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1 Introduction

The prospect of discovering a heavy and neutral gauge boson, often dubbed Z ′, at the LHC

has motivated many different phenomenological studies of models in which such particles

arise. A simple example of such a model is a U(1)-extension of the standard model (SM).

If one wishes to consider U(1)-models with chiral fermions in a consistent manner, one

should take care that gauge-invariance is not violated by anomalies. In order to enforce

this, traditionally one constructs the classical action of the theory to be gauge-invariant,
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together with choosing particular relations between the gauge charges of the chiral fermions

such that the anomalies cancel [1]. For a recent update of collider bounds on such models,

see [2] and references therein.

However, this is not the only possible way to enforce gauge-invariance. An alternative

is to consider the possibility of adding gauge-variant terms to the classical Lagrangian such

that the full theory with anomalies satisfies all Ward identities. By accepting this point of

view it is possible to abandon the notion that the classical action has to be gauge-invariant,

and consider a theory which has gauge-dependent building blocks but obeys all relevant

Ward identities in the end. This idea can be realized through the Green-Schwarz (GS)

mechanism [3] which can arise in several different settings, e.g., in string theories, or from

integrating out heavy fermions.1

The principal idea is this [4]: gauge-invariance should be apparent at all energies —

even if anomaly cancellation is taken care of by high-scale physics. Thus, the contribution

of such physics, e.g., heavy fermions running in loops, no matter how heavy, should not be

suppressed at low energies. In [5] the authors conclude that such an effective action and

its phenomenological consequences cannot determine the nature of the high-scale physics.

Even though this conclusion does not offer an additional window into high-scale physics,

it does allow fairly model-independent studies of the GS mechanism. With this in mind,

we will in this paper perform a more detailed phenomenological analysis (aimed primarily

at the LHC) of GS U(1) extensions. For earlier phenomenological work in this setting,

see [6] for a study of a model derived from string theory, [7–9] for pre-LHC analyses of

similar extensions, [10] for a more recent collider study in the context of explaining dark

matter, and [11–13] for studies where the anomalous Z ′ is very light. The assumptions

of our approach include, (i) an additional U(1) gauge group broken by the Stückelberg

mechanism, (ii) SM fermions are the only fermions (not integrated out) which are charged

under the SM gauge group, (iii) the gauge charges are generation independent, and (iv)

the electroweak symmetry breaking (EWSB) occurs as in the SM.

In section 2, we discuss minimal U(1)-extensions of the SM, with focus on the GS

mechanism in subsection 2.2. In section 3, we describe various interesting models which

are possible in this setting. We describe the computations of branching ratios, including

details regarding the evaluation of 1-loop processes, in section 4. In section 5, we review

our phenomenological results, capped off with a discussion in section 6.

2 Minimal U(1) extensions

We consider a generic U(1) extension of the SM whose gauge group is SU(3)C ×
SU(2)L × U(1)Y × U(1)z. The gauge couplings, gauge fields and field strengths as-

sociated with {SU(3)C , SU(2)L,U(1)Y ,U(1)z} are {gS , g, g′, gz}; {Gµ,Wµ, Bµ
Y , B

µ
z }; and

{FµνG , FµνW , FµνY , Fµνz }, respectively. In this paper, we consider anomaly cancellation via

the GS mechanism, and the extra Abelian U(1)z is broken to the SM gauge group at some

1Here we are being a bit cavalier with the term gauge-invariance. It should be noted that one really deals

with a gauge-fixed Lagrangian, for which BRST invariance is the remaining symmetry that the observables

must obey.
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Fields SU(3)c SU(2)L U(1)Y U(1)z

H 1 2 1 zH

qL 3 2 1/3 zq

uR 3 1 4/3 zu = zq + zH

dR 3 1 −2/3 zd = zq − zH
`L 1 2 −1 z`

eR 1 1 −2 ze = z` − zH

Table 1. The U(1)z charge assignments of the Higgs doublet and the fermions of the SM.

high scale through the Stückelberg mechanism, which makes the Z ′ massive. The EWSB

then proceeds as usual; the details of the symmetry breaking can be found in appendix A.

The Higgs doublet Φ and all the SM fermions are in general all charged under U(1)z.

The three generations of left-handed quark and lepton doublets are denoted by qiL and liL
respectively and the right-handed components of up-type, down-type quarks and charged

leptons are denoted by uiR, diR and eiR (here i = 1, 2, 3) respectively. We denote the

hypercharge by Y and the U(1)z charge by z, which we assume to be generation independent

to prevent flavor changing neutral currents. The charges of the different particles are

labeled according to the convention of [1], which is summarized in table 1. The U(1)z
charges of fermions are constrained to provide gauge-invariant Yukawa couplings, i.e. zu =

zq + zH ; zd = zq − zH ; ze = z` − zH .

2.1 Anomaly cancellation and U(1)z charges

In order to construct an anomaly-free gauge theory with chiral fermions, it is common

to assign the gauge charges of the fermions such that the gauge anomalies cancel when

the contributions from all fermions are taken into account. Gauge anomalies are always

proportional to a trace over all relevant fermions. Introduction of a U(1)z symmetry leads to

six types of possible anomalies, which are shown in table 2 together with the corresponding

traces and their expressions in terms of the free charges zq, z` and zH (these expressions are

similar to the ones derived in [7]). This table also includes the corresponding GS parameters

for future reference. It should be noted that the mixed gauge anomaly [SU(3)c]
2 [U(1)z]

cancels automatically when the Yukawa coupling constraints are enforced.

If the anomalies are canceled via the appropriate fermion charge assignments, the

general solution to the anomaly cancellation conditions (in the framework with no kinetic

mixing) is for the charge Qzf of a given fermion f under the gauge group U (1)z to be

written as a linear combination of its hypercharge Yf and (B −L)f quantum number [14],

i.e., Qzf = aYf + b(B − L)f . However, if the charges are “free”, the most general fermion

charge can be written in terms of zq, z` and zH as

Qzf = 3zqBf + z`Lf + zH

{
Yf − (B − L)f

}
. (2.1)
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Anomaly Trace Parameters Expression

[U(1)z]
3 Tr

[
z3
]

Czzz −z3
H − 3zHz

2
` − z3

` + 3z2
H(z` + 6zq)

[U(1)z]
2 [U(1)Y ] Tr

[
Y z2

]
Ezzy, Czzy 4zH(z` + 3zq)

[U(1)z] [U(1)Y ]2 Tr
[
Y 2z

]
Ezyy, Czyy 4(z` + 3zq)

[SU(2)L]2 [U(1)z] Tr
[{
T i, T j

}
z
]

K2, D2 (6zq + 2z`)

[SU(3)C ]2 [U(1)z] Tr
[{
T a, T b

}
z
]

K3, D3 0

[R]2 [U(1)z] Tr [z] — 3zq + 2z` − zH

Table 2. The different possible gauge anomalies, together with the corresponding traces, the

corresponding GS parameters and the traces’ algebraic expressions in terms of the charges zq, z`
and zH . The table is expressed in terms of the generators T i of SU(2)L, T a of SU(3)c, Y of

U(1)Y and z of U(1)z. In the final anomaly we have written R to represent the general relativity

gauge group.

2.2 The Green-Schwarz mechanism

In this subsection, we review how the GS mechanism [3] can be used to generate a low-

energy effective action which is anomaly free — for a more formal review of gauge anomalies,

see [15–18].

Anomalies associated with the U(1)z extensions are, in general, both mixed and pure.

Pure anomalies only violate BRST symmetry for particular gauge transformations, while

mixed anomalies introduce violation of multiple transformations. An anomaly is called

relevant if it is not possible to completely remove it by adding a local counterterm to the

classical Lagrangian. However, it is always possible, by reshuffling the mixed anomalies, to

put all anomalous transformations on the U(1)z group. Explicitly, if we integrate out all

fermions we can define an effective action as

eiΓ =

∫ ∏
fermions

DΦeiS .

A typical mixed U(1) anomaly has the form [19], δΓ ∼ AθY εαβµνF
αβ
z Fµνz + B θzεαβµν

×Fαβz FµνY , where θY and θz are the gauge transformation parameters of the respective

U(1) groups. Adding a counterterm Lct ∼ AεαβµνB
α
YB

β
z F

µν
z alters the anomalous trans-

formation to

δΓ→ (A+B) θzεαβµνF
αβ
z FµνY .

For relevant anomalies, it is not possible to completely remove the remaining U(1)z anomaly

with the available field content. However, since all the U(1)z anomalous transformations

are of the form ∼ θzTr(F 2), it is possible to add a pseudoscalar, A, to the spectrum,

transforming under U(1)z as A → A + Mgzθz. The anomalous U(1)z transformation can

then be removed by adding terms of the form L ∼ (A/M)Tr(F 2) to the Lagrangian. This

is a low-energy form of the GS mechanism.
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In a U(1) extension of the SM, the GS mechanism can be incorporated by using the

formalism developed in [5]. Three types of new terms appear in the Lagrangian,

L ⊃ Lkin + LPQ + LGCS. (2.2)

The first term Lkin consists of kinetic energy terms of the U(1)z gauge boson Bz together

with the pseudoscalar A (also known as a Stückelberg axion [20]) as follows,

Lkin = −1

4
(Fµνz )2 +

1

2
(∂µA+MgzB

µ
z )2 , (2.3)

where Fµνz is the field strength tensor of the Bµ
z field and M is a parameter with the

dimension of mass, further discussed at the end of this subsection. The kinetic terms are

chosen such that Lkin is invariant under the U(1)z transformation Bµ
z → Bµ

z − ∂µθz and

A → A + Mgzθz. The second and third parts of eq. (2.2), LPQ and LGCS, are called the

Peccei-Quinn (PQ) and the generalized Chern-Simons (GCS) terms respectively. These two

classes of terms, as described above, are chosen such that they remove all gauge anomalies.

The Lagrangian LPQ contains couplings between A and gauge-invariant terms of the

form Tr(F 2), in a fashion similar to the PQ mechanism [21],

LPQ =
~

16π2

1

6M
A εµνρσ

(
Czzzg

2
zF

µν
z F ρσz + Czzygzg

′Fµνz F ρσY + Czyyg
′2FµνY F ρσY

+D2g
2Tr

(
FµνW F ρσW

)
+D3g

2
STr

(
FµνS F ρσS

) )
. (2.4)

The LGCS part is chosen such that its gauge transformations mimic the mixed anoma-

lies, and contains antisymmetric trilinear interactions of various gauge bosons. These can

be written as

LGCS =
~

16π2

1

3
εµνρσ

(
g′2gzEzyyB

µ
YB

ν
zF

ρσ
Y + g′g2

zEzzyB
µ
YB

ν
zF

ρσ
z

+ g2gzK2B
µ
z Ωνρσ

W + g2
SgzK3B

µ
z Ωνρσ

S

)
, (2.5)

where Ω is the non-Abelian Chern-Simons 3-form (here we write AS , AW instead of G,W

to simplify the notation), given by

ΩS,W
νρσ =

1

3
Tr
[
AS,Wν

(
FS,Wρσ − [AS,Wρ , AS,Wσ ]

)
+ (cyclic perm.)

]
. (2.6)

In equations (2.4) and (2.5) we have restored a factor of ~, to emphasize that these terms

are of 1-loop strength. The various coefficients (C,D,E,K) in equations (2.4) and (2.5)

can be expressed in terms of the different U(1)z charges of the fermions by matching the

new terms’ transformation to the anomalies [5].

Czzz = −3

8

(
z3
h + 3zhz

2
` + z3

` − 3z2
h(z` + 6zq)

)
, (2.7)

Czzy = −9

2
zh(z` + 3zq) = 3Ezzy, (2.8)

Czyy = −9

4
(z` + 3zq) =

3

2
Ezyy, (2.9)

D2 =
9

2
(6zq + 2z`) = −3

2
K2, (2.10)

D3 = 0 = K3. (2.11)
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The coefficients D3,K3 are zero due to the fact that the [SU(3)c]
2 [U(1)z] anomaly cancels

automatically from the gauge invariance of the Yukawa sector.

From the LPQ terms we see that this theory contains vertices including axion and

gauge bosons of the form AZZ,AZ ′Z ′,Aγγ,AW+W− (the coupling to gluons is zero).

The LGCS part generates the new tree-level vertices ZZγ,ZZ ′γ, Z ′Z ′γ, which are not

present in traditional anomaly-free U(1)-extensions [1]. As described above, these new

terms serve, in practice, as counter-terms for anomalous amplitudes, as for example the

standard triangle-fermion amplitude. We are especially interested in the amplitudes Z ′ZZ

and Z ′γZ, which, if observed, may give indications of the GS nature of the theory.

The parameter M introduced in Lkin and LPQ has the dimension of mass and corre-

sponds to a high scale. It can be interpreted as a vacuum expectation value of a Higgs field

which spontaneously breaks U(1)z. If the corresponding physical scalar is heavy, it can be

integrated out. The remnant is a pseudoscalar boson A and a mass term for the Bz field.

In our minimal setup A is not physical, but simply a Goldstone boson which is absorbed by

the gauge fields. By considering a more complicated Higgs sector it is possible to furnish

a physical axion and a Goldstone boson, through mixing with other scalar fields.

Note that the PQ terms are suppressed by the scale M ; from equation (A.3) in ap-

pendix A it can be seen that M ∼MZ′/gz as MZ′ →∞. However, the GCS terms remain

unsuppressed even at low energies, see eq. (2.5).

2.3 Ward identities in the broken theory

In perturbative calculations, gauge anomalies manifest as the violations of various Ward

identities for both the unbroken and the broken theory. A case relevant for the Z ′ phe-

nomenology is the process Z ′ → γZ, which should obey the Ward identities

pµZ′Γ
Z′γZ
µνρ − iMZ′Γ

φZ′γZ
νρ = 0, (2.12)

pνγΓZ
′γZ

µνρ = 0, (2.13)

pρZΓZ
′γZ

µνρ − iMZΓZ
′γφZ

µν = 0, (2.14)

where, e.g., ΓZ
′γZ

µνρ is the amputated Z ′µγνZρ three-point function with all momenta outgo-

ing and φZ , φZ′ denote the Goldstone bosons corresponding to Z,Z ′ respectively. Anoma-

lies present in the unbroken theory will be inherited in the broken theory, and show up as

violations of the Ward identities for the spontaneously broken theory.

In the example above, the Ward identities will be broken by terms proportional to

the [U(1)Y ]2 [U(1)z] and [SU(2)L]2 [U(1)z] anomalies (together with the relevant mixing

angles). In addition, a process such as Z ′ → ZZ would also inherit the anomaly [U(1)z]
3.

This anomaly is not present in the Z ′ → γZ case since the photon does not mix with the

Z ′. An easy way to see this is to recall that right-handed neutrinos are often introduced to

cancel the [U(1)z]
3 anomaly (and the gravity anomaly), and at the lowest order calculation

of Z ′ → γZ, right-handed neutrinos cannot circulate in the fermion loop since they do not

couple to the photon.
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For a concrete example consider one of the anomalous Z ′ZZ Ward identities that takes

the form

pµZ′Γ
Z′ZZ
µνρ − iMZ′Γ

φZ′ZZ
νρ = iενραβp

α
γp

β
Z

(
gzA

96π2c2
ws

2
w

)
, (2.15)

where cw = cos θW and sw = sin θW (θW is the Weinberg angle). The anomalous factor A,

in the model considered above, is given by

A =
(
c2
z − 2s2

z

)
{ 2e2czs

4
w (2zd + 6ze − 3z` − zq + 8zu)

− 6e2czc
4
w (z` + 3zq)− 6egzszcws

3
w

(
z2
d + z2

3 − z2
` + z2

q − 2z2
u

)}
− 3g2

zczs
2
zs

2
wc

2
w

(
3z3
d + z3

e − 2z3
` − 6z3

q + 3z3
u

)
, (2.16)

where cz = cos θ′ and sz = sin θ′ (θ′ is the Z ↔ Z ′ mixing angle). The origin of each

term is clear; for instance, the presence of cos4 θW and sin4 θW indicate that these terms

correspond to the [SU(2)L]2 [U(1)z] and [U(1)Y ]2 [U(1)z] anomalies, respectively. While the

terms related with [U(1)z]
2 [U(1)Y ] and [U(1)z]

3 anomalies come with extra factors of gz
and sin θ′, since they are absent if θ′ = 0. The different GS terms are hence constructed to

cancel these anomalous terms.

3 Interesting models

In eq. (2.1), we can see that the U(1)z charge of a given fermion can be written in terms of

the free charges zq, z` and zH and the quantum numbers Y,B and L. Note that the form

of the charge is completely determined by the spontaneous symmetry breaking together

with the assumption of generation-independent charges. With this charge known, it is now

possible to consider different interesting models. First, there are the traditional models

described in, e.g., ref. [1], which we will not consider in this paper (a popular example is

gauged B−L models). In the GS setting, however, there are more exotic possibilities. We

divide them into two categories: chiral (C) and non-chiral (NC) models. Since hypercharge

is the only chiral charge present in (2.1), the NC models are categorized by zH = 0. All

of the NC models correspond to different linear combinations of B and L. Here is a list of

examples:

• Qzf = Bf (baryon number): obtained by choosing the charges zq = 1/3; z` = 0; zH =

0. This model is leptophobic [22].

• Qzf = Lf (lepton number): zq = 0; z` = 1; zH = 0. This model is quarkphobic [23].

• Qzf = Bf − Lf : zq = 1/3; z` = −1; zH = 0. This is a widely studied traditional

model [24] which can be made anomaly free by including right-handed neutrinos.

• Qzf = 0 (fermiophobic): zq = 0; z` = 0; zH = 0. This model is anomaly free trivially.

• Qzf = Bf + Lf : zq = 1/3; z` = 1; zH = 0.

• Qzf = z` (Lf − 2Bf ): zq = −(2/3)z`; zH = 0; with z` free. This model is an NC

example of the gravity model (see the list of C models below).

– 7 –
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For C models, we need zH 6= 0. A list of examples is

• Qzf = zHYf (Y-sequential): obtained by choosing the charges zq = (1/3)zH ; z` =

−zH ; with zH free but nonzero. This model is automatically anomaly free since it is

just a copy of the SM U(1)Y gauge group [25].

• Qzf = −(1/2) (B − L)f + (1/5)Yf (SO(10) GUT): zq = −1/10; z` = 3/10; zH = 1/5.

This model can be made anomaly free by adding right-handed neutrinos [26].

• Qzf = zH

(
Yf − (B − L)f

)
(right-handed): zq = 0; z` = 0; with zH free but nonzero.

With zH = −1/2 one obtains the traditional right-handed model which can be made

anomaly free by adding right-handed neutrinos [25].

• Qzf = zH (Yf −Bf ) + (z` + zH)Lf (right-handed quarks): zq = 0; with z` free and

zH free but nonzero.

• Qzf = 3zqBf + z` (2Lf + Yf ) (left-handed leptons): zh = z`; with zq free and z` free

but nonzero.

• Qzf = (3zq − zH)Bf + zH (Yf + Lf ) (right-handed leptons): z` = 0 with zq free and

zH free but nonzero.

• Qzf = (3zq + (1/2)z`)Bf + (1/2)z` (Lf − Yf ) (axial leptons): zH = −(1/2)z` with zq
free and z` free but nonzero.

• Qzf = −2z`Bf + 3(zq + z`)Lf + (3zq + 2z`)Yf : zH = (3zq + 2z`) with zq, z` free such

that z` 6= −(3/2)zq. This model is constructed to cancel the gauge-gravity anomaly

explicitly.

In this paper, we will focus on four benchmark models, but we also perform random scans

of the parameter space of charges. Note that the models which are automatically anomaly

free have all the GS parameters equal to zero. The models which can be made anomaly

free by adding right-handed neutrinos have many of the GS parameters equal to zero, but

not all of them, and hence have weak exotic signatures. We note that all of these models

necessarily have z` = −3zq.

4 Z′ decays and partial widths

In our models, Z ′ has the following tree-level decays: Z ′ → f̄f (where f denotes any SM

fermion), Z ′ → W+W−, and Z ′ → ZH. There are also two possible one-loop decays of

Z ′, Z ′ → Zγ and Z ′ → ZZ, whereas the Z ′ → γγ decay is forbidden by the Landau-

Yang theorem. Although the branching ratios (BRs) of these loop-suppressed decay modes

are very small, they can act as unique signatures of the GS mechanism and are hence of

particular interest. The analytical formulas of the tree level two-body decay modes are

easy to compute and are given in [2]. The production cross-sections are calculated in the

Madgraph package [27]. The loop level decay modes have been calculated using the

FeynCalc package [28, 29], with the Feynman rules calculated using FeynRules [30],

– 8 –
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r  

p

q

+ permutat ion

Figure 1. Generic fermion loop for Z ′ decay into two vector bosons.

and the diagrams generated using FeynArts [31, 32]. To evaluate the one loop integrals

we use Package-X [33], which is interfaced to FeynCalc by FeynHelpers [34]. Details

of these calculations can be found in subsection 4.1 below, and in appendix B.

4.1 Loop induced decays

Both of the Z ′ → Zγ and Z ′ → ZZ processes are of loop strength and do not appear at

the tree level. These processes are interesting since they receive contributions from the

GS terms, and could indicate the presence of such terms. Both of the above-mentioned

processes are finite and contain a gauge contribution and a fermionic contribution, but it

turns out that the gauge loops cancel (see [7]) and only the fermion loops are non-zero. We

calculate these processes in the symmetric anomaly scheme [5] and evaluate them in the

limit where all fermion masses excluding the top mass vanish. The other fermion masses

give negligible contributions to the amplitude.2 The notation ε[µ, ν, ρ, q] ≡ ε[µ, ν, ρ, α]qα

will be used extensively.

4.1.1 Z ′ → ZZ decay

The triangle loop for this process is shown in figure 1; the amplitude is denoted as

ΓZ
′ZZ

ρµν (r, p, q), (4.1)

where the Z ′ momentum r = p + q is incoming, the Z momenta p, q are outgoing, and

p2 = q2 = M2
Z . The generic process can be parametrized as

ΓZ
′ZZ

ρµν (r, p, q) = A1 ε[µ, ν, p, q]q
ρ +A2 ε[µ, ν, p, q]p

ρ

+A3 ε[µ, ν, ρ, q] +A4 ε[µ, ν, ρ, p]

+A5 ε[ν, ρ, p, q]q
µ +A6 ε[ν, ρ, p, q]p

µ

+A7 ε[µ, ρ, p, q]q
ν +A8 ε[µ, ρ, p, q]p

ν , (4.2)

where A1–A8 are Lorentz-invariant functions of p, q and mf (see appendix B for the explicit

forms of these functions). Bose symmetry, i.e., symmetry under the replacements (µ ↔
ν, p↔ q), dictates A1 = A2, A3 = −A4, A5 = −A8, A6 = −A7. In addition, the relations

A5 = −A6, A7 = −A8 hold, which can be seen after applying the relevant Ward identities.

2A similar analysis of anomalous amplitudes was performed in [10].
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The amplitude contribution from a single fermion can hence be written in the compact form

ΓZ
′ZZ

ρµν (r, p, q) = A (ε[µ, ν, p, q]qρ + ε[µ, ν, p, q]pρ)

+B (ε[µ, ν, ρ, q]− ε[µ, ν, ρ, p])
+ C (ε[ν, ρ, p, q]qµ − ε[ν, ρ, p, q]pµ + (µ↔ ν)) . (4.3)

It is possible to rewrite the amplitude in the Rosenberg parametrization [35] by using the

Schouten identity (see appendix B for details). The complete transition amplitude can

then be written as

T Z′ZZ
λ′λ1λ2(r, p, q) = ελ

′
(r)ρε

λ1
µ (p)ελ2(q)νΓZ

′ZZ
ρµν (r, p, q), (4.4)

where the A terms, shown in equation (4.3), drop out from the calculation due to the

transversality of the polarization tensors. Averaging over initial state polarization and

summing over final state polarizations the square of the complete amplitude takes the form

〈|T |2〉 ≡ 1

3

∑
λ′,λ1,λ2=±,0

T Z′ZZ
λ′λ1λ2(r, p, q)

(
T Z′ZZ
λ′λ1λ2(r, p, q)

)∗
=

(
M2
Z′ − 4M2

Z

)2
12M2

Z

∣∣∣∣∑
f

(
2Bf +M2

Z′Cf
) ∣∣∣∣2, (4.5)

where Bf , Cf denote the form factor contributions in equation (4.3) for a specific fermion

f , and a sum over all fermions has been included. The GCS-terms will have the same

Lorentz structure as the B-term; including these in the amplitude gives

〈|T |2〉 =

(
M2
Z′ − 4M2

Z

)2
12M2

Z

∣∣∣∣∑
f

(
2Bf +M2

Z′Cf
)

+ 2(GCS)Z
′ZZ
∣∣∣∣2. (4.6)

The decay width is then given by

ΓZ
′ZZ =

1

2

1

16πMZ′

√
1− 4

(
MZ

MZ′

)2

〈|T |2〉 , (4.7)

where the the symmetry factor has been included due to identical final states.

The role of the GCS terms can best be seen in the MZ′ → ∞ limit, in which

the form factor simplifies to 2Bf + M2
Z′Cf → 2Bf |MZ′→∞, where the leading order

term
∑

f 2Bf |MZ′→∞ is mass independent and proportional to the anomaly A: Bf =

A + O
(

1
M3

Z′

)
. The GCS terms cancel the leading order term, GCS = −

∑
f 2Bf |MZ′→∞.

This cancellation ensures that the process is unitary.

4.1.2 Z ′ → Zγ decay

The Z ′ → Zγ amplitude is shown in figure 1, and the evaluation is very similar as for the

Z ′ → ZZ process. The amplitude is denoted as

ΓZ
′Zγ

ρµν (r, p, q), (4.8)
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where r = p+ q, and q2 = 0, p2 = M2
Z . The amplitude can be written as

ΓZ
′Zγ

ρµν (r, p, q) = A1 ε[µ, ν, p, q]q
ρ +A2 ε[µ, ν, p, q]p

ρ

+A3 ε[µ, ν, ρ, q] +A4 ε[µ, ν, ρ, p]

+A5 ε[ν, ρ, p, q]q
µ +A6 ε[ν, ρ, p, q]p

µ

+A7 ε[µ, ρ, p, q]q
ν +A8 ε[µ, ρ, p, q]p

ν . (4.9)

In contrast with the Z ′ → Zγ amplitude, there are no direct Bose-symmetry relations,

but it still turns out that the decay width is completely characterized by two form factors.

Using the Schouten identity for light-like momenta (see appendix B),

qρε[µ, ν, p, q] = −qµε[ν, ρ, p, q] + p · qε[µ, ν, ρ, q], (4.10)

together with transversality of the polarization tensors, we can exchange A2 for −A1 and

remove A6 and A7. This leaves the Lorentz structure

ΓZ
′Zγ

ρµν (r, p, q) = B1 ε[µ, ν, ρ, q] +B2 ε[µ, ν, ρ, p]

+B3 ε[ν, ρ, p, q]q
µ +B4 ε[µ, ρ, p, q]p

ν . (4.11)

The above functions are not all independent, which can be seen by using the three Ward

identities of the amplitude, or from the explicit calculations in appendix B. The remaining

form factors are related as:

B2 = p · qB3 −A,
B3 = −B4,

B1 = −B3(p · q −M2
Z)

−
3iQfm

2
f (gRZ,f − gLZ,f )(gRZ′,f − gLZ′,f )C0(0,M2

Z ,M
2
Z′ ,m2

f ,m
2
f ,m

2
f )

12π2
+A,

where A is a combination of the anomaly terms and the contribution from the GCS

terms; gRZ′,f and gLZ′,f are the right-handed and left-handed couplings respectively;

C0(0,M2
Z ,M

2
Z′ ,m2

f ,m
2
f ,m

2
f ) is the usual Passarino-Veltman scalar integral.

The above relations leave two independent form factors, such that the amplitude can

be decomposed as

ΓZ
′Zγ

ρµν (r, p, q) = F1

(
qµε[ν, ρ, p, q]− pνε[µ, ρ, p, q] + (p · q)ε[µ, ν ρ, p]

− ((p · q)−M2
Z)ε[µ, ν, ρ, q]

)
+ F2 ε[µ, ν, ρ, q].

Note that the photon Ward identity is manifest in the above representation of the

amplitude.

Contracting with polarization tensors, squaring, averaging over the Z ′ polarization,

and summing over all fermions and final state polarizations, we obtain

〈|T |2〉 =
(M4

Z −M4
Z′)(M2

Z −M2
Z′)

2M2
ZM

2
Z′

∣∣∣∣∑
f

(2F1,fM
2
Z + F2,f )

∣∣∣∣2, (4.12)

here F1,f , F2,f denote the form factor contributions from each fermion.
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zH zq z`

B 0 1/3 0

B + L 0 1/3 1

QR 1/2 0 −1/2

LR 1 1/3 0

Table 3. The benchmark models considered in this paper; QR refers to right-handed quarks, and

LR to right-handed leptons.

The decay rate is then given by

ΓZ
′Zγ =

1

16πMZ′

(
1−

(
MZ

MZ′

)2
)
〈|T |2〉 . (4.13)

In practice most of the fermion masses can be taken to vanish and only the top-quark

mass is assumed to be finite. There is however a subtle issue on how to explicitly perform

the massless limit, we refer the reader to the discussion in appendix B.4.

4.1.3 Forbidden processes

While the Z ′ → Zγ and Z ′ → ZZ processes are allowed and can be observed, a process

such as Z ′ → γγ is forbidden by the Landau-Yang theorem, and does not contain an

anomaly. This can be seen from the only (possibly) non-zero anomaly trace

Tr
(
U(1)zU(1)2

em

)
∼
(
z` − ze + 3

(
4

9
(zq − zu) +

1

9
(zq − zd)

))
∼
(
zH +

1

3
(−4zH + zH)

)
= 0.

While the Z ′ → γ?γ process is interesting in its own right, it does not receive contribution

from anomalies in this class of models.

4.2 Branching ratios

In figure 2, we show the BRs of Z ′ as functions of MZ′ for the four benchmark models

defined in table 3. The Z ′ → ZZ and Z ′ → Zγ branching ratios are multiplied by an extra

factor of 104 for readability. Note that there is no tree-level Z ↔ Z ′ mixing in both the B

and the B + L model — hence the tree-level decays to W+W− and ZH are not present.

These decays will be loop-suppressed, presumably on the same order as the Z ′ → ZZ and

Z ′ → Zγ decays, but we have not calculated them since they are not of interest to us.

As can be seen in figure 2a, the Z ′-boson of the B-model is leptophobic in nature and

therefore dominantly decays to dijets. Hence, the dijet resonance search data is the most

important in constraining the B-model.
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Figure 2. Branching ratios of Z ′ as functions of MZ′ for the benchmark models given in table 3.

The gauge coupling is chosen to the representative value gz = 0.2. Note the enhancement of a

factor of 104 of the loop-suppressed branching ratios.

5 Collider phenomenology

5.1 Exclusion limits

At the LHC, a Z ′ can be produced from q̄q fusion and the production cross section pp→ Z ′

at a fixed collider center-of-mass energy (CME)
√
s can be parametrized as

σ (MZ′ , gz, zq, zH) =
g2
z

4

[
au (MZ′)

{
z2
q + (zq + zH)2

}
+ ad (MZ′)

{
z2
q + (zq − zH)2

}]
,

(5.1)

where the mass-dependent functions (also dependent on
√
s) au and ad include contribu-

tions from all the up-type (u, c) and down-type (d, s, b) quarks in the proton, respectively.

Another free parameter in our set-up is z` which would not appear in the production cross

section. Notice that although Z ′ couples differently to the left-handed and right-handed
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components of a quark, the functions au (MZ′) and ad (MZ′) do not depend on the chiral-

ity. To obtain these functions (numerically), we interpolate the production cross sections

of Z ′ computed for different MZ′ for a reference Z ′q̄q coupling. We use the NN23LO [36]

PDF set to compute σ(pp → Z ′) at leading order (LO) at a fixed factorization (µF )

and renormalization (µR) scale µF = µR = MZ′ . We perform this calculation using

the MadGraph5 [27] event generator, where the model files are generated using Feyn-

Rules [30]. The calculation of the relevant BRs is discussed in subsection 4.2 and we

assume the narrow width approximation (NWA) is valid to factorize σ(pp → Z ′ → XY )

into σ(pp → Z ′) × BR(Z ′ → XY ). For more accurate exclusion, capturing higher-order

effects, we multiply the LO σ(pp → Z ′) by a constant next-to-leading order (NLO) QCD

K-factor of 1.3 for any MZ′ [37]. In our analysis, we consider the new gauge coupling

gz as a free parameter, and for large values of gz (or for large values of various effective

couplings) electroweak corrections might be important in addition to the QCD corrections.

Considering those higher-order effects is beyond the scope of the present paper.

We use results from the two direct Z ′ resonance searches in the dilepton and dijet

channels at the 13 TeV LHC. In order to set exclusion limits on Z ′ parameters, we compare

the 95% confidence level (CL) upper limits on the σ × BR of Z ′ set by the ATLAS and

CMS collaborations in these two channels with our model predictions. Here we use ATLAS

dilepton [38] and dijet [39] data and CMS dijet data [40], both available for ∼ 36 fb−1

integrated luminosity.

In addition to the collider data, we also use tree-level T -parameter constraints (as

discussed in [1]) for exclusion limits. The current constraint on the T -parameter is 0.08±
0.12 [41] which has been used in our analysis. Another constraint on Z ′ models might

come from the Z-boson width measurements, however the Z-boson width constraints are

quite similar to the T -parameter. Therefore, we have ignored the Z-boson width constraint

in this paper. We expect any other electroweak precision constraints to be subdominant,

since they all enter at the one loop level.

In figure 3, we show sample exclusion plots in the MZ′ − gz plane for four selected

Z ′ models discussed in section 3. As an illustration, we pick the B and B + L models

from the zH = 0 category and the QR and LR models from the zH 6= 0 category. The

tree-level Z ↔ Z ′ mixing does not arise in models with zH = 0 (Z ↔ Z ′ mixing can still

arise in these models at loop level). Therefore, the tree-level T -parameter constraint is

not applicable for this category. In the B model (figure 3a), the Z ′ couples only to quarks

and hence dilepton data is not relevant to constrain this model. We observe that dilepton

data, wherever applicable, can constrain various Z ′ models severely. For the LR model

(figure 3d), dijet data is also very effective in constraining the model.

5.2 Interesting signatures

As discussed before, possible signatures of a GS Z ′ can be seen in the ZZ and Zγ decay

modes. These decay modes, however, have tiny BRs because the leading contribution

from the GS terms is at the one-loop level. We have already seen in subsection 4.2 that

the BRs of Z ′ to ZZ and Zγ modes are tiny in comparison with the dilepton and dijet

decay modes and, therefore, observing these modes at the LHC could be very challenging.
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Figure 3. The marked regions are excluded from various experimental constraints. The lilac filled

region corresponds to R > 1, where R = (σ × BRll)
th/(σ × BRll)

obs
ATLAS and (σ × BRll)

th and

(σ ×BRll)
obs
ATLAS denote our prediction and the observed 95% CL upper limit set by ATLAS using

dilepton resonance search data at the 13 TeV LHC [38], respectively. The filled teal region is the

similar comparison with the 13 TeV ATLAS dijet data [39]; the transparent magenta region is the

corresponding comparison with the 13 TeV CMS dijet data [40]. The orange/red grid-covered region

is excluded from the T -parameter constraints.

Both the BRs (see section 4) for the ZZ and the Zγ modes and the production cross

section of Z ′ decrease for large MZ′ . Hence, the small mass region offers the best chance of

observing these decays, On the other hand the collider and EW precision bounds discussed

in subsection 5.1 are quite constraining in the small mass region and it can be hard to find

the best parameter points.
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In order to find the optimal region of the parameter space, we perform a random scan

over MZ′ , gz, zH , zq and z` in the ranges

0.5 TeV < MZ′ < 0.8 TeV, 0.01 < gz < 0.3, 0 < zH , z` < 1.0, 0 < zq < 8, (5.2)

which is where most of the allowed points lie.

In figure 4, we display two-dimensional “heat maps” of σ(pp → Z ′) × BR(Z ′ → ZZ)

for different combinations of the parameters. First of all, since BRs of Z ′ to ZZ and Zγ

are very small, MZ′ should not be too heavy in order to have sufficiently big σ×BR to be

observable at the LHC. From figure 4d, it can be seen that zq has to be larger than ∼ 0.5 in

order to get a decent cross section — this bound arises from our upper bound of gz which

ensures that small zq values limit the production cross section. Additionally, it is noted

that in order to have a sizable cross section for larger z` values it is necessary to increase

zq, due to the lepton data being more constraining than the dijet data. As a result, zq has

to increase in order to ensure that the dilepton branching stays sufficiently small.

Large zq values are mainly accompanied by small gz values in order to keep the pro-

duction cross section small enough to evade the dijet bounds. Figure 4b shows that the

most favorable region occurs around the line z` ∼ zH . This is because for a given z`, the

lepton decay width obtains its minimal value for zH of the order zH ∼ z`.
Note that similar plots can also be made for the Zγ decay mode. We found that

those are identical in structure but with a different scaling. Altogether, the largest cross

sections for the ZZ and the Zγ channels are around ∼ 0.9 fb for the former and ∼ 0.25 fb

for the latter around MZ′ ∼ 0.5 TeV. Since the most optimistic cross sections for these

channels are of the order of ∼ 0.1− 1 fb, it is very hard to detect these decay modes until

the high-luminosity LHC. For the HL-LHC we expect a maximum of 3000 fb−1 integrated

luminosity. Therefore, in the best case scenario, one would expect of the order of ∼ 3000

ZZ events and ∼ 600 Zγ events that come from GS Z ′ decay. The prospect study of GS Z ′

in these channels is beyond the scope of this paper. It should be noted that the dijet and

dilepton bounds can be expected to be significantly improved, if the Z ′ is not discovered in

those channels, for an integrated luminosity of 3000 fb−1, which means that the parameter

space would shrink significantly.

5.3 Lepton colliders

In addition to the high luminosity LHC, it is also important to analyze the prospects of

observing an anomalous Z ′, either directly or indirectly, in the context of future lepton

colliders such as ILC, FCC-ee, CLIC, etc. This has previously been analyzed in the liter-

ature on many occasions [42–48]. In this subsection, we study the reach of the ILC when

probing a Z ′ parameter space, in a model independent way.

In an e+e− collider, a Z ′ can be produced through the s-channel as well as the t-

channel exchange. If the collider CME is smaller than the Z ′ mass, it is not possible to

produce the Z ′ resonantly on-shell. Therefore, the only possible way to observe the hint

of Z ′ signal is indirectly through the interference effects. The proposed initial ILC CME

is
√
s = 0.5 TeV which is smaller than the MZ′ range of our interest and therefore, a Z ′
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Figure 4. 2D heat maps of σ(pp→ Z ′)×BR(Z ′ → ZZ) in fb against different combinations of the

parameters gz, zH , zq and z` obtained from a random scan of the 5-D volume defined in eq. (5.2)

and with points shown satisfying the experimental constraints considered in subsection 5.1.
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Figure 5. pT distribution of the hardest electron for (a) the SM background, (b) only t-channel

Z ′ exchange and (c) total Z ′ and the SM including interference after selecting events by applying

the cut pT (e1), pT (e2) > 100 GeV at the 0.5 TeV ILC for MZ′ = 1 TeV.

cannot be produced resonantly at the ILC. It turns out that the reach of various Z ′ models

is better for the 500 GeV ILC than the 14 TeV LHC [46, 48], thanks to the sufficiently

large interference which does not fall off rapidly with the increase of MZ′ . For the model

independent analysis, we have, effectively, two free parameters, MZ′ and κ (where κ is the

(total) Z ′e+e− coupling). In the signal definition, we include the interference term (which

is actually the dominant one and goes as κ2) in addition to the pure new physics term that

varies as κ4. Generally, the new physics coupling κ is expected to be small (less than unity)

and hence the interference term actually dominates in the signal. The total e+e− → e+e−

(including the SM and BSM parts) cross section can be expressed as

σtot(e
+e− → e+e−) = σSM + κ2σI(MZ′) + κ4σBSM(MZ′) (5.3)

where σB = σSM acts as the SM background and the signal is defined as σS = κ2σI +

κ4σBSM. The dominant SM background comes from the s- and t-channel photon and Z

exchange processes. In case for signal where a massive Z ′ is exchanged, the pT distributions

of the outgoing electrons peak around
√
s/2 whereas for the background it peaks towards

the lower side of pT . In figure 5, we show the pT distributions of the hardest electron

after applying a strong preselection cut of pT (e1), pT (e2) > 100 GeV for MZ′ = 1 TeV at

the 0.5 TeV ILC (in addition, we also apply a few basic cuts viz. |η(e1)|, |η(e2)| < 2.5,

∆R(e1, e2) > 0.4). In figures 5a and 5b, we show distributions for the SM background and

for the pure BSM part, respectively. While in figure 5c, we show the same for the total

e+e− → e+e− process including the SM and BSM contributions with the interference term.

Here, we choose the strong pT (e) of 100 GeV to reject the major part of the background

coming from the Z-resonance. To capture various detector effects, we use the ILC detector

card which is available in the Delphes package. Finally, we isolate the signal from the left-

over SM background by applying the following stronger pT cuts on the outgoing electrons

pT (e1), pT (e2) > 200 GeV (5.4)

Note that, in this analysis, we have not really optimized the above pT cut to obtain maxi-

mum sensitivity. But we found that this cut is good enough to obtain good significance and
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Figure 6. Confidence level contours with significance 2σ, 3σ and 5σ in the MZ′ − κ plane at the

0.5 TeV ILC with 100 fb−1 integrated luminosity.

therefore we keep the same pT value for all MZ′ points. The definition of significance we

use is given by σ = NS/
√
NB, where NS and NB are the number of signal and background

events respectively estimated for a particular luminosity.

In figure 6, we show 2σ, 3σ and 5σ confidence level contours in the MZ′−κ plane at the

0.5 TeV ILC with 100 fb−1 integrated luminosity. One can see that a Z ′ with mass around

3 TeV with κ ∼ 0.2 can be discovered (with 5σ CL) at the ILC. For the same coupling,

ILC can rule out (with 2σ CL) MZ′ up to around 7 TeV.

6 Summary and discussion

In this paper we have considered the collider phenomenology of a minimal U(1) extension

of the SM where the anomaly cancellation is not explicit, but through the GS mechanism.

However, such a mechanism necessarily invites terms in the Lagrangian which are unsup-

pressed by the high scale which the physics resides at, and this physics can, at least in

principle, be probed at lower energies. Some interesting examples of such models include

gauged baryon number B, gauged lepton number L, and gauged B +L. In equation (2.1),

we have derived the linear combinations of B, L and Y which can be gauged in the minimal

scenario. We calculate the branching ratios of the different decay modes of Z ′, including

the Z ′ → ZZ and Z ′ → Zγ modes, which are are loop suppressed. The branching ratios

to these signatures are in general quite small but there still exists parameter space where

these processes could be observed.

For some benchmark models we put exclusions on the parameter space (gz,MZ′). From

previous studies of anomaly free U(1) theories it is expected that the parameter space is

heavily constrained for low Z ′ masses. For GS U(1) extensions it is possible to realize a

wider class of models than in the strict anomaly free setting. For example, as can be seen in

figure 3a, the gauged B model does not receive any constraints from dilepton bounds and is
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harder to rule out at the LHC. The gauged L model is even more free in this regard because

there are no couplings to quarks, so the Z ′ cannot be produced through quark fusion, and

thus the bounds from LHC are very weak. Such a Z ′ can in principle be discovered at an

e+e− collider such as the ILC.

The Z ′ → Zγ and Z ′ → ZZ processes are interesting since they receive contributions

from the GS terms. These contributions are unfortunately loop suppressed and quite elusive

at the LHC. By performing a random scan of the parameter space (shown in figure 4) we

find that it is possible to have relatively large cross sections for the ZZ and Zγ channels,

of order 1 fb. The cross sections are too small to be detected by the current data and the

possible detection of these processes is necessarily postponed to the HL-LHC. However, it

can be expected that if a Z ′ could be detected at the LHC it would most likely first be seen

in the dijet or lepton channels after which the exact nature of the Z ′ could be determined.

Alternatively, lepton colliders provide stronger bounds than LHC for Z ′ bosons that

couple weakly to quarks. Naively it can be expected that the energy of lepton colliders

is not large enough to resonantly produce Z ′ bosons. Even though the chances for direct

detection of Z ′ bosons is slim at lepton colliders, the interference between Z ′ bosons and

SM processes makes it possible to indirectly probe the Z ′ bosons, even for relatively large Z ′

masses. Future lepton colliders are thus a good choice for indirectly studying quarkphobic

Z ′ models since they would be hard to detect at the LHC.

In conclusion, it is possible to relax some collider constraints on Z ′ bosons in U(1)

extensions if the theories are extended with a GS mechanism. Furthermore, if a Z ′ with

anomalous couplings, such as couplings proportional to B, is discovered, then it is plausible

to probe its GS nature at higher luminosity colliders via the Z ′ → Zγ and Z ′ → ZZ

processes.
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A Conventions

We consider the spontaneous symmetry breaking of U(1)z through a Stückelberg mecha-

nism, as described in subsection 2.2. The breaking will be analogous to a complex singlet

acquiring a VEV and we hence skip the details (see [2]). After symmetry breaking, the

photon field Aµ remains massless, while the other two physical fields Z and Z ′ acquire

masses which are given by

MZ,Z′ =
gvH
2cw

[
1

2

{
(r + z2

H)t2zc
2
w + 1

}
∓ zHtzcw

sin 2θ′

] 1
2

, (A.1)

where tz ≡ gz/g; tan θw ≡ g′/g defines the Weinberg angle, and the parameter r ≡
(2M)2/v2

H is given in terms of the Stückelberg scale, M, and the Higgs doublet vev, vH .
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The mixing angle θ′ satisfies

θ′ =
1

2
arcsin

 2zHtzcw√
[2zHtzcw]2 +

[
(r + z2

H)t2zc
2
w − 1

]2
 . (A.2)

It is important to note that there can only be Z ↔ Z ′ mixing at tree level if zH 6= 0. The

scale M can be written in terms of the other parameters as

M2 =
1

4
v2
HA(MZ′)

{
A(MZ′)− 2− 2c2

wt
2
zz

2
H

}
2c2
wt

2
z {A(MZ′)− 2}

, (A.3)

where A(MZ′) ≡ 8c2
wM

2
Z′/(g2v2

H). Note that in the limit MZ′ →∞, M →MZ′/gz.

If θ′ 6= 0 the Stückelberg axion will mix with the Goldstone bosons coming from the

Higgs doublet. The mixing angle, θG, is given by

tan θG = tan θ′
MZ′

MZ
.

For the covariant derivative and gauge charges we use the convention

Dµ =

(
∂µ − igWµ T 3

i − iYi
g′

2
Bµ
Y − izi

gz
2
Bµ
z

)
. (A.4)

B Loop amplitudes

B.1 Rosenberg parametrization

As an explicit example of how to rewrite triple-vector boson amplitudes in the Rosenberg

parametrization, consider the Z ′ZZ amplitude

ΓZ
′ZZ

ρµν (r, p, q) = A (ε[µ, ν, p, q]qρ + ε[µ, ν, p, q]pρ)

+B (ε[µ, ν, ρ, q]− ε[µ, ν, ρ, p])
+ C (ε[ν, ρ, p, q]qµ − ε[ν, ρ, p, q]pµ + (µ↔ ν))

The Schouten-identity for a general 4-momentum P reads

εµντσPρ + (cyclic permutations) = 0. (B.1)

Taking P = p and contracting with pτ , qσ the Schouten identity takes the form

ε[µ, ν, p, q]pρ = ε[ν, ρ, p, q]pµ + ε[µ, ρ, p, q]pν + ε[µ, ν, ρ, q]p2 − ε[µ, ν, τ, p]p · q, (B.2)

and similarly for P = q. The relation above enables us to remove the A-type terms in

ΓZ
′V1V2

ρµν (r, p, q) amplitudes, and redistribute them over the remaining Lorentz structures,

which simply gives the familiar Rosenberg parametrization of the amplitude.
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B.2 General loop amplitude

The generic amplitude from a fermion shown in figure 1 is given by

Aρµν(r, p, q) =

∫
l

Tr
[(
/l − /p+m

)
γµG1

(
/l +m

)
γνG2

(
/l + /q +m

)
γρG3)

]
((l − p)2 −m2)(l2 −m2)((l + q)2 −m2)

+ (µ↔ ν, p↔ q) ,

where r = p + q and the couplings Gi are given in terms of the left-right projectors and

couplings as

G1 =
(
g1
LPL + g1

RPR
)
, (B.3)

G2 =
(
g2
LPL + g2

RPR
)
, (B.4)

G3 =
(
g3
LPL + g3

RPR
)
. (B.5)

In this paper we are only considering Z ′ decays and subsequently we will always take

G3 = GZ′ . Note that the Bose symmetry between particles 1 and 2 is ensured if G1 = G2,

which is the case for the Z ′ → ZZ process. The above amplitude is often equivalently

parametrized in terms of axial/vector-couplings in the literature — we here opt for the

left-right parametrization out of convenience.

Suppressing the Lorentz indices, the amplitude A can be decomposed as

A(r, p, q) = g1
Lg

2
Lg

3
LALLL + g1

Lg
2
Lg

3
RALLR + g1

Lg
2
Rg

3
LALRL + . . .+ g1

Rg
2
Rg

3
RARRR, (B.6)

where AIJK denotes A(r, p, q) with G1, G2, G3 replaced with I, J, K. The anomalous

terms reside in g1
Lg

2
Lg

3
LALLL + g1

Rg
2
Rg

3
RARRR, and it turns out3 that ARRR = −ALLL,

such that the anomalous terms factorize as
(
g1
Lg

2
Lg

3
L − g1

Rg
2
Rg

3
R

)
ALLL. All remaining terms

vanish in the limit m→ 0.

While the above amplitude is finite, there are divergences that need to be regular-

ized before they cancel. A popular method of regularizing triangle diagrams is to use a

UV-cutoff, as is for example done in [7]. We find it more practical to use dimensional

regularization (DR). However, as is widely known, naive DR with an anti-commuting γ5

is inconsistent and hence we use the consistent BMHV-scheme (Breitenlohner-Maison-

’t Hooft-Veltman) [49, 50]. This scheme has the property that the ALLL, ARRR anomalies

are automatically distributed symmetrically over all vector bosons, i.e., the symmetric

anomaly scheme is automatically built in. A word of caution: the BMHV scheme, while

being consistent, is notorious for breaking BRST-invariance. This necessitates the intro-

duction of gauge-variant counter-terms — fortunately this is straightforward for the triple

gauge boson processes of interest in this paper. For a more detailed account of the subtleties

of the BMHV scheme we refer the interested reader to [51–53] and references therein.

B.3 AIJK amplitudes

We present all sub-amplitudes as functions of p2, q2, r2 and the fermion mass m and we

assume that all particles are outgoing: r + p + q = 0. The amplitudes are given in terms

3This easiest to see by expanding the amplitudes in vector and axial amplitudes.
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of the triangle Passarino-Veltman scalar function [54, 55]. For convenience we define the

functions

Li ≡
√
p2
i (p

2
i − 4m2) log

2m2 − p2
i +

√
p2
i (p

2
i − 4m2)

2m2

 , (B.7)

∆ ≡ p4 + q4 + r4 − 2(r2q2 − 2p2q2 − 2p2r2), (B.8)

and denote the triangle Passarino-Veltman function C0 as C ≡ C0(p2, q2, r2,m2,m2,m2),

with i = p, q, r. All the amplitudes are accompanied by an overall factor m2

∆4π2 which is left

implicit. The coefficient of the various Lorentz structures of the amplitudes can then be

brought to the form

• ARLL:

– ε[µ, ν, ρ, q]:

C
{
p2
(
q2 + r2

)
−
(
q2 − r2

)2}
+ 2Lp − Lq − Lr + Lq

r2 − p2

q2
+ Lr

q2 − p2

r2

– ε[µ, ν, ρ, p] :

C
{
q2
(
r2 + p2

)
− q4

}
+ Lp + Lr − 2Lq + Lp

q2 − r2

p2
+ Lr

q2 − p2

r2
.

• ALRL:

– ε[µ, ν, ρ, q] :

C
{
p4 − p2

(
q2 + r2

)}
+ 2Lp − Lq − Lr + Lq

r2 − p2

q2
+ Lr

q2 − p2

r2

– ε[µ, ν, ρ, p] :

C
{(
p2 − r2

)2 − q2
(
p2 + r2

)}
+ Lp + Lr − 2Lq + Lp

q2 − r2

p2
+ Lr

q2 − p2

r2
.

• ALLR:

– ε[µ, ν, ρ, q] :

C
{
p2
(
p2 − q2 − r2

)}
+ 2Lp − Lq − Lr + Lq

r2 − p2

q2
+ Lr

q2 − p2

r2
.

– ε[µ, ν, ρ, p] = −ε[µ, ν, ρ, q]|p↔q

The amplitude ARRR = −ALLL is considerably messier and it contain terms that are

finite when m2 → 0. Hence we only factor our an overall factor 1
∆4π2 for this amplitude.
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• ARRR:

– ε[µ, ν, p, q]qρ :

C

(
m2(r2−3p2−q2) +

p2(q2(−3r2p2−2p4+3r4) + 4p2q4 − r2(r2−p2)2−2q6

∆(r, p, q)

)
− 3

2∆(r, p, q)

(
p2 − q2 + r2)(p2 + 3q2 − r2)

)
Lp

+
1

2q2∆(r, p, q)

(
(−p2(7q4+r4)− p4(r2−8q2) + p6 + (r2−2q2)(r2−q2)2

)
Lq

+
1

2r2∆(r, p, q)

(
−2p2(−6r2q2+q4+r2)+p4(r2−2q2)+2p6−(r2−2q2)(r2−q2)2

)
Lr,

– ε[µ, ν, ρ, q] :

1

2

(
p2(m2 − r2)−m2(r2 − q2)2 + r2p2

)
C

+
1

4

(
−p2 + q2 + 8m2 − 3r2

)
Lp

+
1

4q2

(
−p2(q2 + 4m2) + (4m2 − r2)(r2 − q2) + p4

)
Lq

+
1

r2

(
p2(3r2 − 4m2)− (4m2 − r2)(r2 − q2)

)
Lr

− (p4 + (q2 − r2)2 − 2p2(q2 + r2))

12

– ε[ν, ρ, p, q]qµ :

− C
(
m2(p2 + r2 − q2) +

r2p2(q2(p2 + r2) + (r2 − p2)2 − 2q4)

∆(r, p, q)

)
− 1

2∆(r, p, q)

(
4r2(p2 + q2) + (p2 − q2)2 − 5r4

)
Lp

+
1

2q2∆(r, p, q)

(
p2(8r2q2 + q4 − r4)− p4(2q2 + r2) + p6 + r2(r2 − q2)2

)
Lq

− 1

2∆(r, p, q)

(
4p2(q2 + r2)− 5p4 + (r2 − q2)2

)
Lr

− (p2 − q2 + r2)(p4 + (q2 − r2)2 − 2p2(q2 + r2))

2∆(r, p, q)
.

The remaining Lorentz structures can be obtained from the symmetry relations

ε[µ, ν, p, q]qρ = ε[µ, ν, p, q]pρ|p↔q,
ε[µ, ν, ρ, p] = −ε[µ, ν, ρ, q]ρ|p↔q,

ε[ν, ρ, p, q]pµ = −ε[ν, ρ, p, q]qµ|p↔q,
ε[µ, ρ, p, q]pν = ε[ν, ρ, p, q]qµ|p↔q,
ε[µ, ρ, p, q]qν = ε[ν, ρ, p, q]qµ|p↔q.
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Note that terms of the form − p2−q2+r2

8π2∆(r,p,q)
combine when contracted with external momenta

to give the right anomaly terms.

The remaining amplitudes can be obtained from the relations4

ARRL =−ALLR,
ARLR =−ALRL,
ALRR =−ARLL,
ALLL =−ARRR.

It should be noted that the sub-amplitudes above are very general and greatly simplify

when studying specific amplitudes. The amplitudes given above are valid for all fermion

masses m, including m2 = 0, as long as all external legs have time-like momenta. If m2 = 0

and one of the external legs is light-like, this case has to be treated with care and we refer

the interested reader to the discussion in section B.4.

B.4 Massless limit

The AIJK amplitudes given in section B.3 seem to diverge for massless fermions when one

of the external legs is light-like. However, these divergences will always drop out in the

end, if care is taken when performing the massless limit. The way this works can be a bit

subtle and this section will be dedicated to this issue.

In the massless fermion limit only the ΓLLL = −ΓRRR sub-amplitudes are non-

vanishing, but a direct application of the formulas in section B.3 will result in a divergent

and ill-defined result. The origin of this divergence is that the limit m → 0 invalidates

the scalar integral decomposition if p2
γ = q2 = 0 (This is not a problem for the Z ′ → ZZ

amplitude since the Z boson is massive). The proper way to treat the massless limit is to

consider q2 6= 0 and take the limit m2

q2
→ 0,5 or in practice take q2 6= 0 and set m = 0 at the

beginning of the calculation. Taking the limit q2 → 0, the ΓRRR (and equivalently ΓLLL)

amplitude will contain potentially divergent terms of the type 1
εIR

and log
(
µ2

q2

)
, which

naively seem to be ill-defined in the limit where the photon goes on-shell. The amplitude is

however rendered finite, since all divergent terms are proportional to the tensor structure

(−ε[µ, ν, ρ, q](p · q) + ε[ν, ρ, p, q]qµ + ε[µ, ρ, p, q]qν + ε[µ, ν, p, q]qρ) , (B.9)

which after use of the Schouten identity B.1 reduces to

2ε[µ, ρ, p, q]qν . (B.10)

The term ε[µ, ρ, p, q]qν will drop out of any calculation in the limit q2 → 0 and any remain-

ing terms are finite. After the proper limits have been taken the surviving terms in the

4These relations follows directly from that the AV V V and AV AA amplitudes vanish.
5We refer the interested reader to [56] for an in-depth discussion.
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ΓRRR amplitude are

ΓRRR =− ε[µ, ν, ρ, q]

(
p2 − r2

)2 − 3p2 log
(
p2

r2

)(
−r2 log

(
p2

r2

)
+ p2 + 3r2

)
48π2 (p2 − r2)2

+ ε[µ, ν, ρ, p]
3r2 log

(
p2

r2

)
+ p2 − r2

48π2 (p2 − r2)

− ε[µ, ρ, p, q]pν
p2 − r2

(
log
(
p2

r2

)
+ 1
)

8π2 (p2 − r2)2

+ ε[µ, ν, p, q]qρ
−6p2r2

(
log
(
p2

r2

)
− 4
)(

log
(
p2

r2

)
+ 1
)

+ 18p4
(

log
(
p2

r2

)
− 1
)
− 6r4

48π2 (p2 − r2)3

+ ε[µ, ν, p, q]qρ

(
2p2 − r2

)
log
(
p2

r2

)
− p2 + r2

8π2 (p2 − r2)2

− ε[ν, ρ, p, q]pµ
p2 − r2

(
log
(
p2

r2

)
+ 1
)

8π2 (p2 − r2)2

+ ε[ν, ρ, p, q]qµ
−p4 + p2 log

(
p2

r2

)(
−r2 log

(
p2

r2

)
+ p2 + 5r2

)
+ r4

8π2 (p2 − r2)3 .

If in analogy with the Z ′ → Zγ process we decompose ΓRRR as

ΓRRR =A1 ε[µ, ν, p, q]q
ρ +A2 ε[µ, ν, p, q]p

ρ

+A3 ε[µ, ν, ρ, q] +A4 ε[µ, ν, ρ, p]

+A5 ε[ν, ρ, p, q]q
µ +A6 ε[ν, ρ, p, q]p

µ

+A7 ε[µ, ρ, p, q]q
ν +A8 ε[µ, ρ, p, q]p

ν .

Using the Schouten identity and the transversality of the external polarization tensors it

is straightforward to rewrite the amplitude as

ΓRRR =B1 ε[µ, ν, ρ, q] +B2 ε[µ, ν, ρ, p]

+B3 ε[ν, ρ, p, q]q
µ +B4 ε[µ, ρ, p, q]p

ν ,

where

B1 =
5p4 − p2r2

(
9 log

(
p2

r2

)
+ 4
)

+ r4
(

3 log
(
p2

r2

)
− 1
)

48π2 (p2 − r2)2 ,

B2 =
r2
(

3 log
(
p2

r2

)
− 1
)

+ p2

48π2 (p2 − r2)
,

B3 =
p2 − r2

(
log
(
p2

r2

)
+ 1
)

8π2 (p2 − r2)2 ,

B4 =
r2
(

log
(
p2

r2

)
+ 1
)
− p2

8π2 (p2 − r2)2 .
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For the Z ′ → Zγ process the net effect of the above considerations is that the form

factor F1 take the simple form

F1 = i

(gZRg
Z′
R − gZLgZ

′
L )Q

[
M2
Z −M2

Z′ +M2
Z′ log

(
M2

Z′
M2

Z

)]
8π2

(
M2
Z −M2

Z′
)2 . (B.11)
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