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1 Introduction

Why is the Higgs mass so small? Graham, Kaplan, and Rajendran (GKR) have proposed

a novel solution to the electroweak hierarchy problem, the relaxion mechanism, in which

the evolution of an axion field φ drives the Higgs mass mh to relax dynamically to a value

much smaller than the cutoff, |m2
h| � M2 [1]. Achieving a large hierarchy in this way

requires very small dimensionless couplings, as well as field excursions ∆φ�M , but GKR

argued that the requisite couplings are technically natural.

In this work, we study the impact of ultraviolet completion on the relaxion mechanism.

The large field excursions required by the mechanism, while technically natural in effective

field theory, turn out to be source terms in string theory! Winding an axion φ over N � 1

fundamental periods leads to the accumulation of N units of monodromy charge, providing

a large source term in ten dimensions. This changes the shape of the compactification and

alters the couplings of the effective theory, eliminating the barrier that is needed to stop

the relaxion once the Higgs acquires a vev.

The root of the problem is that new states linked to the monodromy charge, which

are too massive in the initial configuration to be visible, are eventually drawn below the

cutoff M . These new light states induce changes in the couplings of the effective theory.

In particular, the gauge coupling gYM of the gauge theory that generates the stopping

potential receives a correction δg−2
YM ∼ N . This leads to an exponential suppression of

the stopping potential, with barrier heights ∼ e−N , and therefore to a runaway relaxion.

This problem persists even in the limit in which the relaxion shift symmetry appears to

be restored.

Although we work in string theory, and quantum gravity completion is the central

question, our results do not hinge on super-Planckian displacements ∆φ � Mpl, which

are famously challenging in quantum gravity. The problems that we expose occur even

for ∆φ � Mpl. The core issue is indeed one of large displacements, but here large means

compared to the natural scale (or periodicity) of the effective theory. When φ is an axion

with decay constant f , the backreaction of monodromy charge is significant for ∆φ� f .

Our analysis does not amount to a complaint that the effective theories given in [1]

contain small dimensionless parameters. Constructing a solution of string theory that yields

an effective field theory containing small numbers plausibly requires fine-tuning, e.g. of the

discrete data of a compactification. Quantifying this obvious issue is not our aim. The

backreaction phenomenon that we identify is a much more severe problem: even granting

fine-tuned data that gives rise to an apparently-suitable relaxion Lagrangian in the probe

approximation that omits the monodromy charge as a source in ten dimensions, the full

Lagrangian beyond the probe approximation is not of the form given in [1], and does not

allow for relaxation of a hierarchy.

Our goal is to identify the challenges that confront the relaxion mechanism in string

theory. Though we analyze a specific realization in type IIB string theory, we find a set

of surprising, plausibly general, qualitative lessons about the nature of hierarchies and

technical naturalness in low energy effective field theories descending from string theory.
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m2
h

V (m2
h)

m2
h ∼M2

m2
h = 0

|m2
h| �M2

Figure 1. Schematic plot of the relaxion potential (1.1).

The remainder of section 1 is a microcosm of the paper. We begin with a review of the

relaxion mechanism and then provide an overview of our results, leaving detailed analysis

for the main text. The casual reader need only read section 1.

Overview of the relaxion. The simplest model of electroweak scale relaxation involves

adding to the Standard Model a single axion φ, the relaxion, with the potential1

V (φ, h) =
(
M2 − gM (φinit − φ)

)
|h|2

A

+ gM3φ

B

+ Vstop(φ, v)

C

. (1.1)

Here h is the Higgs field and v is its vacuum expectation value, v2 ≡ 〈|h|2〉, M is the cutoff

of the effective field theory, and g is a dimensionless parameter that controls the explicit

(albeit weak) complete breaking of the relaxion’s perturbatively exact continuous shift

symmetry φ 7→ φ + const. The coupling A promotes the Higgs mass m2
h to a dynamical

variable, so that evolution of φ scans over a range of Higgs masses, while B is a potential

that forces φ to smaller values, φfinal � φinit. Finally, C is a non-perturbatively generated,

oscillatory “stopping potential” Vstop(φ, v) = Vstop(φ + f, v), whose height grows with the

Higgs vev v. For now, we take this potential to be

Vstop(φ, v) = Λ3
c v cos

(
2πφ

f

)
(1.2)

with Λc the confinement scale of a gauge theory G to which φ has an axionic coupling,

though we will consider more general potentials in section 2. This potential is generated by

strong gauge dynamics and disappears when the theory is in a phase with unbroken chiral

symmetry, i.e. in a phase with massless quarks. Thus, the stopping potential vanishes

unless the Higgs has developed a vev.

The mechanism is illustrated in figure 1. The relaxion starts at a large value φinit,

where m2
h ∼M2, and begins to slowly roll down the linear potential B . For generic initial

conditions, the relaxion will roll a distance

∆φ ∼M/g (1.3)

1We follow the same notation as [1], except that we take the coupling g to be dimensionless, gGKR =

g ×M , and shift the origin of the relaxion φ field space.
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in field space before the Higgs becomes massless, A = m2
h = 0. The Higgs then develops

a vev and the stopping potential is generated. The relaxion continues to roll, halting

once the stopping potential grows strong enough to counterbalance the linear potential —

roughly when

v

M
∼ g

(
M

Λc

)3 f

M
. (1.4)

The hierarchy between the Higgs vev and the cutoff of the theory is thus controlled by the

shift-symmetry breaking parameter g. In effective field theory, it is technically natural for

g to be arbitrarily small. However, we will see that there are obstacles to such a structure

in string theory.

Requirements for relaxation. We now summarize the necessary ingredients for a suc-

cessful relaxation of the electroweak scale.

1. The Higgs mass must be made dynamical by introducing an axion2 field φ with a

coupling to the Higgs of the form

Lh ⊃ G(φ)|h|2 (1.5)

where G(φ) is some polynomial in φ. Evolution in φ scans over Higgs masses.

2. The dynamics of φ must be attractive, with the late-time (when m2
h ∼ 0) behavior

of φ being independent of the initial conditions.

3. φ must stop when the Higgs mass is approximately its observed, unnatural value.

For the evolution of the relaxion to be both attractive and dominated by classical dy-

namics, some friction is necessary. Therefore, the relaxion scenario has been assumed to

take place during inflation (for an alternative source of friction from particle production

see [2]). In this paper we will not discuss the underlying model of inflation (e.g. see [3–5] ),

nor its possible realization in string theory; these issues are the subject of an extensive lit-

erature (see for example [6]). We assume inflation to be operative, and concentrate instead

on the relaxion potential and examine how it may arise in string theory constructions.

Typically, the stopping potential is generated by non-perturbative effects and is f -

periodic. This ensures that only A and B explicitly break the discrete shift symmetry

φ 7→ φ+f , and protects against possibly disastrous corrections. The height of the stopping

potential must depend on the Higgs vev.3 Furthermore, we require the minima of (1.1) to

scan through Higgs masses finely enough so that a small overshoot does not dramatically

increase the final electroweak scale; since the stopping potential minima are spaced roughly

∆φ ∼ f apart, this translates into the requirement that G′(φ)f � v2.

2As is clear from the name, it is important that the relaxion φ be an axion: the axionic shift symmetry

protects the potential against undesirable corrections. One could envision a more general relaxation scenario

involving a field φ that is not an axion, but it would then be necessary to explain how the structures in (1.1)

could be technically natural.
3This is not required when the stopping mechanism is realized by particle production, see e.g. [2].
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While this appears to be a beautiful solution to the Higgs hierarchy problem, there

is some cause for concern: g must be an exceptionally small number in order to generate

a sizable hierarchy. The simplest model of [1] requires g ∼ 10−28; see section 2 for the

requirements in variants of the model. It is reasonable to ask whether the associated large

number 1/g infects any other terms in the effective action.

Note that although we used the same g in A and B , these two terms could in principle

be different. Let us temporarily distinguish them and denote the coupling in A as gh. If

g � gh at tree level, Higgs loops will drive the coupling in B to be of order gh so that the

two couplings in A and B are not very different. If, on the other hand, we take g � gh
at tree level, this hierarchy is stable but the required field excursion in (1.3) increases to

M/gh � M/g. So, models with gh ∼ g undergo the smallest field excursion, and for this

reason we only consider one g coupling in eq. (1.1).

Although all the phenomena that we will uncover in this work can be encoded in an

effective field theory, appropriately extended to include the effects of states that enter the

spectrum as the relaxion makes its long excursion, these effects are not easily seen with-

out the perspective of an ultraviolet theory. This is to say that the technical naturalness

reasoning of [1] amounts to a set of premises about the field content and interactions of

an effective theory, together with conclusions that indeed follow from those premises. In

this work we question these premises, asking whether string theory imposes restrictions or

refinements on the possible effective theories. We first critically examine technical natural-

ness arguments in this context and then turn to a string theory embedding of the relaxion.

Technical naturalness and large displacements. Technical naturalness is often used

as a panacea in model building: one begins with a symmetry that protects against poten-

tially disastrous quantum corrections and then weakly breaks it, confident that all correc-

tions induced by this breaking are necessarily small. If g is a dimensionless parameter mea-

suring the weak symmetry breaking, and the symmetry is restored for g → 0, corrections in

the effective theory are proportional to positive powers of g, and so are well-controlled for

g � 1. However, this logic must be used with care in the presence of field excursions ∆φ

that are large compared to the effective theory’s cutoff M . We now explain why technical

naturalness arguments can fail in the context of effective field theories and how these fail-

ures can be exacerbated in quantum gravity — the essential problem being that corrections

can depend both on g and on a potentially large dimensionless parameter, ∆φ/M .

As a toy example, consider a four-dimensional effective theory for a scalar field φ with

Lagrangian

L = −1

2
(∂φ)2 −M4

∞∑

i=1

ci

(
φ

M

)di
gei , (1.6)

where M is a physical ultraviolet cutoff (the scale of some new physics), g � 1 is a

dimensionless parameter, the ci are dimensionless Wilson coefficients, and the di and ei are

non-negative numbers. As long as

ei 6= 0 ∀i, (1.7)

– 5 –
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all quantum corrections are proportional to powers of g, and the continuous shift symmetry

φ 7→ φ+const. is restored in the limit g → 0. However, we stress that (1.7) must be checked

for every term in (1.6), as any ei = 0 term, no matter how irrelevant, could potentially

provide disastrous corrections.

Furthermore, at large displacements φ � M , the condition (1.7) is far from sufficient

to ensure that quantum corrections are under control at small but finite g. The theory

contains a new large parameter, φ/M , and corrections proportional to gei(φ/M)di are not

necessarily small for g � 1 and φ/M � 1. Ensuring that the corrections to the classical

equations of motion are small requires knowledge about the entire sequence {ci, di, ei}, and

so the full Lagrangian (1.6).

In systems allowing axion monodromy, there is an additional subtlety: the limit g → 0

is not smooth,4 because the field space discontinuously changes from a helix (for g 6= 0) to

a circle (for g = 0). Standard technical naturalness arguments that rely on the g → 0 limit

can therefore become problematic.

Now suppose one obtains an effective theory from the top down, beginning in a vacuum

of quantum gravity and integrating out Planck-scale degrees of freedom, for example by

performing dimensional reduction in a string compactification with stabilized moduli. Then

the low-energy theory in four dimensions could still take the form (1.6), but with two

important caveats. First, the exponents di, ei are dictated by the vacuum configuration of

the underlying theory, and the condition (1.7) must be established rather than assumed.

Second, in configurations with ≤ 4 supercharges in four dimensions, in practice one never

obtains complete information about the infinite sum in (1.6): some terms can be computed

in different approximations, but other terms remain incalculable, although they are in

principle determined by the underlying vacuum.

Because we do not have the ability to compute every term in (1.6) in any halfway-

realistic solution of string theory, it is difficult to prove that (1.7) is possible in quantum

gravity. As a result, there is a disjunction between bottom-up reasoning based on technical

naturalness, and top-down reasoning based on obtaining effective theories from quantum

gravity: the former strictly requires the condition (1.7), which appears not to be provable

in quantum gravity.

In our view, the difficulty in establishing (1.7) in any particular solution of string theory

is not just that the computation is challenging; it is that plausible general reasoning about

black hole thermodynamics in quantum gravity suggests that (1.7) is in fact false. Exact

continuous global internal symmetries are thought by many to be impossible in quantum

gravity and have not appeared in string theory to date. We therefore expect quantum

gravity to dramatically affect the g → 0 limit. Although our results will turn out to be

compatible with this general expectation, we do not rely on bottom-up reasoning about

quantum gravity at any point in our analysis. In particular, we do not assume any form

of the Weak Gravity Conjecture (WGC).5 Instead, as described above, we will directly

analyze this limit in the context of NS5-brane axion monodromy.

4This observation led the authors of [7] to argue that the g → 0 limit is not technically natural.
5For work applying the WGC to the relaxion, see e.g. [8, 9].
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We will argue that axion monodromy in string theory is very generally characterized

by the existence of one or more terms in the effective action (1.6) with ei = 0, and the

theory is poorly-controlled in the limit g → 0, φ/M → ∞. The physical origin of these

problematic terms is backreaction by monodromy charge, as we now explain.

New states from monodromy. In a viable relaxion theory, we must find that every

shift symmetry breaking term in the relaxion Lagrangian is proportional to a power of

g, the parameter that controls the weak breaking in (1.1). However, as we will explain

qualitatively now and quantitatively in section 4, the monodromy charge

N ≡ ∆φ

f
, (1.8)

leads to corrections that are not dressed by powers of g, so that (1.7) does not hold. We

will begin with an example and then draw more general lessons.

Suppose (cf. the detailed discussion in section 3.3) that the relaxion is associated to a

two-cycle wrapped by an NS5-brane. Further, suppose that the stopping potential arises

from the dynamics of a strongly-coupled non-Abelian gauge theory, with group G, living

on a stack of D7-branes wrapping a four-cycle Σ4. The height of the stopping potential

depends on the coupling gYM of this D7-brane gauge theory:

|Vstop| ∝ Λ3
c ∝ exp

(
− 8π2

g2
YM cG

)
. (1.9)

Here the constant cG is determined by the type of non-perturbative effects that generate

Vstop, and may be set to unity for our purposes. The gauge coupling function of G is

proportional to the warped volume of Σ4, cf. (4.7):

1

g2
YM

=
volW(Σ4)

2π`4s
. (1.10)

When the system is wound up over N cycles, N units of monodromy charge — which

in this scenario is D3-brane charge — accumulate on the NS5-brane. This charge is a

source in the ten-dimensional Einstein equations, and so leads to changes in the metric of

the internal space and the warp factor. The backreaction thus alters the warped volume

volW(Σ4). Then, through (1.10), the gauge coupling function — and hence the height of

the barriers — depend on N . In section 4.2.4, we will show that

δ

(
8π2

g2
YM

)
∼ N, (1.11)

without dependence on g.

The correction (1.11) can be understood in a dual description as resulting from new

light states associated to the source of monodromy. The one-loop MS β-function in a

Yang-Mills theory with nF fermions, nS complex scalars, and coupling constant gYM can

be written
d

d log µ

(
8π2

g2
YM

)
=

11

3
T (Ad)− 2

3

nF∑

i=1

T (Ri)−
1

3

nS∑

a=1

T (Ra), (1.12)
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where T (Ri) is the index of representation Ri and Ad denotes the adjoint representation.

The introduction of N light states will typically lead to a change

δ

(
8π2

g2
YM

)
= γbrN , (1.13)

with γbr a constant independent of N .

Where do these new light states come from? The N units of D3-brane charge in the

NS5-brane can be viewed as resulting from N actual D3-branes (up to a binding energy

that does not affect our argument). So there are N new states in the theory, corresponding

to strings stretching from the D7-brane stack, where the gauge theory lives, to the D3-

branes. These states transform in the fundamental of G, and so may be described as N

species of quarks from the viewpoint of G. Including these species in loops leads to (1.13).

The lesson is that O(N) new states associated with the source of monodromy — in

our examples, fundamental strings stretching from the source of monodromy to the gauge

theory D-branes — can give large loop corrections. These states could easily be missed in

field theory, but in a string theory configuration with two D-brane gauge theories G1, G2,

the presence of bifundamentals is hard to avoid. The only question is whether the bifun-

damentals are so massive that they are physically unimportant. In the simplest setting,

we will find (cf. appendix B) that arbitrarily short — and hence, light — bifundamental

strings are present. In more involved constructions the length of these strings may be in-

creased, but we argue that a significant fine-tuning of O(N−1) remains necessary to control

their effects.

The fact that for each unit of monodromy charge there is a new state coming down

in mass that contributes to the gauge coupling of the effective theory — even though

this state was far above the cutoff in the vacuum at zero winding — is a consequence of

the structure of the ultraviolet completion. The new states described above arise from

stretched strings, and so obviously have their origin in string theory per se, but there are

also new states that arise simply from the presence of extra dimensions: these are Kaluza-

Klein (KK) states made light by monodromy. Thus, our considerations can be extended

to extra-dimensional “partial” ultraviolet completions of four-dimensional field theories,

without invoking string theory.

Perhaps the simplest illustration of this phenomenon is the model of [10] (see also [11]),

which describes axion monodromy arising from a Stueckelberg massive U(1) gauge field

coupled to a massless charged scalar field in a five-dimensional spacetime with the extra

dimension compactified on a circle,

S5D =

∫
d4x

∫

S1

dy
√−g

(
−1

4
FMNF

MN − 1

2
m2AMAM − (DMΦ)†

(
DMΦ

))
, (1.14)

where Dm = ∂M − iqAM , FMN = ∂[MAN ] = ∂[MAN ], and AM = AM − ieiθ∂Me−iθ denotes

the Stueckelberg covariant U(1) gauge field. Now we perform a KK reduction on the circle,

whose circumference we denote by 2πR. We decompose the five-dimensional fields into an

infinite series of discrete Fourier (KK) modes on the circle, and focus on the KK modes of

– 8 –
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the scalar Φ,

Φ(xµ, y) =
1√
2πR

∑

n∈Z
Φn(xµ) exp

(
iny

R

)
(1.15)

This yields the effective four-dimensional action

S5D ⊃
∫

d4x

(
1

2
m2φ2 +

∑

n∈Z

( n
R
− qφ

)2
|Φn|2

)
. (1.16)

Here, φ ∼ A
(0)
5 denotes the four-dimensional axion field corresponding to the five-

dimensional gauge field Wilson line around the S1. The axion φ evidently experiences

monodromy, acquiring a quadratic potential.

The key observation is that the masses of the KK modes Φn,

m2
n =

( n
R
− qφ

)2
(1.17)

depend on the vev of the axion φ. As φ scans across its field space, one KK mode after

another falls below the cutoff R−1 in mass and thus enters the spectrum of the low-energy

effective theory. In particular, as φ moves over N units of its fundamental domain, N KK

modes fall below the cutoff R−1, in analogy with the string theory effect discussed above.

We should clarify that in our examples, monodromy affects mass spectra in two very

different ways. One effect is shifting, in which φ 7→ φ + f leaves the set of masses m in

a sector invariant, but permutes the states associated with these masses. For example,

in (1.17), changing φ 7→ φ + (qR)−1 increases by one unit the Kaluza-Klein charge of the

state at each mass level.

The other effect is compression, in which a monodromy φ 7→ φ + f changes the mass

spectrum. Typically, as the axion winds up and stores more energy, the masses in affected

sectors are reduced. A shifting spectrum is compatible with an exact discrete shift symme-

try of the theory; the number of states below a fixed cutoff does not change, but the labels

of the states change. Compression violates even a discrete shift symmetry, as the number

of states below a fixed cutoff depends on φ.

With this terminology, we remark that the five-dimensional example above displays

only shifting, not compression. This is a consequence of the oversimplified nature of the

model. We will show below that axion monodromy also causes compression of the mass

spectrum of Kaluza-Klein excitations of an NS5-brane. Thus, stretched string states are

not the only states that experience compression, and we expect that compressed spectra

can arise in purely extra-dimensional scenarios without string theory.

Why do we not provide a purely four-dimensional field theory toy model showing the

effects of shifting and compression, for instance in the case of axion monodromy from a

four-form field strength [11–14]? The issue is that although the core mechanism of axion

monodromy arising via the Stueckelberg mechanism can be described in four-dimensional

field theory, the results of [11] make it clear that backreaction effects, including those of

massive states entering the spectrum, are described by higher-derivative corrections arising

from higher powers of the four-form field strength. These corrections must be determined

– 9 –
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in the ultraviolet completion of gravity, as explicitly noted in [11] as well. That is, the two-

derivative, four-dimensional field theory Kaloper-Sorbo model of axion monodromy [12] is

not a magic wand that suppresses or controls backreaction effects.

Exponential suppression of the stopping potential. We have argued that back-

reaction by N units of monodromy charge leads to a large correction to the gauge cou-

pling (1.13). Thus,

|Vstop| ∝ exp (−γbrN) , (1.18)

where γbr is a number that has no parametric dependence on N or on the shift symmetry

breaking parameter g. When γbr is positive, the immediate and fatal consequence is the

exponential suppression of the stopping potential.6 The stopping potential, including the

backreaction effect encoded in (1.18), is far too small to halt the evolution when the Higgs is

almost massless, |mh|2 �M2. The result is a runaway relaxion. If instead γbr is negative,

the story is more involved. But, as we will see in section 4.2.4, the result is still exponential

suppression of the stopping potential.

Now to make things worse, there are two independent requirements that necessitate

placing the source of monodromy in a region with a large background D3-brane charge ND3

that obeys ND3 � N . This background charge introduces an additional, larger exponential

suppression of the stopping potential.

First, achieving a large hierarchy between the Higgs vev v and the cutoff M necessitates

an extremely small g. This parameter controls how strongly the relaxion shift symmetry

is broken and is determined by the amount of energy introduced into the configuration

per unit of monodromy charge. Since the source of monodromy corresponds to a physical

quantized object, the amount of energy introduced by an additional winding is, in a sense,

irreducible. However, warping the source of monodromy reduces this quantum of energy

compared to other scales in the problem. So, an extremely small g — and thus a large

hierarchy — may be realized by placing the source of monodromy in a strongly warped

region, as in figure 5 on page 25. As we will show in section 3.2, we may characterize

this warping by the amount of effective D3-brane charge ND3 needed to create the warped

throat, and

g ∝ N−1
D3 . (1.19)

Moreover, we must require a large background D3-brane charge to retain computational

control and to ensure stability of the ten-dimensional configuration. The D3-brane charge

induced as the relaxion is wound must be a small correction to the charge of the ambient

space for the backreaction not to overwhelm the background configuration, and we therefore

must require ND3 � N .

Now as in the preceding section, the D3-brane charge ND3 of the ambient space has

an effect akin to that of ND3 actual D3-branes, which would give rise to ND3 species of

6Can one fine-tune γbr to avoid the suppression in (1.18)? In section 4.2.3 we explain what such a

tuning would correspond to in terms of compactification parameters, but it is already clear that this cannot

be a satisfactory solution. Independent of where and how the stopping potential is generated, one would

need to ensure that γbr . O(N−1), which by (1.3) reintroduces a tuning on the order of the hierarchy the

mechanism was supposed to naturally explain.
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quarks in the fundamental of G. Loops of these quarks yield

δ

(
8π2

g2
YM

)
= γbgND3 , (1.20)

where γbg is a positive constant.

We conclude that the stopping potential is exponentially suppressed by the warping

required to achieve a weak shift symmetry breaking g � 1 and to maintain control over

the model. Schematically, we have

|Vstop| ∝ exp (−γbgND3) , (1.21)

with ND3 � N . Here we remind the reader that N � 1 is the large number of windings

required to substantially ameliorate the hierarchy problem. The suppression (1.21) renders

the barriers utterly negligible.7 Using (1.19), (1.21) can be written as

|Vstop| ∝ exp
(
−O (1/g)

)
, (1.22)

so we see that the generated hierarchy is no longer proportional to g. Instead, suppress-

ing the shift symmetry breaking scale simultaneously suppresses the stopping potential

barriers, leading to a relaxion runaway.

Overview of the paper. We seek to understand to what extent the relaxion, as a

mechanism to naturally generate large hierarchies, survives ultraviolet completion. We

find that backreaction of monodromy charge — induced D3-brane charge in the NS5-brane

model of axion monodromy we study in detail — dramatically alters the structure of the

relaxion action. These corrections may be interpreted as the contribution of new light states

which appear in the spectrum as one traverses the axion’s fundamental domain, and are

expected to be ubiquitous in models of axion monodromy. We thus find that a successful

embedding of the relaxion mechanism requires a fine-tuning on the order of the hierarchy

the mechanism sets out to generate, rendering the mechanism inoperable. Because we

are interested in generic expectations and given (cf. table 1) the extreme dimensionless

quantities involved, we work at the level of parametric estimates.

The organization of this paper is as follows. In section 2 we briefly survey relaxion

models constructed in effective field theory, and identify the parameter ranges that allow

relaxation of a hierarchy. In section 3 we introduce axion monodromy in string theory,

emphasizing the fact that monodromy results from a physical, quantized source. We re-

view the scenario of axion monodromy on NS5-branes, and then explain how the relaxion

mechanism could be realized in this setting. In section 4 we determine the microphysical

constraints that arise in such a realization. An executive summary appears in section 4.1.

We discuss generalizations in section 5, and conclude in section 6. The appendices contain

more technical material. Appendix A provides background on axions in string theory. In

7This effect holds regardless of the sign of γbr in (1.18). But, for γbr < 0, (1.21) is the only relevant

exponential suppression, while for γbr > 0 (1.18) amounts to an independent suppression ∼e−N which even

on its own is sufficient to cause a runaway.
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appendix B we prove that the D7-branes responsible for the stopping potential must inter-

sect a holomorphic representative of the homology class [Σ2] wrapped by the NS5-brane. In

appendix C we give the actions for D5-branes and NS5-branes in warped compactifications

of type IIB string theory. In appendix D we analyze the backreaction of D3-brane and

anti-D3-brane charge and tension on the metric of the internal space.

2 Relaxion zoology

We now briefly overview a selection of existing relaxion models in field theory. To present

a unified synopsis of the genus Relaxion in its various speciations, we discuss these mod-

els in a consistent notation and, since the number of windings N is severely constrained

in string theory, we pay special attention to the field excursions required to generate a

large hierarchy.

For generic initial displacements, the relaxion must scan a field range ∆φ ∼ M/g to

reach m2
h = 0. If we generalize (1.2) and (1.4) by including a more generic dependence on

the Higgs vev v as in [15], schematically

Vstop(v, φ) = Λ4(v) cos

(
2πφ

f

)
= εΛ4

c

(
v

Λc

)r
cos

(
2πφ

f

)
(2.1)

and (
v

M

)r
∼ g

ε

f

M

(
M

Λc

)4−r
(2.2)

with ε a constant coefficient, this excursion implies a winding charge of

N =
∆φ

f
∼ 1

ε

(
M

Λc

)4(Λc
v

)r
. (2.3)

For Λc ∼ v, N scales with the fourth power of the ratio of the cutoff scale M to the weak

scale, further increasing if Λc � v.

2.1 Original models

Two explicit constructions were originally proposed in [1], and the dynamics of these models

were explained in section 1. The relaxion in the first model (GKR1) is the QCD axion

and the potential barriers are generated by strong chromodynamic forces. The potential

barriers in (2.1) then scale as Λ4(v) ∼ Λ3
QCDmu, i.e. r = 1, Λc ∼ ΛQCD, and ε is the

up-quark Yukawa coupling yu. The main drawback of this model is that it destroys the

solution to the strong CP problem. The PQ solution may be restored, as discussed in [1],

by introducing additional dynamics at the end of inflation, which removes the slope of the

relaxion potential at the end of inflation. However, in this case the cutoff scale cannot be

pushed higher than M ≈ 30 TeV. The hierarchy (2.3) is then multiplied by a factor of the

QCD angle θQCD. In either case, the number of windings obeys N ≥ (M/ΛQCD)4.

Because the generated hierarchy (2.3) grows with the confinement scale Λc, the second

model (GKR2) introduces a new strongly-interacting gauge sector G, whose axion is the

relaxion. The PQ solution to the strong CP problem is then untouched and Λc can be
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much larger than ΛQCD. However, this does not allow one to make the barrier arbitrarily

high. New electroweak scale fermions couple the Higgs sector to this new sector and the

barrier height depends quadratically (r = 2) on the Higgs vev. But, a constant term

(r = 0) will also be generated by quantum corrections so the barriers can schematically be

written as [15]

Λ4(v) ∼ εΛ4
c

(
1 +

(
v

Λc

)2 )
. (2.4)

So, the barrier will not depend strongly enough on the Higgs vev v for the relaxion

mechanism to work unless Λc . v. Still, GKR2 can generate a much larger hierarchy

M . 108 GeV than GKR1, with a similar parametric scaling of the number of windings

N ≥ (M/v)4. Unfortunately, GKR2 requires that new electroweak scale fermions be put

in by hand, and this coincidence of scales must be explained.

2.2 CHAIN

A solution to this coincidence problem was suggested in [15], and involves taking the barrier

height to depend on an extra scalar field. The relaxion mechanism is then able to explain

the near-criticality of the Higgs without a coincidence of scales. Instead, there is only one

scale in the problem, the cutoff M , which also sets the barrier height Λc ∼ M . The extra

scalar σ, which need not be an axion, controls the height of the stopping potential,

Λ4(h, φ, σ) = εM4

(
β + cφ

gφ

M
− cσ

gσσ

M
+

h2

M2

)
. (2.5)

The initial conditions are very different from both GKR1 and GKR2. At first, the barriers

are large and the relaxion is stuck in one of its minima. As the second field σ evolves,

its vev will eventually cancel this barrier and allow the relaxion to roll. In contrast with

GKR2, there are no constraints on the decay constant f from reheating.

Given that now the barriers are allowed to be high, Λc � v, one might hope that

the required number of windings for a given cutoff scale is substantially reduced. A more

careful analysis, however, reveals that this is not the case. Instead, because classical

evolution must dominate over quantum fluctuations, we require that ε . v2/M2, while

imposing that the Higgs barrier in (2.5) is solely responsible for stopping φ requires that

v2 ∼ gMf/ε. Together, these imply that

N ∼ M

gf
&
(
M

v

)4

, (2.6)

and so the CHAIN model also requires a large number of windings to resolve the hierarchy

problem.

A comparison of the three models is shown in figure 2 and table 1, while further

phenomenological and cosmological constraints are discussed in [16].

2.3 Supersymmetric models

Inflation limits the achievable cutoff scale to M ∼ 109 GeV. The energy stored in the

relaxion must not dominate over the energy driving inflation,

M4 < H2M2
pl , (2.7)
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GKR 1 GKR 2 CHAIN with f ∼M

f fPQ ∼ 1010 − 1012 GeV &MGUT ∼ 1016 GeV &M

g
(ΛQCD

M

)4 M
fPQ

θQCD . 10−36
(

ΛEW
M

)4 M
MGUT

∼ 10−30–10−20 . v4/M4 ∼ 10−26–10−6

Mmax 3× 103 GeV 108 GeV 109 GeV

mφ
Λ2
QCD

fPQ
. 10−11 GeV

Λ2
EW

MGUT
. 10−12 GeV

√
gM4/v2 . v

N θ−1
QCD

(
M

ΛQCD

)4 & 1030 (M/ΛEW)4 ∼ 108 − 1024 g−1 ∼ 106 − 1026

Table 1. Summary of parameter values in the three non-supersymmetric relaxion models discussed

in section 2.

where H is the Hubble rate during inflation, and barriers cannot form unless H < Λc. This

immediately implies a bound on the cutoff M .
√
vMpl ∼ 109 GeV for GKR2. While this

argument does not directly apply to the CHAIN model, there one finds the same bound

M . 109 GeV. Since we must also explain the remaining hierarchy between the cutoff M

and the Planck scale Mpl, a natural candidate solution is that supersymmetry is restored

above M and the relaxion is embedded within a supersymmetric model.

A supersymmetric version of GKR1 was presented in [17], on which the following

discussion is based. The relaxion becomes part of a chiral superfield S:

S =
s+ ia√

2
+
√

2θã+ θ2F + . . . , (2.8)

which contains the (dimensionless) relaxion a = φ/f , a srelaxion field s, and the relaxino

ã. The Peccei-Quinn symmetry acts as S 7→ S + iα. The linear term B in the relaxion

potential (1.1) descends from the superpotential term

W ⊃ 1

2
mf2S2 . (2.9)

Small m� f is technically natural since m breaks the PQ symmetry, which is non-linearly

realized via the term

W ⊃ µ0 e
−qSHuHd. (2.10)

Apart from S, the model contains only SM particles and their superpartners (including the

usual second Higgs doublet). The effective potential for s and a is then

V =
1

2
m2f2

(
s2 + a2

)
κ(s) , (2.11)

with κ(s) a function of s. As in all relaxion models, a starts out at a field value far away

from its minimum at a = 0, and so breaks supersymmetry, with F ∝ ma. As a evolves

towards its minimum, it scans the SUSY breaking scale, and therefore the soft masses of

the gauginos and the scalar superpartners. In particular, the determinant of the Higgs mass

matrix was shown to scale as a4 for a � µ0/m, far away from any electroweak symmetry
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breaking minima. As a approaches the critical value a∗ = µ0/m, electroweak symmetry

is broken, the Higgs(es) obtain a vacuum expectation value, and barriers appear that halt

the evolution of a.

For a suitable choice of parameters, the model explains the hierarchy between the

electroweak symmetry breaking scale v and the mass scale of the superpartners µ0 � v,

thus solving the supersymmetric little hierarchy problem. According to [17], the number

of windings scales as

N ∼ ∆a ∼ f2µ2
0

Λ4
QCD

, (2.12)

where f ∼ 109–1012 GeV is the QCD axion decay constant and µ0 plays the role of the

UV cutoff. For µ0 = 105 GeV, a field excursion of ∆a ∼ 1030 is required. Without further

modifications, this model is phenomenologically unacceptable since it predicts θQCD ∼
O(1). A variation with a non-QCD axion similar to GKR2 is briefly discussed in [17]. In

this case, a larger range of decay constants is allowed — for f = µ0 and Λ ∼ v one obtains

the same scaling as in GKR2, namely N ∼ µ4
0/v

4.

A supersymmetrization of the CHAIN model was proposed in [18]. The philosophy is

similar to the above discussion — now both the relaxion and the additional scalar σ are

promoted to chiral superfields. The barriers for the relaxion are generated by a new SU(Ng)

gauge theory, with confinement scale Λg, which communicates with the Higgs sector via a

set of vector-like leptons. The required field excursion in this model is

N ≡ ∆φ

f
& mSUSY

|mS|
, (2.13)

where mSUSY ∼ µ0 is the supersymmetry-breaking scale, and mS is the relaxion mass

coming from a term similar to (2.9). For Λg ∼ f ∼ mSUSY, a supersymmetry-breaking

scale ∼ 109 GeV may be generated through a field excursion of N ∼ 1027. So while the field

excursion seems to grow more moderate as a function of the cutoff, it is still as large as in

the earlier models for the largest possible cutoff (e.g. M4/v4 is of order 1026). Instead, even

the best case scenarios with mSUSY ∼ 104 GeV require a large number of windings N & 108.

2.4 Summary

The models presented above do not represent a complete classification of genus Relaxion.

In particular, we are not considering models that rely on the alignment of multiple ax-

ions [19, 20] or use friction from particle production [2] to halt the evolution of φ. We

discuss both of these further in section 5. However, the models that we examine represent

a large cross-section of Relaxion and share a common trait: the required field excursion

scales parametrically with the hierarchy generated, and so the associated number of wind-

ings around the relaxion field space N ≡ ∆φ/f is enormous. In what follows, we will argue

that N is a physical charge in string theory, which backreacts on the ten-dimensional con-

figuration and tragically destroys the structures in (1.1), allowing for a runaway relaxion.
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103 104 105 106 107 108 109
10−50

10−41

10−32

10−23

10−14

10−5

M (GeV)

g

GKR1

GKR2

quantum instability

no classical rolling

CHAIN
region

Figure 2. Schematic parameter space in the three main non-supersymmetric relaxion models.

See [15] for the derivation of the constraints on the parameter space.

Relaxion Quantity String Theory Origin

Axion φ NS-NS or R-R p-form gauge field, dimensionally

reduced along non-trivial p-cycle, §3.2

Discrete shift symmetry

φ 7→ φ+ f

Ten-dimensional NS-NS or R-R gauge symmetry,

exact in absence of brane or flux, §3.2

Physical source of monodromy

explicitly breaks φ 7→ φ+ f

Wrapped brane or flux along axion p-cycle, §3.2

Shift symmetry-breaking scale

gM3f

Warped brane tension, §3.2

Winding number N ≡ ∆φ/f Quantized monodromy charge, §3.2

Axion decay constant f Set by internal six-dimensional geometry, §A
Stopping potential barrier

height Λ(v)

Set by warped volume of a four-cycle, §3.3

Table 2. A quick string theory-relaxion dictionary. This is a summary table, with more extended

explanations given throughout the paper and in the appendices.

3 Relaxion monodromy

3.1 Axion monodromy in string theory

Axions are commonplace in string compactifications,8 and arise when a p-form gauge poten-

tial — either the NS-NS two-form B2 or an R-R p-form Cp — is dimensionally reduced along

a non-trivial cycle Σp in the compactification manifold X6. The ten-dimensional super-

gravity action is invariant under the gauge symmetry B2 7→ B2 +dΛ1 and Cp 7→ Cp+dΛp−1

which, upon reduction to four dimensions, ensures that the axion enjoys a perturbatively

exact shift symmetry. For an axion a associated with a non-trivial cycle Σp, the shift

symmetry a 7→ a+ const. may be broken to a discrete shift symmetry by non-perturbative

8A detailed treatment of the material that follows can be found in [6], section 5.4.2. An overview is

given in appendix A, and table 2 gives a simple dictionary.
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effects, or completely broken by a brane wrapping Σp. In the latter case, the explicit

breaking is proportional to the brane’s tension. For example, if one wraps an NS5-brane

along a two-cycle Σ2 in the compactification manifold, the axion field c, defined by

c ≡ 1

`2s

∫

Σ2

C2 , (3.1)

experiences monodromy. The four-dimensional action for the dimensionless field c takes

the form [21]

L = −1

2
f2(∂c)2 − εµ3

0fc , (3.2)

where f is the axion decay constant,9 µ0 is a parameter with dimensions of mass, deter-

mined by the geometry of X6, and ε parameterizes the warp factor at the location of the

NS5-brane. (In terms of the warped line element (3.13), we have ε = e4A∪ .) We will explain

the potential (3.2) in more detail in section 3.2.

Defining the canonically normalized axion φ ≡ fc, we have

L = −1

2
(∂φ)2 − εµ3

0φ . (3.3)

Comparing to the relaxion potential (1.1), we have the correspondence

gM3 = εµ3
0 . (3.4)

So ε � 1 corresponds to g � 1 in the relaxion model. Since the breaking of the shift

symmetry φ 7→ φ+const. is proportional to the warp factor at the location of the fivebrane,

strong warping could lead to weak breaking of the symmetry, and hence to the small values

of g required for a relaxion model.

The potential (3.3) has the desirable property that the entire potential is proportional

to the warp factor, so it appears completely natural to make this potential small. However,

a central observation of this paper is that achieving small g through warping, without

unintended consequences elsewhere in the action, is challenging.

Requirements for axion monodromy. Let us first summarize the core ingredients

mentioned above. For a model of axion monodromy in string theory, one requires:

1. An axion field descending from a p-form, and a source of monodromy: a brane, flux,

or other physical ingredient that causes the configuration space to be a multi-cover

of the axion circle, rather than just a single circle.

2. To have a plausible mechanism for making the breaking of the shift symmetry weak,

the source of monodromy should be in a warped region.

3. Most of the issues that arise as possible obstacles become visible only in vacua with

stabilized moduli: if one ignores the moduli sector, many problems disappear. But,

of course, moduli stabilization is needed for a cosmological model. So the axion and

the source of monodromy must be situated in a vacuum with stabilized moduli.

9The axion decay constant depends on the topology and geometry of the six-dimensional compact man-

ifold X6: see appendix A.
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eA∩ r∩

eA∪ � 1 r∪

Σ2 wrapped
by 5-brane

Σ̄2 wrapped
by anti-5-brane

small 3-cycle
with flux

creates warping

homologous family
of two-cycles [Σ2]

large two-cycle
ensures metastability;

dominates kinetic term:
f ∝ r2∩

Bulk Calabi-Yau Geometry
M2

pl ∝ `−2s VE

r

L ∼ `sN1/4
D3

Wrapped sevenbranes induce
negative D3-brane charge;

balances charge forming throat

Shift symmetry breaking scale ∝ ε ≡ e4A∪

Figure 3. Minimal bifurcated warped throat setup for relaxion monodromy with 5-branes.

4. Since the compactification must have finite volume in order to lead to a finite four-

dimensional Newton constant, Gauss’s law imposes strict constraints on the charges

in the compact space X6, and so we must satisfy all tadpole conditions.

There are many mechanisms in the literature that achieve (1), for instance [22]. But

there is only one model currently available that achieves (1)-(3) [21, 23]: this is a model

with an NS5-brane/anti-NS5-brane pair in a warped throat region of a type IIB flux com-
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pactification whose complex structure moduli are stabilized by fluxes, and whose Kähler

moduli are stabilized by nonperturbative effects and possibly also by perturbative effects.

We will call this model, whose detailed properties we will review in section 3.2, the NS5-

brane model.

The central physics of the NS5-brane model is that transporting the dimensionless

axion over a period induces one unit of D3-brane charge on the NS5-brane, and one unit

of anti-D3-brane charge on the anti-NS5-brane. That is, “winding up” the axion by one

cycle develops a D3-brane dipole in the compact space; the axis of the dipole is the line

from the NS5-brane to the anti-NS5-brane. The entire dipole is in the infrared region of

the warped throat where the fivebrane pair lives. See figure 3.

The key point is that the Lagrangian (3.3) arising from the NS5-brane DBI action,

which is intended to be the relaxion Lagrangian, holds in the so-called probe approximation.

That is, the potential in (3.3) follows from including the tension of the D3-branes and

anti-D3-branes as a contribution to the four-dimensional vacuum energy, i.e. as a source

in the four-dimensional Einstein equations, but not including this tension as a source

in the ten-dimensional Einstein equations. The effects of a particular source on the ten-

dimensional field configuration are termed the backreaction of that source, and so the probe

approximation consists of neglecting the backreaction of D3-branes and anti-D3-branes.10

An immediate question is whether applying the probe approximation is consistent;

in other words, can the backreaction of D3-branes be neglected? In the context of axion

monodromy inflation in string theory, this question has been addressed, with the outcome

that backreaction can be suppressed to some degree, by a variety of mechanisms, but

nevertheless remains as a leading constraint on model-building [23]. However, the sources

of backreaction are the D3-brane charge and tension, both proportional to the number

of windings N of the axion. In the present context of relaxion monodromy, N needs to

be extremely large, and so the problem of backreaction is much more severe than in the

corresponding inflationary models. The constraints examined in [23] must therefore be

revisited under this more severe test.

In this work, we will carefully examine the consequences of D3-brane backreaction for

the NS5-brane model of relaxion monodromy in string theory. The first step is to explain

how to compute the backreaction in this scenario.

3.2 Fivebrane axion monodromy

Our analysis will rely on detailed properties of the action for NS5-branes wrapping curves

in a warped region of a type IIB flux compactification, so we now give some essential

background. We will begin by discussing D5-branes, to facilitate comparison with the

string theory literature, even though our eventual interest will be NS5-branes.

The action of a D5-brane is the sum of a Dirac-Born-Infeld term related to the world-

volume W of the brane,

SDBI = −gsT5

∫

W
d6σ e−Φ

√
−det(Gab + Fab) , (3.5)

10For brevity we will often speak of “D3-branes,” “D3-brane backreaction,” etc., with the understanding

that both D3-branes and anti-D3-branes are included.
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and a Chern-Simons term encoding the coupling of the D5-brane to the Ramond-Ramond

p-form potentials C0, C2, C4, and C6,

SCS = µ5

∫

W

∑

p

Cp ∧ eF , (3.6)

with F = B+ 2πα′F . Here gs is the string coupling, T5 is the D5-brane tension, Gab is the

metric induced on the D5-brane, µ5 is the D5-brane charge, and F is the gauge-invariant

two-form field strength on the D5-brane. The integral in (3.6) picks out the six-forms C6,

C4 ∧ F , C2 ∧ F ∧ F , and C0 ∧ F ∧ F ∧ F .

Now suppose that W = M3,1 × Σ2, with Σ2 a two-cycle in the internal six-manifold

X6. If the field strength F obeys11

1

`2s

∫

Σ2

F = N ∈ Z , (3.7)

then the Chern-Simons coupling becomes

µ5

∫

W
C4 ∧ F → Nµ3

∫

M3,1

C4. (3.8)

The interaction (3.8) is precisely N times the Chern-Simons coupling of a single D3-brane to

the Ramond-Ramond four-form potential C4, under which the D3-brane is electrically (and

also magnetically) charged. The coupling (3.8) should be understood as a generalization

of the worldline coupling

Lint = −e
c

∫
Aµ dxµ (3.9)

in electromagnetism. In particular, (3.8) shows that a D5-brane wrapping Σ2, with N units

of F flux on Σ2, carries N units of D3-brane charge. Equivalently, the D5-brane can be

said to contain N D3-branes dissolved in the D5-brane. This fact, while well-known, will

be crucial for our considerations.

The Σ2-wrapping D5-brane can fluctuate in the space orthogonal to M3,1 × Σ2. We

denote these corresponding canonically-normalized fluctuations as Xi. Defining the dimen-

sionless field

b ≡ 1

`2s

∫

Σ2

B2 , (3.10)

we may expand the DBI action (3.5) to second order in these fluctuations,12

SDBI = −T5

2

∫
d4x d2z

√−g4

(
√

4g̃2 + `4sb
2

1

+ ∂µX
i∂µXi

2

+
4g̃2

4g̃2 + `4sb
2
∂aX

i∂aXi

3

+ . . .

)
,

(3.11)

11We define the string length to be `s ≡ 2π
√
α′.

12As in appendix C, we denoteM3,1 indices with µ, ν, etc.; Σ2 indices with a, b, etc.; directions orthogonal

toM3,1×Σ2 with indices i, j, etc.; and we parameterize Σ2 using the coordinates y and z, with dy∧dz = d2z;

see table 3.
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where g̃2 is the determinant of the metric on Σ2. Upon integrating over Σ2 and denoting

its volume as `2, 1 yields a four-dimensional potential for b

V (b) =
ε

(2π)3α′2

√(
`

`s

)4

+
b2

4
, (3.12)

In the absence of a wrapped D5-brane, b would enjoy an approximate continuous shift

symmetry, b 7→ b + const., that is broken to a residual exact discrete shift symmetry,

b 7→ b + 1, by instanton effects.13 However, the potential (3.12) induced by the D5-brane

completely breaks this symmetry. In fact, the D5-brane introduces a monodromy, in that

upon traversing the axion circle, from b 7→ b + 1, the potential energy is increased, rather

than being periodic. For large b, the potential (3.12) becomes linear, as claimed in (3.3)

for the related case of an NS5-brane.

The strength of this symmetry breaking is proportional to ε, the warp factor ε = e4A∪

at the location of the fivebrane. In a warped compactification, the ten-dimensional metric

takes the form

ds2
10 = e2A(y)gµνdxµ dxν + e−2A(y)g̃mn dym dyn. (3.13)

By placing the fivebranes in a warped throat, the energy of this shift symmetry breaking can

be gravitationally redshifted to an energy much smaller than the natural scale of breaking

due to unwarped fivebranes.

The monodromy is closely related to the induced D3-brane charge (3.8). Starting from

an initial configuration with b = b0 and moving to b = b0 + N (for N > 0) corresponds

to shifting

F 7→ F +Nω2 , (3.14)

with ω2 a two-form obeying `−2
s

∫
Σ2
ω2 = 1. This is an increase, of N units, of the gauge-

invariant field strength F . This change is manifest in the potential (3.12), which increases

linearly. The change is also visible in the D3-brane charge carried by the D5-brane, which

increases by N units. We refer to this process as “winding up the axion N times.”

A justifiable complaint at this stage is that in a compact space, the total D3-brane

charge should be fixed: in fact it must vanish by Gauss’s law. So winding up the axion

would appear to be forbidden. However, to cancel the D5-brane tadpole, we may suppose

that in addition to the D5-brane wrapping Σ2, there is an anti-D5-brane also wrapping

Σ2. The anti-D5-brane Chern-Simons coupling differs from the D5-brane Chern-Simons

coupling (3.6) by an overall minus sign. Thus, winding up the axion N times induces N

units of D3-brane charge on the D5-brane, as well as −N units of D3-brane charge on the

anti-D5-brane, so that no net D3-brane charge is produced, and if Gauss’s law is obeyed

in the initial configuration, it is also obeyed after winding.

A coincident D5-brane and anti-D5 brane will quickly annihilate. However, if a D5-

brane wraps Σ2, and an anti-D5-brane wraps a two-cycle Σ2 that is homologous to Σ2, but is

not coincident with Σ2, then the D5-brane/anti-D5-brane configuration can be metastable

and cosmologically long-lived [24]. Because the induced D3-brane charges are determined

13Moduli-stabilizing effects further break this symmetry, as explained in [21].
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by the homology classes of Σ2 and Σ2, if [Σ2]− [Σ2] is trivial in homology then no net D3-

brane charge is induced, just as in the case of a strictly coincident D5-brane/anti-D5-brane

pair, and Gauss’s law does not preclude winding up the axion.

Let us summarize the physics of B2 monodromy from a wrapped D5-brane. The D5-

brane is a source of monodromy and gives rise to the non-periodic potential (3.12). The

order parameter measuring the distance from the origin in the b field space is the number

of windings, N ∈ Z, which also counts the D3-brane charge induced on the D5-brane. This

is the monodromy charge in the fivebrane model. Winding up corresponds to moving away

from the origin in field space and storing energy in the form of the D3-branes dissolved

in the D5-brane, and anti-D3-branes dissolved in the anti-D5-brane: that is, the energy is

stored in the monodromy charge.

The potential (3.12) is that of a probe D5-brane, in the same sense that (3.9) includes

the potential energy of an electron in a background electromagnetic field. However, just

as (3.9) also encodes the fact that electrons source electromagnetic fields, the couplings (3.5)

and (3.6) encode the effects that a D5-brane has on the background fields. To determine

this backreaction of the D5-brane on the bulk field, including the metric and the p-form

fields, we simply include the couplings (3.5) and (3.6) when varying the ten-dimensional

action with respect to these fields ϕ. Schematically,

0 =
δ

δϕ
S10d,bulk +

δ

δϕ
SDBI +

δ

δϕ
SCS . (3.15)

Any D5-brane serves as a source for the ten-dimensional metric (it has tension), and as a

source for C6. But a D5-brane with

1

`2s

∫

Σ2

F = N 6= 0 (3.16)

also serves as a source for C4; this is just to say that such a D5-brane carries D3-brane

charge. The DBI action (3.5) may be interpreted as the product of the brane tension and its

“effective volume,” which grows with N . This growth has two principal effects. The mass of

the five-brane is also, schematically, the product of its tension and this effective volume, and

thus as N grows the charged D5-brane will more strongly source the ten-dimensional metric.

Furthermore, there are Kaluza-Klein excitations arising from the dimensional reduction

of (3.5) whose masses decrease as this effective volume grows; indeed, the dimensional

reduction of 2 and 3 in (3.11)—which correspond to the transverse fluctuations of the

five-brane — yield Kaluza-Klein modes with masses mbKK that are smaller than the naive

estimate mKK ∝ `−1 by a factor of (see appendix C.2)

mbKK

mKK
∼ `2√

`4 + `4sb
2
. (3.17)

Axions descending from B2 generically suffer an η problem [21], meaning that in ex-

pansion around a vacuum with stabilized moduli, the actual potential for the axion, taking

into account all couplings to moduli, is very different from the potential (3.12) that arises

from the probe D5-brane action alone. This problem can be ameliorated by considering an
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NS5 NS5 r∪

r∩
w

ar
p
in

g

[Σ2]

c ≡ 1

`2
s

∫

Σ2

C2

Σ4

Figure 4. Ten-dimensional realization of B and C of (3.19). C is generated by strong gauge

dynamics on seven-branes wrapping a divisor Σ4, which must necessarily intersect a holomorphic

representative of the class [Σ2], such as those wrapped by the NS5-/anti-NS5-brane.

axion descending from the Ramond-Ramond two-form C2 and exchanging the D5-branes

in the above discussion for NS5-branes. The analogous potential is then given by

V (c) =
ε

(2π)3gsα′2

√(
`

`s

)4

+
g2
sc

2

4
. (3.18)

As we will argue in section 3.3, for a construction of a relaxion model via fivebrane

axion monodromy in string theory one needs an extremely large winding N � 1. There is a

correspondingly large induced D3-brane charge, the effect of which must be included in the

ten-dimensional field equations. Backreaction of this charge and its effect on the five-brane

cannot be neglected: the potential for the axion is no longer simply given by (3.12), and

new light modes appear.

3.3 Fivebrane relaxion monodromy

To understand string theoretic constraints on the relaxion mechanism, we require an em-

bedding of the four-dimensional potential

V (φ, h) =
(
M2 − ghM (φinit − φ)

)
|h|2

A

+ gM3φ

B

+ Vstop(φ, h)

C

, (3.19)

or of something functionally equivalent, in a well-controlled compactification of string the-

ory. As noted in the introduction, the ratio gh/g need not be O(1), and so in (3.19) we

distinguish between the two.

In section 3.2, we focused on realizing B as the potential energy of an NS5-/anti-

NS5-brane pair wrapping the minimum volume representatives of the homology class [Σ2]
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associated with the axion c = `−2
s

∫
Σ2
C2, where φ ≡ fc. B provides a potential that is

self-similar (ignoring backreaction effects) over a very large distance ∆φ� f in field space.

Hubble friction eventually dominates and the late-time dynamics are independent of the

initial conditions for φ.

Crucially, the small parameter g is controlled by the warp factor at the position r∪ of

the five-branes. Specifically,

gM3f ≡ 2π

`4s
e4A∪ , (3.20)

where e4A∪ is the warp factor at r∪, the location of the fivebranes and the bottom of the

“tooth” in figure 4. We may think of the “roots” of the tooth as Klebanov-Strassler or

similar warped throat geometries. Away from the tip, the warp factor is roughly e4A ∼
r4/L4, with L the characteristic size of the warped throat. A simple way to describe this

warping is by the number of D3-branes it would take to form a similarly sized warped throat,

L4 ∼ gsND3`
4
s. (3.21)

As explained in section A, the axion decay constant f is determined by the radial position

of the arch of the “tooth,”

f2 ∼ gs
r2
∩
`4s
, (3.22)

so the shift symmetry breaking scale is given by

gM3 ∼ 2π

g
3/2
s `3sND3

(
r∪
r∩

)(
r∪
`s

)3

. (3.23)

The cutoff scale M depends on how the Higgs is realized and does not necessarily depend

on the total D3-brane charge ND3. However, regardless of where the Higgs is located in

the internal space, the smallness of g is necessarily tied to a large ND3. For example, if the

Higgs sector is realized somewhere in the bulk geometry, then M ∝ N0
D3 and g ∝ N−1

D3 , as

in (3.23). If instead the Higgs sector is realized at the top of the warped throat at r ∼ L

in figure 4, then we may take M3 ∼ L−3 and so

g ∼ 1

(gsND3)1/4

(
r∪
r∩

)(
r∪
`s

)3

. (3.24)

We will not consider a Higgs realized deep within the warped throat, as this would lead

to an exponential suppression of M , corresponding to a supersymmetric resolution of

the hierarchy.

We will be agnostic about the detailed origin of the Higgs coupling A . While its

specific form would be relevant in a complete model, it is not needed to expose and quantify

the issues that concern us here, which mainly deal with the interplay between the linear

potential and the stopping potential. In the spirit of this agnosticism, we instead focus on

the hierarchy generated between the string scale Ms and the electroweak scale v.

Even so, a concrete picture of one possibility may be helpful. The Higgs could arise

from open strings stretching between stacks of D3-branes or D7-branes. The Higgs mass
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Σ2Σ2

D3-brane/anti-D3-brane
backreaction propagates

up into the bulk;
decays radially

Divisor must intersect
Σ2 (or Σ2)

and Higgs sector

gh � g
if Higgs realized

in bulk

gh . g
if Higgs realized in

separate warped region

warping enhances
backreaction

Figure 5. Schematic structure of the extra dimensions, showing a string theory setup that realizes

the main relaxion features and couplings. The central region is the “bulk” of the extra dimensions,

which does not experience position-dependent warping. The coupling gh depends on where in the

bulk Calabi-Yau the Higgs sector is realized.

is then proportional to the distance between the U(1)Y brane and the SU(2)W stack.

The coupling A is generated by backreaction of the monodromy charge on the internal

geometry, which changes distance between these branes and thus the Higgs mass, as in

figure 5. Because this backreaction decays as it propagates throughout the six-dimensional

space, there may be an appreciable hierarchy between gh and g which depends on where the

Higgs sector is realized in the internal geometry. We may mitigate this hierarchy somewhat

by placing the Higgs in another warped throat — the backreaction will then be blue-shifted,

leading to an increased coupling gh — though, as explained above, placing the Higgs in a

warped region will naturally suppress M .

Finally, for generic initial conditions, the relaxion traverses a distance ∆φ ∼ M/gh in

field space. This is associated with the dissipation of

N ∼ ∆φ

f
∼ M4

ghM3f
∼ gsND3

(
g

gh

)(
M

Ms

)4( `s
r∪

)4

(3.25)

units of monodromy charge.
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Barriers from D7-branes. We will be more specific about how C is realized. Pertur-

batively in gs, the axion has a continuous shift symmetry φ 7→ φ+ const. which is broken

by non-perturbative effects (in gs) to the discrete shift symmetry φ 7→ φ+ f . If A and B

are to be the only terms that break this discrete shift symmetry, as is implicitly assumed in

the relaxion construction, then Vstop must be generated non-perturbatively in gs. As noted

above, we take the Higgs and relaxion sectors to be separated in the internal geometry,

and so in order for the stopping potential to depend on both of these sectors, it must be

generated by physics on one or more extended objects — by either Euclidean Dp-branes

or strong gauge dynamics on a stack of Dp-branes.

For simplicity, we will assume that Vstop is generated by the strong dynamics of a

gauge theory, with group G, realized on a stack of D7-branes wrapping a holomorphic

four-cycle Σ4, as illustrated in figure 4. The D7-branes couple to the C2 axion through the

Chern-Simons action

SCS ⊃ µ7

∫

W
F ∧ C2 ∧ F ∧ F . (3.26)

A key observation is that the D7-branes must enter the warped throat region (see ap-

pendix B for a proof). The coupling (3.26) leads to a potential of the schematic form

V (φ, v) = Λ3
c v cos

(
2πφ

f

)
, (3.27)

but can, in general, involve a more complicated polynomial of the Higgs vev v and a general

f -periodic function in φ. The confinement scale Λc is naturally related to the string scale

and the D7-brane gauge coupling gYM,

Λ3
c ∝ `−3

s exp

(
− 8π2

g2
YM cG

)
, (3.28)

where cG is a constant determined by the particular effects that generate (3.27). For

example, cG is simply the dual Coxeter number of G if the stopping potential is realized

through gaugino condensation. In known examples, cG is at most O(102), and we will take

cG = 1 henceforth as it cannot be arbitrarily small. The generated hierarchy between the

string and electroweak scales is then

Ms

v
∝ gsND3 exp

(
− 8π2

g2
YM

)(
`s
r∪

)4

. (3.29)

Since r∪ & `s, the hierarchy is controlled by the warp factor and at first sight appears to be

proportional to ND3. Thus, an arbitrarily large hierarchy could apparently be realized via

substantially warping the source of monodromy. However, as we will discuss in section 4,

this is too naive.

4 Microphysical constraints

Relaxation of a hierarchy by the relaxion mechanism occurs only in theories that meet

several stringent requirements. Arguably the most challenging requirements from the view-

point of ultraviolet completion in string theory are both the large displacement ∆φ ∼M/g,
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and the comparatively short stopping length. That is, the relaxion must evolve slowly over

a large distance, gradually reducing the Higgs mass, but then rapidly come to rest after

the Higgs acquires a vev. These disparate distance scales in field space correspond to very

different energy scales in the potential: the final Higgs vev v is determined by the ratio

of the shift symmetry breaking scale gM3f to the stopping potential scale Λ3
c , cf. (1.4).

In field theory, one can obtain a controllably large hierarchy by taking g to be extremely

small while holding Λc fixed.

This limit is problematic in string theory. As we will show in section 4.2.3, the scale

Λc depends on g, and is exponentially suppressed as g → 0. This dramatically limits the

hierarchy that can be generated.

At the same time, the large field excursion on its own implies that the initial config-

uration carries a very large monodromy charge. This gradually dissipating monodromy

charge will serve as a changing source for the ten-dimensional equations of motion. For

N � 1, this backreaction has profound effects on the compactification geometry and so on

the four-dimensional relaxion potential (3.19).

It is tempting to argue that all of the corrections that result from backreaction must

ultimately originate in the breaking of the axionic shift symmetry, and so must involve

powers of the shift-symmetry breaking parameter g. This is not correct. In the NS5-

brane model, the breaking parameter g is small because the DBI action of an NS5-brane is

proportional to the warp factor at the NS5-brane location, cf. (3.20). Backreaction effects

sourced directly through the DBI action are indeed proportional to powers of g. However,

the NS5-brane Chern-Simons action is not warped, and could not be: it is topological,

and counts the (integer) D3-brane charge induced on the NS5-brane, i.e. the monodromy

charge N .

Thus, backreaction effects sourced by the Chern-Simons action are proportional to N ,

without factors of g. For example, the integral of the R-R field strength F5 over a Gaussian

surface — say, an S5 — surrounding the NS5-brane is simply given by N , even as g → 0.

One consequence, as we shall see, is that the monodromy charge provides a large correction

to the stopping potential.14

In this section we provide an array of calculations that reveal the concrete obstacles

to achieving a large displacement and a short stopping length in the NS5-brane model.

4.1 Overview of microphysical constraints

We first preview a number of constraints on relaxion monodromy constructions, which orig-

inate from microphysical limitations on string compactifications that provide the desiderata

listed in section 3.1. Each of these constraints will be detailed in turn in sections 4.2.2–4.2.6.

§4.2.1 Universal effect on the geometry. The shape of the warped throat region is dra-

matically altered by backreaction, leading to large changes in the effective action.

§4.2.2 Tadpole constraints . To accommodate N � 1 units of monodromy charge with-

out the loss of perturbative control, we must construct a background throat with

14The backreaction sourced by this topological term does not need to propagate far to be “detected,”

i.e. to influence a significant term in the four-dimensional Lagrangian: see appendix B.
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ND3 � N � 1. Gauss’s law — i.e., the D3-brane charge tadpole — then implies

that there must be a source that is equivalent to −ND3 D3-branes. To avoid the

instabilities created by a large number of actual anti-D3-branes, this source must be

supersymmetric, and arise from the topology of an elliptically-fibered fourfold: the

D3-brane charge is then −χ/24, where χ is the Euler number of the fourfold. The

largest known Euler number of an elliptically-fibered fourfold is 1,820,448. So in this

setting, N will have to be much smaller than 75,852.

§4.2.3 Barrier suppression from warping . The D7-branes that generate the stopping po-

tential must wrap a four-cycle Σ4 that intersects the minimum volume two-cycle Σ2.

The D7-brane gauge coupling function, which depends on the warped four-volume

of Σ4, is then directly suppressed by the same warping responsible for the miniscule

monodromy energy scale (3.20). A weakly broken shift symmetry therefore leads to

extremely small barriers.

§4.2.4 Barrier suppression from backreaction . The induced D3-brane charge and tension

backreact on the warped four-volume of Σ4 and therefore perturb the D7-brane gauge

coupling function. This perturbation introduces an exponential dependence of the

gauge coupling on the monodromy charge N , with no powers of g ∼ N−1
D3 . This

contradicts naive applications of technical naturalness: the dangerous term that arises

is not negligible in the limit g → 0 where the shift symmetry breaking is weak.

§4.2.5 Effects on the moduli potential . The sources responsible for Kähler moduli stabi-

lization are exponentially sensitive to perturbations of the warp factor. So the moduli

potential depends on the relaxion field, i.e. there are new terms in the relaxion po-

tential not captured by (3.19). This was extensively studied in [23].

§4.2.6 Effects on the axion decay constant . Large backreaction will also affect the axion

decay constant, which depends on the volume of the cycle the axion threads as well

as on the overall volume of the internal manifold.

§4.2.7 Classical annihilation of the dipole . The compactification detailed in section 3.2 is

metastable. The NS5-brane and anti-NS5-brane attract one another because of the

induced D3-brane charge that each carries, but the fivebranes must stretch over a

large-volume representative of [Σ2] in order to meet one another. This costs energy,

because the fivebranes have tension. For modest windings N , the tension energy can

be much larger than the Coulomb energy from the D3-branes and anti-D3-branes, and

the system is controllably metastable. However, for N � 1, the Coulomb energy can

overpower the tension energy, and the fivebrane/anti-fivebrane dipole can classically

annihilate.

§4.2.8 Constraints from anti-D3-brane annihilation . An anti-D3-brane at the tip of a large

Klebanov-Strassler throat is a metastable and cosmologically long-lived configuration.

However, the barrier that ensures metastability depends on the number of anti-D3-

branes in the throat. For some number NKPV of anti-D3-branes — and thus for
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windings N ≥ NKPV — the barrier disappears and the anti-D3-branes can classically

annihilate against the flux of the throat. Thus, the accumulation of anti-D3-branes

on the anti-NS5-brane creates a risk of instability.

§4.2.9 Tunneling via light brane KK modes . The accumulation of D3-branes in the NS5-

brane pair leads to a reduction in the tension of the NS5-branes, and correspondingly

a reduction in the mass of Kaluza-Klein excitations of the NS5-branes. This Kaluza-

Klein spectrum has spacing proportional to m0/N when the axion is wound up by N

cycles, with m0 associated to the IR scale of the warped throat. These light brane KK

modes provide another pathway for classical annihilation of the dipole. If the throat

is put at some temperature, say from a source of supersymmetry breaking elsewhere

in the internal space, thermal fluctuations of the light brane KK modes could enable

the NS5-branes to reach up towards one another, allowing for a quantum mechanical

tunneling event.

4.2 Consequences of D3-brane backreaction

D3-branes and anti-D3-branes source warping, and so the D3-brane dipole that develops

when the axion is wound up leads to a change in the local warp factor. The warped throat

region is itself produced by some number ND3 of D3-branes that have dissolved into flux,

and when the number of windings N becomes comparable to ND3, the D3-brane dipole is

a large correction to the background in which it is sitting. The probe approximation is not

valid for such a configuration, and the backreaction of the D3-brane dipole affects many

couplings in the four-dimensional theory.

4.2.1 Universal effect on geometry

The backreaction of the tension and charge of N induced D3-branes will be a small pertur-

bation to the overall configuration as long as the ratio gs`
4
sN/L

4 is small, where L is the

radius of the warped throat: see appendix D. Using ND3 to denote the effective D3-brane

charge of the warped throat (3.21) we must require that

N � ND3. (4.1)

To intuitively motivate (4.1), we may replace the N D3-branes with an AdS5 warped throat

with radius

R4
N ∼ gs`4sN (4.2)

via a geometric transition. The perturbed geometry will be drastically different unless size

of this extra throat is much smaller than the original warped throat, R4
N � L4. So, we

require that N � ND3 in order to maintain perturbative control.

The volume of the warped throat is necessarily bounded by the total volume of the

internal space, L6 . `6sVE.15 which determines the four-dimensional Planck mass via

M2
pl`

2
s = 4πVE. From (4.1) we find the constraint

N � 1

gs

Mpl

MKK
, (4.3)

15We denote the total volume of the internal space X6, measured in Einstein frame, as `6sVE,
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where MKK = 1/(`sV1/6
E ). This imposes a constraint on the number of windings for rea-

sonable hierarchies between the compactification and Planck scales, and for reasonable

values of gs.

4.2.2 Tadpole constraint

The higher-dimensional equations of motion must be satisfied in a consistent string com-

pactification. In particular, the higher-dimensional analog of Gauss’s law for the five-form

flux F5 becomes a powerful constraint on the ten-dimensional configuration. In a non-

compact manifold, flux lines are allowed to extend to infinity and Gauss’s law places no

constraint on the amount of charge allowed in a given configuration. However, in a compact

manifold a flux line must end on a charge and Gauss’s law provides a tadpole constraint :

the total amount of D3-brane charge in the compactification must vanish. As discussed

above, the warped throats pictured in figure 3 are supported by a total of ND3 units of

D3-brane charge. The tadpole constraint requires that this charge be canceled elsewhere

in the Calabi-Yau geometry.

This cancellation could occur by including anti-D3-branes elsewhere in the internal

space, or by forming another, oppositely charged, warped throat elsewhere with a large

amount of negative D3-brane charge. In both cases, the D3-branes supporting the relaxion’s

warped throat and these additional anti-D3-branes will attract and the entire model will

generically be unstable.

Fortunately, there exist well-known sources of supersymmetric negative D3-brane

charge, and thus one may satisfy the tadpole constraint while maintaining stability. Seven-

branes wrapping non-trivial cycles in the internal space provide curvature-induced negative

D3-brane charge. F-theory compactified on elliptically-fibered Calabi-Yau fourfolds pro-

vides a framework for analyzing type IIB compactifications at arbitrary coupling, and the

negative charge is related to the fourfold’s Euler number χ(CY4) via

NCY4
D3 = −χ(CY4)

24
. (4.4)

The largest known Euler number of an elliptic-fibered Calabi-Yau fourfold is χ(CY4) =

1,820,448 [25], which imposes the constraint

ND3 ≤ 75,852. (4.5)

Requiring N � ND3 to maintain control over the configuration, we then have the constraint

N � 75,852. (4.6)

The bound (4.5) on the Euler number of known fourfolds thus translates to a strong upper

limit on the number of windings, and so constrains the maximum possible field excursion

undergone by the relaxion.

The bound (4.6) applies only in the present case in which the monodromy charge is

D3-brane charge. However, in alternative axion monodromy scenarios, it would still be

necessary to arrange that the background solution at zero winding carries a large back-

ground monodromy charge analogous to ND3. In such a setting we expect topological upper

bounds analogous to (4.5) on the amount of monodromy charge that can be included with-

out creating rapid instabilities.
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4.2.3 Suppression from warping

Relaxation of a large hierarchy requires that the shift symmetry is very weakly broken, with

g � 1. In the ten-dimensional model of section 3.3, the breaking is made small by placing

the source of monodromy — NS5-branes wrapping the minimum-volume two-cycles Σ2 and

Σ2 — in a heavily warped region. However, we prove in appendix B that supersymmetric

D7-branes can generate a relaxion stopping potential only if the four-cycle Σ4 they wrap

intersects a holomorphic representative of the class [Σ2]. In the simplest constructions, the

D7-brane stack responsible for the stopping potential descends into the warped region.16 As

we will now see, elementary locality arguments show that the small parameter associated

with this warping, g, in A and B of (3.19) then generically infects the stopping potential

C realized on the D7-brane stack, leading to an exponential suppression of the stopping

potential barriers.

The gauge coupling gYM on a spacetime-filling D7-brane wrapping a four-cycle Σ4 is

proportional to the warped four-volume of Σ4 in string units,

1

g2
YM

=
1

2π`4s

∫

Σ4

d4ξ
√
g̃4 e
−4A, (4.7)

with g̃4 the induced, unwarped metric on Σ4. Defining a reference warp factor profile

exp(4Ā) = r4/L4, cf. (3.21), we may express (4.7) as

g−2
YM = α−1gsND3, (4.8)

where

α−1 ∝
∫

Σ4

d4ξ
√
g̃4 r

−4e−4(A−Ā) (4.9)

is a dimensionless coefficient capturing the geometry of the embedding of Σ4 in the warped

throat.

We may estimate α as follows. We have shown that Σ4 must reach down the warped

throat to intersect Σ2 at r∪. Assuming that Σ4 roughly factorizes into a radial part and

an angular part with volume v̆, that it extends up into the bulk geometry as in figure 5,

and that the integral is dominated in the region where A ∼ Ā, we find

α−1 & v̆ log

(
L

r∪

)
∼ v̆ log

(
gsND3`

4
s

r∪

)
. (4.10)

Importantly, α−1 is not naturally O(N−1
D3 ), and in fact grows with the size of the throat,

L4 ∝ ND3. So, g−2
YM ∼ O(ND3) unless the angular volume v̆ is finely tuned to be excep-

tionally small, to one part in g−1, which is of order the desired hierarchy. In other words,

fine-tuning the angular volume v̆ to eliminate the effects of this warping amounts to con-

structing the entire hierarchy by this fine-tuning. This suppression therefore renders the

relaxation mechanism ineffectual.

From (3.28) and (4.8), the stopping potential is exponentially suppressed in ND3,

Λ3
c ∝ `−3

s exp (−γbgND3) , (4.11)

16Even in more elaborate constructions, the backreaction problem persists, as we explain in section 4.2.5.
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with γbg ∼ 8π2/(gsαcG). The hierarchy generated including this suppression is then

Ms

v
∼ gsγ−1

bg

(
γbgND3e

−γbgND3
)( `s

r∪

)4

, (4.12)

and since xe−x ≤ e−1, the maximum resolvable hierarchy is simply

Ms

v
∼ gsγ−1

bg ∼ α cG (4.13)

which is, crucially, not O(g−1) unless α is severely fine tuned.

Generically, the warping responsible for the suppression of the shift symmetry breaking

energy scale also suppresses the scale of the stopping potential. This suppression drives

a runaway relaxion, and precludes the dynamical generation of a large hierarchy in the

absence of an acute fine tuning.

We expect this suppression to be very general. We argued in section 3.3 that the

stopping potential must be generated by non-perturbative effects on a (p+ 1)-dimensional

extended object, and Lorentz invariance requires this extended object to either fill space-

time and wrap an internal cycle (p > 3) or else be instantonic. For a Dp-brane wrapping

a p-cycle Σp, the gauge coupling is given by

1

g2
YM,p

=
1

2π`p+1
s

∫

Σp

dp−3ξ
√
g̃p−3 e

(7−p)Φ/4−(p−3)A. (4.14)

Similarly, for a Euclidean Dp-brane wrapping the same cycle, the action is

SEDp =
2π

`p+1
s

∫

Σp

dp+1ξ
√
g̃p+1 e

−(p−3)Φ/4−(p+1)A. (4.15)

Both depend on powers of e−A and thus positive powers of ND3. So, any potential barrier

generated by these effects will suffer from the same exponential suppression, albeit with

different powers of ND3.

4.2.4 Suppression from backreaction

The backreaction of D3-brane charge is out of control unless the induced D3-brane charge

N is a small fraction of the total D3-brane charge forming the throat, N/ND3 � 1, so that

we may perform a perturbative expansion of the ten-dimensional field configuration in this

ratio. We should thus expect corrections to (3.19) to involve powers of N/ND3, which is

consistent with the expectation that, because the monodromy charge is related to the shift

symmetry breaking, any corrections due to backreaction will come dressed with powers of

g. Crucially, however, it is fractional corrections to the field configurations — i.e. δϕ/ϕ for

some field ϕ — that involve powers of N/ND3. If some quantity — say, a D7-brane gauge

coupling function — also scaled with ND3 ∝ g−1, the absolute (additive) correction to this

quantity is not necessarily small when N/ND3 � 1.

Indeed, the monodromy charge induces a perturbation to (4.7),

δ

(
8π2

g2
YM

)
∼ gsND3

∫

Σ4

d4ξ
√
g̃4 e
−4(A−A0) r−4

(
1

2

δg̃4

g̃4
− δe4A

e4A

)

︸ ︷︷ ︸
O(N/ND3)

∝ gsN ≡
γbrφ

f
. (4.16)
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As discussed in detail in appendix D, the fractional perturbations are O(N/ND3) and thus

the entire perturbation to the gauge coupling is O(gsN). We have again grouped specific

geometric details into a coefficient γbr.

In the introduction, we gave an interpretation of this backreaction in terms of new light

states entering the spectrum of the theory upon a monodromy φ 7→ φ + f . Open/closed-

string duality dictates that the supergravity (closed-string channel) correction (4.16) must

match the one-loop correction to the gauge coupling gYM calculated in the open-string

channel. In the open-string picture of the configuration pictured in figure 4, we are inter-

ested in the one-loop correction to the SU(Nc) gauge theory living on the D7-brane stack

wrapping Σ4, in the presence of N D3-branes dissolved in the NS5-brane on Σ2 and N anti-

D3-branes dissolved in the anti-NS5-brane on Σ̄2. Crucially, the N D3-branes introduce N

light 3-7 strings transforming in the fundamental of SU(Nc), which provide a contribution

to the one-loop β-function (1.12).

Accounting for this backreaction changes the structure of the potential (3.19). In

particular, from (4.16) the monodromy charge induces further relaxion-dependence of the

height of the stopping potential barriers,

Λ4(v)→ Λ4(φ)e−γbrφ/f . (4.17)

A priori, it is not obvious that γbr is either always positive or always negative, so we will

consider γbr > 0 and γbr < 0 separately. Assuming that the Higgs quartic coupling takes

the form

Lh ⊃ −
λ

2
|h|4, (4.18)

v is given by

v(φ) =

√
gM

λ
(φh − φ), (4.19)

where φh = φinit −M/g is generically O(M/g), and thus the corresponding induced mon-

odromy charge when the Higgs develops a vev is very large, Nh ≡ φh/f � 1. Ignoring the

backreaction effect (4.16) and assuming that f � λv2/gM , the relaxion will stop rolling

when
Λ3
c

f

√
gM

λ
(φh − φ) ∼ gM3 (4.20)

and it will be stabilized at

φh − φ ∼
λ

gM

(
gM3f

Λ3
c

)2

. (4.21)

If we now include the backreaction (4.16), (4.20) becomes

2γbr

f
(φh − φ) e2γbr(φh−φ)/f ∼ 2λ

gMf

γbr

(1 + γbr)2

(
gM3f

Λ3
c

)2

e2γbrφh/f . (4.22)

Because φh/f � 1, the asymptotic behavior of solutions to (4.22) is determined solely by

the sign of γbr. For γbr > 0, the stopping potential barriers are exponentially suppressed

by the backreaction and (4.22) predicts that the relaxion stops at

φ ∼ − f

2γbr
log

(
2λγbr

(1 + γbr)2

gM3f

Λ4
c

M2

Λ2
c

)
< 0. (4.23)
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However, the linear potential gM3φ in (3.19) is only an approximation for a potential of

the form (3.18) and cannot be used for arbitrarily small values of φ/f . From (4.23) we

see that this approximation breaks down. We should therefore understand (4.23) as an

indication that the relaxion stops roughly when it has dissipated all of its charge, near

φ = 0. The electroweak scale is then fixed at

v ∼ gM

λ
φh ∼

M2

λ
, (4.24)

leaving the hierarchy unresolved.

For β < 0, the barriers are exponentially enhanced, and the relaxion stops at

φ ∼ φh −
λ

gM

(
gM3f

Λ3
c

)2
1

(1 + γbr)2
e2γbrφh/f , (4.25)

and the electroweak scale

v ∼ gM3f

Λ3
c

1

|1 + γbr|
e−|γbr|φh/f (4.26)

is suppressed by the backreaction.

Can one use this barrier enhancement to save the relaxion from the exponential sup-

pression discussed in section 4.2.3? Unfortunately, this backreaction enhancement is not

enough to overcome the suppression from warping. We may combine (4.26) with (4.11)

to find

Ms

v
∼ gs|1 + β|

(γbg − |γbr|Nh/ND3)

(
`s
r∪

)4 [
(γbgND3 − |γbr|Nh) e−γbgND3+|γbr|Nh

]
. (4.27)

Since we require that Nh/ND3 � 1 for control and we expect the geometric factors to be

on the same order γbg ∼ |γbr|, (4.27) implies that the necessary fine-tuning is still of the

same order as the hierarchy one wishes to generate.

4.2.5 Effects on the moduli potential

In section 4.2.4 we considered the backreaction of D3-brane charge on the gauge coupling

of the D7-branes that generate the stopping potential. As shown in appendix B, this

particular D7-brane stack must enter the strongly warped region, and so the backreaction

does not need to propagate far to impact them. The result is a very large change in the

gauge coupling of the D7-brane worldvolume theory, leading to exponential suppression of

the stopping potential.

Let us now ask about the impact of backreaction on the moduli potential. In the NS5-

brane scenario, the Kähler moduli of the compactification are stabilized by nonperturbative

effects on a collection of four-cycles, either Euclidean D3-branes or gaugino condensation on

D7-branes. The moduli potential also involves exponentials of the warped volumes of these

cycles. Backreaction of D3-brane charge will change the warped volumes of these cycles,

and so the moduli potential will typically be a rapidly varying function of the relaxion φ.

The argument of appendix B does not imply that the four-cycles supporting the Kähler

moduli potential enter the warped region, so in contrast to section 4.2.4, the backreaction
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has to propagate across the internal geometry to influence the moduli potential. It is

tempting to argue that backreaction has a negligible effect on a sufficiently distant four-

cycle. This is not correct. We will give a heuristic explanation here, and refer the reader

to [6] for a complete quantitative treatment.

To understand whether backreaction of D3-brane charge can decouple from D7-branes

on a particular four-cycle Σ4, we work in the open string picture, where the effect of back-

reaction is translated into the open string one-loop threshold correction to the D7-brane

gauge coupling. On very general grounds, this effect gives non-negligible contributions to

the relaxion potential unless the masses M3−7 of the stretched open strings obey

M3−7 &Mpl , (4.28)

for then the non-renormalizable operators coupling the relaxion to the moduli are sup-

pressed by more than the Planck mass. In a compact space, the diameter of the space

determines an upper bound on the mass M3−7, and one finds that at weak coupling and

large volume, M3−7 � Mpl [6] (cf. also [26]). This is easily checked in simple geometries,

but holds more generally.17

The upshot is that the four-cycles supporting the moduli potential cannot be taken

far enough away from the source of monodromy to avoid significant backreaction: the

moduli potential depends strongly on φ. One consequence is that the relaxion potential is

not simply given by the probe DBI action (3.18), but instead has important contributions

from couplings to moduli. This is an incarnation of the eta problem, which hinders the

construction of natural models of inflation.

If all the other obstacles enumerated here could be overcome in some manner, leaving

only the problem of relaxion couplings to moduli induced by backreaction, then one could

attempt to fine-tune the orientation of the source of monodromy with respect to the con-

figuration of four-cycles in the bulk of the compactification. The idea is that if the leading

multipoles of the backreaction can be made to vanish on the four-cycle “receiver” by fine-

tuning the relative orientation, then the residual effect of the subleading multipoles might

be negligible. This approach was proposed and analyzed in [23], where it was shown that

the backreaction coefficient γbr goes as (r∩/rbulk)m, with m an O(1) integer determined by

the lowest unsuppressed multipole, and that one could realize γbr ∼ 10−2 even for relatively

small hierarchies between rbulk and r∩ with moderate fine-tuning. So, for a modest winding

number N ∼ 100, this backreaction on the moduli potential can be ameliorated and the

most dangerous couplings can be removed. It is not clear, however, that this method is

applicable for the extremely large windings N & 106 that arise in relaxion constructions.

Throughout this work we have taken the homology class [Σ2] wrapped by the NS5-

brane to be localized in the warped throat, as in figures 3 and 4. That is, we assumed

that the harmonic two-form dual to [Σ2] is principally supported in the warped region,

and every holomorphic representative of [Σ2] is in the warped region. This localization is

automatic in the particular constructions given in [23, 24, 28]. The argument of appendix B

17This fact is responsible for the well-known problem that brane-antibrane potentials are generically too

steep to support inflation [27].
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only dictates that the object generating the relaxion stopping potential must intersect a

holomorphic representative of [Σ2]. If we place this holomorphic representative far from

the warped throat, one might then hope to suppress this backreaction.

However, this placement has an unintended consequence. As discussed in appendix A,

worldsheet instantons wrapping a holomorphic representative outside the warped throat

have much smaller actions than those inside. In order to maintain control over the in-

stanton expansion, the axion decay constant must be much larger than if all holomorphic

representatives lived inside the warped throat, typically f ∼ 10−2Mpl [29]. The extremely

large number of windings N then translates into a vastly super-Planckian field displace-

ment. Quantum gravitational corrections, going in powers of φ/Mpl ∼ N , will infect all

sectors of the relaxion potential (1.1), including the stopping potential. So, even if one

is able to realize such super-Planckian displacements in quantum gravity — a famously

challenging problem — one must also ensure, by fine-tuning, that the stopping potential

does not receive disastrous corrections. One may try to avoid such super-Planckian dis-

placements by working with an anomalously small axion decay constant, but this again

introduces a O(N−1) fine-tuning.18

4.2.6 Effects on axion decay constants

As discussed in appendix A, the relaxion decay constant f only depends on the six-

dimensional metric g̃mn, both through the explicit factors of g̃mn in its definition (A.3)

and implicitly via the defining equation of the harmonic form ∆Ω = 0. Additional D3-

brane charge will not perturb f : g̃mn is Ricci-flat in supersymmetric compactifications

and additional D3-brane charge will preserve the same supercharges as the three-branes

forming the warped throat. However, anti-D3-branes break the remaining supersymmetry.

The anti-D3-brane charge backreacts on the six-dimensional metric and perturbs the axion

decay constant,

δf2

M2
pl

=
gs

2VE`6s

∫
d6y
√
g̃g̃mpg̃nq

(
2ΩmnδΩpq +

1

2
g̃rsδg̃rs ΩmnΩpq − 2ΩmnΩpsδg̃qrg̃

rs

)
.

(4.29)

The anti-D3-brane charge does not substantially perturb the four-dimensional Planck mass

M2
pl, as VE is dominated by the volume of the bulk Calabi-Yau. In what follows, we estimate

the size of each of these terms.

The first term in (4.29) vanishes at first order, as the perturbation δΩ is orthogonal to

the unperturbed Ω. To analyze the contribution from the second and third terms in (4.29),

we must backreact the anti-D3-brane charge on the metric g̃mn. As detailed in appendix D,

18Note that our O(N−1) fine-tuning estimate is conservative even in the case where the D7-brane stack

intersects a holomorphic representative of [Σ2] far from the NS5-/anti-NS5-brane. For example, in the

NS5-brane model we study in this paper, it was explicitly shown in [23] that dodging the effects of this

monodromy charge buildup requires arranging tuned brane configurations with O(N−1) precision. Similarly,

the actual fine-tuning necessary to avoid this backreaction in the “sequestered” case may turn out to be

stronger than the conservative estimate given here.
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the dominant metric perturbations are

g̃mndym dyn ∼
(

1 +
αN

ND3

(
r′

r

)8
)

dr2 + r2

(
1 +

βN

ND3

(
r′

r

)19/2

Y 1
2
, 1
2
,1(Ψ)

)
ğθφ dξθ dξφ

(4.30)

where the coefficients α and β and the angular function Y 1
2
, 1
2
,1(Ψ) depend on the details

of the compactification. The perturbation to the decay constant (4.29) is then

δf2

M2
pl

∝ gs
2VE`6s

N

ND3

∫ r∩

r∪

dr r
(r∪
r

)19/2
∝ f2

M2
pl

N

ND3

(
r∪
r∩

)19/2

. (4.31)

Because of the large exponent this is a comparatively weak constraint.

4.2.7 Classical annihilation of the dipole

The fivebrane configuration detailed in section 3.2 is metastable. If the fivebranes were

tensionless, the induced D3-brane charge on the NS5-brane would attract the induced

anti-D3-brane charge on the anti-NS5-brane, and these branes would classically annihilate.

However, this Coulomb attraction is balanced by the fivebrane tension — in order for the

fivebranes to meet, they must stretch over the large two-cycle Σ∩ at the junction of the

two warped throats, r∩ in figure 3, which costs an energy

Vt ∼
2π

`4s

e4A∩

√
gs

√
4

(
vol Σ∩
`2s

)2

+N2. (4.32)

This potential energy barrier ensures the configuration is metastable, and can be expo-

nentially long-lived. However, for large enough winding, we expect the Coulomb force

— which scales as N2 — to overpower this “tension force,” allowing the fivebranes to

classically annihilate.

The potential energy density of a probe D3-brane is proportional to Φ−,

V =
2π

`4s

(
e4A − α

)
=

2π

`4s
Φ−. (4.33)

For N D3-branes and N anti-D3-branes, the Coulomb potential energy density is then

Vc ∼
2πN

`4s
δΦ−, (4.34)

where δΦ− (cf. appendix D) is the perturbation to Φ− due to N anti-D3-branes, measured

at the location of the N D3-branes. Because the D3-branes live in a separate warped

throat, δΦ− must first propagate up the antibrane throat from the anti-NS5-brane location

r = r∪ to the surface r = r∩,

δΦIs
−,D3

∼ − N

ND3
e4A∪

(
r∩
r∪

)2+∆s

, (4.35)

which then propagates down the D3-brane warped throat via the homogeneous modes

δΦIs
−,D3 = c1

(r∩
r

)∆s+2
+ c2

(
r

r∩

)∆s−2

. (4.36)
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We may think of the perturbation (4.35) as specifying a boundary value for the perturba-

tion (4.36). Generically, we have

c1, c2 ∼
N

ND3
e4A∪

(
r∩
r∪

)2+∆s

(4.37)

so that, at the position of the D3-brane charge,

δΦIs
−,D3 ∼ −

N

ND3
e4A∩ +

N

ND3
e4A∩

(
r∩
r∪

)2∆s

. (4.38)

We then find that the Coulomb energy is roughly

Vc ∼ −
2π

`4s

N2

ND3
e4A∩ . (4.39)

Requiring that this be much less than the potential energy barrier (4.32) yields the

constraint

N � ND3√
gs

+
2 vol Σ∩
`2s

+O
(

1

N2
D3

(
vol Σ∩
`2s

)4
)

(4.40)

We should also account for the interaction energy between the pair of fivebranes.

By performing an open string computation in an unwarped toroidal orbifold, [30] found a

potential contribution that grows logarithmically with the fivebrane separation, and argued

that this would also apply to warped geometries, with energy scale set by r∩. While it is not

entirely clear that this logarithmic behavior arises in the actual NS5-brane configuration

described in section 3, the corresponding potential energy contribution would take the

schematic form

V55̄ ∼
2π

`4s
e4A∩N2

NS5 log

(
L

r∩

)
∼ 2π

`4s
e4A∩ . (4.41)

We can ensure that this energy is much smaller than the uncharged tension energy (4.32)

by imposing

vol Σ∩ �
√
gs`

2
s , (4.42)

which is necessary in any case to ensure the validity of the supergravity approximation.

4.2.8 Antibrane tunneling and annihilation

Consider a Klebanov-Strassler throat that arises from ND3 D3-branes probing a conifold

with MKS D5-branes wrapping the shrinking two-cycle. We take ND3 = MKSKKS; then

KKS is the number of units of H3 flux on the B-cycle.

If N anti-D3-branes are placed at the tip of this throat, they create a metastable,

exponentially long-lived state provided that N . 0.08MKS [31]. With more anti-D3-branes,

N & 0.08MKS, the anti-D3-branes rapidly annihilate [31] against the flux supporting the

warped throat, decaying to the state with K ′KS = KKS − 1. The D3-brane charge carried

by flux is then N ′D3 = ND3 − MKS, and MKS − N D3-branes appear, but no anti-D3-

branes remain.
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While ND3 sets the overall scale of warping in the throat, MKS sets the warp factor at

the tip,

eA
∣∣
∪ ∼ exp

(
− 2πND3

3gsM2
KS

)
(4.43)

and

gsM
2
KS . ND3 (4.44)

if the warping is non-negligible. To avoid the KPV instability [31], the number of windings

cannot exceed

N � 0.08 g−1/2
s N

1/2
D3 . (4.45)

4.2.9 Light NS5-brane modes

As discussed in section 3.2, dimensional reduction of the transverse fluctuations in the

NS5-brane’s position yields Kaluza-Klein excitations whose mass decreases as the relaxion

is wound up. Intuitively, we may interpret the presence of two-form flux as increasing

the effective volume of the NS5-brane. Since Kaluza-Klein masses will inversely scale with

this effective volume, we should expect some modes to become light at large windings.

As shown in appendix C.2, to second order the canonically normalized fluctuations are

described by the action

S(2)

NS5 =

∫
d4x
√−g4

(
− V (c)− 1

2
gµν∂µY

ı̂
I ∂

µY I
ı̂ −

1

2
m2
I(c)Y

ı̂
I Y

I
ı̂

+ g(c) (c∂µc)
(
Y ı̂
I ∂

µY I
ı̂

)
− 1

2
g(c)2 (∂c)2 Y ı̂

I Y
I
ı̂

)
(4.46)

with

m2
I ∼

4

gs`2E

e2A∪

N2

(
`E
`s

)4

and g(N) ∼ 1

2N2
(4.47)

at large winding N2 � 4(`E/`s)
4/gs, where `2E is the Einstein-frame volume of the two-

cycle Σ2 and the λI are eigenvalues of Σ2’s Laplacian, labeled by the multi-index I. As

discussed in the introduction, the appearance of light states is generic in realizations of

monodromy in string theory, and one must ensure that these do not drastically affect the

phenomenology.

The presence of O(N) light states in the spectrum, including 3-7 strings and KK

excitations of the NS5-branes, can have a range of consequences. For example, modes with

mass m < 3H/2 can fluctuate during inflation, storing energy and potentially impacting

the late-time perturbations. Here we will examine just one effect of the KK modes, which

is an enhanced probability of NS5-brane annihilation.

The masses of the canonically normalized fluctuations of the NS5-brane embed-

ding (4.46) decrease with N , and one might worry that these light modes facilitate an

additional instability. For example, if these modes are thermally excited by some source of

supersymmetry breaking elsewhere in the compact space, then the NS5-branes can more

readily reach each other and either classically or quantum-mechanically annihilate.
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A complete analysis of this process is beyond the scope of this work. We will instead use

an approximate criterion for the onset of instability. The dominant instanton in the four-

dimensional field theory responsible for the transition between the metastable and stable

states (i.e., the states with and without the NS5/anti-NS5-brane dipole, respectively) will

be SO(4)-symmetric, with radius determined by

R∗ ∼
TD

∆V
, (4.48)

where, in the thin-wall approximation, TD is the tension of the domain-wall interpolating

between the two vacua and ∆V is their difference in energy. We then assume a loss of

control when the typical thermal fluctuations of a spatial region of size R∗ are comparable

to the distance between the two fivebranes, rRMS ∼ r∩.

The difference in energies, in the probe approximation, is the potential energy contri-

bution from the NS5-branes,

∆V =
2π

`4s
N e4A∪ (4.49)

while the tension of the domain wall is determined by an NS5-brane winding N times

around the minimum-volume three-cycle whose endpoints are Σ2 and Σ̄2. As described

in appendix C.2, the tension of the domain wall follows from the NS5-brane action and is

roughly

TD ∼
1

`3s
N

3/4
D3

(
e4A∩ − e4A∪

)
(4.50)

and so

R∗ ∼ `s
N

3/4
D3

N

(
r∩
r∪

)4

(4.51)

If the NS5-brane is in thermal equilibrium at temperature T , then a smooth excitation of

size R∗ in the canonically normalized fluctuations Y ı̂
I gains a thermal expectation value

〈Y ı̂
I Y

̂
J 〉 ∼

T

m2
I

1

R3
∗
δIJδ

ı̂̂. (4.52)

The thermal fluctuation in the radial direction, averaged over Σ2, is roughly

〈δr2〉 ∼ gs`2s (`sT )
N4

N
3/4
D3

(
`s
`

)2(r∪
r∩

)12

(4.53)

where `2 is the unwarped volume of the two-cycle Σ2. The requirement that this is much

smaller than the size of the dipole 〈δr2〉 � r2
∩ imposes the weak constraint

N4 � e4A∩
N

5/4
D3

g
1/2
s (`sT )

(
`E
`s

)2(r∩
r∪

)10

. (4.54)
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5 Discussion and outlook

We have identified many obstacles to realizing the relaxion mechanism in string theory.

Some of these obstacles are extremely general, while others apply only to NS5-brane mon-

odromy, the particular example we studied in detail. We will now step back and give some

perspective on our results, explaining their scope of validity.

Our first observation was that axion monodromy in string theory proceeds by the

accumulation of monodromy charge, and the backreaction of this charge substantially

changes the couplings of the axion. This applies to any realization of axion monodromy

in string theory. Thus, any ultraviolet completion in string theory of a relaxation mecha-

nism that involves axion displacements ∆φ > f will be vulnerable to the backreaction of

monodromy charge.

The effects of this backreaction will vary from one model to another. We focused

on NS5-brane monodromy because this is, to our knowledge, the only scenario where the

smallness of the shift symmetry breaking parameter g is natural — in this case, because

of warping — while in alternative constructions in string theory, one must fine-tune dis-

crete data to achieve small g. In the NS5-brane model, we found that the barriers in the

stopping potential are exponentially small in the winding number N ≡ φ/f , leading to a

runaway relaxion. We expect this barrier suppression phenomenon to be rather general,

but not universal. However, the particular effects of backreaction on the axion decay con-

stants detailed in section 4.2.6, and the constraints from annihilation in section 4.2.7 and

section 4.2.8, could be very different in other models.

Some of the challenges that we have identified might be milder in non-supersymmetric

compactifications of string theory. In particular, in compactifications that break all su-

persymmetry at the Kaluza-Klein scale as in e.g. [32, 33], tadpole constraints on the total

charge need not be a serious limitation. On the other hand, ensuring metastability of such

a configuration can be very challenging. Moreover, for an embedding of the relaxion in a

non-supersymmetric compactification, the absence of spacetime supersymmetry below the

KK scale might require either the KK scale or even the string scale to arise as the regulator

of the relaxion setup at the relaxion cutoff scale M .

We assumed that the periodic stopping potential arises from non-perturbative effects

that couple locally to the axion. This local coupling then exposes the stopping potential to

an exponential suppression from warping. However, the stopping mechanism could instead

arise from other effects, for example from heavy states [34] coupled to the relaxion, or from

the exponential production of massive particles [2], which are not necessarily susceptible

to the same failure modes.19

5.1 Exact discrete shift symmetries for relaxions

Throughout this work we have considered axion monodromy, in which a source of mon-

odromy completely breaks the shift symmetry of an axion. An important alternative is

alignment of multiple periodic contributions to the axion potential, leaving an unbroken

19We thank E. Silverstein for illuminating discussions of these points.
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discrete shift symmetry. We now briefly outline this possibility and mention some of the

obstacles to embedding this scenario in string theory.

The essential feature of the relaxion potential (1.1) is the combination of a slowly-

varying term B , the linear gM3φ, and a quickly-varying term C , the oscillatory

Λ3
cv cos(2πφ/f). As written, B explicitly and completely breaks the discrete shift symme-

try φ 7→ φ + f . Alternatively, B could represent the leading term in the expansion of a

function that is invariant under a much larger discrete shift φ 7→ φ+ kf . For example, we

could have

V B = gfM3 sin

(
2πφ

kf

)
, (5.1)

where φ’s field space diameter is actually k times larger than would be naively inferred by

only considering small displacements. We refer to these two cases as having an explicitly

broken symmetry or an exact discrete symmetry, respectively. Thus far, we have only

concentrated on the former. The explicit breaking is induced by a source of monodromy,

an NS5-brane, and we have shown that the accumulation of monodromy charge leads to

backreaction effects that spoil the relaxation mechanism. Given this difficulty, one might

ask whether the relaxion mechanism could be more readily realized in a solution of string

theory with an exact discrete shift symmetry.

As in the models with explicit breaking, the main difficulty in realizing a discrete shift-

symmetric relaxion lies in ensuring that the potential has structure over two — and only

two — disparate scales. That is, the potential must roughly be the sum of two terms — a

slowly varying term with periodicity f that apes the linear term B in (1.1), and a quickly

varying stopping potential with periodicity fs � f . One might take, as a toy model, a

potential that is generated only by the instantons with winding number 1 and k, so that

the potential takes the schematic form

V = M2e−S1 cos

(
2πφ

f

)
|h|2 +M4e−S1 cos

(
2πφ

f

)
+M3e−Skv cos

(
2πkφ

f

)
(5.2)

For φ� f , the potential is approximately a “monomial with modulations” with fs = f/k,

and has the A B C structure of (1.1), with g ∝ e−S1 and Λ3
c ∼ M3e−Sk . The analogue

of (1.4) in this two period model is then

v

M
& 1

k

(
M

Λc

)3

∼ 1

k
eSk−S1 . (5.3)

Naively, the generated hierarchy grows with k.

However, there are many problems with this toy model. First and foremost, the action

for a k-instanton is typically Sk ≥ kS1, and we require that S1 � 1 in order to trust the

instanton expansion. The stopping potential barriers will then shrink with k,

|Vstop| ∝ e−kS1 ∝ gk (5.4)

and, reminiscent of the suppression due to warping discussed in section 4.2.3, the maximum

achievable hierarchy actually shrinks with k. The stopping potential is too small to stop

the evolution near the point where the Higgs is massless. If some mechanism were able
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to enhance the k-instanton contribution, one must still explain the absence of j-instanton

effects, with 1 < j < k, and we find it implausible that all such effects could be negligible

for k � 1.20 Furthermore, one would have to explain why the Higgs couples to instantons

of winding 1 and k differently, and why the 1-instanton and k-instanton contributions do

not both vanish when v = 0.

Many of these problems may be mitigated in models with multiple axions, as in the

Kim-Nilles-Peloso mechanism [35] and kinetic alignment setups [36, 37] in the inflationary

context. Scenarios for aligned relaxions have been presented in [19, 20, 38].21 A general

multi-axion Lagrangian can be written (cf. e.g. [37]) as

L = −Kij∂φi∂φj −
∑

a

Λ4
a exp

(
−Q i

a Si
) [

1− cos
(
2πQ i

a φi
)]
, (5.5)

where Kij is a positive definite kinetic matrix of real numbers, while Q i
a is a charge matrix

containing integers. We imagine that there are “slow” and “fast” linear combinations of

canonically normalized axions with effective decay constants f and fs � f , respectively.

The addition of another direction in field space solves several of the problems mentioned

previously, at the cost of introducing much more complicated dynamics.

Foremost among the advantages is that the stopping potential is no longer necessarily

suppressed. In the single axion model, the hierarchy between fs and f — and so between

v and M — was generated by a hierarchy in the charge matrix Q i
a , and a high charge

contribution is exponentially suppressed relative to a low charge contribution. In a multi-

axion model, fs � f may instead be realized in the kinetic matrix Kij , and this does not

impose an exponential hierarchy in the associated barrier heights. Of course, the hierarchy

in the kinetic matrix must then be explained, but it is much easier to realize a hierarchy

in the eigenvalues of a matrix of real numbers than in a matrix of bounded integers, and

one does not need to explain why instantons with winding j, 1 < j < k, do not contribute.

A very mild degree of alignment has been demonstrated in explicit examples [40],

but whether alignment can yield large effective axion decay constants in string theory is an

important open question, even for the O(100) enhancements that could suffice for inflation.

It is not obvious to us that the vastly larger enhancements needed for a relaxion scenario

are possible in known compactifications. For example, the “clockwork” mechanism [38, 41]

requires a specific matrix of axion charges of instantons, and it remains to be seen whether

this particular pattern of charges can arise in string theory. However, it is very plausible

that linearly independent combinations of axions couple differently to the Higgs.

In summary, relaxion scenarios with exact discrete symmetries, built on the alignment

of multiple instanton effects for one or more axions, are qualitatively different from the

axion monodromy scenarios, with explicitly broken symmetry, considered in this work.

However, both classes of models are vulnerable to ultraviolet physics. Axion monodromy

scenarios suffer from the backreaction of monodromy charge, as we have explained. Aligned

scenarios could avoid this problem, but require extremely special axion charges. These

20Such a situation appears to conflict with the lattice form of the Weak Gravity Conjecture, but is already

implausible regardless.
21See also [39] for a recent discussion of naturalness constraints on such scenarios.
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charges are ultimately topological data dictated by the ultraviolet theory, and it is not

clear that string theory allows strong enough alignment to permit relaxation of a large

hierarchy. Furthermore, these multi-axion models have much more complicated dynamics,

and it is not clear that the dynamical generation of a large hierarchy can proceed in a

robust way.

5.2 Constraints from the Weak Gravity Conjecture

The Weak Gravity Conjecture (WGC), a class of conjectures asserting that gravity must

be the weakest force [42–52], leads to (still conjectural) constraints on axion theories.

One could therefore ask whether the WGC constrains relaxion monodromy scenarios.

It does [8, 9], as we will briefly explain, but the known WGC constraints are far weaker

than the limitations we have exposed in this work, which are independent of WGC

considerations.

The WGC constrains monodromy scenarios by placing upper limits on the tension of

domain walls. In the four-dimensional description of axion monodromy due to Kaloper,

Lawrence, and Sorbo [11–13], Brown-Teitelboim domain walls connect different branches

of the scalar potential. At the same time, when instanton effects lead to modulations of the

axion potential, distinct critical points are connected across four-dimensional field theory

domain walls, via Coleman-de Luccia tunneling. It turns out that the electric form of the

WGC places constraints [8] on the domain walls of the Kaloper-Lawrence-Sorbo model,

while the magnetic WGC places constraints on the field theory domain walls associated

with instanton modulations [9]. In both cases one finds a bound on the domain wall

tension [8, 9]

T < mfMpl, (5.6)

where m is the mass of the axion. For a relaxion model this implies a bound on the relaxion

cutoff scale M of roughly the same order as the constraints already given in [1].

We conclude that the constraints arising from very general four-dimensional quantum

gravity considerations, such as the WGC, do not automatically capture all of the effects

of actual embeddings in quantum gravity. Examining such embeddings is therefore crucial

for assessing the viability of the relaxion mechanism in string theory.22

6 Conclusions

Could a portion of the observed hierarchy between the weak scale and the Planck scale be

a consequence of dynamical relaxation of the Higgs mass during cosmological evolution?

This striking idea is the core of the relaxion mechanism [1]. In this scenario, the relaxation

of the Higgs mass is driven by the slow evolution of an axion field, the relaxion, whose shift

symmetry is very weakly broken by a potential term that introduces monodromy. After

relaxation over many cycles of monodromy, the Higgs mass passes through zero, causing

22We note that this view concurs with the results of [11], where some leading effects of backreaction on

the axion Lagrangian are captured by a series of higher powers of gauge-invariant field strengths, whose

coefficients must necessarily be determined in the UV theory, and in which strong backreaction effects can

drive one far from the “natural” bottom-up estimates.
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barriers to appear in the axion potential, and so halt the evolution. In effective field theory,

the hierarchy that is generated is determined by the weak breaking parameter, and so is

technically natural.

In this work we asked whether the relaxion mechanism survives ultraviolet completion

in string theory. Do the essential components for the scenario exist in a well-controlled

compactification, and do these components work in concert in string theory as they do in

effective field theory?

We found that the key components of the scenario can indeed be realized in string

theory. The mechanism of axion monodromy, first developed in the context of large-field

inflation in string theory, can produce — in the probe approximation — the secular relaxion

potential needed for slow relaxation over many fundamental axion periods. Moreover, the

extremely low scale of the secular potential required for the relaxion mechanism can be

explained by situating the source of monodromy in a strongly warped region. This is

possible in one known scenario for axion monodromy in string theory, the NS5-brane model

of [21], in which two-form axions acquire their potential from NS5-branes wrapping curves

in a warped region.

However, our main result is that the structures required for monodromy in string the-

ory present formidable and very general obstacles to a successful relaxion scenario in string

theory. Monodromy proceeds by the accumulation of monodromy charge on a source of

monodromy. As the relaxion rolls over N fundamental axion periods, it necessarily accu-

mulates or discharges N units of monodromy charge. This large quantity of monodromy

charge sources backreaction in the internal space, completely invalidating the probe ap-

proximation, and changing the couplings in the effective theory. The impact of monodromy

charge is visible in a dual description as the appearance of N new light states.

We argued that the backreaction of monodromy charge can lead to disastrously large

changes to the secular potential in any realization of the relaxion scenario via axion mon-

odromy in string theory. In the specific case of the NS5-brane model, we computed the

detailed form of these changes. The accumulation of monodromy charge suppresses the

gauge coupling of the D7-brane gauge theory that generates the stopping potential. In

the dual description, the N light states are charged under the D7-brane gauge group, and

give a large threshold correction to the gauge coupling. The result is that the stopping

potential is suppressed by a factor exp(−γbrN), where γbr is a constant determined by the

geometry. The stopping potential is therefore completely negligible, and cannot halt the

evolution when the Higgs mass passes through zero. The Higgs mass indeed relaxes to

smaller values, but this process continues far into the tachyonic regime.

While this detailed analysis was performed in the context of a specific model, we re-

peat that our findings are generic and are expected to apply to any model that relies upon

a monodromy over many fundamental axion periods, regardless of the stopping mecha-

nism. However, these constraints do not apply when the discrete shift symmetry remains

unbroken, e.g. when the large field range is realized by the alignment of multiple axions.

In summary, we have shown that the physics of ultraviolet completion in string the-

ory does not decouple from the dynamics of the relaxion mechanism. Our results do not

exclude the dynamical relaxation of hierarchies in string theory, but in our view they do
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exclude technically natural dynamical relaxation driven by axion monodromy. It would be

valuable to understand whether some of the difficulties we have uncovered result from lim-

itations in existing constructions, or if instead they are consequences of general structures

in quantum gravity.
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A Axions in string theory

There is an extensive literature on axions in string theory, but for the reader’s convenience

we now gather a few salient facts. We begin with the example of the Neveu-Schwarz

two-form gauge potential B2.

Integrating a ten-dimensional p-form gauge potential Cp over a non-trivial p-cycle in

the compactification manifold will give rise to an axion in four dimensions. The number

of independent, non-trivial p-cycles then determines the maximal number of axions arising

from Cp. The two-form B2 has an associated field strength H3 ≡ dB2, and appears in the

ten-dimensional type II and heterotic supergravity actions as23

SSUGRA ⊃ −
1

4κ2
10

∫
d10X

√
−GS e−2Φ |H3|2 (A.1)

Reducing this action along a six-dimensional compact space X6, each non-trivial two-cycle

ΣI
2 with its associated harmonic form ωI2 , `−2

s

∫
ΣI2
ωJ2 = δJI , gives rise to a four-dimensional

axion bI(x),

bI(x) ≡ 1

`2s

∫

ΣI2

B2, (A.2)

with B2 =
∑

I bI(x)ωI2 . Upon dimensional reduction, the first term of (A.1) yields kinetic

terms for the bI axions,

Skin = −1

2

∫
d4x
√−g γIJ∂µbI∂µbJ

γIJ

M2
pl

=
gs

2VE`6s

∫

X6

∗6 ωI2∧ ωJ2 . (A.3)

If a basis of harmonic forms ωI2 is chosen such that γIJ is diagonal, then φI = fIbI (no

sum) are the canonically normalized axion fields, whose decay constants are the eigenvalues

of γ, fI = eigI γ
JK . For example, if the compact space is a product of two-spheres,

X6 = S2 × S2 × S2, each with volume L2`2s, then we simply have f2
I = M2

plL
−4/2.

23Normalization conventions appear in appendix C.
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If X6 is Calabi-Yau, then the axion decay constants for two-form axions bI and cI —

arising from the two-form potentials B2 and C2, respectively, in type IIB string theory —

may be simply computed from the intersection numbers κIJK , the volumes `2sv
I of the two-

cycles ΣI
2, and the overall total volume VE of X6. For example, for an axion c− = `−2

s

∫
Σ−2
C2

associated to an orientifold-odd cycle Σ−2 the axion decay constant is

f2

M2
pl

∼ gs
κI−−v

I

VE
. (A.4)

When fivebranes are introduced to create monodromy, the axion that experiences this

monodromy will in general be a linear combination of the ωI2 , which we call Ω. For example,

in a variant of the axion monodromy construction detailed in section 3, the (rel)axion c(x)

arises from a two-form Ω dual to the blowup cycle of an orbifold whose fixed point locus

is Σo, with dimCΣo = 1. As shown in [23], the support of ∗Ω ∧ Ω is localized about Σo.

The six-dimensional metric is approximately a cone,

g̃mndym dyn ≈ dr2 + r2ğθφ dΨθ dΨφ (A.5)

and Ωmn ∼ Ωθφ to good approximation has its legs along the angular directions, so

f2

M2
pl

∼ gs
VE

1

`6s

∫ r∩

r∪

dr r

∫
d5Ψ

√
ğ ğθφğψχΩθψΩφχ ≈

gs
VE

r2
∩
`2s
. (A.6)

Locally, we may think of the blow-up cycle as an Eguchi-Hanson space fibered over Σo.

Since the integrand is highly localized about Σo, we have
∫
∗Ω∧Ω ≈ vol(Σo), and because of

the conical nature of the six-dimensional metric, vol(Σo) is dominated by the contribution

at r∩, so
∫
∗6 Ω ∧ Ω ∝ r2

∩.

The axion enjoys a continuous shift symmetry to all orders in perturbation theory

in both gs and α′. However, this continuous shift symmetry does not survive at the

nonperturbative level, and is broken to a discrete shift symmetry by instantons carrying

axion charge. In particular, fundamental strings are charged under B2, via the coupling

S(W) = . . .+
i

2πα′

∫

W
d2σ
√
−h εmnBmn + . . . , (A.7)

where h is the metric on the string worldsheet W, and m,n are two-dimensional indices

tangent to W. The string path integral receives a contribution from a Euclidean string

whose worldsheet wraps ΣI
2, termed a worldsheet instanton. This contribution will be

proportional to e−SI , where SI = S(ΣI
2). Because of the coupling (A.7),

SI ⊃ 2πibI , (A.8)

and so the potential generated by these nonperturbative effects is still invariant under

discrete shifts bI 7→ bI + N , N ∈ Z, as e−SI 7→ e−SI+2πiN = e−SI . Thus, worldsheet

instantons break the perturbative, continuous shift symmetry of bI to the discrete shift

bI 7→ bI + 1.
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The real part of the action (A.7) is proportional to the volume of ΣI
2 in string units, and

worldsheet instanton contributions become more important as the volume shrinks. These

contributions are difficult to compute, so requiring computational control of the effective

action constrains the sizes of cycles, ΣI
2, and thus the sizes of the axion decay constants.

A standard requirement for control is that the sizes of all cycles are much larger than the

string length, vα � 1.

However, the two-cycle ΣI
2 may sit in a warped region, with warp factor eA. For two-

form axions, (A.3) is unchanged — there is no explicit dependence on the warp factor.

However, a ten-dimensional string will see a warped volume, and in particular the real part

of the worldsheet instanton action is enhanced by factor e−2A. This allows the two-cycle

volumes vα to be smaller by a factor of e−2A without loss of control, and so the axion decay

constant can be very small in a highly warped throat.

If we take vI to measure the warped volume of ΣI
2 in string units, i.e. the volume a

ten-dimensional string would measure, then we may write

f2

M2
pl

∼ gs
κI−−v

I

VE
e2A
∣∣
ΣI2
� gs

κI−−v
I

VE
, (A.9)

keeping the constraint that vI � 1.

B Necessity of the intersection

In NS5-brane axion monodromy, D3-brane charge accumulates on an NS5-brane that wraps

a two-cycle ΣNS5 (denoted Σ2 elsewhere in the text). Taking c(x) ≡
∫

ΣNS5
C2 to be the

relaxion field, a stopping potential can be generated by strong gauge dynamics in a gauge

theory G to which the relaxion has a nonvanishing axionic coupling λ c(x)F ∧ F , with λ a

constant. We will take G to be realized on a stack of D7-branes wrapping a holomorphic

four-cycle D (denoted Σ4 elsewhere in the text). The backreaction of the D3-brane charge

changes the supergravity background, with the strongest effects occurring near ΣNS5. In

this appendix we show that any D for which λ 6= 0 necessarily intersects a holomorphic

representative of the class [ΣNS5]. Thus, in the simplest setting with only two such rep-

resentatives — each wrapped by a fivebrane — one cannot mitigate the backreaction by

arranging that D is outside of the warped region. In models with more than two holomor-

phic representatives, avoiding this backreaction still entails an O(N−1) fine-tuning.

For our purposes, it suffices to show that D and ΣNS5 have at least one point in

common, even though the intersection number [D]∩ [ΣNS5] of the corresponding homology

classes may vanish. We will use ∩s to denote intersection as point sets, as distinct from the

topological intersection [Σ1] ∩ [Σ2],24 and we will show that λ 6= 0 implies that D ∩s ΣNS5.

Consider a D7-brane that fills spacetime and wraps a smooth four-cycle D ⊂ X in the

internal space X. The D7-brane couples to C2 axions via the Chern-Simons action

SCS = µ7

∫

W

∑

p

ι∗Cp ∧ eF ⊃
µ7

3!

∫

W
ι∗C2 ∧ F ∧ F ∧ F , (B.1)

24Two submanifolds M , N , of X have M ∩s N 6= ∅ if and only if M and N have at least one point in

common, without regard to the orientation of M and N .
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where W =M3,1 ×D is the D7-brane worldvolume, ι : D → X is the inclusion map of D

into X, ι∗ denotes the pullback onto D, F2 is the field strength of the worldvolume gauge

theory, and F = ι∗B2 + 2πα′F2. The axionic coupling to the gauge theory G on a stack of

D7-branes wrapping D is therefore

SCS ⊃
µ7

2!

(∫

D
ι∗C2 ∧ F

)(∫

M3,1

trF ∧ F
)
. (B.2)

Poincaré duality in D relates the flux F to a two-cycle SF ⊂ D which may further be

viewed as a two-cycle ι∗SF in X, so that

ϑ ≡
∫

D
ι∗C2 ∧ F =

∫

SF

ι∗C2 =

∫

ι∗SF

C2. (B.3)

The holomorphic representative ι∗SF of the class [ι∗SF ] is contained, as a point set, in D.

So establishing the condition

ι∗SF ∩s ΣNS5 6= ∅ (B.4)

will imply our desired result D ∩s ΣNS5.

Now we choose a basis of nontrivial two-cycle classes, {[Σi]}, I = 1, . . . , p ≡ h1,1, to

span H2(X,Z). Without loss of generality, we may take the NS5-brane class [ΣNS5] to be

an element of this basis, say [Σ1] ≡ [ΣNS5]. There exists a dual basis of harmonic two-

forms ωJ such that
∫

ΣI
ωJ = δJI . Expanding `−2

s C2(x) =
∑p

i=1 cI(x)ωI , the relaxion field

is c1(x) ≡ c(x). We may also expand

ι∗SF = a1[Σ1] + · · ·+ ap[Σp] + (boundary) , (B.5)

for some integers aI . Comparing to (B.3), we see that λ 6= 0 if and only if a1 6= 0.

The relation (B.5) with a1 6= 0 does not, on its own, imply (B.4). For example, consider

a basis of homology {[Σ1], [Σ2]}, with minimum volume representatives {Σ1,Σ2} that obey

ΣI ∩s ΣJ = δIJ . If [S] = a1[Σ1] + a2[Σ2], then S ∩s Σ1 6= ∅ ⇐⇒ a1 6= 0, regardless of

the value of a2. But working in the basis {[Σ1], [Σ′2] = [Σ2]− [Σ1]}, for a1 6= 0 and a2 = 0

we again have S ∩s Σ1 6= ∅, while if a1 = a2 we have instead S ∩s Σ1 = ∅. Thus, the

condition (B.4) depends on the relation between [Σ1] and [Σ2], . . . [Σp], which we have not

yet specified.

We may view this issue in a dual picture. The coupling (B.3) can be written as the

triple intersection of three divisors in X,

ϑ = [D] ∩ [DF ] ∩ [DNS5] , (B.6)

where DF = PDX(ι∗F) and DNS5 = PDX(ω1), with PDX denoting the Poincaré dual in X.

The divisor DNS5 is dual to the curve ΣNS5, in that DNS5 is Poincaré dual to the two-form

ω1 that is the dual vector to ΣNS5 with respect to the pairing
∫

ΣI
ωJ = δJI . It follows that

[ΣNS5]∩ [DNS5] = 1. Moreover, the requirement of a nonvanishing axionic coupling, ϑ 6= 0,

implies that [DNS5] ∩ [D] 6= 0. Now although [ΣNS5] ∩ [DNS5] 6= 0 and [DNS5] ∩ [D] 6= 0, it

appears that DNS5 could stretch between D and ΣNS5, intersecting each, even though D

and ΣNS5 remain widely separated.
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To exclude this possibility, we use further facts about ΣNS5 and ι∗SF . Preserving

supersymmetry in the D7-brane worldvolume requires that F ∈ H2(D,Z) be of type (1, 1),

and so its Poincaré dual ι∗SF is a holomorphic curve. Heuristically, ι∗SF can be viewed

as the curve wrapped by a D5-brane dissolved in D: if the D7-brane were annihilated by

introducing an anti-D7-brane, a D5-brane on ι∗SF would remain. Moreover, ΣNS5 is itself

an irreducible holomorphic curve. (In a construction in which ΣNS5 is a sum of irreducible

holomorphic curves, this argument can be applied to each component.) We can therefore

express ι∗SF uniquely as a finite sum of distinct irreducible holomorphic curves {σA},
A = 1, . . .K

ι∗SF = a1σ1 + a2σ2 + · · ·+ aKσK , aA ∈ Z ≥ 0 , (B.7)

and we have shown above that a relaxionic coupling, λ 6= 0, requires a1 6= 0. Because

the σA are distinct irreducible holomorphic curves, they intersect each other at most at

points.25 So ι∗SF contains all but finitely many points of σ1, and thus the divisor D must

intersect a holomorphic representative of [ΣNS5]. In the simplest model, this requires that

D must descend into the strongly warped region to intersect (cf. figure 3) Σ2 or Σ̄2.

It is possible for the curve class [ΣNS5] to have more than two holomorphic represen-

tatives, which suggests a loophole that avoids the problematic backreaction discussed in

the body of this work: design a curve class with a holomorphic representative far from the

warped throat, so that the divisor D may lie outside the warped region yet still generate

an axionic coupling. However, as we discuss at the end of section 4.2.5, a distant divisor

is still vulnerable to this backreaction, which again can only be subdued by a significant

O(N−1) fine-tuning.

C Type IIB supergravity with fivebranes

C.1 Conventions for type IIB supergravity

The bosonic part of the type IIB supergravity action in Einstein frame is

SIIB =
1

2κ2
10

∫
d10X

√
−GE

(
RE −

|∂τ |2
2(Im τ)2

− |G3|2
2 Im τ

− 1

4
|F̃5|2

)
− i

8κ2
10

∫
C4 ∧G3 ∧ Ḡ3

Im τ
(C.1)

with 2κ2
10 = `8s/2π, G3 ≡ F3 − τH3, τ ≡ C0 + ie−Φ, Fp+1 = dCp, H3 = dB2, F̃5 =

F5 − 1
2C2 ∧ H3 + 1

2B2 ∧ F3, and F̃5 = ∗10F̃5 is imposed at the level of the equations of

motion.

We define the string length

`2s = (2π)2α′. (C.2)

The actions for extremal Dp-branes and NS5-branes are given by

SDp = −µp
∫

dp+1ξ e−Φ
√
− det (Gab +Bab + 2πα′Fab) + SCS (C.3)

25Note that if the σA were simply a set of distinct, irreducible simplicial complexes, the relation (B.4)

would not be automatic. If σ1 intersected some of σ2, . . . σK along suitable two-simplices, then
∑
i aAσA

might have no points in common with σ1, because adding a2σ2 + . . . aKσK could subtract all the points of

σ1. For curves intersecting at most at points, this is not possible.
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Directions Indices

(3+1)-dim spacetime µ, ν, ρ, . . .

6-dim internal space m,n, . . .

5-dim angular space θ, φ, . . .

brane worldvolume a, b, . . .

transverse to worldvolume i, j, k, . . .

transverse vielbein ı̂, ̂, k̂, . . .

along cycle Σ2 α, β, . . .

Table 3. Guide to index conventions.

and

SNS5 = −µ5

∫
d6ξ e−2Φ

√
− det (Gab − eΦ (Cab + 2πα′Fab)) + SCS, (C.4)

respectively, where µp = 2π/`p+1
s , and Fab is the gauge field strength on the brane world-

volume. The Chern-Simons term for a Dp-brane reads

SCS = µp

∫ ∑

n

Cn ∧ eF , (C.5)

where we have introduced the notation F = B2 + 2πα′F . The Chern-Simons piece sets the

flux quantization condition
1

`p+1
s

∫

Σp
Fp+1 ∈ Z. (C.6)

We expand in a basis of H2(X6), denoted ωI(y), with normalization
∫

ΣJ
ωI = `2sδ

I
J . (C.7)

We list our index conventions in table 3.

C.2 Einstein-frame potentials for fivebranes

The DBI action for a D5-brane is

SDBI = −2π

`6s

∫
d6ξ e−Φ

√
− det

(
GSab + Fab

)
(C.8)

where GSab and Bab are the pull-backs onto the brane worldvolume of the ten-dimensional

string-frame metric and NS-NS two-form B2, respectively.

The ten-dimensional string-frame metric is related to the Einstein-frame metric via

GSMN = eΦ/2GEMN , (C.9)

which we assume takes a warped product form

GEMN dXM dXN = e2A(y)gµν dxµ dxν + e−2A(y)g̃mn dym dyn, (C.10)

where gµν and g̃mn are metrics on the four-dimensional spacetime and the six-dimensional

internal space, respectively.

– 51 –



J
H
E
P
0
2
(
2
0
1
8
)
1
2
4

Defining

b(x) =
1

`2s

∫

Σ2

B2 =
1

`2s

∫

Σ2

`2s b(x) dy ∧ dz, (C.11)

choosing coordinates on Σ2 such that dy ∧ dz is harmonic, and setting Fab = 0, we may

write

eΦ/2GEab +Bab =

(
eΦ/2e2A(y)gµν 0

0 m

)
(C.12)

with

m =

(
eΦ/2e−2Ag̃yy eΦ/2e−2Ag̃yz + `2sb/2

eΦ/2e−2Ag̃yz − `2sb/2 eΦ/2e−2Ag̃zz

)
. (C.13)

With g̃2 ≡ g̃yy g̃zz − g̃2
yz, we have

√
− det (Gab +Bab) = eΦ+4A

√
− det g

√
eΦe−4Ag̃2 + `4sb

2/4. (C.14)

Upon integration over Σ2, we may take e−4Ag̃2 → `4E, where `2E is the characteristic size of

Σ2 in the ten-dimensional Einstein frame. The DBI action, upon dimensional reduction,

then yields a four-dimensional potential for the b axion,

SDBI =

∫
d4x
√−g


−πe

4A

`4s

√
gs
4

(
`E
`s

)4

+ b2


 . (C.15)

The dimensional reduction of the NS5-brane action follows similarly.

We will also be interested in the spectrum of Kaluza-Klein excitations, which we now

compute. Setting Fab = 0, the NS5-brane action is

SNS5 = −2π

`6s

∫
d6ξ e−2Φ

√
− det M (C.16)

with Mab = Gab − eΦCab. Expanding in fluctuations δMab, we have

√
− det

(
M + δM

)
=
√
− det M

(
1 +

1

2
tr M

−1
δM

)
, (C.17)

with

M =

(
eΦ/2e2Agµν 0

0 m

)
(C.18)

and

m =

(
eΦ/2e−2Ag̃yy eΦ/2e−2Ag̃yz − eΦ`2sc/2

eΦ/2e−2Ag̃yz + eΦ`2sc/2 eΦ/2e−2Ag̃zz

)
. (C.19)

As above, √
− det M = eΦ+4A√−g

√
eΦe−4Ag̃2 + e2Φ`4sc

2/4. (C.20)

The fluctuation δM arises from allowing the embedding of the NS5-brane to fluctuate. We

may explicitly write the pull-back as

Gab − eΦCab = ΠMN
ab

(
GMN − eΦCMN

)
. (C.21)
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If we take the embedding of the fivebrane to be specified by XM (ξa) and allow the brane to

fluctuate in the transverse directions XM (ξa) = δMa ξ
a+ δMj X

j(ξb), the projection operator

is then

ΠMN
ab ≡ ∂XM

∂ξa
∂XN

∂ξb
= δMa δ

N
b + δMa δ

N
j

∂Xj

∂ξb
+ δNb δ

M
i

∂X i

∂ξb
+ δMi δ

N
j

∂X i

∂ξa
∂Xj

∂ξb
. (C.22)

Assuming a product metric GEai = 0, we have

δMab = eΦ/2e−2Ag̃ij
∂X i

∂ξa
∂Xj

∂ξb
. (C.23)

and the NS5-brane action may be written

SNS5 = −2π

`6s

∫
d6ξ e−Φe4A√−g

√
eΦe−4Ag̃2 + e2Φ`4sc

2/4

(
1 +

1

2
e−4Agµν g̃ij∂µX

i∂νX
j

+
1

2

eΦe−4Ag̃2

eΦe−4Ag̃2 + e2Φ`4sc
2/4

g̃ij g̃
αβ∇̃αXi∇̃βXj

)
. (C.24)

We define the canonically normalized fields as

Y ı̂ = FE ı̂jX
j (C.25)

with

F 2(xµ, y, z) =
2π

`6s

e−Φ

√
g̃2

√
eΦe−4Ag̃2 + e2Φ`4sc

2/4 and g̃ij = δı̂̂E
ı̂
iE

̂
j . (C.26)

We have assumed that g̃iα = 0, and thus ∇̃αE ̂j = 0. Decomposing in real g̃2 harmonics

gives

∇̃2YI = −e
−2A

`2E
λIYI Y ı̂ =

∑

I

Y ı̂
IYI

∫
d2σ

√
g̃2 YI YJ = δIJ . (C.27)

The action is

SNS5 =

∫
d4x
√−g

(
− V (c)− 1

2
gµν∂µY

ı̂
I ∂

µY I
ı̂ −

1

2
m2
I(c)Y

ı̂
I Y

I
ı̂

+ g(c) (c∂µc)
(
Y ı̂
I ∂

µY I
ı̂

)
− 1

2
g(c)2 (∂c)2 Y ı̂

I Y
I
ı̂

)
(C.28)

with

V (c) ≡ π

`4s

e4A

√
gs

√
4

(
`E
`s

)4

+ gsc2 (C.29a)

g(c) ≡ gs
2

(
4

(
`E
`s

)4

+ gsc
2

)−1

(C.29b)

m2
I(c) ≡

µ2
5e
−Φ

F 4

e−2A

`2E
λI = 4λI

e2A

`2E

(
`E
`s

)4(
4

(
`E
`s

)4

+ gsc
2

)−1

. (C.29c)
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Finally, we will be interested in the tension of the domain wall interpolating between

the metastable and stable states of the NS5-brane axion monodromy scenario. In the

thin-wall approximation, the domain wall corresponds to an NS5-brane winding n times

around the minimum volume three-cycle Σ3 whose endpoints are Σ2 and Σ̄2, the two-cycles

wrapped by the NS5-brane and anti-NS5-brane, respectively. The tension can then be read

off by reducing the action

SNS5 = −2π

`6s

∫

D
d6ξ e−2Φ

√
− det

(
GSab − eΦCab

)
→ −TD

∫

D2,1

d3x
√
− detP(g4). (C.30)

where P(g4) denotes the pullback of the spacetime metric gµν onto the world-volume of

the domain wall D2,1.

We can gain intuition for this tension by modeling the three-cycle Σ3 as

ds2
Σ3

= dr2 + r2
(
dy2 + dz2

)
, (C.31)

where the two-torus volume form is dy ∧ dz, and r ∈ [r∪, r∩]. Then

GSab − eΦCab =



eΦ/2e2AP(g4)µν 0 0

0 e−2AeΦ/2 0

0 0 m


 (C.32)

where

m =

(
e−2AeΦ/2r2 −eΦ`2sc/2

−eΦ`2sc/2 e−2AeΦ/2r2

)
, (C.33)

and so

SNS5 = −
(

2π

`6s

∫ r∩

r∪

dr e−3Φ/4e3A
√
e−4Ar4 + eΦ`4sc

2/4

)∫

D2,1

d3x
√
− detP(g4). (C.34)

The tension then takes the form

TD =
2π

`3s

L3

g
3/4
s `3s

1

4

(
e4A∩ − e4A∪

)
√

1 +
gs`4sc

2

4L4
∼ 1

`3s
N

3/4
D3

(
e4A∩ − e4A∪

)
, (C.35)

since we must have gs`
4
sc

2/4L4 ∼ N2/ND3 � 1 to avoid the KPV instability.

D Backreaction on the internal space

When one introduces a source of monodromy in a compactification, and explicitly breaks

supersymmetry, the corresponding stress-energy will backreact on the metric, affecting

the parameters in the low-energy effective theory. In the NS5-brane model detailed in

section 3.2, a key source of stress-energy is anti-D3-brane charge induced on the anti-NS5-

brane. Because D3-brane charge preserves the same supersymmetry as the background,

it will not backreact on the internal metric at leading order.26 However, the anti-D3-

brane charge will break the remaining supersymmetry of the background and perturb the

26In the presence of anti-brane charge, the D3-brane charge will backreact on the internal metric at second

order. Similarly, if the D3-brane charge is large enough a better description becomes available in which

the D3-branes are dissolved into flux and a new warped throat is formed, corresponding to the analysis of

section 4.2.1. In what follows, we will take N � ND3 and assume that the induced anti-D3-brane charge

may be thought of as a small perturbation to the geometry.
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internal metric. Furthermore, both D3-brane and anti-D3-brane charge will perturb the

warp factor e4A. In this appendix we calculate the perturbations to the internal metric

and the warp factor.

At the level of the supergravity equations of motion, we may approximate the N units

of induced anti-D3-brane charge as N anti-D3-branes smeared about the anti-NS5-brane.

These anti-D3-branes do not source the metric directly, but do so through a combination

of the warp factor e4A and the F̃5 field which we denote Φ−, where Φ± ≡ e4A ± α, and

F5 = (1 + ∗10) dα(y) ∧ dvolR1,3 . (D.1)

The equations of motion for Φ± and the internal Einstein equation read

∇̃2Φ+ =
2

Φ+ + Φ−
(∇̃Φ+)2 +

1

2
gs`

4
s (Φ+ + Φ−)2

∑

i

δ(D3i) (D.2a)

∇̃2Φ− =
2

Φ+ + Φ−
(∇̃Φ−)2 +

1

2
gs`

4
s (Φ+ + Φ−)2

∑

i

δ(D3i) (D.2b)

R̃mn =
2

(Φ+ + Φ−)2
∇̃(mΦ+∇̃n)Φ− (D.2c)

where we use ∇̃, etc., to denote quantities related to the unwarped, internal metric g̃mn. We

treat the anti-D3-branes as a perturbation to an imaginary self-dual background, in which

Φ+ ≈
2r4

L4
and Φ− = 0, (D.3)

L4 ∝ gsND3`
4
s, and the internal metric is taken to be the conifold, a cone over T1,1,

g̃mndym dyn = dr2 + r2ds2
T1,1 = dr2 + r2ğijdΨi dΨj . (D.4)

We linearize the system of equations (D.2) using the expansions27

g̃mn = g̃(0)
mn + δg̃mn (D.5a)

δg̃rr =
∑

Is

τ Is(r)YIs(Ψ) (D.5b)

δg̃rθ =
∑

Iv

bIv(r)YIvθ (Ψ) (D.5c)

δg̃θφ =
∑

Is

1

5
πIs(r)ğθφYIs(Ψ) +

∑

It

φIt(r)YItθφ(Ψ) (D.5d)

Φ− = Φ(0)

− + δΦ(1)

− (r,Ψ) =
∑

Is

δΦIs
− (r)YIs(Ψ) (D.5e)

where YIs(Ψ), YIvθ (Ψ) and YItθφ(Ψ) are the scalar, transverse vector, and transverse traceless

tensor harmonics on T1,1, with appropriate Laplacian eigenvalues λ(Is), λ(Iv), and λ(It),

respectively.

27We use the conventions of [53], except that angular indices are denoted θ, φ, . . . , g̃heremn = gtheremn , and

ğhereij = g̃thereθφ .
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The Einstein metric on T1,1 is

ds2
T1,1 =

1

6

(
dθ2

1 + sin2 θ1 dϕ2
1

)
+

1

6

(
dθ2

2 + sin2 θ2 dϕ2
2

)

+
1

9
(cos θ1 dϕ1 + cos θ2 dϕ2 + dψ)2 , (D.6)

and in these coordinates a basis of scalar harmonics is given by

YIs(ϕ1, θ1, ϕ2, θ2, ψ) = ei
R
2
ψeim1ϕ1eim2ϕ2d

(j1)

m1
R
2

(θ1)d
(j2)

m2
R
2

(θ2) (D.7)

where Is ≡ {j1,m1, j2,m2, R} is a multi-index, d
(j)
m1m2(θ) is the Wigner (small) d-matrix,

and θi ∈ [0, π), φi ∈ [0, 2π), and ψ ∈ [0, 4π). We will only need the scalar harmonics in the

following, with eigenvalues λs(j1, j2, R) = 6(j1(j1 + 1) + j2(j2 + 1)−R2/8).

We will only focus on the radial scaling of the dominant metric perturbation. The

presence of the anti-D3-brane charge on the NS5-brane may be interpreted as N anti-

D3-branes smeared over the two-cycle wrapped by the NS5-brane. The backreaction is

heavily dependent on the geometric details of this smearing, so the reported radial scalings

may be reduced by suitable geometric tuning. However, we expect a generic smearing to

source all possible angular modes and any order-of-magnitude estimates to be set by the

dominant mode.

When placed in the background (D.3), the anti-D3-branes will feel a force towards small

r. In the actual configuration, interactions with the anti-NS5-brane provide a stabilizing

force that keeps the three-brane charge localized around the two-cycle, but the system (D.2)

does not account for this force. The effects of the stabilizing force could be included by

sourcing appropriate perturbations in the warped throat, but doing so would leave the

radial scaling of the dominant perturbation unchanged, and so our analysis applies in

any case.

For an anti-D3-brane at (r′,Ψ′), we find that

δΦIs
− (r; r′,Ψ′) = − 1

∆s

gs`
4
s

L4

r′4

L4

((
r′

r

)2+∆s

θ(r − r′) +

(
r

r′

)∆s−2

θ(r′ − r)
)
YIs(Ψ′), (D.8)

so in the area of interest,

δΦIs
− (r; r′,Ψ′) ∝ − 1

∆s

N

ND3

r′4

L4

(
r′

r

)2+∆s

, (D.9)

where ∆s ≡
√

4 + λ(Is). This Φ− profile induces a metric perturbation

π0(r) = 0 πIs(r) ∝ r2 N

ND3

(
r′

r

)6+∆s

, (D.10a)

τ0(r) ∝ N

ND3

(
r′

r

)8

τ Is(r) ∝ − N

ND3

(
r′

r

)6+∆s

. (D.10b)

From the spectroscopy of T1,1, the lowest scalar mode has quantum numbers ( 1
2 ,

1
2 ,±1)

and ∆s = 7/2, so the dominant metric perturbation is

δg̃mndym dyn ∝ N

ND3

(
r′

r

)19/2

Y 1
2
, 1
2
,1(Ψ) r2ğθφ dΨθ dΨφ (D.11)
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where Y 1
2
, 1
2
,1(Ψ) is some real superposition of angular harmonics with

(j1, j2, R) = (1
2 ,

1
2 ,±1).

The perturbations in both the warp factor and internal metric will alter the gauge

coupling function,
8π2

g2
YM

=
4π

`4s

∫

Σ4

d4ξ
√
g̃4 e
−4A, (D.12)

on a stack of D7-branes wrapping a divisor Σ4, such that

δ

(
8π2

g2
YM

)
=

4π

`4s

∫

Σ4

d4ξ
√
g̃4

(
−2Φ−2

+

(
δΦ(1)

+ + δΦ(1)

−
)

+ Φ−1
+ g̃abδg̃ab

)
. (D.13)

Away from the NS5-brane, the supergravity approximation becomes accurate and we have

shown above N D3-branes induce an O(N/ND3) fractional perturbation. This contribution

is then

δ

(
8π2

g2
YM

)
∝ ND3

∫

Σ4

d4ξ
√
g̃4 r

−4
(
− 2Φ−1

+

(
δΦ(1)

+ + δΦ(1)

−
)

+ g̃abδg̃ab
︸ ︷︷ ︸

O(N/ND3)

)
∝ N. (D.14)
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