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Abstract: In this note, we study a melonic tensor model in d dimensions based on three-

index Dirac fermions with a four-fermion interaction. Summing the melonic diagrams at

strong coupling allows one to define a formal large-N saddle point in arbitrary d and

calculate the spectrum of scalar bilinear singlet operators. For d = 2 − ε the theory is an

infrared fixed point, which we find has a purely real spectrum that we determine numerically

for arbitrary d < 2, and analytically as a power series in ε. The theory appears to be weakly

interacting when ε is small, suggesting that fermionic tensor models in 1-dimension can be

studied in an ε expansion. For d > 2, the spectrum can still be calculated using the saddle

point equations, which may define a formal large-N ultraviolet fixed point analogous to the

Gross-Neveu model in d > 2. For 2 < d < 6, we find that the spectrum contains at least

one complex scalar eigenvalue (similar to the complex eigenvalue present in the bosonic

tensor model recently studied by Giombi, Klebanov and Tarnopolsky) which indicates that

the theory is unstable. We also find that the fixed point is weakly-interacting when d = 6

(or more generally d = 4n+ 2) and has a real spectrum for 6 < d < 6.14 which we present

as a power series in ε in 6 + ε dimensions.
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1 Introduction and summary

The Sachdev-Ye-Kitaev (SYK) [1–3] has attracted a great deal of attention recently [4–16]

as a possibly simple model of holography [17–19]. Tensor models [20–27] have recently

been observed to have dynamics similar to the SYK model [28–30], (but see [31, 32]).

Several studies of higher-dimensional tensor-models and SYK-like models have been

carried out [29, 33, 34]. In this note, we consider a tensor model with melonic dominance

based on three-index Dirac fermions in d dimensions, with the following action:

S=

∫
ddx

(
iψ̄a

b
c/∂ψ

abc+
1

2
g1ψ̄a1

b1
c1ψ

a1b2c2ψ̄a2
b1
c2ψ

a2b2c1 +
1

2
g2ψ̄a1

b1
c1ψ

a2b2c1ψ̄a2
b1
c2ψ

a1b2c2
)
.

(1.1)

The three indices of the fermions transform in the fundamental representation of U(N)×
O(N) × U(N) (or, more precisely, SU(N) × O(N) × SU(N) × U(1).) This action is a

generalization of equation 3.24 of [29] that contains the most general tetrahedronal inter-

action1 one can write down in d ≤ 2 dimensions. With a view towards generalizing the

1We thank Igor Klebanov for discussions on this point.
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one-dimensional theory, it appears natural to set one of the couplings, say g2, to zero, or,

instead to set g2 = −g1. We will, however, perform our calculations for arbitrary values of

the ratio g2/g1.

In the large N limit, with λi = giN
3/2 fixed, the theory is dominated by melonic

diagrams, which can be explicitly summed for arbitrary dimension d. From dimensional

analysis, we know that

[ψ] =
(d− 1)

2
, [gi] = 2− d (1.2)

This implies that in d < 2, the tetrahedronal coupling is relevant; in d = 2 the coupling is

classically marginal, and in d > 2, the coupling is irrelevant.

For d < 2 (which we treat as continuous) the theory is an infrared fixed point, that

(mildly) generalizes the 1-dimensional models studied in [29]. Based on our results for the

spectrum of scaling dimensions of bilinear operators below, we conjecture that this theory

is weakly interacting when ε = 2− d is small, and could serve as a useful starting point for

studying the 1-dimensional theory at finite N in an ε-expansion [35].

The vector model version of the theory [36], defined by the strong-coupling limit of

the action

Svector =

∫
ddx

(
iψ̄i/∂ψ

i +
1

2
gψ̄iψ

iψ̄jψ
j

)
(1.3)

can be solved in the large N limit in d > 2 and there is now substantial evidence that this

theory has a higher-spin gravitational dual, at least in d = 3 [37–41] (where it also plays

an important role in the bosonization duality [42, 43]). In the large N limit, the vector

model can be more rigorously defined as a Legendre transform of the free fermionic theory,

by introducing an Hubbard-Stratonovich auxiliary field σb, with the action

S =

∫
ddx

(
iψ̄i/∂ψ

i + σbψ̄iψ
i

)
. (1.4)

This definition is preferable to taking the g →∞ limit of an irrelevant g(ψ̄ψ)(ψ̄ψ) interac-

tion term, but from the simple-minded perspective of summing the leading-order diagrams

in the large N limit, both approaches give the same results. The UV fixed point can also

be studied at finite N in an ε expansion, starting from the Gross-Neveu model in 2 + ε di-

mensions, or the Gross-Neveu-Yukawa model in 4−ε dimensions [35, 36]. (See, e.g., [44–47]

for recent computations in the vector model.)

For d > 2, motivated by the vector model case, one might hope that the strong-

coupling limit of the melonic theory also formally defines a UV fixed point at large N —

which may have a dual holographic description in AdSd+1 that is at least as well-defined as

the formal large N solution of the d-dimensional bosonic tensor model studied in [29, 48].

One minor advantage of studying the fermionic theory is that the bosonic theory φ4 rank-

three tensor has a direction that is classically unbounded from below — but this problem

is apparently not present for the fermionic tensor model since the fermionic fields are

classically Grassmann-valued.

However, in the melonic large-N strong-coupling limit, the scaling dimension of the

fermion comes out to be d
4 . This is below the unitarity bound [49, 50] d−1

2 for d > 2,

– 2 –



J
H
E
P
0
2
(
2
0
1
8
)
0
8
6

indicating that the fermionic fields cannot be observables in a unitary CFT.2 To avoid

this problem, one might gauge the SU(N)×O(N)× SU(N)×U(1) symmetry so that the

individual fermionic fields themselves are not gauge-invariant operators. One of way of

doing this in d = 3 would be using a Chern-Simons field. Assuming that we are able to

restrict to the singlet sector consistently, the relevant question is then whether the spectrum

of gauge-invariant operators lie above the unitarity bound, which we try to partially address

for scalar bilinears in the calculations below.

Note added. We do not consider the case of d = 2 in this paper. Shortly after our work

appeared, a related paper by Benedetti, Carrozza, Gurau, and Sfondrini [51] considers this

case in detail and addresses the question of dynamical mass generation.

1.1 Summary of results and discussion

We first solve for the exact two-point function in the strong coupling limit λi → ∞ in

section 2. It is possible to solve the Schwinger-Dyson equations at arbitrary d, although

the solution is only an IR fixed point for d < 2. We then consider the strong-coupling limit

of the four-point function and solve for the spectrum of spin-0 operators, formed from

bilinears of the schematic form ψ̄abc(. . .)ψa
b
c, closely following [29] in section 3. It turns

out that the spectrum is essentially independent of the ratio between λ1 and λ2. Numerical

results for the spectrum in various dimensions are presented in section 4

For d < 2, no complex eigenvalue is found, and the theory seems well-defined. The

scaling dimensions we find suggest that the theory is free in 2 dimensions in the melonic

limit, (as one might expect from the Gross-Neveu model), and our analysis allows one

to calculate scaling dimensions in 2 − ε dimensions analytically in a power series in ε in

section 5.1. It would be interesting to extend our analytic expressions to a finite N , which

could allow us to study the 1-dimensional fermionic tensor models at finite N , starting

from the theory in 2 − ε dimensions. This would require us to study the beta function

of the theory at finite N in 2 − ε dimensions, which we hope to do in the near future.

It has been conjectured that the 1-dimensional tensor model is solvable at finite N as

well [52], and it would be interesting to compare results from an ε expansion to an exact

or numerical solution.

Though the case d > 2 may be unphysical, we calculate the spectrum formally in this

case as well in section 4. The theory appears to be weakly interacting when d = 6 and the

spectrum also simplifies drastically in d = 4. For 2 < d < 6 we find that the spectrum

contains a complex eigenvalue similar to the one that is present in the analogous bosonic

model [48], indicating that corresponding fields in a dual gravitational description would

lie below the Breitenlohner-Freedman bound.

In a window 6 < d < 6.14, a numerical search suggests that the spectrum contains no

complex eigenvalue. Hence, there may be a real fixed point in 6 + ε dimensions described

by this model. The spectrum of bilinear operators appears, however, to contain operators

2This problem also exists for the tensor models based on higher rank (q − 1) tensors studied in [48],

where the scaling dimension of the scalar ∆φ = d/q, is below the unitary bound if d > d∗ = 2(1 − 2
q
)−1.

For q = 4, d∗ = 4 and q = 6, d∗ = 3.
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with scaling dimensions below the unitarity bound. We present this spectrum analytically

as a power series in ε in section 5.2. Of course, interesting 6-dimensional theories are known

to have N3 degrees of freedom [53] (and e.g., [54]), but we do not propose any physical

interpretation of this particular theory.

In our calculations, we used dimensional regularization. We also only considered the

strong coupling limit of the Schwinger-Dyson equation, (2.4), for the two point function.

Ideally, one would like to solve the exact Schwinger-Dyson equation carefully, at least

numerically, to better understand if this strong-coupling limit is indeed physical. It would

also strengthen one’s confidence in the existence of the theories in d > 2 if there was an

alternative description as an IR fixed points, similar to the Gross-Neveu-Yukawa model,

even if both descriptions have a complex spectrum.

It is also possible to calculate the spectrum of higher-spin bilinear operators,

following [48]. Here there are four different forms for the three-point function

〈ψ(x1)ψ̄(x2)Os(x3, z) (two of which are parity-even and two of which are parity odd),

giving rise to four different spectra of spin s operators. It might be interesting to calculate

the spectrum, to see if the scaling dimensions are consistent with the unitarity bound,

and also to what extent the spectrum is consistent with other general expectations from

conformal field theory, e.g., large-spin perturbation theory [55–60].

In d = 3 one can add Chern-Simons gauge fields for any of the symmetry groups.

Adding a Chern-Simons field to vector models has been very interesting (e.g., [42, 43, 61–

66]), and affects the spectrum of operators only at the level of 1/N corrections (explicitly

calculated in [67, 68]). Integrating out the gauge field in a tensorial theory would give

rise to a “pillow” interaction term, with ’t Hooft coupling λCS = N2

k . Such an interaction

appears to be similar to a large flavor expansion, e.g., [69], and we expect that this would

also only affect 1/N corrections to the spectrum we have presented here. Our results may

also apply to the large D limit of a U(N)×O(D)×U(N) theory, as in [70–72].

Of course, the supersymmetric versions of the theory may be more promising, e.g., [34].

Perhaps the calculations here may serve as a useful warm-up for a study of these theories.

2 Two-point function

The two-point function of fermions in the free theory is

〈ψabc(p)ψ̄a′b
′
c′(−q)〉 ≡ G0(p)δaa′δ

bb′δcc′ × (2π)dδd(p− q), (2.1)

where

G0(p) =
1

i/p
. (2.2)

In the interacting theory, we replace the free propagator G0(p) with the exact propaga-

tor G(p).

We wish to calculate the two point function in the interacting theory in d-dimensions.

We sum over all the melonic diagrams in the theory in exactly the same way as in, e.g., [29].

Keeping track of spinor-index contractions, we find the Schwinger Dyson equation, depicted

– 4 –
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Figure 1. The Schwinger-Dyson equation for the exact propagator.

in figure 1, is given by,

G(p) =G0(p)− (λ2
1 + λ2

2)

∫
ddq ddr

(2π)2d
G0(p)G(p− q + r)Tr[G(q)G(r)]G(p)

+ 2λ1λ2

∫
ddq ddr

(2π)2d
G0(p)G(p− q + r)G(r)G(q)G(p).

(2.3)

This equation can be rewritten as:

G(p)−1 =G0(p)−1 + (λ2
1 + λ2

2)

∫
ddq ddr

(2π)2d
G(p− q + r)Tr[G(q)G(r)]

− 2λ1λ2

∫
ddq ddr

(2π)2d
)G(p− q + r)G(r)G(q).

(2.4)

Let us assume λ2 ∼ λ1, and denote the ratio of λ2/λ1 ≡ α. We expect the solution to

the Schwinger-Dyson equation (2.4) to be a function of the schematic form

G(p) = f

(
λ1

|p|2−d
, α

)
1

i/p
. (2.5)

We are interested in the strong-coupling limit of this solution, which will define a formal

large N conformal fixed point. For d < 2, the strong coupling limit λ1 →∞ is equivalent

to the IR limit p→ 0; for d > 2, the strong coupling limit λ1 →∞ is equivalent to the UV

limit p→∞ . In either limit, we will argue that it is consistent to set

G(p) ∼ λ−1/2
1

i/p

pd/2+1
.

This implies that G(p)−1 ∼ λ
1/2
1 i/p(p2)d−2. We see that for d < 2, in the IR limit |p| → 0,

G−1(p) � G−1
0 (p) and the first term on the r.h.s. of (2.4) can be dropped. Similarly, for

d > 2, in the UV limit, |p| → ∞, G−1(p)� G−1
0 (p) and the first term on the r.h.s. of (2.4)

can be dropped.

Therefore, to determine the fermion propagator in the strong-coupling limit λ → ∞,

we must solve the equation,

G(p)−1 = (λ2
1 + λ2

2)

∫
ddq ddr

(2π)2d
G(p− q + r)Tr[G(q)G(r)]

− 2λ1λ2

∫
ddq ddr

(2π)2d
)G(p− q + r)G(r)G(q).

(2.6)

Our aim is to find the solution to the above self-consistent equation. We assume the

following general ansatz for the solution,

G(p) = A(λ1, λ2)
i/p

(p2)α
(2.7)
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Substituting this ansatz into equation (2.6) and carefully performing the integrals, to

determine the numerical factors A and α, we find the exact propagator is given by,

G(p) = −λ−1/2 i/p

(p2)d/4+1/2

[
dγ

(4π)d
Γ(1/2− d/4)

Γ(3d/4 + 1/2)

]−1/4

, (2.8)

where

λ2 = (λ2
1 + λ2

2)− 2λ1λ2/dγ , (2.9)

and dγ denotes the dimensionality of the Dirac gamma-matrices in d-dimensions.

Translating to position space, we obtain:

G(x) =
1

(2π)d

∫
ddpe−ip·xG(p) = iγµA

1

(2π)d

∫
ddpe−ip·x

pµ

(p2)d/4+1/2

= −λ−1/2

[
1

dγπd
Γ(3d/4 + 1/2)

Γ(1/2− d/4)

]1/4
/x

(x2)d/4+1/2
(2.10)

When we reduce to d = 1, this solution agrees with equation 3.11 of [29]. Note that the gap

equation has been solved numerically for arbitrary λ in d = 1 in [5], which helps determine

the correct sign of A.

We see that the scaling dimension of the fermionic field in the strong-coupling fixed-

point can be taken to be ∆ψ = d
4 . This immediately raises a concern that the scaling

dimension of the fermion will be below the unitarity bound ((d − 1)/2 for d > 2, which

suggests that the theories we study do not exist for d > 2. However, as mentioned in

the introduction, if we gauge the SU(N) × O(N) × SU(N) × U(1) symmetry (say with a

Chern-Simons field in 3 dimensions), to restrict to the singlet sector, then the fermionic

operators themselves would not be gauge invariant, (and would probably not have a well

defined scaling dimension at order 1/N , if the strength of the Chern-Simons gauge field

were non-zero.) In that case, one should only check if scaling dimensions of gauge-invariant

operators, such as the bilinears we study below, have scaling dimensions above the unitar-

ity bound.

3 Four-point function and spectrum

In this section, we will set-up the necessary ingredients to obtain the spectrum of spin-0

bilinears. We will closely follow the now standard method used by, e.g., [29] in d-dimensions.

(We remark that one should question to what extent the strong coupling limit is rigorous in

higher dimensions, particularly without a numerical solution for intermediate values of λ.)

The essential idea is that the exact three-point function of a bilinear operator with two

fermionic fields 〈ψ(x1)ψ̄(x2)Os(x3)〉 obeys a Schwinger-Dyson equation depicted schemati-

cally in figure 2 above. In the strong coupling limit, we can drop the first term on the r.h.s.

of this equation. This implies that, in the conformal fixed point, 〈ψ(x1)ψ̄(x2)Os(x3)〉 must

be an eigenvector of the “integration kernel” depicted in the second term of the r.h.s. with

eigenvalue 1. Solving for the eigenvectors of the integration kernel determines the allowed

forms of the three-point function, which in turn determines the allowed scaling dimensions

of operators Os in the fixed point.

– 6 –
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Figure 2. The Schwinger-Dyson equation for the exact three point function

〈ψ(x1)Os(x3, ε3)ψ̄(x2)〉.

3.1 Bilinear operators

There are various bilinear operators whose scaling dimensions we would like to calculate.

The spin-0 bilinears are operators of the schematic form ψ̄(/∂)nψ. Note that, for odd

n, this is a parity-even scalar in d = 3, while for even n = 2m, this can be written as

ψ̄(∂2)mψ, which is a parity-odd pseudo-scalar in d = 3.

There are also higher spin operators, which generalize the free currents explicitly given

in [61] (see also [67]) to include extra derivatives. For spin 1, these could take the form

ψ̄γµ(/∂)nψ, which, in d = 3, is a vector for n even, and a pseudo-vector for n odd. Another

form that these might take is ψ̄
←→
∂ µ(/∂)nψ, which, in d = 3, is a pseudo-vector for n even,

and a vector for n odd. In higher dimensions, there are also operators with anti-symmetric

indices (e.g., ψ̄γµνψ) and mixed symmetry indices. In the present work, we do not consider

these operators.

3.2 Allowed forms for the three-point function

We will restrict our attention to the parity-even and parity-odd scalar operators, as these

are the operators of physical significance in d < 2 dimensions. However, it would be

possible to calculate the spin s spectrum for the theory using calculations similar to what

we present here.

Let us consider the three-point function:

〈ψ(x1)ψ̄(x2)O(x3)〉, (3.1)

where O is a bilinear operator of spin 0 and scaling dimension τ . Let us temporarily restrict

our attention to d = 3, where we have seen that the operator may be either parity-even or

parity-odd. As in [29], we will use the allowed forms of this three-point function to derive

eigenvectors of the integration kernel described below.

The most general three point function 〈ψ(x1)ψ̄(x2)O(x3)〉 including both parity-even

and odd contributions can be written as [73–75]:

〈(ξ̄1ψ(x1))(ψ̄(x2)ξ2)Os(x3)〉 =
aP3 + b(S3/P3)

|x31|τ |x12|2∆ψ−1−τ |x23|τ
(3.2)

For general x3 these forms can be written as:

P3 ∼ ξ̄1 /̆x12ξ2 (3.3)

(S3/P3) ∼
ξ̄1/x13/x32ξ2

|x12||x31||x23|
(3.4)

where we define x̆µ = xµ

x2
.
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It is convenient to eliminate x3, since the integration kernel derived below does not

involve x3. In the limit |x3| → ∞ we find:

P3 ∼
/x12

|x12|2
(3.5)

(S3/P3)
∣∣∣
1↔2
∼ 1

|x12|
(3.6)

In the above, we may have dropped some numerical factors relative to the definitions in [73].

We also removed the polarization spinor ξ̄1 = ξα1 εαβ from the left and ξ2 from the right.

From these expressions, we see the ansatz for eigenvectors of the integration kernel

corresponding to parity-even scalar operators is

veven
d,τ (x1, x2) = a

/x12

|x12|d/2+1−τ , (3.7)

and the ansatz for eigenvectors corresponding to parity-odd scalar operators is

vodd
d,τ (x1, x2) = b

1

|x12|d/2−τ
. (3.8)

Although our derivation above assumed d = 3, we expect that this ansatz is valid in d

dimensions. We also used ∆ψ = d/4 in the above expressions.

3.3 Integration kernel

To write down the integration kernel in a simple form (i.e., without many free spinor

indices), it is convenient to denote the bilinear operator whose three-point function we are

calculating as

O = ψ̄a2b2c2(x3)Vψa2b2c2(x4)
∣∣∣
x3=x4=x

.

The operator V could be proportional to a Dirac matrix, γµ, or the identity, 1, and may

involve derivative operators as well.

To evaluate the fermionic kernel in the large N limit, we need to consider all the

melonic Wick contractions of

〈ψa1b1c1(x1)
(
ψ̄a2b2c2(x3)Vψa2b2c2(x4)

)
ψ̄a1b1c1(x2)〉

∣∣∣
g2

=

1

2!22
ψa1b1c1(x1)

(
ψ̄a2b2c2(x3)Vψa2b2c2(x4)

)
∫
ddx

[
g1(ψ̄a3b3c3(x)ψa3b4c4(x))(ψ̄a4b3c4(x)ψa4b4c3(x))

+ g2(ψ̄a3b3c3(x)ψa4b4c3(x))(ψ̄a4b3c4(x)ψa3b4c4(x))
]

∫
ddy

[
g1(ψ̄a5b5c5(y)ψa5b6c6(y))(ψ̄a6b5c6(y)ψa6b6c5(y))

+ g2(ψ̄a5b5c5(y)ψa6b6c5(y))(ψ̄a6b5c6(y)ψa5b6c6(y))
]
ψ̄a1b1c1(x2).

(3.9)

These are pictured in figures 3 and 4.
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(a) (b)

(c)

Figure 3. Feynman diagrams corresponding to melonic Wick contractions proportional to λ21 or λ22.

The above diagram shows contraction of spinor indices, and the lower diagram shows contraction

of colour indices.

.

Let us define the zeroth order ladder diagram as Γ0 = G(x, x3)VG(x4, y) ≡ v(x, y).

Processing this expression, the fermionic integration kernel can be found to be:

K[v(x,y);x1,x2] =

∫
ddxddy

(
−(λ2

1+λ2
2)G(x1,x)v(x,y)G(y,x2)tr [G(x,y)G(y,x)]

−(λ2
1+λ2

2)G(x1,x)G(x,y)G(y,x2)tr [G(y,x)v(x,y)]

−(λ2
1+λ2

2)G(x1,y)G(y,x)G(x,x2)tr [G(y,x)v(x,y)]

+2λ1λ2G(x1,x)G(x,y)G(y,x)v(x,y)G(y,x2)

+2λ1λ2G(x1,x)v(x,y)G(y,x)G(x,y)G(y,x2)

+2λ1λ2G(x1,y)G(y,x)v(x,y)G(y,x)G(x,x2)
)

(3.10)

The strong-coupling limit of the exact three-point functions 〈ψ(x)ψ̄(y)Os(x3, ε)〉 ≡ vτ,s,

whose general forms were given in the previous section, must be eigenvectors of this inte-

gration kernel,

K[vd,τ (x, y);x1, x2] = g(d, τ)vd,τ (x1, x2) (3.11)

with eigenvalue g(d, τ) = 1. (Since the integration kernel is independent of x3, we take the

limit |x3| → ∞, which can also be obtained using a conformal transformation.)
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Figure 4. Feynman diagrams corresponding to melonic Wick contractions proportional to λ1λ2.

The above diagram shows contraction of spinor indices, and the lower diagram shows contraction

of colour indices.

4 Numerical spectrum of scalar bilinears

4.1 Spectrum of parity-odd scalar bilinears

Substituting the parity-odd scalar eigenvector ansatz (3.8) into the integral equation (3.11),

gives the following expression for g (see appendix A.2 for details):

godd(d, τ) = −
Γ
(

3d
4 + 1

2

)
Γ
(
d
4 −

τ
2

)
Γ
(
τ
2 −

d
4

)
Γ
(

1
2 −

d
4

)
Γ
(
d
4 + τ

2

)
Γ
(

3d
4 −

τ
2

) . (4.1)

Interestingly, this equation is independent of the ratio between λ1 and λ2. Note that this

equation (4.1) reproduces equation 3.29 of [29] when d = 1.

Solving the equation

godd(d, τ) = 1, (4.2)

for τ will give us the scaling dimensions τ
(odd)
n of operators of the schematic form ψ̄ /∂

2n
ψ.

We expect τ
(odd)
n = 2n+ 2∆ψ + δn = 2n+ d/2 + 2δn where δn → 0 as n→∞.

Let us solve the equation godd(d, τ) = 1 for τ , numerically when d = 3. The solutions

of this equation determine the allowed values of τ = ∆ for scalar operators in the large

N conformal fixed point we are studying. The plot of godd(3, τ) is shown in figure 5. The

first few real roots that we find are: τ
(odd)
1 = 3.69364, τ

(odd)
2 = 5.52725, τ

(odd)
3 = 7.50793,
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Figure 5. A plot godd(3, τ) and 1 for d = 3.

τ
(odd)
4 = 9.50331. These approach τ

(odd)
n = 2n + 1.5, as n → ∞, as expected. A real

eigenvalue corresponding to n = 0 appears not to be present in the spectrum, but probably

corresponds to the complex eigenvalue τ
(odd)
0 = 1.5±1.16817i. The presence of this complex

eigenvalue suggests the theory is unstable, and any putative gravitational dual description

would contain fields below the BF bound, as discussed in [48].

In d = 4, godd(d, τ) simplifies considerably:

godd(4, τ) =
15

(τ − 4)(τ − 2)2τ
. (4.3)

The roots to godd(4, τ) = 1 are:

τ (odd) =

{
2− i

√√
19− 2, 2 + i

√√
19− 2, 2−

√
2 +
√

19, 2 +

√
2 +
√

19

}
. (4.4)

Interestingly, there is no tower of solutions for this case (which resembles the d = 2 case in

the bosonic tensor model of [48].) We again find complex solutions indicating the theory

is unstable. We also find a parity-odd complex eigenvalue in all dimensions 2 < d < 6.

In d < 2 dimensions, based on a numerical search we conclude that the spectrum does

not contain any complex eigenvalue, while in d > 2 (but d < 6) dimensions the spectrum

does contain a complex eigenvalue. A plot in d = 1.95 and d = 2.05 is shown in the figure 6,

below, which illustrates this fact. We also note that godd(2, τ) vanishes, indicating that

the conformal fixed point is free in 2 dimensions. The first few eigenvalues in d = 1.95

are 0.755708, 1.19429, 2.97562, 4.97516, 6.97507. The first few eigenvalues in d = 2.05

are 1.025± 0.227675i, 3.02562, 5.02515, 7.02507. We present analytic expressions for these

eigenvalues as a power series in ε in d = 2− ε dimensions in the section 5.1.

Note that godd also vanishes for d = 6 (and d = 4n+2) in general, suggesting the (UV)

conformal fixed point is free in these dimensions as well. Because g(d, τ) changes sign at

d = 6 (as shown in the figure 7, below) the spectrum is qualitatively different in 6 − ε

dimensions, which contains a complex eigenvalue, and in 6 + ε dimensions, which seems to

have a purely real spectrum. We find that τ = 2.995 − 0.242346i is a complex eigenvalue

for d = 5.99.
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τ
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Figure 6. A plot godd(τ) and 1 for d = 1.95 (top) and d = 2.05 (below).

2 4 6 8
τ

-2

-1

1

2

3

godd(5.95, τ)

2 4 6 8
τ

-1

1

2

godd(6.05, τ)

Figure 7. A plot godd(τ) and 1 for d = 5.95 (top) and d = 6.05 (below). We see that some

eigenvalues become real as one crosses d = 6.
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godd(6.13, τ)

Figure 8. A plot godd(τ) and 1 for d = 6.15 (top) and d = 6.13 (below) indicating that some

eigenvalues become real below d < 6.14.

Studying the case of d = 6+ε dimensions numerically, we find τ = 1.70838−0.0178181i

is a complex eigenvalue for d = 6.14. This complex eigenvalue persists for higher values

of d but disappears when d < 6.13, as shown figure 8, below. Numerically, we cannot

find a complex eigenvalue for 6.14 > d > 6, so it may be possible to define an interacting

melonic theory free from complex eigenvalues in this range of dimensions. For example, the

first few numerical eigenvalues in 6.05 dimensions are 1.13874, 2.44164, 3.60836, 4.91126,

7.03777, 9.02496, 11.025. In section 5.2 below, we analytically compute the spectrum in

6 + ε dimensions as a power series in ε, and verify it is real when ε is positive. Unlike the

case d < 2, the first few eigenvalues listed above in the spectrum appear to be below the

unitary bound for scalars in 6 dimensions (τ∗ = 2). If the theory is unitary in d = 6+ε then

these eigenvalues must be spurious, and the spectrum begins at τ = 2.44, which naturally

corresponds to the operator ψ̄ /∂
2n
ψ, with n = 0.

While we expect complex eigenvalues for generic values of d > 6.14, there may be

additional “windows” at larger values of d where the spectrum is real, similar to the range

6 < d < 6.14.

4.2 Spectrum of parity-even scalar bilinears

Substituting in the parity-even eigenvector (3.7), into the integral equation (3.11), gives

the following (see appendix A.3 for details):

geven(d, τ) = −
3 cos

(
πd
4

)
Γ
(

3d
4 + 1

2

)
Γ
(
d+2

4

)
sec
(

1
4π(d− 2τ)

)
Γ
(

1
4(3d− 2τ + 2)

)
Γ
(

1
4(d+ 2τ + 2)

) (4.5)
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Figure 9. A plot geven(τ) for d = 3.

As in the previous section, this expression is independent of the ratio between λ1 and λ2,

and we must solve

geven(d, τ) = 1 (4.6)

to determine the scaling dimensions of operators of the schematic form ψ̄ /∂
2n+1

ψ. We

expect eigenvalues of the form τ
(even)
n = (2n+1)+2∆ψ + δn = 2n+1+ d

2 + δn, with δn → 0

as n→∞.

For d = 3, the plot of g is shown in figure 9, the lowest solutions to geven(τ, 0) = 1 are

τ
(even)
1 = 4.73049, τ

(even)
2 = 6.5462, τ

(even)
3 = 8.5158, τ

(even)
4 = 10.5072, τ

(even)
5 = 12.5039.

These approach 2n+2.5 as expected, though n = 0 is missing. There is a complex solution

1.5− 1.32587i, which likely corresponds to n = 0.

Performing a numerical search for complex eigenvalues in dimensions less than 7, we

only find a parity-even complex eigenvalue in the range 2.3225 < d < 5.79, and d > 6.26

— which is a subset of the range for which their exists a parity-odd complex eigenvalue.

(As pictured in figure 10, for d = 5.75, τ = 2.875 + 0.442i is a complex eigenvalue, and for

d = 6.30, τ = 0.998 + 0.317i is a complex eigenvalue.) These results is consistent with the

conjecture that the theory contains only real eigenvalues in d = 6 + ε.

When d = 4, geven(d, τ) takes a simple form:

geven(4, τ) =
45

τ4 − 8τ3 + 14τ2 + 8τ − 15
(4.7)

which corresponds to the eigenvalues:

τ (even) =

{
2− i

√√
61− 5, 2 + i

√√
61− 5, 2−

√
5 +
√

61, 2 +

√
5 +
√

61

}
. (4.8)

Again, there is no tower of solutions in this case.

We also note that geven(d, τ) vanishes when d = 2 and d = 6, as expected from the

analysis of godd, consistent with the claim that the fixed point is free in these dimensions.

For d = 6.05, plotted in figure 11, the first few eigenvalues are 0.10446, 1.87654,

4.17346, 5.94554, 8.04024, 10.0249,. . .. The first two of these eigenvalues lie below the

unitary bound. If the theory is unitary in d = 6+ε then these eigenvalues must be spurious,

and the spectrum begins at τ = 4.17, which naturally corresponds to the operator ψ̄ /∂
2n+1

ψ,

with n = 0.
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Figure 10. A plot geven(τ) and 1 for d = 5.75 (top) and d = 6.30 (below) indicating that some

eigenvalues become complex outside the range 5.79 < d < 6.26.
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Figure 11. A plot geven(τ) for d = 6.05.
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5 Epsilon expansion in d = 2 − ε and d = 6 + ε

Numerically, we found that the spectrum of scalar bilinears is real when d < 2 and when

6.14 > d > 6, and the scaling dimensions approach free values as d → 2 or 6. In this

section, we will present analytic expressions for these real scaling dimensions in 2 − ε and

6 + ε dimensions, obtained by solving the equations g(2 − ε, τ) = 1 and g(6 + ε, τ) = 1

perturbatively in ε. Of course, the case of d = 6 is not necessarily physical.

In the expressions that follow, Hn denotes the nth harmonic number, Hn =

n∑
k=1

1

k
.

5.1 d = 2 − ε

When d = 2−ε, we appear to have a sensible IR fixed point, with a purely real spectrum in

the large N limit. All operators appear to have scaling dimensions above the unitary bound.

Solving godd(2− ε, τ) = 1, we find the parity-odd scalar spectrum in d = 2− ε is:

τ
(odd)
0,± = 1±

√
ε− 1

2
ε± 3

8
ε3/2 ±

(
ζ(3)

8
+

9

128

)
ε5/2 +O

(
ε3
)

(5.1)

τ
(odd)
1 = 3− 1

2
ε+

1

4
ε2 + 0ε3 − 7

64
ε4 +O

(
ε5
)

(5.2)

τ (odd)
n = (2n+ 1)− 1

2
ε+

1

4n2
ε2 +

(
4n2Hn−1 + (2− 3n)n+ 1

)
16n4

ε3 (5.3)

+

(
8n4H2

n−1 − 6n3 − 2n2 + 4((2− 3n)n+ 2)n2Hn−1 + 1
)

64n6
ε4 +O

(
ε5
)

for n ≥ 1.

The parity-even scalar spectrum is:

τ
(even)
0 = 2+ε− 3ε2

2
+

3ε3

2
+

(
−3ζ(3)

4
− 21

8

)
ε4+O

(
ε5
)

(5.4)

τ (even)
n = 2(n+1)− 1

2
ε+

3

4n(n+1)
ε2+

3
(
4(n+1)nHn−1−3n2+n+5

)
16n2(n+1)2

ε3

+
3
(
8(n+1)2n2H2

n−1+4(n(9−n(3n+2))+8)nHn−1−12n3−24n2+19
)

64n3(n+1)3
ε4

+O
(
ε5
)
, for n≥ 1. (5.5)

5.2 d = 6 + ε

We find a purely real spectrum in d = 6 + ε dimensions for ε < 0.14. This spectrum may

contain eigenvalues below the unitary bound, and the colored fermions ψabc in this dimen-

sion have dimension 3/2 which is also below the unitary bound 5/2. As such, the formal

large N fixed point in this case may be non-unitary or otherwise ill-defined. Nevertheless,

it is remarkable that there is a small window around d = 6 in which the spectrum is real,

so we present some results below.

The parity-odd scalar spectrum is:

τ
(odd)
−1 = 1 +

5

2
ε+

107

24
ε2 +

3047

192
ε3 +

(
15ζ(3)

8
+

484679

6912

)
ε4 +O

(
ε5
)

(5.6)
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τ
(odd)
0,± = 3±

√
6
√
ε+

1

2
ε± 35

16

√
3

2
ε3/2 ±

(
1536

√
6ζ(3) + 4799

√
6
)

2048
ε5/2 +O

(
ε7/2

)
(5.7)

τ
(odd)
1 = 5− 3

2
ε− 107

24
ε2 − 3047

192
ε3 +

(
−15ζ(3)

8
− 484679

6912

)
ε4 +O

(
ε5
)

(5.8)

τ
(odd)
2 = 7 +

3

4
ε+

43

384
ε2 − 301

6144
ε3 +

(
63713

3538944
− 3ζ(3)

256

)
ε4 +O

(
ε5
)

(5.9)

τ
(odd)
2+n = (2n+ 7) +

1

2
ε− 6Γ(n)

(n+ 2)Γ(n+ 5)
ε2

+
6
(

1
2

(
1

n+1 + 1
n+2 + 1

n+3 + 1
n+4 + 1

n

)
+Hn−1 − 6Γ(n)Γ(n+2)

Γ(n+3)Γ(n+5) −
29
16

)
n(n+ 1)(n+ 2)2(n+ 3)(n+ 4)

ε3

+O
(
ε4
)

, for n ≥ 1. (5.10)

The parity-even scalar spectrum is

τ
(even)
−2 = 2ε+

13ε2

8
+

67ε3

24
+

(
3ζ(3)

4
+

54401

9216

)
ε4 +O

(
ε5
)

(5.11)

τ
(even)
−1 = 2− 5ε

2
+

17ε2

16
− 3635ε3

384
+

(
50759

2304
− 105ζ(3)

16

)
ε4 +O

(
ε5
)

(5.12)

τ
(even)
0 = 4 +

7ε

2
− 17ε2

16
+

3635ε3

384
+

(
105ζ(3)

16
− 50759

2304

)
ε4 +O

(
ε5
)

(5.13)

τ
(even)
1 = 6− ε− 13ε2

8
− 67ε3

24
+

(
−3ζ(3)

4
− 54401

9216

)
ε4 +O

(
ε5
)

(5.14)

τ
(even)
2 = 8 +

4ε

5
+

197ε2

2000
− 32581ε3

600000
+

(
8429

281250
− 3ζ(3)

250

)
ε4 +O

(
ε5
)

(5.15)

τ
(even)
2+n = 8 + 2n+

ε

2
− 18ε2Γ(n)

Γ(n+ 6)

+
9ε3Γ(n) (8Hn+5Γ(n+ 6)− 288Γ(n) + Γ(n+ 6)(8Hn−1 − 29))

8Γ(n+ 6)2
+O

(
ε4
)

(5.16)

While this six-dimensional fixed point might not be physical, let us make a few brief

comments about it.

We labeled the eigenvalues above as τ
(even)
n if the scaling dimension at ε = 0 was equal to

2∆ψ+(2n+1), corresponding to the operator ψ̄ /∂
(2n+1)

ψ, and τ
(odd)
n if the scaling dimension

at ε = 0 was equal to 2∆ψ + (2n), corresponding to the operator ψ̄ /∂
(2n)

ψ. We find some

eigenvalues corresponding to negative values of n, listed above, and these are presumably

not physical. If these eigenvalues are scaling dimensions of genuine bilinear operators, then

even a gauged-version of the 6-dimensional theory (containing only singlets formed out of

ψ and ψ̄ as gauge-invariant operators) would be non-unitary, since these operators have

scaling dimensions below the unitary bound for (non-singleton) scalars in d = 6, which is

τ∗ = (d− 2)/2 = 2.

If these eigenvalues can be excluded, we still expect that the theory restricted to the

singlet sector is not unitary, but to see this, one would have to look at the higher-spin

spectrum. The theory in 6 dimensions appears to be a theory of free fermions with non-

standard scaling dimension 3
2 . The unitarity bound for a vector in 6 dimensions is 5 and
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ψ̄γµψ would likely have scaling dimension 3, which is well below the bound. These argu-

ments apply to all the theories with d > 2, but in dimensions such as 3 where interactions

are non-trivial, it might be possible that scaling dimensions of higher-spin currents could be

lifted above the unitarity bound. While some constructions of formal theories containing

negative mass higher-spin gauge fields in AdS do exist [76, 77], it does appear that the

existence of a gravitational dual for the formal UV fixed point in d = 6 is unlikely.
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A Calculating the scalar spectrum

Here we present some details for the calculations of the scalar spectrum. The results turn

out to be independent of the ratio of λ2/λ1. Below, we denote the two-point function in

position space as:

G(x, 0) = −λ−1/2

[
1

dγπd
Γ(3d/4 + 1/2)

Γ(1/2− d/4)

]1/4
/x

(x2)d/4+1/2
≡ −λ−1/2Ã

/x

(x2)d/4+1/2
(A.1)

A.1 Integrals and identities

Using equation 2.19 of [48], we can evaluate most of the integrals that arise in this paper:∫
ddx

(x · z)s

x2α(x− y)2β
= Ld,s(α, β)

(y · z)s

(y2)α+β−d/2 (A.2)

Here z is a null polarization vector, satisfying z2 = 0.

Using the operator (see e.g., [74, 78–80])

Dµ = ∂zµ +
1

d/2− 1
zν∂zν∂zµ −

1

d− 2
zµ∂zν∂zν , (A.3)

one can translate equation (A.2) into the following simple formulas:∫
ddx

1

x2α(x−y)2β
=Ld,0(α,β)

1

(y2)α+β−d/2 (A.4)∫
ddx

xµ
x2α(x−y)2β

=Ld,1(α,β)
yµ

(y2)α+β−d/2 (A.5)
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∫
ddx

xµxν
x2α(x−y)2β

=
1

(y2)α+β−d/2

(
Ld,2(α,β)yµyν+

y2ηµν
d

(Ld,0(α−1,β)−Ld,2(α,β))

)
(A.6)∫

ddx
xµxνxρ

x2α(x−y)2β
=

1

(y2)α+β−d/2

(
Ld,3(α,β)yµyνyρ+

y2η(µνyρ)

d+2
(Ld,1(α−1,β)−Ld,3(α,β))

)
where η(µνyρ) = ηµνyρ + ηµρyν + ηνρyµ.

A.2 Parity-odd scalar eigenvalue

For the parity odd scalar eigenvalue, the eigenvalue equation can be simplified to take

the form:

godd(d,τ)

|x1|d/2−τ
=−λ2

∫
dxdy G(x1,x)vodd(x,y)G(y,0) Tr(G(x,y)G(y,x))

= (Ã4dγ)γµγν

∫
dxdy

(x1−x)µyν(x−y)2

|x−y|3d/2+2−τ |y|d/2+1|x1−x|d/2+1

= (Ã4dγ)γµγν

∫
dxdy

(x1−x)µyν

|x−y|3d/2−τ |y|d/2+1|x1−x|d/2+1

= (Ã4dγ)Ld,1

(
d+2

4
,
3d

4
− τ

2

)
γµγν

∫
dx

(x1−x)µxν

|x|d+1−τ |x1−x|d/2+1

= (Ã4dγ)Ld,1

(
d+2

4
,
3d

4
− τ

2

)(
Ld,1

(
d+1−τ

2
,
d+2

4

)
−Ld,0

(
d−1−τ

2
,
d+2

4

))
1

|x1|d/2−τ

(A.7)

Here we set x2 = 0, and

Ã4dγ =
1

πd
Γ(3d/4 + 1/2)

Γ(1/2− d/4)
.

Note that, in the first line, the integral only depends on λ2 = (λ2
1 + λ2

2) − 2λ1λ2/dγ , the

same quantity which appears in the two-point function, so the spectrum is independent of

the ratio between λ1 and λ2.

Thus we have

godd(d,τ) = (Ã4dγ)Ld,1

(
d+2

4
,
3d

4
− τ

2

)(
Ld,1

(
d+1−τ

2
,
d+2

4

)
−Ld,0

(
d−1−τ

2
,
d+2

4

))
=−

Γ
(

3d
4 + 1

2

)
Γ
(
d
4−

τ
2

)
Γ
(
τ
2−

d
4

)
Γ
(

1
2−

d
4

)
Γ
(

3d
4 −

τ
2

)
Γ
(
d
4 + τ

2

)
=

4cos
(
πd
4

)
Γ
(

3d
4 + 1

2

)
Γ
(
d+2

4

)
csc
(

1
4π(d−2τ)

)
(d−2τ)Γ

(
3d
4 −

τ
2

)
Γ
(

1
4(d+2τ)

) (A.8)

For d = 1, this reduces to:

godd(1, τ) =
tan

(
1
4(2πτ + π)

)
1− 2τ

(A.9)

which agrees with [29].
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A.3 Parity-even scalar eigenvalue

Here, the eigenvalue equation can be simplified to take the form:

geven(d, τ)
/x1

|x1|d/2−τ+1
= −3λ2

∫
dxdy G(x1, x)veven(x, y)G(y, 0) Tr (G(x, y)G(y, x))

= 3(Ã4dγ)γµγργν

∫
dxdy

(x1 − x)µ(x− y)ρyν

|x− y|3d/2+1−τ |y|d/2+1|x1 − x|d/2+1

= 3(Ã4dγ)K1γµ

∫
dx

(x1 − x)µ

|x|d−τ |x1 − x|d/2+1

= 3(Ã4dγ)K1K2
/x1

|x1|d/2−τ+1
(A.10)

where

K1 = Ld,1

(
d+ 2

4
,

3d

4
+

1− τ
2

)
− Ld,0

(
d− 2

4
,

3d

4
+

1− τ
2

)
,

and

K2 = Ld,0

(
d− τ

2
,
d+ 2

4

)
− Ld,1

(
d− τ

2
,
d+ 2

4

)
.

We have,

geven(d, τ) = 3(Ã4dγ)K1K2

= −
3 cos

(
πd
4

)
Γ
(

3d
4 + 1

2

)
Γ
(
d+2

4

)
sec
(

1
4π(d− 2τ)

)
Γ
(

1
4(3d− 2τ + 2)

)
Γ
(

1
4(d+ 2τ + 2)

) .
(A.11)

For d = 1 this reduces to

geven(d, τ) =
3 cot

(
1
4(2πτ + π)

)
2τ − 1

(A.12)

which agrees with [29].
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