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1 Introduction

Our paper is devoted to a systematic study of the consistent deformations of the gauge

invariant actions of the form

S0[A
I
µ, φ

i] =

∫

d4xL0, (1.1)

depending on ns uncharged scalar fields φi and nv abelian vector fields AI
µ. We assume

that the only gauge symmetries of (1.1) are the standard U(1) gauge transformations for

each vector field, so that the gauge algebra is abelian and given by nv copies of u(1). A

generating set of gauge invariances can be taken to be

δAI
µ = ∂µǫ

I , δφi = 0. (1.2)

The Lagrangian takes the form

L0 = LS [φ
i] + LV [A

I
µ, φ

i], (1.3)

where LV is a function that depends on the vector fields through the abelian curvatures

F I
µν = ∂µA

I
ν−∂νA

I
µ only, and which can also involve the scalar fields φi. Derivatives of these

variables are in principle allowed in the general analysis carried out below, but actually do

not occur in the explicit Lagrangians discussed in more detail. The scalar fields can occur

non linearly, e.g. terms of the form IIJ(φ)F
I
µνF

Jµν where IIJ(φ) are some functions of the

φi’s are allowed. Similarly, the scalar Lagrangian need not be quadratic. More on this in

subsection 3.1.

The gauge transformations (1.2) are sometimes called “free abelian gauge transforma-

tions” to emphasize that the scalar fields are uncharged and do not transform under them.

This does not mean that the abelian vector fields themselves are free since non linear terms

(non minimal couplings) are allowed in (1.3).

This class of models contains the vector-scalar sectors of “ungauged” extended super-

gravities, of which N = 4 [1–3] and N = 8 [4, 5] supergravities offer prime examples. These

will be considered in detail in sections 5 and 6. Born-Infeld type generalizations [6] are also

covered together with first order manifestly duality invariant formulations [7–9], which fall

into this class when reformulated with suitable additional scalar fields [10].
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Consistent deformations of a gauge invariant action are deformations that preserve the

number (but not necessarily the form or the algebra) of the gauge symmetries. In the super-

gravity context, these are called “gaugings”, and the deformed theories are called “gauged

supergravities”, even though the undeformed theories possess already a gauge freedom.

We shall often adopt this terminology here. We shall consider only local deformations, i.e.,

deformations of the Lagrangian by functions of the fields and their derivatives up to some

finite (but unspecified) order.

Gaugings in extended supergravities have a long history that goes back to [11, 12].

For maximal supergravity, the first gauging has been performed in [13] in the Lagrangian

formulation of [5], which involves a specific choice of so-called “duality frame” (a choice of

“electric” directions among a set of electric-magnetic pairs). More recent gaugings involving

a change of the duality frame have been constructed in [14]. All these are reviewed in [15].

These works consider from the very beginning deformations in which the vector fields

become Yang-Mills connections for a non-abelian deformation of the original abelian gauge

algebra. The corresponding couplings are induced through the replacement of the abelian

curvatures by non-abelian ones and the ordinary derivatives by covariant ones, plus pos-

sible additional couplings necessary for consistency. One natural question to be asked is

whether this embraces all possible consistent deformations. There exist of course theo-

rems establishing the uniqueness of the Yang-Mills coupling under general conditions (see

e.g. [16, 17]), but couplings to nonlinear scalar fields were not considered in these early

works, which focused furthermore on algebra-deforming deformations.

The gaugings of supergravities have revealed the importance of the choice of dual-

ity frame, in the sense that the space of consistent deformations depends on that choice

(see [18, 19] and the recent analysis in [20, 21]). In order to take this feature into account,

a formalism has been developed in [22–25], called the “embedding tensor” formalism. It is

reviewed in [15]. In this formalism, additional fields are introduced besides those appearing

in (1.1), which are magnetic vector potentials and 2-form auxiliary gauge fields. The the-

ory possesses also additional gauge symmetries. The choice of duality frame is implicitly

encoded in the “embedding” tensor, which is subject to a number of constraints. It was

shown in [26] that the space of consistent deformations in the “embedding” formalism is

isomorphic to the space of consistent deformations for the action (1.1) written in the du-

ality frame picked by the choice of embedding tensor. For that reason, one can investigate

the question of gaugings by taking (1.1) as starting point of the deformation procedure,

provided one allows the scalar field dependence in the vector piece of the Lagrangian to

cover all possible choices of duality frame. It is this task which is carried out here. By doing

so, one does not miss any of the gaugings available in the embedding tensor formalism.

One systematic way to explore deformations of theories with a gauge freedom is pro-

vided by the BV-BRST formalism [27]. In the BRST approach, inequivalent infinitesimal

local gaugings correspond to BRST cohomology classes in ghost number zero computed in

the space of local functionals. In this work, we completely characterize the BRST cohomol-

ogy for the theories defined by (1.1), i.e., we completely characterize, in four spacetime di-

mensions, the deformations of abelian vector fields coupled non-minimally to scalar charge-

less fields with a possibly non polynomial dependence on the (undifferentiated) scalar fields.
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In particular, we show that besides the obvious deformations that consist in adding

gauge invariant terms to the Lagrangian without changing the gauge symmetries, the gaug-

ings can be related to the global symmetries of the action (1.1). These gaugings modify

the form of the gauge transformations.

The global symmetries can be classified into two different types: (i) global symmetries

with covariantizable Noether currents, where by “covariantizable”, we mean that one can

choose the ambiguities in the Noether currents so as to take them gauge invariant (V -type

symmetries); (ii) global symmetries with non-covariantizable Noether currents. Only the

first type directly gives rise to an infinitesimal consistent deformation through minimal

coupling of the corresponding current to the vector potentials.

The gaugings associated with the other type of global symmetries need to satisfy addi-

tional constraints. This second type of global symmetries, in turn, can be subdivided into

two subtypes: (a) global symmetries with non-covariantizable Noether currents that lead

to a deformation that does not modify the gauge algebra (W -type symmetries); (b) global

symmetries with non-covariantizable Noether currents that lead to a deformation that does

modify also the gauge algebra (U -type symmetries). The global symmetries of type (a)

contain in their Noether current non-gauge invariant Chern-Simons terms that cannot be

removed by suitably adjusting trivial contributions. The global symmetries of type (b) are

associated with ordinary “free” abelian gauge symmetries with co-dimension 2 conserva-

tion laws (see e.g. [28] for an early discussion). The divergence of a current of type (a)

is itself gauge invariant, while the divergence of a current of type (b) is not. Yang-Mills

gaugings are associated with currents of type (b) and are hence of U -type. Topological

couplings [29] are associated with non-covariantizable Noether currents of either type (a)

or (b). “Charging deformations” (if available), in which the scalar fields become charged

but the gauge transformations of the vector fields are not modified and remain therefore

abelian, are of V - or W -type.

The BRST deformation procedure applies not only to the consistent first order defor-

mations, but also to higher orders where one might encounter obstructions. That procedure

provides a natural deformation-theoretic interpretation of quadratic constraints and higher

order constraints in terms of what is called the antibracket map.

After establishing general theorems on the BRST cohomology valid without assuming

a specific form of the Lagrangian or the rigid symmetries, including the above classification

of the deformations and useful triangular properties of their algebra, we turn to various

models that have been considered in the literature, for which we completely compute the

deformations of U and W -types.

Our paper is organized as follows. In section 2, we provide a brief survey of the BRST

deformation procedure. We then compute in section 3 the local BRST cohomology of the

models described by the action (1.1). This is done by following the method of [30, 31]

where the BRST cohomology was computed for arbitrary compact — in fact reductive

— gauge group. The difficulty in the computation comes from the free abelian factors,

where by “free abelian factors”, we mean abelian factors of the gauge algebra such that

all matter fields are uncharged, i.e., invariant under the associated gauge transformations.

This is precisely the case relevant to the action (1.1), which needs thus special care. The
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method of [30, 31] is based on an expansion according to the antifield number. It makes

direct contact with symmetries and conservation laws through the lowest antifield number

piece of the BRST differential, called the “Koszul-Tate” differential, which involves the

equations of motion [32, 33]. The Noether charges appear through the “characteristic”

cohomology, given by the local cohomology of the “Koszul-Tate” differential [30].

We then discuss in section 4 the structure of the antibracket map, which is relevant

for the consistency of the deformation at second order and the possible appearance of

obstructions, and provide information on the structure of the global symmetry algebra.

The method of [30, 31] provides the general structure of the BRST cocycles in terms

of conserved currents. In order to reach more complete results, one must use additional

information specific to each model. We therefore specify further the models in section 5,

where we concentrate on scalar-coupled second order Lagrangians that are quadratic in the

vector fields and their derivatives. These specialized models still cover the scalar-vector

sectors of extended supergravities. Explicit examples are treated in detail to illustrate the

method in section 6, where complete results for the local BRST cohomology, up to the

determination of V -type symmetries, are worked out. In section 7, we then illustrate our

techniques in the case of the manifestly duality-symmetric first order action of [9], in the

formulation of [10], which is adapted to the direct use of the methods developed here.

The last section (section 8) summarizes our results and recapitulates the structure

of the local BRST cohomology. Two appendices complete our work by respectively dis-

playing our notations and conventions on exterior forms and their duals (appendix A)

and discussing further properties of the antibracket map (appendix B). Appendix C is

devoted to the detailed analysis of the W -component of the commutator of two U -type

transformations.

2 BRST deformation theory: a quick survey

2.1 Batalin-Vilkovisky antifield formalism

In order to systematically construct consistent interactions in gauge theories, it is useful to

reformulate the problem in the context of algebraic deformation theory [34–37]. The ap-

propriate framework is provided by the Batalin-Vilkovisky antifield formalism [27, 38–40].

The structure of an irreducible gauge system, i.e., the Lagrangian L0 with field content

ϕa, generating set of gauge symmetries1 δǫϕ
a = Ra

α[ϕ
b] (ǫα) and their algebra, is captured

by the Batalin-Vilkovisky (BV) master action S (see e.g. [41, 42] for reviews). The master

action is a ghost number 0 functional

S =

∫

dnxL =

∫

dnx

[

L0 + ϕ∗
aR

a
α (C

α) +
1

2
C∗
αf

α
βγ (C

β , Cγ) + . . .

]

, (2.1)

that satisfies what is called the master equation

1

2
(S, S) = 0. (2.2)

1We use the condensed De Witt notation.
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In this equation, the BV antibracket is the odd graded Lie bracket defined by

(X,Y ) =

∫

dnx

[

δRX

δΦA(x)

δLY

δΦ∗
A(x)

−
δRX

δΦ∗
A(x)

δLY

δΦA(x)

]

(2.3)

on the extended space ΦA = (ϕa, Cα, . . . ) of original fields and ghosts (and ghosts for

ghosts in the case of reducible gauge theories) and their antifields Φ∗
A. The ghost numbers

of ϕa, Cα are 0, 1, while gh(Φ∗
A) = −gh(ΦA) − 1. The Lagrangian, gauge variations and

structure functions of the gauge algebra are contained in the first, second and third term

of the master action (2.1) respectively.

For the deformation problem, one assumes the existence of an undeformed theory

described by S(0) satisfying the master equation 1
2(S

(0), S(0)) = 0 and one analyzes the

conditions coming from the requirement that, in a suitable expansion, the deformed theory

S = S(0) + S(1) + S(2) + . . . , (2.4)

satisfies the master equation (2.2). The deformed Lagrangian, gauge symmetries and struc-

ture functions can then be read off from the deformed master action (2.4).

The first condition on the “infinitesimal” deformation S(1) is

(S(0), S(1)) = 0. (2.5)

This equation admits solutions S(1) = (S(0),Ξ), for all Ξ of ghost number −1. Such defor-

mations can be shown to be trivial in the sense that they can be absorbed by (anticanonical)

field-antifield redefinitions. Moreover, trivial deformations in that sense are always of the

form S(1) = (S(0),Ξ) for some local Ξ. It thus follows that equivalence classes of deforma-

tions up to trivial ones are classified by H0(s), the ghost number zero cohomology of the

antifield dependent BRST differential s = (S(0), ·) of the undeformed theory,

[S(1)] ∈ H0(s). (2.6)

For our problem of determining the most general deformation, we start by computingH0(s)

and couple its elements with independent parameters to the starting point action to obtain

S(0)+S(1). The parameters thus play the role of generalized coupling constants. In a second

step, we determine the constraints on these coupling constants coming from the existence

of a completion such that (2.2) holds. The expansion is then in terms of homogeneity

in these generalized coupling constants and not, as often done, in homogeneity of fields

(in which case S(0) corresponds to an action quadratic in the fields). In particular, this

approach treats the different types of symmetries involved in the determination of H0(s)

on the same footing.

In the standard field theoretic setting, one insists on spacetime locality which implies

that the cohomology is computed in the space of local functionals in the fields and anti-

fields. In turn, this can be shown to be equivalent to the cohomology of s in the space

of local functions up to total derivatives or, in form notation, to the cohomology of s in

top form degree n, up to the horizontal differential of an n − 1 form. Local functions

are functions that depend on the spacetime coordinates, the fields and a finite number of

– 5 –
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derivatives. The horizontal differential is not the de Rham differential but is instead given

by d = dxµ∂µ, where ∂µ = ∂
∂xµ + ∂µz

Σ ∂
∂zΣ

+ . . . is the total derivative. Here, fields and

antifields are collectively denoted by zΣ = (ΦA,Φ∗
A). More explicitly, the ghost number g

cohomology Hg(s) of the antifield dependent BRST differential s computed in the space

of local functionals is isomorphic to Hg,n(s|d), where the latter group is defined by

sag,n + dag+1,n−1 = 0, ag,n ∼ ag,n + sbg−1,n + dbg,n−1, (2.7)

the first superscript referring to ghost number and the second to form degree. The

BRST differential is defined on the undifferentiated fields and antifields by sΦA = − δRL
δΦ∗

A
,

sΦ∗
A = δRL

δΦA . It is extended to the derivatives through [s, ∂µ] = 0 resulting in {s, d} = 0.

This reformulation allows one to use systematic homological techniques (“descent equa-

tions”) for the computation of these classes (see e.g. [43]).

At second order, the condition on the infinitesimal deformation S(1) is

1

2
(S(1), S(1)) + (S(0), S(2)) = 0. (2.8)

The antibracket gives rise to a well defined map in cohomology,

(·, ·) : Hg1(s|d)⊗Hg2(s|d) −→ Hg1+g2+1(s|d). (2.9)

For cocycles Ci with [Ci] ∈ Hgi(s|d), it is explicitly given by

([C1], [C2]) = [(C1, C2)] ∈ Hg1+g2+1(s|d). (2.10)

Condition (2.8) constrains the infinitesimal deformation S(1) to satisfy

1

2
([S(1)], [S(1)]) = [0] ∈ H1(s|d). (2.11)

If this is the case, S(2) in (2.8) is defined up to a cocycle in ghost number 0. Higher order

brackets and constraints can be analyzed in a similar way, see e.g. [44, 45].

Besides the group H0(s|d) that describes infinitesimal deformations, and H1(s|d) that

controls the obstructions to extending these to finite deformations, one can furthermore

show [30] that Hg(s|d) ≃ Hn+g
char (d) for g ≤ −1. The latter “characteristic” cohomology

groups are defined by forms ω in the original fields ϕa such that

dωn+g ≈ 0, ωn+g ∼ ωn+g + dηn+g−1 + tn+g, (2.12)

with tn+g ≈ 0 and where ≈ 0 denote terms that vanish on all solutions to the Euler-

Lagrange equations of motion. In particular, these groups can be shown to vanish for

g ≤ −3 in irreducible gauge theories [30, 46]. The group H−2(s|d) describes equivalence

classes of “global” reducibility parameters, i.e., particular local functions fα such that

Ra
α(f

α) ≈ 0 where fα ∼ fα + tα with tα ≈ 0. This terminology reflects the fact that

this cohomology may be non trivial even for (locally) “irreducible” gauge systems, in other

words in the absence of p-form gauge fields with higher p. This will become clear momen-

tarily and is crucial in this paper. These classes correspond to global symmetries of the
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master action rather than of the original action alone [47, 48]. The associated characteristic

cohomology Hn−2
char (d) captures non-trivial (flux) conservation laws. More generally in the

case of free abelian p-form gauge symmetry it was shown in [28] that one can generalize

the first Noether theorem (p = 0) and deduce by a similar formula a class of Hn−p−1
char (d)

generalizing the electric flux which corresponds to the case p = 1, i.e., to ordinary gauge

invariance. The groups H−1−p(s|d) appear for p-form gauge theories and vanish for p ≥ 2

in the irreducible case [49]. The group H−1(s|d) describes and generates the inequivalent

global symmetries, with Hn−1
char (d) encoding the associated inequivalent Noether currents.2

We mention these groups here since they play an important role in the determination of

H0(s|d) as it will be seen in section 3 below.

When g1 = −1 = g2, (·, ·) : H−1 ⊗ H−1 → H−1; in this case the antibracket map

encodes the Lie algebra structure of the inequivalent global symmetries [50]. More generally,

it follows from (·, ·) : H−1⊗Hg → Hg that, for any ghost number g, the BRST cohomology

classes form a representation of the Lie algebra of inequivalent global symmetries. As a

side-remark, let us also mention that in the context of perturbative quantum field theory,

H1(s|d) classifies potential gauge anomalies while H0(s|d) classifies counterterms.

For notational simplicity, we will drop the square brackets when computing the an-

tibracket map below, but keep in mind that it involves classes and not their representatives.

2.2 Depth of an element

With any cocycle ωg,k of the local BRST cohomology is associated a (s, d)-descent

sωg,k
l + dωg+1,k−1

l = 0, sωg+1,k−1
l + dωg+2,k−2

l = 0, . . . , sωg+l,k−l
l = 0, (2.13)

that stops at some BRST cocycle ωg+l,k−l
l . The length l of the shortest non trivial descent

is called the “depth” of [ωg,k] ∈ Hg,k(s|d). The last element ωg+l,k−l
l is then non trivial in

Hg+l,k−l(s). The usefulness of the depth in analyzing the BRST cohomology is particularly

transparent in [43, 51, 52].

Local BRST cohomology classes [ωg,k] ∈ Hg,k(s|d) are thus characterized, besides

ghost number g and form degree k, by the depth l. In appendix B, we work out how the

antibracket map behaves with respect to the depth of its elements.

3 Abelian vector-scalar models in 4 dimensions

3.1 Structure of the models

We now apply the formalism to the scalar-vector models described by the action (1.1). We

write L0 = LS [φ
i] + LV [A

I
µ, φ

i]. In four spacetime dimensions, there is no Chern-Simons

term in the Lagrangian, which can be assumed to be strictly gauge invariant and not just

invariant up to a total derivative. Gauge invariant functions are functions that depend on

F I
µν = ∂µA

I
ν − ∂νA

I
µ, φ

i and their derivatives, but not on AI
µ, ∂(νA

I
µ), ∂(ν1∂ν2A

I
µ), etc. Thus

2This is the “first” theorem by E. Noether and its converse. More details can be found in section 6.1

of [46].
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LV [A
I
µ, φ

i] depends on the vector potentials AI
µ only through F I

µν = ∂µA
I
ν−∂νA

I
µ and their

derivatives.

We define
δLV

δF I
µν

=
1

2
(⋆GI)

µν (3.1)

where the (⋆GI)
µν are also manifestly gauge invariant functions. The equations of motion

for the vector fields can be written as

δL0

δAI
µ

= ∂ν(⋆GI)
µν (3.2)

and the Lagrangian can be taken to be

L0 = LS [φ
i] + LV [A

I
µ, φ

i], d4xLV =

∫ 1

0

dt

t
[GIF

I ][tAI
µ, φ

i]. (3.3)

The associated solution to the BV master equation is given by

S(0) = S0 +

∫

d4xA∗µ
I ∂µC

I . (3.4)

The ghost number of the various fields and antifields is

φi AI
µ CI φ∗

i A∗µ
I C∗

I

gh 0 0 1 −1 −1 −2

and the action of the BRST differential is given by

sφi = 0, sAI
µ = ∂µC

I , sCI = 0,

sφ∗
i =

δL0

δφi
, sA∗µ

I = ∂ν(⋆GI)
µν , sC∗

I = −∂µA
∗µ. (3.5)

It is useful to introduce the antifield number

φi AI
µ CI φ∗

i A∗µ
I C∗

I

afd 0 0 0 1 1 2

and the pure ghost number

φi AI
µ CI φ∗

i A∗µ
I C∗

I

pgh 0 0 1 0 0 0

so that the ghost number is the difference between the pure ghost number and the antifield

number.

The BRST differential s splits according to antifield number as

s = δ + γ (3.6)

– 8 –
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where δ is the “Koszul-Tate differential” [32, 41] and has antifield number −1. The differ-

ential γ has antifield number equal to zero. One has

δ2 = 0, δγ + γδ = 0, γ2 = 0. (3.7)

The action of δ and γ are respectively given by

δφi = 0, δAI
µ = 0, δCI = 0,

δφ∗
i =

δL0

δφi
, δA∗µ

I = ∂ν(⋆GI)
µν , δC∗

I = −∂µA
∗µ, (3.8)

and

γφi = 0, γAI
µ = ∂µC

I , γCI = 0,

γφ∗
i = 0, γA∗µ

I = 0, γC∗
I = 0. (3.9)

In terms of the Koszul-Tate differential, the cocycle condition for m in characteris-

tic cohomology takes the form dm + δn = 0. This equation is the same as the (co)cycle

condition for n in the local (co)homology of δ, which is indeed δn + dm = 0. Using this

observation, and vanishing theorems for H(d) and H(δ) in relevant degrees, one can estab-

lish isomorphisms between the characteristic cohomology and H(δ|d) [30]. For example,

the characteristic cohomology Hn−2
char (d) is given by the 2-forms µIGI , while H

n
2 (δ|d) (where

the superscript refers to form degree and the subscript to antifield number) is given by the

4-forms d4xµIC∗
I . The isomorphism is realized through the (δ, d)-descent

δ d4xC∗
I + d ⋆A∗

I = 0, δ ⋆A∗
I + dGI = 0, (3.10)

where A∗
I = dxµA∗

Iµ.

3.2 Consistent deformations

One can characterize the BRST cohomological classes with non trivial antifield dependence

in terms of conserved currents and rigid symmetries for all values of the ghost number. For

definiteness, we illustrate explicitly the procedure for H0(s|d) in maximum form degree,

which defines the local consistent deformations. We consider next the case of general

ghost number.

The main equation to be solved for a is

sa+ db = 0, (3.11)

where a has form degree 4 and ghost number 0. To solve it, we expand the cocycle a

according to the antifield number,

a = a0 + a1 + a2. (3.12)

Because a has total ghost number zero, each term an has antifield number n and pure ghost

number (degree in the ghosts) n as well. As shown in [31], the expansion stops at most at

antifield number 2. The term a0 is the (first order) deformation of the Lagrangian. A non-

vanishing a1 corresponds to a deformation of the gauge variations, while a non-vanishing

a2 corresponds to a deformation of the gauge algebra. All three terms are related by the

cocycle condition (3.11).
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3.2.1 Solutions of U-type (a2 non trivial)

The first case to consider is when a2 is non-trivial. This defines “class I” solutions in

the terminology of [31], which we call here “U -type” solutions to comply with the general

terminology introduced below. One has from the general theorems of [30, 31] on the

invariant characteristic cohomology that

a2 = d4xC∗
IΘ

I (3.13)

with

ΘI =
1

2!
f I

J1J2
CJ1CJ2 . (3.14)

Here f I
J1J2

are some constants, antisymmetric in J1, J2. The reason why the coefficient

d4xC∗
I of the ghosts in a2 is determined by the characteristic cohomology follows from the

equation δa2 + γa1 + db1 = 0 that a2 must fulfill in order for a to be a cocycle of H(s|d).

Given that a2 has antifield number equal to 2, it is the characteristic cohomology in form

degree n − 2 = 2 that is relevant.3 We refer the reader to [30, 31] for the details. The

emergence of the characteristic cohomology in the computation of H(s|d) will be observed

again for a1 below, where it will be the conserved currents that appear. This central feature

follows from the fact that the Koszul-Tate differential, which encapsulates the equations of

motion, is an essential building block of the BRST differential. We must now find the lower

terms a1+a0 and relate them as expected to Noether currents that correspond to H4
1 (δ|d).

By the argument of [31] (section 8) suitably generalized (section 12), the term a1 is

then found to be

a1 = ⋆A∗
IA

K∂KΘI +m1 (3.15)

where γm1 = 0 and ∂K = ∂
∂CK . The term m1 (to be determined by the next equation)

is linear in CI and can be taken to be linear in the undifferentiated antifields A∗
I and φ∗

i

since derivatives of these antifields, which can occur only linearly, can be redefined away

through trivial terms. We thus write

m1 = K̂ = ⋆A∗
I ĝ

I − ⋆φ∗
i Φ̂

i (3.16)

with

ĝI = dxµgIµKCK , Φ̂i = Φi
KCK . (3.17)

Here gIµK and Φi
K are gauge invariant functions, arbitrary at this stage, but which will be

constrained by the requirement that a0 exists.

We must now consider the equation δa1 + γa0 + db0 = 0 that determines a0 up to a

solution of γa′0 + db′0 = 0. This equation is equivalent to

(

δL0

δAI
µ

δKAI
µ +

δL0

δφi
δKφi

)

CK + γα0 + ∂µβ
µ
0 = 0, (3.18)

3The precise way to express the relation between the local cohomology of δ and the highest term of the

equation obeyed by a is given in section 7 of [31]: a2 must be a non trivial representative of Hinv(δ|d), more

precisely it must come from H4
inv,2(δ|d) in ghost number zero. This relates the U-type deformations to the

free abelian factors of the undeformed gauge group.
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where we have passed to dual notations (a0=d4xα0, db0=d4x ∂µβ
µ
0 ) and where we have set

δKAI
µ = AJ

µf
I
JK + gIµK , δKφi = Φi

K . (3.19)

Writing βµ
0 = jµKCK+ “terms containing derivatives of the ghosts”, we read from (3.18),

by comparing the coefficients of the undifferentiated ghosts, that

δL0

δAI
µ

δKAI
µ +

δL0

δφi
δKφi + ∂µj

µ
K = 0. (3.20)

A necessary condition for a0 (and thus a) to exist is therefore that δKAI
µ and δKφi define

symmetries.

To proceed further and determine a0, we observe that the non-gauge invariant term
δL0

δAI
µ
AJ

µf
I
JK in δL0

δAI
µ
δKAI

µ can be written as ∂µ
(

⋆Gνµ
I AJ

ν f
I
JK

)

plus a gauge invariant term,

so that jµK − ⋆Gµν
I AJ

ν f
I
JK has a gauge invariant divergence. Results on the invariant

cohomology of d [53, 54] imply then that the non-gauge invariant part of such an object

can only be a Chern-Simons form, i.e. jµK − ⋆Gµν
I AJ

ν f
I
JK = Jµ

K + 1
2ǫ

µνρσAI
νF

J
ρσhI|JK , or

jµK = Jµ
K + ⋆Gµν

I AJ
ν f

I
JK +

1

2
ǫµνρσAI

νF
J
ρσhI|JK (3.21)

where Jµ
K is gauge invariant and where the symmetries of the constants hI|JK will be

discussed in a moment. It is useful to point out that one can switch the indices I and J

modulo a trivial term.

The equation (3.18) becomes −(∂µj
µ
K)CK + γα0 + ∂µβ

µ
0 = 0, i.e., jµK (γAK

µ ) + γα0 +

∂µβ
′µ
0 = 0. The first two terms in the current yield manifestly γ-exact terms,

Jµ
K (γAK

µ ) = γ(Jµ
K AK

µ ), ⋆Gµν
I AJ

ν f
I
JK (γAK

µ ) =
1

2
γ(⋆Gµν

I AJ
ν f

I
JK AK

µ ) (3.22)

and so hI|JK must be such that the term AIF JdCKhI|JK is by itself γ-exact modulo d.

This is a problem that has been much studied in the literature through descent equations

(see e.g. [52]). It has been shown that hI|JK must be antisymmetric in J , K and should

have vanishing totally antisymmetric part in order to be “liftable” to a0 and non-trivial,

hI|JK = hI|[JK], h[I|JK] = 0. (3.23)

Putting things together, one finds for a0

a0 = AI∂I Ĵ +
1

2
GIA

KAL∂L∂KΘI +
1

2
F IAKAL∂L∂KΘ′

I (3.24)

where

Ĵ = ⋆dxµJµKCK , Θ′
I =

1

2
hI|J1J2C

J1CJ2 . (3.25)

A non-trivial U -solution modifies the gauge algebra. Deformations of the Yang-Mills

type belong to this class. A U -solution is characterized by constants f I
J1J2

which are

antisymmetric in J1, J2. These constants must be such that there exist gauge invariant

functions gIµK and Φi
K such that δKAI

µ and δKφi define symmetries of the undeformed
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Lagrangian. Here δKAI
µ and δKφi are given by (3.19). Furthermore, the h-term in the

corresponding conserved current (if any) must fulfill (3.23). The deformation a0 of the

Lagrangian takes the Noether-like form.

Given the “head” a2 of a U -type solution, characterized by a set of f I
J1J2

’s, the lower

terms a1 and a0, and in particular the h-piece, are not uniquely determined. One can

always add solutions of W , V or I-types described below, which have the property that

they have no a2-piece. Hence one may require that the completion of the “head” a2 of a

U -type solution should be chosen to vanish when a2 itself vanishes. But this leaves some

freedom in the completion of a2, since for instance any W -type solution multiplied by

a component of f I
J1J2

will vanish when the f I
J1J2

’s are set to zero. The situation has a

triangular nature since two U -type solutions with the same a2 differ by solutions of “lower”

types, for which there might not be a canonical choice.

Note that further constraints on f I
J1J2

(notably the Jacobi identity) arise at second

order in the deformation parameter.

3.2.2 Solutions of W and V -type (vanishing a2 but a1 non trivial)

These solutions are called “class II” solutions in [31].

We now have

a = a0 + a1 (3.26)

and a1 can be taken to be gauge invariant, i.e., annihilated by γ [31]. We thus have

a1 = K̂ = ⋆A∗
I ĝ

I − ⋆φ∗
i Φ̂

i (3.27)

with

ĝI = dxµgIµKCK , Φ̂i = Φi
KCK . (3.28)

Here gIµK and Φi
K are again gauge invariant functions, which we still denote by the same

letters as above, although they are independent from the similar functions related to the

constants f I
J1J2

. We also set

δKAI
µ = gIµK , δKφi = Φi

K . (3.29)

The equation δa1 + γa0 + db0 = 0 implies then, as above,

δL0

δAI
µ

δKAI
µ +

δL0

δφi
δKφi + ∂µj

µ
K = 0 . (3.30)

A necessary condition for a0 (and thus a) to exist is therefore that δKAI
µ and δKφi given

by (3.29) define symmetries. Equation (3.30) take the same form as eq. (3.20), but there

is one important difference: the divergence of the current jµK is now gauge invariant, while

it is not in (3.20), due to the contribution coming from a2.

The current takes this time the form

jµK = Jµ
K +

1

2
ǫµνρσAI

νF
J
ρσhI|JK , (3.31)
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(with hI|JK fulfilling the above symmetry properties) yielding

a0 = AI∂I Ĵ +
1

2
F IAKAL∂L∂KΘ′

I (3.32)

where still

Ĵ = ⋆dxµJµKCK , Θ′
I =

1

2
hI|J1J2C

J1CJ2 . (3.33)

We define W -type solutions to have hI|JK 6= 0, while V -type have hI|JK = 0. Both

these types deform the gauge transformations but not their algebra (to first order in the

deformation). They are determined by rigid symmetries of the undeformed Lagrangian

with gauge invariant variations (3.29). The V -type have gauge invariant currents, while

the currents of the W -type contain a non-gauge invariant piece.

Note that again, the solutions of W and V -types are determined up to a solution of

lower type with no a1-“head”, and that there might not be a canonical choice. In fact

one may require similarly that W -type transformations become trivial when hI|JK tends

to zero.

3.2.3 Solutions of I-type (vanishing a2 and a1)

In that case,

a = a0 (3.34)

with γa0 + db0 = 0.

Since there is no Chern-Simons term in four dimensions, one can assume that b0 = 0.

The deformation b0 is therefore a gauge invariant function, i.e., a function of the abelian

curvatures F I
µν , the scalar fields, and their derivatives. The I-type deformations neither

deform the gauge transformations nor (a fortiori) the gauge algebra. Born-Infeld deforma-

tions belong to this type. They are called “class III” solutions in [31].

3.3 Local BRST cohomology at other ghost numbers

3.3.1 h-terms

The previous discussion can be repeated straightforwardly at all ghost numbers. The

analysis proceeds as above. The tools necessary to handle the “h-term” in the non gauge

invariant “currents” have been generalized to higher ghost numbers through familiar means

and can be found in [43, 51, 52].

The h-terms belong to the “small” or “universal” algebra involving only the 1-forms

AI , the 2-forms F I = dAI , the ghosts CI and their exterior derivative. The product is the

exterior product. One describes the h-term through a (γ, d)-descent equation and what is

called the “bottom” of that descent, which is annihilated by γ and has form degree < 4 in

four dimensions. The only possibilities in the free abelian case are the 2-forms

1

m
hI|J1···JmF

ICJ1 · · ·CJm (3.35)

where

hI|J1···Jm = hI|[J1···Jm]. (3.36)
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One can assume h[I|J1···Jm] = 0 since the totally antisymmetric part gives a trivial bottom.

The lift of this bottom goes two steps, up to the 4-form

hI|J1J2···JmF
IF J1CJ2 · · ·CJm (3.37)

producing along the way a 3-form

hI|J1J2···JmF
IAJ1CJ2 · · ·CJm (3.38)

which has the property of not being gauge (BRST) invariant although its exterior derivative

is (modulo trivial terms).

3.3.2 Explicit description of cohomology

By applying the above method, one finds that the local BRST cohomology of the models

of section 3.1 can be described along exactly the same lines as given below. Note that

the cohomology at negative ghost numbers reflect general properties of the characteristic

cohomology that go beyond the mere models considered here [30].

(i) Hg(s|d) is empty for g 6 −3.

(ii) H−2(s|d) is represented by the 4-forms

U−2 = µId4xC∗
I . (3.39)

If A∗
I = dxµA∗

Iµ, the associated descent equations are

s d4xC∗
I + d ⋆ A∗

I = 0, s ⋆ A∗
I + dGI = 0, sGI = 0. (3.40)

Characteristic cohomology Hn−2
char (d) is then represented by the 2-forms µIGI .

(iii) Several types of cohomology classes in ghost numbers g > −1, which we call U , V

and W -type, can be described by constants f I
JK1...Kg+1

which are antisymmetric in

the last g + 2 indices,

f I
JK1...Kg+1

= f I
[JK1...Kg+1], (3.41)

and constants hI|JK1...Kg+1
that are antisymmetric in the last g+2 indices but without

any totally antisymmetric part,4

hI|JK1...Kg+1
= hI|[JK1...Kg+1], h[I|JK1...Kg+1] = 0, (3.42)

together with gauge invariant functions gIµK1...Kg+1
,Φi

K1...Kg+1
that are antisymmetric

in the last g + 1 indices. They are constrained by the requirement that the transfor-

mations

δK1...Kg+1
AI

µ = AJ
µf

I
JK1...Kg+1

+ gIµK1...Kg+1
, δK1...Kg+1

φi = Φi
K1...Kg+1

, (3.43)

4We write hIJ := hI|J for g = −1.
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define symmetries of the action in the sense that

δL0

δAI
µ

δK1...Kg+1
AI

µ +
δL0

δφi
δK1...Kg+1

φi + ∂µj
µ
K1...Kg+1

= 0, (3.44)

with currents jµK1...Kg+1
that are antisymmetric in the last g + 1 indices. This can be

made more precise by making the gauge (non-)invariance properties of these currents

manifest. One finds

jµK1...Kg+1
= Jµ

K1...Kg+1
+ ⋆Gµν

I AJ
ν f

I
JK1...Kg+1

+
1

2
ǫµνρσAI

νF
J
ρσhI|JK1...Kg+1

, (3.45)

where Jµ
K1...Kg+1

is gauge invariant and antisymmetric in the lower g+1 indices. When

taking into account that

GIF
J = d(GIA

J + ⋆A∗
IC

J) + s(⋆A∗
IA

J + d4xC∗
IC

J), F IF J = d(AIF J), (3.46)

and defining CK1...Kg = CK1 . . . CKg ,

ΘI =
1

(g+2)!
f I

J1...Jg+2
CJ1...Jg+2 , Θ′

I =
1

(g+2)!
hI|J1...Jg+2

CJ1...Jg+2 ,

Ĵ = ⋆dxµJµK1...Kg+1

1

(g+1)!
CK1...Kg+1 , K̂ =(⋆A∗

I ĝ
I−⋆φ∗

i Φ̂
i) ,

ĝI =
1

(g+1)!
dxµgIµK1...Kg+1

CK1...Kg+1 , Φ̂i=
1

(g+1)!
Φi
K1...Kg+1

CK1...Kg+1 ,

(3.47)

the “global symmetry” condition (3.44) is equivalent to a (s, d)-obstruction equation,

GIF
J∂JΘ

I + F IF J∂JΘ
′
I + s(K̂ +AI∂I Ĵ) + dĴ = 0, (3.48)

with ∂I =
∂

∂CI . Note that the last two terms combine into

d[⋆dxµJµK1...Kg+1
]

1

(g + 1)!
CK1 . . . CKg+1 ,

so that this equation involves gauge invariant quantities only. It is this form that

arises in a systematic analysis of the descent equations. One can now distinguish the

three types of solutions.

a) U -type corresponds to solutions with non vanishing f I
JK1...Kg+1

and particular
UhI|JK1...Kg+1

, UgIµK1...Kg+1
, UΦi

K1...Kg+1
, UJµK1...Kg+1

that vanish when the f ’s

vanish (and that may be vanishing even when the f ’s do not). As we explained

above, different choices of the particular completion UhI|JK1...Kg+1
, UgIµK1...Kg+1

,
UΦi

K1...Kg+1
, UJµK1...Kg+1

of a2 exist and there might not be a canonical one, but

a completion exists if the U -type solution is indeed a solution. Similar ambiguity

holds for the solutions of W and V -types described below. A U -type solution is

trivial if and only if it vanishes. Denoting by K̂U , ĴU , (Θ
′
U )I , the expressions as

– 15 –



J
H
E
P
0
2
(
2
0
1
8
)
0
6
4

in (3.47) but involving the particular solutions, the associated BRST cohomology

classes are represented by

U =

(

d4xC∗
I + ⋆A∗

IA
K∂K +

1

2
GIA

KAL∂L∂K

)

ΘI

+ K̂U +
1

2
F IAKAL∂L∂K(Θ′

U )I +AI∂I ĴU , (3.49)

with sU + d(⋆A∗
IΘ

I +GIA
J∂JΘ

I + F IAJ∂J(Θ
′
U )I + ĴU ) = 0;

b) W -type corresponds to solutions with vanishing f ’s but non vanishing hI|JK1...Kg+1

and particular W gIµK1...Kg+1
,WΦi

K1...Kg+1
,WJµK1...Kg+1

that may be chosen to van-

ish when the h’s vanish. Such solutions are trivial when the h’s vanish. With the

obvious notation, the associated BRST cohomology classes are represented by

W = K̂W +
1

2
F IAKAL∂L∂KΘ′

I +AI∂I ĴW , (3.50)

with sW + d(F IAJ∂JΘ
′
I + ĴW ) = 0;

c) V -type corresponds to solutions with vanishing f ’s and h’s. They are repre-

sented by

V = K̂V +AI∂I ĴV , (3.51)

with sV + dĴV = 0 and sĴV = 0. V and its descent have depth 1.

(iv) Lastly, I-type cohomology classes exist in ghost numbers g > 0 and are described by

Î = d4x
1

g!
IK1...KgC

K1 . . . CKg (3.52)

with sÎ = 0, i.e., gauge invariant IK1...Kg that are completely antisymmetric in the

K indices. Such classes are to be considered trivial if the IK1...Ks vanish on-shell up

to a total derivative. This can again be made more precise by making the gauge

(non-)invariance properties manifest: an element of type I is trivial if and only if

d4x IK1...Kg ≈ dJK1...Kg +mI
JK1...KgGIF

J +
1

2
F IF Jm′

IJK1...Kg
, (3.53)

where JK1...Kg are gauge invariant 3 forms that are completely antisymmetric in the

K indices, while mI
JK1...Kg ,m

′
IJK1...Kg

are constants that are completely antisym-

metric in the last g + 1 indices. Note also that the on-shell vanishing terms in (3.53)

need to be gauge invariant. When there are suitable restrictions on the space of gauge

invariant functions (such as for instance xµ independent, Lorentz invariant polyno-

mials with power counting restrictions) one may sometimes construct an explicit

basis of non-trivial gauge invariant 4 forms, in the sense that if d4xI ≈ ρAIA + dω3

and ρAIA ≈ dω3, then ρA = 0. The associated BRST cohomology classes are then

parametrized by constants ρAK1...Kg
.

At a given ghost number g > −1, the cohomology is the direct sum of elements of type

U,W, V and also I when g > 0.
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This completes our general discussion of the local BRST cohomology. Reference [31]

also considered simple factors in addition to the abelian factors, as well as any spacetime

dimension ≥ 3. One can extend the above results to cover these cases. In a separate

publication [55], the computation of the local BRST cohomologyH∗,∗(s|d) for gauge models

involving general reductive gauge algebras will be carried out by following the different route

adopted in [46], which did not consider free abelian factors in full generality. As requested

by the analysis of the deformations of the action (1.1), reference [55] generalizes Theorem

11.1 of [46] to arbitrary reductive Lie algebras that include also (free) abelian factors (and

in any spacetime dimension ≥ 3).

3.3.3 Depth of solutions

The depth of the various BRST cocycles plays a key role in the analysis of the higher-order

consistency condition. It is given here.

The U -type and W -type solutions have depth 2 because they involve Aµj
µ with a

non-gauge invariant current. The V -type solutions have depth 1 because the Noether term

Aµj
µ involves for them a gauge invariant current. Finally, I-type solutions clearly have

depth 0.

4 Antibracket map and structure of symmetries

4.1 Antibracket map in cohomology

We now investigate the antibracket map Hg ⊗ Hg′ → Hg+g′+1 for the different types of

cohomology classes described above. It follows from the detailed discussion of the cohomol-

ogy in section 3.3 that the shortest non trivial length of descents, the “depth”, of elements

of type U,W, V, I is 2, 2, 1, 0. In particular, the antibracket map is sensitive to the depth of

its arguments: the depth of the map is less than or equal to the depth of its most shallow

element, see appendix B.

The antibracket map involving U−2 = µId4xC∗
I in H−2 is given by

(·, U−2) : Hg → Hg−1, ωg,n 7→
δRωg,n

δCI
µI . (4.1)

More explicitly, it is trivial for g = −2. It is also trivial for g = −1 except for U -type where

it is described by f I
J 7→ f I

J µ
J . For g > 0, it is described by ρAK1...Kg

7→ ρAK1...Kg
µKg for

I-type, kv1K1...Kg+1
7→ kv1K1...Kg+1

µKg+1 for V -type, hIJK1...Kg+1
7→ hIJK1...Kg+1

µKg+1 and

f I
JK1...Kg+1

7→ f I
JK1...Kg+1

µKg+1 for U - and W -type.

The antibracket map for g, g′ > −1 has the following triangular structure:

(·, ·) U W V I

U U ⊕W ⊕ V ⊕ I W ⊕ V ⊕ I V ⊕ I I

W W ⊕ V ⊕ I W ⊕ V ⊕ I V ⊕ I I

V V ⊕ I V ⊕ I V ⊕ I I

I I I I 0

(4.2)
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Indeed, (Î , Î ′) = 0 because I-type cocycles can be chosen to be antifield independent. For

all other brackets involving I-type cocycles, it follows from appendix B that the result must

have depth 0 and the only such classes are of I type. Alternatively, since all cocycles can

be chosen to be at most linear in antifields, the result will be a cocycle that is antifield

independent and only classes of I-type have trivial antifield dependence. It thus follows

that I-type cohomology forms an abelian ideal.

According to appendix B, the depth of the antibracket map of V -type cohomology

with V,W,U -type is less or equal to 1, so it must be of V - or I-type.

Finally, the remaining structure follows from the fact that only brackets of U -type

cocycles with themselves may give rise to terms that involve C∗
I ’s.

4.2 Structure of the global symmetry algebra

Let us now concentrate on brackets between two elements that have both ghost number

−1, i.e., on the detailed structure of the Lie algebra of inequivalent global symmetries when

taking into account their different types.

In this case, one may use the table above supplemented by the fact that I−1 = 0.

Let then

Uu, Ww, Vv, (4.3)

be bases of symmetries of U,W, V -type.5 At ghost number g = −1, equations (3.49), (3.50),

(3.51) give

Vv = Kv, Ww = Kw, Uu = (fu)
I
J [d

4xC∗
IC

J + ⋆A∗
IA

J ] +Ku. (4.4)

It follows from (4.2) that V -type symmetries and the direct sum of V and W -type

symmetries form ideals in the Lie algebra of inequivalent global symmetries.

The symmetry algebra gU is defined as the quotient of all inequivalent global symme-

tries by the ideal of V ⊕W -type symmetries. In particular, if U -type symmetries form a

sub-algebra, it is isomorphic to gU .

First, V -type symmetries are parametrized by constants kv, V −1 = kvVv. The gauge

invariant symmetry transformation on the original fields then are

δvA
I
µ = −(Vv, A

I
µ) = g I

vµ , δvφ
i = −(Vv, φ

i) = Φi
v. (4.5)

Furthermore, there exist constants Cv3
v1v2 such that

([Vv1 ], [Vv2 ]) = −Cv3
v1v2 [Vv3 ] (4.6)

holds for the cohomology classes. We choose the minus sign because

(Vv1 , Vv2) = −d4x(A∗µ
I [δv1 , δv2 ]A

I
µ + φ∗

i [δv1 , δv2 ]φ
i), (4.7)

5These are bases in the cohomological sense, i.e.,
∑

u λu[Uu] = [0] ⇒ λu = 0 (and similarly for Ww and

Vv). In terms of the representatives, this becomes
∑

u λuUu = sa+ db ⇒ λu = 0.
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so that the Cv3
v1v2 are the structure constants of the commutator algebra of the V -type

symmetries, [δv1 , δv2 ] = Cv3
v1v2δv3 . For the functions g I

vµ and Φi
v, this gives

δv1g
I

v2µ
− δv2g

I
v1µ

= Cv3
v1v2g

I
v3µ

+ (trivial)

δv1Φ
i
v2

− δv2Φ
i
v1

= Cv3
v1v2Φ

i
v3

+ (trivial).
(4.8)

The “trivial” terms on the right hand side take the form “(gauge transformation) +

(antisymmetric combination of the equations of motion)” which is the usual ambigu-

ity in the form of global symmetries, see e.g. section 6 of [46]. They come from the

fact that equation (4.6) holds for classes: for the representatives Vv themselves, (4.6) is

(Vv1 , Vv2) = −Cv3
v1v2Vv3 + sa + db. The trivial terms in (4.8) are then the symmetries

generated by the extra term sa + db, which is zero in cohomology. The graded Jacobi

identity for the antibracket map implies the ordinary Jacobi identity for these structure

constants,

Cv1
v2[v3C

v2
v4v5] = 0. (4.9)

Next, W -type symmetries are parametrized by constants kw, W−1 = kwWw and encode

the gauge invariant symmetry transformations

δwA
I
µ = −(Ww, A

I
µ) = g I

wµ , δwφ
i = −(Ww, φ

i) = Φi
w (4.10)

with associated Noether 3 forms jW = kw(hw)IJF
(IAJ)+kwJWw. There then exist Cv2

wv1 ,

Cw3
w1w2

, Cv
w1w2

such that

([Ww], [Vv]) = −Cv2
wv[Vv2 ],

([Ww1
], [Ww2

]) = −Cw3
w1w2

[Ww3
]− Cv

w1w2
[Vv],

(4.11)

with associated Jacobi identities that we do not spell out. For the functions g I
wµ and Φi

w,

this implies

δwg
I

vµ − δvg
I

wµ = Cv2
wvg

I
v2µ

, δwΦ
i
v − δvΦ

i
w = Cv2

wvΦ
i
v2
, (4.12)

δw1
g I
w2µ

− δw2
g I
w1µ

= Cw3
w1w2

g I
w3µ

+ Cv
w1w2

g I
vµ , (4.13)

δw1
Φi
w2

− δw2
Φi
w1

= Cw3
w1w2

Φi
w3

+ Cv
w1w2

Φi
v , (4.14)

up to trivial terms, see the discussion below (4.8).

Finally, U -type symmetries are parametrized by ku, U−1 = kuUu and encode the

symmetry transformations

δuA
I
µ=−(Uu,A

I
µ)= (fu)

I
JA

J
µ+g I

uµ , δuφ
i=−(Uu,φ

i)=Φi
u,

δuA
∗µ
I =−(fu)

K
IA

∗µ
K −

δ

δAI
µ

(A∗ν
K g K

uν +φ∗
iΦ

i
u), δuφ

∗
i =−

δ

δφi
(A∗ν

K g K
uν +φ∗

jΦ
j
u),

δuC
I =(fu)

I
JC

J , δuC
∗
I =−(fu)

K
IC

∗
K .

(4.15)

Again, there exist constants C with various types of indices such that

([Uu], [Vv]) = −Cv2
uv [Vv2 ], (4.16)

([Uu], [Ww]) = −Cw2
uw [Ww2

]− Cv
uw [Vv], (4.17)

([Uu1
], [Uu2

]) = −Cv
u1u2

[Vv]− Cw
u1u2

[Ww]− Cu3
u1u2

[Uu3
], (4.18)
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with associated Jacobi identities. Working out the term proportional to C∗
I in (Uu1

, Uu2
)

gives the commutation relations for the (fu)
I
J matrices,

[fu1
, fu2

] = −Cu3
u1u2

fu3
. (4.19)

In turn, this implies Jacobi identities for this type of structure constants alone:

Cu1
u2[u3

Cu2
u4u5] = 0. (4.20)

The Cu3
u1u2

are the structure constants of gU .

From equation (4.16), we get the identities

δug
I

vµ − δvg
I

uµ − (fu)
I
Jg

J
vµ = Cv2

uvg
I

v2µ
, δuΦ

i
v − δvΦ

i
u = Cv2

uvΦ
i
v2
. (4.21)

Equation (4.17) gives the same identities with the right-hand side replaced by the appro-

priate sum, as in (4.13)–(4.14). The last relation (4.18) gives

δu1
g I
u2µ

−(fu1
)IJg

J
u2µ

−(u1↔u2)=Cu3
u1u2

g I
u3µ

+Cw
u1u2

g I
wµ +Cv

u1u2
g I
vµ ,

δu1
Φi
u2
−δu2

Φi
u1

=Cu3
u1u2

Φi
u3
+Cw

u1u2
Φi
w+Cv

u1u2
Φi
v.

(4.22)

Equations (4.21) and (4.22) are again valid only up to trivial symmetries.

Let us now concentrate on identities containing the hIJ , which appear in the currents of

U andW -type. We first consider (Uu,Ww) projected toW -type. As in appendix B, we have

s(Uu,Ww)alt = −d(Uu, (hw)IJF
IAJ + Jw)alt = d{(hw)IJ [(fu)

I
KFKAJ + F I(fu)

J
KAK ] +

invariant}. When comparing this to s applied to the right hand side of (4.17) and using

the fact that W -type cohomology is characterized by the Chern-Simons term in its Noether

current, we get

(hw)IN (fu)
I
M + (hw)MI(fu)

I
N = Cw2

uw (hw2
)MN . (4.23)

This computation amounts to identifying the Chern-Simons term in the U -variation δujw
of a current of W -type. The same computation applied to (Ww1

,Ww2
) shows that

Cw3
w1w2

(hw3
)MN = 0, which implies

Cw3
w1w2

= 0 (4.24)

since the matrices hw are linearly independent (otherwise, the Ww would not form a basis).

In other words, the W -variation δw1
jw2

of a current of W -type is gauge invariant up to

trivial terms, i.e., is of V -type.

In order to work out (Uu1
, Uu2

) projected to W -type, a slightly involved reasoning gives

δuGI + (fu)
J
IGJ ≈ −2(hu)IJF

J + λw
u (hw)IJF

J + d(invariant) (4.25)

for some constants λw
u . This is proved in appendix C in the case where GI does not depend

on derivatives of F I (but can have otherwise arbitrary dependence of F I). We were not

able to find the analog of (4.25) in the higher derivative case.
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Applying then (Uu1
, ·)alt to the chain of descent equations for Uu2

and adding the chain

of descent equations for Cu3
u1u2

Uu3
yields

(hu2
)IN (fu1

)IM + (hu2
)MI(fu1

)IN − (hu1
)IN (fu2

)IM − (hu1
)MI(fu2

)IN

+
1

2

[

(hw)IN (fu2
)IM + (hw)IM (fu2

)IN
]

λw
u1

= Cu3
u1u2

(hu3
)MN + Cw

u1u2
(hw)MN . (4.26)

Again, this amounts to identifying the Chern-Simons terms in the U -variation δu1
ju2

of

a U -type current. Equation (4.25) is crucial for this computation since U -type currents

contain GI . Using (4.23), this becomes

(hu2
)IN (fu1

)IM + (hu2
)MI(fu1

)IN − (hu1
)IN (fu2

)IM − (hu1
)MI(fu2

)IN

= Cu3
u1u2

(hu3
)MN +

[

Cw
u1u2

−
1

2
Cw

u2w2
λw2
u1

]

(hw)MN . (4.27)

We see that the effect of the λw
u is to shift the structure constants of type Cw

u1u2
. The

constants λw
u vanish for the explicit models considered below; it would be interesting to

find an explicit example where this is not the case. As a last comment, we note that

antisymmetry of equation (4.27) in u1 and u2 imposes the constraint

Cw
u2w2

λw2
u1

+ Cw
u1w2

λw2
u2

= 0 (4.28)

on the constants λw
u .

4.3 Parametrization through symmetries

It follows from the discussion of the antibracket map involving H−2 after (4.1) that coho-

mologies of U,W, V -type in ghost numbers g > 0 can be parametrized by symmetries of

the corresponding type with suitably constrained coefficients

kuK1...Kg+1
, kvK1...Kg+1

, kwK1...Kg+1
. (4.29)

In this way, for g = 0, the problem of finding all infinitesimal gaugings can be reformulated

as the question of which of these symmetries can be gauged.

In order to do this, it is useful to first rewrite the hI|JK1...Kg+1
appearing in the coho-

mology classes of U and W -types in the equivalent symmetric convention

XIJ,K1...Kg+1
:= h(I|J)K1...Kg+1

⇐⇒ hI|JK1...Kg+1
=

2(g + 2)

g + 3
XI[J,K1...Kg+1] (4.30)

where (3.42) is now replaced by

XIJ,K1...Kg+1
= X(IJ),[K1...Kg+1], X(IJ,K1)K2...Kg+1

= 0 . (4.31)

Note that for g = −1, hIJ = XIJ .
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For cohomology classes of U,W -type, we can write

f I
JK1...Kg+1

= (fu)
I
J k

u
K1...Kg+1

, (4.32)

UXIJ,K1...Kg+1
= (hu)IJ k

u
K1...Kg+1

, (4.33)

XIJ,K1...Kg+1
= (hw)IJ k

w
K1...Kg+1

, (4.34)

where (fu)
I
J , (hu)IJ and (hw)IJ appear in the basis elements Uu and Ww. (One has

similar parametrizations for the quantities gIµK1...Kg+1
, Φi

K1...Kg+1
, JµK1...Kg+1

in the coho-

mology classes of the various types.) This guarantees that condition (3.44) (or (3.48)) is

automatically satisfied.

However, the symmetry properties (3.41) and (4.31) imply the following linear con-

straints on the parameters:

(fu)
I
(J k

u
K1)K2...Kg+1

= 0, (4.35)

(hu)(IJ k
u
K1)K2...Kg+1

= 0, (4.36)

(hw)(IJ k
w
K1)K2...Kg+1

= 0. (4.37)

From the discussion of the cohomology, it also follows that V -type cohomology classes are

entirely determined by V -type symmetries in terms of kvK1...Kg+1
without any additional

constraints.

4.4 2nd order constraints on deformations and gauge algebra

The most general infinitesimal gauging is given by S(1) =
∫

(U0+W 0+V 0+ I0). We have

1

2
(S(1), S(1)) =

∫

(

U1 +W 1 + V 1 + I1
)

. (4.38)

The infinitesimal deformation S(1) can be extended to second order whenever the right hand

side vanishes in cohomology, resulting in quadratic constraints on the constants ku1

K , kw1

K ,

kv1K and ρA. Working all of them out explicitly requires computing all brackets between

U0, W 0, V 0 and I0.

However, it follows from the previous section that the only contribution to U1 comes

from 1
2(U

0, U0). The vanishing of the terms containing the antighosts C∗
I requires

f I
J [K1

fJ
K2K3]

= 0, (4.39)

i.e., the Jacobi identity for the f I
JK . The associated nv-dimensional Lie algebra is the

gauge algebra and is denoted by gg.

Using f I
JK = (fu1

)IJk
u1

K and equation (4.19), the Jacobi identity reduces to the

following quadratic constraint on ku1

K :

ku1

Ik
u2

JC
u3

u1u2
− (fu4

)KIk
u4

Jk
u3

K = 0. (4.40)

Note that the antisymmetry in IJ of the second term is guaranteed by the linear con-

straint (4.35). The terms at antifield number 1 give the constraints

δIg
K
J + fK

MJ g
M
I − (I ↔ J) = fL

IJ g
K
L (4.41)

δIΦ
i
J − (I ↔ J) = fL

IJ Φ
i
L. (4.42)
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Expressed with k’s, this gives

kΓIk
∆
JC

Σ
Γ∆ − (fu)

K
Ik

u
Jk

Σ
K = 0, (4.43)

where the capital Greek indices take all values u,w, v. This gives three constraints, accord-

ing to the type of the free index Σ. When Σ = u, we get the constraint (4.40), because

the only non-vanishing structure constants with an upper u index are the Cu3
u1u2

. When

Σ = w, the possible structure constants are Cw3
w1w2

, Cw3
u1w2

= −Cw3
w2u1

and Cw3
u1u2

,

giving the constraint

kw1

Ik
w2

JC
w3

w1w2
+2ku1

[Ik
w2

J ]C
w3

u1w2
+ku1

Ik
u2

JC
w3

u1u2
−(fu4

)KIk
u4

Jk
w3

K =0. (4.44)

When the free index Σ is of type v, one gets a similar identity with all possible types of

values in the lower indices of the structure constants,

kv1Ik
v2
JC

v3
v1v2

+2kw1

[Ik
v2
J ]C

v3
w1v2

+kw1

Ik
w2

JC
v3
w1w2

+2ku1

[Ik
v2
J ]C

v3
u1v2

+2ku1

[Ik
w2

J ]C
v3
u1w2

+ku1

Ik
u2

JC
v3
u1u2

−(fu4
)KIk

u4

Jk
v3
K =0. (4.45)

5 Quadratic vector models

5.1 Description of the model

To go further, one needs to specialize the form of the Lagrangian, which has been assumed

to be quite general so far. In this section, we focus on second order Lagrangians arising in

the context of supergravities that contain ns scalar fields and depend quadratically on nv

abelian vector fields, non-minimally coupled to each other, in four space-time dimensions.

More specifically, we take L = LS + LV , where

LV = −
1

4
IIJ(φ)F

I
µνF

Jµν +
1

8
RIJ(φ) ε

µνρσF I
µνF

J
ρσ (5.1)

and the scalar Lagrangian is of the sigma model form

LS = −
1

2
gij(φ)∂µφ

i∂µφj − V (φ) (5.2)

where gij is symmetric and invertible. Both gij and V depend only on undifferentiated

scalar fields. Neglecting gravity, this is the generic bosonic sector of ungauged supergravity.

The symmetric matrices I and R, with I invertible, depend only on undifferentiated scalar

fields and encode the non-minimal couplings between the scalars and the abelian vectors.

The Bianchi identities and equations of motion for the vector fields are given by

∂µ(⋆F
I)µν = 0, ∂ν(⋆GI)

µν ≈ 0. (5.3)

The Lagrangian (5.1) falls into the general class of models described previously, with the

gauge invariant two-form GI = IIJ ⋆ F J +RIJF
J and d4xLV = 1

2GIF
I .

We assume

RIJ(0) = 0. (5.4)

Note that a constant part in RIJ can be put to zero without loss of generality since the

associated term in the Lagrangian is a total derivative. In most cases, we also take V = 0

or assume (writing ∂i =
∂

∂φi ) that

(∂iV )(0) = 0. (5.5)

– 23 –



J
H
E
P
0
2
(
2
0
1
8
)
0
6
4

5.2 Constraints on U , W -type symmetries

We assume here and in the examples below that there is no explicit xµ-dependence in the

space of local functions in order to constrain U and W -type symmetries. For simplicity, we

also assume that the potential vanishes, V = 0. In section 6, these constraints will allow

us to determine all symmetries of U and W type for specific models.

We need the scalar field equations, which are encoded in

s ⋆ φ∗
i + d(gij ⋆ dφ

j) = − ⋆ ∂i(LS + LV ), (5.6)

where ∂i =
∂

∂φi . For g = −1, equation (3.48) becomes

GIF
Jf I

J + F IF JhIJ + dIn−1 − dGI g
I − [d(gij ⋆ dφ

j) + ⋆∂i(LS + LV )]Φ
i = 0. (5.7)

When putting all derivatives of F I
µν , φ

i to zero, one remains with

GIF
Jf I

J + F IF JhIJ − ⋆∂iLV Φi|der=0 = 0. (5.8)

It is here that the assumption that there is no explicit xµ dependence in the gauge invariant

functions gIα,Φiα is used. Using −∂i ⋆ LV = 1
2∂iGI F

I , and the decomposition Φi|der=0 =

Φi
0 +Φi

1 + . . . , where the Φi
n depend on undifferentiated scalar fields and are homogeneous

of degree n in F I
µν , the equation implies that

1

2
MIJ(φ) ⋆ F

IF J +
1

2
NIJ(φ)F

IF J = 0, (5.9)

where

MIJ = 2IK(If
K

J) + ∂iIIJΦ
i
0, (5.10)

NIJ = 2RK(If
K

J) + 2hIJ + ∂iRIJΦ
i
0, (5.11)

by using that hIJ = hJI on account of (3.42). When taking an Euler-Lagrange derivative

of (5.9) with respect to AI
µ, one concludes that both terms have to vanish separately,

MIJ = 0, NIJ = 0. (5.12)

Setting φi = 0 and using (5.4) then gives

f
(I(0))
IJ + f

(I(0))
JI = −(∂iIIJ)(0)Φ

i
0(0), 2hIJ = −(∂iRIJ)(0)Φ

i
0(0). (5.13)

where the abelian index is lowered and raised with IIJ(0) and its inverse. Note that

completely skew-symmetric f
(I(0))
IJ solve the equations with Φi

0(0) = 0, hIJ = 0. More

conditions are obtained by expanding equations (5.12) in terms of power series in φi.

In all examples considered below, the algebra gU and the W -type symmetries can be

entirely determined from the analysis of this subsection.
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5.3 Electric symmetry algebra

An important result of our general analysis is that the symmetries of the action that can

lead to consistent gaugings may have a term that is not gauge invariant. This term is

present only in the variation of the vector potential and is restricted to be linear in the

undifferentiated vector potential, i.e., δAI
µ = f I

J A
J
µ+gIµ, δφ

i = Φi. Here f I
J are constants,

and gIµ and Φi are gauge invariant functions. The symbol δ represents the variation of the

fields and is of course not the Koszul-Tate differential. No confusion should arise as the

context is clear.

It is of interest to investigate a subalgebra of the gaugeable symmetries, obtained by

restricting oneself from the outset to transformations of the gauge potentials that are linear

and homogeneous in the undifferentiated potentials and to transformations of the scalars

that depend on undifferentiated scalars alone,

δAI
µ = f I

J A
J
µ, δφi = Φi(φ). (5.14)

This means that one takes gIµ = 0 and that the functions Φi only depend on the undifferen-

tiated scalar fields. These symmetries form a sub-algebra ge that includes the symmetries

usually considered in the supergravity literature and which is, in this context, called the

“electric symmetry algebra” (in the given duality frame) [15]. It can be shown to be a

subgroup of the duality group G ⊂ Sp(2nv,R) [56]. Although our Lagrangians are not

necessarily connected with supergravity, we shall nevertherless call the symmetries of the

form (5.14) “electric symmetries” and the subalgebra ge the “electric algebra”. It need not

be a subalgebra of Sp(2nv,R). It generically does not exhaust all symmetries and does not

contain for example the conformal symmetries of free electromagnetism.

The transformations of the form (5.14) are symmetries of the action (5.1) + (5.2) if

and only if the scalar variations leave the scalar action invariant separately, and f I
J ,Φ

i(φ)

satisfy

∂I

∂φi
Φi = −fTI − If, (5.15)

∂R

∂φi
Φi = −fTR−Rf − 2h, (5.16)

where the h are constant symmetric matrices. In particular, when the scalar Lagrangian is

given by LS = 1
2gij(φ)∂µφ

i∂µφj , the first condition means that Φi must be a Killing vector

of the metric gij . If U and W -type symmetries are of electric type, the electric symmetry

algebra contains in addition only V -type symmetries of electric type, i.e., transformations

among the undifferentiated scalars alone that leave invariant both the scalar action and

the matrices I,R (i.e., that satisfy δSS = 0 and (5.15), (5.16) with 0’s on the right hand

sides). This will be the case in all examples below. In particular, the f ’s, and thus also

the gauge algebra, will be the same for gU and ge. The h matrix is determined by the

transformation parameters Φi and the parity-odd term R of the action via (5.16).

We then suppose that we have a basis of symmetries of the action of this form,

δΓA
I
µ = (fΓ)

I
JA

J
µ, (5.17)

δΓφ
i = Φi

Γ(φ). (5.18)
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When compared to the previous sections, the index Γ can take u, v or w values. Only the

fu matrices are non-zero. The hΓ matrices are non-vanishing only for Γ = u or w. When

hΓ 6= 0, the Lagrangian is only invariant up to a total derivative.

Closure of symmetries of this form then implies

[f∆, fΓ] = −CΣ
∆ΓfΣ, (5.19)

fT
Γ h∆ − fT

∆hΓ + h∆fΓ − hΓf∆ = −CΣ
∆Γ hΣ, (5.20)

∂Φi
∆

∂φj
Φj
Γ −

∂Φi
Γ

∂φj
Φj
∆ = −CΣ

∆ΓΦ
i
Σ. (5.21)

Decomposing the indices into U , W and V type, this is consistent with the relations of

section 4.2 with λw
u = 0. Let us note that (5.16) expresses the surface term in the variation

of the action. Equation (5.20) follows by commutation.

5.4 Restricted first order deformations

We now limit ourselves to first order deformations of the master action with the condition

that all infinitesimal gaugings come from symmetries that belong to the electric symmetry

algebra above. In order to simplify formulas, we will no longer make the distinction between

U -, W - and V -type which can easily be recovered.

According to section 4.3, the deformations are parametrized through electric symme-

tries by a matrix kΓI , with

f I
JK = (fΓ)

I
Jk

Γ
K , (5.22)

Φi
I(φ) = Φi

Γ(φ)k
Γ
I , (5.23)

XIJ,K = (hΓ)IJk
Γ
K . (5.24)

The linear constraints (4.35) – (4.37) on the matrix kΓK become

(fΓ)
I
Jk

Γ
K + (fΓ)

I
KkΓJ = 0, (5.25)

hΓ (IJk
Γ
K) = 0. (5.26)

They guarantee that the first order deformation of the master action is given by

S(1) =

∫

d4x (a2 + a1 + a0) , (5.27)

where

a2 =
1

2
C∗
I f

I
JKCJCK (5.28)

encodes the first order deformation of the gauge algebra and

a1 = A∗µ
I f I

JKAJ
µC

K + φ∗
iΦ

i
KCK (5.29)

encodes the first order deformation of the gauge symmetries. When taking (5.22) and (5.23)

into account, this deformation of the gauge symmetries corresponds to gauging the under-

lying global symmetries by using local parameters ηΓ(x) = kΓI ǫ
I(x). The deformation a0
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of the Lagrangian is given by the sum of three terms:

a
(YM)
0 =

1

2
(⋆GI)

µνf I
JKAJ

µA
K
ν , (5.30)

a
(CD)
0 = Jµ

KAK
µ , (5.31)

a
(CS)
0 =

1

3
XIJ,KǫµνρσF I

µνA
J
ρA

K
σ . (5.32)

The terms a(YM) and a(CD) are exactly those necessary to complete the abelian field

strengths and ordinary derivatives of the scalars into covariant quantities. The term a(CD)

is responsible for charging the matter fields. The Chern-Simons term a
(CS)
0 appears when

hΓ 6= 0: its role is to cancel the variation

δL = −
1

4
ηΓhΓ IJ ε

µνρσF I
µνF

J
ρσ (5.33)

that is no longer a total derivative when ηΓ = kΓI ǫ
I(x) [29, 57].

5.5 Complete restricted deformations

The second order deformation S(2) to the master action is then determined by the first

order deformation through equation (2.8). As discussed in section 4.4, the existence of S(2)

imposes additional quadratic constraints on the matrix kΓI ,

kΓIk
∆
JC

Σ
Γ∆ − (fΓ)

K
Ik

Γ
Jk

Σ
K = 0. (5.34)

Explicit computation shows that S(2) can be chosen such that there is no further de-

formation of the gauge symmetries or of their algebra. The second order terms in the La-

grangian are exactly those necessary to complete abelian field strengths F I
µν = ∂µA

I
ν − ∂νA

I
µ

and ordinary derivatives of the scalars to non-abelian field strengths and covariant

derivatives,

FI
µν = ∂µA

I
ν − ∂νA

I
µ + f I

JKAJ
µA

K
ν , (5.35)

Dµφ
i = ∂µφ

i − Φi
I(φ)A

I
µ. (5.36)

One also finds a non-abelian completion of the Chern-Simons term a
(CS)
0 . Putting every-

thing together, the Lagrangian after adding the second order deformation is

L = LS(φ
i, Dµφ

i)−
1

4
IIJ(φ)F

I
µνF

Jµν +
1

8
RIJ(φ) ε

µνρσFI
µνF

J
ρσ

+
2

3
XIJ,K εµνρσAJ

µA
K
ν

(

∂ρA
I
σ +

3

8
f I

LM AL
ρA

M
σ

)

. (5.37)

The associated action can be checked to be invariant under the gauge transformations

δAI
µ = ∂µǫ

I + f I
JKAJ

µǫ
K , (5.38)

δφi = ǫIΦi
I(φ). (5.39)
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This is equivalent to the fact that the deformation stops at second order, i.e, that

S = S(0) + S(1) + S(2) gives a solution to the master equation (S, S) = 0.

Checking directly the invariance of this action under (5.38) – (5.39) without first

parametrizing f I
JK , Φi

I(φ) and XIJK through symmetries requires the use of the linear

identities

f I
JK = f I

[JK] , X(IJ,K) = 0 (5.40)

and of the quadratic ones

f I
J [K1

fJ
K2K3]

= 0, (5.41)

fK
I[LXM ]J,K + fK

J [LXM ]I,K −
1

2
XIJ,KfK

LM = 0, (5.42)

∂Φi
I

∂φj
Φj
J −

∂Φi
J

∂φj
Φj
I + fK

IJ Φ
i
K = 0. (5.43)

In terms of kΓI , these three quadratic identities all come from the single quadratic con-

straint (5.34) once the algebra of global symmetries (5.19) – (5.21) is taken into account.

5.6 Remarks on GL(nv) transformations

Consider a linear field redefinition of the abelian vector potentials, AI
µ = M I

JA
′J
µ with

M ∈ GL(nv). Such a transformation gives rise to a trivial infinitesimal gauging which

corresponds to the antifield independent part of the trivial ghost number 0 cocycle

S
(1)
triv. = (S(0),Ξs), Ξs = f I

s J [d
4xC∗

IC
J + ⋆A∗

IA
J ], (5.44)

with fs ∈ gl(nv,R).

Two remarks are in order.

The first concerns the relation to the algebra gU defined in section 4.2. It can also be

defined as the largest sub-algebra of gl(nv,R) that can be turned into symmetries of the

theory by adding suitable gauge invariant transformations of the vector and scalar fields,

or in other words, for which there exists a gauge invariant Ku of ghost number −1 such

that (S(0),Ξu +Ku) = 0.

In particular, (4.32) and (4.35) for g = 0, as well as (4.40), can be summarized as

follows: non-trivial U -type gaugings require the existence of a map (described by kuK)

from the defining representation of the symmetry algebra gU ⊂ gl(nv,R) into the adjoint

representation of the nv-dimensional gauge algebra gg.

The second remark is about families of Lagrangians related by linear transformations

of the vector potentials among themselves. It is sometimes useful not to work with fixed

(canonical) values for various GL(nv) tensors that appear in the action. Instead, one con-

siders the deformation problem for sets of Lagrangians parametrized by arbitrary GL(nv)

tensors, for instance generic non-degenerate symmetric IMN and symmetric RMN that

vanish at the origin of the scalar field space.

If the tensors of two such Lagrangians are related by a GL(nv) transformation, they

should be considered as equivalent. Indeed, the local BRST cohomology for all members of

such an equivalence class are isomorphic and related by the above anti-canonical field redef-

inition. In particular, all members of the same equivalence class have isomorphic gaugings.
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All general considerations and results on local BRST cohomology above apply in a

unified way to all equivalence classes. When one explicitly solves the obstruction equa-

tion (3.48) (for instance at g = −1 in order to determine the symmetries), the results on

local BRST cohomologies do depend on the various equivalence classes.

5.7 Comparison with the embedding tensor constraints

In the embedding tensor formalism [15, 22–25],6 the possible gaugings are described by

the embedding tensor Θ α
M = (Θ α

I ,ΘIα) with electric and magnetic components, which

satisfies a number of linear and quadratic constraints. In this notation, the index I runs

from 1 to nv, while α runs from 1 to the dimension of the group G of invariances of the

equations of motion of the initial Lagrangian (5.1). More precisely, G is defined only as the

group of transformations that act linearly on the field strengths F I and their “magnetic

duals” GI , and whose action on the scalars contains no derivatives. This coincides with

the group of symmetries of the first order Lagrangian discussed in [26] which are of the

restricted form (5.14).

As explained in section 3 of [15], one can always go to a duality frame in which the

magnetic components of the embedding tensor vanishes, ΘIα = 0. Moreover, only the

components Θ Γ
I survive, where Γ runs over the generators of the electric subgroup Ge ⊂ G

that act as local symmetries of the Lagrangian in that frame. Then, the gauged Lagrangian

in the electric frame is exactly the Lagrangian (5.37), where the matrix k is identified with

the remaining electric components of the embedding tensor, kΓI = Θ Γ
I (or Θ Γ

Î
in the

notation of [15]). The linear and quadratic constraints on the embedding tensor then agree

with the constraints on k. More precisely, the constraints (3.11), (3.12) and (3.39) of [15]

in the electric frame correspond to our (5.34), (5.25) and (5.26) respectively. As explained

in sections 4.3 and 4.4, the constraints can be refined using the split corresponding to the

various (U , W , V ) types of symmetry.

It was shown in [26] that the embedding tensor formalism does not allow for more

general deformations than those of the Lagrangian (5.1) studied in this paper. Indeed,

their BRST cohomologies are isomorphic even though the field content and gauge transfor-

mations are different. Conversely, as long as one restricts the attention to the symmetries

of (5.1) that are of the electric type (5.14), we showed that the embedding tensor formalism

captures all consistent deformations that deform the gauge transformations of the fields.

6 Applications

6.1 Abelian gauge fields: U-type gauging

As a first example, let us consider the case where we have no scalars, IIJ = δIJ , RIJ = 0.

The Lagrangian is then simply

L = −
1

4
δIJF

I
µνF

Jµν . (6.1)

6See also [69], where a relation between the embedding tensor formalism and the BRST-BV antifield

formalism has been considered with a different purpose.
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From (5.13), it can be shown that U -type symmetries are of electric form. Furthermore,

there are no W -type symmetries. We have in this case gU = ge = so(nv).

The vector fields transform in the fundamental representation of so(nv). A basis of

the Lie algebra so(nv) may be labeled by an antisymmetric pair of indices [LM ] that now

plays the role of the index u,

δ[LM ]A
I
µ = (f[LM ])

I
JA

J
µ, (f[LM ])

I
J =

1

2
(δILδJM − δIMδJL). (6.2)

Concerning the associated gaugings, the matrices f[LM ]IJ
= δII′(f[LM ])

I′

J are anti-

symmetric in I, J ; therefore, the structure constants of the gauge group

f
(δ)
IJK = (f[LM ])IJk

LM
K (6.3)

are automatically antisymmetric in their first two indices. The constraints on kLMK ensure

antisymmetry in the last two indices (which in turn implies total antisymmetry) and the

Jacobi identity. Moreover, any set of totally antisymmetric structure constants can be

obtained in this way by taking kLMK = fLM
K , as can be easily seen using the expression

for f[LM ] given above.

We thereby recover the result of [17, 70] stating that the most general deformation of

the free Lagrangian (6.1) that is not of V or I-type is given by the Yang-Mills Lagrangian

with a compact gauge group of dimension equal to the number of vector fields.

Remark. Note that Poincaré (conformal) symmetries (for n = 4) are of V -type if one

allows for xµ-dependent local functions. If such a dependence is allowed for U,W -type

symmetries and gaugings as well, results can be very different. For instance, as shown by

equation (13.21) of [46], if n 6= 4, there are additional U -type symmetries described by the

cohomology class

U−1 = dnxf(IJ)

[

C∗ICJ +A∗µIAJ
µ +

2

n− 4
F I
µνx

µA∗νJ

]

, (6.4)

where indices I, J, . . . are raised and lowered with the Kronecker delta. The associated

Noether current can be obtained by working out the descent equation following (3.49),

sU−1 + d(f(IJ)[⋆A
∗ICJ + ⋆F IAJ + JU

IJ ]) = 0, where

JU
IJ =

2

n− 4
(Tµν)

IJxν ⋆ dxµ, (Tµ
ν)

IJ = F (I|µρF |J)
ρν +

1

4
F IαβF J

αβδ
µ
ν . (6.5)

In other words, gU = gl(nv). Note also that these U -type symmetries involve a non-

vanishing UgIµ. It has furthermore been shown in section 13.2.2 of [46] that there are

associated U -type gaugings and cohomology classes in higher ghost numbers. In the present

context, they are obtained as follows: the role of u for the additional symmetries is played

by a symmetric pair of indices (LM),

δ(LM)A
I
µ = (f(LM))

I
JA

J
µ, (f(LM))

I
J =

1

2
(δILδJM + δIMδJL). (6.6)
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Once the linear constraints (4.35) on k
(LM)
K1...Kg+1

are fulfilled, the associated U -type gaugings

and higher cohomology classes can be read off from equation (3.49) when taking (4.32).

After multiplying (6.4) by n−4, it represents for n = 4 the V -type symmetry associated

with the dilatation of the conformal group. The associated cubic and higher order vertices

for the full conformal group have been studied in detail in [58].

6.2 Abelian gauge fields with uncoupled scalars: U, V -type gaugings

We now take the case

L = LS(φ
i, ∂µφ

i)−
1

4
δIJF

I
µνF

Jµν , (6.7)

where there is no interaction between the scalars and the vector fields. The gU algebra is

again so(nv) and there are no W -type symmetries.

The electric symmetry algebra is the direct sum of so(nv) with the electric V -type

symmetry algebra gs of the scalar Lagrangian. The matrices fΓ split into two groups and

are given by

(fα)
I
J = 0, (f[LM ])

I
J =

1

2
(δILδJM − δIMδJL) (6.8)

where α = 1, . . . , dim gs labels the Gs generators and the antisymmetric pair [LM ] la-

bels the SO(nv) generators as before. The matrix kΓI accordingly splits in two compo-

nents kLMI and kαI . The constraints on kLMI again amount to the fact that the quantities

f I
JK = (f[LM ])

I
Jk

LM
K are the structure constants of a compact Lie group. The constraint

on kαI tells us that the gauge variations

δφi = ǫIkαI Φ
i
α(φ) (6.9)

close according to the structure constants f I
JK . In the case where these variations are

linear, Φi
α(φ) = (tα)

i
jφ

j , the constraint is that the matrices TI = kαI tα form a representation

of the gauge group, [TI , TJ ] = fK
IJ TK .

6.3 Bosonic sector of N = 4 supergravity

Neglecting gravity, the bosonic sector of N = 4 supergravity is given by two scalar fields

parametrizing the coset SL(2,R)/SO(2) along with nv = 6 vector fields [1–3, 5].7 We study

three formulations of this model, where we determine the symmetry algebras gU and ge

and the allowed gaugings. In all formulations, the scalar Lagrangian is determined by

φi = (φ, χ), gij = diag(1, e2φ), V = 0. (6.10)

They differ by the form of the matrices I and R.

7For generalisations of the models treated in this section, see [59] for the couplings of N = 4 supergravity

to an arbitrary number of vector supermultiplets.
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SO(6) formulation. The vector Lagrangian (5.1) is determined by

IIJ = e−φδIJ , RIJ = χδIJ . (6.11)

When f
(δ)
IJ is antisymmetric, the transformations δAI

µ = f I
JA

J
µ define an so(6) sub-algebra

of U -type symmetries on their own. Note also that we can assume hIJ to be symmetric.

Equations (5.13) then imply that the traceless parts of f
(δ)
IJ , hIJ have to vanish.

If f
(δ)
IJ = δIJη

0, equations (5.13) are solved with hIJ = 0, Φφ
0 (0) = 2η0,Φχ

0 (0) = 0. It

then follows that (5.12) are solved with

Φφ
0 = 2η0, Φχ

0 = −2η0χ. (6.12)

Equation (5.7) is then also solved with gI = 0 and I3 = 2η0(e2φ ⋆ dχχ − ⋆dφ). According

to equation (3.49), the associated cohomology class is given by

ω−1,4 = η0[d4xC∗
IC

I + ⋆A∗
IA

I + 2(⋆φ∗ − ⋆χ∗χ)], (6.13)

with sω−1,4+d[η0(⋆A∗
IC

I +GIA
I)+I3] = 0. This cohomology class encodes the symmetry

δAI
µ = η0AI

µ, δφ = 2η0, δχ = −2η0χ, (6.14)

with δL0 = 0. The associated Noether current is given by

jµ =

[

−

(

e−φFµλ
I −

1

2
χǫµλρσFIρσ

)

AI
λ − 2∂µφ+ 2χe2φ∂µχ

]

. (6.15)

It cannot be made gauge invariant through allowed redefinitions.

For fIJ = 0, hIJ = η+δIJ , Φ
χ
0 = −2η+,Φφ

0 = 0 is a solution to the full problem (5.7)

since 1
2F

IFI = s ⋆ χ∗ + d(e2φ ⋆ dχ). This gives then the only class of W -type, which is also

of restricted type. More explicitly, W−1 = ⋆χ∗ with s ⋆ χ∗ + d(−1
2A

IFI + e2φ ⋆ dχ) = 0.

The symmetry it describes is δχ = η+ with the associated Noether current given above

that can again not be made gauge invariant.

The algebra gU is therefore isomorphic to so(6)⊕h, where h is the sub-algebra of sl(2,R)

generated by diagonal traceless matrices. It is a sub-algebra of the electric symmetry

algebra ge = so(6) ⊕ b+, where b+ corresponds to the sub-algebra of sl(2,R) of upper

triangular matrices. The electric algebra acts as

δφ = 2η0, δχ = −2η0χ+ η+, δAI
µ = η0AI

µ + ηLM (f[LM ])
I
JA

J
µ. (6.16)

Accordingly fΓ = (f0, f+, f[LM ]) where f[LM ] are given in (6.2), while

(f0)
I
J = δIJ , (f+)

I
J = 0. (6.17)

The matrix RIJ = χδIJ transforms as

δRIJ = −2η0RIJ + η+δIJ . (6.18)

Therefore, contrary to the previous examples, the tensor hΓIJ has a non-vanishing compo-

nent h+IJ = −1
2δIJ .
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The generalized structure constants f I
JK1...Kg+1

= (fΓ)
I
Jk

Γ
K1...Kg+1

are then

f I
JK1...Kg+1

= δIJk
0
K1...Kg+1

+
1

2
(f[LM ])

I
Jk

LM
K1...Kg+1

. (6.19)

The linear constraint (4.35) now implies that k0K1...Kg+1
= 0 as can be seen by taking the first

three indices equal and using the antisymmetry of the matrices f[LM ], while k
(δ)
LMK1...Kg+1

is restricted to be completed skew-symmetric in all indices. In the same way, the linear

constraint (4.37) implies that k+K1...Kg+1
= 0. Indeed, it reduces to

δ(IJk
+
K1)...Kg+1

= 0, (6.20)

from which we deduce k+K1...Kg+1
= 0 by taking the first three indices equal.

It follows that there are no cohomology classes of W -type when g > 0 and that the

only cohomology classes of U -type when g > 0 are given by

[d4xC∗I∂I + ⋆A∗IAJ∂J∂I +
1

2
GIAJAK∂K∂J∂I ]Θ, (6.21)

with Θ a polynomial in CI of ghost number > 1.

In particular, the symmetries of b+ cannot be gauged and the gauge algebra is given

by a compact sub-algebra of so(6). The gauged Lagrangian is the original one, except that

the abelian field strengths are replaced by non-abelian ones.

Dual SO(6) formulation. We now have

IIJ =
1

e−φ + χ2eφ
δIJ , RIJ = −

χeφ

e−φ + χ2eφ
δIJ , (6.22)

and the same analysis gives similar conclusions:

1. We still have the cohomology classes (6.21) since we still have that IIJ and RIJ are

proportional to δIJ .

2. There are no additional gaugings or cohomology classes in ghost number higher than

0 of U or W -type.

3. The only additional non-covariantizable characteristic cohomology comes from two

additional solutions to (5.13).

The first of these additional solutions is of electric U -type and comes from f
(δ)
IJ = η̃0δIJ ,

hIJ = 0, with Φφ
0 (0) = −2η̃0, Φχ

0 (0) = 0. Equation (5.12) reduces to

2η̃0IIJ + ∂iIIJΦ
i
0 = 0, 2η̃0RIJ + 2hIJδIJ + ∂iRIJΦ

i
0 = 0, (6.23)

and is solved by

hIJ = 0 Φφ
0 = −2η̃0, Φχ

0 = 2η̃0χ. (6.24)
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This gives also a solution to the full problem since this transformation leaves the scalar

field Lagrangian invariant. According to equation (3.49), the associated cohomology class

is given by

ω−1,4 = η̃0[d4xC∗
IC

I + ⋆A∗
IA

I − 2(⋆φ∗ − ⋆χ∗χ)]. (6.25)

The second is of restricted W -type and comes from f
(δ)
IJ = 0 while hIJ = η̃+δIJ with

Φφ
0 (0) = 0, Φχ

0 (0) = 2η̃+. Equation (5.12) reduces to

∂iIIJΦ
i
0 = 0, 2η̃+δIJ + ∂iRIJΦ

i
0 = 0, (6.26)

and is solved by

Φχ
0 = 2η̃+(e−2φ − χ2), Φφ

0 = 4η̃+χ, (6.27)

This is also a solution to the full problem since these transformations leave the scalar field

Lagrangian invariant. The associated cohomology class is given by

2η̃+[⋆φ∗2χ+ ⋆χ∗(e−2φ − χ2)]. (6.28)

In this case, we therefore have gU = so(6)⊕h ⊂ ge = so(6)⊕b−, where b− is the sub-algebra

of sl(2,R) of lower triangular matrices.

Again, the symmetries of b+ cannot be gauged and the gauge algebra is given by a

compact sub-algebra of so(6).

SO(3) × SO(3) formulation. The indices split as I = (A,A′), where A,A′ = 1, 2, 3,

and we have
IIJ = diag(IAB, IA′B′), RIJ = diag(RAB,RA′B′),

IAB = e−φδAB, IA′B′ =
1

e−φ + χ2eφ
δA′B′ ,

RAB = χδAB, RA′B′ = −
χeφ

e−φ + χ2eφ
δA′B′ .

(6.29)

Spelling out equation (5.12) gives

IILf
L
J + ILJf

L
I + ∂iIIJΦ

i
0 = 0,

RILf
L
J +RJLf

L
I + hIJ + hJI + ∂iRIJΦ

i
0 = 0.

(6.30)

Choosing I = A, J = A′, the first equation reduces to

e−φf
(δ)
AA′ +

1

e−φ + χ2eφ
f
(δ)
A′A = 0. (6.31)

Putting φ = 0 = χ and taking the derivative with respect to φ before putting φ = 0 = χ,

implies that f
(δ)
AA′ = 0 = f

(δ)
A′A. When combined with the linear constraint (4.35), this

implies that the f I
JK1...Kg+1

’s have to vanish unless all indices are of A, or of A′, type

respectively, which is thus a necessary condition to have non trivial U -type solutions.

When the f ’s vanish, the second equation for I = A, J = A′ gives hAA′ + hA′A = 0.

When combined with the linear constraint (4.37), this implies that for non-trivial solutions

of W -type associated to XIJ,K1...Kg+1
one again needs all indices to be either of A or of

A′ type.
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The discussion then reduces to the one we had before in each of the sectors. For U -type

solutions, this gives in a first stage the symmetries, gaugings and higher ghost cohomology

classes associated with each of the SO(3) rotations separately. There are again no additional

solutions of U or W type when g > 0.

Only the remaining non-covariantizable symmetries, i.e., solutions of type U and W

at g = −1 that correspond to b±, remain to be discussed. For the U type solutions, one

finds in the first sector that fAB = η0δAB with (6.12) holding, while for the second sector

fA′B′ = η̃0δA′B′ with (6.24) holding. This gives a solution to the full problem if and only

if η̃0 = −η0. Hence gU = so(3) ⊕ so(3) ⊕ h. On the other hand the solutions of W type

for both sectors are solutions to the full problem if and only if η+ = η̃+ = 0 so that there

is no surviving W -type symmetry. In particular ge = gU . The symmetry of h cannot be

gauged, and the gauge algebra is a compact sub-algebra of so(3)⊕ so(3).

This concludes the discussion with the expected results (see [60–62]).

6.4 Axion models: W -type gaugings and anomalies

We now give examples of gaugings and anomalies where the generalized Chern-Simons

term appears. They involve several axions and correspond to the examples given in [46],

equations (12.4) and (12.6).

The initial Lagrangian is

L0 = −
1

4
F I
µνF

Jµν δIJ −
1

2
∂µφ

I∂µφJ δIJ +
1

4
εµνρσ F I

µνF
J
ρσ φIVJ , (6.32)

where V I is a vector of dimension nv of unit norm and there are nv scalar fields φI whose

indices are raised and lowered with the Kronecker symbol. With respect to the general

Lagrangian (5.1) and (5.2), we have here gij = δIJ , V = 0, IIJ = δIJ and RIJ = 2φ(IVJ).

The example in [46], equation (12.4), corresponds to the case nv = 2, with VJ = δ2J .

By using equations (5.13), (5.11), one finds gU = so(nv − 1). The symmetries act like

δuA
I = f I

J A
J and δuφ

I = f I
J φ

J for an antisymmetric symbol fIJ that is transverse to

the vector V , VIf
I
J = 0.

To determine the W -type symmetries, one needs in particular to solve equation (5.13)

with f I
J = 0. This is done through δφI = ΦI = ηI for independent constants ηI with

(hK)IJ = −δK(IVJ). There are thus nv independent such symmetries. It then follows

that a basis of W -type symmetries is given by δKφI = δIK , δKAI
µ = 0, where K plays the

role of the index w. Furthermore, there are no V -type symmetries of electric type so that

ge = so(nv − 1)⊕ u(1)nv .

The linear constraints (4.35) require the kuK1...Kg+1
to be transverse, kuK1...Kg+1

V K1 = 0.

For the associated gaugings, the rest of the discussion then follows the one in subsection 6.1.

For W -type cohomology, the linear constraints (4.37) imply that

V(I kJK1)...Kg+1
= 0 , kIK1...Kg+1

:= δIJ k
J
K1J2...Kg+1

, (6.33)

which is solved if and only if k is a totally antisymmetric rank-(g + 2) symbol,

kIK1...Kg+1
= k[IK1...Kg+1].
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For W -type gaugings in particular, g = 0 and one has an antisymmetric nv×nv matrix.

There are no extra quadratic constraints. The gauge transformations, covariant derivatives

and generalized Chern-Simons term for the deformed theory are then

δAI
µ = ∂µǫ

I , δφI = −k[IJ ]ǫ
J , DµφI = ∂µφI + k[IJ ]A

J
µ,

L(CS) = −
1

3
(VKkIJ + VIkKJ) ε

µνρσAI
µA

J
νF

K
ρσ .

(6.34)

For a W -type anomaly example, let ns = nv = 3 and consider VK = δK 3. The associated

anomaly candidate is then

W 1,4 = d4x ǫIJK

[

1

4
ǫµνρσ CI AJ

µ A
K
ν F 3

ρσ + CI AJ
µ ∂

µφK −
1

2
CI CJ φ∗K

]

. (6.35)

7 First order manifestly duality-invariant actions

7.1 Non-minimal version with covariant gauge structure

We now investigate the first order formulation [9, 26] of the models discussed previously.

Those models are interesting because they contain more symmetries and therefore poten-

tially more gaugings. In the original, minimal version, they are given by the action

S =

∫

d4x

(

1

2
ΩMNBMiȦN

i −
1

2
MMN (φ)BM

i BNi

)

, (7.1)

where the potentials are packed into a vector

(AM ) = (AI , ZI), M = 1, . . . , 2nv, (7.2)

and the magnetic fields are

BMi = ǫijk∂jA
M
k . (7.3)

The matrices Ω and M(φ) are the 2nv × 2nv matrices

Ω =

(

0 I

−I 0

)

, M =

(

I +RI−1R −RI−1

−I−1R I−1

)

, (7.4)

each block being nv × nv. The matrix N = Ω−1M is symplectic, N TΩN = Ω.

Local BRST cohomology and gaugings for this class of models with non-covariant

gauge symmetries δAM
i = ∂iǫ

M could then be discussed by generalizing the results of [63]

in the presence of coupled scalars.

However, in order to be able to directly use the discussion of local BRST cohomology

developed for the second order covariant Lagrangian in the case of the first order manifestly

duality invariant formulation, we consider a modification of the non-minimal variant [10]

with additional scalar potentials for the longitudinal parts of electric and magnetic fields.

More precisely, we now take instead of (7.1) the action

S[AM
µ , DM , πM , φi] = SS [φ] + SDP , (7.5)
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with

LDP =
1

2
[ΩMN (BMi + ∂iDM )(∂0A

N
i − ∂iA

N
0 )− BMiMMN (φ)BN

i ]

+ πM∂0D
M −

1

2
πM (M−1)MNπN − V(φ,D). (7.6)

Here

BMi = ǫijk∂jA
M
k + ∂iDM , (7.7)

spatial indices i, j, k, . . . are raised and lowered with δij and its inverse, with ΩMN the

symplectic matrix, MMN symmetric and invertible and

(∂iV)(0, 0) = 0 = (∂MV)(0, 0), V(φ, 0) = 0. (7.8)

The modification with respect to [10] consists in the addition of the kinetic and potential

terms for the longitudinal electric and magnetic potentials in the last line of (7.6). Defining

FM
µν = ∂µA

M
ν −∂νA

M
µ +⋆SM

µν , ⋆SM
0i =∆−1(Ω−1)MN∂0∂iπN , ⋆SM

ij = ǫijk∂
kDM , (7.9)

we have BMi = 1
2ǫ

ijkFjk and can write

SDP =

∫

d4x
1

4
[ΩMN ǫijk(FM

jk + ⋆SM
jk )F

N
0i −FM

ij MMNFNij − 2πM (M−1)MNπN − 4V ],

(7.10)

where a total derivative has been dropped.

The gauge invariances are then doubled but still of the same covariant form as in the

second order Lagrangian case,

δAM
µ = ∂µǫ

M , δDM = 0, δπM = 0, δφi = 0. (7.11)

The equations of motion for the gauge and scalar potentials are determined by the vanish-

ing of

δLDP

δπM
= −(M−1)MN (πN −MNL∂0D

L),

δLDP

δDM
= ΩMN (∆AN

0 − ∂0∂
iAN

i ) + ∂i(MMNBN
i )− ∂0πM −

∂V

∂DM
,

δLDP

δAM
0

= −ΩMN∆DN = −
1

2
ΩMN ǫijk∂iF

N
jk,

δLDP

δAM
i

= ΩMN∂0B
Ni − ǫijk∂j(MMNBN

k ) =
1

2
ΩMN ǫijk∂0F

N
jk − ∂j(MMNFNij).

(7.12)

The first set of equations then allows one to eliminate the momenta πM by their own

equations of motion. When ∆ is invertible, the second and third set of equations allow one

to solve DM and AM
0 by their own equations of motion in the action, which yields (7.1).

It is in this sense that these variants of the double potential formalism are equivalent, but

of course not locally so. The third and fourth set of equations can be written as

δLDP

δAM
µ

= ∂ν ⋆ G
µν
M , (7.13)
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when defining

⋆ Gi0
M =

1

2
ΩMN ǫijkFN

jk, ⋆Gij
M = −MMNFNij . (7.14)

This definition implies that the components of GM = 1
2GMjkdx

jdxk+GMi0dx
idx0 are

explicitly given by

GMjk = −ΩMNFN
jk, GMi0 =

1

2
ǫijkMMNFNjk. (7.15)

After elimination of the πM , the action of the theory can then also be written as the integral

of L0 = LES + LV with

LES =LS−
1

2
∂µD

MMMN∂µDN−V , d4xLV =

∫ 1

0

dt

t
[GMFM ][tAM ,DM ,φi]. (7.16)

so that the scalar sector has been enlarged to φm = (φi, DM ) and the scalar metric and

potential are now (gij ,MMN ), respectively (V,V). It is thus a particular case of the actions

of the form (3.3) studied in section 3.

7.2 Local BRST cohomology

The master action is given by

S =

∫

d4x [L0 +A∗µ
M∂µC

M ] (7.17)

with an antifield and ghost sector that is doubled as compared to the second order covariant

formulation.

We then can copy previous results:

(i) Hg(s) = 0 for g ≤ −3.

(ii) H−2(s) is doubled: U−2 = µMd4xC∗
M with descent equation

s d4xC∗
M + d ⋆ A∗

M = 0, s ⋆ A∗
M + dGM = 0, sGM = 0. (7.18)

Characteristic cohomology Hn−2
W (d) is then represented by the 2-forms µMGM .

For g ≥ −1, the discussion in terms of U , W , V types is the same as before with

indices I, J,K, · · · → M,N,O, . . . on vector potentials, ghosts and their antifields, and

i, j, k · · · → m,n, o . . . on scalar fields.

The obstruction equation for symmetries, equation (5.7), becomes

GMFNfM
N + FMFNhMN + dIn−1

−

(

dGMgM + [d(gij ⋆ dφ
j) + ⋆∂i(LES + LV )]Φ

i +
δL0

δDM
ΦM

)

= 0. (7.19)
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7.3 Constraints on W,U-type cohomology

When there is no explicit xµ dependence and V = 0 = V , putting all derivatives of

FM
µν , φ

i, DM to zero, one remains with

GM |der=0F
NfM

N + FMFNhMN − ⋆∂mLV Φ
m|der=0 = 0, (7.20)

where GM |der=0 amounts to replacing FM
µν by FM

µν in (7.15).

Using −∂m ⋆LV = δim
1
2∂iGM |der=0F

M , and the decomposition Φm|der=0 = Φm
0 +Φm

1 +

. . . , where the Φm
n depend on undifferentiated scalar fields and are homogeneous of degree

n in FM
µν , the equation implies

GM |der=0F
NfM

N + FMFNhMN +
1

2
∂iGM |der=0F

MΦi
0 = 0. (7.21)

When taking account that

GM |der=0F
N = d4x

1

2
[ΩOM ǫijkFO

jkF
N
0i −MMOF

O
jkF

Njk], (7.22)

this gives an equation of the type

1

4
d4x[OMN (φ)ǫijkFM

jk F
N
0i − PMN (φ)FM

jk F
Njk] = 0, (7.23)

where

PMN = 2MO(MfO
N) + ∂iMMNΦi

0, (7.24)

OMN = 2ΩMOf
O
N + 2hMN , (7.25)

and hMN = hNM on account of (3.42). Note that there is one less term as compared

to (5.11) since the kinetic term does not depend on the scalars and also that OMN is not

symmetric.

Now both terms have to vanish separately because they involve different field strengths,

PMN = 0, OMN = 0. (7.26)

Setting φi = 0 = DM then gives

f
(M(0))
MN + f

(M(0))
NM + (∂iMMN )(0)Φi

0(0) = 0,

f
(Ω)
MN = −hMN ,

(7.27)

with f
(Ω)
MN = ΩMOf

O
N . Consider first symmetries of W -type, i.e., take the case when the

f ’s vanish. The first equation is then satisfied with Φi
0(0) = 0, while the second equation

then requires hMN to vanish. This implies:

There are neither W -type symmetries nor W -type cohomology in ghost numbers

g ≥ 0 for the first order model.
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As a consequence, hMN = huMN , and the second of equation (7.27) is equivalent to

fu
(Ω)
[MN ] = 0, fu

(Ω)
(MN) = −huMN . (7.28)

It follows that:

The algebra gU is the largest sub-algebra of sp(2nv,R) that can be turned into

symmetries of the full theory. All non-trivial U -type symmetries require a

non-vanishing huMN and thus involve a Chern-Simons term in their Noether

currents.

On its own, the first equation of (7.27) is solved for skew-symmetric f
(M(0))
MN with

vanishing Φi(0). Symmetric f
(M(0))
MN needs a non trivial scalar symmetry.

For U -type cohomologies in higher ghost number g ≥ 0, the kuO1...Og+1
tensor has to

satisfy (4.35), which becomes

fu
(Ω)
M(NkuO1)...Og+1

= 0. (7.29)

The object DMO1NO2...Og+1
= fu

(Ω)
MNkuO1...Og+1

is then symmetric in the first and third

indices because fu
(Ω)
MN is symmetric, and antisymmetric in the second and third indices on

account of (7.29). It thus has to vanish,

DMO1NO2...Og+1
= DNO1MO2...Og+1

= −DNMO1O2...Og+1
= −DO1MNO2...Og+1

= DO1NMO2...Og+1
= DMNO1O2...Og+1

= −DMO1NO2...Og+1
. (7.30)

It follows that kuO1...Og+1
= 0:

There are no U -type cohomology classes in ghost number g ≥ 0.

In particular, there are no U -type gaugings even though there are U -type symmetries.

We thus recover the results on gaugings of [8] from the current perspective.

7.4 Remarks on GL(2nv) transformations

The two remarks on linear changes of variables from section 5.6 also apply in the first order

case. More precisely, the second remark can be rephrased as follows.

The general discussion of the structure of the BRST cohomology of the first order

model in sections 7.2 and 7.3 goes through unchanged for arbitrary skew-symmetric non-

degenerate ΩMN and symmetric non-degenerate MMN . The local BRST cohomology for

sets of ΩMN , MMN related by GL(2nv,R) transformations will be isomorphic, whereas

explicit results for the local BRST cohomology do depend on the equivalence classes.

For instance for the symmetries, this is the case when explicitly solving the obstruction

equation (7.19). As concerns ΩMN , there is just one equivalence class since all such matri-

ces are related to a canonical ΩMN , say ΩMN = δIJǫab, by a GL(2nv,R) transformation.

Hence, one can restrict oneself to equivalence classes of ΩMN , MMN with canonical ΩMN ,

and MMN ’s related by Sp(2nv,R) changes of variables.

The first remark of section 5.6 then boils down to the statement that the algebra gU is

the largest sub-algebra of sp(2nv,R) that can be turned into symmetries of the full theory,

in agreement with the discussion of the previous section. In addition we have recovered

there the result that the gauge algebra remains abelian.
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7.5 Application to the bosonic sector of N = 4 supergravity

For definiteness, let us again concentrate on the bosonic sector of four dimensional super-

gravity, without gravity. As in section 6.3, we use the standard second order formulation

for the SL(2,R)/SO(2) sigma model. Alternatively, one could use a first order formulation

in terms of fields parametrizing SL(2,R), with a first class constraint eliminating the field

for the SO(2) subgroup. It would provide a first order formulation for all fields and make

all global symmetries manifest.

To this scalar action, we first couple one vector field, i.e. add the action associated

to (7.6) where V = 0, the indices M,N take two values a, b, Ωab = ǫab, and Mab = M−1
ab .

The matrix M and its inverse are given by

M =

(

eφ χeφ

χeφ χ2eφ + e−φ

)

, M−1 =

(

χ2eφ + e−φ −χeφ

−χeφ eφ

)

(7.31)

and are such that M transforms as M → gTMg under an SL(2,R) transformation.

The model is invariant under SL(2,R) if the other fields transform as Aa → (gTA)a,

Da → (gTD)a, πa → (g−1π)a because SL(2,R) transformations are symplectic, gǫgT = ǫ.

For the U -type symmetries, equation (7.28) requires f
(ǫ)
ab = ǫacf

c
b to be symmetric, so

there are at most 3 linearly independent solutions. According to the above discussion, all

of these give rise to symmetries, which need huab and also Φi
u. The U -type symmetries

constitute the sl(2,R) electric symmetry algebra.

We now consider the coupling to six vector fields in the different formulations of sec-

tion 6.3. For the SO(6) invariant model, M = (I, a), ΩMN = δIJǫab andMMN =δIJM
−1

ab,

while the dual formulation corresponds to MMN = δIJMab. Finally, in the SO(3)× SO(3)

formulation MMN = (M−1
ab δAB,MabδA′B′).

It then follows from (7.27) that both in the SO(6) invariant formulation and in the

dual formulation, the electric symmetry algebra is sl(2,R)⊕so(6), where the sl(2,R) trans-

formations on the vectors A(I,a) and on D(I,a), π(J,b) in the dual formulation corresponds

to the infinitesimal version of the above transformations where gT → g−1.

Finally, in the SO(3) × SO(3) formulation, the electric symmetry algebra is also

sl(2,R)⊕ so(6). This is so because the SL(2,R) element ǫ is such that M = ǫTM−1ǫ.

8 Conclusions and comments

In this work we have systematically analyzed gaugings of vector-scalar models through

a standard deformation theoretic approach. In the case of gauge systems, this is most

naturally done in the BV-BRST antifield formalism. We have shown that different types

of symmetries behave differently when one tries to gauge them. The method allows one to

find all the infinitesimal gaugings and higher order cohomology classes once all symmetries

are known.

The symmetries are classified into U , W and V -types. Only U -type symmetries give

rise to gaugings that deform the abelian gauge algebra. They contain the standard “Yang-

Mills” deformations. The W -type symmetries contain the topological gaugings of [29].
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The Noether currents of both these types of symmetries are the only ones that cannot be

redefined so as to be gauge invariant. We have treated explicit examples, for which all sym-

metries of U , W -types have been computed (in the xµ independent case considered here).

For the models explicitly considered in the article, we have found that the only possible

gaugings of U and W -types are the ones previously considered in the literature, namely

Yang-Mills and topological couplings among the gauge fields, with minimal couplings of

the scalars.

In order to achieve complete results, one should also compute the V -type symmetries

which admit gauge invariant Noether currents. This is very much a model-dependent

question that requires the use of more standard symmetry techniques (see e.g., [64, 65]).

However, we have shown in section 4 that given the graded structure of the antibracket map,

the leading obstruction to extend first order deformations of U -type to second order, leading

to the Jacobi identity for the structure constants, cannot be eliminated by adding V -terms.

Furthermore, in some cases, for instance when one imposes Poincaré invariance as rele-

vant to relativistic theories, the V -type symmetries can be shown to be absent [66]. It turns

out that the effect of coupling the models to Einstein gravity justifies this assumption [67]

and simplifies the problem. It would be interesting to see if it also justifies the ansatz for

the electric symmetry algebra.

We have analyzed the problem in the second order Lagrangian and in the first order

manifestly duality invariant formulation, both of which are non-locally related in space

(but not in time). The results are very different: whereas the former formulation allows

for standard gaugings, the latter formulation allows for more (generalized) symmetries of

U -type, but none of those can be gauged. This is because the analysis is performed in

each formulation by insisting on space-time locality. To go beyond such no-go results, one

should presumably try to work in a controlled way with deformations that are spatially

non-local.
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A Conventions and notation

The components of the Minkowski metric are given, in inertial coordinates in which

we work, by the mostly plus expression ηµν = diag(−1,+1, . . . ,+1). The symbol

ǫµ1...µn denotes the completely antisymmetric Levi-Civita density with the convention that

ǫ01...n−1 = 1 so that ǫ01...n−1 = −1. A local basis of anticommuting exterior differential
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1-forms is given by the family (dxµ)µ=0,...,n−1 . The wedge product symbol ∧ will always

be omitted.

We will sometimes use the notation (dn−px)µn−p+1...µn :=− 1
p!(n−p)!dx

µ1 . . . dxµn−pǫµ1...µn

for 1 6 p 6 n, and dnx := dx0 . . . dxn−1. The Hodge dual of a differential p-form ωp ≡
1
p! dx

µ1 . . . dxµpωµ1...µp , is the n− p-form given, in our convention, by

⋆ωp =
1

p!(n− p)!
dxν1 . . . dxνn−pǫν1...νn−pµn−p+1...µnω

µn−p+1...µn

= −(dn−px)µn−p+1...µnω
µn−p+1...µn .

As a consequence, the exterior differential of the dual of a p-form reads

d ⋆ ωp = −(−)n−p(dn−p+1x)ν1...νp−1
∂µω

µν1...νp−1 . (A.1)

B Antibracket maps and descents

As discussed in section 2, the first obstruction to extending infinitesimal deformations to

finite ones is controlled by the antibracket map. We show here how the antibracket map

behaves with respect to the length of shortest non trivial descent, i.e., the “depth”.

Since covariantizable and non-covariantizable currents as elements of H−1,n(s|d), and

the associated infinitesimal deformations as elements of H0,n(s|d) are distinguished by the

property that the depth is 1, respectively deeper than one, the following will be relevant

when studying the obstruction to infinitesimal deformations.

Proposition. The depth of an image of the antibracket map is less or equal to the depth

of its most shallow argument.

Proof. Consider [ωg1,n
l1

], [ωg2,n
l2

] ∈ H∗,n(s|d), where we can assume without loss of generality

that l1 > l2. For the antibracket, let us not choose the expression with Euler-Lagrange

derivatives on the left and right that is graded antisymmetric without boundary terms, but

rather the one that satisfies a graded Leibniz rule on the right

(ωg,n, ·)alt = ∂(ν)
δR(− ⋆ ωg,n)

δφA

∂L·

∂∂(ν)φ
∗
A

− (φA ↔ φ∗
A), (B.1)

and the following version of the graded Jacobi identity without boundary terms,

(ωg1,n, (ωg2,n, ·)alt)alt = ((ωg1,n, ωg2,n)alt, ·)alt + (−)(g1+1)(g2+1)(ωg2,n, (ωg1,n, ·)alt)alt (B.2)

(see appendix B of [50] for details and a proof). Furthermore,

(ωg,n, d(·))alt = (−)g+1d((ωg,n, ·)alt), (dωg+1,n−1, ·)alt = 0. (B.3)

Let S =
∫

(− ⋆ L) be the BV master action. We have s· = (− ⋆ L, ·)alt. Using these

properties, we get

s(ωg1,n
l1

, ωg2,n
l2

)alt + d((ωg1,n
l1

, ωg2+1,n−1
l2

)alt) = 0, . . . , s(ωg1,n
l1

, ωg2+l2,n−l2
l2

)alt = 0, (B.4)

which proves the proposition.
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By using [(ω−1,n, ωg,n)] ∈ Hg,n(s|d), it follows that:

(i) Characteristic cohomology in degree n− 1 described by H−1,n(s|d) is a Lie algebra.

It is the Lie algebra of non trivial global symmetries. It also describes the Dirac or

Dickey bracket algebra of non trivial conserved currents (up to constants or more

generally topological classes),

(ii) H−2,n(s|d) is a module thereof (module structure of flux charges — Gauss or ADM

type surface charges — under global symmetries). The proposition gives rise for

instance to the following refinements:

Corollary. Covariantizable characteristic cohomology in form degree n−1 forms an ideal

in the Lie algebra of characteristic cohomology in form degree n − 1. The module action

of covariantizable characteristic cohomology of degree n− 1 on characteristic cohomology

in degree n− 2 is trivial.

Similar results hold for the associated infinitesimal deformations.

C Derivation of equation (4.25)

In this appendix, we derive formula (4.25) for the variation δuGI = −(Uu, GI) of the

two-form GI under a U -type symmetry. This is done in two steps:

1. First, we show that

δuGI + (fu)
J
IGJ ≈ cIJF

J + d(invariant) (C.1)

for some constants cIJ .

2. Then, we prove that the cIJ take the form

cIJ = −2(hu)IJ + λw
u (hw)IJ , (C.2)

where the constants (hu)IJ and (hw)IJ are those appearing in the currents associated

with Uu and Ww respectively.

The proof is given in the case where the Lagrangian (or, equivalently, GI) does not depend

on the derivatives of F I
µν .

A lemma. The proof of the above steps uses the following result on the W -type coho-

mology classes (with g = −1):

tIJF
IF J ≈ d(invariant) ⇒ tIJ =

∑

w

λw(hw)IJ for some λw. (C.3)

This is proven as follows: tIJF
IF J ≈ d(invariant) implies that

tIJF
IF J + dI + δk = 0 (C.4)
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for some gauge invariant I and some k of antifield number 1, where δ is here the Koszul-

Tate differential. Now, it is proven in [46] that k must be gauge invariant; hence, it can be

written as

k = K̂ + dR, K̂ = d4x[A∗µ
I gIµ + φ∗

iΦ
i] (C.5)

for some gauge invariant R, gIµ and Φi. Indeed, derivatives acting on the antifields contained

in k are pushed to the term dR by integration by parts, leaving the form (C.5) where K̂

contains only the undifferentiated antifields. Putting this back in (C.4) and using the fact

that δK̂ = sK̂ because K̂ is gauge invariant, we get

sK̂ + d
(

tIJA
IF J + J

)

= 0 (C.6)

for some gauge invariant J = I − δR. This shows that K̂ is a W -type cohomology class:

we can therefore expand K̂ in the Ww basis as K̂ =
∑

λwWw. In particular, this implies

that tIJ =
∑

λw(hw)IJ , which proves the lemma.

First step. We start from the chain of descent equations involving GI ,

s d4xC∗
I + d ⋆ A∗

I = 0, s ⋆ A∗
I + dGI = 0, sGI = 0. (C.7)

Applying (Uu, ·)alt to this chain, we get

s
[

d4x (fu)
J
IC

∗
J

]

+ d

[

(fu)
J
I ⋆ A

∗
J +

δKu

δAI

]

= 0, (C.8)

s

[

(fu)
J
I ⋆ A

∗
J +

δKu

δAI

]

+ d [−δuGI ] = 0, (C.9)

s [−δuGI ] = 0, (C.10)

which can be simplified to

d

(

δKu

δAI

)

= 0, (C.11)

s

(

δKu

δAI

)

+ d
(

−δuGI − (fu)
J
IGJ

)

= 0, (C.12)

s (−δuGI) = 0, (C.13)

using equations (C.7) again. Equation (C.11) implies that

δKu

δAI
= dη−1,2 (C.14)

for some η−1,2 of ghost number −1 and form degree 2. Because the left-hand side is gauge

invariant and η−1,2 is of form degree two, η−1,2 must also be gauge invariant. This follows

from theorems on the invariant cohomology of d in form degree 2 [53, 54]. Equation (C.12)

implies then

d
(

δuGI + (fu)
J
IGJ + sη−1,2

)

= 0, (C.15)

i.e.

δuGI + (fu)
J
IGJ + sη−1,2 = dη0,1 (C.16)
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for some η0,1 of ghost number 0 and form degree 1. Again, the left-hand side of this equation

is gauge invariant: results on the invariant cohomology of d in form degree 1 [53, 54] now

imply that the non-gauge invariant part of η0,1 can only be a linear combination of the

one-forms AI ,

η0,1 = cIJA
J + (gauge invariant). (C.17)

Plugging this back in equation (C.16) and using the fact that sη−1,2 ≈ 0 (since η−1,2 is

gauge invariant), we recover equation (C.1). This concludes the first step of the proof.

Second step. For the second step, we introduce

N = −

∫

d4x (C∗
IC

I +A∗µ
I AI

µ), N̂ = (N, ·)alt. (C.18)

The operator N̂ counts the number of AI ’s and CI ’s minus the number of A∗
I ’s and C∗

I ’s.

Because it carries ghost number −1, it commutes with the exterior derivative, N̂d = dN̂ .

Applying this operator to the equation

sUu + d
[

(fu)
I
J(⋆A

∗
IC

J +GIA
J) + (hu)IJF

IAJ + Ju
]

= 0 (C.19)

gives
(
∫

GIF
I , Uu

)

alt

+ d
[

(fu)
I
J(N̂ + 1)(GI)A

J + 2(hu)IJF
IAJ + N̂(Ju)

]

≈ 0. (C.20)

The second term is evident. The first term is

N̂(sUu) = (N, (S,Uu)alt)alt = ((N,S), Uu)alt + (S, (N,Uu)alt)alt (C.21)

according to the graded Jacobi identity. The counting operator N̂ kills the A∗µ
I ∂µC

I term

in the master action S, which implies

(N,S) =

∫

d4xAI
µ

δLV

δAI
µ

=

∫

d4xAI
µ∂ν(⋆GI)

µν =

∫

GIF
I . (C.22)

Similarly, N̂ kills the first two terms of Uu, leaving N̂Uu = N̂Ku which is gauge invariant.

This implies (S, (N,Uu)alt)alt = s(N̂Uu) ≈ 0. Therefore, we have indeed

N̂(sUu) ≈

(
∫

GIF
I , Uu

)

alt

(C.23)

which proves equation (C.20).

We now compute (
∫

GIF
I , Uu)alt using the result of the first step. We have

(
∫

GIF
I , Uu

)

alt

=
δ(GKFK)

δAI
µ

δuA
I
µ +

δ(GKFK)

δφi
δuφ

i. (C.24)

This looks like the U -variation δu(GIF
I), but it is not because there are Euler-Lagrange

derivatives. For a top form ω, the general rule is [68]

δQω = Qa δω

δza
+ dρ, ρ = ∂(ν)

[

Qa δ

δza(ν)ρ

∂ω

∂dxρ

]

. (C.25)
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In our case, this becomes

δu(GIF
I) =

δ(GKFK)

δAI
µ

δuA
I
µ +

δ(GKFK)

δφi
δuφ

i + dρA + d(inv), (C.26)

ρA = ∂(ν)

(

(fu)
I
JA

J
µ

δ

δAI
µ,(ν)ρ

∂(GKFK)

∂dxρ

)

. (C.27)

Using property (C.1) and putting together the terms of the form d(invariant), we get then

from (C.20)

(cIJ + 2(hu)IJ)F
IF J + d

[

(fu)
I
JA

J(N̂ + 1)(GI)− ρA

]

+ d(inv) ≈ 0. (C.28)

Now, it is sufficient to prove that

d
[

(fu)
I
JA

J(N̂ + 1)(GI)− ρA

]

≈ d(inv). (C.29)

Indeed, this implies (cIJ + 2(hu)IJ)F
IF J ≈ d(inv), which in turn gives

cIJ = −2(hu)IJ + λw
u (hw)IJ (C.30)

for some constants λw
u using property (C.3) of the W -type cohomology classes.

Proof of (C.29). We will actually prove the stronger equation

ρA = (fu)
I
JA

J(N̂ + 1)(GI) (C.31)

in the case where GI depends on F but not on its derivatives.

To do this, we can assume that GI a homogeneous function of degree n in AI , i.e.

N̂(GI) = nGI . If it is not, we can separate it into a sum of homogenous parts; the result

then still holds because equation (C.31) is linear in GI .

In components, equation (C.31) is

1

2
∂(ν)

(

(fu)
I
JA

J
µ

δ

δAI
µ,(ν)ρ

GKστF
K
λγε

στλγ

)

= (n+ 1)(fu)
I
JA

J
λGIστε

ρλστ . (C.32)

Under the homogeneity assumption N̂(GI) = nGI , we have

GKστF
K
λγε

στλγ = 4(n+ 1)LV . (C.33)

Equation (C.31) now becomes

1

2
∂(ν)

(

(fu)
I
JA

J
µ

δLV

δAI
µ,(ν)ρ

)

=
1

4
(fu)

I
JA

J
λGIστε

ρλστ . (C.34)

We now use the fact that GI does not depend on derivatives of F , which implies that the

higher order derivatives ∂(ν) are not present and that the Euler-Lagrange derivatives are

only partial derivatives. We then have

1

2

δLV

δAI
µ,ρ

=
δLV

δF I
ρµ

=
1

4
ερµστGIστ (C.35)

(see (3.1)), which proves (C.34) in this case.
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