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Abstract: We analyse for the first time the CP violating ratio ε′/ε in K → ππ decays in

leptoquark (LQ) models. Assuming a mass gap to the electroweak (EW) scale, the main

mechanism for LQs to contribute to ε′/ε is EW gauge-mixing of semi-leptonic into non-

leptonic operators, which we treat in the Standard Model effective theory (SMEFT). We

perform also the one-loop decoupling for scalar LQs, finding that in all models with both

left-handed and right-handed LQ couplings box-diagrams generate numerically strongly

enhanced EW-penguin operators Q8,8′ already at the LQ scale. We then investigate cor-

relations of ε′/ε with rare Kaon processes (KL → π0νν̄, K+ → π+νν̄, KL → π0`¯̀,

KS → µµ̄, ∆MK and εK) and find that even imposing only a moderate enhancement

of (ε′/ε)NP = 5× 10−4 to explain the current anomaly hinted by the Dual QCD approach

and RBC-UKQCD lattice QCD calculations leads to conflicts with experimental upper

bounds on rare Kaon processes. They exclude all LQ models with only a single coupling

as an explanation of the ε′/ε anomaly and put strong-to-serious constraints on parameter

spaces of the remaining models. Future results on K+ → π+νν̄ from the NA62 collab-

oration, KL → π0νν̄ from the KOTO experiment and KS → µµ̄ from LHCb will even

stronger exhibit the difficulty of LQ models in explaining the measured ε′/ε, in case the

ε′/ε anomaly will be confirmed by improved lattice QCD calculations. Hopefully also

improved measurements of KL → π0`¯̀ decays will one day help in this context.
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1 Introduction

Leptoquarks (LQs) are very special new particles as they couple directly quarks to leptons

and consequently carry both baryon and lepton number, B and L. Moreover, they are

strongly interacting, carry fractional electric charges but in contrast to quarks they are

bosons: either scalars or vectors [1–4]. Because of these rather special properties of LQs

the phenomenological implications of models containing them are markedly different than

the ones where new scalars and gauge bosons couple directly only leptons to leptons and

quarks to quarks.

Indeed quite generally the pattern of flavour violations within LQ models is as follows.

• The semi-leptonic and leptonic decays of mesons are privileged as in these models

they can naturally appear already at tree-level. This applies in particular to many

rare decays which are loop suppressed within the SM. Therefore, the presence of

departures from SM expectations for such decays can naturally be explained in some

LQ models.

• On the other hand all non-leptonic decays of mesons and also purely leptonic processes

are loop-suppressed within LQ models.

• In consequence, large LQ effects in semi-leptonic and leptonic decays of mesons do

not necessarily imply large modifications of SM predictions for non-leptonic observ-

ables for which the SM, with few notable exceptions discussed below, offers a good

description of the data. On the other hand in view of a very strong suppression of

FCNCs in purely leptonic processes within the SM, still large LQ effects in these

processes can be found in spite of their loop suppression providing thereby strong

constraints on LQ models.

• Moreover, it should be emphasized that in LQ models in which the only new particles

are LQs, the fermions exchanged in the loops are leptons in non-leptonic meson decays

but SM quarks in the case of purely leptonic processes. Thus these processes are

sensitive to the sum over all LQ couplings of the particles in the loop.

Most flavour analyses of LQs in the literature concentrated on semi-leptonic decays

of mesons, purely leptonic processes and B0
s,d − B̄0

s,d mixing. We refer to selected recent

papers [5–10] for further references to a very rich literature. In this context, the loop-

suppression of LQ contributions to non-leptonic transitions is certainly useful for those

non-leptonic observables for which the SM predictions agree well with data as strong con-

straints on LQ parameters from them can be avoided making the explanation of B physics

anomalies easier.

In the present paper we will address the ratio ε′/ε and its correlation with rare Kaon

decays, which to our knowledge has never been studied in LQ models. This is motivated by

the recent results on ε′/ε from lattice QCD [11, 12] and Dual QCD large N approach [13, 14]

that have shown the emerging anomaly in ε′/ε [15] with its value in the SM being signif-

icantly below the experimental world average from NA48 [16] and KTeV [17, 18] collab-

orations. This finding has been confirmed in [19]. We will assume a mass gap between
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the new physics scale of the order of the LQ mass µΛ ∼ MLQ and the electroweak (EW)

scale µew, which is conveniently done in the framework of Standard Model effective theory

(SMEFT). In our analysis of LQ models we will assume nonvanishing contributions to ε′/ε

to explain the anomaly, and find that it would automatically imply too large deviations in

KL → π0νν̄, K+ → π+νν̄, KS → µµ̄ and KL → π0`¯̀ decays. We will also point out the

important role of the KL −KS mass difference, ∆MK , even if CP-conserving, and also of

εK for such analyses.

While our paper will deal in details with ε′/ε, rare Kaon decays, ∆MK and εK in LQ

models, we will present first general formulae in the framework of SMEFT for the interplay

of semi-leptonic operators, who’s Wilson coefficients receive tree-level contributions in these

models, with non-leptonic operators that are generated through renormalisation group

(RG) effects at one-loop level. This should allow in the future to analyse systematically

ε′/ε in other models with a similar pattern of flavour violation.

It should also be emphasized that the ε′/ε anomaly is a challenge for those analyses

of B-physics anomalies in which all NP couplings have been chosen to be real and those to

the first generation set to zero. It should also be realised that the anomalies RD and RD∗

being very significant can be in LQ models explained through a tree-level exchange, while

the ε′/ε anomaly, being even larger, if the bound on ε′/ε in [13, 14] is assumed, can only

be addressed in these models at one-loop level. This shows in a different manner that the

hinted ε′/ε anomaly is a big challenge for LQ models.

The outline of our paper is as follows. In section 2 we will summarise briefly the

present status of ε′/ε and we will list the relevant operators contributing to it. We will

also briefly discuss KL → π0νν̄, K+ → π+νν̄, KS → µµ̄, KL → π0`¯̀, ∆MK and εK .

In section 3 we will first list all semi-leptonic and non-leptonic operators in the SMEFT

that are relevant for our paper and provide for the most important ones the results of

decoupling of LQs. Subsequently we will list RG equations that are responsible for the

generation of the Wilson coefficients of four-quark operators in SMEFT from semi-leptonic

four-fermion operators. This will allow us to calculate the Wilson coefficients of standard

low-energy operators of section 2 in terms the Wilson coefficients of SMEFT semi-leptonic

operators. We further provide the one-loop decoupling of scalar LQs in section 3. Having

these equations we will in section 4 analyse ε′/ε in all LQ models taking constraints from

the processes listed above into account. Our main results are given in numerous figures

that demonstrate strong correlations of LQ contributions in ε′/ε and rare Kaon processes

in these models, and showing in part strong conflicts with existing experimental bounds. In

section 5 we summarise the results of our analysis, also high-lighted in table 3, and provide

further remarks. Useful details on LQ models and ε′/ε are collected in four appendices.

2 Preliminaries on ε′/ε and rare Kaon decays

After a short recollection of ε′/ε itself, we provide in this section basic information on rare

decays K → πνν̄, KL → π`¯̀ and KS → µµ̄ that turn out to be strongly related to ε′/ε

in LQ scenarios. Subsequently we continue with ∆MK and εK , which place also strong

constraints on LQ models in the presence of ε′/ε anomaly.
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2.1 ε′/ε

In our work, we consider only the operators that are part of the SM effective Hamiltonian

given in (D.1) and their chirality-flipped analogues, with the following operators

QCD-Penguins:

Q3 = (s̄d)V−A
∑

q=u,d,s,c,b

(q̄q)V−A, Q4 = (s̄αdβ)V−A
∑

q=u,d,s,c,b

(q̄βqα)V−A,

Q5 = (s̄d)V−A
∑

q=u,d,s,c,b

(q̄q)V+A, Q6 = (s̄αdβ)V−A
∑

q=u,d,s,c,b

(q̄βqα)V+A,
(2.1)

Electroweak Penguins:

Q7 =
3

2
(s̄d)V−A

∑
q=u,d,s,c,b

eq (q̄q)V+A, Q8 =
3

2
(s̄αdβ)V−A

∑
q=u,d,s,c,b

eq (q̄βqα)V+A,

Q9 =
3

2
(s̄d)V−A

∑
q=u,d,s,c,b

eq (q̄q)V−A, Q10 =
3

2
(s̄αdβ)V−A

∑
q=u,d,s,c,b

eq (q̄βqα)V−A.

(2.2)

Here, α, β denote colour indices and eq the electric quark charges reflecting the electroweak

origin of Q7, . . . , Q10. Finally, (s̄d)V±A ≡ s̄αγµ(1± γ5)dα.

The dominant contributions to ε′/ε at the low-energy scale come from Q6 and Q8 op-

erators for which the matrix elements are known from RBC-UKQCD collaboration [11, 12].

Using these results and including isospin breaking corrections one finds [15]

(ε′/ε)SM = (1.9± 4.5)× 10−4, (2.3)

with a similar result obtained in [11, 19]. The lattice results for hadronic matrix elements

of Q6 and Q8 are supported by the calculations in the Dual QCD approach [13, 14] from

which one finds the upper bound

(ε′/ε)SM ≤ (6.0± 2.4)× 10−4. (2.4)

All these results are far below the world average from NA48 [16] and KTeV [17, 18]

collaborations

(ε′/ε)exp = (16.6± 2.3)× 10−4 (2.5)

hinting for the presence of new physics in ε′/ε so that we can write [20]

ε′

ε
=

(
ε′

ε

)
SM

+

(
ε′

ε

)
NP

,

(
ε′

ε

)
NP

≡ κε′ × 10−3, 0.5 ≤ κε′ ≤ 1.5. (2.6)

It should be emphasized that present lattice results in [11, 12] are not accurate enough

to claim the presence of new physics in ε′/ε with high confidence. It is rather the bound

from the Dual QCD approach [13, 14] in (2.4) that gives us the strongest motivation for

this analysis.
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As stressed in [20] the only NP scenarios that have a chance to provide such a large

upward shift in ε′/ε are those which can modify significantly the Wilson coefficients of

(V ∓ A) ⊗ (V ± A) operators Q6,6′ and Q8,8′ at the low scale µ ≈ mc. Yet it is often

sufficient that one of the operators Q5,5′,7,7′ is generated at the electroweak or higher

energy scale. Then RG evolution to the low scale µ at which hadronic matrix elements are

evaluated generate subsequently contributions of Q6,6′,8,8′ to ε′/ε, respectively. In section 3

we will find that LQ models can generate Q7,5′ at the intermediate electroweak scale µew

via EW gauge-mixing of semi-leptonic into non-leptonic operators, and that one-loop box-

diagram contributions can generate Q6,6′,8,8′ at the very LQ scale µΛ in LQ models with

left-handed and right-handed LQ couplings. Useful phenomenological expressions for ε′/ε,

derived in [21] and extended here, are collected in appendix D. As can be seen in (D.6),

ε′/ε depends on the imaginary part of the Wilson coefficients and hence on the imaginary

parts of the underlying fundamental couplings.

Several examples of NP scenarios that are able to provide sufficient upward shift in

ε′/ε are presented in [20]. These include in particular tree-level Z ′ exchanges with explicit

realisation in 331 models [22, 23] or models with tree-level Z exchanges [24, 25] with explicit

realisation in models with mixing of heavy vector-like fermions with ordinary fermions [21]

and Littlest Higgs model with T-parity [26]. Also simplified Z ′ scenarios [27] are of help

here. But the interest in studying LQ models in this context is their ability in the expla-

nations of B-physics anomalies [5–10], which some of the scenarios listed above are not

able to do.

2.2 K+ → π+νν̄, KL → π0νν̄, KL → π0`¯̀ and KS → µµ̄

As will be explained in section 3 in more detail, EW gauge mixing of semi-leptonic operators

into non-leptonic ones in SMEFT gives rise to correlations between ε′/ε and observables in

semi-leptonic Kaon decays. Especially the branching fractions of KL → π0νν̄, KL → π0`¯̀

and KS → µµ̄ are highly sensitive to imaginary parts of Wilson coefficients, with additional

constraints from K+ → π+νν̄. But as pointed out in [20] also ∆MK , even if CP-conserving,

depends sensitively on these imaginary parts.

The rare decays in question are described by the general ∆F = 1 Hamiltonian of the

semi-leptonic FCNC transition of down-type quarks into leptons and neutrinos below µew

Hd→d(``,νν) = −4GF√
2
λjit

αe
4π

∑
k

Cbajik Qbajik + h.c. (2.7)

with a, b being lepton indices, i, j down-quark indices and

λjiu ≡ V ∗ujVui, u = {u, c, t}. (2.8)

There are eight semi-leptonic operators relevant for di`a → dj`b when considering UV

completions that give rise to SMEFT above the electroweak scale [28]

Qbaji9(9′) = [d̄jγµPL(R)di][¯̀bγ
µ`a], Qbaji10(10′) = [d̄jγµPL(R)di][¯̀bγ

µγ5`a],

QbajiS(S′) = [d̄jPR(L)di][¯̀b`a], QbajiP (P ′) = [d̄jPR(L)di][¯̀bγ5`a],
(2.9)
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and two for diνa → djνb

QbajiL(R) = [d̄jγµPL(R)di][ν̄bγ
µ(1− γ5)νa]. (2.10)

The SM contribution to these Wilson coefficients is lepton-flavour diagonal

Cbajik = Ck,SM δba +
π

αe

v2

λjit
Cbajik,NP (2.11)

where v = 246 GeV and a normalisation factor has been introduced for the NP contribution

that proves convenient for later matching with SMEFT in section 3.6. The non-vanishing

SM contributions

C9,SM =
Y (xt)

s2
W

− 4Z(xt), C10,SM = −Y (xt)

s2
W

, CL,SM = −X(xt)

s2
W

, (2.12)

are given by the gauge-independent functions X(xt), Y (xt) and Z(xt) [29] that depend on

the ratio xt ≡ m2
t /m

2
W of the top-quark and W -boson masses. Here sW ≡ sin θW .

2.2.1 K → πνν̄

The branching fractions of the K → πνν̄ modes involve a sum over all lepton flavours of

the neutrinos in the final state

B(KL → π0νν̄) =
κL

3λ10

∑
a,b

Im2
(
λsdt X

ab
t

)
, (2.13)

B(K+ → π+νν̄) =
κ+(1 + ∆EM)

3λ10

∑
a,b

[
Im2

(
λsdt X

ab
t

)
+ Re2

(
λsdc X

aa
c + λsdt X

ab
t

)]
, (2.14)

with more details on these general formula in appendix C.2 of [21]. As mentioned above,

B(KL → π0νν̄) is especially sensitive to imaginary parts of couplings. The LQ tree-level

exchange contributes to the short-distance quantity Xab
t ≡ X(xt)δab+X

ab
LQ with the lepton-

flavour diagonal SM contribution [30–33]

X(xt) = 1.481± 0.009 (2.15)

as extracted in [34] from original papers. The charm contribution Xaa
c of the SM in

K+ → π+νν̄ is also lepton-flavour diagonal. The LQ contribution enters the Wilson

coefficients at µew as

Xab
LQ = −s2

W v
2 π

αe

(
CbasdL,NP + CbasdR,NP

)
λsdt

(2.16)

with matching conditions to SMEFT in (3.53). The SM predictions [21]

B(KL → π0νν̄)SM =
(
3.2+1.1
−0.7

)
× 10−11, (2.17)

B(K+ → π+νν̄)SM =
(
8.5+1.0
−1.2

)
× 10−11 (2.18)
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can be confronted with the current upper bound [35]

B(KL → π0νν̄)exp < 2.6× 10−8, (2.19)

and the measurement [35]

B(K+ → π+νν̄)exp =
(
17.3+11.5

−10.5

)
× 10−11. (2.20)

The latter measurement can be converted into an upper bound on B(KL → π0νν̄) < 1.45×
10−9, known as Grossman-Nir bound [36], which is stronger than the current experimental

upper bound (2.19).

We elaborate a bit more on the specific structure of the branching fractions by ex-

panding the imaginary parts

B(KL → π0νν̄) = B(KL → π0νν̄)SM

+
κL
λ10

1

3

2 Im(λsdt XSM)
∑
a

Im(λsdt X
aa
LQ) +

∑
a,b

Im2(λsdt X
ab
LQ)

 . (2.21)

The interference of the SM×NP in the second line can be constructive or destructive,

whereas the NP×NP contribution is purely constructive to the SM contribution. It is

customary to neglect the NP×NP contribution since it is formally suppressed by v2/µΛ
2

w.r.t. SM×NP, but in view of the fact that the upper experimental bound (2.19) on B(KL →
π0νν̄) is orders above the SM prediction (2.17), it turns out to be the by far dominant

contribution and we keep it here. The expression for B(K+ → π+νν̄) receives analogous

additional terms of the real parts of Xab
LQ that are in principle independent parameters,

but in this case the experimental constraint (2.20) is much more stringent. Moreover, the

SM×NP real parts can interfere constructively or destructively with the SM and imaginary

LQ parts. Yet, these effects are naturally cut off due to the presence of the constructive

NP×NP contribution of the real parts themselves for large couplings. In addition, similar

to KL → π0νν̄ the constructive NP×NP contribution from imaginary parts will play the

most important role in our analysis.

2.2.2 KL → π0`¯̀

Generalising the formulae in [37–40] to include NP contributions and adapting them to our

notations we find

B(KL → π0`¯̀) =
(
C`dir ± C`int |as|+ C`mix |as|

2 + C`CPC

)
× 10−12, (2.22)

where [40]

Cedir = (4.62± 0.24)[(ωe7V )2 + (ωe7A)2], Ceint = (11.3± 0.3)ωe7V ,

Cµdir = (1.09± 0.05)[(ωµ7V )2 + 2.32(ωµ7A)2], Cµint = (2.63± 0.06)ωµ7V ,
(2.23)

and
Cemix = 14.5± 0.05, CeCPC ' 0, |as| = 1.2± 0.2,

Cµmix = 3.36± 0.20, CµCPC = 5.2± 1.6.
(2.24)
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The SM and NP contributions enter through

ω`7V =
1

2π
(P0 + C9,SM)

[
Imλsdt

1.407× 10−4

]
+

1

αe

v2

2

Im
[
C``sd9,NP + C``sd9′,NP

]
1.407× 10−4

, (2.25)

ω`7A =
1

2π
C10,SM

[
Imλsdt

1.407× 10−4

]
+

1

αe

v2

2

Im
[
C``sd10,NP + C``sd10′,NP

]
1.407× 10−4

(2.26)

where P0 = 2.88± 0.06 [41] and ` either e or µ.

The expressions for C``sd9,NP and C``sd10,NP in terms of SMEFT coefficients are given in (3.53).

NP contributions do not depend on λsdt but the factor 1.407 × 10−4 is present because it

has been used in [40] to obtain the numbers in (2.23) and (2.24).

The present experimental bounds

B(KL → π0eē)exp < 28× 10−11, [42] (2.27)

B(KL → π0µµ̄)exp < 38× 10−11, [43] (2.28)

are still by one order of magnitude larger than the SM predictions [40]

B(KL → π0eē)SM = 3.54+0.98
−0.85

(
1.56+0.62

−0.49

)
× 10−11 , (2.29)

B(KL → π0µµ̄)SM = 1.41+0.28
−0.26

(
0.95+0.22

−0.21

)
× 10−11 (2.30)

with the values in parentheses corresponding to the “−” sign in (2.22), that is the de-

structive interference between directly and indirectly CP-violating contributions. The last

discussion of the theoretical status of this interference sign can be found in [44] where the

results of [38, 39, 45] are critically analysed. From this discussion, constructive interference

seems to be favoured though more work is necessary. We will therefore use this constructive

interference in our numerical calculations. However, when the constraint κε′ ≥ 0.5 will be

imposed, in LQ models NP contributions present in directly CP violating contributions

will by far dominate the branching ratios and the sign in question will not matter.

2.2.3 KS → µµ̄

The decay KS → µµ̄ provides another sensitive probe of imaginary parts of short-distance

couplings. Its branching fraction receives long-distance (LD) and short-distance (SD) con-

tributions, which are added incoherently in the total rate [46, 47]. This is in contrast to

the decay KL → µµ̄, where LD and SD amplitudes interfere and moreover B(KL → µµ̄) is

sensitive to real parts of couplings. The SD part of B(KS → µµ̄) is given as

B(KS → µµ̄)SD = τKS

G2
Fα

2
e

8π3
mKf

2
Kβµm

2
µ

× Im2

[
λsdt C10,SM +

π

αe
v2
(
Cµµsd10,NP − C

µµsd
10′,NP

)]
.

(2.31)

Recently the LHCb collaboration improved the upper bound on KS → µµ̄ by one order

of magnitude [48]

B(KS → µµ̄)LHCb < 0.8 (1.0)× 10−9 at 90% (95%) C.L. (2.32)
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to be compared with the SM prediction [47, 49]

B(KS → µµ̄)SM = (4.99LD + 0.19SD)× 10−12 = (5.2± 1.5)× 10−12. (2.33)

While this bound is still by two orders of magnitude above its SM value, it turns out

that for several LQ models, even the saturation of this bound would barely remove the

ε′/ε anomaly, provided it is due to the muonic LQ couplings. There are good future

prospects to improve this bound, LHCb expects [50] with 23 fb−1 sensitivity to regions

B(KS → µµ̄) ∈ [4, 200]× 10−12, close to the SM prediction.

2.3 ∆MK and εK

We will next investigate whether additional constraints on LQ models come from ∆S = 2

transitions, that is εK and the KL −KS mass difference ∆MK . At first sight one would

think that it is εK which is more important as similar to ε′/ε it is related to CP violation,

while ∆MK is CP-conserving. Yet as pointed out in [20] when NP is required to have

significant imaginary couplings, it is ∆MK and not εK which is directly correlated with

ε′/ε. The point is that εK is governed by the imaginary part of the square of complex

couplings and consequently is governed by the product of real and imaginary couplings.

As ε′/ε sets the constraint only on imaginary couplings, the εK constraint can be removed

by simply choosing the couplings to be purely imaginary. Of course it could turn out one

day that some amount of NP in εK is required as suggested in [51], but even in this case

choosing real couplings to be sufficiently small one can obtain agreement with experiment.

But ∆MK is governed by the real part of the square of complex couplings and conse-

quently is governed by the difference between the squares of real and imaginary couplings.

This difference cannot be zero as in the presence of large real and imaginary couplings one

would violate the εK constraint. Therefore as analysed in details in certain Z ′ scenarios

in [20] the necessity of large imaginary couplings required by ε′/ε implies automatically

significant negative NP contributions to ∆MK . In fact this happens also in LQ models.

Let us recall that the experimental value of ∆MK is very precise [52]

(∆MK)exp = M(KL)−M(KS) = 3.484(6)× 10−15 GeV. (2.34)

Presently the contribution of the SM dynamics to ∆MK is subject to large theoretical un-

certainties. In the SM ∆MK is described by the real parts of the box diagrams with charm

quark and top quark exchanges, whereby the contribution of the charm exchanges is by far

dominant. Unfortunately, the uncertainties in the short distance QCD corrections to the

charm contribution amount to roughly ±40% with the central value somewhat below the

experimental one [53]. Moreover, there are also non-perturbative long distance contribu-

tions that are known to amount to 20±10% of the measured ∆MK [54, 55] when calculated

using the large N approach to QCD. In the future they should be known more precisely

from lattice QCD [56, 57]. For the time being the rough picture is that box diagrams

contribute 80% of the measured ∆MK with the rest given by long distance contributions

and possibly new dynamics beyond the SM. But even if presently we do not know whether

these new dynamics will be required to enhance or suppress the SM prediction to agree

with data, it cannot be larger than roughly 40% of the experimental value.

– 8 –



J
H
E
P
0
2
(
2
0
1
8
)
1
0
1

In LQ models new contributions to ∆MK come from box diagrams with LQs and SM

lepton exchanges. As will be seen in our analysis, KL → π0`¯̀ decays with electrons or

muons in the final state put already severe constraints on most of LQ models, such that a

simultaneous compliance of this bound and an enhancement of ε′/ε with κε′ = 0.5 can take

place only through enhanced τ̄ τ s̄d couplings in models like U1. Such a coupling has a direct

impact on ∆MK through box diagrams with LQs, τ and in some models ντ exchanges and

it is of interest to see what are the implications of the ε′/ε anomaly on ∆MK in LQ models.

As far as models with vector LQs are concerned ∆MK cannot be reliably calculated

without a UV completion, but just looking at the Dirac structure of the resulting operators

we can anticipate in the corresponding models strong constraints for the case of simulta-

neous presence of right-handed and left-handed couplings as this would generate left-right

operators and very large contributions to ∆MK [20, 24]. In turn this will have implications

on box contributions to ε′/ε in these models.

The effective Hamiltonian for neutral meson mixing in the down-type quark sector

(did̄j → d̄idj with i 6= j) can be written as [58]

Hji∆F=2 = Nji
∑
a

Cjia Q
ji
a + h.c., Nji =

G2
F

4π2
M2
W

(
λjit

)2
(2.35)

with ij = ds for kaon mixing and ij = db, sb for Bd and Bs mixing, respectively. The set

of operators consists out of (5 + 3) = 8 operators [58],

QjiVLL = [d̄jγµPLdi][d̄jγ
µPLdi],

QjiLR,1 = [d̄jγµPLdi][d̄jγ
µPRdi], QjiLR,2 = [d̄jPLdi][d̄jPRdi],

QjiSLL,1 = [d̄jPLdi][d̄jPLdi], QjiSLL,2 = −[d̄jσµνPLdi][d̄jσ
µνPLdi],

(2.36)

which are built out of colour-singlet currents [d̄αj . . . d
α
i ][d̄βj . . . d

β
i ], where α, β denote colour

indices. The chirality-flipped sectors VRR and SRR are obtained from interchanging PL ↔
PR in VLL and SLL. In the SM only

CjiVLL(µew)|SM = S0(xt)δ
ji, S0(x) =

x(4− 11x+ x2)

4 (x− 1)2
+

3x3 lnx

2 (x− 1)3
(2.37)

is non-zero at the scale µew.

3 Decoupling of leptoquarks and SMEFT

Throughout we assume that the masses of LQs MLQ ∼ µΛ are much heavier than the

electroweak scale µew � µΛ, that is at least 1 TeV. Further the UV completion is assumed

to be perturbative and that LQs transform under the SM gauge group SU(3)c ⊗ SU(2)L ⊗
U(1)Y [1], see appendix A for details on LQ models, conventions and definitions. This

allows for a perturbative decoupling of LQs at µΛ and the use of SMEFT between the

scales µΛ and µew. In a second matching step at µew the heavy degrees of freedom of

the SM (W , Z, H, t) are decoupled and SMEFT is matched onto the low-energy effective
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theories of electroweak interactions introduced before in section 2. In this section we list

the SMEFT operators that are necessary for our analysis of ε′/ε and rare Kaon processes,

describe the LQ decoupling at tree- and one-loop level, collect the relevant parts of the RG

evolution from µΛ to µew and provide the matching onto the low-energy EFTs at µew.

Essentially, the tree-level decoupling of LQs gives rise to semi-leptonic four-fermion

(SL-ψ4) operators that govern semi-leptonic decays, which provide the majority of phe-

nomenological constraints on LQ models. The Wilson coefficients of non-leptonic (NL-ψ4)

operators that govern ε′/ε and other non-leptonic processes will be then generated at µew

by the RG evolution of the semi-leptonic coefficients from µΛ to µew via SU(2)L ⊗ U(1)Y

(EW) gauge-mixing. We note that the same EW gauge-mixing generates also leptonic ψ4

operators that govern purely leptonic processes, as previously discussed in the framework

of SMEFT in the context of violation of lepton flavour universality in B decays [59, 60]. LQ

models also generate direct contributions to ε′/ε at µΛ at one-loop level via QCD and EW

penguin diagrams as well as box-type diagrams. It turns out that due to the structure of

ε′/ε the QCD penguins are numerically less relevant as aforementioned EW gauge-mixing

effects of semi-leptonic operators. The same applies to EW penguins which contribute to

the non-logarithmic terms of EW gauge-mixing effects. Finally box-diagram contributions

are relevant in most of the models as discussed in section 4.

3.1 Semi- and non-leptonic operators in SMEFT

The SMEFT Lagrangian at dimension six

L(6) =
∑
k

C(6)
k O

(6)
k (3.1)

contains operators O(6)
k classified in full generality in [61, 62]. The Wilson coefficients

scale as C(6)
k ∼ 1/µΛ

2 with the new physics scale µΛ ∼ MLQ, which is for our purposes of

the order of the LQ mass. Ref. [62] removed certain redundant operators present in [61]

and we will use these results here. The corresponding RG evolution at one-loop of all

these operators has been calculated in [63–65] with the evolution governed by the Higgs

self-coupling λ [63], Yukawa couplings [64] and SM gauge interactions [65]. In the present

paper only the results from [65] will be relevant and we will recall them below in section 3.4.

We use the following notation for Wilson coefficients and operators in the corresponding

effective theories:

SMEFT: LSMEFT ∼ CaOa ,
∆F = 1, 2 low-energy EFTs: H∆F=1,2 ∼ CaQa .

(3.2)

Note the use of the Lagrangian L for SMEFT, but the Hamiltonian H for the low-energy

EFTs of ∆F = 1, 2 processes.1

There are 10 SL-ψ4 and 12 NL-ψ4 operators in SMEFT [62] collected in table 1. We

have omitted flavour indices on the operators but we will expose them whenever necessary.

1Note the relative sign L = −H that has to be kept in mind when deriving formulae below.
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semi-leptonic (SL-ψ4) non-leptonic (NL-ψ4)

(LL)(LL)
O(1)
`q (¯̀

pγµ`r)(q̄sγ
µqt) S1,3, U1,3 O(1)

qq (q̄pγµqr)(q̄sγ
µqt)

O(3)
`q (¯̀

pγµτ
I`r)(q̄sγ

µτ Iqt) S1,3, U1,3 O(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt)

(LL)(RR)

O`u (¯̀
pγµ`r)(ūsγ

µut) R2, Ṽ2 O(1)
qu (q̄pγµqr)(ūsγ

µut)

O`d (¯̀
pγµ`r)(d̄sγ

µdt) R̃2, V2 O(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Oqe (q̄pγµqr)(ēsγ
µet) R2, V2 O(1)

qd (q̄pγµqr)(d̄sγ
µdt)

O(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

(RR)(RR)

Oeu (ēpγµer)(ūsγ
µut) S1, Ũ1 Ouu (ūpγµur)(ūsγ

µut)

Oed (ēpγµer)(d̄sγ
µdt) S̃1, U1 Odd (d̄pγµdr)(d̄sγ

µdt)

O(1)
ud (ūpγµur)(d̄sγ

µdt)

O(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt)

(LR)(RL) O`edq (¯̀j
per)(d̄sq

j
t ) + h.c. U1, V2

(LR)(LR) O(1)
`equ (¯̀j

per)εjk(q̄
k
sut) S1, R2 O(1)

quqd (q̄jpur)εjk(q̄
k
sdt)

+h.c. O(3)
`equ (¯̀j

pσµνer)εjk(q̄
k
sσ

µνut) S1, R2 O(8)
quqd (q̄jpTAur)εjk(q̄

k
sT

Adt)

Table 1. Semi- and non-leptonic ψ4 operators in SMEFT. Chirality indices have been omitted on

SU(2)L doublet fields qL, `L and singlet fields uR, dR, eR, respectively. The τ I denote the Pauli

matrices and TA = λA/2 the SU(3)c color generators where λA are the Gell-Mann matrices. The

third column for semi-leptonic operators indicates which LQ models contribute in the tree-level

matching, see appendix B for details.

For example flavour indices in the most important (LL)(RR) non-leptonic operators and

in their Wilson coefficients are given as follows

[O(1)
qu ]prst = (q̄pLγµq

r
L)(ūsRγ

µutR), [C(1)
qu ]prst,

[O(1)
qd ]prst = (q̄pLγµq

r
L)(d̄sRγ

µdtR), [C(1)
qd ]prst.

(3.3)

3.2 Tree-level LQ decoupling

The special nature of LQs leads at tree-level, see figure 1a, only to SL-ψ4 SMEFT operators

in table 1. The results of a decoupling at the EW scale µew onto the low-energy EFT’s

governing ∆F = 1 charged- current and FCNC decays of mesons (see section 2.2) are

well known and allow easily to infer the corresponding matching relations for SMEFT

SL-ψ4 coefficients at µΛ, summarised in appendix B. The characteristic structure of these

coefficients for a process QiLa → QjLb are

[CSL−ψ4 ]jiba(µΛ) ∝
(Y χ
jb)
∗Y χ′

ia

M2
LQ

, (3.4)
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Qi Lb

La Qj

LQ

(a) .

Qi Qj

LQ

La

GA
µ

(b) .

Qi Qj

LQ

La

WA
µ , Bµ

Qi Qj

La

LQ

WA
µ , Bµ

(c) .

Qi QjLa

LQ

Ql Qk

LQ

Lb

(d) .

Figure 1. LQ Tree-level exchange (a) gives rise to semi-leptonic operators. One-loop contri-

butions to ε′/ε from QCD-penguins (b), EW-penguins (c) and box-type diagrams (d). Here

Q = {qL, uR, dR} and L = {`L, eR} are SM quark and lepton flavour eigenstates. The

SU(3)c ⊗ SU(2)L ⊗U(1)Y gauge bosons are denoted as GAµ , WA
µ and Bµ, respectively.

where Y χ (χ = L,R) stand for the Yukawa couplings of LQs to SM quarks Q = qL, uR, dR
and leptons L = `L, eR, depending on the specific LQ model, see appendix A. As will be

shown in detail in section 3.4 and section 3.5, they give rise to NL-ψ4 coefficients via EW

gauge-mixing at µew

[CNL−ψ4 ]ji··(µew) ∝ αe
4π

ln
µΛ

µew

Σji
χ,LQ

M2
LQ

, (3.5)

leading to 1) loop-suppression, 2) a logarithmic enhancement and 3) a characteristic sum

Σji
χ,LQ over lepton-flavour indices of the products of LQ Yukawa couplings with the same

chirality χ = (L,R). This latter quantity

Σji
χ,LQ ≡

∑
a

(Y χ
ja)
∗Y χ

ia (3.6)

is central to our analysis since it enters ε′/ε and other processes or contributions governed at

loop-level. They could be responsible for any potential deviation from the SM prediction

for ε′/ε. Moreover, each of the six couplings (i 6= j) entering Σji leads to correlations

between ε′/ε and other processes that depend on them, among which the most interesting

are those that depend more or less on Σji itself.

3.3 One-loop LQ decoupling

The NL-ψ4 coefficients receive direct contributions at µΛ from the LQ decoupling first at

one-loop. Loop-corrections constitute a principal problem in massive vector LQ models

when no full UV completion is specified. In the lack of a UV completion, simple cut-

off regularisation might be used [66], introducing an additional dependence on the cut-off

scale. On the other hand this issue is of no concern in scalar LQ models, for which we will

calculate these contributions in this section. There are QCD- and EW-penguin diagrams,

figure 1b and figure 1c, as well as box-type diagrams figure 1d.
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3.3.1 QCD penguins

QCD-penguin diagrams with LQs can contribute to the three operators2

[P(q)
4 ]ji = [q̄jLγµT

AqiL]
∑
k

[Q̄kγµTAQk],

[P(d)
4 ]ji = [d̄jRγµT

AdiR]
∑
k

[Q̄kγµTAQk], [P(u)
4 ]ji = [ūjRγµT

AuiR]
∑
k

[Q̄kγµTAQk],
(3.7)

depending on the LQ model. These operators are meant to be normalised as in (3.1). The

sum over flavour-diagonal quark currents∑
k

[Q̄kγµTAQk] ≡
∑
k

(
[q̄kLγ

µTAqkL] + [d̄kRγ
µTAdkR] + [ūkRγ

µTAukR]
)

(3.8)

arises from the quark-flavour universal gluon coupling and the matching might be performed

exploiting the generic formula given in [68] for the b→ s gluon off-shell vertex, see appendix

in [69] for more details. We refrain from a projection onto the operators in table 1 because

we will neglect the RG evolution from µΛ to µew for these operators,3 which is a loop

correction due to self-mixing. This will simplify the matching of SMEFT on low-energy

EFT at µew. For FCNC down-type transitions one has

[C(a)
4 ]ji(µew) =

αs
4π
rLQ

4,a

Σji
χ,LQ

M2
LQ

(a = q, d) (3.9)

with the constants

rS1
4,a =

δaq
18
, rS̃1

4,a =
δad
18
, rR2

4,a =
δaq
18
, rR̃2

4,a =
δad
9
, rS3

4,a =
δaq
6
, (3.10)

where δaq and δad are Kronecker symbols. The comparison with the EW mixing-induced

contributions (3.5) shows the same dependence on Σji
LQ. Further they are enhanced by

the ratio αs/αe ln−1(µΛ/µew). Numerically this amounts to roughly ≈ 15 ln−1(µΛ/µew) ∈
[3, 7] for µΛ ∈ [1, 10] TeV and µew = 100 GeV, aside from the constant factors rLQ

4,a and

corresponding ones in the SL-ψ4 coefficients. However, as will be shown in detail below and

given in (D.6), this numerical enhancement of QCD-penguin Wilson coefficients becomes

outweighed by another numerical enhancement of EW-penguin Wilson coefficients below

µew in the expression of ε′/ε, leaving the EW mixing-induced contributions as the dominant

contributions in most LQ models.

3.3.2 EW penguins

The one-loop contributions to ε′/ε from EW-penguin diagrams in figure 1c at the scale µΛ

are actually the next-to-leading order (NLO) corrections to contributions from the tree-

level decoupling in section 3.2, as will become evident once the RG evolution of SMEFT in

section 3.4 is taken into account. In fact, those diagrams in figure 1c that at low energies

2The subindex “4” is reminiscent to the QCD-penguin operator P4 in the basis of [67].
3We denote them by Pi because they are linear combinations of the non-redundant set Oj given in [62].
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represent QED penguin diagrams, contain infrared divergences that are cancelled in the

matching on SMEFT by the ultraviolet divergences of diagrams with SL-ψ4 insertions

when closing the lepton lines to a loop and radiating off a SU(2)L or U(1)Y gauge boson

respectively. These are the very same diagrams that determine the anomalous dimensions

of SMEFT operators [65]. Parametrically such NLO EW-penguin terms contribute to

the NL-ψ4 Wilson coefficients as in (3.5), just without the logarithmic enhancement and

therefore we will not further consider them throughout.

3.3.3 Box diagrams

The most general quark transitions QiQ̄k → QjQ̄l from LQ box diagrams with Q =

(qL, dR, uR) generate in SMEFT

LSMEFT ⊃
∑
a

∑
jikl

[C(o)
a ]jikl [P(o)

a ]jikl (3.11)

with non-leptonic operators of colour-octet type

[P(o,1)
qq ]jikl = [q̄j,αL γµq

i,β
L ][q̄k,βL γµql,αL ], S1(LL), R2(RR), S3, U1(LL), U3

[P(o,3)
qq ]jikl = [q̄j,αL γµτ

Iqi,βL ][q̄k,βL γµτ Iql,αL ], R2(RR), S3, V2(RR), U3

[P(o)
dd ]jikl = [d̄j,αR γµd

i,β
R ][d̄k,βR γµdl,αR ], S̃1, R̃2, U1(RR), V2(LL)

[P(o)
qd ]jikl = [q̄j,αL γµq

i,β
L ][d̄k,βR γµdl,αR ], U1(LR), V2(RL)

[P(o)
qu ]jikl = [q̄j,αL γµq

i,β
L ][ūk,βR γµul,αR ], S1(LR), R2(RL)

(3.12)

where α, β denote SU(3)c colour indices. Here we have retained only those that con-

tribute to down-type quark transitions and show corresponding LQ models that give rise

to each operator. Included are the combinations of chirality χχ′ of the couplings Σji
χΣkl

χ′

for LQ models with two couplings (U1, V2, S1, R2) that can be easily understood from (A.1)

and (A.2). They are linear combinations of the NL-ψ4 operators in table 1: O(1,8)
qq,qd,qu, Odd,

which can be seen upon using

TAij T
A
kl =

1

2

(
δilδjk −

1

Nc
δijδkl

)
, (3.13)

or in the case of P(...)
qq,dd Fierz relations.

The explicit matching results of the Wilson coefficients [C(o,... )
a ]jikl at µΛ for scalar LQ

models S1,3, S̃1, R2 and R̃2 are provided in appendix C. We will omit the RG evolution from

µΛ to µew as in the case of QCD penguin contributions. A main distinguishing feature of

boxes compared to QCD and EW penguins is that the gauge coupling is replaced by an

additional combination of LQ couplings

[C(o)
a ]jikl ∝

Σkl
χ′

(4π)2

Σji
χ

M2
LQ

. (3.14)
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3.4 Renormalisation group equations

The RG equations have the general structure

Ċa ≡ (4π)2µ
dCa
dµ

= γab Cb (3.15)

with γab being the entries of a very big anomalous dimension matrix (ADM). The ADM

is known for SMEFT at one-loop and the entries relevant here have been presented

in [65]. For small γab/(4π)2 � 1 the approximate solution retains only the first leading

logarithm (1stLLA)

Ca(µew) =

[
δab −

γab
(4π)2

ln
µΛ

µew

]
Cb(µΛ), (3.16)

which is sufficient as long as the logarithm is not too large, so that also γab/(4π)2 ln µΛ
µew
� 1

holds. We should stress that RG effects due to top-quark Yukawa mixing considered

recently in various analyses [24, 59, 60] are absent here [64].

In what follows we list RG equations which govern the generation of NL-ψ4 coefficients

from SL-ψ4 ones. For NL-ψ4 (L̄L)(L̄L) operators we find using [65]

[Ċ(1)
qq ]prst = −1

9
g2

1

(
[C(1)
`q ]wwstδpr + [C(1)

`q ]wwprδst + [Cqe]stwwδpr + [Cqe]prwwδst
)
, (3.17)

[Ċ(3)
qq ]prst = +

1

3
g2

2

(
[C(3)
`q ]wwstδpr + [C(3)

`q ]wwprδst

)
. (3.18)

For NL-ψ4 (R̄R)(R̄R) operators we find

[Ċuu]prst = −4

9
g2

1

(
[Ceu]wwstδpr + [Ceu]wwprδst + [C`u]wwstδpr + [C`u]wwprδst

)
, (3.19)

[Ċdd]prst = +
2

9
g2

1

(
[Ced]wwstδpr + [Ced]wwprδst + [C`d]wwstδpr + [C`d]wwprδst

)
, (3.20)

[Ċ(1)
ud ]prst = +

4

9
g2

1

(
[C`u]wwprδst + [Ceu]wwprδst − 2[C`d]wwstδpr − 2[Ced]wwstδpr

)
. (3.21)

For NL-ψ4 (L̄L)(R̄R) operators we find

[Ċ(1)
qu ]prst = −2

9
g2

1

(
4[C(1)

`q ]wwprδst + 4[Cqe]prwwδst + [C`u]wwstδpr + [Ceu]wwstδpr

)
, (3.22)

[Ċ(1)
qd ]prst = +

2

9
g2

1

(
2[C(1)

`q ]wwprδst + 2[Cqe]prwwδst − [C`d]wwstδpr − [Ced]wwstδpr
)
, (3.23)

and finally for all other NL-ψ4 operators

[Ċ(8)
ud ]prst = 0, [Ċ(8)

qu ]prst = 0, [Ċ(1)
quqd]prst = 0,

[Ċ(8)
qd ]prst = 0, [Ċ(8)

quqd]prst = 0.
(3.24)

We observe that the SU(2)L ⊗ U(1)Y gauge-mixing of SL-ψ4 into NL-ψ4 operators

within SMEFT generates in 1stLLA only (L̄L)(L̄L), (L̄L)(R̄R) and (R̄R)(R̄R) NL-ψ4

operators from the corresponding semi-leptonic classes. The initial Wilson coefficients of
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the semi-leptonic operators at the scale µΛ enter only summed over the lepton-flavour

diagonal parts [C(a)
b ]ww·· (and [Cqe]··ww), summation over the index w = 1, 2, 3 is implied,

because all leptons can run inside the loop. In consequence the underlying combination of

LQ couplings is Σji
LQ, introduced in (3.6). Further, the NL-ψ4 Wilson coefficients at µew

contain always one quark-flavour diagonal quark-bilinear since all ADMs are ∝ δst or δpr
and as a consequence some terms will not contribute to down-type ∆F = 1 processes.

The (LR)(RL) and (LR)(LR) SL-ψ4 operators O`edq and O(1,3)
`equ are only needed if they

contribute to semi-leptonic K decays in order to derive constraints on the LQ couplings.

On the other hand, (LR)(LR) NL-ψ4 operators O(1,3)
quqd contribute to ε′/ε only in those LQ

models that provide a direct one-loop matching contribution at µΛ, i.e. P(o)
qd, qu in (3.12).

The RG equations provide the Wilson coefficients of the SMEFT operators at the

electroweak scale µew, where electroweak symmetry breaking (EWSB) takes place. At this

point the transition from the weak to the mass eigenbasis for gauge, quark and lepton

fields can be done within SMEFT. The quark fields are rotated by 3 × 3 unitary rotations

in flavour space

ψL → V ψ
L ψL , ψR → V ψ

R ψR , (3.25)

for ψ = u, d, such that

V ψ†
L mψV

ψ
R = mdiag

ψ , V ≡ (V u
L )†V d

L , (3.26)

with diagonal up- and down-quark mass matrices mdiag
ψ . In general, the non-diagonal

mass matrices mψ include the contributions of dim-6 operators. The quark-mixing matrix

V is unitary, similar to the CKM matrix of the SM; however, in the presence of dim-6

contributions the numerical values are different from those obtained in usual SM CKM-

fits. Since we are interested in down-type processes ε′/ε and rare Kaon processes, we will

take the freedom to choose the weak basis such that down-type quarks are already mass

eigenstates, which fixes V d
L,R = 11, and assume without loss of generality V u

R = 11, yielding

qL = (V †uL, dL)T . Analogously, we choose also the down-type lepton mass matrix to be

diagonal and leave the neutrinos4 in the flavour eigenbasis. This defines the SMEFT Wilson

coefficients unambiguously and avoids the appearance of the PMNS lepton-mixing matrix

in interactions involving neutrinos.

3.5 Non-leptonic operators: SMEFT on ∆F = 1 EFT

The tree-level matching of SMEFT on ∆F = 1 low-energy EFT’s at the scale µew is well-

known for semi-leptonic processes [28, 70, 71] and given for non-leptonic processes in [72].

We summarise the required parts in the following three subsections. Starting with non-

leptonic operators, we provide results relevant for ε′/ε for the choice of the traditional

basis of the QCD- and EW-penguin operators (2.1) and (2.2), which differs from [67], and

simplifies due to the particular flavour structure (3.17)–(3.23) of the EW gauge-mixing of

SL-ψ4 into NL-ψ4 SMEFT operators. Further we summarise the tree-level matching of

SL-ψ4 operators relevant for di`a → dj`b, diνa → djνb and diνa → uj`b.

4In SMEFT neutrinos receive masses from the dimension five Weinberg operator during EWSB.
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3.5.1 EW gauge-mixing

As already pointed out in section 3.4, the EW gauge-mixing of SL-ψ4 into NL-ψ4 operators

leads to flavour-universal down-type and up-type contributions that correspond almost

exclusively to linear combinations of QCD- and EW-penguin operators (eu = −2ed = +2/3)

(s̄d)V−A
∑
u

(ūu)V−A =
1

3
(Q3 + 2Q9), (s̄d)V−A

∑
d

(d̄d)V−A =
2

3
(Q3 −Q9),

(s̄d)V−A
∑
u

(ūu)V+A =
1

3
(Q5 + 2Q7), (s̄d)V−A

∑
d

(d̄d)V+A =
2

3
(Q5 −Q7),

(3.27)

and analogously for chirality-flipped Q′3,5,7,9 — see definitions (2.1) and (2.2), except for

one contribution from O(3)
qq as shown below.

Let us illustrate in some detail the matching for the (L̄L)(R̄R) NL-ψ4 operators O(1)
qd

and O(1)
qu . The ADM given in (3.23) yields upon insertion into (3.16) at the scale µew

[C(1)
qd ]prst[O(1)

qd ]prst = −2

9

g2
1

(4π)2
ln
µΛ

µew

(
2
[
C(1)
`q + Cqe

]
wwpr

δst −
[
C`d + Cde

]
wwst

δpr

)
×
[
(ūpLγµu

r
L) + (d̄pLγµd

r
L)
]

(d̄sRγ
µdtR). (3.28)

The δpr,st-symbols give rise to the aforementioned flavour-diagonal quark-bilinears. In the

transition to mass eigenstates after EWSB, we keep only terms with d̄pR(L) → s̄PL(R) and

drR(L) → PR(L)d that contribute to s̄→ d̄ transitions (PR,L = (1± γ5)/2)

' −1

9

αe
4π

ln
µΛ

µew

[
C(1)
`q + Cqe

]
ww21

c2
W

(s̄d)V−A
∑
d

(d̄d)V+A (3.29)

+
1

18

αe
4π

ln
µΛ

µew

[
C`d + Cde

]
ww21

c2
W

(s̄d)V+A

∑
d

(d̄d)V−A +
∑
k,i,j

VikV
∗
jk(ū

iuj)V−A

 .
Finally one finds with the unitarity of the mixing matrix

∑
k VikV

∗
jk = δij and rela-

tions (3.27)

' αe
4π

ln
µΛ

µew

− 2

27

[
C(1)
`q + Cqe

]
ww21

c2
W

(Q5 −Q7) +
1

18

[
C`d + Cde

]
ww21

c2
W

Q′5

 (3.30)

and similarly for the operator

[C(1)
qu ]prst[O(1)

qu ]prst '
αe
4π

ln
µΛ

µew

2

27

[
C(1)
`q + Cqe

]
ww21

c2
W

(Q5 + 2Q7). (3.31)

The total contribution of (L̄L)(R̄R) operators is

[C(1)
qu ]prst[O(1)

qu ]prst + [C(1)
qd ]prst[O(1)

qd ]prst

' αe
4π

[
C(1)
`q + Cqe

]
ww21

c2
W

2

9
ln
µΛ

µew
Q7 +

αe
4π

[
C`d + Cde

]
ww21

c2
W

1

18
ln
µΛ

µew
Q′5

(3.32)

free of Q5 and all SL-ψ4 Wilson coefficients are at the scale µΛ.
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The results for the other cases (R̄R)(R̄R) and (L̄L)(L̄L) are obtained analogously,

[Cdd]prst[Odd]prst + [C(1)
ud ]prst[O(1)

ud ]prst '
αe
4π

[
C`d + Ced

]
ww21

c2
W

2

9
ln
µΛ

µew
Q′9, (3.33)

[C(1)
qq ]prst[O(1)

qq ]prst '
αe
4π

[
C(1)
`q + Cqe

]
ww21

c2
W

1

18
ln
µΛ

µew
Q3, (3.34)

where an additional term arises for O(3)
qq

[C(3)
qq ]prst[O(3)

qq ]prst '
αe
4π

[C(3)
`q ]ww21

s2
W

1

18
ln
µΛ

µew
(4Q9 −Q3) (3.35)

− αe
4π

∑
k,ij

Vi1V ∗jk [C(3)
`q ]ww2k

s2
W

+ VikV
∗
j2

[C(3)
`q ]wwk1

s2
W

 1

3
ln
µΛ

µew
(s̄d)V−A(ūiuj)V−A.

Although new physics can affect the quark-mixing matrix V to deviate from the SM CKM

matrix, we assume that these effects do not lift the hierarchy in the Cabibbo-angle λC rep-

resented by the Wolfenstein parameterisation and found in SM CKM fits. Assuming further

that the Wilson coefficients [C(3)
`q ]wwk′k do not lift this hierarchy either, the additional term

in O(3)
qq becomes

∑
k,ij

Vi1V ∗jk [C(3)
`q ]ww2k

s2
W

+ VikV
∗
j2

[C(3)
`q ]wwk1

s2
W

 (s̄d)V−A(ūiuj)V−A

=
[C(3)
`q ]ww21

s2
W

(s̄d)V−A

[
|V11|2(ūu)V−A + |V22|2(c̄c)V−A

]
+ (s̄d)V−A(ūc)V−A

V11V
∗

22

s2
W

(
[C(3)
`q ]ww22 + [C(3)

`q ]ww11

)
+O(λC).

(3.36)

The (ūc)V−A part in the last line does not contribute to ε′/ε, whereas the i = j = c part is

loop-suppressed in principle. We still keep the latter and use |V11|2 = |V22|2 ≈ 1 +O(λC)

as well as (3.27) to arrive at

eq. (3.36) =
[C(3)
`q ]ww21

s2
W

1

3
(Q3 + 2Q9). (3.37)

The matching conditions of ∆S = 1 operators (D.1) at µew are given in terms of the

SL-ψ4 Wilson coefficients at µΛ

C3(µew) = −1

9

αe
4π

v2

c2
W

[
C(1)
`q + Cqe

]
ww21

λsdu
ln
µΛ

µew
+

1

3

αe
4π

v2

s2
W

[C(3)
`q ]ww21

λsdu
ln
µΛ

µew
,

C7(µew) = −4

9

αe
4π

v2

c2
W

[
C(1)
`q + Cqe

]
ww21

λsdu
ln
µΛ

µew
,

C ′9(µew) = 4C ′5(µew) = −4

9

αe
4π

v2

c2
W

[
C`d + Ced

]
ww21

λsdu
ln
µΛ

µew
,

(3.38)
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LQ model semi-leptonic SMEFT coeff. ∆S = 1 coeff.

S1,3, U3 C(1,3)
`q (L)

C3, C7

R2 Cqe (R)

S̃1 Ced (R)
C ′5, C ′9

R̃2 C`d (L)

U1 C(1,3)
`q (L), Ced (R)

C3, C7, C ′5, C ′9
V2 Cqe (R), C`d (L)

Table 2. Classification of LQ models corresponding to their contribution to ε′/ε via EW gauge-

mixing and the involved semi-leptonic Wilson coefficient. The chirality of the LQ couplings entering

the semi-leptonic Wilson coefficients is shown in parenthesis, see appendix B for details.

where v2 = (
√

2GF )−1 and cW ≡ cos θW . We used the approximation (3.37). These three

expressions are fundamental for EW-mixing effects in ε′/ε in LQ models.

There are three possible patterns of contributions to ε′/ε listed in table 2, showing also

that LQ models Ũ1 and Ṽ2 do not contribute to ε′/ε via EW gauge-mixing. In most models

ε′/ε is affected by Σji
χ,LQ with either χ = L or χ = R, but not both, the exceptions are

vector LQ models U1 and V2. For the first pattern involving C3,7, the numerically largest

impact on ε′/ε will be due to the contribution from C7(µew) — see (D.6) and table 5 —

either due to C(1)
`q or Cqe, such that C(3)

`q is numerically irrelevant for ε′/ε. Let us note

that in LQ models C(3)
`q and C(1)

`q are not independent from each other but related through

C(3)
`q ≡ rLQ C(1)

`q with

rS1 = −1, rS3 =
1

3
, rU1 = 1, rU3 = −1

3
, (3.39)

see appendix B. In the second pattern with C ′5,9 the largest impact will be due to C ′9 = 4C ′5,

where the C ′5 contributes constructively. The third case of C3,7 and C ′5,9 involves both

χ = L and χ = R LQ couplings, which can be in principle of different size and prevent an

apriori estimate of the relative numerical sizes of all contributions, although C7 is roughly

enhanced by a factor of sixty compared to C ′9, see (D.6) and table 5. The latter fact implies

that models, which generate C(1)
`q or Cqe can face easier the ε′/ε anomaly via the operator

Q7 than the other models.

3.5.2 QCD-penguins

Besides the EW mixing-induced contributions, the NL-ψ4 coefficients receive direct one-

loop matching contributions at µΛ from QCD- and EW-penguin diagrams as well as box-

type diagrams. As already discussed in section 3.3.1, QCD-penguin contributions are

parametrically enhanced w.r.t. the mixing-induced contributions at µew. After EWSB, the
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operators (3.7) are matched onto the ∆F = 1 low-energy analogue yielding

−3C3 = C4 = −3C5 = C6 = −v
2

4

[C(q)
4 ]21

λsdu
= −αs

4π

v2

M2
LQ

rLQ
4,q

4

Σ21
LQ

λsdu
,

−3C3′ = C4′ = −3C5′ = C6′ = −v
2

4

[C(d)
4 ]21

λsdu
= −αs

4π

v2

M2
LQ

rLQ
4,d

4

Σ21
LQ

λsdu
,

(3.40)

at µew using (3.9). This can be compared to the contributions from EW gauge-mixing (3.38),

showing again the enhancement factor αs/αe ln−1(µΛ/µew). Yet, as we will find in the next

section at the end QCD penguin effects will be much smaller than EW gauge-mixing and

box-diagram contributions that we discuss next.

3.5.3 Box diagrams

The LQ box-diagrams generate NL-ψ4 operators (3.12) of which the majority do not con-

tribute directly to K → ππ transitions because the flavour indices do not involve the

required ones. Yet some of these operators can contribute indirectly due to RG mixing

into operators that contribute directly. We will first illustrate the matching for the various

operators P(o)
dd , since here the transition from weak to mass eigenstates is trivial in the

absence of qL. Note that due to equal Lorentz structure in both quark currents there is a

symmetry under simultaneous i↔ l and j ↔ k, such that we might fix j = 2 since we are

interested in K → ππ. For the time being we still use notational distinction diR → PRDi

between weak and mass eigenstates by using capital Di = (d, s, b)i for latter ones

LSMEFT ⊃
∑
ikl

[C(o)
dd ]2ikl[d̄

2,α
R γµd

i,β
R ][d̄k,βR γµdl,αR ]

=
∑
ikl

[C(o)
dd ]2ikl

4
(s̄αDβ

i )V+A(D̄β
kD

α
l )V+A. (3.41)

The operators with non-vanishing matrix elements to K → ππ are those that contain three

d-quarks: ikl = 111. For other operators to contribute to the ∆S = 1 transition K → ππ,

at least one d quark is required: i = 1 or l = 1, as well as the remaining two indices should

be equal (either 2 or 3, as ikl = 111 is already covered above), because only then they

contribute via mixing into QCD- and EW-penguin operators when closing the quark loop

and radiating off either gluon or photon in the low-energy EFT (same effects in SMEFT

were neglected above). Thus the sum can be split into

=
[C(o)
dd ]2111

4
(s̄αdβ)V+A(d̄βdα)V+A

+
1

4

∑
k 6=1

(
[C(o)
dd ]21kk(s̄

αdβ)V+A(D̄β
kD

α
k )V+A + [C(o)

dd ]2kk1(s̄αDβ
k )V+A(D̄β

kd
α)V+A

)
+

1

4

∑
ikl

[C(o)
dd ]2ikl(s̄

αDβ
i )V+A(D̄β

kD
α
l )V+A (3.42)

where the terms in the last line are such that they do not contribute to K → ππ and are

not part of the 1st and 2nd line. The 2nd term in the 2nd line contains actually only k = 3,
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due to the aforementioned symmetry. We rewrite the first term into a sum over k, yielding

shifts of the Wilson coefficients in the 2nd line

=
[C(o)
dd ]2111

4
(s̄αdβ)V+A

∑
k

(D̄β
kD

α
k )V+A

+
1

4

∑
k 6=1

(
[C(o)
dd ]21kk − [C(o)

dd ]2111

)
(s̄αdβ)V+A(D̄β

kD
α
k )V+A + . . . (3.43)

where the dots indicate the remaining terms in (3.42) and make use of (3.27), taking into

account the different colour structure,

=
[C(o)
dd ]2111

4

2

3
(Q4′ −Q10′)

+
1

4

∑
k 6=1

(
[C(o)
dd ]21kk − [C(o)

dd ]2111

)
(s̄αdβ)V+A(D̄β

kD
α
k )V+A + . . . (3.44)

In this way we have rewritten the operator (s̄d)(d̄d) into QCD- and EW-penguin operators

and the operators (s̄d)(s̄s) and (s̄d)(b̄b), which is a convenient choice of basis for K → ππ.

Taking into account normalisation factors (D.1), it follows at µew

C4′ = −C10′ = −v
2

3

[C(o)
dd ]2111

λsdu
. (3.45)

Although operators ∼ (s̄d)(s̄s) and ∼ (s̄d)(b̄b) are loop suppressed in ε′/ε w.r.t. (s̄d)(d̄d)

since they enter via RG mixing only, their Wilson coefficients might be numerically en-

hanced to overcome the loop-suppression because they depend on different combinations

of LQ couplings. The mixing of (s̄d)(s̄s) and (s̄d)(b̄b) into QCD- and EW-penguins can be

found in the literature as for example [58], but we will neglect these effects here.

The operators P(o,1)
qq and P(o,3)

qq contribute to K → ππ as

C4 = −v
2

6

∑
ji(V1jV

∗
1i + 2δ1jδ1i)[C(o,1)

qq ]21ji

λsdu
,

C10 = −v
2

3

∑
ji(V1jV

∗
1i − δ1jδ1i)[C(o,1)

qq ]21ji

λsdu
,

(3.46)

and

C9 = 2C3 = −2v2

3

∑
ji V1jV

∗
1i [C(o,3)

qq ]2ji1

λsdu
,

C4 = −v
2

6

∑
ji(−V1jV

∗
1i + 2δ1jδ1i)[C(o,3)

qq ]21ji

λsdu
,

C10 = −v
2

3

∑
ji(−V1jV

∗
1i − δ1jδ1i)[C(o,3)

qq ]21ji

λsdu
.

(3.47)

The presence of uL in these operators leads to additional factors of the quark-mixing matrix

V with summation over Σji
χ .

– 21 –



J
H
E
P
0
2
(
2
0
1
8
)
1
0
1

The contribution to K → ππ from P(o)
qu is found analogously to be

C8 = 2C6 = −v
2

3

[C(o)
qu ]2111

λsdu
. (3.48)

By comparison with (3.12), this shows that in models S1 and R2 the boxes give rise to the

EW-penguin operators Q6 and Q8, where Q8 is strongly enhanced in ε′/ε. The matching

contributions given in appendix C with [C(o)
qu ]2111 ∝ Σ11

R Σ21
L and [C(o)

qu ]2111 ∝ Σ11
L Σ12

R for

S1 and R2 respectively, show that these contributions depend on both chirality couplings

χ = L,R. This goes hand in hand with the ∆F = 2 operator for DD-mixing analogous

to QjiLR,2 in (2.36) that is strongly enhanced by QCD RG evolution, and which depends on

the combinations Σ21
R Σ21

L and Σ12
L Σ12

R , respectively.

With similar considerations, the contribution to K → ππ from P(o)
qd is found to be

C6 = −C8 = −v
2

3

[C(o)
qd ]2111

λsdu
, C6′ = −v

2

6

∑
ji(V1jV

∗
1i + 2δ1jδ1i)[C(o)

qd ]ji21

λsdu
,

C8′ = −v
2

3

∑
ji(V1jV

∗
1i − δ1jδ1i)[C(o)

qd ]ji21

λsdu
.

(3.49)

Note that C8′ is Cabibbo-suppressed w.r.t. C6′ and C6,8, if one were to use |Vud|2 ≈ 1.

Again operators Q8,8′ are strongly enhanced in ε′/ε such that for the corresponding models

U1 and V2, see (3.12), these box-contributions could become important depending on the

size of the Σji
χ . Although for vector LQs we are not able to calculate the coefficients C(o)

qd

without introducing cut-offs, still we can give their dependence on the Σji
χ .

In summary the three main contributions from LQ decoupling are due to 1) EW

gauge-mixing of SL-ψ4 into NL-ψ4 operators, 2) QCD-penguins and 3) box diagrams. As a

result the corresponding Wilson coefficients of QCD- and EW-penguin operators Ci(µew)

(i = 3, . . . , 10) scale parametrically as

e2

(4π)2
ln
µΛ

µew
Σji
χ ↔ g2

s

(4π)2
Σji
χ ↔

Σ11
χ′

(4π)2
Σji
χ . (3.50)

Their relative sizes are thus fixed by e2 lnµΛ/µew ≈ 0.1 lnµΛ/µew ≈ 0.2 . . . 0.5 for µΛ ∈
[1, 20] TeV, and g2

s ≈ 1.5, whereas the yet-allowed size of the complex-valued Σ11
χ′ is con-

strained by mostly tree-level processes, depending strongly on the LQ model. At the level

of observables different suppression/enhancement factors for each of the Ci(µew) can ap-

pear such that at this point no definite conclusions can be drawn about which contribution

is most important. We point out that concerning ε′/ε, large enhancement of the EW-

penguin coefficients C7,8(µew) appear as can be seen from (D.6), which easily overcome the

numerical enhancement of LQ-QCD-penguins discussed here and leads to the dominance

of contributions due to EW gauge-mixing and/or LQ-boxes, depending on the LQ model.

3.6 Semi-leptonic operators: SMEFT on ∆F = 1 EFT

The ∆F = 1 semi-leptonic FCNC processes di`a → dj`b and diνa → djνb are affected at

tree-level by LQ exchange and provide strong constraints on LQ couplings. For practical
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purposes we neglect the running from µΛ to µew in SMEFT for the semi-leptonic operators if

self-mixing is present in (3.16). The only exceptions are the models S1 and U1 because they

predict at the scale µΛ the relation C(1)
`q = ∓C(3)

`q , see (3.39). As can be seen from (3.53)

below, as a consequence at tree level their contribution to di`a → dj`b or diνa → djνb
vanishes, respectively. Still, in this case a non-vanishing contribution at µew arises then

due to gauge mixing of both operators [59]. This mixing is given by [65]

[
C(1)
`q + C(3)

`q

]
prst

(µew) =
αe
4π

1

s2
W

(
2[C(1)

`q ]prwwδst

)
ln
µΛ

µew
+ . . . (3.51)

[
C(1)
`q − C

(3)
`q

]
prst

(µew) =
αe
4π

1

s2
W

(
2[C(1)

`q ]prwwδst − 12[C(1)
`q ]prst

)
ln
µΛ

µew
+ . . . (3.52)

where dots indicate neglected terms ∝ g1, which contribute only for s 6= t and constitute

a correction of less than 4%. From (3.51) follows that even gauge-mixing does not induce

non-vanishing contributions to di`a → dj`b in the S1 model for i 6= j. The dots indicate

in principle also one-loop matching corrections to di`a → dj`b or diνa → djνb processes,

which are however not logarithmically enhanced. Once the data on this processes improve

it would be of interest to calculate them.

The new physics contribution to the Wilson coefficients of the ∆F = 1 semi-leptonic

operators (2.7) at µew in terms of the semi-leptonic SMEFT Wilson coefficients at µew is

given as follows [28, 71, 72]

Cbaji9,NP =
[
Cqe + C(1)

`q + C(3)
`q

]
baji

, Cbaji9′,NP =
[
Ced + C`d

]
baji

,

Cbaji10,NP =
[
Cqe − C

(1)
`q − C

(3)
`q

]
baji

, Cbaji10′,NP =
[
Ced − C`d

]
baji

,

CbajiL,NP =
[
C(1)
`q − C

(3)
`q

]
baji

, CbajiR,NP =
[
C`d
]
baji

,

CbajiS,NP = −CbajiP,NP =
[
C`edq

]∗
abij

, CbajiS′,NP = CbajiP ′,NP =
[
C`edq

]
baji

.

(3.53)

Here contributions from Z-mediating ψ2H2D-SMEFT operators O(1,3)
Hq to C9,10,L and OHd

to C9′,10′,R, respectively, have been omitted. In rare FCNC Kaon decays scalar and pseudo-

scalar Wilson coefficients are negligible and hence do not enter the phenomenological

analysis below.

For completeness we provide the low-energy effective Hamiltonian for diνa → uj`b

Hd→u`ν = −4GF√
2
Vji
∑
k

Cbajik Qbajik + h.c. (3.54)

that contains the operators

QbajiVL(R)
= [ūjγµPL(R)di][¯̀bγ

µPLνa],

QbajiSL(R)
= [ūjPL(R)di][¯̀bPLνa],

QbajiT = [ūjσµνPLdi][¯̀bσ
µνPLνa].

(3.55)
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Their Wilson coefficients are [72]

CbajiVL,NP = v2
Vjk[C

(3)
`q ]baki

Vji
, CbajiSL,NP =

v2

2

Vjk[C
(1)
`equ]∗abik
Vji

, CbajiT,NP =
v2

2

Vjk[C
(3)
`equ]∗abik
Vji

,

CbajiVR,NP = 0, CbajiSR,NP =
v2

2

Vjk[C`edq]∗abik
Vji

,

(3.56)

where summation over the index k is implied. The SM contributes only to CbajiVL,SM = −δab.
From (3.53) and also (3.52) we conclude that contributions to ε′/ε in all LQ models

with non-vanishing C(1,3)
`q and/or C`d can be constrained by K+ → π+νν̄ and KL → π0νν̄

because of their dependence on imaginary parts of the relevant semi-leptonic couplings. In

the case of U1 there are no NP contributions to K+ → π+νν̄ and KL → π0νν̄ at µΛ, but as

seen in (3.52) they can be generated through RG effects. However, as shown below, they

appear to be too small to provide a useful bound at present, although they could turn out

to be relevant when the data from NA62 and KOTO will be available.

As we only need the imaginary part of the relevant semi-leptonic couplings to enhance

ε′/ε the bound on KL → µµ̄, being sensitive only to the real parts of these couplings, does

not play any role. On the other hand KS → µµ̄ and KL → π0`¯̀ are sensitive to imaginary

parts and as we will see below already the experimental upper bound on KL → π0`¯̀

in (2.27) and (2.28) and the new upper bound on KS → µµ̄ from LHCb [48] in (2.32)

provide powerful constraints on the electronic and muonic LQ couplings in the U1 model.

Similar comments apply to R2 and V2 where the contributions to ε′/ε and K → πνν̄ are

governed by different coefficients and again the constraints on ε′/ε from KL → π0`¯̀ and

KS → µµ̄ play important roles.

3.7 ∆F = 2 operators: SMEFT on ∆F = 2 EFT

The matching equations of SMEFT on the low-energy effective theory (2.35) for down-type

∆F = 2 reads [72]

CjiVLL = −N−1
ji

(
[C(1)
qq ]jiji + [C(3)

qq ]jiji

)
, CjiVRR = −N−1

ji [Cdd]jiji,

CjiLR,1 = −N−1
ji

[C(1)
qd ]jiji −

[C(8)
qd ]jiji

2Nc

 , CjiLR,2 = N−1
ji [C(8)

qd ]jiji,
(3.57)

where Nji is defined in (2.35) and all Wilson coefficients are evaluated at the scale µew.

The corresponding results for up-type ∆F = 2 processes can be obtained by replacing the

Wilson coefficients Cdd → Cuu and C(8)
qd → C

(8)
qu .

We point out that semi-leptonic Wilson coefficients at µΛ do not contribute to non-

leptonic ∆F = 2 Wilson coefficients of down-type processes at µew via EW gauge-mixing as

is the case for ε′/ε and has been discussed in detail in section 3.4. This can be seen for C(1,3)
qq

from (3.17) and (3.18), which are ∝ δpr or δst and the same holds for Cdd, compare (3.20).

These Wilson coefficients receive non-vanishing contributions at one-loop at the scale µΛ

from box-diagams involving as internal particles LQs and leptons. We provide explicit one-

loop matching results for the SMEFT Wilson coefficients at the scale µΛ in appendix C
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for the scalar LQ models S1,3, S̃1, R2 and R̃2. In the case of vector LQs loop calculations

are problematic in the absence of a full UV completion, but we will be able to make some

statements on the Dirac structure of contributing operators in section 4.4 with interesting

implications for LQ contributions to ε′/ε and rare decays in the case of U1 and V2 models.

4 Implications for ε′/ε

The results of the previous section allow to determine the impact of LQ contributions from

EW gauge-mixing on ε′/ε in models with scalar and vector LQs, whereas QCD penguin

and box contributions are available for models with scalar LQs. In the following we will

assume that they are the origin of the discrepancy between the SM prediction (2.3) and

the experimental value (2.5) of ε′/ε, responsible for at least a value of κε′ = 0.5.

In the case of EW gauge-mixing contributions, ε′/ε depends on the imaginary parts of

the combinations

CL(µΛ) ≡
∑
a

[
C(1)
`q + Cqe

]
aa21

ln
µΛ

µew
, CR(µΛ) ≡

∑
a

[
C`d + Ced

]
aa21

ln
µΛ

µew
, (4.1)

that appear in (3.38). For the three cases summarised in table 2 the bound (2.6) on κε′

with (D.6) and (3.38) implies

I :
0.5× 10−3

Nε′/ε
≤ P7 Im [CL(µΛ)]

II :
0.5× 10−3

Nε′/ε
≤ −

(
P5

4
+ P9

)
Im [CR(µΛ)]

III :
0.5× 10−3

Nε′/ε
≤ P7 Im [CL(µΛ)]−

(
P5

4
+ P9

)
Im [CR(µΛ)]

(4.2)

where we have neglected P3 � P7 (see table 5) and used that λsdu is real.5 The numerical

factor Nε′/ε is

Nε′/ε ≡ −
4

9

αe
4π

v2

c2
W

1

λsdu
≈ −100 GeV2. (4.3)

The contributions of QCD-penguins (3.40) and box-diagrams (3.45)–(3.49) can be

taken into account for models with scalar LQs. According to (3.50), they can be paramet-

rically enhanced compared to the EW gauge-mixing, but the strong hierarchy of Pi 6=7,8 �
P7,8 in (D.6) can lift this enhancements for models that generate C7 via EW gauge-mixing.

The numerical analysis of ε′/ε in models S̃1 and R̃2 without the enhanced contributions

∼ C7 from EW gauge-mixing nor ∼ C8 from box-diagrams shows indeed

(ε′/ε)NP =
(35 GeV)2

M2
LQ


+Im

[
Σ21

R

λsdu

(
ln

MLQ

µew
+ 0.55 + 2.50 Σ11

R

)]
for S̃1

−Im
[

Σ12
L

λsdu

(
ln

MLQ

µew
− 1.10− 5.00 Σ11

L

)]
for R̃2

(4.4)

5Note that throughout the quark-mixing matrix V is unitary, but in the presence of LQ contributions,

the numerical values can differ from those obtained in SM fits for the CKM matrix. We assume that LQ

contributions do not lift the hierarchy in the Cabibbo angle.
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with similar size of coefficients in parentheses for the 1st term ∝ ln(MLQ/µew) from EW

gauge-mixing, the 2nd term from QCD penguins and the 3rd term ∝ Σ11
χ from box dia-

grams. The QCD penguins amount to a contribution of 24 (12)% and 48 (24)% of the EW

gauge-mixing term in both models respectively, for µew = 100 GeV and MLQ = 1(10) TeV.

The contribution of box-diagrams to (ε′/ε)NP depends strongly on the magnitude of Σ11
χ .

We note that Σ11
χ is by definition (3.6) real-valued and strictly positive. This leads to the

fixed constructive and destructive interference behavior between EW gauge-mixing and

box-diagram terms in both models S̃1 and R̃2, respectively.

In the model S3 the EW gauge-mixing dominates (ε′/ε)NP because it is ∼ C7, whereas

QCD-penguin and box-diagrams generate only Ci 6=7,8 such that

(ε′/ε)NP =
−(328 GeV)2

M2
LQ

Im

[
Σ21
L

λsdu

×

(
ln
MLQ

µew
+ 0.02 + 0.14 Σ11

L − 0.13

∑
ij V1jV

∗
1i Σ2j

L Σi1
L

Σ21
L

+ . . .

)]
.

(4.5)

Even stronger suppressed terms are indicated by the dots. Note the numerical cancellation

of the box contribution ∝ Σ11
L with the one from the sum for ij = 11 since |V11|2 ≈ 1. In this

model (ε′/ε)NP is dominated by EW gauge-mixing, which leads to very strong correlations

with other rare Kaon processes.

In the models S1 and R2 the EW gauge-mixing is also enhanced in (ε′/ε)NP by the

large coefficient P7, but here also box contributions are enhanced by P8 due to (3.48),

whereas QCD penguins are negligible. In particular for S1

(ε′/ε)NP =
−(190 GeV)2

M2
LQ

Im

[
Σ21
L

λsdu

×

ln
MLQ

µew
+ 0.02 + 0.08 Σ11

L + 0.02
∑
ij

V1jV
∗

1i Σji
L − 19.5 Σ11

R

 (4.6)

and R2

(ε′/ε)NP =
+(268 GeV)2

M2
LQ

Im

[
Σ12
R

λsdu

×

(
ln
MLQ

µew
− 0.01− 0.04 Σ11

R + 0.05

∑
ij V1jV

∗
1i Σj2

R Σ1i
R

Σ12
R

+ 9.8 Σ11
L

)]
,

(4.7)

only the last terms from box diagrams ∼ P8 are sizeable in addition to the EW gauge-mixing

contributions. Again a fixed interference behavior arises in both models due to the positive

definite Σ11
χ . Note that these box terms involve both chiralities χ 6= χ′: (ε′/ε)NP ∝ Σ12

χ Σ11
χ′ .

The models with vector LQs yield for the EW gauge-mixing part only

(ε′/ε)NP =
ln(MLQ/µew)

λsdu M2
LQ

×


+(379 GeV)2 Im

[
Σ21
L − 0.0168 Σ21

R

]
U1

−(380 GeV)2 Im
[
Σ21
R − 0.0168 Σ21

L

]
for V2

+(465 GeV)2 Im Σ21
L U3

(4.8)
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Figure 2. The |Im Σ21
χ | versus the LQ mass µΛ ∼MLQ for fixed κε′ = 0.5. [Left] for scalar models

S̃1 [red], R̃2 [blue], S3 [purple], S1 [green] and R2 [brown]. The bands indicate the variation of

Σ11
L,R ∈ [0.0, 1.0] and dashed lines are Σ11

L,R = 0.0. [Right] for vector models assuming only EW

gauge-mixing: U1,R and V2,L [blue, dashed], U1,L and V2,R [green, dashed] and U3 [purple].

where the couplings with chirality χ = L,R,L are enhanced in (ε′/ε)NP by C7 for models

U1, V2 and U3, respectively (see table 2). It is evident that for models U1, V2 the sub-

scenarios U1,L and V2,R with only Σ21
L,R respectively, can accommodate large (ε′/ε)NP easier

than the sub-scenarios U1,R and V2,L with only Σ21
R,L couplings, because the latter are

suppressed by a factor 60. The QCD-penguin and box-diagram contributions do not receive

additional enhancement in the model U3, such that in analogy to the scalar model S3

in (4.5), where we could calculate analytic results for loop contributions, we believe that

EW gauge-mixing provides the numerically leading contribution.

From the above semi-numerical results for (ε′/ε)NP it is evident that in the absence or

small box-diagram contributions, the requirement of a specific value of κε′ would fix Σ21
χ

for a given value of µΛ. This is indeed the case for the model S3 and we can assume the

same for the vector LQ U3, where QCD-penguin and box-diagram contributions would give

rise to the same (V − A) ⊗ (V − A) structures that are suppressed w.r.t. C7 in (ε′/ε)NP.

Indeed |Im Σ21
χ | < 0.5 for µΛ . 20 TeV in both models when requiring κε′ = 0.5, such that

perturbativity issues with LQ couplings arise only for very large LQ masses, as can be seen

in figure 2.

As pointed out above, in other models the box diagrams have a fixed interference

behaviour with the EW gauge-mixing term. Therefore a fine-tuned cancellation of the

numerically leading contribution from box-diagrams and the EW gauge-mixing6 term can

occur only in the models R̃2 and S1 with destructive interference, rendering the subleading

terms important. The effect of destructive versus constructive interference on Im Σ21
χ is

depicted in figure 3 for the two models S1 and R2, respectively, when varying Σ11
χ′ ∈ [0.0, 1.0]

for fixed values of κε′ 6= 0. In the model R2 the constructive interference allows to decrease

Im Σ21
χ with increasing Σ11

χ′ , which in turn will lead to smaller effects in other rare Kaon

6For models with scalar LQs the QCD-penguin contribution is included in the numerical analysis.
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Figure 3. The dependence of the ImΣ21
L from box contribution Σ11

R in model S1 [left] and R2 [right]

for different values of κε′ and MLQ = 20 TeV.

processes that depend only on Im Σ21
χ . On the other hand the destructive interference in

model S1 leads for intermediate values of Σ11
χ′ to a strong enhancement and sign flip of

Im Σ21
χ in order to maintain a fixed value of κε′ when the expression in parentheses in (4.6)

vanishes. In this case rare Kaon processes would receive large contributions.

For the two models S̃1 and R̃2 the dependence of |Im Σ21
χ | on µΛ is shown in figure 2

when requiring κε′ = 0.5 and varying in the box-contribution Σ11
χ′ ∈ [0.0, 1.0]. The |Im Σ21

χ |
reaches fast a nonperturbative magnitude > 3.0 to be able to accommodate κε′ = 0.5,

preferring light LQ masses below 8 TeV as a consequence of the rather small scale in (4.4).

Allowing for even larger Σ11
χ′ cannot really ameliorate this situation. In consequence there

will be large enhancements of other rare Kaon processes. A similarly low scale is present

for sub-scenarios U1,R and V2,L in (4.8). The destructive interference can always lead to

a reduction of the effective scale, such that |Im Σ21
χ | has to become nonperturbative to

explain κε′ = 0.5 for rather low LQ masses. Thus it might be more appropriate to focus

on either

1. negligible box contributions,

2. or constructive interference thereby restricting to Σ11
χ′ < 1.0.

These assumptions should increase the viability of the corresponding scenarios. The results

for models S1 and R2 in figure 2 show that perturbativity of the couplings is guaranteed

even at larger LQ masses > 20 TeV for suitable choices of Σ11
χ′ . Moreover at such high

LQ masses, even the constructive interference of the box contributions will reduce the

coupling only by a factor of about two compared to the case when they vanish, showing

that in these models the consideration of only EW gauge-mixing contributions gives a

representative picture for the impact of LQ effects on (ε′/ε)NP.

In the case of vector LQ models U1,3 and V2 we will use only the EW gauge-mixing

contribution in our numerical analysis of the perturbativity of |Im Σ21
χ | for κε′ = 0.5. The

case of U1 and V2 is at first sight more involved as having both left-handed and right-
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handed couplings box contributions to ε′/ε could be important. In our analysis we will

first consider the sub-scenarios with left-handed or right-handed couplings only. In this way

potentially large left-right contributions to ∆MK are absent. The discussion of possible

large box contributions to ε′/ε in these models due to the simultaneous presence of left-

handed or right-handed couplings is postponed to section 5. The results in figure 2 show

that nonperturbativity of the couplings is only an issue for U1,R and V2,L.

In our numerical analysis we use analytical formulae and numerical input as given

in [21, 24] and described in section 2.

4.1 Constraints from K → πνν̄

The decays KL → π0νν̄ and K+ → π+νν̄ provide the most efficient constraints on the

combinations (4.1) entering ε′/ε and apply to the LQ models S1,3, R̃2 and V2, U1,3. We

point out that for the model U1 with C(1)
`q = C(3)

`q at µΛ the first non-vanishing contribution

to K → πνν̄ at the scale µew via CL(µew) ∝ [C(1)
`q − C

(3)
`q ](µew) ∝ αe ln(µΛ/µew)C(1)

`q (µΛ)

is due to leading logarithms from gauge mixing and hence loop-suppressed [59]. Still,

below we will find that for κε′ = 1.0 this effect enhances significantly branching ratios for

KL → π0νν̄. As explained in section 2.2.1 the branching fractions involve a sum over all

lepton flavours of the neutrinos in the final state. The LQ contribution in terms of the

SMEFT Wilson coefficients at µew (3.53) enter as

Xab
LQ = −s2

W v
2 π

αe

[
C(1)
`q − C

(3)
`q + C`d

]
ba21

λsdt
, (4.9)

where we will make use of the model-specific relations (3.39) to eliminate C(3)
`q . Further, in

LQ models the SM×NP term∑
a

Im(λsdt X
aa
LQ) = −s2

W v
2 π

αe

∑
a

Im
[
C(1)
`q (1− rLQ) + C`d

]
aa21

, (4.10)

with rLQ given in (3.39), is related to (4.1) entering ε′/ε since in a particular LQ model

only either C(1,3)
`q or C`d are non-vanishing. Note that here the C(n)

m are at the scale µew

whereas in (4.1) at µΛ. But for our purpose the self-mixing can be neglected since it is

loop-suppressed, such that we equate the Wilson coefficients at both scales.

It is without much loss of generality to assume a hierarchy of the LQ couplings such

that a single [C(n)
m ]aa21 ∝ gkχ1a g

kχ∗
2a or ∝ hkχ2ah

kχ∗
1a for specific a = a′ dominates (ε′/ε)NP, in

particular one might expect weakest constraints on third-generation lepton couplings of

LQs. In consequence, also the SM×NP contribution to B(KL → π0νν̄) will be dominated

by this specific coupling and allow for a simple analytic correlation of ε′/ε and B(KL →
π0νν̄). Concerning the NP×NP term, the omission of terms a 6= b in the sum in (2.21)

will result always in a lower prediction compared to the true value of B(KL → π0νν̄), i.e.

a lower bound on the impact of LQ contributions.

With the assumption of the dominance of a single coupling and the requirement that

it induces at least a value of κε′ = 0.5, we can plot B(KL → π0νν̄) vs. µΛ ∈ [1, 20] TeV

shown in figure 4. We set µew = 100 GeV and assume for the moment that box-diagram
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Figure 4. The dependence of B(KL → π0νν̄) [upper] and B(K+ → π+νν̄) [lower] on the new

physics scale µΛ ∼ MLQ for κε′ = 0.5 [left] and on κε′ for µΛ = 20 TeV [right], assuming the

dominance of a single lepton-flavour coupling that is purely imaginary. For U1,L and V2,L, it is

assumed that only L-LQ couplings are present and saturate κε′ . The blue (green) band for S1 (R̃2)

is due to variation of the box-diagrams via Σ11
R(L) ∈ [0.0, 1.0]. Further shown are the current upper

experimental bound on B(KL → π0νν̄) and the measurement of B(K+ → π+νν̄) [73] [black solid],

the Grossman-Nir bound from the current measurement of B(K+ → π+νν̄) [black dashed] and the

SM prediction [21] [black dotted].

contributions to ε′/ε discussed for scalar LQ models in (4.4)–(4.7) are vanishing. The

correlation between B(KL → π0νν̄) and ε′/ε is due to their common dependence on C(1)
`q

for S1,3, U3 or C`d for R̃2. We show also the correlations in V2,L and U1,L under the

assumption that only the χ = L couplings saturate κε′ via C`d and C(1)
`q , respectively. This

assumption is justified for these models as in the presence of both L and R couplings a very

strong enhancement of ∆MK through left-right operators would be possible placing strong

constraints on these couplings, despite that box diagrams cannot be calculated reliably

without a UV completion.

In general the enhancement of B(KL → π0νν̄) is smaller the larger µΛ. The plot

shows that for R̃2 and V2,L the B(KL → π0νν̄) will be above the current experimental

bound 2.6 × 10−8 [73] and orders of magnitude above the SM prediction, which excludes

– 30 –



J
H
E
P
0
2
(
2
0
1
8
)
1
0
1

S1

S3

R2
∼

V2,L

U3

U1,L

-0.4 -0.2 0.0 0.2 0.4

10-10

10-9

10-8

10-7

10-6

10-5

Re(Σχ
21) × 10-1 [GeV-2]

B
r(
K
+
→

π
+
vv
)

S1

S3

R2
∼

V2,L

U3

U1,L

-0.4 -0.2 0.0 0.2 0.4

10-10

10-9

10-8

10-7

10-6

10-5

Re(Σχ
21) × 10-1 [GeV-2]

B
r(
K
+
→

π
+
vv
)

Figure 5. The dependence of B(K+ → π+νν̄) on a non-zero real part of the dominant lepton-

flavour coupling, for κε′ = 0.5 [left] and κε′ = 1.0 [right], with µΛ = 20 TeV. Further shown are

the current measurement of B(K+ → π+νν̄) [73] [black solid] and the current SM predictions [21]

[black dotted].

these models as an explanation of κε′ = 0.5. Furthermore the models S1,3 and U3 give

predictions above the Grossman-Nir bound (see section 2.2.1) and they are almost two

orders of magnitude above the SM prediction, thus being also excluded for all practical

purposes. We note that it is expected that the final analysis of the 2015 data collected with

the KOTO experiment will approach the sensitivity to the Grossman-Nir bound [74]. We

plot also B(KL → π0νν̄) versus κε′ for fixed µΛ = 20 TeV, showing that for larger values

of κε′ the enhancement of B(KL → π0νν̄) becomes even more severe. The couplings of the

U1,L model enter only via RG effects described in (3.52) and in this case the dependence

on µΛ cancels. The enhancement of B(KL → π0νν̄) ∼ 6 (27) × 10−11 is a factor 2 (9)

above the SM prediction for κε′ = 0.5 (1.0) and might be tested in the long run of the

KOTO experiment.

So far our numerical analysis neglected box-diagram contributions to ε′/ε presented for

scalar LQ models in (4.4)–(4.7). As pointed out there, for the model S3 box contributions

are suppressed and we expect the same for U3. We find for the model R̃2 only enhancement

of B(KL → π0νν̄) when varying Σ11
L ∈ [0.0, 1.0], except for small MLQ . 4 TeV, but of

negligible size. Box-diagrams in ε′/ε are more important in model S1 as can be seen by

the band in figure 4 that is due to the variation of Σ11
R ∈ [0.0, 1.0]. This band shows

only how box-diagrams lead to a lowering of B(KL → π0νν̄), but for some values of

Σ11
R ∈ [0.0, 1.0] there is also enhancement w.r.t. to the prediction at Σ11

R = 0, which is

not shown. Going beyond 1.0 < Σ11
R < 2.0 will allow even lower B(KL → π0νν̄), but

still B(KL → π0νν̄) > 2 × 10−10 is about one order of magnitude larger than the SM

prediction (2.17) for κε′ = 0.5.

Despite the additional dependence on real parts of couplings the B(K+ → π+νν̄) leads

to similar conclusions, which can be expected from the qualitative discussion above. We

show the correlation of B(K+ → π+νν̄) vs. µΛ ∈ [1, 20] TeV in figure 4 setting real parts

of couplings to zero. The effect of the real couplings is illustrated in figure 5 for fixed
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Figure 6. The dependence of B(KS → µµ̄) on the new physics scale µΛ ∼MLQ for κε′ = 0.5 [left]

and on κε′ for µΛ = 20 TeV [right]. For U1 and V2, it is assumed that either only L-LQ or only

R-LQ couplings are present and saturate κε′ . Further shown are the current upper experimental

bound on B(KS → µµ̄) from LHCb [black solid], a conservative future prospect for LHCb with

23 fb−1 [black dashed] and the SM prediction [49] [black dotted].

µΛ = 20 TeV. The models R̃2 (and V2,L) and S1, U3 require B(K+ → π+νν̄) > 10−9,

which is at least a factor four above the central value of the current measurement [73],

whereas S3 is close to the one sigma region. For κε′ = 1.0, the branching ratios for models

in question are all above 10−9 and excluded, except for U1,L, where the enhancement of

B(K+ → π+νν̄) is very small: a factor 1.1 (1.6) for κε′ = 0.5 (1.0). In the near future the

NA62 experiment at CERN will be able to measure B(K+ → π+νν̄) with 10% uncertainty

at the level of the SM prediction, thus being able to investigate these scenarios further.

Also the improved value of κε′ from lattice QCD will be very important here.

4.2 Constraints from KS → µµ̄

The branching fraction of KS → µµ̄ provides constraints on the muonic LQ couplings in

models that generate C(1,3)
`q , Cqe, C`d and Ced, which are S̃1, R2, R̃2, S3, U1,3 and V2. In the

LQ model S1 no contribution is generated due to EW gauge-mixing (3.51).

Contrary to K → πνν̄, the decay KS → µµ̄ depends only on the muonic LQ couplings,

such that a correlation between ε′/ε and KS → µµ̄ exists only if the muonic LQ couplings

were the origin of large κε′ . In such a case large NP contributions to (2.31)√
B(KS → µµ̄)SD,NP

(180 GeV)2
=
∣∣∣Im[Cqe − C(1)

`q (1 + rLQ) + C`d − Ced
]
µµ21

∣∣∣ (4.11)

are correlated with ε′/ε as can be seen from (4.2). For the convenience of the reader we

provide here also the constraints on the SMEFT SL-ψ4 Wilson coefficients at µew that

enter (4.11) when using the experimental bound from LHCb on B(KS → µµ̄) (2.32) at

90% C.L. ∣∣∣Im[Cqe − C(1)
`q − C

(3)
`q + C`d − Ced

]
µµ21

∣∣∣ ≤ (34 TeV)−2. (4.12)
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Following the spirit of [75], it allows easily to set bounds on the imaginary parts when

considering one Wilson coefficient at a time.

Considerable simplifications take place in a given LQ model because not all Wilson

coefficients are present simultaneously. For example for S3, U3, U1,L and R2 (rR2 = 0) the

dominant LQ contribution to ε′/ε enters via C7 as shown in table 2, such that

(ε′/ε)NP ≤
1.3× 10−4

(1 + rLQ)

√
B(KS → µµ̄)

0.8× 10−9
ln
µΛ

µew
. (4.13)

While for µΛ > 10 TeV, values close to (ε′/ε)NP ∼ 10−3 are still allowed, the future

improved upper bound on B(KS → µµ̄) is likely to lower the upper bound in question

below 10−4.

The dependence of B(KS → µµ̄) on µΛ for κε′ = 0.5 and on κε′ for µΛ = 20 TeV is

shown in figure 6 assuming the dominance of muonic couplings. Under the latter assump-

tion and requiring κε′ ≥ 0.5, the current bound on B(KS → µµ̄) excludes models S̃1, R̃2,

V2,L and U1,R and in part also U1,L. The models S3, R2, V2,R will be all probed with

higher statistics at LHCb and one can hope that also U3 will be testable [50]. For the

models S̃1 and R2 the bands show the weakened constraint once allowing for box-diagram

contributions to ε′/ε due to the variation of Σ11
R,L ∈ [0.0, 1.0], respectively, whereas in the

model R̃2 they do not weaken the constraint.

Concerning U1 and V2 models, the bound given above could be in principle eliminated

through very high fine-tunning with the help of Ced and C`d, respectively. Although they

contribute to B(KS → µµ̄) without important impact on ε′/ε where they modify only the

coefficients C ′9 and C ′5 the presence of χ = L and χ = R couplings of same size are strongly

constrained by the bound from ∆MK .

4.3 Constraints from KL → π0`¯̀

The branching fractions of KL → π0eē and KL → π0µµ̄ constrain the electronic and

muonic LQ couplings in models that generate C(1,3)
`q , Cqe, C`d and Ced at tree-level, which

are all models that contribute to ε′/ε, except for S1. In contrast to (4.12), no such simple

relation can be given here, but allowing one Wilson coefficient to contribute at a time,

we find similar bounds for the imaginary parts of all electronic and muonic SL-ψ4 Wilson

coefficients a = {qe, `q(1,3), ed, `d}

|Im[Ca]ee21| ≤ (58 TeV)−2, (4.14)

|Im[Ca]µµ21| ≤ (50 TeV)−2. (4.15)

For muonic Wilson coefficients this bound is stronger than the bound (4.12) from KS → µµ̄,

which is compatible with our analysis that shows that the present constraint from KS → µµ̄

is weaker than from KL → π0`¯̀.

The dependence of B(KL → π0eē) and B(KL → π0µµ̄) on µΛ for κε′ = 0.5 and on

κε′ for µΛ = 20 TeV is shown in figure 7 assuming the dominance of electronic and muonic

couplings, respectively. These plots are qualitatively analogous to B(KS → µµ̄) in figure 6,

but much more stringent due to the stronger experimental bounds on B(KL → π0eē)
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Figure 7. The dependence of B(KL → π0eē) [upper] and B(KL → π0µµ̄) [lower] on the new

physics scale µΛ ∼ MLQ for κε′ = 0.5 [left] and on κε′ for µΛ = 20 TeV [right], assuming the

dominance of the single electronic or muonic lepton-flavour coupling, respectively, that is purely

imaginary. For U1 and V2, it is assumed that either only L-LQ or only R-LQ couplings are present

and saturate κε′ . Further shown are the current upper experimental bounds on B(KL → π0`¯̀)

[black solid] and the SM predictions [black dotted].

and B(KL → π0µµ̄) and in addition also electronic LQ couplings are constrained. All

LQ models predict enhancements of B(KL → π0eē) and B(KL → π0µµ̄) that violate the

current bounds once κε′ & 0.5 for both ` = e, µ. This demonstrates the importance of

both observables in connection with LQ contributions that predict NP to ε′/ε. The only

way to avoid these bounds but still to enhance ε′/ε would be via non-vanishing tauonic LQ

couplings, which is ruled out for some LQ models by K → πνν̄ (S1, S3, U3, R̃2 and V2,L)

and ∆MK as will be discussed below (S̃1, R̃2 and with increasing size of MLQ also S1, S3

and R2).

4.4 Constraints from ∆MK and εK

As we have seen the strong correlations between ε′/ε and K → πνν̄ decays originated

in the following features. First in both ε′/ε and K → πνν̄ a summation over the lepton

flavour indices of LQ couplings appears. Second the mutual dependence on the imaginary
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parts of the couplings. Although the latter applies also to KL → π0`¯̀ and KS → µµ̄

decays, the former is absent such that only the electronic and muonic LQ couplings can

lead to correlations, whereas tauonic LQ couplings can lift them. In this respect, the off-

diagonal elements of the mass-mixing matrix M sd
12 offer another set of observables that are

sensitive to a summation over lepton-flavour indices, as can be seen from the expressions

in appendix C. The relevant observables ∆MK and εK were reviewed in section 2.3.

As already pointed out in section 3.7, the LQ contributions to down-type ∆F = 2 non-

leptonic operators are of different origin then those in ε′/ε. They are actually generated

at one-loop at the scale µΛ and provide a loop-suppressed matching contribution with

results given in appendix C for scalar LQ models. But these results involve a summation

of products of LQ couplings over the lepton-flavour index, very much as appearing in the

sum over the semi-leptonic SMEFT Wilson coefficients entering ε′/ε in (4.1). Exploiting

these model-specific matching results one arrives at

CsdVRR(µew) =
(Nsd)−1

(4π)2


M2
S̃1

2

(∑
a[Ced]aa21(µΛ)

)2
for S̃1

M2
R̃2

(∑
a[C`d]aa21(µΛ)

)2
for R̃2

(4.16)

where the running from µΛ to µew due to self-mixing of Cdd has been neglected for simplicity.

The normalisation factor Nsd is defined in (2.35). Whereas ε′/ε is linear in the sum over

semi-leptonic Wilson coefficients, ∆MK and εK depend quadratically on it. For LQ models

S1,3 and R2 analogously

CsdVLL(µew) =
(Nsd)−1

(4π)2



2M2
S1

(∑
a[C

(1)
`q ]aa21(µΛ)

)2
for S1

M2
R2

2

(∑
a[Cqe]aa21(µΛ)

)2
for R2

10

9
M2
S3

(∑
a[C

(1)
`q ]aa21(µΛ)

)2
for S3

(4.17)

For example the correlation between κε′ and ∆MK takes the form

(∆MK)LQ

(∆MK)exp
= −1.3

(
κε′

ln(µΛ/µew)

MLQ

2 TeV

)2

(4.18)

in the S3 model in which C7 dominates the NP contribution to ε′/ε. It should be noted

that suppression of ∆MK by the LQ contribution increases with increasing MLQ, a feature

found already in [20] in the context of Z ′ models. This shows that ∆MK can provide

powerful constraints on scalar LQ models, even though numerically enhanced left-right

operators do not contribute.

The strong correlation of ε′/ε and the short-distance part of ∆MK is specific for each

LQ model and shown in figure 8 for MLQ = 2, 20 TeV. The LQ models S̃1 and R̃2 lead

even for very small κε′ . 0.05 to a strong decrease by orders of magnitude independently

of MLQ. The correlation of ε′/ε and ∆MK can be dampened for low MLQ of a few TeV in
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Figure 8. The dependence of the short-distance part of ∆MK/∆MK,exp on κε′ for MLQ =

2 TeV [left] and MLQ = 20 TeV [right]. The dashed lines show the effect of box-diagram contribu-

tions in ε′/ε for Σ11
L,R ∈ [0.0, 1.0]. Further shown are the experimental measurement [black solid]

and the SM prediction [black dotted].

models S1,3 and R2, but at large scales MLQ & 10 TeV again strong suppression of ∆MK

for κε′ & 0.3 sets in disfavouring them as a explanation of ε′/ε, with weakest constraints

on the model R2. At this point strictly imaginary couplings were assumed. In figure 9 we

show the impact of small real contributions to the couplings on ∆MK and εK for κε′ = 0.5

and MLQ = 2, 20 TeV. Although it seems that fine-tuning between real and imaginary

parts can bring ∆MK in agreement with data, actually εK becomes changed by orders of

magnitude, even for MLQ of a few TeV. On the other hand the presence of box-diagram

contributions in ε′/ε can further weaken the constraints from ∆MK , but at the same time

are subject to constraints from D0−D0
mixing, which are sensitive to left-right operators.

While no reliable calculations of ∆MK and εK can be performed in models with vector

LQs without invoking a UV completion we would like to make an observation on the models

U1 and V2, which will turn out to be relevant soon. As seen in (A.2) in these models two

couplings with χ = L and χ′ = R are present. If both are non-zero, strongly enhanced left-

right operators contributing to ∆MK and εK will be present. In fact the chiral enhancement

of the hadronic matrix elements of such operators combined with RG evolution brings in an

enhancement of these contributions by two orders of magnitude relative to VLL and VRR

cases [24] constraining strongly this model in the presence of large imaginary couplings.

Thus one might set one of the two couplings to zero, what we have done while presenting

the numerical results above. We expect therefore strong constraints from ∆MK and εK on

the couplings of these models even without this approximation.

5 Summary, conclusions and outlook

In this paper we have presented for the first time the analysis of ε′/ε in LQ models and

provided general formulae in the framework of SMEFT for models in which non-leptonic

operators governing ε′/ε are generated from semi-leptonic operators through electroweak
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Figure 9. The dependence of the short-distance part of ∆MK/∆MK,exp [upper] and εK [lower]

on real parts of couplings for MLQ = 2 TeV [left] and MLQ = 20 TeV [right] for κε′ = 0.5. Further

shown are the experimental measurement [black solid] and the SM prediction [black dotted].

(EW) renormalisation group (RG) effects. We have also performed the one-loop decoupling

for scalar LQ models.

Our analysis showed the strong correlation of rare Kaon processes with ε′/ε. They

imply strong constraints on LQ models from the rare Kaon sector in the case of a future

confirmation of the ε′/ε anomaly by lattice QCD. They can be further strengthened with

improved measurements of K+ → π+νν̄ by NA62, KL → π0νν̄ by KOTO and KS → µµ̄ by

LHCb, as well as a improved lattice result for ∆MK in the Standard Model (SM). Hopefully

also KL → π0`¯̀ decays will one day help in this context. Within our approximations, we

were able to consider most relevant contributions to ε′/ε from EW gauge-mixing for both

scalar and vector LQ models, and from one-loop decoupling in a complete manner for scalar

LQ models. On the one hand, the EW gauge-mixing generates numerically enhanced EW-

penguin operator Q7 in models S1,3, R2, U1,L, V2,R and U3. On the other hand, the box-

diagram contributions exhibit in LQ models with left-handed and right-handed couplings

(S1, R2, U1 and V2) the remarkable feature that they can generate EW-penguin operators

Q8,8′ already at the LQ scale. In turn they are numerically strongly enhanced in ε′/ε

through RG effects and their hadronic matrix elements. Notably, the latter contributions
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involve both LQ couplings of the corresponding models and would vanish if either of them

were zero. The main results of our analysis might be summarised as follows

• The models with only one LQ coupling S̃1, R̃2, S3 and U3 lead to large enhancement of

the branching fractions of KL → π0νν̄ and K+ → π+νν̄ if (ε′/ε)NP is non-vanishing,

such that for moderate enhancements κε′ = 0.5 the current bounds on both decays

exclude these models as a possible explanation of the ε′/ε anomaly. Here the box-

diagram contributions to ε′/ε have been included, thereby assuming the involved

couplings to stay perturbative. We expect that even going beyond this assumption

will be in general insufficient to explain the ε′/ε anomaly, even for the vector LQ

model U3, where we are not able to calculate box diagrams in a cut-off independent

manner without specifying a UV completion.

• The model S1 shows also strong enhancement of KL → π0νν̄ and K+ → π+νν̄ above

the current Grossman-Nir bound even when box-diagram contributions are included

as long as Σ11
R < 1.0, but for larger values of Σ11

R a stronger bound on KL → π0νν̄

and K+ → π+νν̄ is required to conclusively exclude it as an explanation of the ε′/ε

anomaly.

• The sub-scenario of vector LQ model V2,L predicts also huge enhancements of KL →
π0νν̄ and K+ → π+νν̄ for κε′ & 0.1 if only EW gauge-mixing is included in ε′/ε.

From our experience with R̃2 we expect that the inclusion of box-diagrams to ε′/ε

will not be able to avoid this strong enhancement, leaving V2,L as a very unlikely

explanation of the ε′/ε anomaly.

• For the other models R2, U1,L, U1,R and V2,R we see large enhancements in KS → µµ̄

and KL → π0`¯̀, which put stringent constraints on electron and muon couplings and

hence on the LQ parameter space. But tauonic LQ couplings remain unconstrained

and can serve as an explanation of ε′/ε. In the scalar LQ model R2 this statement

includes box-diagram contributions to ε′/ε with Σ11
R < 1.0.

• For the scalar LQ models S1 and R2 the box-diagrams for ∆F = 2 processes are

calculable and here ∆MK provides complementary bounds also on tauonic LQ cou-

plings, but their effectivity becomes weak with smaller LQ masses for the case of

purely imaginary Σ21
χ . If Σ21

χ has also a small real part then ∆MK and also εK
become powerful constraints on large deviations in ε′/ε from the SM.

The LQ models which have the best chance to explain the ε′/ε anomaly are then

the scalar LQ models R2 and in part S1 and two vector LQ models U1 and V2. Among

these four models only the model U1,7 has a chance to explain the B physics anomalies if

only one LQ representation is considered. But as suggestions have been made to explain

B physics anomalies by considering simultaneously two LQ representations [6–8] and B

physics anomalies could disappear one day we analysed all these models.

7In most of the literature actually only the sub-scenario U1,L is considered.
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We have pointed out that in models R2 and S1 the large contribution to ε′/ε via box-

diagrams (3.48) involves both couplings ∼ Σ21
χ Σ11

χ′ with χ 6= χ′. A similar combination ∼
Vm2V

∗
n1 Σmn

χ Σ21
χ′ can be bounded in principle by D0−D0

mixing, providing also constraints

on the tauonic LQ couplings. Indeed it is well known that LR operators have enhanced

matrix elements not only for K0 − K
0

mixing, but also for D0 − D
0

mixing [76, 77].

However, due to the presence of the quark-mixing matrix V only a detailed global analysis

can provide a conclusive answer how strong D0 − D0
mixing can constrain box-diagram

contributions to ε′/ε. Such an analysis is beyond the scope of our paper.

In vector LQ models U1 and V2 the ∆F = 2 constraints will be even stronger since

here LR operators contribute to ∆MK and εK , where they are strongly enhanced, see [24]

for recent updates. The box-diagrams contribute to ε′/ε via the EW-penguin operator Q8

(and also Q8′ , but with Cabibbo suppression) (3.49) involving the combinations ∼ Σ21
χ Σ11

χ′

with χ 6= χ′, whereas ∆F = 2 observables depend on ∼ Σ21
χ Σ21

χ′ . Again tauonic couplings

are in principle also subject to constraints, but similar to scalar LQ models, also here only

a global analysis on the basis of a UV completion can provide a conclusive answer on the

effectivity of these constraints.

Whether the LQ models where the ε′/ε anomaly seems to be still compatible with

present constraints from rare Kaon processes are challenged by other existing constraints

goes beyond the scope of our work. This would require dedicated global analysis of each

model. In the case of vector LQ models a UV completion should be considered, as for

example proposed in [9, 10, 78, 79]. These UV completions contain usually new gauge

and scalar sectors, subject to additional constraints beyond flavour physics. On the other

hand, UV completions based on models with partial compositeness [80] or composite Higgs

models [81, 82] also lack full predictability due to the strongly interacting dynamics in these

models, requiring nonperturbative methods. We conclude therefore that the inclusion

of box-diagram contributions to ε′/ε with both left-handed and right-handed couplings

can improve the situation in models R2, S1, V2 and U1 but this improvement might be

insufficient to explain the ε′/ε anomaly in LQ models, in particular if κε′ will turn out to

be close to unity.

It should also be emphasized that the presence of significant right-handed couplings

goes against the present wisdom based on B physics anomalies that new physics is domi-

nated by left-handed currents, see in particular [8]. But as the U1 model is favoured by B

physics anomalies our analysis challenges model builders to find a UV completion for this

model that includes also right-handed couplings and couplings to the first generation and

while explaining the ε′/ε anomaly, satisfies all existing constraints, in particular describes

B physics anomalies and is consistent with the bounds on ∆MK and εK that are very

strong in the presence of left-handed and right-handed couplings.

While the vector LQ U1 performs best as a single representation in the case of B-

physics anomalies, models with two or more LQ representations have been considered in

the literature in the context of these anomalies. The question then arises whether with

two LQ representations the results for ε′/ε would improve. We comment here briefly on

two such models with scalar LQs, one involving S1 and S3 representations [7, 8] and the

second S3 and R̃2 representations [6].
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S1 S̃1 R2 R̃2 S3 U1,L U1,R U1 V2,L V2,R V2 U3

KL → π0νν̄ † — — † † — † — †
K+ → π+νν̄ † — — † † — † — †
KL → π0`¯̀ — †e,µ †e,µ †e,µ †e,µ †e,µ †e,µ †e,µ †e,µ †e,µ
KS → µµ̄ — †µ †µ †µ †µ
∆MK , εK †µΛ † † †µΛ loop loop loop loop loop loop loop∑

† † †e,µ † † †e,µ †e,µ † †e,µ †

Table 3. Overview of strong conflicts with current bounds/measurements on rare Kaon processes

when requiring (ε′/ε)NP = κε′ × 10−3 with κε′ & 0.5 for scalar and vector LQ models. In vector

LQ models only the EW gauge-mixing is included in ε′/ε, see main text for details. The symbols

in the table correspond to: “—” = no contributions in this LQ model; “loop” = mediated by loop

corrections in vector LQ models; “†” = ruled out for all lepton flavours ` = e, µ, τ ; “†`” = ruled out

for lepton flavour `; “†µΛ
” = ruled out for all lepton flavour if LQ mass is large enough.

Looking at (4.5) and (4.6) we observe that in the case of a model with S1 and S3 the

value of the coupling Σsd
χ,LQ can be decreased for a given κε′ . Assuming that the couplings

in these two representations are equal the coupling in question can be decreased by a factor

1.33 implying the reduction of the branching ratio for KL → π0νν̄ in the case of S3 model

first by a factor 1.8 with a smaller effect in K+ → π+νν̄. But as in both cases now also

S1 contributes the change is smaller. While this still improves the situation the model

is still predicting values of B(KL → π0νν̄) close to the Grossman-Nir bound and similar

comments apply to K+ → π+νν̄ where the change is smaller. In the case of KL → π0`¯̀

the representation S1 does not contribute and one can see by inspecting figure 7 that this

reduction of the coupling and of the branching ratio does not really solve the problem.

As far as combination of S3 and R̃2 is concerned the great disparity in the effectiveness

of these two representations to enhance ε′/ε seen in (4.4) and (4.5) tells us that the results

of the S3 model remain practically unchanged. These two examples indicate that even

invoking more representations it will be difficult to enhance sufficiently ε′/ε, in particular

if κε′ close to unity will be required.

The goal of our paper was to demonstrate on the basis of Kaon physics alone that the

explanation of a possible ε′/ε anomaly within the context of LQ models was very unlikely.

Any additional constraint on the couplings of LQs would further strengthen this conclusion.

Such constraints could come in particular from B physics anomalies but this would require

the imposition of flavour symmetries that would relate K and B decays. In connection

with the latter it has been demonstrated in [83] that the imposition of minimal flavour

violation (MFV) on LQ models excludes the explanation of B physics anomalies within

these models. We would like to emphasize that in the case of ε′/ε MFV is broken from

the beginning as only significant new CP-violating phases have a chance to explain the

anomaly in question.

Another possible constraint could come from the simultaneous considerations of flavour

symmetries responsible from the observed spectrum of fermion masses. In the context of
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B physics anomalies this issue has been addressed in [80] for the scalar LQ model S3 in

the framework of partial compositeness and for R̃2 and S3 models imposing various flavour

symmetries in [84]. Our analysis shows that in these frameworks the bounds on KL → π0νν̄

and K+ → π+νν̄ are violated when requiring κε′ ≥ 0.05 for R̃2 and κε′ ≥ 0.4 for S3. It will

be interesting to generalize such studies to include ε′/ε and in particular K+ → π+νν̄ after

the result from NA62 will be known. In case ε′/ε and B physics anomalies would persist

and the measurement of the K+ → π+νν̄ branching ratio would significantly deviate from

the rather precise SM prediction, a valuable information on family structure of BSM models

could be obtained. We hope to return to this issue once the ε′/ε anomaly will be confirmed

and the experimental status of B physics anomalies and of K+ → π+νν̄ will improve.

Our findings for the ten LQ models listed in table 4 as far as the ε′/ε anomaly in

correlation with rare Kaon processes is concerned are summarised in table 38 The different

symbols appearing in this table are explained in the caption of this table.

Finally, in most papers analysing LQ and other models in the context of B physics

anomalies it is a common practice to set NP couplings to Kaon and other light physics

sectors to zero. If the ε′/ε anomaly will be confirmed by future lattice results all these

analyses have to be reconsidered.

The main messages of our analysis to take home are the following ones. If the future

improved lattice calculation will confirm the ε′/ε anomaly at the level (ε′/ε)NP ≥ 5× 10−4

LQs are likely not responsible for it. But if the ε′/ε anomaly will disappear one day, large

NP effects in rare K decays that are still consistent with present bounds will be allowed.

Acknowledgments

This research was supported by the DFG cluster of excellence “Origin and Structure of the

Universe”. We thank Svjetlana Fajfer and David Straub for useful discussions.

A LQ Lagrangian

Here we summarise our conventions for the LQ Lagrangian, which follows [1]. The transfor-

mation properties of the spin S = 0 (scalar) and S = 1 (vector) LQ’s under the SM group

GSM ≡ SU(3)c ⊗ SU(2)L ⊗U(1)Y are summarised in table 4. We have modified the defini-

tion of the SU(2)L doublet LQ’s R2, R̃2 and V2, Ṽ2 to follow the standard conventions for

quark, lepton and Higgs doublets in which upper and lower SU(2)L components correspond

to isospin +1/2 and −1/2, respectively, opposite to the original convention in [1].

The couplings of scalar LQs to quarks (qL, uR, dR) and leptons (`L, eR) in the unbroken

SU(2)L ⊗U(1)Y phase are

LS =
(
g1L

[
qcLiτ

2`L
]

+ g1R
[
ucReR

])
S1 + g̃1R

[
dcReR

]
S̃1

+ h2L
[
uRR

T
2 iτ

2`L
]

+ h2R [qLR2eR] + h̃2L
[
dRR̃

T
2 iτ

2`L

]
+ g3L

[
qcLiτ

2~τ `L
]
· ~S3 + h.c.,

(A.1)

8The models Ũ1 and Ṽ2 are absent in this table because they do not provide new contributions to ε′/ε.
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LQ S1 S̃1 R2 R̃2 S3 U1 Ũ1 V2 Ṽ2 U3

SU(3)c 3∗ 3∗ 3 3 3∗ 3 3 3∗ 3∗ 3

SU(2)L 1 1 2 2 3 1 1 2 2 3

U(1)Y 2/3 8/3 7/3 1/3 2/3 4/3 10/3 5/3 −1/3 4/3

T3 0 0
+1

2

−1
2

+1
2

−1
2

+1

0

−1

0 0
+1

2

−1
2

+1
2

−1
2

+1

0

−1

Qem 1/3 4/3
5/3

2/3

+2/3

−1/3

+4/3

+1/3

−2/3

2/3 5/3
4/3

1/3

+1/3

−2/3

+5/3

+2/3

−1/3

Table 4. Quantum numbers of LQ’s under the gauge groups of the SM, and the isospin T3 and

electric charge Qem of their SU(2)L components, Qem = T3 + Y/2.

and for vector LQs

LV =
(
h1L [qLγµ`L] + h1R

[
dRγµeR

])
Uµ1 + h̃1R [uRγµeR] Ũµ1

+ g2L
[
dcRγµ(V µ

2 )T iτ2`L
]

+ g2R
[
qcLγµiτ

2V µ
2 eR

]
+ g̃2L

[
ucRγµ(Ṽ µ

2 )T iτ2`L

]
+ h3L [qLγµ~τ `L] · ~Uµ3 + h.c.

(A.2)

where the generation indices on quark and lepton fields have been suppressed. The LQ

couplings gaχ, g̃aχ and haχ, h̃aχ (a = 1, 2, 3 and χ = L,R) are 3×3 complex-valued matrices

in the generation space of the quarks and leptons. Above (iτ2)ab = εab is the second Pauli

matrix, ε12 = −ε21 = +1. Charge-conjugated fields are denoted as ψc ≡ Cψ
T

with the

charge-conjugation matrix C.

B LQ tree-level decoupling

The tree-level decoupling of LQs gives rise to semi-leptonic operators in SMEFT. Here we

summarise the results of their Wilson coefficients at the LQ scale µΛ. The semi-leptonic

operators are listed in table 1. There are two classes of diagrams to consider, depending

on whether charge-conjugated fields are involved or not. We follow [85] for Feynman rules

and consider the tree-level matching for Qi + La → Qj + Lb.

S1 : [C(1)
`q ]baji = −[C(3)

`q ]baji =
g1L
ia g

1L∗
jb

4M2 , (B.1)

[Ceu]baji =
g1R
ia g

1R∗
jb

2M2 , (B.2)

[C(1)
`equ]∗abij = −4[C(3)

`equ]∗abij =
g1L
ia g

1R∗
jb

2M2 , (B.3)

S̃1 : [Ced]baji =
g̃1R
ia g̃

1R∗
jb

2M2 , (B.4)
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R2 : [C`u]baji = −h
2L
ja h

2L∗
ib

2M2 , (B.5)

[Cqe]baji = −h
2R
ja h

2R∗
ib

2M2 , (B.6)

[C(1)
`equ]∗abij = 4[C(3)

`equ]∗abij =
h2L
ja h

2R∗
ib

2M2 , (B.7)

R̃2 : [C`d]baji = − h̃
2L
ja h̃

2L∗
ib

2M2 , (B.8)

S3 : [C(1)
`q ]baji = 3[C(3)

`q ]baji =
3

4

g3L
ia g

3L∗
jb

M2 , (B.9)

U1 : [C(1)
`q ]baji = [C(3)

`q ]baji = −h
1L
ja h

1L∗
ib

M2 , (B.10)

[Ced]baji = −h
1R
ja h

1R∗
ib

M2 , (B.11)

[C`edq]∗abij = 2
h1L
ja h

1R∗
ib

M2 , (B.12)

Ũ1 : [Ceu]baji = − h̃
1R
ja h̃

1R∗
ib

M2 , (B.13)

V2 : [C`d]baji =
g2L
ia g

2L∗
jb

M2 , (B.14)

[Cqe]baji =
g2R
ia g

2R∗
jb

M2 , (B.15)

[C`edq]∗abij = −2
g2L
ia g

2R∗
jb

M2 , (B.16)

Ṽ2 : [C`u]baji =
g̃2L
ia g̃

2L∗
jb

M2 , (B.17)

U3 : [C(1)
`q ]baji = −3[C(3)

`q ]baji = −3

2

h3L
ja h

3L∗
ib

M2 . (B.18)

C LQ one-loop decoupling

For scalar LQs it is possible to calculate one-loop decoupling for non-leptonic processes,

which contribute directly to the non-leptonic operators in SMEFT that mediate ∆F = 1

processes like ε′/ε, but also to ∆F = 2 processes ∆MK and εK .

Here we provide the general results for QiQ̄k → QjQ̄l for the choice of operators (3.12)

that contribute to down-type quark transitions (ji 6= kl) and are valid for ∆F = 1:

S1 : [C(o,1)
qq ]jikl = − Σkl

L

(4π)2

Σji
L

4M2 , (C.1)

[C(o)
qu ]jikl = − Σkl

R

(4π)2

Σji
L

4M2 , (C.2)

S̃1 : [C(o)
dd ]jikl = − Σkl

R

(4π)2

Σji
R

4M2 , (C.3)

R2 : [C(o,1)
qq ]jikl = [C(o,3)

qq ]jikl = − Σlk
R

(4π)2

Σij
R

8M2 , (C.4)

[C(o)
qu ]jikl = − Σlk

L

(4π)2

Σij
R

4M2 , (C.5)
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R̃2 : [C(o)
dd ]jikl = − Σlk

L

(4π)2

Σij
L

2M2 , (C.6)

S3 : [C(o,1)
qq ]jikl =

3

2
[C(o,3)
qq ]jikl = − Σkl

L

(4π)2

3 Σji
L

4M2 . (C.7)

The results for ∆F = 2 matching onto SMEFT operators O(1,3)
qq , Odd,uu and O(8)

qu is

given here, where for completeness also the operators O(1,8)
qu and Ouu are listed that mediate

up-type ∆F = 2 processes

S1 : [C(3)
qq ]jiji = 0, [C(1)

qq ]jiji = − Σji
L

(4π)2

Σji
L

8M2 , (C.8)

6[C(1)
qu ]jiji = [C(8)

qu ]jiji = − Σji
R

(4π)2

Σji
L

2M2 , (C.9)

[Cuu]jiji = − Σji
R

(4π)2

Σji
R

8M2 , (C.10)

S̃1 : [Cdd]jiji = − Σji
R

(4π)2

Σji
R

8M2 , (C.11)

R2 : [C(1)
qq ]jiji = 0, [C(3)

qq ]jiji = − Σij
R

(4π)2

Σij
R

8M2 , (C.12)

6[C(1)
qu ]jiji = [C(8)

qu ]jiji = − Σij
L

(4π)2

Σij
R

2M2 , (C.13)

[Cuu]jiji = − Σij
L

(4π)2

Σij
L

4M2 , (C.14)

R̃2 : [Cdd]jiji = − Σij
L

(4π)2

Σij
L

4M2 , (C.15)

S3 : [C(3)
qq ]jiji = 4[C(1)

qq ]jiji = − Σji
L

(4π)2

Σji
L

2M2 . (C.16)

D dj → di qq̄ and ε′/ε

The effective Lagrangian for s̄ → d̄qq̄ (i 6= j) is adopted from [86] with the definition of

the operators given in (2.1) and (2.2). At the scale µew (Nf = 5) it reads

Hd→dqq̄ =
GF√

2
VudV

∗
us

{
(1− τ)

[
z1(Q1 −Qc1) + z2(Q2 −Qc2)

]
+

10∑
a=3

(τva + vNP
a )Qa +

10∑
a=3

v′aQ
′
a

}
+ h.c.,

(D.1)

where Q
(c)
1,2 denote current-current operators. The sum over a extends over the QCD- and

EW-penguin operators and we included their chirality-flipped counterparts Q′a = Qa[γ5 →
−γ5]. The Wilson coefficients are denoted as za, v

(NP)
a and v′a, taken at the scale µew. For

the SM-part, CKM unitarity was used,

τ ≡ −
VtdV

∗
ts

VudV
∗
us

, (D.2)
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a p
(0)
a p

(6)
a p

(8)
a Pa a p

(0)
a p

(6)
a p

(8)
a Pa

3 7.45 −3.40 −3.50 2.85 7 −102.02 −1.32 2040.38 1447.91

4 −15.3 −15.59 9.39 −17.05 8 −428.11 −6.9 6908.01 4818.04

5 1.70 30.62 −18.74 4.91 9 36.72 4.42 −21.28 23.06

6 8.63 115.28 −47.69 38.10 10 9.57 −3.96 −4.80 3.66

Table 5. Values of the coefficients entering the semi-numerical formula of ε′/ε in eq. (D.6). The

last column gives Pa for B
(1/2)
6 = 0.57 and B

(3/2)
8 = 0.76, the central values of these parameters

obtained in [15] from [12].

and we introduced a new physics contribution vNP
a as shown above, which is related to the

LQ-contribution (3.38) as

vNP
a = Ca, v′a = C ′a. (D.3)

The RG evolution at NLO in QCD and QED leads to the effective Hamiltonian at a

scale µ . µc ∼ mc (Nf = 3)

Hd→dqq̄ =
GF√

2
VudV

∗
us

{
z1Q1 + z2Q2 +

10∑
a=3

[za + τya + vNP
a ]Qa +

10∑
a=3

v′aQ
′
a

}
+ h.c., (D.4)

after decoupling of b- and c-quarks at scales µb,c [86], where ya ≡ va − za and all Wilson

coefficients are at the scale µ.

The contributions of new physics can then be accounted for in ε′/ε by the replacement

ya(µ)→ ya(µ) +
vNP
a (µ)− v′a(µ)

τ
, (D.5)

where the minus sign is due to 〈(ππ)I |Qa|K〉 = −〈(ππ)I |Q′a|K〉 for the pseudo-scalar pions

in the final state [87]. For the readers convenience we provide a semi-numerical formula

for ε′/ε from [21] with initial conditions of Wilson coefficients from new physics in QCD-

and EW-penguins a = 3(′), . . . , 10(′) at the electroweak scale µew:

ε′

ε
=
[
−2.58 + 24.01B

(1/2)
6 − 12.70B

(3/2)
8

]
× 10−4 +

∑
a

Pa Im(vNP
a − v′a)[µew]. (D.6)

The coefficients are

Pa = p(0)
a + p(6)

a B
(1/2)
6 + p(8)

a B
(3/2)
8 (D.7)

with p
(n)
a given in table 5, where the last column gives Pa for B

(1/2)
6 (µ) = 0.57 and

B
(3/2)
8 (µ) = 0.76. For this purpose µew = MW , µb = mb(mb), µc = 1.3 GeV and µ =

1.53 GeV have been used. The central value of the SM prediction is (ε′/ε)SM = 1.5× 10−4

compared to 1.9× 10−4 in [15] due to different numerical inputs.
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[4] I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in
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