets,

and F (g) is a two-form field strength with g an index which runs over both dynamical

gauge fields as well as background fields. Such background fields are present when we

have a non-trivial background flavor symmetry, R-symmetry, or spin connection. Anomaly
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cancellation enforces a rather rigid structure on the coefficients µi,g. Even so, there is at

first some apparent freedom in how we specify their values. Indeed, the invariant quantity

which enters the anomaly polynomial eight-form is:

Mg,h = µTg,i

(
1

A

)ij
µj,h, (1.2)

where here, Aij is the Dirac pairing for the 6D string charges, which is interpreted geo-

metrically as the intersection pairing for the base of an F-theory compactification on an

elliptically fibered Calabi-Yau threefold.

This apparent ambiguity would at first seem to suggest more than one set of Green-

Schwarz terms will give a consistent 6D SCFT, but it is resolved once we impose the

further constraint that all effective strings have positive tension. Geometrically, this is the

condition that each effective divisor of the F-theory base has positive volume. Different

choices of the µ’s correspond to formally continuing some tensions to negative values. In

field theory terms, we are simply performing a mild version of “duality” in six dimensions.

The reason for the terminology is that in lower dimensions, these operations often appear

as Seiberg-like dualities, in accord with both the brane moves studied in reference [78] as

well as the geometric realization of such maneuvers considered in reference [79].

As an illustrative example, consider the case of N M5-branes probing the geometry

R⊥ × C2/ΓADE. Moving onto a partial tensor branch corresponds to keeping the M5-

branes at the ADE singularity, whilst moving them to separate points on the R⊥ factor.

The relative separation between the M5-branes defines a chamber of the partial tensor

branch. Moving the M5-branes through one another amounts to formally continuing some

vevs to negative values. This leads to a compensating shift in the Green-Schwarz terms,

as dictated by the ambiguity in specifying the µ’s of line (1.2).

Such ambiguities are captured in terms of linear maps on the lattice of string charges

Λ that preserve the intersection pairing Aij . These linear maps are automorphisms of the

lattice, or equivalently of the Dirac / intersection pairing. They form a group, which we

denote as Aut(Λ). Our goal in this work will be to determine Aut(Λ) for all 6D SCFTs

and to explain how it dictates the structure of lower-dimensional theories obtained from

compactification. In some sense this data is complementary to the defect group Λ∗/Λ of a

6D SCFT [44].

To compute Aut(Λ), it is convenient to use the F-theory realization of 6D SCFTs.

The main point is that all of the associated lattices Λ are readily available in this context,

and are specified by a configuration of P1’s which can simultaneously contract to zero size.

This is the condition that the intersection pairing A is positive definite. F-theory imposes

additional conditions on admissible A’s, since we must also be able to define a consistent

elliptically fibered Calabi-Yau threefold over a candidate base. In F-theory, we can also

blowdown curves of self-intersection −1 in a descending sequence until we are left with a

configuration of curves, none of which has self-intersection −1. The endpoint configuration

of curves also defines a lattice Λend. Its automorphism group is related to that of Λ as:

Aut(Λ) = Aut(Λend)×Aut
(
spQ

)
, (1.3)

– 3 –
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where Aut
(
spQ

)
is the automorphism group for the root lattice of spQ, and Q indicates

the number of blowdowns of −1 curves which must be performed to pass from Λ to Λend.

An additional property of Aut(Λend) is the existence of a maximal normal subgroup Wend,

which is a close analog of the Weyl group present for N = (2, 0) theories. In terms of this,

we find a further refinement:

Aut(Λend) = Oend nWend. (1.4)

The physical interpretation of this discrete data is as follows: first, we see that the

group Aut(Λ) contains a maximal normal subgroup W = Wend × Aut(spQ), which we

identify with discrete gauge symmetries of the system. Additionally, Oend is a candidate

global discrete symmetry. This is borne out by the fact that the base of the F-theory model

enjoys a group of discrete isometries specified by Oend. This is true both at the conformal

fixed point as well as in the resolved geometry. In the full F-theory model, this symmetry

may be broken because there could be a non-trivial elliptic fibration. Said differently, this

global symmetry depends on the Higgs branch moduli.

The structure of the tensor branch moduli space for N = (1, 0) theories can be far

more involved than it is for N = (2, 0) theories. For example, though there is still a notion

of a fundamental domain of moduli space for a theory with T tensor multiplets, the orbits

of this patch under the automorphism group sometimes do not produce a tessellation of

RT , leading to non-trivial forbidden zones. These different possibilities are conveniently

handled using the F-theory characterization of 6D SCFTs, where these moduli correspond

to resolution parameters of curves.

Though we leave a more complete analysis for future work, we can already point to the

ways in which the data of Aut(Λ) shows up in compactifications of 6D SCFTs. First of all,

the discrete gauge symmetriesW lead to Seiberg-like dualities once we compactify and flow

to another four-dimensional theory. One particularly interesting feature of 6D SCFTs is the

presence on the tensor branch of generalizations of quiver gauge theories with exceptional

gauge groups and “conformal matter.” We also consider the related structures for 2d

theories obtained from compactifying on a four-manifold.

The discrete global symmetries of the 6D theory also lead to several novel structures

upon further compactification. For example, adding a chemical potential for the back-

ground global symmetries of Oend yields a new theory which is the equivalent of introduc-

ing “discrete twists” in compactifications of class S theories (see e.g. [80–82]). Another

(and conceptually distinct) operation of a more stringy flavor is associated with formally

quotienting the theory by this symmetry. An interesting feature of this is that it also

provides a field theoretic characterization of various orientifold planes in compactifications

of F-theory, including the effects of O7+-planes (see e.g. [83–85]), along the lines proposed

in reference [86].

The rest of this paper is organized as follows: first, in section 2 we discuss in general

terms the automorphism group for a lattice of strings, and the physical data it captures

in compactifications of a 6D SCFT, and compute it for all 6D SCFTs. Section 3 studies

the structure of the tensor branch moduli space, as dictated by the automorphism group.

Section 4 presents some examples of how the automorphism group specifies defining data
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in compactifications of 6D SCFTs, including the realization of various orientifold planes.

We present our conclusions and directions for future research in section 5. Some additional

details on how to calculate the anomaly polynomial of a 6D SCFT via “analytic contin-

uation” in the rank of the gauge groups present on the tensor branch are presented in

appendix A.

2 Green-Schwarz automorphisms

One of the essential elements in all known interacting 6D SCFTs is the existence of a tensor

branch. On this branch, we have a collection of N = (1, 0) tensor multiplets. Recall that a

tensor multiplet contains a real scalar t, an anti-chiral two-form potential B
(−)
µν with anti-

self-dual field strength, and corresponding fermionic superpartners. The appearance of a

two-form potential signals the presence of strings, with tension controlled by the vevs of the

real scalars. The conformal fixed point corresponds to taking all t’s to zero simultaneously.

In a theory with T tensor multiplets, the Dirac pairing for string charges is a T ×T positive

definite symmetric matrix which acts on the lattice of string charges via a canonical pairing:

A : Λ→ Λ. (2.1)

This pairing also specifies the metric on moduli space for the t’s. Indeed, indexing the

multiplets by the variables i and j, the metric on moduli space takes the form Aijdt
idtj ,

in the obvious notation. In this coordinate system, the tension of a string is given by:

ti = Aijt
j . (2.2)

An important quantity in all 6D SCFTs is the associated anomaly polynomial. This

is a formal eight-form constructed from the background field strengths for the SU(2) R-

symmetry, the curvature of the spin connection, and possible flavor symmetries. In addition

to the one loop contribution from chiral modes, there are additional “tree level” contribu-

tions from the Green-Schwarz terms:

L6D ⊃
∫
µi,gB

(i) ∧ Tr(F (g) ∧ F (g)), (2.3)

where here we also include possible couplings to vector multiplets and their associated gauge

field strengths. The contribution to the eight-form anomaly polynomial takes the form:

I8D ⊃ µTg,i
(

1

A

)ij
µj,h Tr(F (g))2Tr(F (h))2. (2.4)

The anomaly polynomial determines, for example, the conformal anomalies of the 6D SCFT

(see e.g. [52, 87]). Another important feature of the anomaly polynomial is that when the

number of simple gauge group factors and tensor multiplets is equal, the µ’s are square

matrices and there is then a unique solution to the anomaly cancellation conditions [41, 52]

(for additional explicit calculations see also [88–90]). This can also be extended to all 6D

SCFTs by interpreting “unpaired tensors” as a generalized type of 6D conformal matter [6].
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In appendix A we present another method in which we formally introduce a possibly trivial

gauge group to pair with each such tensor multiplet.

The only quantity which actually enters into the anomaly polynomial is the

combination:

Mg,h = µTg,i

(
1

A

)ij
µj,h. (2.5)

Based on this, it is natural to ask whether there is more than one choice of µ’s available.

The main point is that once we demand all string tensions are positive, namely ti > 0, we

have well defined couplings to the chemical potentials defined by the anti-chiral two-forms.

As such, there is a unique choice for the µi,g in this patch of moduli space. Provided it

makes sense, we can ask what happens to the spectrum of strings if we now pass to formally

negative values of some of the ti’s. We clearly must seek a new basis of positive tension

objects, and correspondingly the values of the µi,g may change.

To determine the geometry of the tensor branch moduli space, we seek integral linear

transformations σji of the coefficients µi,g which act on the tensor index:

µi,g 7→ σjiµj,g, (2.6)

and preserve the form of the anomaly polynomial, i.e. they preserve the matrix Mg,h.

Equivalently, we seek all transformations σ such that:

σT · 1

A
· σ =

1

A
. (2.7)

The collection of all such σ’s forms a group. First of all, we have the identity element.

Second, if we have two transformations σ and σ′ which both preserve Mg,h, then their

composition will also preserve Mg,h. To establish the existence of an inverse element,

we first verify that σ−1 is an integral transformation. To see this, we first compute the

determinant of equation (2.7). This yields the relation:

(detσ)2 = 1, (2.8)

so detσ = ±1.

As such, the inverse of the integral linear map σ will also have integer entries, and so

σ−1 is also an integral transformation. Next, consider the inverse of equation (2.7),

σ−1 ·A ·
(
σ−1

)T
= A. (2.9)

Multiplication by σ on the left and σT on the right yields

A = σ ·A · σT . (2.10)

Taking the inverse,
1

A
=
(
σ−1

)T · 1

A
· σ−1, (2.11)

so the inverse is also an integral transformation preserving Mg,h.
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In fact, what we have just established is that the group of σ’s is also the automorphism

group for the quadratic form defined by Aij , the intersection pairing of the lattice Λ. This

is also known as the automorphism group of the lattice, and so we shall often write Aut(Λ)

to reflect this fact.

What then is the physical interpretation of this group action? In the case of the

ADE (2, 0) theories, there is a further decomposition we can perform:

Aut(Λ) = OADE nWADE, (2.12)

where WADE is the Weyl group i.e. the group of inner automorphisms of the ADE algebra,

and OADE is the group of outer automorphisms. This has a clean interpretation upon

compactification on torii.

The (2, 0) theories yield maximally supersymmetric gauge theories with ADE gauge

algebra. In this case, we can identify WADE with a collection of discrete gauge transforma-

tions, and OADE as possible ways to twist the theory to reach non-simply laced algebras

in lower dimensions.

In the more general case of (1, 0) theories, we do not have the luxury of a lower-

dimensional gauge theory when we compactify on torii. Instead, we must make do with

the structure already apparent in six dimensions. Along these lines, we see that on the

tensor branch, the discrete gauge transformations must flip the sign of at least one tensor

branch scalar ti. These are the natural analogs of the Weyl group transformations in the

(2, 0) theories. Indeed, they correspond to redundancies in our description of the tensor

multiplets, so we interpret these as discrete gauge symmetries.1 Other transformations

which leave all moduli positive are the natural analog of the outer automorphisms, and

correspond to global symmetries.

From the perspective of F-theory compactification, it is immediate that the data of

the global symmetries is indeed intrinsic to a given SCFT. The reason is that we specify

a base as a resolution of an orbifold of the form C2/ΓU(2) for Γ a discrete subgroup of

U(2). The discrete isometries of this geometry are the global symmetries. Indeed, even

after resolving the singularity, these isometries persist, and in the (2, 0) case are what we

identify with the outer automorphisms of the corresponding Lie algebra.

More precisely, such isometries of the base are really just candidate global symmetries.

Indeed, in a full F-theory compactification we often must specify a non-trivial elliptic

fibration to the model. Geometrically, a discrete isometry of the base need not extend

to the full Calabi-Yau threefold. In physical terms, the elliptic fibration is controlled by

the Higgs branch moduli. So, we see that candidate global symmetries will depend on

this data.

Having argued that we can have a discrete global symmetry, it is natural to ask whether

we can gauge it, or whether it is actually anomalous (unless supplemented by additional

degrees of freedom). This sort of gauging operation does not affect the local structure of

1One might ask whether these are examples of higher-form discrete symmetries in the sense of refer-

ence [91]. One way to see that they are “standard” discrete symmetries rather than higher-form symmetries

is that on a topologically trivial background spacetime, such symmetries are abelian, whereas our symmetry

group is often non-abelian.
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correlation functions, and instead leads to global distinctions in the spectrum of extended

objects in the theory. It would be interesting to evaluate the corresponding ’t Hooft

anomalies, but this is beyond the scope of the present paper.

A related though different operation involves quotienting by such a symmetry, as one

would do in an orientifold construction. In such cases, we expect a (2, 0) theory to become

a (1, 0) theory. To illustrate this point, consider the A-type (2, 0) theories. These theories

possess a Z2 outer automorphism which acts by reflection on the nodes of the Dynkin

diagram. In string theory terms, if we attempt to quotient by this symmetry, we need

to introduce an orientifold plane. This automatically breaks half of the supersymmetry,

yielding a (1, 0) theory instead. Additional branes must also be included to locally satisfy

Gauss’ law constraints. This is consistent with the fact that there is no way to perform

a “discrete quotient” of a (2, 0) theory which is also N = (2, 0) supersymmetric. Instead,

such a quotient yields a (1, 0) theory. We study this question in much greater detail in

section 4 where we consider discrete quotients of compactified theories.

Our plan in the remainder of this section will be to compute Aut(Λ) for all 6D SCFTs.

As a warmup, we first briefly review the case of the (2, 0) theories, where this data is

captured by the automorphisms of the corresponding ADE root lattice. In the case of the

(1, 0) SCFTs, there are analogous results, including a generalization of a Weyl group as

well as outer automorphisms. There are, however, some important differences in the case

of non-generic Higgs branch moduli, a point we return to in section 2.3.

2.1 N = (2, 0) theories

In this section we consider the automorphism group for the (2, 0) theories. In this case,

the Green-Schwarz terms of equation (2.3) involve the sp(4) R-symmetry background field

strength and curvature from the spin connection. Using the classification of (2, 0) the-

ories via discrete subgroups ΓADE ⊂ SU(2) and the corresponding IIB backgrounds on

R5,1 × C2/ΓADE, we also know that the (1, 0) tensor branch is geometrically realized as

the resolution of these orbifold singularities. Indeed, in the resolved geometry, we have a

collection of P1’s which intersect according to the ADE Dynkin diagram. The automor-

phism group for each intersection form is simply the automorphism group of the ADE

root lattice. All of the automorphism groups take the form of a semi-direct product of

the outer automorphisms of the algebra with the inner automorphisms associated with the

Weyl group:

Aut(ΛADE) = OADE nWADE. (2.13)

In particular, the outer automorphisms for each of the ADE root systems are, for N > 1

and M > 4:
A1 AN D4 DM E6 E7 E8

OADE 1 Z2 S3 Z2 Z2 1 1
(2.14)

where S3 is the symmetric group on three letters.

The moduli space of the tensor branch is given by R5T /WADE, where the factor of

five is due to the fact that we are dealing with (2, 0) rather than (1, 0) tensor multiplets.

Additionally, compactification on a manifold can be accompanied by a twist by an outer

– 8 –
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automorphism OADE, possibly composed with an element of WADE. Let us note that

this operation can be understood field theoretically as activating a background chemical

potential for the discrete flavor symmetry. This is a distinct notion from the operation of

“discrete quotient” which we shall encounter in section 4.

2.2 N = (1, 0) theories

In this subsection we compute the Green-Schwarz automorphisms of all 6D SCFTs. At this

point, it is convenient to use the geometric language of F-theory compactification, though

we stress that all of this analysis can be carried out in purely field theoretic terms.

In the F-theory realization of 6D SCFTs, we introduce a non-compact Kähler surface B

with some configuration of simultaneously collapsing P1’s. We obtain a consistent F-theory

background when we can also define an elliptically fibered Calabi-Yau threefold with base

B. The homology lattice of the base determines the lattice of string charges:

Hcpct
2 (B,Z) = Λ, (2.15)

and the intersection pairing corresponds to the Dirac pairing. References [5, 7] provide a

classification of all such bases, as well as all possible elliptic fibrations over a given base. For

our present purposes, the main point is that each such base B is generated by starting with

an “endpoint configuration” of curves which contains no −1 curves, and then performing

some prescribed number of blowups. There is a minimal number of blowups (which may

be zero) necessary to define a consistent elliptic fibration, but additional blowups are

sometimes possible.

Although the specific geometry depends on the particular location of each such blowup,

the structure of the lattice of string charges is insensitive to this data [44, 92]. Indeed, given

the endpoint configuration Bend with lattice Hcpct
2 (Bend,Z) = Λend, blowing up Q times

yields the lattice:

Λ = Λend ⊕ Z⊕Q, (2.16)

This follows from the fact that for a curve Σ, blowing up the curve generates a shift in the

divisor class as:

[Σ] 7→ [Σ]− E, (2.17)

with E the exceptional divisor class. From this perspective, the automorphism group splits

into two pieces: the contribution from Λend and the contribution from Z⊕Q. In most cases,

there is an upper bound on the value of Q dictated by the choice of endpoint configuration.

For example, some configurations cannot be blown up at all, the E8 lattice being one such

case [5].

One important consideration is that this linear change of basis for the lattice can

change the intersection pairing. Along these lines, consider two lattices Λ and Λ′ which are

related to each other by a change of basis, as indicated for example by line (2.17):

L : Λ′ → Λ. (2.18)

The intersection pairing of the two lattices are related as

LT ·A · L = A′. (2.19)

– 9 –
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Automorphisms of the two lattices are related via the transformation

L−1 · σ · L = σ′, (2.20)

in the obvious notation. As an example, take Λ to be the configuration of two −1 curves

which do not intersect, and Λ′ to be the 1, 2 configuration. The lattice transformation L is

L =

[
1 −1

0 1

]
. (2.21)

Taking into account this structure, we see that the automorphism group is not sensitive

to the locations of the various blowups. Consequently, we learn that for any choice of

blowups of an endpoint configuration, the group Aut(Λ) is given by the product:

Aut(Λ) = Aut(Λend)×Aut(Z⊕Q). (2.22)

For the factor coming from the rank Q E-string theory, we find that the automorphism

group is identical to that for the root system of the Lie algebra sp(Q), where in our notation

sp(1) ' su(2). Said differently, this is just the Weyl group of the root system.

Let us discuss each of these factors in turn. In the case of Aut(Z⊕Q), the group is given

by possible flops of each individual curve, as well as permutations amongst these curves.

All told, the automorphism group for this part is:

Aut(Z⊕Q) = SQ n (Z2)Q . (2.23)

As already remarked, this is also the Weyl group for the Lie algebra sp(Q). Indeed, if we

consider a particular sequence of blowups, we reach the configuration of curves:

1, 2, . . . , 2︸ ︷︷ ︸
Q

, (2.24)

Here and in what follows, the notation a, b denotes a pair of curves of self-intersection −a
and −b that intersect at one point. We note that this is also the configuration of curves

used to realize the rank Q E-string theory. Upon compactification on a circle, it is well

known that the rank Q E-string theory reduces to an sp(Q) 5D gauge theory with seven

flavors. At the conformal fixed point, this enhances to an E8 flavor symmetry.

Consider next the contribution from the factor Aut(Λend). In this case, it is convenient

to make use of the explicit classification of endpoint configurations given in reference [5].

These take the form of generalized A- and D-type Dynkin diagrams, while the E-series still

involves only the standard −2 curves:

A-type: n1, . . . , nl (2.25)

D-type: 2,
2
m1 . . . , nl (2.26)

E6: 2, 2,
2
2, 2, 2 (2.27)

E7: 2, 2,
2
2, 2, 2, 2 (2.28)

E8: 2, 2,
2
2, 2, 2, 2, 2. (2.29)
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In the last three cases, we simply have the automorphism group of the corresponding

E-type root system. We therefore confine our attention to the A- and D-type endpoint

configurations. Most of these computations are a straightforward application of symme-

tries manifest in the configuration, and we have verified this structure using the software

package MAGMA.

2.2.1 A-type endpoints

From reference [5], we know that all the A-type end points can be described by a collection

of curves of the following form:

M1N1 . . .MaNa . . .MalNal , (2.30)

where Ma = {2 2 . . . 2} is a sequence of ma curves of self-intersection −2, and Na =

{n1 n2 . . . nNa} is a sequence of curves with ni > 2 for all i. Here, the notation indicates

that we have a collection of curves of self-intersection −n, which intersect pairwise at a

single point, as indicated by the ordering of the sequence. In fact, from the classification

results of [5], we know that l ≤ 3.

To determine the structure of the automorphism group, and in particular its action

on the tensor branch moduli space, we observe that the automorphism group will be a

subgroup of that for the A-type configuration with just −2 curves. In this sense, all

we really need to do is track the automorphisms which survive when we change from a

configuration of −2 curves to one where some curves in the endpoint are replaced by −n
curves with n > 2.

Along these lines, we find that all of the Weyl reflections for the −2 curves naturally

survive. Additionally, for a −2 curve with class α which intersects a −n curve with class

β, the change under Weyl reflection is again:

α 7→ −α and β 7→ β + α. (2.31)

What then becomes of the remaining Weyl reflections which act on the −n curves? The

basic point is that we are restricted to a very limited class of reflections in which all curves

simultaneously transform.

Now, by inspection the automorphism group always contains the element −Id. This

element is an order two element which acts on the divisor classes as:

αi 7→ −αi. (2.32)

The symmetries of the endpoint configuration dictate whether this is an element of the

normal subgroup of Aut(Λ) which generates discrete gauge symmetries. To see why, we

observe that in the case where the configuration of curves enjoys a reflection symmetry, this

element is a composition of an outer automorphism and the discrete gauge transformation:

αi 7→ −αT+1−i, (2.33)

which acts on all of the divisor classes. When there is no such reflection symmetry, the

map −Id is already a discrete gauge transformation. Note that for both −Id as well as
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the map of line (2.33), the map is an order two element. Regardless of whether we have a

symmetric or asymmetric endpoint configuration of curves, the analog of the Weyl group

for an A-type endpoint configuration is then given by:

Z2 n (Sm1+1 × . . . Sml+1) (2.34)

where in the case of an asymmetric endpoint configuration, this is actually a direct product,

and in the case of a symmetric endpoint configuration, the Z2 group action is dictated by

the map of line (2.33). Note that in the latter case, Aut(Λ) is a semi-direct product

involving this Z2 reflection symmetry.

It is also helpful to explicitly spell out the various types of groups we encounter

for A-type lattices. The automorphism group of the endpoint configuration divides into

four cases:

• When the endpoint is a single curve,

Aut(Λend) = Z2. (2.35)

• When the endpoint is a sequence of m curves of self-intersection −2, we have

Aut(Λend) = Z2 n Sm+1, (2.36)

where Sm+1 is the symmetric group on m+ 1 letters.

• When the endpoint configuration is symmetric but contains at least one curve of

self-intersection −x for x ≥ 3, we have:

Aut(Λend) = Z2 n (Z2 n (Sm1+1 × . . . Sml+1)). (2.37)

Here, the product over symmetric groups just involves the Weyl groups of each block

of −2 curves. The middle Z2 factor acts as in line (2.33). Note that in contrast to the

case of configurations of all −2 curves, the number of automorphisms is drastically

smaller. This is a consequence of the fact that the notion of “Weyl reflection” is far

more restrictive for curves which do not have self-intersection −2. Finally, the overall

semi-direct product by the leftmost Z2 factor acts on the configuration of curves by

left/right reflection.

• In the case where the endpoint configuration does not possess such a Z2 reflection

symmetry, we obtain a quite similar answer for the automorphism group:

Aut(Λend) = Z2 × (Sm1+1 × . . . Sml+1). (2.38)

Let us note that in all cases, the automorphisms of the endpoint configuration takes

the general form

Aut(Λend) = Oend nWend, (2.39)

where Oend are possible automorphisms in the diagram describing the endpoint configu-

ration of curves, and Wend is a normal subgroup of Aut(Λend) naturally generalizing the

Weyl group. To illustrate the above notions, let us now turn to some explicit examples.
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Examples. As a first example, consider the endpoint configuration of curves:

7232222. (2.40)

There is no left/right symmetry, and we have m1 = 1,m2 = 4, so we get

Aut(Λend) = Z2 × S2 × S5. (2.41)

Next, consider the endpoint configuration:

322223, (2.42)

which enjoys a Z2 reflection symmetry. Here, we have m1 = 4 so we get

Aut(Λend) = Z2 n (Z2 n S5) . (2.43)

Finally, consider the endpoint configuration:

2232322. (2.44)

for which we have

Aut(Λend) = Z2 n (Z2 n S3 × S2 × S3), (2.45)

and the Z2 associated with reflection exchanges the two S3 factors.

2.2.2 D-type endpoints

Consider next the D-type endpoint configurations. Much as in the case of the generalized

A-type configurations, all of the automorphisms are inherited from the automorphisms of

the D-type configuration with just −2 curves.

Recall that in the case of the DN Dynkin diagram with −2 curves, the automorphism

group is:

Aut(DN ) = ODN
nWDN

, (2.46)

where for N ≥ 5, the outer automorphism group is Z2, and for N = 4 it is S3. The Weyl

group automorphisms are given by:

WDN
= SN n (Z2)N/Z2. (2.47)

here, the overall quotient by Z2 is from the kernel of the map (Z2)N → Z2 given by

multiplication of all factors.

Proceeding now to the more general endpoint configurations, we calculate the auto-

morphism group by recognizing that all automorphisms are given by appropriate subgroups

of the Aut(DN ) series. The key point is that the diagram breaks up into pieces partitioned

by the −n curve(s) with n > 2. The only reflection on such curves is given by the long

element of the DN Weyl group, and it acts via a Z2 group action. Additionally, we see that

the rest of the diagram now breaks up into at most one D-type diagram for −2 curves, and

an A-type Dynkin Diagram. Generically, these discrete gauge symmetries decompose as

WD−type = Z2 n (WDN
×WAM

) (2.48)
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where N and M denote the number of −2 curves present in the configuration. For a smaller

number of curves, additional possibilities are present. For example, we can consider the

D4 Dynkin diagram as well as the endpoint where the central curve is a −3 curve instead.

Again, we observe that in all cases, the automorphisms of the endpoint configuration

take the general form:

Aut(Λend) = Oend nWend, (2.49)

where Oend are possible automorphisms in the diagram describing the endpoint configura-

tion of curves, andWend is a normal subgroup of Aut(Λend) which is a natural generalization

of the Weyl group.

2.3 Higgs branch tuning

Our discussion so far has focused on the structure of the tensor branch moduli space

and the automorphism group for the lattice of string charges. In the context of physical

applications, it is important to understand the interplay between the tensor branch and

Higgs branch moduli. In geometric terms, these correspond to Kähler moduli and complex

structure moduli, respectively. More precisely, the complex structure are joined by the

intermediate Jacobian of the Calabi-Yau in determining the structure of the Higgs branch

moduli space.

Additional complex structure moduli can appear through suitable tuning of coefficients

in the Weierstrass model. For example, in the case of a configuration of −2 curves realizing

an A-type Dynkin diagram, we can consider various fiber enhancements, leading to a rich

structure of possible 6D SCFTs [7]:

[suk0 ]
suk1
2 ,

suk2
2 , . . . ,

sukT−1

2 ,
sukT

2 [sukT+1
], (2.50)

where we have indicated the Lie algebra over each −2 curve, as dictated by the singular

elliptic fibrations. To the left and the right, we have also indicated non-compact flavor

branes. Anomaly cancellation requires 2ki = ki−1 + ki+1 for all of the gauge groups sup-

ported on compact −2 curves.

Now, depending on the nature of our fiber enhancements, we see that the Z2 auto-

morphism corresponding to left/right reflection on the configuration of −2 curves may no

longer be a symmetry of the geometry. Indeed, in the above example we would also need

to require ki = kT+1−i for such a reflection symmetry to hold. We take this to mean that

some of the candidate automorphisms originating from the lattice of string charges may be

broken by Higgs branch moduli.

2.4 RG flows

It is also natural to study the behavior of the automorphism group under RG flows from

one conformal fixed point to another. In a 6D SCFT, supersymmetry preserving flows

are limited to deformations triggered by background operator vevs [57] (see also [88, 93]).

Under a tensor branch flow, we decompactify some of the curves of the base. Doing so, we

see that we pass to a sublattice:

ΛIR ⊂ ΛUV. (2.51)
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Even so, we cannot quite say that the automorphisms of one are always contained in the

other. Indeed, we can already see there could be emergent discrete gauge symmetries in the

infrared. To illustrate, consider the case of the 6D SCFT with endpoint 3, 3. After perform-

ing one blowup, we reach a consistent F-theory base, namely 4, 1, 4. The automorphism

group of this configuration is:

Aut(Λ4,1,4) = (Z2 n Z2)× Z2. (2.52)

We can also study the automorphism group obtained from decompactifying one of our

curves. Due to the symmetry of the configuration, it is enough to consider the decompact-

ification of either a −4 curve, or a −1 curve. In these two cases, we reach the automor-

phism groups:

Aut(Λ4,1) = Z2 × Z2 (2.53)

Aut(Λ4⊕4) = Z2 n (Z2 × Z2) . (2.54)

Whereas the group structure of the first case is directly inherited from that of the original

UV theory, the case of two disconnected −4 curves is not of this type. For example, when

we have two disconnected −4 curves, we can independently reflect these two curves. This

is not possible in the original 4, 1, 4 theory.

More generally, we see that when we decompactify a curve of an endpoint configuration,

there is a strict containment relation for the automorphism groups of the endpoints:

Aut(Λend
IR ) ⊂ Aut(Λend

UV). (2.55)

If, however, we decompactify a curve which is only present after blowing up an endpoint,

then we must entertain the possibility of emergent discrete gauge symmetries in the in-

frared.

Consider next the case of Higgs branch flows. In these cases, we see that if we start

at a tuned point on the Higgs branch, then a flow to a generic point will land us on a

fixed point which may enjoy different symmetries. For instance, the theory shown in (2.50)

will not generally have a left-right reflection symmetry when the fibers are tuned to give

non-trivial gauge groups. However, a Higgs branch flow to an infrared theory with trivial

Higgs branch yields a (2, 0) theory, which does have a Z2 reflection symmetry.

More generally, we see that in a Higgs branch flow to an infrared theory with trivial

Higgs branch, there is a match between the automorphisms of the base lattice, and the

automorphisms of the physical theory. This is simply because in such situations, the

minimal resolution of the endpoint configuration of curves dictates the resolved geometry

of the base, and no tuning of complex structure moduli takes place in this procedure.

3 Tensor branch moduli space

Starting from one choice of consistent vevs for the ti, it is natural to ask whether there is

a group action akin to what is found for the (2, 0) theories. This turns out to be far more

subtle in the case of (1, 0) theories, and we will encounter various generalizations which
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depend both on the nature of the blowups and how we identify the Weyl group and the

outer automorphisms of the system.

There are various ways in which we can decompose the automorphism group into a

collection of “outer automorphisms” and a Weyl group action, to write

Aut(Λ) = OH nWH . (3.1)

Here, we have included a subscript H to remind us that the particular choice of decompo-

sition we take will be dictated by the ambient values of the complex structure moduli.

Geometrically, the group action OH corresponds to isometries in the base of the F-

theory model. Since all such bases are resolutions of orbifold singularities of the form

C2/ΓU(2) for Γ a finite subgroup of U(2), the behavior of this group action can be studied

by working in the asymptotic limit far from the actual singularity. The group action WH

instead parameterizes redundancies in our resolution, namely they generate discrete gauge

transformations.

Let us now turn to the structure of the tensor branch moduli space. Since we are

always considering blowups of a singularity of the form C2/ΓU(2) for Γ a finite subgroup

of U(2), the divisors αi with intersection pairing αi ∩ αj = −Aij define generators for the

Mori cone of effective divisors, which we write as:2

CMori = {tiαi|ti ≥ 0}. (3.2)

Dual to the Mori cone is the Kähler cone:

CKähler = {tiωi|ti ≥ 0}, (3.3)

where we have introduced two-forms ωi ∈ H1,1
cpct(B) with compact support which satisfy:∫

αj

ωi = δij . (3.4)

The Kähler form for the base B is:

J = tiω
i. (3.5)

Observe that the inverse of the intersection pairing appears via:

(A−1)ij = −
∫
B
ωi ∧ ωj . (3.6)

Alternatively, we can introduce generators:

ωi = Aijω
j , (3.7)

so we can instead present the Kähler form as:

J = tiωi. (3.8)

2We thank A. Grassi and D.R. Morrison for helpful discussions on this point.
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The line element for the metric on the tensor branch moduli space is given by:

Aijδt
iδtj =

∫
B
δJ ∧ δJ. (3.9)

The Kähler cone is specified by ti ≥ 0, whereas the Mori cone has ti ≥ 0.

In physical terms, we need to demand that all string tensions are non-negative, namely

ti ≥ 0. We refer to this as the fundamental domain for the moduli space:

D0 = {ti ≥ 0}. (3.10)

Observe that our positive definite matrix Aij has inverse (A−1)ij with all entries positive.

This in turn means that if ti ≥ 0 for all i, we also have:

ti = (A−1)ijtj ≥ 0, (3.11)

so in this sense, the physical moduli space is fully specified by positivity in the Kähler cone.

This is somewhat different from the F-theory construction of supergravity theories, where

both positivity in the Kähler cone and Mori cone must be simultaneously imposed [94].

Consider next the group action of Aut(Λ) on the physical theory. In an “active frame,”

we interpret the ωi as elements of the vector space H2
cpct(B,R) which transform as:

ωi 7→ σjiωj . (3.12)

A complementary picture which is most convenient for our present purposes is to instead

adopt a “passive frame” in which the coordinates themselves transform, namely:

tj 7→ (σ−1)ijti, (3.13)

with the transpose σT acting on the dual coordinates ti. Consequently, the chambers of the

physical moduli space are swept out by the orbits of D0 under the group action by Aut(Λ).

Now in the case of the (2, 0) theories, acting by the automorphism group leads to a

tessellation of the extended moduli space. For example, the physical moduli space of vacua

is given by

M(2,0) theory = R5T /W. (3.14)

Viewed as a (1, 0) theory, we can write the tensor branch moduli space as: RT /W. Indeed,

starting from D0, we produce all of the other chambers through the orbits of the Weyl group

action. In this description, the group OADE specify discrete isometries of the chamber. That

is, they should be viewed as a discrete global symmetries of the system.3

Turning next to the (1, 0) theories, we can now ask a quite similar question concerning

the orbit of the discrete gauge symmetries WH , as defined in line (3.1). In particular, we

would like to know whether we can expect to tessellate the moduli space, or whether there

are forbidden regions of RT which appear in no orbit.

3One might ask whether it is possible to gauge these discrete symmetries, thus generating new examples

of (2, 0) theories. The spectrum of local operators would be the same, but the spectrum of extended objects

would be different. We do not appear to have this freedom in string constructions, so this symmetry would

appear to be anomalous in the field theory. It would nevertheless be interesting to verify this explicitly.

– 17 –



J
H
E
P
0
2
(
2
0
1
8
)
1
5
7

To aid us in our analysis of this question, we note that the existence of such phenomena

is fully determined by the automorphism group. Indeed, even though the actual geometry

of the moduli space will depend on the precise decomposition Aut(Λ) = OHnWH , the OH
never flip the signs of the Kähler moduli; they act as discrete isometries on the fundamental

domain D0. Consequently, they simply map the chamber back to itself, and we are free to

consider the full group action by Aut(Λ) in determining the orbit of D0.

Suppose, then, that we have two lattices Λ and Λ′ related as in line (2.18):

L : Λ′ → Λ. (3.15)

so that automorphisms of the two lattices are related via the transformation:

L−1 · σ · L = σ′. (3.16)

Precisely because each automorphism maps to another, we see that the corresponding

group action on RT will be related by conjugation by L, viewed now as a linear map:

L : RT → RT . (3.17)

By construction, this linear map has trivial kernel i.e. it is invertible.

Our plan in this section will be to analyze the variety of phenomena which we can

expect in the extended Kähler cone. First, we establish that in theories where the endpoint

is either trivial or given by just a collection of −2 curves, there is a tessellation of RT via

orbits of the fundamental domain. In all other cases, however, we find that the resulting

structure of moduli space is more intricate. We find that when the endpoint contains at

least one curve of self-intersection −n for n > 2, that there are “forbidden zones” in RT

develop which cannot be reached by any element of W.

3.1 Tessellating RT

In this section we study tensor branches which produce a tessellation of RT via orbits of

D0 under the group action of Aut(Λ). To begin, we suppose that we have managed to find

a lattice which admits a tessellation of RT . In this situation, the tensor branch moduli

space will be

M = RT /W, (3.18)

in the obvious notation. Next, suppose that we have another lattice Λ′ related to this one

by a change of basis:

L : Λ′ → Λ. (3.19)

Since the generators of the two automorphisms map to one another, we know that:

Aut(Λ) ' Aut(Λ′), (3.20)

and moreover, the orbits of the fundamental domains D0 and D′0 also map to one another.

Consequently, the orbits also match, and a tessellation for one theory determines a tessel-

lation for the other. Note that in general, however, the resulting orbits could have quite

different structure.

– 18 –



J
H
E
P
0
2
(
2
0
1
8
)
1
5
7

We now show that all theories with trivial endpoint or an endpoint with just −2 curves

produce a tessellation of RT . Consider first the case of a trivial endpoint. After T blowups,

we always reach the same automorphism group:

Aut(Z⊕T ) = ST n (Z2)T . (3.21)

Now, in the case of independent blowups, namely a collection of −1 curves which do not

intersect, the intersection form is proportional to the identity matrix. In this case, the ST
factor acts as an outer automorphism, and is clearly responsible for permuting the different

−1 curves. For this theory of T independent E-strings, the tensor branch moduli space is

MT E-strings = R/Z2 × . . .× R/Z2︸ ︷︷ ︸
T

, (3.22)

where the ST acts as a permutation on the different factors. This clearly yields a tessella-

tion of RT .

Contrast this with the case of the 1, 2, . . . , 2 configuration, in which there are no outer

automorphisms. In this situation, all of the automorphisms are discrete gauge symmetries,

and the Weyl group is just that of the Lie algebra spT . We again get a tessellation of

moduli space, but the structure of the moduli space is quite different:

MRank T E-string = RT /W(spT ). (3.23)

Additional examples include all of the conformal matter theories. For example, the

theories with G×G global symmetry are given by the configurations of curves:

DN ×DN : 1 (3.24)

E6 × E6: 1, 3, 1 (3.25)

E7 × E7: 1, 2, 3, 2, 1 (3.26)

E8 × E8: 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 1. (3.27)

In all of these cases, we expect the left/right symmetry to actually be a discrete gauge

symmetry of the tensor branch. To see why, it is helpful to consider other blowup patterns,

such as the configurations of curves:

1,
1
4, 1 and 1,

1
5
1
, 1. (3.28)

These respectively admit an S3 and S4 symmetry. However, these are not really global

symmetries, since they can be viewed as permutations present in the theory of T − 1

independent E-strings in which the common E8 flavor symmetry has been gauged. Indeed,

this interpretation is compatible with the fact that there is no normal subgroup W of

Aut(Λ) such that Aut(Λ)/W is given by these would be “outer automorphisms”.

Consider next the case of endpoints with just −2 curves. If we perform no blowups,

then we simply have the standard ADE Weyl group action on RT . We can also perform

blowups, in which case we again get a tessellation of RT .
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3.2 Forbidden zones

For more general endpoint configurations, we find that the group action on the fundamental

domain does not yield a tessellation of RT . It could happen that there are certain points

of RT which lie in no orbit of the automorphism group.

We now establish that forbidden zones occur whenever we have at least two curves in

the endpoint configuration, one of which has self-intersection −n with n > 2. Denote by

Λend the corresponding lattice. To establish this, we recall that the automorphism group

Aut(Λend)  Aut(Λ) is a proper subgroup of the one we would obtain by replacing our

−n curve by a −2 curve. Here, Λ denotes the lattice obtained by replacing all curves with

self-intersection less than −2 by −2 curves, namely an A- or D-type root lattice.

Consequently, RT can be decomposed into the Weyl chambers generated by

W ⊂Aut(Λ), the corresponding Weyl group. Indeed, the Weyl group acts transitively

on these Weyl chambers so we know that there is actually a one to one correspondence

between elements of the Weyl group W and these chambers.

But precisely because the group action on the t is the same for elements of Aut(Λend)

and Aut(Λ), we see that the orbits swept out by Aut(Λend) will necessarily be a proper

subset of those swept out by Aut(Λ). Consequently, we conclude that we cannot tessellate

RT . In fact, we can also identify the forbidden zones: They are all the images generated

by elements σ ∈ Λ\Λend. The full forbidden zone is then given by:

Dforbidden =
⋃

σ∈Λ\Λend

σ (D0) . (3.29)

Note that some of these orbits may have common points in the closure other than the

origin. The number of connected components in the moduli space is simply the order

of |Wend|:
|OrbitΛend

(D0)| = |Wend| . (3.30)

To illustrate the above considerations, it is helpful to now study a few examples.

Consider, for example, an endpoint configuration such as 3, 3 or 7, 7. In this case, the

automorphism group of the endpoint is Z2 n Z2, and the analog of the Weyl group is Z2.

Labelling the moduli as t1 and t2, the orbit of the fundamental domain is:

OrbitΛend
(D0) = {t1, t2 > 0} ∪ {t1, t2 < 0}. (3.31)

By inspection, the forbidden zone is:

Dforbidden = {t1 > 0 ; t2 < 0} ∪ {t1 < 0 ; t2 > 0}. (3.32)

As a somewhat more involved example, consider an endpoint configuration such as

3, 2. Labelling the modulus of the −3 curve by t1 and that of the −2 curve by t2, we now

have that the orbit of the fundamental domain is:

OrbitΛend
(D0) = {t1, t2 > 0} ∪ {t1, t2 < 0}

∪{t1 + t2 > 0 ; t2 < 0} ∪ {t1 + t2 < 0 ; t2 > 0}. (3.33)

The forbidden zone is:

Dforbidden = {t1 + t2 < 0 ; t1 > 0} ∪ {t1 + t2 > 0 ; t1 < 0}. (3.34)
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4 Compactification

So far, our analysis has focused on the formal structure of Green-Schwarz automorphisms,

and in particular, their role in dictating the geometry of the tensor branch moduli space.

Much as in the case of the N = (2, 0) theories, it is natural to expect that these automor-

phisms are also important in compactifications to lower-dimensional systems.

Now, as we have already remarked, there is a natural sense in which the automorphisms

organize into discrete gauge and global symmetries. In this sense, we can always introduce

a decomposition of the automorphism group as

Aut(Λ) = OH nWH . (4.1)

Again, we have introduced the subscript H to indicate that this decomposition depends

on the Higgs branch moduli of the physical theory. There are then two separate effects we

would like to trace in any compactified theory.

First, there is the impact of the discrete gauge symmetries associated with the factor

WH . Roughly speaking, this factor controls the geometry of the moduli space of vacua.

Additionally, in configurations with non-trivial deformations to N = 1 theories, these

symmetries play the role of Seiberg-like duality transformations between IR theories.

Second, there is the impact of the global symmetries OH . Another aim of this section

will be to deduce necessary consistency conditions for “discrete quotient” by these sym-

metries. In the context of (1, 0) theories, this procedure can be carried out in a variety

of dimensions, and is in weakly coupled settings associated with the presence of various

orientifold planes. The local Gauss’ law constraint can sometimes also require additional

branes to be present. Let us emphasize that this appears to be a distinct notion from

the case of adding discrete twist lines to a class S theory, this being more associated with

adding a chemical potential for the discrete symmetry.4

Our plan in this section is as follows. For specificity we focus on the special case of

compactifications of the class SΓ theories [6, 45, 62]. The discrete gauge symmetries of the

6D theory lead, for 4D vacua to Seiberg-like dualities, and in 2d vacua lead to twisted sectors

labelled by conjugacy classes of the discrete gauge symmetries. For the global symmetries,

gauging in lower dimensions also leads to new lower-dimensional theories obtained from

“discrete quotients” of the original construction. To study consistent ways to perform such

quotients, we focus on the geometric realization afforded by F-theory compactification to

consistently track the effects in both the base and fiber of the model.

4.1 Descendants of the 6D Weyl group

We now turn to the effects of the analog of the Weyl group in compactifications of

6D SCFTs. We first consider the case of 4D theories obtained from compactification

on a Riemann surface, and then turn to 2d theories obtained from compactification on

a four-manifold.

4We thank T.T. Dumitrescu for helpful discussions on this point.
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4.1.1 4D theories

As a first class of examples, we consider the impact of discrete gauge transformations on

the structure of compactified theories. To set the stage, it is helpful to have in mind the

case of N M5-branes probing an A-type singularity C2/Zk. As is by now well-known, this

leads, on the tensor branch, to an F-theory model in which the base is:

[suk]
suk
2 ,

suk
2 , . . . ,

suk
2 ,

suk
2 [suk], (4.2)

a theory with N − 1 tensor multiplets. In this case, the automorphism group is given by

Aut(Λ) = Z2 n SN , (4.3)

with SN the permutation group on N letters which acts via the standard Weyl reflections.

In terms of the M5-brane picture, the automorphisms correspond to moving the M5-branes

past one another.

Compactifying this tensor branch deformation on a T 2 yields a 4D N = 2 quiver gauge

theory. For a theory with N − 1 simple gauge group factors, each node has gauge group

SU(k). Furthermore, the matter content of each non-abelian gauge theory factor consists

of F = 2k hypermultiplets in the fundamental representation. Consequently, we also have

a superconformal field theory in four dimensions. In this case, the motion of the M5-branes

is rather trivial, and leads us back to the same theory. We can, however, consider various

mass deformations as we descend to four dimensions. Additionally, we can tilt the branes

by effectively activating a non-trivial superpotential deformation for the Coulomb branch

scalar of the N = 2 vector multiplet. This sort of operation, and the resulting duality

cascades [95] were considered in reference [79] where it was found that the Weyl group

transformations then generate a sequence of Seiberg-like dualities [96] as we flow from the

UV to the IR.

Assuming that we have generated an appropriate N = 1 theory with general ranks

for the gauge groups, the reason for a Seiberg-like duality is as follows. Consider the 7-

branes wrapped over the −2 curves. In this setup, the resulting homology class for all the

7-branes is

[Σ] = k1α1 + . . .+ kN−1αN−1, (4.4)

where the αi denote simple roots and ki − 1 is the rank of each SU factor. Upon applying

a Weyl group transformation on the ith node (assuming it is in the middle of the quiver),

we have the transformation (see e.g. [79]):

αi → −αi (4.5)

αi+1 → αi+1 + αi (4.6)

αi−1 → αi−1 + αi, (4.7)

and the coefficient multiplying αi shifts to ki−1 + ki+1 − ki, i.e., Fi − ki, where Fi is the

number of flavors in the fundamental representation.

Given this, it is quite natural to ask whether there is an analogous Seiberg-like duality

for 4D theories obtained from M5-branes probing a D- or E-type singularity. Again, we ob-

serve that with no mass deformations switched on, permuting the M5-branes simply takes
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us back to the same 4D N = 2 SCFT. We can, of course, entertain N = 1 deformations,

as well as deformations which break conformal symmetry. We expect that in this broader

context, there is a natural generalization of Seiberg duality now using compactifications of

6D conformal matter. From the perspective of F-theory compactification, one complication

is that now, the charges of seven-branes are mutually non-local, so the abelian transfor-

mation rule given above must be modified. We leave the development of this intriguing

possibility for future work.

4.1.2 2D theories

Another way in which these discrete gauge symmetries show up is in compactification

to two dimensions. Indeed, as has been appreciated in string constructions, Seiberg-like

dualities, as realized by brane maneuvers can be extended to a variety of dimensions. Some

caution is warranted, however because the quantum dynamics in the infrared can be quite

different depending on the dimensionality of the resulting theory.

Along these lines, we can also consider the compactification of 6D SCFTs on four-

manifolds. In the case of (1, 0) theories on a Kähler surface, this yields a class of 2d theories

with N = (0, 2) supersymmetry [63, 97, 98]. Compactification of the tensor branch leads to

a class of theories known as “DGLSMs” [63], which are a generalization of a (0, 2) gauged

linear sigma model in which the gauge couplings are now dynamical fields. Orbits of the

Weyl group on the tensor branch moduli space descend to non-trivial transformations on

the gauge couplings of a DGLSM. Additionally, we know that these orbits serve to also

define additional twisted sector states.

The first point is that in the special case where there is a tessellation of the extended

Kähler cone as RT so that the physical tensor branch moduli space is RT /W, we imme-

diately recognize that the dynamical gauge couplings of the compactified theory generate

twisted sectors labelled by the conjugacy classes of W. This holds for blowups of the

trivial endpoint as well as all admissible blowups of the ADE endpoints composed of −2

curves. In those cases where we do not have such a tessellation, we anticipate additional

strongly coupled phenomena to be present, for example, possible singularities as in the case

of conifold points in a conformal field theory. We have already classified the 6D SCFTs

where forbidden zones can occur, so we have a clear indication about when to expect such

strongly coupled phenomena.

Finally, we expect that the notion of dualities naturally extends to trialities [99–101].

Here again, we expect the discrete gauge symmetries of the 6D tensor branch to characterize

at least part of this structure.

4.2 Discrete quotients of a 6D SCFT

So far, we have focused on the discrete gauge symmetries inherited from the automorphism

group. The global symmetries of the 6D also impact the theory, and its compactifications.

In compactifications of the (2, 0) theory, adding a background chemical potential for this

symmetry along a one-cycle is sometimes referred to as introducing a “discrete twist”, (see

e.g. [1, 80–82]). There is a conceptually separate notion of quotienting by this symmetry

to reach a wholly different theory. In perturbative string theory terms, this is associated

with adding orientifolds. In this section we shall be interested in this operation.
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Our plan in this subsection will be to determine necessary conditions for quotienting

by such discrete symmetries. From the perspective of an F-theory model, we need to ensure

that the symmetry present in the isometries of the base extends consistently to the fibers of

the model. This means that the full quotient will involve changing both the total number

of gauge groups, as well as the specific gauge groups and matter content present in a given

generalized quiver.

Already in six dimensions, we can see that such quotients can lead to interesting effects.

Now, in the case of the N = (2, 0) theories, we do not expect to generate any theories other

than the ADE type ones because all of these models have a purely geometric realization

in terms of IIB on an ADE singularity. Once we include various dynamical 7-branes,

however, we can also expect to incorporate both O7−-planes and O7+-planes. Whereas in

F-theory the O7−-planes are fully captured by elliptically fibered Calabi-Yau threefolds,

the case of O7+-planes involves “frozen” singularities [83–85], and this can generate a small

number of additional 6D SCFTs [24]. In reference [86] a formal quotienting procedure was

proposed to explain such models. The full set of consistency conditions in this case have

yet to be worked out, but we can already see that this leads to the expected structure in

lower-dimensional theories.

In compactifications to lower-dimensional systems, we can extract additional consis-

tency conditions. For concreteness, we focus on the case of compactifications to four-

dimensional vacua with N = 2 supersymmetry. That means we confine our attention

to compactification on a T 2, with possible quotients also included. For concreteness, we

focus on compactifications of class SΓ theories, since in such cases the analysis is partic-

ularly tractable. Mild deformations of this case can also be extracted from the general

considerations we present.

As we lack a worldsheet construction of F-theory, quotienting by these discrete symme-

tries will instead be pieced together through complementary features. The key idea we shall

make use of is that fiber-base duality of the F-theory geometry can lead to a priori distinct

4D theories which nevertheless share a common geometric origin [49] (see also [86, 102]).

By construction, we retain all compact two-cycles, so we expect that upon compactifica-

tion, the dimensions of the Coulomb branches in theories where we interchange base and

fiber will still match. Indeed, as we already remarked for theories without a discrete quo-

tient, compactifications of the class SΓ theories at the conformal point take us to affine

ADE type quiver gauge theories, and on the partial tensor branch, take us to generalized

quivers. Each of these theories flows to a 4D N = 2 SCFT, and due to their common geo-

metric origin, they have the same Coulomb branch geometry and identical superconformal

indices [6]. These common features mean that we also expect discrete quotients to persist

on both sides, yielding again a pair of 4D N = 2 SCFTs. Note that this analysis does

not require the dimension of the Higgs branches to match, since in the process of taking

appropriate decoupling limits, the number of compact three-cycles (and thus the number

of Higgs branch moduli) could a priori be different.5

5Indeed, for a genuine duality, we ought to also be able to match the dimensions of the Higgs branches

on both sides, since this is in turn related to the values of the conformal anomalies a and c.
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Now, precisely because the Coulomb branches match, we can track the effects of a

discrete quotient in both theories. If we can perform a consistent quotient on both sides, it

is strong evidence that the automorphism of the base actually extends to the full Calabi-Yau

threefold geometry. Whereas the discrete quotients of the partial tensor branch deformation

involves various exceptional group structures, we see that in the affine quiver theory, we

always have SU gauge groups and the quotient will generate another classical group, namely

SU, SO or Sp. Our first task is therefore to consistently identify which of the affine quivers

can be quotiented, and to then match this data to their counterparts involving a discrete

quotient on the partial tensor branch side.

To guide us in our analysis of quotienting the affine quiver gauge theories, we note

that since this operation does not involve introducing a mass scale, we expect the quotient

to also be a superconformal field theory. For the quivers obtained using classical gauge

groups and matter, this proves to be quite restrictive, and often leads to a discrete set

of possibilities. In the associated string construction, these constraints are interpreted in

terms of a local Gauss’ law constraint for the Ramond-Ramond charge. Consequently, the

quotienting by the discrete symmetry typically involves the presence of both an orientifold

plane and D-branes.

The quotient of an affine quiver gauge theory leads us to a restricted set of 4D N = 2

SCFTs. In particular, based on fiber-base duality of the associated F-theory geometry, we

expect that if it exists, there is a corresponding discrete quotient of the partially tensor

branch deformation. In this case, the string construction involves non-perturbative seven-

branes, so aside from the A-type class SΓ theories, we expect that the quotient will involve

a non-perturbative generalization of orientifold planes, i.e. another choice of seven-branes.

We can, nevertheless, piece together the structure of the resulting theory by appealing to

the form of the associated affine quiver gauge theory.

Since we shall be using the same conditions repeatedly, it is helpful to collect some

general remarks about orientifold projections of the affine quiver gauge theories in one

location. For such theories, a perturbative string theory analysis is available. For example,

the orientifold projection acts on an A-type symmetric quiver by folding it, as illustrated

in figure 1. We note that when the number of curves present in the small resolution is odd,

then the orientifold action naturally fixes one curve of the geometry, and an additional node

of the corresponding affine quiver is also held fixed. In the case where the number of curves

is even, then all curves of the geometry are interchanged, but the node present in the affine

extension is held fixed. This is all in accord with the partial tensor branch description,

where we have a marked curve in the associated In Kodaira-Tate fiber, associated with the

zero section.

Moreover, this orientifold projection maps the SU gauge groups to either SO or Sp

groups, depending on the projection. Since we demand a construction consistent with an

open string construction, large N scaling already dictates the basic form of these maps:

SU(N)
SO7−→ SO(N + δSO) (4.8)

SU(N)
Sp7−→ Sp

(
N − δSp

2

)
, (4.9)
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Tensor Branch Phase Affine Phase

SU(k+1)SU(k+1) SU(k+1)SU(k+1)…

N -1

k+1

SU(N)

SU(N)

SU(N)

SU(N)

SU(N)

SU(N)

Z2

Z2

Figure 1. The two quiver phases of A-type class SΓ theories compactified on a T 2. In addition,

the effect of quotienting by the global symmetries associated to the outer automorphisms is shown.

On the left the reduction on the tensor branch yields (N − 1) SU(k + 1) gauge nodes and two

SU(k+ 1) flavor symmetry factors. On the right the affine quiver with (k+ 1) SU(N) gauge nodes.

The segments represent standard N = 2 hypermultiplets in the bifundamental representation.

namely the rank decreases by a factor of two, with a possible small shift as captured by the

presence of the δ’s. In the stringy construction, this is due to the fact that the orientifolds

also carry Ramond-Ramond charge, and this in turn alters the ranks of gauge groups.

Now, our primary focus in this work will be to match various Z2 discrete quotients of

the affine quiver phase to corresponding discrete quotients on the partial tensor branch.

For some examples relevant in the context of 6D SCFTs and their compactification, see for

example [56, 103, 104]. We also note that there are various orientifold projections which

one can in principle adopt for affine quivers. As such, we should not expect to find a single

orientifold of an affine quiver, but several possibilities. This is borne out by the fact that if

we only impose the conditions of conformal invariance (by also including suitable flavors),

then we can actually find various sequences of gauge groups which all lead to conformal

fixed points. The fact that there are multiple choices suggests a richer structure in which

we could also attempt to match various Higgs branch flows. Here, we shall confine our

analysis to a few examples in which we can verify a candidate pair of theories. Indeed, this

suffices for our present purpose, since all we really wish to demonstrate is that a discrete

quotient of the partial tensor branch exists. For this reason, we shall find it convenient to

adopt a “bottom up” approach where we impose constraints from conformal invariance,

and the dimension of the Coulomb branch, both for the affine quiver phase, and the partial

tensor branch phase.
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G SU(k) Sp(k) SO(k)

rG k − 1 k [k/2]

Ind(Adj) k 2k + 2 k − 2

Ind(fund) 1
2 1 1

Ind(anti) k−2
2 2k − 2 k − 2

Ind(symm) k+2
2 2k + 2 k + 2

dim(fund) k 2k k

Table 1. Relevant group theory data

4.2.1 4D N = 2 SCFTs and generalized quivers

In preparation for our analysis of discrete quotients, in this subsection we collect some

general comments on the types of quiver gauge theories and generalizations we can expect

to encounter. Our guiding principle is to seek out various ways to generate a 4D conformal

fixed point from a 6D theory compactified on a T 2. Some such theories have been studied

for example in [46, 49, 54, 58, 105].

We mainly focus on compactifications of the class SΓ theories, namely those obtained

from N M5-branes probing an ADE singularity. Compactification on a T 2 yields an SCFT.

There are various orders of limits one can take, depending on whether we compactify the

6D SCFT, or instead a tensor branch deformation of this theory. We describe each in turn

in what follows.

In the case where we remain at the 6D conformal fixed point, compactification on a

T 2 leads us to the theory of N D3-branes probing an ADE singularity. This is described

by a quiver gauge theory with gauge groups SU(diN), and di the Dynkin labels of the

associated affine Dynkin diagram of ADE type [106–108]. We also have bifundamental

hypermultiplets between each node, as dictated by the structure of the Dynkin diagram.

As is well-known, this yields a class of N = 2 SCFTs. Indeed, in our conventions,

the beta function coefficient for an N = 2 gauge theory with classical gauge group with F

hypermultiplets in the fundamental representation is:

b(SU(M)) = 2M − F (4.10)

b(SO(M)) = 2(M − 2)− 2F (4.11)

b(Sp(M)) = 2(2M + 2)− 2F (4.12)

where in the above, we have also included the SO and Sp gauge groups as we shall need them

later.6 Observe that for all the affine Dynkin diagram nodes with gauge group SU(diN),

we have F = 2diN , so we indeed realize a 4D N = 2 SCFT. For the ranks and group

theory data of the various perturbative gauge groups see table 1.

Another way to realize a 4D N = 2 SCFT with such gauge groups is to construct a

linear chain of gauge groups. We will find this sort of structure appearing repeatedly in

6Recall that in our conventions, sp(1) ' su(2).
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our analysis of both the original and quotiented theories, so we collect the relevant points

here as well. One such set of examples is given by taking all of the ranks to be fixed and

equal as follows:

[SU(M)]− SU(M)− . . .− SU(M)− SU(M)− SU(M)− . . .− SU(M)− [SU(M)], (4.13)

where we have indicated a flavor symmetry in square brackets on the left and right. Here,

each link corresponds to a full hypermultiplet in the bifundamental representation. There

is a natural “orientifolded” version of this theory given by replacing the various SU factors

by alternating SO and Sp gauge group factors:

[SO(2a+ 2)]
1/2
− Sp(a)

1/2
− . . .

1/2
− SO(2a+ 2)

1/2
− Sp(a)

1/2
− SO(2a+ 2)

1/2
− . . .

1/2
− Sp(a).

1/2
− [SO(2a+ 2)]

(4.14)

[Sp(a)]
1/2
− SO(2a+ 2)

1/2
− . . .

1/2
− Sp(a)

1/2
− SO(2a+ 2)

1/2
− Sp(a)

1/2
− . . .

1/2
− SO(2a+ 2).

1/2
− [Sp(a)]

(4.15)

where we have indicated the presence of a half hypermultiplet in the bifundamental rep-

resentation by writing
1/2
− . This is possible precisely because the bifundamental is in a

pseudoreal representation of the product gauge group. It is also possible to combine all

three types of gauge group factors in a single quiver. An example of this type is:

[SU(2)]− SU(N)− Sp(N − 1)
1/2
− SO(2N)

1/2
− Sp(N − 1)

1/2
− . . . , (4.16)

There is another way to compactify which yields a class of 4D N = 2 SCFTs. This

involves first moving onto the partial tensor branch of the 6D theory, and only then com-

pactifying. Geometrically, we separate the positions of the M5-branes and then compactify

to four dimensions. In doing so, we do not move onto the tensor branch of the conformal

matter sectors. As shown in references [46, 49, 54] the conformal matter descends to a 4D

N = 2 SCFT which we view as a generalization of the standard 4D hypermultiplet. Indeed,

it enjoys a flavor symmetry GL×GR. The contribution to the beta function coefficient of a

4D N = 2 gauge theory with gauge group G of such conformal matter has been computed

in [46, 54], and the result is:7

bG×G conf(G) = −h∨G, (4.17)

where h∨G is the dual Coxeter number for the gauge group. Now, the beta function coefficient

from the N = 2 vector multiplet is:

bvec(G) = 2h∨G, (4.18)

so we see that coupling each gauge group to precisely two such conformal matter sectors

leads to a 4D N = 2 SCFT [46, 54].

7A note on normalization conventions. In [46, 54], the contribution to the beta function coefficient from

an N = 2 vector multiplet is given as 4h∨G, with h∨G the dual Coxeter number of the group G. For SU(N),

this yields 4N as opposed to the “standard” convention of 2N used in the weakly coupled literature.
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Hence, one can now see that we obtain two a priori different 4D N = 2 SCFTs from the

same class SΓ theory. In the case of the compactified tensor branch deformation, each node

supports the group G×U(1), where the U(1) comes from reduction of the tensor multiplet

to four dimensions. Though such U(1) factors flow to weak coupling in the infrared, the

full match of the Coulomb branch dictated by the geometry means we ought to include

these factors in our analysis. Indeed, because of their common origin in F-theory in which

we retain all compact two-cycles, the resulting 4D theories must have the same Coulomb

branch dimension [6, 49].

The notion of conformal matter can also be generalized beyond ADE gauge groups.

For example, given a subgroup K ⊂ G with imbedding index IK:G, we can also compute

the contribution to the beta function of this subgroup:

bG×G conf(K) = −IK:G × h∨G. (4.19)

Another generalization along these lines is the compactification of the rank Q E-string

theory on a T 2. This yields the rank Q Minahan-Nemeschansky theory, which enjoys an E8

flavor symmetry. Weakly gauging this group, the contribution to the beta function is [109]:

bMN[Q](E8) = −6Q. (4.20)

Finally, we note that compactifying the completely resolved tensor branch deformation

of a 6D SCFT need not generate an SCFT. Instead, we must keep the conformal matter

at the origin of its tensor branch. To illustrate this point, consider the case of a linear

quiver with SO(8) gauge groups, with D4 × D4 conformal matter between each gauge

group. Geometrically, this conformal matter is generated by a collapsing −1 curve. If we

also resolve this −1 curve, then compactification of the fully resolved tensor branch will

produce SO(8) gauge groups coupled to no matter fields, and therefore confines in the

infrared. Indeed, to obtain a 4D SCFT, we must keep the conformal matter at the origin

of the tensor branch, namely, we only compactify the partial tensor branch deformation.

4.2.2 A-type SΓ theories

Let us begin with discrete quotients of the A-type class SΓ theories. These are realized

by N M5-branes probing the transverse geometry R⊥ × C2/Zk, where the total number

of tensors is T = N − 1. Recall that the tensor branch obtained from separating the

M5-branes is given by the 6D F-theory model:

[suk]
suk
2 ,

suk
2 , . . . ,

suk
2 ,

suk
2︸ ︷︷ ︸

N−1

[suk]. (4.21)

Compactification on a T 2 yields a 4D N = 2 quiver gauge theory where each gauge group

factor is SU(k) × U(1). The abelian factors all flow to weak coupling in the infrared, but

the non-abelian factors support a non-trivial conformal fixed point.

The outer automorphism group of the base is a Z2 symmetry which amounts to a

reflection about the midpoint of this diagram. We distinguish four different possibilities,

depending on whether the axis of reflection holds fixed a gauge group or a conformal matter
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link (in this case a weakly coupled 6D hypermultiplet), and whether the SU(k) gauge groups

have odd or even rank. These choices are captured by k and N even or odd.

To determine the effects of the Z2 quotient of the tensor branch deformation, we shall

now use fiber-base duality to study the closely related quiver gauge theories obtained from

compactification of the 6D conformal fixed point. Recall that in the absence of a Z2

quotient, the 4D theory so obtained is given by the circular quiver gauge theory of SU(N)

gauge groups:

//SU(N)− . . .− SU(N)− . . .− SU(N)︸ ︷︷ ︸
k+1

//, (4.22)

where the notation // indicates that we join the left and right by a hypermultiplet in the

bifundamental representation. By inspection, we see that the Z2 symmetry of the tensor

branch is also present for this class of theories. We also see that there is again a natural

distinction between the four distinct choices presented by taking k and N even or odd.

Since in this case the tensor branch admits a weakly coupled description, we shall find it

convenient to also make use of the weakly coupled IIA brane construction of these theories.

In this case, the sequence of gauge groups given in line (4.21) are specified by a collection

of NS5-branes for the links with D6-branes suspended between them for the gauge groups.

When we compactify on a T 2, it is more appropriate to T-dualize this configuration to

that of NS5-branes with D4-branes suspended between each pair. Applying a Z2 quotient

of both sides amounts to introducing an orientifold plane. For O6-planes, there are two

general variants one can consider (see e.g. [84, 110–112] given by the O6− or O6+-plane.

Recall that under a RR (p+ 1)-form in which the Dp-brane carries +1 units of charge, an

Op− plane carries −2p−5 units of charge and an Op+ plane carries +2p−5 units of charge,

other variants being unavailable for O6-planes. Now, on the tensor branch side of the

construction, we see that our quotient can therefore only locally satisfy Gauss’ law if we

introduce an O6−-plane and two D6-branes. We shall indeed find that this is compatible

with the “bottom up” condition of conformal invariance.

The reduction of the tensor branch quiver to 4D can be described via the suspended

configuration of D4-NS5 branes, where the D4 are extended along x6, with a system of

O6− + 2D6 sitting at x6 = 0, as shown in figure 2. The total brane charge of O6− + 2D6

is zero, and hence the Gauss’ law constraint associated with the charges of these objects

is locally satisfied. There are four distinct possibilities to consider, depending on whether

k and N are respectively even or odd. We shall therefore step through each possibility in

what follows. The basic idea will be to first consider the D6-branes and O6−-plane all on

top of each other, and passing through either the D4-brane (in the case of N even) or the

NS5-brane (in the case of N odd). Moving the D6-branes away from this fixed locus will

then take us to the other possible theories, i.e. the cases of k even and odd. In figure 2, we

display also other cases depending on whether k and N are even or odd. For these cases

consistency requires moving the O6− + 2D6 stack on top of an NS5, or to move an NS5

brane inside the O6− + 2D6 system. The affine quiver theory can be described by the same

suspended brane configuration, where now x6 is a compactified S1 direction with two O6−

+ 2D6 systems at the opposite ends of the circle. For each case in the tensor branch phase
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Tensor Branch Phase Affine Phase
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k-even 
N-odd

k-odd 
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x7,8,9

x4

x5,6

Figure 2. Suspended brane configurations for discrete quotients of the A-type class SΓ theories on

the tensor branch. We depict linear symmetric suspended branes configurations of D4 (in black)

filling x0, . . . , x3 and extended along x6, NS5 branes (in blue) filling x0, . . . , x3, wrapping x4, x5

(i.e. the two torus directions), and probing x6, O6− + 2D6 (in red) filling x0, . . . , x3 and extended

along x7, x8, x9. The other configurations are given by moving the O6− + 2D6 on top of an NS5

brane, or by moving one NS5 brane inside the O6− + 2D6 system depending on whether k and

N are even or odd. In this figure, only the physical branes have been illustrated. However in the

presence of orientifold O6− there is an equivalent mirror image of the brane system, which in the

affine cases makes the quiver circular, and the x6 direction compact.

we have a corresponding affine brane system. It is important to notice that in figure 2 only

the physical branes are shown (namely no images under the orientifold are included).

The theories associated with the brane system of figure 2 are given in figure 3. Confor-

mal invariance dictates that only Sp groups are allowed. For instance, If we replace the Sp

with SO groups, either the beta function for SO or the one for the close SU group would

have a negative value, and hence the quiver would not be conformal. Note that this is

compatible with the fact that we have O6−-planes rather than O6+-planes.

Moreover, having two D6’s on top of the O6− plane is consistent with the flavor

symmetries being SU(2) or U(1)×U(1). Finally, the dimensions of the Coulomb branches

are summarized in table 2.
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… SU(N)

2

SU(N)

k/2

Sp((N-1)/2)

1 1

SU(N) SU(N)

Tensor Branch Phase Affine Phase

k-odd 
N-even

k-even 
N-even

k-even 
N-odd

k-odd 
N-odd

SU(k+1)Sp((k+1)/2) k+1SU(k+1)…

(N -2)/2 

2

SU(N) SU(N)…

(k-1)/2

Sp(N/2) Sp(N/2)

2 2

k+1SU(k+1)…

(N -2)/2 

Sp(k/2)

1 1

SU(k+1)SU(k+1) SU(N) SU(N)…

k/2

Sp(N/2)

2 2

SU(N)

SU(k+1) k+1SU(k+1)…

(N -1)/2 

2

SU(k+1)

SU(k+1) k+1SU(k+1)…

(N -1)/2 

2

SU(k+1) …

(k-1)/2

SU(N)Sp((N-1)/2) SU(N) SU(N) Sp((N-1)/2)SU(N)

11 1 1

Figure 3. Resulting quiver theories for A-type class SΓ theories associated with the brane systems

in 2. On the left the reduction on the tensor branch to 4D, on the right the reduction at the fixed

point. The possible cases are listed depending on k and N even or odd. The double box labeling

some matter on the right or left gauge nodes stands for a full antisymmetric hypermultiplet.

N Even N Odd

k Even kN−k+N
2

kN−k+N−1
2

k Odd kN−k+N+1
2

kN−k+N−1
2

Table 2. Dimensions of the Coulomb branch of the various cases

4.2.3 D-type SΓ theories

We now turn to discrete quotients of the D-type class SΓ theories. Let us begin by reviewing

the general structure of the D-type theories before quotientng. These are realized by N

M5-branes probing a D-type singularity. Here the total number of tensors is T = 2N − 1.

We shall denote this singularity as Dk where we label according to the associated Dynkin

diagram with k ≥ 4 nodes obtained from a small resolution of the singularity. We move

onto the partial tensor branch by separating all the M5-branes. In this phase, each M5-

brane defines a 6D conformal matter sector in the sense of references [6, 40]. The partial
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tensor branch is described in the F-theory geometry by:

[so2k]
so2k
2 ,

so2k
2 , . . . ,

so2k
2 ,

so2k
2︸ ︷︷ ︸

N−1

[so2k]. (4.23)

By inspection, there is again a Z2 reflection symmetry by which we can quotient the theory.

Compactification on a T 2 takes us to a 4D N = 2 SCFT. As explained in reference [46, 54],

the 6D conformal matter contributes the requisite amount to maintain conformal invariance

of the generalized quiver gauge theory. Indeed, in our normalization conventions, we have

two D × D conformal matter sectors, and a pair of such sectors precisely cancels the

contribution to the SO beta functions from the N = 2 vector multiplets. This results in

a 4D N = 2 SCFT using generalized quivers. Now, the Coulomb branch of such theories

is calculated by including the contributions from both the vector multiplets as well as the

conformal matter sectors. Observe that in contrast to the A-type case, the matter sectors

now contribute non-trivially to the 4D Coulomb branch, since in the F-theory construction

they involve a −1 curve with an spk−4 gauge algebra over each such curve. If we instead

compactify the 6D fixed point, we obtained a classical quiver gauge theory with gauge

groups:

SU(N)−

SU(N)

|
SU(2N)− SU(2N)− . . .− SU(2N)−

SU(N)

|
SU(2N)︸ ︷︷ ︸

k−3

− SU(N), (4.24)

which again realizes a 4D N = 2 SCFT.

By inspection, both phases enjoy a discrete Z2 symmetry, so we do expect to be able

to consistently gauge this symmetry. One complication is that now on the tensor branch

side, we must specify this quotient on either the so2k factor or the conformal matter link.

The former case occurs when N is even while the latter occurs when N is odd.

To facilitate our understanding of these cases, we first study the proposed group action

on the affine quiver gauge theories. Here, we see that the central spine has a fixed plane,

so we expect an SU(N) factor on the left and right of the quotient of line (4.24), with the

fixed spine composed of an alternating sequence of SO and Sp gauge group factors. Again,

conformal invariance of the entire configuration severely limits the available possibilities.

For example, in the interior of the quotiented spine of line (4.24), the gauge groups must

alternate as

. . .
1/2
− Sp(M − 1)

1/2
− SO(2M)

1/2
− Sp(M − 1)

1/2
− SO(2M)

1/2
− . . . (4.25)

Additionally, the leftmost and rightmost SU(2N) factors must both be Sp gauge group

factors. If they are SO gauge groups instead, we find that the SU(N) gauge group factors

have too much matter to support a conformal fixed point. This in turn limits us to the

special case of k even. For k odd, we do not find a consistent Z2 quotient. The resulting
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quotient leads us to the following quiver gauge theory:

[SU(2)]−SU(N)−Sp(N−1)
1/2
− SO(2N)

1/2
− . . .

1/2
− SO(2N)

1/2
− Sp(N − 1)︸ ︷︷ ︸

k−3

−SU(N)−[SU(2)].

(4.26)

Let us note that there is another phase compatible with conformal invariance in which

we alternate Sp(N) and SO(2N + 2) gauge groups. In this case, the flavors move to the

leftmost and rightmost Sp factors. Anticipating what we shall find on the partial tensor

branch and the dimension of its Coulomb branch, we shall focus on the case of line (4.26)

in what follows. In this case, the complex dimension of the Coulomb branch is:

dimC(Coulomb) = Nk −N − k

2
− 1. (4.27)

Consider next the quotient of the partial tensor branch. Based on our analysis of the

affine quivers, we confine our attention to k even, but with N arbitrary. There are thus

two cases to analyze, depending on whether a gauge group or conformal matter sector is

held fixed under the group action.

To start, suppose that an SO(2k) gauge group is held fixed under the group action. We

would like to determine the resulting gauge group from the quotient SO(2k)/Z2. Now, in

an F-theory compactification, there is a well-known effect known as “monodromy” which

amounts to applying a quotient on the quotiented affine Dynkin diagram. For example,

this quotient realizes an Sp(N) gauge group from an SU(2N) gauge theory, and produces

an SO(2k − 1) gauge group from an SO(2k) gauge theory.

The general lesson we would like to extract from our analysis of the A-type theories,

as well as the D-type affine quiver phase is that the Z2 quotient has two general effects on

the partial tensor branch. First, it appears to introduce a low rank flavor symmetry, that

is, one which does not scale with the values N and k. Additionally, the rank of a gauge

group fixed by the quotient reduces by roughly 1/2 rather than a constant shift. We must

perform such a reduction in the rank of the gauge group in order to match the dimension of

the Coulomb branch to that present in the affine quiver phase. This is all compatible with

the perturbative type IIA construction of such gauge theories, where we would introduce

an additional O6−-plane. The point is that in general, this quotient is a distinct notion

from monodromy of the fiber present in an F-theory construction.

Taking this into account, we conjecture that the quotient of the partial tensor branch,

is, for the case of a fixed SO(2k) gauge group, given by:

[SO(2)]
1/2
− Sp

(
k − 2

2

)
CM
−
|

[Sp(1)×Sp(1)]

SO(2k)
CM
− SO(2k) . . .

CM
− SO(2k)︸ ︷︷ ︸

(N−2)/2

CM
− [SO(2k)], (4.28)

where we have introduced the notation
CM
− to denote the dimensional reduction on a T 2

of six-dimensional SO(2k)× SO(2k) conformal matter. This also includes the special case

of conformal matter between the Sp and SO factor at the left. Here, we have gauged the

Sp ((k − 2)/2) subgroup of SO(2k), with the commutant remaining as a global symmetry.
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This is necessary to have the correct amount of matter contribute to both the Sp and SO

gauge coupling beta functions. The relevant embedding of subalgebras is:

so(2k) ⊃ sp

(
k

2

)
× sp(1) ⊃ sp

(
k − 2

2

)
× sp(1)× sp(1). (4.29)

Using this, we can calculate the contribution to the Sp((k− 2)/2) beta function coefficient

from the corresponding one for Dk ×Dk conformal matter:

bDk×Dk conf

(
Sp

(
k − 2

2

))
= −h∨SO(2k) = −(2k − 2). (4.30)

The total Sp
(
k−2

2

)
beta function coefficient is then given by adding up the contributions

from the conformal matter sector, the vector multiplet, and F hypermultiplets, which we

take to be in the fundamental representation (in accord with the string construction). The

result is:

btotal

(
Sp

(
k − 2

2

))
= 2h∨Sp((k−2)/2)−2h∨SO(2k)−2F = 2k−(2k−2)−2F = 2−2F, (4.31)

so we must add a half hypermultiplet in the fundamental representation of an SO(2) flavor

symmetry, as indicated in line (4.28). As a further piece of evidence in favor of our conjec-

ture for the quotient, we can also calculate the dimension of the Coulomb branch, and it

indeed matches that of line (4.27); we have N/2 Dk ×Dk conformal matter sectors, each

with Coulomb branch dimension k − 3, (N − 2)/2 SO(2k) × U(1) gauge groups, and one

Sp
(
k−2

2

)
×U(1) gauge group. The total Coulomb branch dimension is therefore:

dimC(Coulomb) =
N

2
(k − 3) +

N − 2

2
(k + 1) +

k

2
= Nk −N − k

2
− 1, (4.32)

which precisely matches the dimension of the Coulomb branch in the affine quiver phase!

Note that if we had not reduced the rank of the leftmost Sp gauge group by a factor of

1/2, the dimension of the quotiented tensor branch phase would have been greater than

that of the affine quiver. A related point is that if we had instead attempted to use an

SO(k) gauge group rather than Sp((k− 2)/2), we would have encountered an SO(k) flavor

symmetry, contradicting the requirement that the flavor symmetry remains independent

of k and N . As a final additional comment, we note that for this construction to be valid,

we require k to be even, a point we already encountered in the affine quiver phase.

Consider next the case of N even, namely where the Z2 quotient holds fixed a conformal

matter link. Returning to the affine quiver phase, we see no distinction between the cases

N even and odd. This strongly indicates that the quotient should also make sense in the

discrete quotient of the partial tensor branch. In this case, however, the fixed locus of the

quotient will be a conformal matter sector. Now, for A-type conformal matter, namely

weakly coupled hypermultiplets, we can see that a bifundamental is instead replaced by a

two-index anti-symmetric or symmetric representation (depending on the type of orientifold

plane) of a single SU gauge group.

We shall now conjecture a generalization of such matter fields, as dictated by consis-

tency with the requirements that we have a 4D SCFT, that the dimension of the Coulomb
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Tensor Branch Phase Affine Phase

k-3

SU(2N) SU(2N)

SU(N)

SU(N)

SU(N)

SU(N)

Z2 Z2…SO(2k)SO(2k) SO(2k)SO(2k)…

N -1

Z2

CM CM CM CM

Sp((k-2)/2) SO(2k) SO(2k)… SO(2k)

2

(N -2)/2

N 
even

Sp(1)xSp(1)

CM CM CM CM

N 
odd SO(2k)… SO(2k)SO(2k)

(N -1)/2

CM CM CM1/2 CM

k-3

Sp(N-1) SO(2N)SU(N) Sp(N-1) SU(N)

22

… SO(2N)
1/2 1/2 1/2 1/2

1/2

k-3

Sp(N-1) SO(2N)SU(N) Sp(N-1) SU(N)

22

… SO(2N)
1/2 1/2 1/2 1/2

Figure 4. D-type quiver theories. On top the unquotiented theories in the tensor branch phase

(left) and affine phase (right). On the bottom the two cases depending on N being even or odd for

the two corresponding phases. The segments represents standard N = 2 hypermultiplets, when the

1/2 appears on a link it stands for half hypermultiplet. The label “CM” means that it is not just

an hypermultiplet, but generalized matter coming from compactification of the conformal matter

given by the two connected gauge nodes.

branch matches that of the affine quiver phase, and that any flavor symmetries visible in

the UV do not scale with the parameters k and N .

To determine the related structure for D-type conformal matter, we first consider the

case of Dk ×Dk conformal matter compactified on a T 2, in which the two SO(2k) factors

are flavor symmetries. If, instead of gauging both such factors, we only gauge the diagonal,

we obtain in four dimensions, an SO(2k) gauge theory where the 4D conformal matter

contributes double that of a Dk ×Dk conformal matter sector. The reason is simply that

the embedding index is two for the diagonal subgroup. We denote this system as:

CM
⊂ SO(2k)

CM
− . . . , (4.33)

in the obvious notation. Observe that we now have effectively three 4D conformal matter

sectors contributing to the SO(2k) beta function, so this theory will not flow to a conformal

fixed point. If, however, we also assume the existence of a Z2 quotient which acts on the
CM
⊂ factor, we again have the requisite amount of matter to ensure a fixed point for this
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SO(2k) factor.8 We denote the resulting generalized quiver as:

1
2
CM

⊂ SO(2k)
CM
− . . .

CM
− SO(2k)︸ ︷︷ ︸

(N−1)/2

CM
− [SO(2k)]. (4.34)

We should also ask what the resulting contribution is to the dimension of the Coulomb

branch. To address this question, it is helpful to briefly pass to the tensor branch of the

6D Dk ×Dk conformal matter. Recall that this is given by a −1 curve which supports an

sp(k−4) gauge theory coupled to 4k half hypermultiplets in the fundamental representation.

We expect that just as in the other D-type generalized quiver, the Z2 quotient decreases

the rank of this gauge group factor by roughly 1/2.

To track in more detail what happens, it is helpful to consider the dimensional reduction

of an isolated −1 curve by itself. In six dimensions, collapsing this curve to zero size

generates the rank one E-string 6D SCFT. Upon reduction on a circle, we obtain an

Sp(1) gauge theory with Nf = 7 flavors, which at strong coupling enjoys an E8 flavor

symmetry [113]. We emphasize that geometrically, it is appropriate to view this as an

Sp(1) rather than SU(2) gauge group in the sense that we have “already quotiented” by

the outer automorphism of SU(2). Now, acting once again by a Z2 quotient ought to reduce

the rank by one half again. This takes us below a rank one theory, so for this reason we

expect this contribution to the Coulomb branch to vanish for this system. Note, however,

that there is still a non-trivial contribution to the beta function of the weakly gauged

flavor symmetry coming from the matter fields which transformed in the fundamental

representation of Sp(1). Putting this all together, we conclude that the 1
2CM sector of

type Dk will have a Coulomb branch of dimension (k − 4)/2.

Though it would of course be desirable to have a systematic derivation of our con-

jecture, we can already see that it passes a few non-trivial checks. First, we see that we

again retain a conformal fixed point. Additionally, the dimension of the Coulomb branch

receives contributions from the (N − 1)/2 SO(2k)× U(1) factors, the (N − 1)/2 Dk ×Dk

4D conformal matter sectors, and the single 1
2CM sector. Taking all this into account, we

obtain a Coulomb branch dimension:

dimC(Coulomb) =
N − 1

2
(k + 1) +

N − 1

2
(k − 3) +

k − 4

2
= Nk −N − k

2
− 1, (4.35)

which matches the dimension found for the affine quiver phase!

There are, however, a few curious features of this theory. Observe that for k = 4, the
1
2CM sector has no Coulomb branch, but still contributes to the running of the SO(2k)

gauge coupling. It would be most instructive to better understand this generalized matter

sector, either using methods from IIA suspended brane configurations, F-theory, or related

compactifications of class S theories with discrete quotients.

The theories in the tensor branch and affine phases are summarized in figure 4.

8Here we allow for the definition of a 1
2
CM sector to have some number of weakly coupled hypermultiplets

in order to ensure conformal invariance of the SO(2k) sector.

– 37 –



J
H
E
P
0
2
(
2
0
1
8
)
1
5
7

4.2.4 E-type SΓ theories

Let us now turn to the E-type class SΓ theories and their discrete quotients. On the partial

tensor branch obtained by separating N M5-branes along the R⊥ factor of the transverse

geometry

R⊥ × C2/Γ, (4.36)

we have the F-theory realization given by:

[ek]
ek
2 ,

ek
2 , . . . ,

ek
2 ,

ek
2︸ ︷︷ ︸

N−1

[ek], (4.37)

for k = 6, 7, 8. Again, there is a Z2 outer automorphism of the configuration, so we can

again ask whether this can be consistently gauged upon compactification to four dimen-

sions. To address this issue, we again pass to the affine quiver phase. Now, for the E6

case, we see that both the original Dynkin diagram and its affine extension enjoy a Z2

reflection symmetry. In the E7 case, we see that only the affine extension of the Dynkin

diagram enjoys this reflection symmetry. This is problematic in the context of F-theory

constructions, because we typically select an elliptic fibration with a section. The existence

of this section selects out the affine node, and breaks the symmetry. For this reason, we

do not consider the E7 or for that matter, E8 cases in what follows.

Let us now study in greater detail the E6 case. To begin, we consider the quiver gauge

theory of N D3-branes probing an E6 singularity (see e.g. [107, 108]):

SU(N)− SU(2N)−

SU(N)

|
SU(2N)

|
SU(3N) − SU(2N)− SU(N). (4.38)

Performing a Z2 quotient, we find two possible configurations of gauge groups:

SU(N)− SU(2N)−

Sp(M1)
1
2

SO(M2)
1
2

Sp(M3) , or SU(N)− SU(2N)−

SO(P1)
1
2

Sp(P2)
1
2

SO(P3) , (4.39)

where we have omitted possible flavor symmetry factors.

Let us now demonstrate that the latter case in line (4.39) cannot produce a conformal

fixed point. To this end, we note that the condition of conformal invariance requires

all beta function coefficients to vanish. Writing out the non-trivial constraints, we have

the conditions:

b(SU(2N)) = 4N −N − P3 − F4 (4.40)

b(SO(P3)) = 2(P3 − 2)− 4N − 2P2 − 2F3 (4.41)

b(Sp(P2)) = 2(2P2 + 2)− P3 − P1 − 2F2 (4.42)

b(SO(P1)) = 2(P1 − 2)− 2P2 − 2F1, (4.43)
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where we have referred to the number of flavors of the SU(2N) gauge theory as F4. Con-

sider, however, the weighted sum:

bsum = 4b(SU(2N)) + 3b(SO(P3)) + 2b(Sp(P2)) + b(SO(P1)). (4.44)

This sum is negative for any non-negative number of flavors, and is given by:

bsum = −8− 4F4 − 6F3 − 4F2 − 2F1 < 0, (4.45)

so we conclude that this sequence of gauge groups will not produce a conformal fixed point.

Focusing, then, on the remaining case of two Sp factors and a single SO factor, we

seek a choice of ranks and flavors which maintains conformal invariance, and which we can

compare with a discrete quotients of a partial tensor branch.

As we have already remarked, the possible presence of flavor branes means there are

multiple ways to obtain a conformal fixed point. Much as in the A- and D-type theories,

this also depends on whether N is even or odd. We present some consistent choices in

figure 5. The particular choice we make anticipates the condition that we can match the

dimension of the Coulomb branch to one obtained from a discrete quotient of the partial

tensor branch. This also depends on whether N is even or odd, and we have in the two cases:

dimC(CoulombN even) = 6N − 1 (4.46)

dimC(CoulombN odd) = 6N − 3. (4.47)

We remark that there are additional consistent choices which also produce a conformal

fixed point. The examples presented here are based on the “bottom up” condition that we

match to a candidate discrete quotient of the partial tensor branch. Much as in the case

of the A- and D-type cases, we can distinguish between whether N is even or odd, namely

whether the discrete quotient holds fixed the gauge group, or the conformal matter sector.

In the case where N is even, our conjecture for the discrete quotient of the partial

tensor branch is:

[G2]
CM
− F4

CM
− E6

CM
− . . .

CM
− E6︸ ︷︷ ︸

(N−2)/2

CM
− [E6]. (4.48)

In the above, we have identified the Z2 quotient of E6 with the gauge group F4. Ad-

ditionally, the conformal matter between the F4 and E6 groups is the standard E6 × E6

conformal matter in which we gauge the F4 subgroup (with embedding index one). We also

introduced a rank one Minahan-Nemeschansky theory [114] with E8 flavor symmetry in

which we gauge the F4, retaining a G2 flavor symmetry. We can calculate the contribution

to the F4 beta function coefficient from these sectors:

b (F4) = 2h∨F4
− h∨E6

− 6 = 0, (4.49)

where the contribution from 2h∨F4
comes from the F4 vector multiplet, the contribution

−h∨E6
comes from an (E6, E6) conformal matter sector, and the −6 comes from the rank

one Minahan-Nemeschansky theory with a gauged F4 ⊂ E8. Based on this, we conclude
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…
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SU(3N) SU(2N) SU(N)SU(2N)SU(N)

SU(2N)

SU(N)

CM CM CM CM

N 
even

…

(N -2)/2

CM CM CM CM

CM

F4

G2

E6E6E6
1/2 1/2

1/2

Sp(N/2)SU(N) SU(2N) SO(2N+2)Sp(3N/2)

2 2

N 
Odd E6E6

(N -1)/2

1/2 CM …CM CM CM
E6

Sp((N-1)/2)SU(N) SU(2N) SO(2N+1)Sp((3N-1)/2)

1 1

1/2 1/2

1/2 1/2

1/2

1

Figure 5. Quiver theories obtained from a discrete quotient of E6-type class SΓ theories reduced

on a T 2 with a discrete quotient. On top the unquotiented theories in the tensor branch phase

(left) and affine phase (right). On the bottom the two cases depending on N being even or odd

for the two corresponding phases. The segments represents standard N = 2 hypermultiplets, when

the 1/2 appears on a link it stands for half hypermultiplet. The label “CM” denotes generalized

matter coming from compactification of the 6D conformal matter.

that all gauge group factors are indeed conformal. Observe also that the dimension of the

Coulomb branch in this case matches that of the affine quiver phase:

dimC(CoulombN even) = 6N − 1. (4.50)

Let us now turn to the case of N odd. Here, a conformal matter sector will be fixed

by the discrete quotient. Now, in the Dk × Dk conformal matter case, we argued that

the system
1
2
CM

⊂ SO(2k)
CM
− (4.51)

would retain conformal invariance. We can provide a similar argument in the E6 case for

the system:
1
2
CM

⊂ E6

CM
− (4.52)

Here we allow for the definition of a 1
2CM sector to have some number of weakly coupled

hypermultiplets in order to ensure conformal invariance of the E6 sector.
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We can also calculate the dimension of the Coulomb branch. For E6 × E6 conformal

matter, recall that in the resolved phase, we have the tensor branch description:

1,
su3
3 , 1, (4.53)

which reduces in the 4D theory to a Coulomb branch of dimension five. In anticipation of

our discussion of the Z2 quotient, let us now discuss how to count the Coulomb branch for

this theory. First of all, each −1 curve contributes a single tensor multiplet. In the ambient

Calabi-Yau threefold, each −1 curve is associated with a del Pezzo 9 surface. Additionally,

the resolved geometry of an isolated −3 curve consists of an affine Â2 Dynkin diagram of

three intersecting Hirzebruch F1 surfaces [66, 115]. We thus see five independent divisors,

and these translate to a count of h1,1
cpct = 5 in the local Calabi-Yau geometry.

We now study the Z2 quotient of this theory. By inspection, we see that the two −1

curves and their associated surfaces will be identified. Additionally, in the resolution of

the −3 curve theory with three Hirzebruch surfaces, the Z2 symmetry of the affine Â2

configuration identifies two of the Hirzebruch surfaces, and leaves the other one invariant

(but not pointwise invariant). So, out of the original five divisors, only three will be

independent in the Z2 quotient. We conclude that the dimension of the Coulomb branch

for the Z2 quotient of line (4.53) is:

dimC(Coulomb[(1,
su3
3 , 1)/Z2]) = 3. (4.54)

Observe that in this case, the −3 curve modulus has not been “projected out”, whereas

in the D-type conformal matter case we did project out the −1 curve modulus. Roughly

speaking, this is due to the fact that 3/2 > 1, whereas 1/2 < 1.

Putting all of this together, we conjecture the following generalized quiver in the case

N odd:
1
2
CM

⊂ E6

CM
− . . .

CM
− E6︸ ︷︷ ︸

(N−1)/2

CM
− [E6], (4.55)

which has Coulomb branch dimension:

dimC(CoulombN odd) = 6N − 3. (4.56)

As a final comment, we note that for the affine quiver phases, the lowest dimension for

the Coulomb branch we could find is 6N − 3, again suggesting that the dimension of the

Coulomb branch for the quotiented conformal matter is three rather than two.

Based on this, we conclude that a discrete quotient is possible both for N even and

N odd. Again, we stress that we have pieced our analysis together from various comple-

mentary points of view. It would be interesting to study related examples and extend the

correspondence to all possible choices of orientifolds / discrete quotients.

The theories in the tensor branch and affine phases are summarized in figure 5.
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5 Conclusions

In this paper we have calculated the discrete gauge and global symmetries of a 6D SCFT

generated by automorphisms of the lattice of strings present on the tensor branch. These

automorphisms capture an important ambiguity in specifying the structure of Green-

Schwarz terms. The ambiguity is resolved by specifying a chamber of moduli space. We

have also elaborated on the similarities and differences with the case of the (2, 0) theories.

For example, in the (1, 0) case, the resulting moduli space for T tensor multiplets only

admits a tessellation of RT in rather special circumstances. More generally, the orbit of

the fundamental domain of moduli space may lead to “forbidden zones”. Finally, we have

also taken some preliminary steps in identifying the role of the automorphism group in

compactifications. In the remainder of this section, we discuss some potential avenues for

future investigation.

One of the features which would be quite interesting to understand better is Seiberg-like

dualities for N = 1 gauge theories with exceptional gauge groups and conformal matter.

As we have already noted, the primary complication here is that the transformation rules

will need to involve a non-abelian generalization of the familiar rule SU(N) 7→ SU(F −N).

We anticipate that the geometric realization in F-theory will provide a route to understand

this structure.

We have also seen that the structure of the tensor branch moduli space can be quite

different from the N = (2, 0) case, including the possibility of forbidden zones. In com-

pactifications to two dimensions, studying such walls suggests the presence of additional

light states and / or strong coupling effects. It would be most instructive to understand

this issue in explicit examples.

We have also studied some aspects of discrete quotients upon compactification (as well

as sometimes in six dimensions!). In the comparatively simpler setting of compactifications

of class S theories on a Riemann surface, “discrete twists,” namely adding background

chemical potentials for flavor symmetries along one-cycles leads to a broad class of N = 2

theories. There is also an important interplay between punctures [4] and twists [81, 82, 116].

Extending this to the case of punctures for (1, 0) theories such as the class SΓ theories (see

e.g. [45, 62, 64]) would seem worthwhile to investigate further.
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A Anomaly polynomial and Green-Schwarz redundancy

In this appendix we discuss some further details on the structure of the anomaly polynomial,

and redundancy in the Green-Schwarz terms. The main notion we wish to explore here is

the additional structure which results when the number of simple gauge groups is the same

as the number of tensor multiplets. In fact, we will aim to show how a general form for the

anomaly polynomial can be obtained by “analytic continuation” in the ranks of the gauge

groups. Along these lines, we shall find it convenient to label the Green-Schwarz terms as:

L6D ⊃
∫
µjiB

(i) ∧ Tr(F(j) ∧ F(j)), (A.1)

where now µ is a square matrix, and we only include couplings to dynamical gauge fields,

i.e. we drop all couplings to background flavor symmetry field strengths. In this special

case, we observe that the µ’s are square matrices. Moreover, due to the placement of

indices, they are related to our previous presentation of couplings as:

µki = µi,j(A
−1)jk. (A.2)

In the fundamental chamber where µi,j = Aij , we have µki = δki , the identity matrix.

Indeed, since we can label the chambers of moduli space by elements of the automorphism

group, we see that the µ’s can all be identified with group elements of Aut(Λ). Note also

that in this basis, both µ and µ−1 will be integral matrices.

Our plan in this appendix will be to first review some elements of the anomaly poly-

nomial in general terms, and then explain how to compute the µ’s in this case via analytic

continuation in the ranks of gauge groups.

The anomaly polynomial eight-form of the theory splits into a 1-loop piece and a Green-

Schwarz piece. At the 1-loop level, there is a contribution from the tensor multiplets, the

vector multiplets, and the hypermultiplets. Each tensor multiplet contributes

Itens =
1

24

(
c2(R)2 +

1

2
c2(R)p1(T ) +

1

240

(
23p1(T )2 − 116p2(T )

))
, (A.3)

where R denotes the SU(2) R-symmetry bundle and T the formal tangent bundle. From a

gauge group Gi with field strength Fi, the vector multiplets contribute

Ivec =− tr(F 4
i ) + 6c2tr(F 2

i ) + dGic2(R)2

24
− p1(T )

(
tr(F 2

i ) + dGic2(R)

48

)
− dGi

(
7p1(T )2 − 4p2(T )

5760

)
, (A.4)

where the trace, tr is taken over the adjoint representation of the gauge group Gi. Finally,

a hypermultiplet in representation ρ̃i of a symmetry with field strength Fi contributes

Ihyp =r̃i

(
7p1(T )2 − 4p2(T )

)
5760

+
trρ̃i(F

2
i )p1(T )

48
+

trρ̃i(F
4
i )

24
, (A.5)

where r̃i is the dimension of the representation ρ̃i. Sometimes we can have also half-

hypermultiplets. This will mean that the associated anomaly polynomial contribution
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is divided by a factor of 2. There can also be hypermultiplets in mixed representations

ρi, ρi+1, which contribute

Ihyp−mix =
1

5760
riri+1

(
7p1(T )2 − 4p2(T )

)
+

1

48
p1(T )

(
ritrρi+1(F 2

i+1) + ri+1trρi(F
2
i )
)

+
1

24

(
ritrρi+1(F 4

i+1) + ri+1trρi(F
4
i ) + 6trρi+1(F 2

i+1)trρi(F
2
i )
)
, (A.6)

where the trace is taken over the representations ρi, which is usually the fundamental,

and ri are the dimension of the representations ρi. The same formula applies if one of

the symmetry groups Gi is a global symmetry, with the associated Fi now a background

field strength. In IIB language, these flavor symmetries arise from 7-branes wrapping a

non-compact component of the discriminant locus.

Following the discussion in appendix A of reference [39], we can express the traces of

the gauge field strength monomials on some representation as follows

trρi(F
4
i ) = αρiTr(F 4

i ) +
3

4
cρi
(
Tr(F 2

i )
)2

trρi(F
2
i ) = Ind(ρi)Tr(F 2

i ) (A.7)

where Ind is the index of the representation. For the adjoint and the fundamental, these

equations become

tr(F 4
i ) = tGiTr(F 4

i ) +
3

4
uGi

(
Tr(F 2

i )
)2

tr(F 2
i ) = h∨Gi

Tr(F 2
i ) (A.8)

trfund(F 4
i ) = Tr(F 4

i ) trfund(F 2
i ) = sGiTr(F 2

i ) , (A.9)

where {tGi , uGi , h
∨
Gi
, sGi} are the group theory data defined in appendix A of [41]. In

particular, h∨Gi
is the dual Coxeter number of the group Gi. For gauge groups Gi without an

independent quartic Casimir, we have αρi = 0 for every representation ρi, and trfund(F 4
i ) =

3
4cfund

(
Tr(F 2

i )
)2

.

The one-loop contribution of the anomaly polynomial is given by the sum of all

these terms

I1−loop = Itens + Ivec + Ihyp + Ihyp−mix. (A.10)

This differs from the prescription of [41] slightly in that we are not including contributions

from empty −1 curves that are not paired with gauge groups, also known as “E-strings.”

In the following section, we will show that these E-string contributions can be treated via

an analytic continuation, so there is no need to place them on a different footing from the

rest of the contributions.

In order for the theory to be consistent, we need to cancel all the terms in I1−loop that

involve field strengths of gauge groups. This is done by a Green-Schwarz mechanism. For

this, we introduce the intersection pairing on the curves Σi in B2,

Aij = −Σi ∩ Σj . (A.11)

In what follows, we assume that the number of gauge groups is the same as the number of

tensor multiplets. This allows us to conflate gauge group indices with tensor indices, and

it also means that the matrix µ will be square (and in fact invertible). In the following
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subsection, we will see that by a suitable analytic continuation to sp(0) or su(1), we can

think of all tensor multiplets as being paired with a gauge group, justifying this assumption.

The Green-Schwarz term contribution to the anomaly eight-form reads:

IGS =
1

2
AijI

iIj , i, j = 1, . . . , NT , (A.12)

where the Ii are defined as follows:

Ii =

(
NT∑
j=1

(µ−1)ij
Tr(F 2

j )

4
+ yic2(R) +Ki

p1(T )

12
+ zi

Tr(F 2
(fl) i)

4

)
. (A.13)

By charge quantization, the matrix µ−1 must be integral. Gauge anomaly cancellation

requires that the combination I1−loop + IGS should be independent of any gauge field

strengths Tr(F 2
j ). Note that the coefficient in front of Tr(F 4

i ) cannot be canceled by a

GS type mechanism, so this must vanish at 1-loop. In the final analysis, the anomaly

cancellation conditions for each gauge group Gi become [117]:

tGi −
∑
ρi

αρinρi = 0 (A.14a)

uGi −
∑
ρi

cρinρi = Aii (A.14b)

h∨Gi
−
∑
ρi

Ind(ρi)nρi = −6 + 3Aii (A.14c)

∑
ρi,ρj

Ind(ρi)Ind(ρj)nρi,ρj = −1

4
Aij . (A.14d)

Here, nρi is the number of hypermultiplets in the ρith representation of the gauge group Gi,

and nρi,ρj is the number of hypermultiplets in the mixed representation (ρi, ρj) of Gi×Gj .
Note that some of the hypermultiplets in the sums in (A.14a)–(A.14c) might also be charged

under an additional flavor or symmetry group i.e. they might be in mixed representations.

A.1 All Green-Schwarz terms via analytic continuation

For −1 or −2 curves without gauge algebras used as matter in a 6D SCFT, one can compute

the anomaly polynomial by analytically continuing Sp(k) to k = 0 and SU(k) to k = 1,

respectively. Indeed, through this analytic continuation, we may compute the GS terms

in any phase of any 6D SCFT. We begin with the SCFT quiver as well as the matrix µ

defined in (2.3).

Next, for a given curve Σi with Σi ∩ Σi = −n carrying gauge group Gi with field

strength Fi, define I
(0)
i by the following:

I
(0)
i = h∨Gc2(R) +

(n− 2)

4
p1(T ) +

n

4
TrF 2

i −
∑
j∈nn

1

4
TrF 2

j . (A.15)

Here, h∨G is the dual coxeter number of G, and the sum runs over “nn,” the “nearest

neighbors” of the curve Σi, which are simply the curves Σj that intersect it at a point.

Note that the coefficient of the gauge field strength TrF 2
j in I

(0)
i is given simply by 1

4Aij .
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For an empty −1 curve, also known as the rank 1 E-string theory, we use the analytic

continuation of Sp(k) to k = 0 and set Fi = 0, yielding

I
(0)
E−string = c2(R)− 1

4
p1(T )−

∑
j∈nn

1

4
TrF 2

j . (A.16)

For an empty −2 curve, corresponding to the A1 6D SCFT we use the analytic continuation

from SU(k) to SU(1), set Fi = 0, and associate a global SU(2)L symmetry with the curve.

This last stipulation amounts to replacing
∑

j∈nn
1
4 TrF 2

j with c2(L),

I
(0)
A1

= c2(R)− c2(L). (A.17)

So far, the vectors I
(0)
i specify the anomalies for the trivial phase of the geometry, with

µ = σ = Id. If we now transform to a different phase by an automorphism σ, we find a

new matrix µ = σ. In this phase, we define the Green-Schwarz vectors Ii by

Ii =
∑
j

µji I
(0)
j . (A.18)

The Green-Schwarz contribution to the anomaly polynomial is then given by

IGS =
1

2
(A−1)ijIiIj . (A.19)

The full anomaly polynomial is then given by a sum of IGS and I1−loop, which is computed

via (A.10). For a paired tensor, the rules given in appendix A of [41] may be used to

compute I1−loop. For an unpaired −1 tensor, we simply get a contribution from the tensor

multiplet, as shown in (A.3). For an unpaired −2 tensor, we add the contribution from the

tensor multiplet as well as the contribution from a single free hypermultiplet charged as a

half-doublet under the c2(L) symmetry,

Ifree =
1

24
c2(L)2 +

1

48
c2(L)p1(T ) +

7p1(T )2 − 4p2(T )

5760
. (A.20)

If the unpaired −2 tensor is adjacent to a tensor carrying SU(2)G gauge symmetry, the

SU(2)L is gauged, and we replace c2(L) in (A.17) and (A.20) with 1
4 Tr(FSU(2)G)2.

One might wonder whether this analytic continuation truly gives the full set of allowed

Green-Schwarz couplings. When the number of tensor multiplets is equal to the number of

gauge groups (i.e. there are no unpaired tensors), one verifies using line (A.13) that each

choice of µ gives rise to a unique choice for the Green-Schwarz couplings.

In physical theories where there are unpaired tensors, the matrix of couplings for the

µ’s are no longer square. By analytic continuation on the groups, however, we can always

extend this to a square matrix. This analytic always appears to yield a unique answer.

Indeed, the perspective of F-theory compactification, we note that the geometric phases of

the base are completely characterized by the automorphism group of the lattice. This means

that the choices of µ for a theory with −1 or −2 curves should be independent of whether

these curves are paired with gauge groups or not. This in turn fixes the Green-Schwarz
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couplings Ii for unpaired tensors to the values specified by the analytic continuations

in (A.16) and (A.17). Thus, we expect from F-theory that these analytic continuations

give the unique Green-Schwarz couplings.

In [86], the possibility of “outlier” 6D SCFTs that do not admit known F-theory

constructions was discussed, and several such theories were proposed. In particular, one

may consider a theory with base

4||2, 2, 2, . . . , 2 (A.21)

where || indicates that the −4 curve is tangent to the adjacent −2 curve. In terms of the

Dirac pairing, such a tangency implies A12 = A21 = −2. All of the anomaly cancellation

conditions are satisfied for this theory, and (A.15) is modified straightforwardly by adding

a factor of 2 in the sum over nearest neighbors for the tangency, so that the coefficient of

the gauge field strength TrF 2
j in I

(0)
i is still given by 1

4Aij .

However, one may also consider an outlier theory with SU(N) gauge group for N ≥ 8 on

a−1 tensor withNF = N−8 fundamental hypermultiplets and a symmetric hypermultiplet.

This theory violates (A.14c) and therefore has non-vanishing gauge-gravitational anomalies

at 1-loop, but a suitable Green-Schwarz term can cancel this term. In particular, all gauge

anomalies will cancel if we take

I
(0)
1 = Nc2(R) +

1

4
p1(T ) +

1

4
TrF 2

SU(N) −
1

4
TrF 2

NF
. (A.22)

Note that the coefficient of p1(T ) is +1/4 rather than the −1/4 expected from (A.15). It

appears that the above analytic continuation does not apply to such “outlier” theories.

It would be interesting to see whether there is a further refinement in this analysis by

interpreting these outlier theories in terms of a discrete quotient, along the lines presented

in this paper.

In the following subsection, we will show how the above formulae work in a handful of

simple examples.

A.2 Examples

A.2.1 Rank Q E-string theory

Let us consider the rank Q E-string theory. The anomaly polynomial of this theory was

computed in [39]:

IE−string
rankQ =

Q2

6
(c2(L)− c2(R))2 +

Q

2
(c2(L)− c2(R)) I2

4 +Q

(
1

4
I4 − I8

)
. (A.23)

The contributions I4 and I8 are given by

I4 =
1

4

(
Tr(F 2

E8
) + p1(T )− 2c2(L)− 2c2(R)

)
, (A.24a)

I8 =
1

48

(
c2(L)− c2(R))2 + p2(T )− 1

4
(2c2(L) + 2c2(R) + p1(T )

)
, (A.24b)

where FE8 is the field strength of the global E8 symmetry for the theory.
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We begin with the special case Q = 1, namely the rank 1 E-string theory. This can be

viewed as the theory of an M5-brane on the M9-wall of Heterotic M-theory. Here, c2(L)

is the second Chern class of the SU(2)L bundle associated to the transverse space of the

M5 brane, which together with the SU(2)R makes up the normal bundle associated to

the SO(4) global symmetry of the theory. The −1 curve usually appears as generalized

matter in the 6D (1, 0) theories, and as in [41], we need to subtract the free hypermultiplet

contribution given by

Ifree−hyp =
1

24

(
c2(L)2 +

1

2
c2(L)p1(T ) +

1

240

(
7p1(T )2 − 4p2(T )

))
, (A.25)

Using our formulae from above, we have

IiE−string = c2(R)− 1

4
p1(T )− 1

4
Tr(F 2

E8
). (A.26)

This gives

IGS =
1

2
(IiE−string)2

=
1

2

[
c2(R)2 − 1

2
c2(R)p1(T )− 1

2
c2(R)Tr(F 2

E8
) +

1

16
p1(T )2

+
1

8
p1(T )Tr(F 2

i−1) +
1

8
p1(T )Tr(F 2

i+1) +
1

16
Tr(F 2

E8
)2

]
. (A.27)

To this, we add the 1-loop piece associated with a tensor multiplet to get

Itot =
13

24
c2(R)2 − 11

48
c2(R)p1(T ) +

203

5760
p1(T )2 − 29

1440
p2(T )− 1

4
c2(R) Tr(F 2

E8
)

+
1

16
p1(T ) Tr(F 2

E8
) +

1

32
Tr(F 2

E8
)2. (A.28)

This is precisely the anomaly polynomial of the rank 1 E-string with Ifree−hyp subtracted

off. Next, we consider the rank Q E-string. We have

Aij =


1 −1 0 . . .

−1 2 −1 . . .
...

...

. . . 0 −1 2

 . (A.29)

Using (A.16) and (A.17), we have

I1 = c2(R)− 1

4
p1(T )− 1

4
Tr(FE8)2

Ik = c2(R)− c2(L), k = 2, . . . , Q. (A.30)

The Green-Schwarz term is then given by IGS = 1
2Ii(A

−1)ijIj . To this, we add the 1-loop

contribution associated with Q tensor multiplets (obtained by taking NT = Q copies of
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line (A.3)) and Q− 1 free hypermultiplets (Q− 1 times Ifree of (A.20)). We arrive at

Itot = − 1

24
c2(L)2 − 1

48
c2(L)p1(T )− 7

5760
p1(T )2 +

1

1440
p2(T ) +

Q

8
c2(L)2

+
Q

3
c2(L)c2(R) +

Q

8
c2(R)2 − 5Q

48
c2(L)p1(T )− 5Q

48
c2(R)p1(T ) +

7Q

192
p1(T )2

− Q

48
p2(T )− Q2

4
c2(L)2 +

Q2

4
c2(R)2 +

Q2

8
c2(L)p1(T )− Q2

8
c2(R)p1(T )

+
Q3

6
c2(L)2 − Q3

3
c2(L)c2(R) +

Q3

6
c2(R)2 − Q

8
c2(L) Tr(F 2

E8
)− Q

8
c2(R) Tr(F 2

E8
)

+
Q

16
p1(T ) Tr(F 2

E8
) +

Q2

8
c2(L) Tr(F 2

E8
)− Q2

8
c2(R) Tr(F 2

E8
) +

Q

32
Tr(F 2

E8
)2. (A.31)

This is precisely (A.26) with the contribution of a free hypermultiplet subtracted off.

A.2.2 SO(10)-Sp(1)

We next consider the SO(10)-Sp(1) gauge theory with Dirac pairing:

Aij =

[
4 −1

−1 1

]
. (A.32)

We know that there are four phases, given by:

µ = σ = ±I , µ = σ = ±

[
1 2

0 −1

]
. (A.33)

For simplicity, we consider only the phase where both t1, t2 > 0. For µ = I, we have

(µ−1)T = I, so I1 = I
(0)
1 , I2 = I

(0)
2 . Using (A.15),

I1 = 8c2(R) +
1

2
p1(T ) + TrF 2

1 −
1

4
TrF 2

L −
1

4
TrF 2

2 ,

I2 = 2c2(R)− 1

4
p1(T ) +

1

4
TrF 2

2 −
1

4
TrF 2

R −
1

4
TrF 2

1 . (A.34)

It is easily checked that this produces the correct Green-Schwarz term IGS = 1
2A

ijIiIj .

The other solution is just slightly more complicated. We have

µ =

[
1 2

0 −1

]
. (A.35)

Eq. (A.18) yields

I1 = 12c2(R) +
1

2
TrF 2

1 +
1

4
TrF 2

2 −
1

4
TrF 2

L −
1

2
TrF 2

R,

I2 = −2c2(R) +
1

4
TrF 2

1 −
1

4
TrF 2

2 +
1

4
TrF 2

R +
1

4
p1(T )2. (A.36)

It can also be checked that this reproduces the correct GS term IGS. Raising indices with

the metric, we find

I1 ⊃ 1

4
( TrF 2

1 )

I2 ⊃ 1

4
(2 TrF 2

1 − TrF 2
2 ). (A.37)
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This agrees with charge quantization. Note also that[
I1

I2

]
⊃ 1

4

[
1 0

2 −1

][
TrF 2

1

TrF 2
2

]
=

1

4
(µ−1)T

[
TrF 2

1

TrF 2
2

]
, (A.38)

in accord with line (A.13).

A.2.3 SU(N1)-SU(N2)

We consider now a quiver consisting of two −2 curves carrying gauge groups SU(N1) and

SU(N2), respectively. In this case, we have:

Aij =

[
2 −1

−1 2

]
, (A.39)

and

I
(0)
1 = N1c2(R) +

1

2
TrF 2

1 −
1

4
TrF 2

L −
1

4
TrF 2

2 ,

I
(0)
2 = N2c2(R) +

1

2
TrF 2

2 −
1

4
TrF 2

R −
1

4
TrF 2

1 . (A.40)

There are a number of different phases. We will consider simply the one with

µ =

[
0 1

−1 −1

]
. (A.41)

So,

I1 = N2c2(R) +
1

2
TrF 2

2 −
1

4
TrF 2

R −
1

4
TrF 2

1 ,

I2 = −(N1 +N2)c2(R)− 1

4
TrF 2

1 −
1

4
TrF 2

2 +
1

4
TrF 2

L +
1

4
TrF 2

R. (A.42)

This gives the correct GS term, 1
2(A−1)ijIiIj , and we have

I1 ⊃ 1

4
(−TrF 2

1 + TrF 2
2 )

I2 ⊃ 1

4
(−TrF 2

1 ). (A.43)

This agrees with charge quantization, and[
I1

I2

]
⊃ 1

4

[
−1 1

−1 0

][
TrF 2

1

TrF 2
2

]
=

1

4
(µ−1)T

[
TrF 2

1

TrF 2
2

]
(A.44)

A.2.4 Sp(1)-SO(10)-Sp(1)

Finally, we consider a quiver with three simple gauge group factors, namely Sp(1)×SO(10)×
Sp(1). We have

Aij =

 1 −1 0

−1 4 −1

0 −1 1

 , (A.45)
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and

I
(0)
1 = 2c2(R)− 1

4
p1(T ) +

1

4
TrF 2

1 −
1

4
TrF 2

L −
1

4
TrF 2

2 ,

I
(0)
2 = 8c2(R) +

1

2
p1(T ) + TrF 2

2 −
1

4
TrF 2

3 −
1

4
TrF 2

1 ,

I
(0)
3 = 2c2(R)− 1

4
p1(T ) +

1

4
TrF 2

3 −
1

4
TrF 2

R −
1

4
TrF 2

2 . (A.46)

There are many choices of µ that cancel gauge anomalies and satisfy charge quantization.

One choice is

µ =

−1 0 0

0 −1 −2

0 0 1

 . (A.47)

Using (A.18), we have

I1 = −2c2(R) +
1

4
p1(T )− 1

4
TrF 2

1 +
1

4
TrF 2

L +
1

4
TrF 2

2 ,

I2 = −12c2(R)− 1

2
TrF 2

2 −
1

4
TrF 2

3 +
1

4
TrF 2

1 +
1

2
TrF 2

R,

I3 = 2c2(R)− 1

4
p1(T ) +

1

4
TrF 2

3 −
1

4
TrF 2

R −
1

4
TrF 2

2 . (A.48)

This gives the correct IGS and satisfies I1

I2

I3

 ⊃ 1

4

−1 0 0

0 −1 0

0 −2 1


 TrF 2

1

TrF 2
2

TrF 2
3

 =
1

4
(µ−1)T

 TrF 2
1

TrF 2
2

TrF 2
3

 . (A.49)
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