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1 Introduction

Four-dimensional N = 2 superconformal quantum field theories (SCFTs) contain a subsec-

tor of local operators whose operator product algebra is described by a chiral algebra [1].

The chiral algebra repackages and organizes an infinite amount of conformal data in a

tightly constrained structure. As a result, it is an efficient tool to obtain new results on
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various aspects of the above-lying SCFT. For example, one can extract novel unitarity

bounds on central charges [1–4], get a handle on Higgs branches and their relations [5, 6],

find expressions for superconformal indices [7–14] and obtain modular differential equations

they must satisfy [6, 15, 16], etc. Vice versa, the image of the map from four-dimensional

N = 2 SCFTs to chiral algebras defines a set of vertex operator algebras of mathemati-

cal interest [15, 17]. For example, the image of theories of class S has the structure of a

topological quantum field theory valued in chiral algebras [18].

The SCFT/chiral algebra correspondence was constructed algebraically in [1]: the

relevant subsector of local operators was isolated by passing to the cohomology of either

one of two well-chosen nilpotent supercharge Qi, i = 1, 2, and it was shown that the algebra

of cohomology classes, obtained by reducing the operator product algebra, is isomorphic to

a chiral algebra. The chiral algebra depends meromorphically on the complex coordinates

of a plane that is singled out by the choice of Qi. The first goal of this paper is to show

that the chiral algebra structure can be carved out directly from the path integral. We

restrict attention to the example of the free hypermultiplet, which already showcases all

salient features and serves as a proof of principle. Concretely, we map the theory to the

round four-sphere, and employ supersymmetric localization techniques with respect to the

supercharge Q = Q1+Q2 to argue that the theory can be localized to a quantum field theory

on a two-sphere.1 This quantum field theory is precisely the chiral algebra associated with

the free hypermultiplet, namely the symplectic boson pair. The localization computation is

compatible with the insertion of operators in the subsector mentioned above. Schematically,∫
[DΦHM] O e−SHM[ΦHM] =

∫
[DQDQ̃] O e−SSB[Q,Q̃] . (1.1)

Here ΦHM collectively denotes all fields in the hypermultiplet and SHM[ΦHM] is the hyper-

multiplet action. The insertion O represents any collection of local operators belonging to

the subsector and whose correlator we wish to compute. On the right hand side, Q and Q̃

are the symplectic boson pair with action SSB[Q, Q̃] on the two-sphere.

The representation theory of the chiral algebras associated with N = 2 SCFTs can

be probed by inserting surface defects in the four-dimensional theory [1, 21, 22]. Indeed,

it is easy to verify that a defect preserving N = (2, 2) supersymmetry on its worlvolume

can be embedded perpendicular to the plane in which the chiral algebra lives in such a

way that it is compatible with the nilpotent supercharges Qi. Its insertion corresponds to

considering a module of the chiral algebra. Our localization computation can be extended

likewise to include defects wrapping an orthogonal two-sphere. We consider a large class

of defects described by coupling an arbitrary two-dimensional quantum field theory T2d to

the free hypermultiplet via a twisted superpotential coupling.2 We present in detail the

extension of the localization computation to these 4d/2d coupled systems. Our result for

1This computation is similar in spirit to [19]. See also [20] for an analogous computation on the

three-sphere.
2The embedding of the two-dimensional N = (2, 2) symmetry algebra in the four-dimensional N = 2 al-

gebra is such that a hypermultiplet decomposes into a pair of twisted chiral multiplets (and their conjugates).
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the partition function of the 4d/2d coupled system is

Z4d/2d =
∑∫

[dφ2d] Z1-loop(φ2d)

∫
[DQDQ̃] e−SSB[Q,Q̃] e−4πir

[
W̃ (Q(NP),Q̃(NP),φtc

2d)+c.c.
]
.

(1.2)

Here φ2d collectively denotes the localization locus of the two-dimensional theory T2d, and

Z1-loop(φ2d) is the one-loop determinant of quadratic fluctuations of the two-dimensional

theory. In the twisted superpotential, W̃ , the quantum fields Q and Q̃ are pinned at the

north pole and we collectively wrote φtc
2d for the bottom components of the twisted chiral

multiplets of the two-dimensional theory. The latter are set to their constant BPS profile

(which is integrated/summed over). In the complex conjugate term, the symplectic boson

pair is located at the south pole. This result can be further enriched by operator insertions.

Away from the north and south poles, the computation is compatible with the insertion of

operators in the subsector as above, while at the poles one can additionally insert native

two-dimensional twisted chiral fields. This distinction of allowed insertions between the

bulk of the two-sphere and the poles precisely reflect the structure of the module.

While information about the space of states constituting the module can be gained

via, for example, the superconformal index, the structure constants of the module have

been inaccessible so far. Our localization computation opens a computational window to

compute these coefficients and to analyze their dependence on coupling constants.

The paper is organized as follows. In section 2 we briefly review the salient features

of the SCFT/chiral algebra correspondence. In section 3 we prepare the localization com-

putation by placing the theory on the four-sphere and selecting the localizing supercharge.

The main results of the paper are in sections 4 and 5, in which we present the localization

computation of the free hypermultiplet to the symplectic boson, and its extension to in-

clude surface defects described by 4d/2d coupled systems. Two appendices contain some

technical details and further results.

2 Review of SCFT/chiral algebra correspondence

In this section, we briefly review the correspondence between four-dimensional N = 2

superconformal field theories and chiral algebras. We refer the readers to the original

paper [1] for all details. We also explain how the inclusion of a superconformal surface

defect in the four-dimensional SCFT naturally leads one to consider modules of the chiral

algebra [1, 21, 22].

As for any conformal field theory, the conformal data of a four-dimensional N = 2

SCFT fully determine correlation functions of finitely many local operators. These data

comprise the spectrum of local operators, organized in representations of the superconfor-

mal algebra and any additional global symmetry algebras, and the three-point couplings or

operator product expansion (OPE) coefficients, one for every three local operators. Natu-

rally, the organization of local operators in multiplets implies relations among various OPE

coefficients. The conformal data satisfy the conformal bootstrap constraints, which state

that the operator product algebra is associative. The conformal bootstrap program aims to

reverse the logic by trying to extract useful information from these constraints, and ideally
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solve for the conformal data, given a minimal amount of information on the (S)CFT. It

has been successfully implemented for rational conformal field theories in two dimensions,

in large part thanks to their enlarged Virasoro symmetry, but is not easily generalizable

analytically away from rationality or for higher-dimensional theories. In [1], however, it

was found that for four-dimensional N = 2 SCFTs a solvable truncation can be obtained

by considering instead of the algebra of local operators the algebra of cohomology classes

with respect to a cleverly chosen nilpotent supercharge.3 This algebra was shown to be a

chiral algebra.

In the N = 2 superconformal algebra, one can define two nilpotent supercharges, de-

noted as Qi, i = 1, 2, which each take the schematic form of a sum of a Poincaré supercharge

and a superconformal supercharge.4 Their anticommutator is given by

{Q1, Q2} = −M⊥ − r , (2.1)

where r denotes the U(1)r charge and M⊥ is the generator of rotations in the (x1, x2)-

plane. The latter can be expressed in terms of the usual rotation generators (j1, j2) as

M⊥ = j1 − j2. The cohomologies of Qi can be shown to be isomorphic and can be easily

characterized in two steps. First, the harmonic representatives of cohomology classes at

the origin are characterized by the conditions

1

2
(E − j1 − j2)−R = 0 , r + (j1 − j2) = 0 , (2.2)

which contain the conformal dimension E and the SU(2)R spin R. Operators satisfying

these conditions were called Schur operators in [1] as they satisfy the shortening conditions

defining operators contributing to the Schur limit of the superconformal index [26]. Uni-

tarity of the four-dimensional SCFT demands that Schur operators necessarily are SU(2)R
highest weight states, and moreover that their rotational quantum numbers j1 and j2 are

maximal. A Schur operator can thus be schematically represented as O(11...1),+...++̇...+̇,

where the first set of (symmetrized) indices are SU(2)R indices, and the other indices are

the usual Lorentz indices. We will sometimes suppress the Lorentz indices in what follows.

Second, one can move the operator away from the origin, while remaining inside the coho-

mology of Qi, by employing Qi-closed translation operators. It turns out that one can only

translate the operators in this manner in the plane kept fixed pointwise by M⊥, which we

will call the chiral algebra plane. Introducing complex coordinates (z, z̄) in this plane, the

z-translation operator Pz is Qi-closed, while a twisted z̄-translation is Qi-exact.5 The latter

is given concretely as Pz̄ +R−, where R− is the SU(2)R lowering operator. One then finds

O(z, z̄) = ezPz+z̄(Pz̄+R−) O(11...1)(0) e−zPz−z̄(Pz̄+R−) (2.3)

= uI1(z̄) . . . uIk(z̄)O(I1I2...Ik)(z, z̄) , with uI(z̄) = (1, z̄) . (2.4)

3See [23–25] for similar constructions in three and six dimensions.
4Denoting the Poincaré supercharges of the four-dimensional N = 2 superconformal algebra as QIα, Q̃Iα̇

and the conformal supercharges as SIα, S̃α̇I , we take, following [1], Q1 = Q1− + S̃−̇2 and Q2 = S1− − Q̃2
−̇.

Here I is an SU(2)R index and α, α̇ are the standard spinor indices.
5Note that in spinorial notation x++̇ = z and x−−̇ = z̄.
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As the z̄ dependence is generated by a Qi-exact operator, it drops out in cohomology:

[O(z, z̄)]Qi = O(z). One can argue that the algebra of cohomology classes thus obtained

defines a chiral algebra.

The resulting chiral algebras exhibit many beautiful, general properties [1]:

• It features Virasoro symmetry with central charge c2d = −12c4d, where c4d is the

(four-dimensional) Weyl anomaly associated to the square of the Weyl tensor. It is

noteworthy that four-dimensional unitarity implies that the chiral algebra is neces-

sarily non-unitary.

• Four-dimensional flavor symmetries manifest themselves as affine symmetries of the

chiral algebra. The level k2d of the current algebra is universally determined in terms

of the flavor central charge k4d, which controls the canonically normalized flavor

current two-point function, as k2d = −1
2k4d.

• Exactly marginal gauging in the four-dimensional SCFT is concisely captured by a

BRST reduction. Non-renormalization theorems guarantee that the resulting chiral

algebra is independent of the exactly marginal coupling.6

• Each generator of the Higgs branch chiral ring gives rise to a strong generator of the

chiral algebra,7 while Higgs branch chiral ring relations translate into null relations.

Moreover, the Higgs branch can be extracted from the chiral algebra as its associated

variety [6].

• The vacuum character of the chiral algebra is computed by the Schur limit of the

superconformal index.

The chiral algebras associated to free N = 2 SCFTs, i.e., the free hypermultiplet and

the free vectormultiplet, are easily found to be a symplectic boson pair and a small (b, c)

ghost system. As these chiral algebras are the basic building blocks of any localization

computation, we briefly review their construction. The four real scalars of a free hyper-

multiplet are rotated by an SU(2)R×SU(2)F symmetry. The first factor is the R-symmetry,

whose indices we denote as I, J, . . ., while the second is a flavor symmetry, for which we

use indices A,B, . . . Correspondingly, we write qIA =
(

Q Q̃

−Q̃† Q†

)
. The Schur operators in

the free hypermultiplet are all words built from the elementary letters q1A and the deriva-

tive ∂++̇ = ∂z. The cohomology elements are then obtained by applying the ‘twisted

translation’ of (2.4). In particular, one finds

qA(z) = [uI(z̄)qIA(z, z̄)]Qi = [q1A(z, z̄) + z̄ q2A(z, z̄)]Qi . (2.5)

The meromorphic operator product expansion (OPE) of qA(z) with itself can be easily

deduced from the OPE of the four-dimensional free hypermultiplet scalars, qIA(x)qJB(y) ∼
εIJ εAB
(x−y)2 , and reads

qA(z)qB(w) ∼ εAB
z − w . (2.6)

6See section 3.4.2 of [1].
7In fact, each generator of the Hall-Littlewood chiral ring, introduced in [1], descends to a strong

generator.
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One readily recognizes this OPE as defining a symplectic boson pair, and one can easily

convince oneself that the full algebra of cohomology classes indeed corresponds to this

chiral algebra.

Similarly, the free vector multiplet contains as Schur operators all words built from

the letters λ1+, λ̃1+̇ and ∂++̇, where λIα, λ̃Iα̇ are the gaugini. The full cohomology is then

obtained by ‘twisted translations’ of these words. For the elementary letters one can define

λ̃(z) = [uI(z̄)λ̃I+̇(z, z̄)]Qi , λ(z) = [uI(z̄)λI+(z, z̄)]Qi , (2.7)

which can be easily shown to satisfy the OPE

λ(z)λ̃(w) ∼ 1

(z − w)2
. (2.8)

Upon identifying λ̃ = b and λ = ∂c, these OPEs can be recognized as defining the (b, c)

ghost system of type (1, 0), b(z)c(w) ∼ (z−w)−1, upon removing the spurious c zero-mode.

The resulting chiral algebra is the small (b, c) ghost system. In this paper we will focus

mainly focus on the free hypermultiplet and provide some comments on the free vector

multiplet in appendix B.3.

Let us now consider a four-dimensional N = 2 SCFT in the presence of a half-BPS

superconformal surface defect. It is straightforward to verify that if the defect preserves

N = (2, 2) superconformal symmetry on its worldvolume and is transverse to the chiral

algebra plane, piercing it at the origin, then it can be embedded such that both super-

charges Qi are preserved.8 The presence of the defect enriches the cohomology of the

nilpotent supercharges Qi at the origin, while away from the origin the twisted-translated

(four-dimensional) Schur operators still make up the full cohomology. Let us denote the

cohomology at the origin as M and the original chiral algebra, as an algebra of modes, as

A. It is easy to see that in the setup at hand, M is endowed with the algebraic structure

of a module [1, 21, 22]:

· : A×M →M : (a,m) 7→ a ·m, (2.9)

where the action of the chiral algebra on the module is defined as follows. Let a = a−ha−p
be a mode of the twisted-translated Schur operator a(z) of weight ha, i.e., a Laurent coef-

ficient of the expansion a(z) =
∑

n a−ha−nz
n. Consider the bulk-defect operator product

expansion (within cohomology) of a(z) with (a representative of) the cohomology class

m. Then a ·m is obtained by selecting the coefficient of zp in this OPE. One can easily

verify that thanks to the associativity of the bulk-defect OPE this action satisfies the stan-

dard requirements to define a module. As always, if ei is some basis for M , the structure

constants λ j
ai are defined as

a · ei =
∑
j

λ j
ai ej , (2.10)

and extended to all of M by linearity.

A powerful probe to analyze the modules thus obtained and their properties is their

(graded) character: it counts (with signs) the elements of M . This quantity can be com-

puted as the Schur limit of the superconformal index of the four-dimensional SCFT in the

8See subsection 5.1 for a detailed discussion of the relevant embedding.
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presence of the surface defect, and allows to attempt to identify the module and to answer

general questions like, for example, if the modules satisfy any particular representation

theoretic properties, or perhaps, in the other extreme, if for any given N = 2 SCFT all

modules of the corresponding chiral algebra can be obtained from the insertion of some

surface operator.9 Such analysis has been initiated in [21, 22]. On the other hand, the

character has little to say about whether the module possesses any dependence on coupling

constants.10 Unlike the dependence of the chiral algebra on exactly marginal couplings,

there is no known non-renormalization theorem preventing any dependence of the mod-

ule on coupling constants.11 Using the computations in the current paper, we provide a

computational tool that in principle allows one to probe this question.

3 Setup

Our first goal of this paper is to rederive the chiral algebra, whose algebraic construction

was reviewed in the previous section, from the path integral on the four-sphere using local-

ization techniques. In this section we prepare ourselves for this computation by recalling

the supergravity background on S4 and identifying the Killing spinor associated with the

supercharge Q we would like to use for the localization computation. It turns out to be

most convenient to choose (the Weyl transformation of) Q1 + Q2.

3.1 N = 2 supersymmetry on S4

The four-sphere of radius r can be described as a hypersurface in R5 described by the

equation

x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = r2 . (3.1)

9A particularly ‘nice’ property one could hope the module to have is a spectrum bounded from below.

In examples, however, one can show this property to be violated [22].
10Let us be more precise and define the dependence of a module on a parameter τ . We denote by

Mτ the module at the specified value of the parameter, and assume that there exists an isomorphism

φτ ′τ : Mτ →Mτ ′ (for sufficiently small |τ − τ ′| and at a generic value of τ) as vector spaces. Let us denote

the action of the chiral algebra on the module at τ as ·τ . We say that the module does not depend on the

parameter τ if for any τ the following diagram commutes

Mτ

ϕτ ′τ
Mτ ′

(A,Mτ )
id⊗ ϕτ ′τ

(A,Mτ ′)

·τ ·τ ′

Let ei(τ) be a basis at τ and φτ ′τ (ei(τ)) =
∑
j φ

j
i ej(τ

′). Then commutativity of the above diagram

requires that the structure constants obey

λ j
ai (τ) = φ j

i λ k
aj (τ ′) (φ−1) l

k . (2.11)

11The argument used in the former case crucially uses the existence of extended superconformal symmetry

and its associated Ward identities in the chiral algebra plane. The relevant supercharges in this extended

algebra are not all preserved upon inserting the defect and hence the argument is not applicable in the

latter case.
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Introducing the coordinates ϕ, χ ∈ [0, 2π), θ ∈ [0, π/2] and ρ ∈ [0, π] as

x0 = r cos ρ , x1 = r sin ρ cos θ cosϕ , x3 = r sin ρ sin θ cosχ ,

x2 = r sin ρ cos θ sinϕ , x4 = r sin ρ sin θ sinχ ,
(3.2)

its induced metric can be written in terms of the vielbeins

e1 = r sin ρ cos θ dϕ , e2 = r sin ρ sin θ dχ , e3 = r sin ρ dθ , e4 = rdρ . (3.3)

We note that the loci at θ = 0 and θ = π
2 form two intersecting two-spheres, S2

θ=0 and

S2
θ=π

2
, which intersect at the north pole (ρ = 0) and south pole (ρ = π). The vielbein

on these two-spheres are easily obtained from (3.3) and are the standard vielbeins on a

two-sphere:

e1
S2
θ=0

= rdρ , e2
S2
θ=0

= r sin ρ dϕ , (3.4)

e1
S2
θ=π

2

= rdρ , e2
S2
θ=π

2

= r sin ρ dχ . (3.5)

An algorithmic method to place supersymmetric theories on a curved background was

developed in [27]. The idea is to first couple the theory to supergravity and then to consider

a rigid limit freezing the bosonic supergravity fields, both dynamical and auxiliary, to

supersymmetric configurations. The equations describing such configurations are obtained

by setting to zero the supergravity variations of the gravitino and other fermionic fields in

the supergravity multiplet.12 For N = 2 supersymmetric theories the relevant equations

have been analyzed in [28, 29], and in particular applied to the (squashed) four-sphere.13

On the four-sphere, the result of the above analysis (or the shortcut described in

footnote 13) is that the Killing spinors ξI , ξ̃I describing supersymmetry variations should

solve the Killing spinor equations14

DµξI = −iσµξ̃′I , Dµξ̃I = −iσ̃µξ′I , (3.6)

and the auxiliary equations

σµDµξ̃
′
I =

i

4
MξI , σµDµξ

′
I =

i

4
Mξ̃I . (3.7)

The index I carried by the Killing spinor is an SU(2)R index, and M is a background field

frozen to M = −1
3R with R the Ricci scalar, i.e., R = 12

r2 .15 Let Q denote a supercharge

12One can similarly couple the theory to a nontrivial background for flavor symmetries.
13Note that one can straightforwardly place a superconformal quantum field theory on a conformally flat

space by performing a Weyl transformation. This approach was taken in the original paper [30]. Mass

deformations of the theory can be obtained as in footnote 12. Squashing the four-sphere, however, requires

the full machinery of [27].
14We follow the spinor conventions of Wess and Bagger [31]. See, for example, also appendix A of [32]

for some more details.
15Note that for the case at hand the auxiliary equations are in fact a direct consequence of the Weitzenböck

formula.
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associated to a Killing spinor solving (3.6) and (3.7). The variations of a vector multiplet

(Aµ, φ, φ̃, λI , λ̃I , DIJ) are given by [28]

QAµ = +i(ξIσµλ̃I)− i(ξ̃I σ̃µλI)
Qφ = −i(ξIλI)
Qφ̃ = +i(ξ̃I λ̃I)

QλI = +
1

2
Fµνσ

µνξI + 2Dµφσ
µξ̃I + φσµDµξ̃I + 2iξI [φ, φ̃] +DIJξ

J

Qλ̃I = +
1

2
Fµν σ̃

µν ξ̃I + 2Dµφ̃σ̃
µξI + φ̃σ̃µDµξI − 2iξ̃I [φ, φ̃] +DIJ ξ̃

J

QDIJ = −i(ξ̃I σ̃µDµλJ) + i(ξIσ
µDµλ̃J)− 2[φ, (ξ̃IλJ)] + 2[φ̃, (ξIλJ)] + (I ↔ J) ,

(3.8)

while those of Nf hypermultiplets (qIA, ψA, ψ̃A, FIA) coupled to an SU(Nf ) vector multiplet

(Aµ, φ, φ̃, λI , λ̃, DIJ) read

QqIA = −i(ξIψA) + i(ξ̃I ψ̃A)

QψA = +2Dµq
I
Aσ

µξ̃I − 4iqIAξ
′
I − 4iξI φ̃A

BqIB + 2ξ̌IF
I
A

Qψ̃A = +2Dµq
I
Aσ̃

µξI − 4iqIAξ̃
′
I − 4iξ̃IφA

BqIB + 2˜̌ξIF
I
A

QFIA = +i(ξ̌Iσ
µDµψ̃A)− i( ˜̌ξI σ̃

µDµψA)

− 2φA
B(ξ̌IψB)− 2(ξ̌IλJ)A

BqJB + 2φ̃A
B( ˜̌ξI ψ̃B) + 2(˜̌ξI λ̃J)A

BqJB .

(3.9)

Here A,B, . . . are USp(2Nf ) indices, and SU(Nf ) embeds in the standard way. The spinors

ξ̌I ,
˜̌ξI should satisfy the constraints [28]

(ξI ξ̌J)− (ξ̃I
˜̌ξJ) = 0 , (ξIξI)+(˜̌ξI ˜̌ξI) = 0 , (ξ̃I ξ̃I)+(ξ̌I ξ̌I) = 0 , (ξIσµξ̃I)+(ξ̌Iσµ ˜̌ξI) = 0 .

(3.10)

The supercharge Q squares to a sum of bosonic symmetries; see [28] for its detailed ex-

pression. In the next subsection, we will spell out Q2 for the Killing spinor of our interest.

The supersymmetric actions on the four-sphere read [28, 30]

SS
4

YM =
1

g2
YM

∫
d4x
√
gS4 Tr

[
1

2
FµνF

µν− 1

2
DIJDIJ−4Dµφ̃D

µφ− 2R
3
φ̃φ+4[φ, φ̃]2

−2i(λIσµDµλ̃I)−2(λI [φ̃,λI ])+2(λ̃I [φ, λ̃I ])

]
, (3.11)

SS
4

HM =

∫
d4x
√
gS4

[
1

2
Dµq

IADµqIA−qIA{φ, φ̃}ABqIB+
i

2
qIADIJq

J
A+
R
12
qIAqIA

− i
2
ψ̃Aσ̃µDµψA−

1

2
ψAφA

BψB+
1

2
ψ̃Aφ̃A

Bψ̃B−qIA((λI)A
BψB)+(ψ̃A(̃λI)A

B)qIB

]
.

(3.12)
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3.2 Choice of Killing spinor

On the four-sphere, the equations (3.6) (and (3.7)) have sixteen C-linearly independent

solutions. These solutions are simply the Weyl transformations of the conformal Killing

spinors on R4.16 Among these spinors, we choose for our localization computation the

Weyl transformation of the supercharge Q1 + Q2. Concretely, the Killing spinor reads

ξI=1,α = sin
ρ

2

(
−e i2 (−θ+ϕ+χ)

e
i
2

(θ+ϕ+χ)

)
, ξI=2,α = cos

ρ

2

(
e
i
2

(θ+ϕ−χ)

e
i
2

(−θ+ϕ−χ)

)
, (3.13)

ξ̃α̇I=1 = i sin
ρ

2

(
e
i
2

(θ−ϕ+χ)

−e i2 (−θ−ϕ+χ)

)
, ξ̃α̇I=2 = i cos

ρ

2

(
e
i
2

(−θ−ϕ−χ)

e
i
2

(θ−ϕ−χ)

)
. (3.14)

We can choose the auxiliary spinors ξ̌I ,
˜̌ξI as17

ξ̌I = e−iϕξI ,
˜̌ξI = e+iϕξ̃I . (3.15)

Let us define a few convenient bilinears built from the Killing spinors ξI , ξ̃I

s ≡ (ξIξI) = −2eiϕ cos θ sin ρ, s̃ ≡ (ξ̃I ξ̃
I) = −2e−iϕ cos θ sin ρ, (3.16)

Rµ∂µ ≡ (ξIσµξ̃I)∂µ = −2

r
∂ϕ, RµIJ ≡ (ξIσ

µξ̃J) . (3.17)

Let Q henceforth denote the supercharge described by the above Killing spinor. Its

square can be computed straightforwardly:

Q2 = −2iLAR + Gauge(2i(s̃φ+ sφ̃)) +RU(1)r(2r
−1) , (3.18)

where LAR is the gauge covariant Lie derivative along the vector field R = −2
r∂ϕ.

4 Localizing the free hypermultiplet

In this section, we localize the theory of a free hypermultiplet on the four-sphere with

respect to the supercharge Q identified in the previous section. We will find that the

theory localizes onto a two-dimensional quantum field theory on the two-sphere S2
θ=π

2
.

This quantum field theory precisely describes a symplectic boson pair, as expected from

the algebraic discussion presented in section 2. The computation in this section is a crucial

ingredient for our analysis in the next section of the effect of including defects. It also

serves as a blueprint for the localization computation of gauge theories, which, however, is

not the focus of the current paper and is left for future work.18

16One should also perform a frame rotation to describe the spinors in the frame defined by the viel-

beins (3.3).
17The constraints (3.10) do not uniquely fix the checked spinors. The ambiguity reflects the freedom to

perform an independent SU(2)R′ rotation on the index of the checked spinors and the auxiliary field FIA.

Our choice identifies this SU(2)R′ and the standard SU(2)R.
18See appendix B for a discussion of certain aspects of the extension to include vector multiplets.
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4.1 Brief review of localization

Localization computations are based on the observation that in the path integral the ac-

tion can be deformed by Q-exact terms for any supercharge Q preserving the action,

QS = 0, [33, 34]19∫
[DΦ] O e−S[Φ] =

∫
[DΦ] O e−S[Φ]+tQ

∫
V , if QS = QO = Q2

∫
V = 0 . (4.1)

Here Φ collectively denotes all fields in the theory, V is any (local) fermionic functional

of the quantum fields such that the integral of its variation under Q2 vanishes and t is an

arbitrary parameter. We also inserted an operator O, local or non-local, order or disorder,

which must be annihilated by Q for the equality to hold. Note that if the operator O
can be obtained as the Q-variation of another operator, the path integral will evaluate to

zero, so the interesting observables lie in Q-cohomology. If one now chooses V such that

the (bosonic part of) QV is positive definite and sends t to infinity, it is clear that the

zeros of QV will dominate the path integral. Let us denote this set of zeros as {Φ0}. The

path integral localizes to this vanishing locus and it is sufficient to only take into account

quadratic fluctuations of the deformation action Q
∫
V around them. In other words,∫

[DΦ] O e−S[Φ] =
∑∫
{Φ0}

O|Φ0 e
−S[Φ0] Z1-loop[Φ0] . (4.2)

A canonical choice for V is20

Vcan. =
∑

fermions ψ

(Qψ)†ψ , (4.3)

such that the localization locus {Φ0} is given by the solutions of the BPS equations Qψ = 0.

The localization computation thus consists of three steps:

1. find the localization locus, defined by the BPS equations Qψ = 0

2. evaluate the classical action and any operator insertions on this locus

3. evaluate the one-loop determinant of quadratic fluctuations

We will address each of them in turn for the case of the free hypermultiplet.

4.2 Localization locus

The BPS equations can be read off from (3.9), and we reproduce them here for convenience:

0 = 2∂µq
I
Aσ

µξ̃I − 4iqIAξ
′
I + 2ξ̌IF

I
A , 0 = 2∂µq

I
Aσ̃

µξI − 4iqIAξ̃
′
I + 2˜̌ξIF

I
A . (4.4)

19See also the recent comprehensive review [35].
20Other choices for V have been analyzed in the literature in the context of so-called Higgs branch

localization computations [32, 36–42]. It would be very interesting to study such other choices for the

localizing supercharge used in the present paper.

– 11 –



J
H
E
P
0
2
(
2
0
1
8
)
1
3
8

It is straightforward to deduce that

∂ϕqIA = 0 , FJA = −1

s̃

(
(2ξ̌Jσ

µξ̃I)Dµq
I
A + (ξ̌Jσ

µDµξI)q
I
A

)
= +

1

s

(
2(˜̌ξJ σ̃

µξI)Dµq
I
A + (˜̌ξJ σ̃

µDµξI)q
I
A

)
.

(4.5)

Note that the first equation can also be read off from (3.18), and that similarly ∂ϕFIA = 0.

Imposing the standard reality conditions q†IA = εIJεABqJB and F †IA = −εIJεABFJB,

the BPS equations can be split in their real and imaginary parts. We find explicitly

for A = 1

0 =

[
+i

sin θ sin ρ
∂χq11 −

cos θ

sin ρ
∂θq11 − sin θ∂ρ(cos ρq11)

]
+ ieiχ∂ρ(sin ρq21)

0 =

[ −i
sin θ sin ρ

∂χq21 −
cos θ

sin ρ
∂θq21 − sin θ∂ρ(cos ρq21)

]
+ ie−iχ∂ρ(sin ρq11)

F11 = (r cos θ)−1[−eiχ sin θ(r sin ρ ∂4 + cos ρ)q21 + (−r sin θ ∂2 − ir cos ρ ∂4 + i sin ρ)q11]

F21 = (r cos θ)−1[−e−iχ sin θ(r sin ρ ∂4 + cos ρ)q11 + (r sin θ ∂2 − ir cos ρ ∂4 + i sin ρ)q21] ,

(4.6)

while the equations for A = 2 can be obtained by complex conjugation of the above

equations. It is clear that the first two equations constrain the hypermultiplet scalars,

while the last two simply determine the auxiliary fields in terms of these scalars. We can

thus focus on the first two equations. We will show momentarily that the moduli space

of solutions to these equations (and their complex conjugates), and thus the space of BPS

configurations, is one copy of the space of complex functions on S2
θ=π

2
. We can thus already

infer that the result of the localization computation will be a quantum field theory defined

on S2
θ=π

2
describing the dynamics of this complex field.

Let us now analyze the BPS equations for the hypermultiplet scalars q11 and q21,

i.e., the first two equations of (4.6). Thanks to the ϕ-invariance of qIA, they are coupled

first-order partial differential equations on the three ball D3 parametrized by (χ, θ, ρ) and

whose boundary is given by the sphere S2
θ=π

2
. Let us first decompose the coupled system of

equations into two independent second-order equations. To do so, we define the operators

D± ≡ ±
i

sin θ sin ρ
∂χ −

cos θ

sin ρ
∂θ − cos ρ sin θ∂ρ + sin ρ sin θ , (4.7)

and rewrite the equations (4.6) as

0 = e−iχD+q11 + i∂ρ(sin ρq21) , 0 = ie−iχ∂ρ(sin ρq11) +D−q21 . (4.8)

Let us then act on the left equation with the first-order differential operator e+iχ(D− +

sin ρ sin θ), and on the right one with ie+iχ(sin ρ∂ρ+2 cos ρ). Subtracting the two resulting

equations and using that

(∂ρ sin ρ+ cos ρ)D± = (D± + sin ρ sin θ)∂ρ sin ρ , (4.9)
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where the derivatives act on everything to the right, including any test function, one can

extract a second-order, linear, homogeneous partial differential equation for q11,

0 = e+iχ(D− + sin ρ sin θ)(e−iχD+q11) + (∂ρ sin ρ+ cos ρ)∂ρ(sin ρq11) . (4.10)

We recall that the qualitative behavior of the solutions to such a second-order linear dif-

ferential equation is mostly controlled by its highest derivative terms:[
1

sin2 ρ sin2 θ
∂2
χ +

cos2 θ

sin2 ρ
∂2
θ +

cos θ cos ρ sin θ

sin ρ
(∂θ∂ρ + ∂ρ∂θ) + (sin2 ρ+ sin2 θ cos2 ρ)∂2

ρ

]
q11 .

Representing these terms as Aµ̄ν̄∂µ̄∂ν̄ with µ̄ = χ, θ, ρ, it immediately follows that

detA = cos2 θ(sin θ sin ρ)−2 ≥ 0. This is precisely the ellipticity condition of the second-

order differential equation for q11. Similar to the Dirichlet problem of the Laplace equation,

the solutions to the equation for q11 are thus determined by the value of q11 at the bound-

ary sphere S2
θ=π

2
(see for example [43]). An almost identical analysis can be performed for

q12. Note however, that the original equations should still hold, restricting the freedom in

the solution to q12. This shows that the moduli space of the BPS equations (4.6) is indeed

given by the space of complex functions on S2
θ=π

2
.

4.3 Evaluation of the classical action

Our next task is the evaluation of the classical action (3.12)21 on the BPS configurations.

First of all, we argued above that (3.18) implies that qIA, FIA are independent of the coor-

dinate ϕ. Hence, the (bosonic part of the) free hypermultiplet Lagrangian is independent

of the coordinate ϕ, and we can perform the ϕ-integral effortlessly. As a result, we are

left with an integral over a three-ball D3, parametrized by the coordinates χ, θ, ρ, with

boundary ∂D3 = S2
θ=π

2
.22 Next we substitute the complex BPS solutions for the auxiliary

fields FIA as in equation (4.6).23 It is straightforward to show that the hypermultiplet

Lagrangian can then be written as a total divergence,

2πr
√
gD3LHM = 2πr

√
gD3∇µ̄

[
1

ss̃
εµ̄νλδRλ(RIJ)δq

I
ADνq

JA − 2i

s̃
(ξ′Iσ

µ̄ξ̃J)qIAq
JA

]
= 2πr

√
gD3∇µ̄

[
1

ss̃
εµ̄νλδRλ((qIAξI)σδDν(qJAξ̃J))− 2i

ss̃
Rµ̄(ξIξ

′
J)qIAq

JA

]
≡ 2πr

√
gD3∇µ̄K µ̄ , µ̄ = χ, θ, ρ . (4.11)

Here
√
gD3 = r3 cos θ sin θsin3ρ is the square root of the determinant of the metric on the

three-ball and εµνλδ ≡ eaµe
b
νe
c
λe
d
δεabcd is the standard volume form. Using Stokes’ theorem,

one can reduce the integral over the three-ball to an integral over the boundary. The latter

21In this section we are considering a free hypermultiplet and hence we consider the action in the absence

of its coupling to the vector multiplet. In appendix B.2 we consider the evaluation of both the Yang-Mills

action and the gauged hypermultiplet action on configurations satisfying the (complex) BPS equations.
22The coordinate ϕ is ill-defined on this locus. We set it to zero consistently.
23As was observed in for example [20, 44], it is sufficient to consider the complex BPS equations to

evaluate the classical action and reduce it to an action of a lower-dimensional quantum field theory.
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can be reinterpreted as the action for the lower-dimensional quantum field theory onto

which we are localizing. In other words,

S2d
HM = 2πr

∫
dρdχ

√
gS2 L2d

HM , with L2d
HM = [(r2 sin ρ)

−1√
gD3Kθ]θ→π/2 . (4.12)

To write the Lagrangian L2d
HM more concretely, it is convenient to first define two flavor

doublets of spinors qA ≡ qIAξI , q̃A ≡ qIAξ̃I . As explained in detail in appendix A.2, when

restricting to S2
θ=π

2
, these spinors can be traded for a two-dimensional anti-chiral spinor

q2d
A .24 Concretely, in the patch Ueq of the two-sphere excluding both the north pole and

south pole, the spinor q2d
A reads25

q
2d,(eq)
A =

(
0

Q
(eq)
A

)
=

(
0

e−
iχ
2 cos ρ2 q1A − ie

iχ
2 sin ρ

2 q2A

)
. (4.15)

The fully covariant two-dimensional Lagrangian is

L2d
HM[q] = −εABεµν(q2d

A γµ∇2d
ν q2d

B ) , µ, ν = ρ, χ . (4.16)

Here γa are two-dimensional gamma-matrices,26 while ∇2d denotes the two-dimensional

covariant derivative on the two-sphere, i.e., ∇2d
ν q2d

B = ∂νq
2d
B + 1

4ω
ab
ν γabq

2d
B , with ω ab

ν the

standard spin-connection on the two-sphere.

In spinor components, and defining Q(eq) ≡ Q(eq)
1 and Q̃(eq) ≡ Q(eq)

2 , the action can be

written alternatively as

S2d
HM = −4πi

∫
dχdρ

√
gS2 Q̃(eq) ℘(eq) Q(eq) , (4.17)

where ℘(eq) is the lowering operator for the magnetic charge m = 1
2 of monopole harmonics

in the equator patch [45, 46]. Its expression, as well as those in the patches UN/S which

exclude the south/north pole respectively (see also footnote 25), is

℘(eq) ≡
(
∂ρ −

i

sin ρ
∂χ + m

cos ρ

sin ρ

)
, ℘(N/S) ≡ e∓iχ

(
∂ρ −

i

sin ρ
∂χ + m

cos ρ∓ 1

sin ρ

)
. (4.18)

24When restricting a pair of four-dimensional spinors ψα, ψ̃α̇ to a two-dimensional locus, one typically finds

a pair of two-dimensional spinors ψ2d, ψ̃2d. It turns out that for the case of qαA, q̃α̇A the two-dimensional

spinors q2d
A and q̃2d

A are proportional to each other and anti-chiral in the two-dimensional sense.
25We complete the patch Ueq to an open cover of the two-sphere as S2 = UN ∪ US ∪ Ueq, where UN/S

excludes the south/north pole of the two-sphere. We choose the standard vielbein (3.5) on Ueq. The vielbein

on UN/S are related by a frame rotation

(ea)N ≡ (U−1)ab (eb)eq , (ea)S ≡ Uab (eb)eq , with U =

(
cosχ sinχ

− sinχ cosχ

)
. (4.13)

and are simply induced from stereographic projection. The anti-chiral component QA of the spinor thus

satisfies

Q
(N)
A = e

iχ
2 Q

(eq)
A , Q

(S)
A = e−

iχ
2 Q

(eq)
A . (4.14)

26We take γ1 = τ1, γ2 = τ2, and thus γ3 = τ3, in terms of the Pauli-matrices and define the inner product

between two two-dimensional spinors as (ψχ) ≡ ψT (iτ2)χ.

– 14 –



J
H
E
P
0
2
(
2
0
1
8
)
1
3
8

With these operators, the action can be written uniformly in all patches:

S2d
HM = −4πi

∫
dχdρ

√
gS2 Q̃ ℘ Q . (4.19)

Note that the fields Q and Q̃ are related by a reality condition. This follows directly from

the analysis in the previous subsection.

4.4 Evaluation of the one-loop determinant

The final step in the localization computation is to evaluate the one-loop determinant of

quadratic fluctuations. We will argue that

Z1-loop = 1 . (4.20)

We first observe that the deformation action is quadratic in the hypermultiplet fields. The

differential operator describing quadratic fluctuations around the BPS configurations, and

therefore also the one-loop determinant, can thus only depend on background parame-

ters.27 Consequentially, the one-loop determinant provides an overall normalization to the

partition function which, while immaterial for the computation of correlation functions,

can be fixed by demanding that the partition function of the two-dimensional theory de-

fined by the action (4.16) or (4.19) equals the partition function of the four-dimensional

free hypermultiplet. Both computations are straightforward, as the theories are Gaussian.

In fact, the result of the latter can be borrowed from the localization literature [28, 30]

and reads

ZHM
1-loop = lim

x→0
b→1

Υb

(
b+ b−1

2
+ x

)
, (4.21)

in terms of Upsilon-function Υb.
28

Now let us compute the partition function of the two-dimensional theory. It is natural

to decompose Q and Q̃ in monopole harmonics Y
m=1/2
jm . Indeed, given the monopole charge

m = 1
2 , {Y m

jm|j ∈ N + |m|,m ∈ {−j,−j + 1, . . . ,+j}} forms an orthonormal basis for the

space of sections Γ(S−) of the nontrivial anti-chiral spinor bundle S−.29 The first order

differential operator ℘ can be viewed as ∂ − iaz̄ on Γ(S−), where a is the U(1) connection

on S−, taking the monopole profile a = 1
2(±1 − cos ρ)dχ on UN/S. It is easy to work out

the eigenvalue of the operator ℘ by working in a patch. One finds

℘Y m
jm = −

√
(j + m)(j + 1−m)Y m−1

jm =⇒ ℘Y
m=1/2
jm = −(j +

1

2
)Y

m=−1/2
jm . (4.23)

27Here we make use of the fact that the hypermultiplet is free. For the interacting case, the one-loop

determinant can depend nontrivially on the localization locus of the vector multiplet.
28The Upsilon-function is the regularization of the infinite product

Υb(x) =
∏

m,n≥0

(mb+ nb−1 + x)((m+ 1)b+ (n+ 1)b−1 − x) . (4.22)

29On S2 there are two inequivalent spin structures. Here the spinor bundle corresponds to the nontrivial

spin structure.
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Note that Y m
jm(ρ, χ) = (−1)m+m Y −mj,−m(ρ, χ) and thus Y m

jm and Y −mj,−m are sections of the

same line bundle S−. We take

Q =
∑

j∈N+1/2

+j∑
m=−j

Qjm Y
m=1/2
jm , Q̃ =

∑
j∈N+1/2

+j∑
m=−j

Q̃jm Y
m=−1/2
jm , (4.24)

and impose Qjm = Q̃jm.30 Using the orthogonality condition∫
dρdχ

√
gS2 Y

−1/2
jm Y

−1/2
j′m′ = δjj′δmm′ , (4.25)

the two-dimensional action simplifies to

S2d
HM = 4πi

+∞+1/2∑
j=1/2

+j∑
m=−j

(j + 1/2)QjmQjm . (4.26)

The partition function can now be computed easily and reads, up to some normalization

constants,

Z2d
HM =

+∞∏
j=0

(j + 1)2j+2 = lim
x→0
b→1

+∞∏
m,n=0

(mb+ nb−1 +Q/2 + x)(mb+ nb−1 +Q/2− x)

= lim
x→0
b→1

Υ

(
Q

2
+ x

)
. (4.27)

This shows that the one-loop determinant is indeed equal to one: Z1-loop = 1.

4.5 Final result

The analysis of the previous few subsections shows that the free hypermultiplet on the

four-sphere can be localized to a two-dimensional quantum field theory, described by the

action S2d
HM in equation (4.19). In formulae,∫

[DΦHM] O e−SHM[ΦHM] =

∫
[DQDQ̃] O|

Q,Q̃
e−S

2d
HM[Q,Q̃] , if QO = 0 , (4.28)

where ΦHM collectively denotes all fields in the hypermultiplet. The localization argument

only guarantees the above equality if the observables O are annihilated by Q. As the two-

dimensional theory describes the dynamics of Q and Q̃, it is natural to expect that, as far

as local operators go, composites of these fields are good observables on the two-sphere.

Indeed, it is easy to verify that

QQ
∣∣
S2
θ=π

2

= 0 , QQ̃
∣∣
S2
θ=π

2

= 0 , (4.29)

and similarly for any composite made from the letters Q, Q̃ and the operator ℘.31 It may

be useful to note that the combinations Q and Q̃ of elementary four-dimensional fields,

30Recall that indeed Q and Q̃ are related by a reality property.
31Note that if one wants to relate correlation functions computed on the four-sphere to those on flat

space, one should construct a suitable basis of composite primary operators, see [47].
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see (4.15), can also be obtained by performing a Q-closed (twisted) translation as on flat

space (see section 2).

The two-dimensional theory is Gaussian, hence all correlators can be computed

via Wick contractions. The key-ingredient is thus the propagator G(ρ, χ; ρ′, χ′) =

〈Q(ρ, χ) Q̃(ρ′, χ′)〉 = −〈Q̃(ρ, χ) Q(ρ′, χ′)〉. It should solve the differential equation

℘ G(ρ, χ; ρ′, χ′) = − 1

4πi
δS2(ρ− ρ′, χ− χ′) , (4.30)

where δS2(ρ− ρ′, χ− χ′) is the Dirac δ-function on S2, i.e.,∫
S2

dρdχ
√
gS2 f(ρ, χ)δS2(ρ− ρ′, χ− χ′) = f(ρ′, χ′) . (4.31)

It is easy to show that in the equator patch

G(eq)(ρ, χ; ρ′, χ′) =
−2i

(4πr)2

e−
i
2

(χ−χ′) cos
(ρ

2

)
sin
(
ρ′

2

)
− e i2 (χ−χ′) sin

(ρ
2

)
cos
(
ρ′

2

)
1− (sin ρ sin ρ′ cos(χ− χ′) + cos ρ cos ρ′)

(4.32)

is the solution.

There are two shortcuts to construct the above propagator. The first one leverages

the Weyl transformation to flat space, discussed around (4.37). Starting form the standard

flat space propagator of a symplectic boson pair, multiplying the appropriate conformal

factors, performing a change of coordinates and finally rotating the frame as in (4.14)

results in (4.32). The second one starts from the propagator of a massive free scalar field

on the four-sphere. If one sets the mass to its conformal value, considers the combinations

Q
(eq)
A as in (4.15) and restricts oneself to the two-sphere S2

θ=π
2
, the result (4.32) also follows.

Let us give a few more details on the latter computation. The propagator for a free real

scalar field of mass m on a four-sphere of radius r solves

(−∇µ∂µ +m2) GS4(x, x′;m2) = δS4(x− x′) , (4.33)

where the delta-function is with respect to the four-sphere measure. The solution to (4.33)

is given by [48]

GS4(x, x′;m2) =
1

(4πr)2
Γ(3/2 + ν)Γ(3/2− ν) 2F1

(
3/2 + ν, 3/2− ν; 2; cos2

(
µ(x, x′)

2r

))
,

(4.34)

where ν is computed by ν2 = 9
4−(mr)2, and µ(x, x′) denotes the geodesic distance between

the points x and x′. This latter quantity is easily computed to be

µ(x,x′) = rarccos
(
cosρ cosρ′+sinρ sinρ′

(
cosθ cosθ′ cos(ϕ−ϕ′)+sinθ sinθ′ cos(χ−χ′)

))
,

(4.35)

if x = (ϕ, χ, θ, ρ) and x′ = (ϕ′, χ′, θ′, ρ′). As we are interested in conformally coupled

scalars, we set

m2 =
R
6

=
2

r2
, ν =

1

2
. (4.36)
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Noting that 2F1 (2, 1; 2; y) = 1
1−y and cos2

(
1
2 arccos t

)
= 1+t

2 , the propagator simplifies

significantly. Finally, restricting the insertion points to the two-sphere at θ = π/2 and

considering the combinations Q, Q̃ as in (4.15), one recovers (4.32).

In section 2, we reviewed that the chiral algebra associated to a free hypermultiplet

is a symplectic boson pair. Let us show that the action S2d
HM =

∫
d2x
√
gS2 L2d

HM indeed

describes a curved space version of the symplectic boson. We do so by performing a Weyl

transformation. It is straightforward to verify that the Lagrangian density (4.16) multiplied

by the measure
√
gS2 is invariant under the Weyl rescalings

gµν → Ω2gµν , qA → Ω−1/2qA . (4.37)

Let us then perform a Weyl recaling from S2 to R2 = C. In terms of the component QA
of qA, and using that d2x = − i

2dzdz̄, the action becomes

S2d,C
HM =

1

2

∫
dzdz̄ εABQA ∂z̄QB = −

∫
dzdz̄ Q̃ ∂z̄Q , (4.38)

where once again Q = QA=1 and Q̃ = QA=2. One can readily recognize this action as

describing a symplectic boson pair.

The symplectic boson is a special instance of the more general βγ-system, where β and

γ have equal conformal weight. The βγ-system can be placed canonically on an arbitrary

Riemann surface Σ

Sβγ =

∫
Σ
β∂̄γ , with β ∈ Ω1,0(Σ), γ ∈ Ω0,0(Σ) . (4.39)

As we now argue, our action (4.19) on the two-sphere is related to this action via a topo-

logical twist. The action (4.19) is written in terms of anti-chiral spinor components and it

possesses a U(1) flavor symmetry.32 Denoting the anti-chiral spinor bundle as S− and the

flavor line bundle as L, the field Q is a section of S− ⊗ L and Q̃ is a section of S− ⊗ L−1.

Performing a topological twist, identifying L−1 with the line bundle S−, and using that

S− = (
∧1,0)

1
2 , one can turn Q into a section of

∧0,0 and Q̃ into one of
∧1,0. The resulting

action is then precisely (4.39).

5 Surface defects and chiral algebra modules

In the previous section, we have localized the theory of a free hypermultiplet to a two-

dimensional quantum field theory on S2
θ=π

2
. The computation is compatible with the in-

sertion of operators preserving the localizing supercharge. We have already considered the

insertion of local operators, and will now turn attention to non-local operators. We consider

the insertion of a surface defect preserving two-dimensional N = (2, 2) supersymmetry on

the two-sphere S2
θ=0. We describe the defect by coupling the four-dimensional theory to

additional degrees of freedom residing on S2
θ=0.

32More precisely, it has an SU(2) flavor symmetry. We focus on its Cartan here.
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5.1 Embedding 2d N = (2, 2) into 4d N = 2

To couple lower-dimensional degrees of freedom to a higher-dimensional quantum field

theory, it is convenient to decompose the higher-dimensional multiplets in terms of lower-

dimensional ones while treating the extra coordinates as continuous labels. Indeed, such

decomposition trivializes the task of writing the action coupling the two systems while man-

ifestly preserving the lower-dimensional symmetries, in particular supersymmetry. Natu-

rally, the decomposition depends on the embedding of the lower-dimensional algebra into

the higher-dimensional one. Our first order of business is thus to specify the relevant em-

bedding of the two-dimensional N = (2, 2) superconformal algebra in the four-dimensional

N = 2 superconformal algebra. For convenience, we do so in flat space; a Weyl transfor-

mation easily maps the result to the four-sphere.

We start by briefly describing the relevant superalgebras. The non-zero anticommuta-

tion relations among the fermionic generators {QIα, Q̃Iα̇,SIα, S̃ α̇I } of the four-dimensional

N = 2 superconformal algebra, i.e., su(2, 2|2), are given by

{QIα, Q̃Jα̇} = δJI Pαα̇ , {S̃ α̇I ,SJα} = δJIK
α̇α , (5.1)

{QIα,SJβ} =
1

2
δJI δ

β
α∆ + δJIM β

α − δβαR J
I , (5.2)

{S̃ α̇I , Q̃Jβ̇} =
1

2
δJI δ

α̇
β̇

∆ + δJIMα̇
β̇

+ δα̇
β̇
R J
I . (5.3)

Here Pαα̇ and Kα̇α are the usual generators for translation and special conformal trans-

formation, ∆ denotes the dilatation generator, and M β
α and Mα̇

β̇
are the rotational

generators of su(2)1 ⊕ su(2)2 = so(4). Together, Pαα̇,K
α̇α,∆,M β

α and Mα̇
β̇

generate

the four-dimensional conformal algebra su(2, 2). Finally, R J
I generate the R-symmetry

su(2)R ⊕ u(1)r. In particular, one has

M⊥ =M +
+ −M+̇

+̇
, M =M +

+ +M+̇
+̇
, R 1

1 =
1

4
r +R , R 2

2 =
1

4
r −R , (5.4)

expressing the generators rotating the (x1, x2)-plane and (x3, x4)-plane respectively, and

relating the diagonal R-symmetry generators to the SU(2)R Cartan generator R and the

U(1)r charge r.

The two-dimensional N = (2, 2) superconformal algebra is su(1, 1|1)L ⊕ su(1, 1|1)R.

The bosonic subgroup of one copy of the algebra, say su(1, 1|1)L, is su(1, 1)L⊕u(1)L. Here

su(1, 1)L is the spatial part, with standard generators L0, L±1, and u(1)L is the left-moving

R-symmetry generated by J0. We denote the left-moving Poincaré supercharges as G±− 1
2

and conformal supercharges as G±
+ 1

2

. Some of the (anti)commutation relations involving

the supercharges are

[L0, G
±
r ] = −rG±r , [J0, G

±
r ] = ±G±r , {G+

r , G
−
s } = Lr+s +

r − s
2

Jr+s , for r, s = ±1

2
.

(5.5)

We will denote the generators of the right-moving algebra su(1, 1|1)R with a bar.

The two-dimensional N = (2, 2) superconformal algebra can be embedded in the four-

dimensional N = 2 superconformal algebra in various ways. Let us choose to orient the

– 19 –



J
H
E
P
0
2
(
2
0
1
8
)
1
3
8

embedded plane along the (x1, x2)-directions. For the purposes of this paper, we make

the following identifications between two-dimensional supercharges and four-dimensional

supercharges:33

G+
− 1

2

= Q2+ , G−− 1
2

= Q̃2
−̇ , Ḡ+

− 1
2

= Q1− , Ḡ−− 1
2

= Q̃1
+̇ ,

G+
+ 1

2

= S̃−̇2 , G−
+ 1

2

= S2+ , Ḡ+
+ 1

2

= S̃+̇
1 , Ḡ−

+ 1
2

= S1− .
(5.6)

The identification of the bosonic generators L0, L±1, J0 and their barred versions follow

immediately by matching the anticommutation relations among the supercharges. In par-

ticular, one finds for the two-dimensional vector and axial R-symmetries

RV = J0 + J̄0 = r , RA = J0 − J̄0 = −4R− 2M⊥ . (5.7)

It is important to remark that the supercharges Q1 and Q2 of section 2 (see in particular

footnote 4) are contained in the embedded two-dimensional algebra. This implies that an

N = (2, 2) preserving surface defect, transverse to the chiral algebra plane, participates

in the cohomological construction of section 2, as claimed there already. Similarly, after

performing a Weyl transformation, it means that our localization computation can be

enriched by inserting an N = (2, 2) superconformal surface defect along S2
θ=0. (See below

for more details.) Also note that R+M⊥ is central to the embedding.

Finally, by analyzing the supersymmetry variations, it is easy to verify that the four-

dimensional hypermultiplet scalars q1A, for A = 1, 2, are the bottom components of two-

dimensional twisted chiral multiplets, and thus the hypermultiplet decomposes into a pair of

twisted chiral multiplets (and their complex conjugate twisted anti-chiral multiplets).34,35

5.2 4d/2d coupled system on S4

Returning to our setup on the four-sphere, we are interested in describing the defect as a

4d/2d coupled system. As explained above, the two-dimensional theory resides on S2
θ=0. It

is useful to recall that a massive two-dimensional N = (2, 2) supersymmetric theory can be

placed on the two-sphere while preserving the symmetry algebra su(2|1). Its su(2) ⊕ u(1)

33This embedding has, for example, also been described in detail in appendix A of [12].
34Recall that the bottom component of the two-dimensional N = (2, 2) supersymmetric multiplets in the

left column of the following table are annihilated by the (Poincaré) supercharges in the right column

multiplet supercharges annihilating

bottom component

chiral G−− 1
2

, Ḡ−− 1
2

anti-chiral G+

− 1
2

, Ḡ+

− 1
2

twisted chiral G−− 1
2

, Ḡ+

− 1
2

twisted anti-chiral G+

− 1
2

, Ḡ−− 1
2

Here we have omitted the less standard semi-chiral multiplets.
35The four-dimensional N = 2 vector multiplet decomposes in a two-dimensional N = (2, 2) twisted

vector multiplet and a twisted chiral multiplet.
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bosonic subalgebra consists of the spatial isometries of the two-sphere su(2) ' so(3) and a

u(1) subalgebra of the vector and axial R-symmetry. The background preserving u(1)V is

called the A-background, while the one preserving u(1)A is called the B-background [37, 49].

Momentarily, we will show that the localizing supercharge Q defined in 3.2 resides in

su(2|1)A. One preliminary indication that this is the case is the fact that its square (3.18)

equals a sum of a rotation of S2
θ=0 and, as can be read off from (5.7), the vector R-symmetry.

Consequentially, our localization computation can proceed in the absence of a conformal

UV Lagrangian description of the defect theory.

To verify the above statement, we show that the reduction of the four-dimensional

Killing spinors ξIα, ξ̃
α̇
I of (3.13)–(3.14) to S2

θ=0 carry the vector and axial R-symmetry

charges and satisfy the two-dimensional Killing spinor equation relevant for the su(2|1)A
background. As explained in appendix A.1, the reduction of arbitrary four-dimensional

two-component chiral and anti-chiral spinors ψα, ψ̃α̇ to S2
θ=0 is given by36

ψ → ψ2d =
1√
2

(
ψ1 + ψ2

ψ1 − ψ2

)
, ψ̃ → ψ̃2d =

1√
2

(
ψ̃1 − ψ̃2

ψ̃1 + ψ̃2

)
. (5.8)

Applied to the Killing spinors ξIα, ξ̃
α̇
I , we find (two-dimensional) (anti-)chiral spinors. We

define ε, ε̃ by

ξI=1 → 2P−ε, ξI=2 → −2P+ε, ξ̃I=1 → 2P+ε̃, ξ̃I=2 → 2P−ε̃ . (5.9)

Here P± = 1
2(1 + γ3) is the (two-dimensional) projection operator onto chiral/anti-chiral

spinors. These definitions ensure that ε± ≡ P±ε both carry one unit of U(1)V charge and

have opposite U(1)A charge, while ε̃± both have U(1)V charge minus one and once again

opposite U(1)A charge. Moreover, the two-dimensional spinors can be shown to satisfy the

equations

∇2d
µ ε =

1

2r
γµγ3ε, ∇2d

µ ε̃ = − 1

2r
γµγ3ε̃ . (5.10)

The U(1)V and U(1)A charge assignments of the two-dimensional Killing spinors and the

equations they satisfy together prove that they indeed define a supercharge in su(2|1)A.

Note that the Killing spinors ε and ε̃ precisely describe the supercharge used to localize two-

dimensional N = (2, 2) theories (in the A-background) on the two-sphere [36, 37, 49–51].

Before starting to analyze the 4d/2d coupled system, we provide the detailed decom-

position of the four-dimensional hypermultiplet in a pair of two-dimensional twisted chiral

multiplets ΘA = (φΘA , φ̃ΘA , ηΘA , η̃ΘA , GΘA , G̃ΘA):

φΘA ≡ q1A , φ̃ΘA ≡ −q2A ,

ηΘA ≡ 2ψ̃2d
A , η̃ΘA ≡ 2γ3ψ

2d
A ,

GΘA ≡ −(D2 − iD3)φ̃ΘA + i cot
ρ

2
F1A

G̃ΘA ≡ −(D2 + iD3)φΘA − i tan
ρ

2
F2A . (5.11)

36Recall that the vielbein on S2
θ=0 are induced from those on the four-sphere as in (3.4) and that our

gamma-matrices are chosen as in footnote 26.
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One can verify that the four-dimensional supersymmetry transformations of these fields,

when restricted to S2
θ=0, indeed precisely reproduce those of twisted chiral multiplets of

Weyl weight ∆ΘA = 1 placed on a two-sphere. The latter are, for example, given in formula

4.3 of [50].37 We emphasize that D2 and D3 (are proportional to) derivatives along the χ

and θ directions, which are orthogonal to the two-sphere S2
θ=0.

In the absence of four-dimensional gauge fields, the coupling between the four-

dimensional and two-dimensional degrees of freedom takes place via superpotentials. More

precisely, since the free hypermultiplet decomposes in a pair of twisted chiral multiplets,

such coupling is implemented by a twisted superpotential. Let the native two-dimensional

degrees of freedom be described by some theory T2d involving vector multiplets, twisted vec-

tor multiplets, chiral multiplets and twisted chiral multiplets.38 Let Λ = (φ, φ̃, η, η̃, G, G̃)Λ

collectively denote the twisted chiral multiplets and Σ = (σ2 + iσ1, σ2 − iσ1, λ, λ̃,D −
σ2
r + iF12, D − σ2

r − iF12) the twisted chiral field strength multiplet. The most general

twisted superpotential describing the coupling between T2d and the four-dimensional free

hypermultiplet, as well as any additional native two-dimensional twisted superpotential

couplings, is then described by a holomorphic function W̃ (φΣ, φΛ, φΘ). It enters in the

Lagrangian as [50]

Ltc = L2d
tc + L4d/2d

tc =

[
i

r
W̃ (φ)− i∂W̃

∂φj

(
Gj +

∆j

r
φj

)
− ∂2W̃ (φ)

∂φj∂φk
(η̃kP−ηj)

]
+ c.c . (5.12)

Here L2d
tc denotes the Lagrangian describing the twisted superpotential couplings among

native two-dimensional degrees of freedom only, while L4d/2d
tc are all other terms in Ltc, i.e.,

the terms describing the coupling between the four-dimensional and two-dimensional de-

grees of freedom.39 Furthermore, the indices j, k, . . . run over Σ,Λ,Θ (and their subindices)

and are summed over in the standard way, ∆ denotes the Weyl weight of the respective

multiplet and the complex conjugation simply replaces the function W̃ (φΣ, φΛ, φΘA) by

W̃ (φ̃Σ, φ̃Λ,−εABφ̃ΘB ).

The total action of the 4d/2d coupled system of interest in this paper is thus

Stotal = SS
4

HM + S
S2
θ=0
T2d

+

∫
S2
θ=0

d2x
√
gS2 L4d/2d

tc . (5.13)

For localization purposes, it is important to note that the kinetic terms for native two-

dimensional vector multiplets, twisted vector multiplets, chiral multiplets and twisted chi-

ral multiplets are all Q-exact, and so are any superpotential couplings. The Lagrangian

Ltc of (5.12) describing the twisted superpotential couplings, however, is Q-closed but

not exact.

37Note that the notations η and η̃ are slightly misleading since the fields with and without tilde do not

separate in multiplets. Rather, (φ, η−, η̃+, G) form a twisted chiral multiplet, while (φ̃, η̃−, η+, G̃) form a

twisted anti-chiral multiplet.
38We do not consider the less standard semi-chiral multiplets.
39Note that if one were to write the four-dimensional free hypermultiplet action in terms of its reduced

twisted chiral multiplets on the two-sphere, additional twisted superpotential terms would occur.
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5.3 Localization of 4d/2d coupled system on S4

To perform a localization computation of the 4d/2d coupled system, one starts by localizing

the theory T2d describing the dynamics of the native two-dimensional degrees of freedom.

Since, as remarked in the above subsection, the supercharge with respect to which the

localization computation is to be performed is the standard choice in su(2|1)A, the results

of [36, 37, 49, 50] are directly applicable.40 We refer the readers to these papers for all

details on the computation.

It is relevant to stress that the classical action evaluated on the BPS configurations

receives only nontrivial contributions from the twisted superpotential terms, as all other

actions are Q-exact. In the computation at hand, one finds in particular a non-zero contri-

bution from
∫
S2
θ=0

d2x
√
gS2 L4d/2d

tc . To obtain a detailed understanding of the effect of the

4d/2d twisted superpotential coupling, we summarize the BPS configurations of multiplets

that enter W̃ :

twisted chiral: φΛ = const , φ̃Λ = const , GΛ +
∆Λ

r
φΛ = G̃Λ +

∆Λ

r
φ̃Λ = 0 ,

vector: σ1 = −B
2r
, σ2 = const , F12 =

B

2r2
, D = 0 , (5.14)

where B is a GNO quantized (constant) magnetic flux through the two-sphere. We thus

find for the evaluation of Ltc on the two-dimensional localization locus

Ltc =

[
i

r
W̃ (φ)− i ∂W̃

∂φΘ

(
GΘ +

1

r
φΘ

)
− ∂2W̃ (φ)

∂φΘ∂φΘ
(η̃ΘP−ηΘ)

]
+ c.c . (5.15)

Here W̃ (φ) is still a holomorphic function of the scalar bottom components of all twisted

chiral multiplets Σ,Λ,Θ, but with φΛ and φΣ set to constants as in (5.14). Note also that

we used that the Weyl weights ∆ΘA of the twisted chiral multiplets ΘA obtained from the

reduction of the free hypermultiplet equal one.

As a next step, one performs the localization of the four-dimensional free hypermulti-

plet. The computation is identical to the one in section 4, except for that we additionally

need to evaluate the twisted superpotential 4d/2d coupling. To do so, we first remark

that all fermions in the hypermutliplet are set to zero, and then observe that the BPS

equations (4.6) imply that at the locus θ = 0 the combinations (5.11) satisfy

at θ = 0 : GΘA sin ρ = +
1

r
∂ρ((1 + cos ρ)φΘA) , G̃ΘA sin ρ = −1

r
∂ρ((1− cos ρ)φ̃ΘA .

(5.16)

It is then straightforward to verify that the Lagrangian term (5.15) multiplied with the

integration measure simplifies to a total ρ-derivative:

√
gS2

θ=0

[
i

r
W̃ (φ)− i ∂W̃

∂φΘ

(
GΘ +

1

r
φΘ

)]
=− i

r
∂ρ
(
(1 + cos ρ)W̃ (φ)

)
√
gS2

θ=0

[
i

r
W̃ (φ̃)− i ∂W̃

∂φ̃Θ

(
G̃Θ +

1

r
φ̃Θ

)]
= +

i

r
∂ρ
(
(1− cos ρ)W̃ (φ̃)

)
.

40The localization of non-abelian twisted vector multiplets has not yet appeared in the literature.
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Note that here we used that the profiles of the native two-dimensional fields entering in

the twisted superpotential is constant. Recalling that on the localization locus both two-

dimensional and four-dimensional fields are independent of ϕ, it is trivial to perform the

integral over S2
θ=0. We find

Stc =

∫ 2π

0
dϕ

∫ π

0
dρ
√
gS2

θ=0
Ltc = 4πir

[
W̃ (φΘ(NP), φΛ, φΣ) + W̃ (φ̃Θ(SP), φ̃Λ, φ̃Σ)

]
,

(5.17)

where NP denotes the north pole ρ = 0 and SP the south pole ρ = π. As before φΛ and

φΣ are set to constants as in (5.14). It is also useful to recall that

φΘA(NP) = Q
(N)
A (NP), φ̃ΘA(SP) = −iQ(S)

A (SP) . (5.18)

In summary, the partition function of our 4d/2d coupled system is given by

Z4d/2d =
∑∫

[dφ2d]Z1-loop(φ2d)

∫
[DQDQ̃]e−S

2d
HM[Q,Q̃]e−4πir

[
W̃ (φΘ(NP),φΛ,φΣ)+W̃ (φ̃Θ(SP),φ̃Λ,φ̃Σ)

]
.

(5.19)

Here φ2d collectively denotes the localization locus of the two-dimensional theory T2d. The

one-loop determinant of quadratic fluctuations of the two-dimensional theory is denoted

Z1-loop(φ2d). Once again, in the twisted superpotential, φΛ and φΣ are set to constants as

in (5.14).41 Note that the localization computation can be extended to compute correlators

also for the coupled system. As in subsection 4.5 the computation is compatible with the

insertion of composites of Q and Q̃ on S2
θ=π

2
. Moreover, we can also insert two-dimensional

Q-closed observables. In particular, polynomials in the scalar fields φΛ, φΣ and φ̃Λ, φ̃Σ of the

twisted chiral multiplets Λ,Σ can be inserted at the north pole and south pole respectively.

It may be useful to remark that the twisted superpotential can be reinterpreted as the

insertion of a particular pair of mixed 4d/2d observables ṼNP/SP at the north pole and

south pole:

ṼNP ≡ e−4πirW̃ (φΘ(NP),φΛ,φΣ) , ṼSP ≡ e−4πirW̃ (φ̃Θ(SP),φ̃Λ,φ̃Σ) . (5.20)

Also note that the additional insertions of two-dimensional observables at the poles of S2
θ=π

2

are a crucial ingredient to build the module of the chiral algebra, as explained at the end

of section 2, and as we will explore in more detail in the next subsection.

5.4 Computing structure constants of chiral algebra modules

In section 2, we reviewed that the insertion of a surface defect — orthogonal to the chiral

algebra plane and preserving N = (2, 2) supersymmetry on its worldvolume — translates

to considering a module M of the chiral algebra. The localization results of the previous

subsection allow us to analyze this module quantitatively.

For the class of 4d/2d coupled systems under consideration, the space M is easily

identified. Its basis ei is given by all words built from the elementary letters Q, Q̃, φΛ, φΣ

and ℘. The latter acts on Q and Q̃ only. Precisely these combinations can be inserted at

41Note that these constant profiles are integrated over by the integral
∑∫

[dφ2d].

– 24 –



J
H
E
P
0
2
(
2
0
1
8
)
1
3
8

the north pole in the localized path integral. Some care has to be taken when inserting

composites of Q, Q̃ at the north pole, as there already is an insertion of ṼNP present there.

We regularize the resulting divergence by subtracting off the contractions of the composite

and ṼNP. Let us next define a dual space M?. Its basis ei comprises all words strung

from the elementary letters Q, Q̃, φ̃Λ, φ̃Σ and ℘ inserted at the south pole. We can define

a sesquilinear form

〈·, ·〉 : M? ×M → C (5.21)

defined by

〈ej , ei〉 =
1

Z4d/2d

∑∫
[dφ2d] Z1-loop(φ2d)

∫
[DQDQ̃]

(
ej ṼSP

)(
ei ṼNP

)
e−S

2d
HM[Q,Q̃] . (5.22)

and extended by sesquilinearity. Here the brackets around ei ṼNP denote the regularization

mentioned above, and similarly for ej ṼSP. In other words, no contractions should be

considered within the bracketed combinations. It will be useful to introduce the notation

N j
i ≡ 〈ej , ei〉. We will assume that N is invertible.

The algebra acts on the module M as explained around (2.9). We would like to compute

the structure constants defined in (2.10). Using the path integral it is more convenient to

consider the action of the Schur operator a(ρ, χ) as a field. The action of individual modes

can afterwards be easily extracted. On the basis element ei, we thus have

a(ρ, χ) · ei =
∑
k

λ k
ai (ρ, χ) ek . (5.23)

Taking the pairing with ej , one finds

〈ej , a(ρ, χ) · ei〉 =
∑
k

λ k
ai (ρ, χ) 〈ej , ek〉 =

∑
k

λ k
ai (ρ, χ) N j

k . (5.24)

Isolating the structure constants is then, in principle, straightforward:

λ k
ai (ρ, χ) =

∑
j

(N−1) k
j 〈ej , a(ρ, χ) · ei〉 . (5.25)

Note that the right-hand side of this expression can be computed explicitly from the path

integral using (5.22) and

〈ej ,a(ρ,χ)·ei〉=
1

Z4d/2d

∑∫
[dφ2d]Z1-loop(φ2d)

∫
[DQDQ̃]

(
ej ṼSP

)
a(ρ,χ)

(
ei ṼNP

)
e−S

2d
HM[Q,Q̃].

(5.26)

The expression (5.25) provides a concrete tool to verify the dependence of the module

on coupling constants. (See footnote 10 for the definition of when a module is said to

depend on a parameter.) Unfortunately, in practice, evaluating (5.25) is not a computation

that can be finished in finite time. It seems quite unlikely though that for any choice of

two-dimensional degrees of freedom T2d and any choice of twisted superpotential coupling

the native two-dimensional degrees of freedom to the four-dimensional ones, the parameter

dependence would drop out. In other words, generically, one would expect the module to

depend on coupling constants. It would be very interesting to find a way to make this

statement concrete, either in an example, or abstractly.
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6 Discussion and future directions

In this paper we have used supersymmetric localization techniques to show that the chiral

algebra associated with four-dimensional N = 2 superconformal quantum field theories is

accessible directly in the path integral. We did so for the specific case of the free hypermul-

tiplet. We extended the localization computation to include surface defects and showed

that this point of view provides a computational handle on properties of the resulting chiral

algebra modules not easily accessible by other methods. Many future directions present

themselves. We list a few of the most promising ones:

• In this paper we have focused on the four-dimensional free hypermultiplet. Extending

the computation to also include vector multiplets is an obvious next step. It is

relatively straightforward to convince oneself that the vector multiplet BPS locus is

not purely bosonic. In other words, the deformation action admits fermionic zero-

modes around the bosonic BPS configurations. Taking these fermionic zero-modes

into account properly presumably works along the lines of [52–55]. The classical

action for the vector multiplet, when evaluated on the solutions of the (complex)

BPS equations, can be shown to reduce to an action on the two-sphere S2
θ=π

2
, as can

the gauged hypermultiplet action. We present these computations in appendix B.2.

Finally, one should evaluate the one-loop determinants.

Note that in the absence of any operator insertions, one is simply computing the

four-sphere partition function and should thus reproduce the results of [30]. It would

be particularly fascinating to see how the instanton contributions are captured in this

alternative localization computation. An intriguing, and possibly relevant, observa-

tion made in [56] is that the dual instanton partition function has a description in

terms of correlators constructed from chiral fermions.

• The structure of a chiral algebra is naturally quite rigid. Nevertheless, one should

study if and to what extent the computation presented in this paper can be deformed,

either geometrically, by deforming the four-sphere, or field theoretically, by turning on

BPS configurations for various background fields. Note that deformations of the latter

kind were observed to be feasible in a similar computation on the three-sphere [20].

In appendix B.3 we consider the effect on the partition function of an example of

such a deformation. Moreover, if the localization computation goes through on the

squashed four-sphere, it would be extremely interesting to consider the non-canonical

deformation action used in the Higgs branch localization computations of [32, 42].

• In this paper we have considered the insertion of defects orthogonal to the chiral

algebra sphere. To be compatible with the localizing supercharge, these defects had

to preserve two-dimensional N = (2, 2) supersymmetry. It is easy to verify that

the localizing supercharge is also compatible with the insertion of defects on the

chiral algebra sphere if they preserve two-dimensional N = (0, 4) supersymmetry.

The insertion of such defects is expected to modify the structure of the resulting

two-dimensional theory nontrivially. In appendix B.4, we describe a simple singular
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profile for a (background) vector multiplet representing such a defect. One could also

consider exploring systems of intersecting surface defects, as initiated in [57]. (See

also [58].)

• The four-sphere partition function of four-dimensional N = 2 theories of class S
features prominently in the AGT correspondence [59]. It seems natural to expect

that the new representation of the four-sphere partition function obtained in this

paper, and in particular its extension to include vector multiplets mentioned above,

will provide new perspectives on this correspondence and on its relationship to the

chiral algebras associated to theories of class S [5, 18].

We hope to report on progress on some of these problems in the future.
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A Reduction of spinors

In section 4 we showed that the theory of the free hypermultiplet reduces to a quantum

field theory defined on the submanifold S2
θ=π

2
, while in section 5 we studied the coupling

of the four-dimensional theory to native degrees of freedom on the submanifold S2
θ=0. In

this appendix we elaborate on an important technical step in these computations, namely

the reduction of four-dimensional spinors to these two-spheres.

In general, the first step to reduce spinors onto a two-dimensional submanifold Σ ⊂ S4

is to find a suitable similarity transformation UΣ that casts the four-dimensional Γ-matrices

in a useful Kronecker product form. Let EA=1,2,3,4 denote the vielbein on the four-sphere

S4. Without loss of generality, we assume that the restriction to the submanifold Σ is such

that Eα|Σ = e1, Eβ |Σ = e2, for some α, β, where ea=1,2 are vielbein on Σ. We then look

for a similarity transformation UΣ such that

Γnew
α = UΣΓαU

−1
Σ = γ1 ⊗ (. . .), Γnew

β = UΣΓβU
−1
Σ = γ2 ⊗ (. . .) , . . . . (A.1)

Here the (. . .) are two-dimensional matrices. Note that the choice of UΣ is not unique:

the freedom can be exploited to obtain maximal simplicity. Let us then consider any four-

component spinor Ψ on S4. When acted on by the transformation UΣ, it can be written

in a tensor product form UΣΨ = ψ2d⊗ (. . .) + ψ̃2d⊗ (. . .), where (. . .) are simple, constant

two-component columns. The action of four-dimensional gamma-matrices on the spinor Ψ

can be straightforwardly reduced to an action on the spinors ψ2d, ψ̃2d. Let us apply this

logic to the two cases of interest.
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A.1 Reduction onto Σ = S2
θ=0

Let us first consider the reduction onto S2
θ=0. The four-dimensional vielbein reduce as

E4 → e1, E1 → e2, where e1 = rdρ, e2 = r sin ρdϕ are the vielbein on S2
θ=0. We choose

the transformation matrix Uθ=0 to be

Uθ=0 =
1√
2


1 1 0 0

0 0 1 −1

1 −1 0 0

0 0 1 1

 ,

Γnew
1 = γ2 ⊗ γ1

Γnew
4 = γ1 ⊗ γ1

Γnew
2 = γ3 ⊗ γ1

Γnew
3 = 12×2 ⊗ γ2

(A.2)

In this new representation, a four-component spinor Ψ = (ψα, ψ̃
α̇) on S4 is rotated into

Ψnew = Uθ=0Ψ =
1√
2


ψ1 + ψ2

ψ̃1 − ψ̃2

ψ1 − ψ2

ψ̃1 + ψ̃2

 = ψ2d ⊗
(

1

0

)
+ ψ̃2d ⊗

(
0

1

)
, (A.3)

where ψ2d ≡ 1√
2
(ψ1 + ψ2, ψ1 − ψ2)T , ψ̃2d ≡ 1√

2
(ψ̃1 − ψ̃2, ψ̃1 + ψ̃2)T .

The induced action of the σ- and σ̃-matrices (or equivalently the four-dimensional

Γ-matrices) on the two-dimensional spinors ψ2d and ψ̃2d is simply

σ1ψ̃ → γ2ψ̃
2d, σ2ψ̃ → γ3ψ̃

2d, σ3ψ̃ → −iψ̃2d, σ4ψ̃ → γ1ψ̃
2d (A.4)

σ̃1ψ → γ2ψ
2d, σ̃2ψ → γ3ψ

2d, σ̃3ψ → +iψ2d, σ̃4ψ → γ1ψ
2d . (A.5)

The two-dimensional inner product of spinors is defined to be (ψ2dχ2d) ≡ (ψ2d)T (iτ2)χ.

It is related to the four-dimensional inner product between two-component undotted spinors

ψ and χ and between dotted spinors ψ̃ and χ̃ by (ψχ) = (ψ2dχ2d), (ψ̃χ̃) = (ψ̃2dχ̃2d).

A.2 Reduction onto Σ = S2
θ=π/2

Next, we consider the reduction onto S2
θ=π

2
. The four-dimensional vielbein reduce as

E4 → e1, E2 → e2, where e1 = rdρ, e2 = r sin ρdχ are the vielbein on S2
θ=π

2
. We choose

Uθ=π
2

to be

Uθ=π
2

=
1√
2


1 −i 0 0

0 0 −i 1

−i 1 0 0

0 0 1 −i

 ,

Γnew
4 = γ1 ⊗ γ1

Γnew
2 = γ2 ⊗ γ1

Γnew
3 = γ3 ⊗ γ1

Γnew
1 = 12×2 ⊗ γ2

. (A.6)

In this new representation

Ψnew = Uθ=π
2
Ψ =

1√
2


ψ1 − iψ2

−iψ̃1 + ψ̃2

−iψ1 + ψ2

ψ̃1 − iψ̃2

 = ψ2d ⊗
(

1

0

)
+ ψ̃2d ⊗

(
0

1

)
, (A.7)
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where ψ2d = 1√
2
(ψ1 − iψ2,−iψ1 + ψ2)T , ψ̃2d = 1√

2
(−iψ̃1 + ψ̃2, ψ̃1 − iψ̃2)T . The action of

the σ- and σ̃-matrices reduce as

σ1ψ̃ → −iψ̃2d, σ2ψ̃ → γ2ψ̃
2d, σ3ψ̃ → γ3ψ̃

2d, σ4ψ̃ → γ1ψ̃
2d (A.8)

σ̃1ψ → +iψ2d, σ̃2ψ → γ2ψ
2d, σ̃3ψ → γ3ψ

2d, σ̃4ψ → γ1ψ
2d . (A.9)

In section 2, we encountered the spinorial combinations qA ≡ qIAξI , q̃A ≡ qIAξ̃I .

Using the explicit expression for the Killing spinors (3.13)–(3.14), the corresponding four-

component spinor (qAα, q̃
α̇
A) reduces to

(qAα, q̃
α̇
A)→ (i− 1) q2d

A ⊗
(

1

0

)
− (1 + i) q2d

A ⊗
(

0

1

)
, (A.10)

where q2d
A ≡ (0, e−

iχ
2 cos(ρ2)q1A − iλe+ iχ

2 sin(ρ2)q2A)T is an anti-chiral spinor on S2
θ=π

2
.42 We

note that, although we start with two pairs of spinors qA, q̃A in four dimensions, only a

single anti-chiral pair q2d
A appears in the reduction.

Again, the two-dimensional inner product of spinors is given by (ψ2dχ2d)≡(ψ2d)T (iτ2)χ,

and is related to the four-dimensional inner product between two-component undotted

spinors ψ and χ and between dotted spinors ψ̃ χ̃ as (ψχ) = −(ψ2dχ2d), (ψ̃χ̃) = −(ψ̃2dχ̃2d).

B Vector multiplets and gauged hypermultiplets

In the main text we performed the localization computation of free hypermultiplets in great

detail. In this appendix we would like to collect some results on the localization of vector

multiplets and gauged hypermultiplets. In appendix B.1 we analyze in some detail the BPS

equations for the vector multiplet. Next, we evaluate the classical actions of the vector

multiplet and gauged hypermultiplet on solutions of the complex BPS equations and show

that they both reduce to an action on the two-sphere S2
θ=π

2
. In appendix B.3 we consider

a particularly interesting solution to the vector multiplet BPS equations and compute the

partition function of the resulting two-dimensional theories with this background turned

on. Finally, in appendix B.4 we analyze in some more detail a singular solution to the vector

multiplet equations and show that it corresponds to an N = (0, 4) preserving surface defect

on S2
θ=π

2
.

B.1 BPS equations for the vector multiplet

We would like to study solutions to the vector multiplet BPS equations. The relevant

equations were given in (3.8) and we reproduce them here for convenience.

0 =
1

2
Fµνσ

µνξI + 2Dµφσ
µξ̃I + φσµDµξ̃I + 2iξI [φ, φ̃] +DIJξ

J (B.1)

0 =
1

2
Fµν σ̃

µν ξ̃I + 2Dµφ̃σ̃
µξI + φ̃σ̃µDµξI − 2iξ̃I [φ, φ̃] +DIJ ξ̃

J . (B.2)

42This expression for q2d
A is valid in the patch Ueq of the two-sphere, as that is the region of validity of the

vielbein we used. See footnote 25 for more details on the patches and the frame rotations between them.
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From these complex BPS equations, one can derive that RµFµν = Dν(sφ̃ + s̃φ), and as a

result, RµDµ(sφ̃+ s̃φ) = 0. Moreover, one finds

DIJ = − 1

4s2

[
− 2sFµν + 4(R ∧ dAφ)µν − 4i(ξKσµνξ

′
K)φ

]
Θµν
IJ

= +
1

4s̃2

[
− 2s̃Fµν + 4(R ∧ dAφ̃)µν + 4i(ξ̃K σ̃µν ξ̃

′
K)φ̃

]
Θ̃µν
IJ . (B.3)

Here Θµν
IJ = (ξIσ

µνξJ) and similarly Θ̃µν
IJ = (ξ̃I σ̃

µν ξ̃J). These relations and expressions will

be particularly useful when we evaluate the classical vector and hypermultiplet actions in

appendix B.2.

Let us now impose the reality conditions

φ† = −φ̃⇔ φ =
1

2
(φ2 − iφ1), φ̃ =

1

2
(−φ2 − iφ1), A† = A⇔ F † = F , (B.4)

but keep the auxiliary field DIJ complex. Here φ1, φ2 are real/hermitian fields. The moti-

vation for treating DIJ separately comes from the observation that in fact the auxiliary field

D11(0) is a Schur operator. The BPS equations (B.1) and (B.2) can then be decomposed

into their real and imaginary parts. We find

0 = [φ1, φ2] , (B.5)

0 = Dµ(cos θ sin ρ(cosϕφ1 + sinϕφ2)) , 0 = Dϕ(cos θ sin ρ(− sinϕφ1 + cosϕφ2)) , (B.6)

F = ∗
(
dA

(
r cos θ sin ρφ2

cosϕ
dϕ

))
+ ∗((ss̃)−1R ∧ D), (B.7)

as well as

ReD12 = −λ sin θ tan
ρ

2
(ImD22 sinχ+ ReD22 cosχ) (B.8)

ImD11 = −λ tan
ρ

2

(
+2 sinχ sin θ ImD12 + λReD22 tan

ρ

2

)
(B.9)

ReD11 = +λ tan
ρ

2

(
−2 cosχ sin θ ImD12 + λ ImD22 tan

ρ

2

)
. (B.10)

In a slight abuse of notation, we introduced one-forms R = Rae
a, RIJ = RIJa e

a, and

D = DIJR
IJ . The latter satisfies RµDµ = 0. If one further imposes the standard reality

condition on the auxiliary field, namely D†IJ = −DIJ , then one can easily see that D
vanishes on the BPS locus. Therefore, the one-form D captures the deviation of DIJ from

the real contour.

The scalars φ1,2 are constrained by the equations in (B.6). The left equation implies

that

cosϕφ1 + sinϕφ2 =
φ+

cos θ sin ρ
, (B.11)

in terms of a (covariantly) constant matrix φ+. The right equation of (B.6) then becomes

Dϕ

[
cos θ sin ρ

(
− φ+ sinϕ

cos θ sin ρ cosϕ
+

φ2

cosϕ

)]
= 0 . (B.12)
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For smooth solutions, one should set φ+ = 0. In appendix B.4, however, we will show that

the singular profile described by φ+ defines an interesting surface operator. Note also that

equation (B.7) can be solved for D as

D = ιR ∗ F − ιRdA
(
r cos θ sin ρφ2

cosϕ
dϕ

)
. (B.13)

Finally, (B.7) also implies ιRF = 0.

Let us finally discuss a special solution to these equations, where we do impose the

standard reality properties on all fields. In particular, we set D = 0. The Bianchi identity

applied to (B.7) then states that

dAΦFΦ∝ dAΦ∗
(
dAΦ

(
r cosθ sinρφ2

cosϕ
dϕ

))
= 0⇒ dAΦ

(
r cosθ sinρφ2

cosϕ
dϕ

)
= 0 . (B.14)

Plugging this back into the BPS equations for the field strength simply sets F = 0. More-

over, the simple fact that φ2 commutes with itself implies that

Dχ,θ,ρ

(
r cos θ sin ρφ2

cosϕ

)
= 0⇒ Dµ

(
cos θ sin ρφ2

cosϕ

)
= 0 . (B.15)

Hence the combination cos−1ϕ(cos θ sin ρφ2) is again covariantly constant, and we have

cos θ sin ρφ2 = cosϕφ− , (B.16)

with another covariantly constant matrix φ−. For smooth BPS solutions, φ− = 0, but it is

relevant for the defect described in appendix B.4. In summary, the smooth BPS solutions

along the real DIJ -contour are given by the trivial configuration

φ1 = 0, φ2 = 0, F = 0, DIJ = 0 . (B.17)

This result is puzzling, since it seems too trivial to reproduce the known result for the

four-sphere partition function [30]. This provides an additional motivation to relax certain

reality properties as we did above.

It is also important to remark, and relatively easy to verify, that the deformation

action admits fermionic zero-modes around the bosonic configurations discussed here. As

it is beyond the scope of this appendix, we do not present the details of these fermionic

zero-modes. The vector multiplet localization computation should take these zero-modes

into account properly.

B.2 Evaluating classical actions

In section 4.3, we evaluated the classical action of a free hypermultiplet on the solutions

of the complex BPS equations described by (4.5). In this appendix, we present the gener-

alization of that computation to hypermultiplets coupled to a dynamical vector multiplet.

We find that both the vector multiplet and gauged hypermultiplet action reduce to a two-

dimensional action.
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The relevant complex BPS equations for the gauged hypermultiplet are

DϕqIA =− ir

2κ0
(sφ̃+ s̃φ)A

BqIB, (B.18)

FJA =− 1

s̃

[
2(ξ̂I′σ

µξ̃I)Dµq
I
A + (ξ̂I′σ

µDµξ̃I)q
I
A + 4i(ξ̂I′ξI)φ̃

A
Bq

IB
]

(B.19)

= +
1

s

[
2(

˜̂
ξI′ σ̃

µξI)Dµq
I
A + (

˜̂
ξI′ σ̃

µDµξI)q
I
A + 4i(

˜̂
ξI′ ξ̃I)φ

A
Bq

IB
]
.

Using these equations together with the complex BPS equations expressing the auxiliary

field DIJ given in (B.3), the bosonic part of the hypermultiplet action (3.12) can be shown

to become

SHM =

∫
d4x
√
g∇µ

[
1

ss̃
εµνλδRλR

IJ
δ Dνq

A
J qIA −

2i

s̃
(ξ̃K σ̃

µξ′I)q
KAqIA

+
i

ss̃
(sφ̃− s̃φ)ABR

µ
IJq

IAqJB
]
, (B.20)

while the bosonic part of the vector multiplet action (3.11) reduces to

SVM =

∫
d4x
√
g∇µ tr

[
− 8is̃−1K̃µφφ̃− (ss̃)−1εµναβRνFαβ(sφ̃− s̃φ)

]
. (B.21)

In the latter we defined K̃µ ≡ (ξ′Iσµξ̃I).

Let us first focus on SHM. The BPS equation (B.18) implies that gauge invariant

combinations of qIA are independent of the coordinate ϕ. Therefore the total derivative

∂µ(
√
g[. . .]µ) in the above action is in fact a three-dimensional total derivative ∂µ̄(

√
g[. . .]µ̄),

with µ̄ = χ, θ, ρ. At this point we can perform the ϕ-integral. Also notice that the index ν

in Dνq
A
J inside the bracket can never take the value ϕ. We are left with the hypermultiplet

action as a three-dimensional integral. By Stokes’ theorem, it reduces to a two-dimensional

action on S2
θ=π

2

S2d
HM[q] = −2πr

∫ √
gS2dρdχ

ΩABεµν(q2d
A γµD

2d
ν q2d

B ) +
i(sφ̃− s̃φ)ABR

3
IJ

4κ2λ2 cos θ sin ρ
qIAqJB

∣∣∣∣∣
θ→π/2

 ,
where D2d

µ contains the BPS vector multiplet gauge field Aµ. It acts on the indices

A,B = 1, . . . , 2N in the appropriate way. For smooth φ and φ̃, the second term goes

to zero in the θ → π
2 limit. Similarly to section 4.3, the action can finally be written more

explicitly as

S2d
HM[Q] = −4πi

∫
dχdρ

√
gS2 Q̃ ℘A Q , (B.22)

where ℘A is the gauged monopole-charge-lowering operator of monopole charge m = 1
2 .

Let us now consider the vector multiplet action SVM. Recall from around (B.3) that

RνFµν +Dµ(s̃φ+ sφ̃) = 0, RµDµ(sφ̃) = −RµDµ(s̃φ) = i[s̃φ, sφ̃] . (B.23)

As a result, up to a gauge transformation, sφ̃, s̃φ and F are independent of ϕ. We can

thus first perform the ϕ integration. Then completely similarly to the analysis of the
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hypermultiplet, the action can be written as a total derivative to which we can apply

Stokes’ theorem. We end up with an action on S2
θ=π

2

SVM = 2π

∫
dχdρ

√
gS2 tr

[
−4φφ̃+

1

r sin2 ρ
Fχρ(sφ̃− s̃φ)

∣∣∣∣
θ→π/2

]
. (B.24)

One can verify that for smooth φ, φ̃, the second term vanishes and we have

SVM = −8π

∫
dχdρ

√
gS2 tr(φφ̃)

∣∣∣
θ→π/2

. (B.25)

In view of the fact that the vector multiplet possesses fermionic zero-modes, it is of

interest to also consider the fermionic part of the super Yang-Mills action. We will show

here that it also reduces to a two-dimensional action. For simplicity, we consider the free

limit, where gYM = 0. In this case, the fermionic part consists of the Dirac action,

SDirac ∝
∫
d4x
√
gS4 tr(λIσµ∇µλ̃i) . (B.26)

Let us define Λµ ≡ (λIσµξ̃I), Λ̃µ ≡ (ξIσµλ̃I). The BPS equations impose various conditions

on Λ and Λ̃, including43

RµΛµ = 0, RµΛ̃µ = 0, Λ̃ = −Λµ + i∂µc , LRΛ = 0, Rµ∂µc = 0 . (B.27)

Using the identities

λI =
1

s̃
(λLσλξ̃L)σλξ̃

I , λ̃I =
1

s
(ξKσµλ̃K)σ̃µξI , (B.28)

one can straightforwardly derive that

SDirac ∝
∫
d4x
√
gS4∇µ tr(εµνλρ(ss̃)−1RλΛνΛρ) , (B.29)

which reduces to

SDirac ∝ 2πr

∫
dρdχ

√
gS2 tr Λ2Λ4 . (B.30)

B.3 Some Gaussian integrals

Let us define an interesting BPS background configuration for the vector multiplet. We

take the auxiliary fields DIJ to be complex, so that in fact there exist nontrivial, smooth

BPS configurations. We choose the gauge group to be SU(N) and take Aµ at S2
θ=π

2
to have

an su(N) Cartan-valued monopole-like profile,

A|S2
θ=π/2

∼ diag(a1, . . . , aN )(cos ρ− 1)dχ ,

N∑
a=1

aa = 0 . (B.31)

43We have used the BPS equations as they follow from the gauge-fixed vector multiplet, hence the

appearance of the c-ghost. While in intermediate steps the ghost will appear in various places, in the final

result it drops out.
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We recall that any SU(N) bundle over S2 is trivial as π1SU(N) = {e}. Therefore, unlike

U(1) monopoles, there is no quantization condition on a. The fact that the SU(N)-bundle

over S2
θ=π

2
is trivial also implies that one can extend Aµ into the interior of S2

θ=π
2

and

therefore to the entire four-sphere.

Let us consider fundamental hypermultiplets coupled to this vector multiplet back-

ground. The relevant two-dimensional theory is described by the action (B.22). We would

like to compute the resulting partition function. Following the discussion in subsection 4.4,

we expand the components of Q and Q̃ in the basis of harmonics Y
1/2
jm and Y

−1/2
jm respec-

tively, with complex conjugate coefficients Qajm and Qajm. Here a = 1, . . . , N is the gauge

index. Using the orthonormality properties of Y m
jm, the action simplifies to

S2d
HM = 4πi

N∑
a=1

+∞+1/2∑
j′,j=1/2

+j′∑
m′=−j′

+j∑
m=−j

Qaj′m′

×
[
(j + 1/2)δmm′δjj′ − aa 1

2
〈j′m′|cos ρ− 1

sin ρ
|jm〉 1

2

]
Qajm , (B.32)

where the second term in the square bracket is given by44

1
2
〈j′m′|cosρ−1

sinρ
|jm〉 1

2
≡
∫ √

gS2dρdχ Y
−1/2
j′m′ (ρ,χ)

cosρ−1

sinρ
Y

1/2
jm (ρ,χ)

= δmm′
m

|m|

−δjj′+2(δj′>jδm<0+δj′<jδm>0)(−1)j
′+j

√√√√ (−minj,j′−|m|)2|m|

(−maxj,j′−|m|)2|m|

 .
Here we used the Pochhammer symbol (x)n ≡

∏n−1
k=0(x+ k), and the delta function δp = 1

if the proposition p is true and δp = 0 otherwise.

Using this result, one can perform the Gaussian integral in (B.32) explicitly, and one

finds up to some unimportant constant prefactors,

ZHM = lim
b→1

N∏
a=1

Υb

(
b+ b−1

2
+ aa

)
. (B.33)

Quite curiously, this is precisely the one-loop determinant for a gauged hypermultiplet.

Quite possibly, this result implies that the monopole-configuration we turned on plays an

essential role in the full localization computation including dynamical vector multiplets.

As reviewed in section 2, the chiral algebra associated with the free vector multiplet is

a small (b, c) ghost system. Without derivation, but given our experience of section 4, we

consider the following action on S2
θ=π

2

S2d
VM =

∫ √
gS2dρdχ tr b

(
∂ρ −

i

sin ρ
∂χ

)
c . (B.34)

Here b and c are fermionic scalars in the adjoint representation. Let us perform a simple

check by comparing its partition function to the partition function of a four-dimensional

44We checked the final equality with Mathematica systematically to very large j and j′.
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free vector multiplet. We expand c and b as

b =

∞∑
j=1

+j∑
m=−j

bjmY s=1
jm , c =

∞∑
j=0

+j∑
m=−j

cjmY
s=0
jm = c0Y

s=0
00 +

∞∑
j=1

+j∑
m=−j

cjmY
s=0
jm , (B.35)

and assume the reality condition bjm = cjm. Note that we separated out the c zero-mode.

This mode is absent in the small (b, c) ghost system. Each root contributes to the partition

function as

∞∏
j=1

√
j(j + 1)

2j+1
=

∞∏
j=1

√
j

2j+1
∞∏
j=1

√
j + 1

2j+1
(B.36)

=
∞∏
j=1

(j + 1)2(j+1) =
∏

m,n>0

(m+ n+ 2)(m+ n)′ (B.37)

= lim
x→0

Υ(x)b=1

x
. (B.38)

Raising this result to the power of the dimension of the gauge group, we indeed recover

the partition function of a free vector multiplet.

Let us finally consider the small (b, c) ghost system in the presence of the background

defined in (B.31). The action on S2
θ=π/2 then reads

S2d
VM =

∫ √
gS2dρdχ tr b

(
∂ρ −

i

sin ρ
(∂χ − iAχ)

)
c , (B.39)

We again expand the components of b, c in terms of Y q=−1
jm and Y q=0

jm . Representing the

adjoint SU(N) index in terms of a fundamental and antifundamental index, we obtain

S2d
VM =

∑
a,b

+∞∑
j′=1

+∞∑
j=1

+j′∑
m′=−j′

+j∑
m=−j

(cab )j′m′

(√
j(j+1)−(aa−ab) 1〈j′m′|

cosρ−1

sinρ
|jm〉0

)
(cba)jm ,

(B.40)

where

1〈j′m′|
cos ρ− 1

sin ρ
|jm〉0 =

∫ √
gS2dρdχ Y q=−1

j′m′
cos ρ− 1

sin ρ
Y q=0
jm . (B.41)

Finally, performing the Gaussian integrals, we find

ZVM(a) =
∏
a>b

Υ(aa − ab)Υ(−aa + ab)

(aa − ab)
2 = ZS

4

1-loop-vector(a) , (B.42)

up to some numerical prefactors.

B.4 (0, 4)-supersymmetric singular configurations

In appendix B.1 we encountered interesting singular solutions to the vector multiplet BPS

equations. In this appendix we would like to show that they define a surface defect that pre-

serves two-dimensional (0, 4) superconformal symmetry. We do so by finding all conformal

Killing spinors under which the profile is supersymmetric.
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The singular profile for the vector multiplet scalars is paramterized by two commuting

constant matrices φ+, φ−,

φ =
1

2 sin ρ cos θ
e+iϕ(φ+ − iφ−) , φ̃ = − 1

2 sin ρ cos θ
e−iϕ(φ+ − iφ−) , (B.43)

and the field strength and auxiliary field are set to zero.45

It is easy to verify that an eight-parameter family of conformal Killing spinors preserves

the above singular profile. Concretely,

ξ1 = α−1,1
1 cos

ρ

2

(
e
i
2

(+θ+ϕ−χ)

e
i
2

(−θ+ϕ−χ)

)
+ α11

1 sin
ρ

2

(
e
i
2

(−θ+ϕ+χ)

−e i2 (+θ+ϕ+χ)

)

ξ2 = α−1,1
2 cos

ρ

2

(
e
i
2

(+θ+ϕ−χ)

e
i
2

(−θ+ϕ−χ)

)
+ α1,1

2 sin
ρ

2

(
e
i
2

(−θ+ϕ+χ)

−e i2 (+θ+ϕ+χ)

)
(B.44)

ξ̃1 = α̃−1,−1
1 cos

ρ

2

(
e
i
2

(−θ−ϕ−χ)

e
i
2

(+θ−ϕ−χ)

)
+ α̃1,−1

1 sin
ρ

2

(
e
i
2

(+θ−ϕ+χ)

−e i2 (−θ−ϕ+χ)

)

ξ̃2 = α̃−1,−1
2 cos

ρ

2

(
e
i
2

(−θ−ϕ−χ)

e
i
2

(+θ−ϕ−χ)

)
+ α̃1,−1

2 sin
ρ

2

(
e
i
2

(+θ−ϕ+χ)

−e i2 (−θ−ϕ+χ)

)
,

with constants α±1,±1
I and α̃±1,±1

I . The subalgebra generated by the corresponding su-

percharges is precisely the (centrally extended) two-dimensional N = (0, 4) superalgebra

on S2
θ=π

2
.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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