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1 Introduction

Lie supergroups are a natural extension of Lie groups by fermionic generators. A prominent

example of their use in physics is to describe the symmetries of supersymmetric quantum

field theories. In this way they are part of the global symmetries of unitary supersymmetric

theories. On the other hand, Lie groups have been used in the context of quantum field

theories (QFTs) as gauge symmetries, leading to a successful construction of the Standard

Model. It is thus natural to ask what happens if one uses a Lie supergroup as the gauge

symmetry group of a QFT. If the supergroup gauge symmetries lead to consistent QFTs,

they will necessarily be non-unitary, as the gauge fields corresponding to the fermionic

generators violate the spin-statistics theorem.

A seemingly unrelated topic is the signature of spacetime. Ordinary physics happens

in Lorentzian signature, but the reason for this restriction is not wholly self-evident. Some

analog of physics may be possible in Euclidean signature, or in theories with multiple

times, but these possibilities are not often studied, and raise many unanswered questions

(for a review of two-time physics, see [1].) What would physics with more than one time

mean? What determines the signature of spacetime? Can the signature of spacetime

change dynamically? A closely related question in the context of holography is how to

generate time from a purely Euclidean theory.

Supersymmetry has been a powerful organizing principle in the context of string theo-

ries, so it is natural to ask if supersymmetry fixes the signature of spacetime. It was shown

in [2] that this is not the case and a diverse range of signatures are consistent with su-

persymmetry and supergravity. This raises the question of whether or not non-Lorentzian

signatures should be incorporated into string theory. It turns out that the string duality

web can accommodate a number of additional theories with unusual spacetime signature,

suggesting that the full collection of these theories may form a mathematically consistent

structure, regardless of their applicability to our universe.

In this paper we show that supergroup gauge theories and dynamical change of signa-

ture of spacetime are intimately connected. Our study was motivated by the observation

in [3] that N = 4 SU(N |M) gauge theories, should they exist, must be holographically
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dual to AdS5 × S5, since they are indistinguishable from SU(N −M) gauge theories to all

orders in 1/(N −M) (assuming N > M). This observation raises the question of unique-

ness of non-perturbative completions of gravity if we include non-unitary gauge theories in

our considerations.

Supergroup gauge symmetries can be realized in string theory by introducing negative

branes [4, 5]. Originally introduced as ‘topological anti-branes’ and ‘ghost’ branes, negative

branes are defined to be the extended objects that completely cancel the effects of ordinary

branes. As a consequence, the Chan-Paton factors associated to string endpoints sitting on

negative branes have extra minus signs. Thus, SU(N |M) gauge symmetry can be realized

by a stack of N ordinary D-branes and M negative D-branes. Negative branes exhibit

many unusual properties. The most unsettling is their negative tension, and one might

be particularly interested in exploring the gravitational backreaction of negative branes

on the geometry of spacetime. A preliminary study of this was done in [5] where it was

found that negative brane solutions in supergravity produce naked curvature singularities

in spacetime.

One aim of the present paper is to study these backreactions more systematically and

uncover their physical meaning. What we find is that negative branes are surrounded by

a bubble of spacetime where the metric signature has changed. In other words we find

that negative branes induce a dynamical change of space-time signature ! In particular, we

learn that the directions transverse (or parallel, depending on convention) to the brane

worldvolume flip signature inside the bubble surrounding the brane. Using this fact, we

obtain all the supergravities with diverse signatures anticipated in [2]. For example in M-

theory negative M2-branes flip the signature of the eight transverse directions leading to a

theory in signature (2, 9) (or (9, 2)).1 Similarly negative M5-branes flipping the signature of

five transverse directions lead to a theory in signature (5, 6) (or (6, 5)). These are precisely

the signatures anticipated in [2] for M-theory, in addition to the usual (10, 1) (or (1, 10))

(see also [6–8]).

We next use string theory to study strong coupling aspects of supergroup gauge the-

ories. We find that the large N dual to N = 4 SYM for SU(N |M) when N < M is still

AdS5 × S5 but with signature (7, 3) rather than (9, 1). In particular SU(0|M) is of this

type and is dual to supergravity with this unconventional signature. While not a proof of

the non-perturbative existence of N = 4 supergroup gauge theories, this observation does

show — at least to all orders in the 1/N expansion guaranteed to exist for these theories

— that the holographic dual should agree with the supergravity theory in signature (3, 7)

defined by string perturbation theory.

We find a consistent picture of dualities involving negative branes which fits very

well with the structure found in [2], suggesting that these theories actually exist beyond

string perturbation theory. To check these statements we consider a sample of N = 2

supersymmetric gauge theories with SU(N |M) gauge supergroup and find their exact non-

perturbative vacuum geometry. We find the corresponding Seiberg-Witten curve using

three different methods: brane constructions, geometric engineering of the theory, and

1We denote signature by the pair (s, t), with s being the number of spacelike dimensions and t being the

number of timelike dimensions.

– 2 –



J
H
E
P
0
2
(
2
0
1
8
)
0
5
0

direct Nekrasov calculus. We find that all three methods agree with one another and yield

the same result. These checks lend further support to the claim that these theories exist

non-perturbatively.

The organization of this paper is as follows. In section 2, we review selected aspects of

negative branes and supergroups. In section 3, we consider the gravitational backreaction

of negative branes and argue that they dynamically change the signature of the spacetime

surrounding them. In section 4, we review the results in [2] involving string theories and

their respective low energy limits with diverse signatures. In section 5, we study the

near-horizon limit of negative brane geometries and conjecture holographic duals for these

theories. In section 6 we discuss the role of R4 curvature corrections, which in some cases

make the action complex. In section 7 we discuss aspects of the worldsheet description

of the various string theories. In section 8, we discuss some non-perturbative aspects of

these theories and in particular show how the non-perturbative vacuum geometry of N = 2

supersymmetric theories based on supergroups can be solved in three different ways, thus

giving further evidence for the existence of these theories. In section 9, we end with

discussion of some issues that need to be resolved in future work.

2 Negative branes and supergroups

The connection between D-branes and gauge groups is one of the most important features

of string theory. On the worldsheet, D-branes appear as boundaries. Adding an extra

“Chan-Paton” label to each boundary — specifying on which brane the string ends —

is all that is required to introduce multiple D-branes. Surprisingly, although the Chan-

Paton label has no worldsheet dynamics, introducing N labels automatically generates a

U(N) gauge theory in the target space, so that gauge theories emerge naturally from string

theory. The reverse is true as well: drawing Feynman diagrams in ’t Hooft’s double line

notation, the propagators and vertices form a worldsheet whose boundaries lie on D-branes

in the corresponding string theory description.

When closed strings scatter off a stack of N D-branes, each worldsheet boundary con-

tributes a factor of Tr 1 = N to the amplitude. While from the perspective of closed strings

in perturbation theory N could be any number, non-pertubatively the Dirac quantization

condition for D-branes requires N to be an integer. This does not, however, exclude the

possibility that N is negative. Explicitly, negative N arises when we associate an extra mi-

nus sign to each boundary that carries one of a designated subset of the Chan-Paton labels.

These labels correspond to what we will call “negative branes,” where boundaries without

any vertex operators contribute N+ −N− to the amplitude for N+ positive D-branes and

N− negative D-branes.

What are the consequences of negative branes for gauge theory? The extra signs imply

that a string stretched between a positive brane and a negative brane has the opposite of

the usual statistics, picking up an extra minus sign in the corresponding annulus diagram.

This means that when positive and negative branes are brought together anticommuting

vectors (“W fermions”) become light, enhancing the U(N+) × U(N−) gauge group to the
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supergroup U(N+|N−) [4, 5], i.e. the group of unitary supermatrices

U =

(
A B

C D

)
, (2.1)

where A and B are N+ × N+ and N− × N− matrices with c-number entries and B and

C are N+ ×N− and N− ×N+ matrices with Grassmann number entries. The U(N+|N−)

invariant trace is StrU ≡ TrA−TrB, so that each hole in the ’t Hooft diagram contributes

Str 1 = N+ −N−, as in the worldsheet picture.

Some features of negative branes at first appear parallel to anti-branes.2 For instance,

closed strings see only the difference N+ − N−, similar to the result of placing N branes

atop N̄ anti-branes and allowing them to annihilate. Indeed, negative branes carry the

same Ramond-Ramond (RR) charge as anti-branes, but unlike anti-branes negative branes

have negative tension: both the R-R and NS-NS components of the negative D-brane

CFT boundary states differ from those of ordinary D-brane boundary states by a minus

sign [5, 9]. As a consequence, while branes and anti-branes are not mutually BPS, allowing

them to annihilate, positive and negative branes preserve all the same supersymmetries.

Further differences appear upon closer inspection. Since the W fermions violate the

spin-statistics theorem, it follows that supergroup gauge theories are non-unitary, as is

string theory in a background containing negative branes. Moreover, these theories con-

tain negative energy states, most prominently the negative D-brane itself. We show later

that the true properties of negative branes are still more bizarre: each negative brane

is surrounded by a bubble where the signature of spacetime changes. Depending on the

brane, the space inside the bubble may have no time direction, or multiple time directions,

and consequently familiar physical concepts such as unitarity cease to have any meaning.

Thus, a seemingly innocuous change to the worldsheet theory has profound conse-

quences for the target space. Given the strange and unexpected results, it is natural to ask

whether string theories with negative branes exist non-perturbatively. A simpler question

— though closely related by the AdS/CFT correspondence — is whether supergroup gauge

theories themselves exist non-perturbatively. We consider the balance of evidence briefly

before returning to our discussion of negative branes.

2.1 Supergroup gauge theories: do they exist?

Consider N = 4 Super Yang-Mills with gauge supergroup U(N+|N−) realized on the world-

volume of N+ ordinary D3-branes and N− negative D3-branes. The Lagrangian density of

this theory contains the terms

1

gs

[
StrF 2+

6∑
i=1

Str
(
DΦi

)2
+· · ·

]
=

1

gs

[
TrF 2

+−TrF 2
−+

6∑
i=1

(
Tr(DΦi

+)2−Tr(DΦi
−)2
)
+· · ·

]
(2.2)

where the ± subscripts label the U(N±) blocks. This theory exhibits an unbounded energy

spectrum and so is non-unitary, and there is no obviously convergent expression for the path

2In topological string theory, negative branes and anti-branes are equivalent, cf. [4].
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integral. However, it is possible to define the above theory to all orders in gs = g2
YM/4π,

consistent with the fact that in string theory one can compute all amplitudes to any order

in gs. Moreover, the usual arguments for finiteness of N = 4 U(N) SYM theory still

apply, suggesting that at least perturbatively, this particular example of a supergroup

gauge theory is finite. The fact that the ’t Hooft diagrams of the U(N+|N−) theory can

be obtained from those of the usual U(N) theory by replacing N with N+ − N− further

supports this conclusion. Nevertheless, this argument does not prove that such a theory

has a consistent non-perturbative completion.3

We pause here to remark that non-unitary conformal field theories are known to exist

in two dimensions [11–14] and there is evidence suggesting their existence in higher dimen-

sions [15, 16]. It is possible that some of these conformal field theories are IR fixed points

of supergroup gauge theories; in this sense, N = 4 supersymmetry may be quite useful in

attempting to prove their existence.

Although we do not attempt an existence proof in this paper (in fact, the existence

of non-trivial unitary theories in more than two dimensions remains unproven), we nev-

ertheless provide evidence that these supergroup gauge theories pass the same checks as

their usual unitary counterparts. We have already argued perturbative consistency. Later,

we argue that (at least for some classes) consistent non-perturbative corrections involving

amplitudes that preserve some supersymmetry also exist. Specifically, we obtain Seiberg-

Witten curves for the N = 2 version of these theories. We also argue that when their uni-

tary counterparts have holographic duals, the non-unitary theories also have holographic

duals that can be used to compute amplitudes to all orders in 1/N . We will not attempt to

check the non-perturbative existence of amplitudes that completely break supersymmetry.

While this has not even been done even for unitary theories, in the unitary case lattice reg-

ularization techniques in Euclidean space provide a working definition beyond perturbation

theory, whereas this remains to be shown for supersymmetric supergroup gauge theories.

In summary, the above arguments suggest that supersymmetric U(N+|N−) gauge the-

ories are perturbatively (and perhaps even nonperturbatively) well-defined. The fact that

these theories are closely connected to a consistent web of dualities in string theory rein-

forces the possibility of their non-perturbative existence.

We should also mention here that supergroup gauge theories have proven to be a con-

venient framework to discuss exact renormalization group techniques preserving manifest

gauge symmetry [17]. In this setup the original SU(N) Yang-Mills theory is replaced by

a theory with supergroup SU(N |N). The model is then studied in the phase where the

supergroup is broken as

SU(N |N)→ SU(N)× SU(N).

The makes all the fermion gauge modes massive. The second factor essentially acts as

a Pauli-Villars regulator, without the need of gauge fixing. Consequently, this method

preserves the original SU(N) gauge symmetry. While it is true that this setup embeds a

3The analogous supermatrix models can be shown to be non-trivial and consistent after gauge fixing the

supergroup [10], which suggests that a path integral definition could exist if the supergroup gauge symmetry

is gauge-fixed in an appropriate manner.
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unitary theory in a non-unitary theory, if the symmetry breaking scale is high enough, the

unphysical modes will not be excited.

3 Backreaction and dynamical signature change

We return to our discussion of negative branes. The backreaction of isolated negative branes

is problematic. Since the brane tension is negative, the gravitational backreaction for N−−
N+ � 1 generates a naked singularity. As this configuration preserves 16 supercharges,

the possible curvature corrections are strongly constrained — if any are allowed at all,

cf. [18, 19] — and it is not immediately clear how to resolve this singularity.

To see the problem, we first review the black-brane geometry sourced by a large number

of coincident D-branes, subsequently generalizing the result to negative D-branes. In string

frame, the black D-brane geometry is of the form:4

ds2 = H−
1
2 ds2

p+1 +H
1
2 ds2

9−p ,

e−2Φ = g−2
s H

p−3
2 ,

Fp+2 = g−1
s dH−1 ∧ Ωp+1 ,

(3.1)

for p 6= 3, where Ωp+1 is the volume-form along the branes, gs is the asymptotic value of

the string coupling, and

H(r) = 1 +
(2π`s)

7−p

(7− p) VolS8−p

∑
i

gsNi

|r − ri|7−p
(3.2)

is a harmonic function in the transverse directions5 describing stacks of Ni Dp-branes at

positions ri. For p = 3, the geometry is the same, but with a self-dual flux

F5 = g−1
s (1 + ?)(dH−1 ∧ Ω4) (3.3)

To generalize to negative branes, we replace Ni → N+
i −N

−
i . If N−i > N+

i , H → −∞
near the branes, hence there is an interface at finite distance where H = 0 and the curvature

is singular. For instance, the Ricci scalar is

R = −(p+ 1)(p− 3)

4H5/2
(∇H)2 , (3.4)

which diverges as H → 0, except when p = 3. In the latter case, other curvature invariants

diverge. For instance,

RmnRmn =
5

8H5
(∇H)4 (3.5)

for p = 3, which again diverges as H → 0. This situation is illustrated in figure 1.

4Our conventions are chosen to agree with the supergravity effective action, cf. (4.6)–(4.8) with α = β =

1. Textbook treatments often omit the factor of g−1
s in Fp+2, presumably at the expense of explicit factors

of gs in the supergravity action.
5For p = 7, we have H ∼ log |r − ri| instead.
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Figure 1. Negative branes are surrounded by a naked singularity at a finite distance from the

brane, forming a “bubble” around the brane.

To determine the nature of this singularity, we probe it with BPS branes. Recall that

the DBI action for a Dp-brane takes the form

SDBI = − 1

(2π)p`p+1
s

∫
Σ

dp+1x e−Φ
√
− det(Σ∗(gmn +Bmn) + 2π`2sFmn) (3.6)

where F = dA is the field-strength of the world-volume gauge theory and Σ∗ is the pullback

map associated to the cycle Σ. A probe D-brane is mutually supersymmetric with the

negative Dp-brane background if the number of world-volume directions of the probe brane

parallel (n‖) and perpendicular (n⊥) to the negative brane satisfy:

n⊥ + (p+ 1)− n‖ = 4k , (k ∈ Z≥0) (3.7)

where 4k ≥ 0 is the number of directions along which one, but not both, of the two

branes extend. Using the calibration condition (3.7), we find the dependence of the DBI

action-density on the warp factor to be

LDBI ∝ Hk−1 . (3.8)

If k = 0 then the probe-brane is parallel to the interface, and generically does not intersect

it. Thus, for a brane crossing the interface we have k > 0, hence the action density is finite.

Another example of this is an F-string connecting a positive brane to a negative

D3-brane beyond the interface, representing a half-BPS “W fermion” on the Coulomb

branch of the supergroup. Since n‖ = n⊥ = 1, the Nambu-Goto action SNG =

− 1
2π`2s

∫
Σ d2ξ

√
− det(Σ∗g) does not depend on the warp factor H, and the W mass is

finite and uncorrected.

This suggests that supersymmetric probes can pass through the H = 0 interface, and

raises the question of what lies beyond it. To answer this question, we first consider the neg-

ative D0-brane solution, obtained by setting p = 0 in (3.1). The type IIA background (3.1)

lifts to an eleven-dimensional metric

ds2
11 = e−

2
3

Φds2
10 + e

4
3

Φ(dy +A1)2 (3.9)

– 7 –
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M-th
eory

Type II
A

t

(–y)

x

singularity

(9,1)

(10,0)

Figure 2. The forward light cone in the y–t plane of the M-theory pp-wave background ds211 =

ds29 + 2dtdy + Hdy2 as a function of some transverse coordinate x. When ∂y becomes null, the

signature of the compact circle changes from spacelike to timelike, resulting in a naked singularity

and a change of spacetime signature in the type IIA description.

where y ∼= y+ 2π`P with `P the eleven-dimensional Planck-length. Using A1 = g−1
s H−1dt,

we obtain:

ds2
11 = ds2

9 + 2dtdy +Hdy2 (3.10)

after rescaling y → g
−2/3
s y, t→ g

1/3
s t, xi → g

1/3
s xi, where xi are the coordinates transverse

to the D0-branes with ds2
9 =

∑
i(dx

i)2 and now y ∼= y + 2πg
2/3
s `P.6

This is a pp-wave background representing momentum around the M-theory circle.

As a pp-wave, all curvature invariants vanish identically. More importantly, the metric

is smooth at the H = 0 interface, allowing us to pass beyond it.7 For H < 0, (3.10)

describes M-theory compactified on a time-like circle, resulting in a ten-dimensional limit

with spacetime signature (10, 0), which we identify as the far side of the singular interface

discussed above, see figure 2. The physics inside this “bubble” surrounding the negative

D0-branes is quite different! For instance, fundamental strings arise from M2-branes —

with worldvolume signature (2, 1) — wrapping a timelike circle, hence they are Euclidean

strings, with worldvolume signature (2, 0). On the other hand, Euclidean D2-branes are

absent because they would lift to M2-branes with worldvolume signature (3, 0), which do

not occur in M-theory.

6As in (3.1), our conventions are self-consistent, but differ slightly from the usual textbook treatment in

the placement of factors of gs.
7The metric is still singular at r = 0 — the location of the negative D0 brane — much like the pp-wave

spacetime for ordinary (positive) D0 branes. Some of the properties of this singularity are explored in

appendix B.
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Thus, negative D0-branes are intimately connected to timelike compactifications of

M-theory.8 Since D0-branes are related to all other branes in type II string theory and M-

theory via string dualities, a similar conclusion applies to any negative brane: the existence

of negative branes is directly tied to the consistency of timelike compactification in string

theory and M-theory. For each type of negative brane, the nature of the bubble surrounding

the brane will be different. In order to derive these differences, we will use Hull’s results

on timelike compactification of string theory [2], reviewed in section 4.

3.1 Singularity crossing

Before diving into this analysis, we preview the results via a useful heuristic argument.

Neglecting any possible curvature corrections, let us take the background (3.1) near theH =

0 interface seriously for the time being. To continue past the singularity, we analytically

continue the background as a function of H, avoiding the singularity at H = 0.9 We obtain:

ds2 = ω−1H̄−
1
2 ds2

p+1 + ωH̄
1
2 ds2

9−p ,

e−2Φ = ωp−3g−2
s H̄

p−3
2 ,

Fp+2 = −g−1
s dH̄−1 ∧ Ωp+1 ,

(3.11)

where H̄ ≡ −H is positive in the region beyond the interface and ω = ±i, depending

on which way we encircle H = 0 in the complex plane. While the metric at first ap-

pears imaginary, we can remove an overall factor using a Weyl transformation, leaving the

real metric

ds2 = −H̄−
1
2 ds2

p+1 + H̄
1
2 ds2

9−p , (3.12)

up to an arbitrary overall sign. A similar field redefinition can be used to remove the

complex factor in front of the dilaton profile in (3.11). The resulting background is real,

but in spacetime signature (10 − p, p) instead of (9, 1). For the special case p = 0, this is

precisely the background obtained by dimensionally reducing the metric (3.10) on the far

side of the H = 0 interface, where the overall sign in (3.12) was chosen to agree with (3.10).

Moreover, the field redefinitions change some of the signs in the supergravity action so that

it matches a timelike dimensional reduction of M-theory.

This heuristic reasoning can be extended to BPS probe branes crossing the singular

interface. For instance, the W fermion considered above arises from a string with (1, 1)

worldsheet signature. After crossing the interface into signature (10 − p, p) the timelike

worldsheet coordinate becomes spacelike, resulting in a worldsheet signature of (2, 0), in

agreement with the observation about Euclidean strings given previously.

More generally, this kind of “singularity crossing” argument suggests that negative

Dp-branes live in a string theory of spacetime signature (10 − p, p), within which their

worldvolume signature is (1, p). After reviewing Hull’s work, we will show that this is

indeed the case.

8As F-strings are T-dual to a pp-wave background, negative F-strings induce a change of signature in

much the same way as negative D0-branes.
9See [20, 21] for a discussion of singularity-crossing in cosmology.
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4 String theory and M-theory in different signatures

The starting point of Hull’s analysis [2, 6] is to T-dualize type IIA or type IIB string theory

on a timelike circle [22–24]. As this introduces a closed timelike curve (CTC), one should

expect the results to be exotic. Indeed, the T-dual of type IIA (IIB) string theory on a

timelike circle is not ordinary type IIB (IIA) string theory, but rather a variant with a

different spectrum of branes.

Recall that Dp-branes in ordinary string theory have worldvolume signature (p, 1).

“Euclidean branes,” with worldvolume signature (p + 1, 0) are not part of the theory.10

For instance, extremal black-brane solutions to the low-energy supergravity action have

Lorentzian worldvolume signature; extremal solutions with a Euclidean world-volume re-

quire a different sign for the Fp+2 kinetic term.11

However, T-dualizing type II string theory along a timelike circle removes the timelike

direction from the worldvolume of every D-brane. Thus, the T-dual contains only Euclidean

D-branes! To determine the available NS-branes, recall that the T-dual of a long string

with neither momentum nor winding around the compact circle is another long string,

whereas the T-dual of an NS5-brane wrapping the compact circle is another NS5-brane

wrapping the compact circle. Consequently, these exotic string theories appear to have

Euclidean D-branes but Lorentzian F-strings and NS5-branes.

To keep track of the brane spectrum, we invent a new notation (different from [2]). As

usual, we denote type II theories with D0, . . . , D8-branes as type IIA variants and those

with D1, . . . , D7-branes as type IIB variants. To denote the available brane signatures, we

write IIA++, IIA+−, IIA−+, etc., where the first sign indicates whether fundamental strings

are Lorentzian (+) or Euclidean (−) and the second indicates whether D1 / D2-branes are

Lorentzian or Euclidean. Similarly, we write M+ (M−) for the M-theory variant with

Lorentzian (Euclidean) M2-branes. When we wish to be explicit, we denote the spacetime

signature with a subscript, e.g. IIA+−
9,1 for a IIA variant in signature (9, 1) with Lorentzian

strings and Euclidean D2-branes. As we will see, this notation — summarized in table 1 —

is sufficient to describe all the theories found by Hull. In particular, the signatures of the

remaining branes and the low energy effective action are fixed once these low-dimensional

branes are specified.

To keep score in the following discussion, we refer the reader to figures 3, 4 and table 2,

depicting the results of Hull’s analysis in our notation. In the following discussion, we

refer to IIA++
9,1 and IIB++

9,1 (M+
10,1) as “ordinary” string theories (M-theory). We call the

new theories introduced by Hull “exotic” string theories (M-theories) when we wish to

distinguish them from their ordinary counterparts.

10Euclidean branes can appear as instantons after Wick-rotation, but are not present as stable physical

objects in the (9, 1) Lorentzian spacetime. However, it was suggested in [25] that Euclidean branes (“S-

branes”) can appears as unstable solutions of appropriate worldvolume theories.
11To see why the sign of |Fp+1|2 affects the existence of extremal solutions, consider the ordinary Reissner-

Nordström black hole in four dimensions. The outer and inner horizons are located at r± = M±
√
M2 −Q2

in appropriate units. Changing the sign of |F2|2 takes Q2 → −Q2, hence r− < 0 and there is no inner

horizon and no extremal solutions.
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F1 D2

IIA++
s,t Lor Lor

IIA+−
s,t Lor Euc

IIA−+
s,t Euc Lor

IIA−−s,t Euc Euc

F1 D1

IIB++
s,t Lor Lor

IIB+−
s,t Lor Euc

IIB−+
s,t Euc Lor

IIB−−s,t Euc Euc

M2

M+
s,t Lor

M−s,t Euc

Table 1. Notation for exotic string theories and M-theories, where (s, t) denotes the spacetime

signature. The superscript signs + and − denote whether certain branes are Lorentzian (Lor)

or Euclidean (Euc), respectively. For spacetime signatures other than (D − 1, 1), “Euclidean”

(“Lorentzian”) indicates an even (odd) number of worldvolume times. IIA++
9,1 , IIB++

9,1 , and M+
10,1

denote the usual string and M-theories.

It should be emphasized that there may be more than one string theory with the

spectrum of branes indicated by, e.g., IIB+−
9,1 . Different sequences of dualities which lead

to the same brane spectrum can in principle lead to distinct string theories, and there may

be other data which is important for the non-perturbative definition of the theory, such as

discrete theta angles in gauge theory [26] or string theory [27]. Thus, conservatively our

theory labels indicate classes of string theories, which may contain more than one member.

Checking whether this occurs is an interesting direction for future research.

4.1 The duality web

In our notation, the timelike T-dualities discussed above are

IIA++
9,1 ←→ IIB+−

9,1 , IIB++
9,1 ←→ IIA+−

9,1 , (4.1)

where IIA++
9,1 and IIB++

9,1 denote the usual type IIA and type IIB string theories, whereas

IIA+−
9,1 and IIB+−

9,1 denote the newly-discovered theories with all Euclidean D-branes. If

we further T-dualize one of the latter on a spacelike circle then the D-branes are still

Euclidean, so it appears that IIA+−
9,1 and IIB+−

9,1 are related by ordinary (spacelike) T-

duality. The four type II string theories related by spacelike and timelike T-duality are

depicted in the lefthand diamond of figure 3.

Next, consider the gs → ∞ limit of IIB+−
9,1 .12 As usual, S-duality will exchange the

fundamental string with the D1-brane, and the D5-brane with the NS5-brane, leaving the

D3-brane invariant. Since the F-string and NS5-brane are Lorentzian in IIB+−
9,1 , whereas

the D1, D3 and D5 are Euclidean, the new theory has Euclidean strings and NS5-branes,

Lorentzian D1 and D5-branes, and Euclidean D3-branes. Thus, it is IIB−+
9,1 in our nomencla-

ture. Tracking D7-branes through the S-duality requires an F-theory description; instead,

we will determine their signature once the role of further T-dualities is understood.

Consider the T-dual of IIB−+
9,1 compactified on a spacelike circle. If we assume that

this is dual to some theory “X” compactified on another spacelike circle, then by wrapping

a D5-brane on the compact circle we infer that X has Lorentzian D4-branes. However, if

we instead consider a D3-brane transverse to the compact circle, we would conclude that

X has Euclidean D4-branes! Both cannot be true, because reversing the chain of T- and

12Here we assume that the RR axion C0 = 0 for simplicity.
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M+

IIA++ IIA−+

IIB++ IIB+− IIB−+ IIB−−

IIA+− IIA−−

M−

Lorentzian

Strings

Euclidean

Strings

x t

t x

x

t x

t
x

t

x

t x

t

x

t

spacetime

mirrors

Figure 3. T-dualities (solid lines) and S-dualities (dashed lines) relating type II string theories

and M-theory. In this diagram we suppress the spacetime signature for simplicity (cf. figure 4).

The label x (t) indicates dualities arising from compactification on a spatial (timelike) circle. The

left (right) diamond consists of theories with Lorentzian (Euclidean) F-strings. Theories above and

below the center line are related by exchanging space and time directions, see (4.4).

S-dualities would then incorrectly imply that ordinary string theory has both Euclidean

and Lorentzian D-branes.

The resolution is that IIB−+
9,1 compactified on a spacelike circle must be T-dual to X

compactified on a timelike circle. In this case, both arguments imply that X has Lorentzian

D4-branes. Wrapping a D3-brane on the compact circle, we conclude that X has Euclidean

D2-branes, hence it is IIA−−8,2 in our nomenclature.

By the same argument, consistency with T-duality will require that in IIB−+
9,1 , IIA−−8,2

and any further T-duals, the Dp-branes alternate between Euclidean and Lorentzian as

p → p + 2. This implies, for instance, that IIB−+
9,1 has Euclidean D7-branes. Moreover,

all T-duals must share the property that the T-dual of some theory X on a spatial circle

is another theory Y on a timelike circle and vice versa, so that the spacetime signature

changes with each T-duality. This was derived in [2] from the worldsheet theory, and is a

general property of string theories with Euclidean strings.

As we venture beyond signature (9, 1), worldvolume signatures beyond Euclidean —

(p + 1, 0) — and Lorentzian — (p, 1) — become available. For instance, T-dualizing on

a spatial circle transverse to a D1-brane in IIB−+
9,1 , we learn that IIA−−8,2 has D2-branes

with signature (1, 2) as well as the (3, 0) Euclidean ones. More generally, we observe

that whenever a D-brane with signature (p, q) is available, so is one with (p − 2, q + 2)

and vice versa, so long as it will “fit” in the spacetime signature. This is obviously true

in the (9, 1) theories, whereas it is readily seen to be preserved under T-duality and S-

duality. Because of this, we will sometimes abuse terminology and call branes with an even-

number of worldvolume times “Euclidean” and those with an odd number “Lorentzian.”

Consequently, the (1, 2) D2-brane is “Euclidean.”

Having understood T-duality for Euclidean string theories, we can now fill out the

remaining string theories found by Hull. T-dualizing IIB−+
9,1 on a timelike circle, we obtain
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(9, 1)

(5, 5)

(1, 9)

(9, 1)

(5, 5)

(1, 9)

(9, 1) (5, 5) (1, 9) (9, 1)(5, 5)(1, 9)

(10, 0)

(9, 1)

(8, 2)

(7, 3)

(6, 4)

(5, 5)

(4, 6)

(3, 7)

(2, 8)

(1, 9)

(0, 10)

(10, 1)

(6, 5)

(2, 9)

(1, 10)

(5, 6)

(9, 2)

M+

M−

IIA++ IIA−+

IIA+− IIA−−

IIB+− IIB−+

IIB++ IIB−−

Figure 4. T-dualities (solid lines) and S-dualities (dashed lines) relating type II strings theories

and M-theory, keeping track of spacetime signature. See figure 3 for labels distinguishing timelike

and spacelike T- and S-dualities.

a theory with signature (10, 0) and Euclidean D4-branes. This is IIA−+
10,0 in our nomencla-

ture.13 Note that this theory has no D2-branes at all, but is labeled as a theory with

Lorentzian D2-branes, since there are no Euclidean D2-branes despite fitting into the

spacetime signature, whereas Lorentzian D2-branes do not fit, explaining their absence.

Starting with this theory and repeatedly T-dualizing along spatial circles, we obtain the

chain of theories

IIA−+
10,0 −→ IIB−+

9,1 −→ IIA−−8,2 −→ IIB−−7,3 −→ IIA−+
6,4 −→ IIB−+

5,5

−→ IIA−−4,6 −→ IIB−−3,7 −→ IIA−+
2,8 −→ IIB−+

1,9 −→ IIA−−0,10 ,
(4.2)

as shown on the righthand side of figure 4. We can condense this sequence by suppressing

the spacetime signature, so that it becomes formally periodic

IIA−+ −→ IIB−+ −→ IIA−− −→ IIB−− −→ IIA−+ −→ . . . , (4.3)

which is the righthand diamond of figure 3. In fact, the allowed brane signatures —

summarized in table 2 — are periodic up to the question of which branes fit inside the

spacetime signature. The periodic sequence (4.3) has length four, hence — as can be seen

in (4.2) — whenever one of these string theories exists in spacetime signature (p, q), it also

exists in signature (p+ 4k, q − 4k). For instance, IIA−+ occurs in signatures (10, 0), (6, 4)

and (2, 8).

We now consider the S-duals of these theories, beginning with the S-duals of the type

IIB variants. Note that since IIB−+
9,1 has Euclidean NS5-branes, T-duality implies that

all IIB−+ and IIB−− theories have Euclidean NS5-branes, whereas all IIA−+ and IIA−−

13This is also the theory which describes the inside of the bubble surrounding negative D0-branes.
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Spacetime M2 M5

M+ (10, 1), (6, 5), (2, 9) (+,−) (−,−)

M− (9, 2), (5, 6), (1, 10) (−,+) (−,−)

Spacetime D0 D2 D4 D6 D8 F1 NS5

IIA++ (9, 1), (5, 5), (1, 9) (+,−) (+,−) (+,−) (+,−) (+,−) (−,−) (−,−)

IIA+− (9, 1), (5, 5), (1, 9) (−,+) (−,+) (−,+) (−,+) (−,+) (−,−) (−,−)

IIA−+ (10, 0), (6, 4), (2, 8) (−,+) (+,−) (−,+) (+,−) (−,+) (+,+) (−,−)

IIA−− (8, 2), (4, 6), (0, 10) (+,−) (−,+) (+,−) (−,+) (+,−) (+,+) (−,−)

Spacetime D(−1) D1 D3 D5 D7 D9 F1 NS5

IIB++ (9, 1), (5, 5), (1, 9) — (−,−) (−,−) (−,−) (−,−) X (−,−) (−,−)

IIB+− (9, 1), (5, 5), (1, 9) X (+,+) (+,+) (+,+) (+,+) — (−,−) (−,−)

IIB−+ (9, 1), (5, 5), (1, 9) X (−,−) (+,+) (−,−) (+,+) X (+,+) (+,+)

IIB−− (7, 3), (3, 7) — (+,+) (−,−) (+,+) (−,−) — (+,+) (+,+)

Table 2. The available worldvolume and spacetime signatures for various type IIA, type IIB and

M-theory variants. Here (+,−) indicates an even (+) number of worldvolume spatial directions

and an odd (−) number of worldvolume timelike directions, etc. For D(−1) and D9-branes we need

only indicate whether the brane is present in the theory, since the former has no worldvolume and

the latter fills spacetime.

theories have Lorentzian NS5-branes. Consider IIB−−7,3 and IIB−−3,7 . Since the F-string, NS5-

brane, D1-brane and D5-brane are all Euclidean, S-duality maps the spectrum of branes

to itself, and we infer that these theories are self-dual. Conversely, we already saw that

IIB−+
9,1 is S-dual to IIB+−

9,1 . Similarly IIB−+
5,5 and IIB−+

1,9 are S-dual the new theories IIB+−
5,5

and IIB+−
1,9 , respectively. T-dualizing these theories, we obtain IIA++, IIA+− and IIB++ in

signatures (5, 5) and (1, 9). Since IIB++
5,5 and IIB++

1,9 have only Lorentzian branes, S-duality

maps the spectrum of branes to itself, and we infer that these theories are self-dual.

All that remains to be considered are the S-duals of the IIA variants, which will be

variants of M-theory. As usual, the S-dual of IIA++
9,1 is an eleven-dimensional theory with

Lorentzian M2 and M5-branes, where the D0-brane in IIA corresponds to the KK mode

on the M-theory circle and the D6-brane is the KK monopole in eleven dimensions (the

Taub-NUT geometry). In our nomenclature, this is M+
10,1. Consider instead the S-dual of

IIA−+
10,0. This theory has Euclidean F-strings, D0-branes and D4-branes and no D2, D6,

or NS5-branes, which is consistent with the dimensional reduction of M+
10,1 on a timelike

circle.14 Because IIA++ (IIA−+) also exists in signatures (5, 5) and (1, 9) (signatures (6, 4)

and (2, 8)), we conclude that the M-theory variants M+
6,5 and M+

2,9 should also exist as

14Whereas the KK-mode on a spacelike circle is a particle with a timelike worldline, the KK-mode on a

timelike circle is instead a particle with a spacelike worldline, which explains why the D0-brane is Euclidean

(spacelike) in this example.
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their S-duals, where now M2-branes can have signatures (2, 1) or (0, 3) and M5-branes

(5, 1), (3, 3) or (1, 5), depending on what fits within the spacetime signature.

Finally, consider the S-dual of IIA+−
9,1 . This theory has Lorentzian F-strings and NS5-

branes but Euclidean D0, D2 and D4-branes. This is consistent with the dimensional

reduction of an eleven-dimensional theory in signature (9, 2) on a timelike circle, now

with M2-branes of signature (3, 0) and (1, 2) and M5-branes of signature (5, 1). In our

nomenclature this is M−9,2, where reduction on a spatial circle leads to IIA−−8,2 , and variants

M−5,6 and M−1,10 are also possible by the same reasoning as above.

The complete set of S- and T-dualities are shown in figure 3, with the explicit spacetime

signatures indicated in figure 4.

The above classification has a two-fold redundancy: for each string theory or M-theory

variant described above, there is a related theory obtained by exchanging the roles of space

and time, flipping the spacetime and brane signatures from (p, q) to (q, p).15 In particular,

the various classes of theories are mapped to each other as follows (as illustrated in figure 3):

M+
s,t ←→ M−t,s , IIAαβ

s,t ←→ IIA
α(−β)
t,s , IIBαβ

s,t ←→ IIBαβ
t,s , (4.4)

preserving the brane spectrum shown in table 2. Following Hull, we refer to the pairs

of theories in (4.4) as “spacetime mirrors”, not to be confused with mirror symmetry of

Calabi-Yau manifolds (an unrelated phenomenon).

4.2 The low-energy limit

The type II string theory and M-theory variants considered above each correspond to a

distinct low-energy effective supergravity. The supergravity effective action for the new

theories can be derived from the known type IIA, type IIB, and eleven-dimensional su-

pergravity actions by considering the relevant T- and S-dualities in the low-energy theory.

This is done in appendix A. For the eleven-dimensional theories we find the low-energy

effective action

S[M±] =
1

2κ2
11

∫
d11x

√
| det g|

[
R∓ 1

2
|F4|2

]
− 1

6

∫
C3 ∧ F4 ∧ F4 , (4.5)

where F4 = dC3, |Fp|2 ≡ 1
p!F

µ1...µpFµ1...µp , and we omit the fermions for simplicity.

Likewise, for the ten dimensional theories we find the bosonic action

S = SNS + SR + SCS (4.6)

with

SNS[IIA/Bαβ ] =
1

2κ2
10

∫
d10x

√
| det g| e−2Φ

[
R+ 4(∇Φ)2 − α

2
|H3|2

]
,

SR[IIAαβ ] = − 1

2κ2
10

∫
d10x

√
| det g|

[
αβ

2
|F2|2 +

β

2
|F̃4|2

]
,

SR[IIBαβ ] = − 1

2κ2
10

∫
d10x

√
| det g|

[
αβ

2
|F1|2 +

β

2
|F̃3|2 +

αβ

4
|F̃5|2

]
,

(4.7)

15However, as in the rest of our discussion a specific theory of the type M+
s,t may or may not be equivalent

to a specific theory of the type M−t,s, simply because each class of theories could contain more than one

member. See [28, 29] for a discussion of invariance under signature reversal g → −g.
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where α, β = ±, H3 = dB2, Fp = dCp−1, and F̃p = Fp − H3 ∧ Cp−3. The Chern-Simons

term can be taken to be independent of α, β

SCS[IIA] = − 1

4κ2
10

∫
B2 ∧ F4 ∧ F4 , SCS[IIB] = − 1

4κ2
10

∫
B2 ∧ F3 ∧ F5 , (4.8)

since the overall signs of the Chern-Simons terms (as well as the relative signs in the

definitions of F̃p) are arbitrary up to redefinitions of the p-form potentials and spacetime

parity reflection. For simplicity, we have omitted the mass term in the type IIA variants.

The action for the type IIB variants is a pseudo-action, requiring the constraint F̃5 = αβ?F̃5

in addition to the equations of motion.16 In all cases, the low-energy effective action takes

the same form in all allowed signatures once the class of theories (e.g. IIA+− or M−)

is specified.17

We now comment on the relation between the spacetime mirrors of (4.4). It is straight-

forward to check that

S[M−s,t] = −S[M+
t,s](gµν → −gµν) , (4.9)

so the actions are classically equivalent, but differ by an overall sign. At first, this sign

difference appears to have quantum mechanical significance, suggesting that the loop ex-

pansions differ between the mirror theories. However, we show in section 6.2 that this sign

difference is in fact required to compensate for a difference in the ε prescription induced by

the signature change, gµν → −gµν , hence the loop expansions match between the mirror

theories. Analogous results apply to the IIA and IIB spacetime mirrors, except that in the

latter case a spacetime parity flip is required alongside the signature flip to preserve the

chirality of C4.

4.3 Consequences for negative branes

We now use what we have learned about string dualities with timelike compactification to

relate all possible negative branes to dynamic signature changes, confirming the heuristic

arguments of section 3. The reasoning is very simple. As we have already established,

the negative D0-brane is related to a smooth pp-wave geometry in M-theory, in which

the signature of the compact circle changes dynamically from spacelike to timelike. By

applying further T- and S-dualities to both sides of the interface, we can generate the

dynamical signature changes associated to other types of negative branes (which transform

in the same way as the associated positive branes and T- and S-dualities).

For instance, compactifying one of the spatial directions transverse to the negative D0-

brane and T-dualizing, we obtain a negative D1-brane. Applying the same transformation

to the backreacted geometry, we find that the T-duality transforms the inside of the bubble

from IIA−+
10,0 to IIB−+

9,1 , as illustrated in figure 5. Proceeding in the same fashion, we can

derive the dynamical signature changes associated to all types of negative Dp-branes. For

16The extra sign αβ in the chirality constraint is required to match the F̃5 Bianchi identity with the

equations of motion.
17This should hold for the terms involving fermions as well, consistent with the fact that the permissible

reality and chirality conditions on Spin(p, q) spinors only depend on (p−q) mod 8, which is fixed for theories

in the same class.
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R = 1/R
~

Figure 5. T-duality relates negative D-branes of different dimensions. As the radius of the compact

circle shrinks the inside of the bubble is compactified, and its T-dual can be found from figures 3, 4.

This allows us to fix the exotic string theory inside the bubble by relating it to the negative D0-

brane, whose strong coupling limit is a smooth geometry in M-theory.

D0/D1 D2/D3 D4/D5 D6/D7 D8 F1/M2 NS5/M5 TN

IIA IIA−+
10,0 IIA−−8,2 IIA−+

6,4 IIA−−4,6 IIA−+
2,8 IIA+−

9,1 IIA++
5,5 IIA+−

5,5

IIB IIB−+
9,1 IIB−−7,3 IIB−+

5,5 IIB−−3,7 — IIB+−
9,1 IIB+−

5,5 IIB++
5,5

M — — — — — M−9,2 M+
6,5 M−5,6

Table 3. The exotic string theory inside the bubble surrounding negative branes of various types in

string and M-theory. Here D0/D1 denotes a negative D0 (D1)-brane for type IIA (IIB) string theory,

etc., and “TN” denotes a Taub-NUT geometry with negative charge (reviewed in section 8.5), which

is related by T- and S-dualities to negative NS5 and D6-branes in string and M-theory, respectively.

instance, we find that a negative D5-brane induces a dynamical signature change to IIB−+
5,5 .

Applying S-duality, we conclude that a negative B-type NS5-brane induces a change to

IIB+−
5,5 . T-dualizing one of the spatial directions on the NS5 worldvolume, we find that

an A-type NS5-brane induces a change to IIA++
5,5 .18 Similar arguments allow us to fix

the dynamical signature change associated to all possible types of negative branes, as

summarized in table 3.

These results are consistent with the heuristic “singularity crossing” argument in-

troduced in section 3. For instance, notice that the inside of the bubble has signature

(D−p, p) for a negative p-brane,19 arising from reversing the signature of the worldvolume

directions while preserving the signature of the remaining directions. This agrees with the

singularity crossing argument because the backreacted metric generically takes the form

H−1ds2
p,1 + ds2

D−p−1,0 up to a Weyl transformation. To identify the string theory living

inside the bubble, we place BPS probe branes across the interface and read off their sig-

natures on the far side. For instance, consider a negative Dp-brane and a probe Dq-brane

sharing r + 1 spacetime directions with the negative brane and perpendicular to it in the

others. The probe brane is BPS if p + q − 2r ≡ 0 (mod 4), whereas the signature of the

brane within the bubble is (q − r + 1, r). Applying this formula to D1 and D2-branes, we

18Because the worldvolume directions flip signature upon crossing the interface, this is a timelike T-duality

inside the bubble.
19A TN-brane has codimension four, and counts as a fivebrane in type II string theory and a sixbrane in

M-theory.
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conclude that the string theory inside the bubble is either20

IIA
−(−)

p
2

10−p,p or IIB
−(−)

p−1
2

10−p,p , (4.10)

depending on whether p is even or odd, where we use the fact that strings inside the bubble

are Euclidean, as observed in section 3. This is consistent with table 3, where the signatures

of the remaining BPS D-branes can be determined analogously.

Another way to identify the correct string theory is to apply the field redefinitions

mandated by the singularity crossing to the low energy effective action. For a negative

Dp-brane (cf. (3.1)), the metric and dilaton pick up factors

gµν → ωgµν , det eaµ → ω4−p det eaµ , e−2Φ → ωp−3e−2Φ , (4.11)

on crossing the singularity, where ω = ±i depending on which way we go around the branch

cut. Here we replace
√
| det g| = det eaµ to avoid branch cuts in the action, where eaµ is

the vielbein and det eaµ picks up a factor of ω (ω−1) for each direction which is transverse

(parallel) to the brane. Applying this to the effective action for type II string theory and

comparing with the results of section 4.2 we reproduce (4.10), irrespective of the choice of

branch cut. Similar reasoning can be used to reproduce the rest of table 3 using singularity

crossing arguments. We leave this as an exercise for the interested reader.

Thus, accounting for backreaction, we conclude that negative branes are surrounded

by a bubble containing an exotic string theory whose spacetime signature is in general not

Lorentzian. Remarkably, although we began with a negative tension object, within this

bubble the “negative brane” appears to have positive tension. To see this, consider for

example N negative D0-branes, for which the warp factor is

H̄− = −1 +
(2π`s)

7

7 VolS8

gsN

|r|7
, (4.12)

inside the IIA−+
10,0 bubble. We compare this with N “ordinary” D0 branes in the exotic

IIA−+
10,0 theory, with warp factor

H+̃ = 1 +
(2π`s)

7

7 VolS8

gsN

|r|7
. (4.13)

The latter have positive tension using, e.g., the ADM definition. Although these are

different supergravity backgrounds, H̄− ' (2π`s)7

7 VolS8
gsN
|r|7 ' H+̃ as we move deep inside the

bubble and approach the branes. Thus, from the IIA−+
10,0 perspective, the negative D0 branes

of IIA++
9,1 look like ordinary (positive) D0 branes and appear as positive-tension objects.

The close relation between (4.12) and (4.13) suggests that in some sense the negative

D0 brane of IIA++
9,1 and the positive D0 brane of IIA−+

10,0 should be viewed as the same

object placed in different backgrounds.21 Strictly speaking these are (conjectural) objects in

20Assume the equivalence of spacetime mirror theories, we can apply (4.4) to re-express the resulting

string theory in the flipped signature (p, 10− p), so that the directions transverse (rather than parallel) to

the brane flip signature at the interface. The two descriptions are physically equivalent.
21See appendix B for a different (more precise) potential relation between these two objects via a conjec-

tural duality.
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Figure 6. Negative branes from the perspective of the exotic string theory living within the bubble.

From this viewpoint, they are positive tension objects.

different theories, IIA++
9,1 and IIA−+

10,0 respectively, so this statement is necessarily somewhat

vague. Heuristically, it means that we can separate the brane itself from the phenomenon

of signature change; indeed, we will see in the next section that signature-changing domain

walls are objects in their own right, independent of negative branes! Thus, roughly speaking

the above statement amounts to identifying a negative brane in ordinary type II string

theory with a positive brane in an exotic type II string theory wrapped with a signature-

changing domain wall so that it appears to be an object in the ordinary string theory.22

This suggests a possible resolution to the mysterious role of negative branes in ordinary

string theories. Although they appear as exotic, negative tension objects in these theories,

they are more naturally viewed as positive tension branes in an exotic string theory (see

figure 6), where the presence of the negative brane in ordinary string theory dynamically

induces a change of signature to the exotic string theory.

4.4 Signature-changing domain walls

This dynamic change of signature can occur even without the presence of negative branes.

Consider the eleven-dimensional metric

ds2
11 = 2dtdy +

x

L11
dy2 + dx2 + ds2

8 , (4.14)

where y ∼= y + 2πR11, and L11 is some arbitrary length scale. This metric — a pp-wave

that is everywhere smooth — is the same as the metric near the H = 0 interface in (3.10).

22If indeed it makes sense to combine objects in this way, one might wonder how we can be sure that

the negative D0 brane and the positive exotic D0 brane / domain wall combination are one and the same.

However, both will lift to the same pp-wave geometry in M-theory, making it unlikely that they could be

physically distinct.
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Reducing to type IIA on the y circle, we obtain the IIA++
9,1 background

ds2 = −
(

x

L10

)− 1
2

dt2 +

(
x

L10

) 1
2

(dx2 + ds2
8) , e2Φ = g2

s

(
x

L10

) 3
2

,

F2 =
L10

gs
dt ∧ dx

x2
,

(4.15)

for x > 0, whereas for x < 0 we obtain the IIA−+
10,0 background

ds2 =

(
− x

L10

)− 1
2

dt2 +

(
− x

L10

) 1
2

(dx2 + ds2
8) , e2Φ = g2

s

(
− x

L10

) 3
2

, (4.16)

with F2 the same as (4.15). We conclude that the singular interface x = 0 is a signature-

changing domain wall. Since it is described by a smooth metric in M-theory, this domain

wall is a sensible object in type IIA string theory, provided that the timelike compactifica-

tion itself makes sense.23

We remark in passing that the metric (4.14) is actually flat, unlike the pp-wave met-

ric (3.10) describing the full backreaction of the negative D0-brane in M-theory. It can be

written in light-cone form ds2 = 2dTdY + dX2 + ds2
8 in terms of the coordinates

X = x− y2

4L11
, T = t+

xy

2L11
− y3

24L2
11

, Y = y , (4.17)

where the periodic identification y ∼= y+2πR11 takes the form of a Poincare transformation

(T,X, Y ) ∼=
(
T + βX − β2

2
Y,X − βY, Y

)
+ 2πR11

(
−β

2

6
,−β

2
, 1

)
, (4.18)

for β ≡ πR11
L11

; note that a similar construction (without closed timelike curves) was consid-

ered in [31]. It would be interesting to consider other Poincare quotients x ∼= Λx + a and

their dimensional reductions.24

Applying T- and S-dualities to both sides of the interface, we obtain a wide variety

of signature-changing domain walls in both string theory and M-theory. As in the above

example, each domain wall is characterized by the flux supporting it, of the form Fp+1 ∝
dx ∧ Ωp, where the directions spanned by Ωp reverse signature at the singular interface

and the remaining directions are unaffected. The Taub-NUT geometry occurs as a special

case, where

ds2 = ds2
D−4 + V ds2

3 +
1

V
(dθ +A)2 . (4.19)

The one-form connection A on the U(1) bundle satisfies dV = ?3dA, so that ΩD−4 ∧ dV

plays the role of magnetic flux, where V = x/L for a signature-changing domain wall.

23This geometry and its connection to negative tension D8-branes in type IIA string theory were studied

in [30].
24A necessary and sufficient condition to avoid fixed points is that Λ has a unit eigenvector λΛ = λ such

that λ · a 6= 0. Using this observation, one can show that (4.18) is one of only three families of orientation

preserving smooth Poincare quotients of R2,1, with λ ∝ dy null. The other two have spacelike (timelike) λ

and can be written as a boost (rotation) followed by a translation in the orthogonal direction. There are

no non-trivial (Λ 6= 1) examples for D < 3.
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All the possible domain walls connecting two M-theories are pictured in figure 7, clas-

sified by the pair of theories they connect and the type of flux supporting them. There are

numerous examples connecting two string theories, as summarized in figures 8, 9. In some

cases, these correspond to the signature changes induced by negative branes in ordinary

string theory, cf. table 3. In other cases, the domain walls connect two exotic string theories.

5 AdS/CFT for negative branes

In the next few sections, we discuss various consistency checks of our proposed link between

negative branes and signature change, as well as consistency checks of Hull’s exotic string

theories themselves.

Our first topic is the AdS/CFT correspondence for negative branes. On the gauge

theory side, the large N planar loop expansion is convergent, rather than asymptotic,

implying that the large N behavior of supergroup gauge theories can be understood without

needing to address the non-perturbative subtleties discussed in section 2.1. In particular,

the N = 4 theories with gauge groups U(N |0) and U(0|N) are related by λ → −λ for N

fixed, with λ ≡ g2
YMN . Since planar quantities are analytic near λ = 0, the supergravity

limit λ� 1 can be reached by analytic continuation, allowing for non-trivial comparisons

with the AdS dual. The only difference is that (relative to the normal case) we are interested

in λ→ −∞ instead of λ→∞.

To find the holographic dual of the U(0|N) N = 4 theory, we consider the backreaction

of N negative D3-branes. This generates the background

ds2 = H−
1
2 ds2

3,1 +H
1
2 ds2

6 , eΦ = gs , F̃5 = g−1
s (1 + ?)dH−1 ∧ Ω4 , (5.1)

where

H = 1− λα′2

r4
. (5.2)

As argued in section 4.3, this describes a bubble of the exotic string theory IIB−−7,3 sur-

rounding the negative D3-brane. The D3-brane horizon at r = 0 lies within this bubble,

and the near horizon region r � L ≡ λ1/4α′1/2 is therefore described by this string theory

in the background

ds2 =
r2

L2
ds2

1,3 +
L2

r2
dr2 + L2ds2

S5 , eΦ = gs , F̃5 =
4r3

gsL4
(1 + ?)Ω4 ∧ dr , (5.3)

where ds2
S5 is the round metric on the unit five-sphere.

To identify the remaining metric factor in (5.3), we briefly review maximally symmetric

spaces. Besides flat space itself, these can be realized as quadratic hypersurfaces in flat

space of one higher dimension,25 either

s+1∑
i=1

U2
i −

t∑
i=1

V 2
i = L2 , (5.4)

25For simplicity we ignore the global properties of these hypersurfaces, such as the distinction between

them and their universal covers.
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F4 (M2)

F7 (M5)

TN

 M10,1

+ 

 M6,5

+ 

 M2,9

+ 

 M9,2

−

 M5,6

−

 M1,10

−

Figure 7. The possible signature-changing domain walls in M-theory, classified by the theories

they connect and the flux supporting them, where F7 = ?F4 indicates that the magnetic flux F7

has a leg perpendicular to the interface, rather than the electric flux F4. For each flux, we indicate

the type of negative brane which sources it. TN denotes the Taub-NUT geometry with linear

potential V ∝ x.

IIA− + IIA+ −

IIA+ +

IIA− −

H3 (F1), TN

F4 (D2), F8 (D6)

H7 (NS5)

F2 (D0), F6 (D4), F10 (D8)

Figure 8. The possible signature changing domain walls in type IIA string theory, with the

spacetime signatures suppressed for simplicity.

IIB− + IIB+ −

IIB+ +

IIB− −

H3 (F1), H7 (NS5)

F1 (D(−1)), F5 (D3), F9 (D7)

TN

F3 (D1), F7 (D5)

Figure 9. The possible signature changing domain walls in type IIB string theory, with the

spacetime signatures suppressed for simplicity.
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for the space which we will notate dSs,t of radius L, or

s∑
i=1

U2
i −

t+1∑
i=1

V 2
i = −L2 , (5.5)

for the space which we will notate AdSs,t of radius L. In this notation, dSd−1,1 and AdSd−1,1

are the standard d-dimensional de Sitter and anti-de Sitter spaces. Other special cases are

dSd,0 ∼= Sd and AdSd,0 ∼= Hd (hyperbolic space). In general, dS (AdS) has constant

positive (negative) scalar curvature. However, caution is needed, because dSs,t ∼= AdSt,s
upon exchanging space and time, consistent with the transformation of the Ricci scalar,

R → −R under g → −g. Thus, for instance dS1,d−1 is the space we usually label “anti-de

Sitter space”, but with space and time labels reversed.

The hypersurface equation (5.5) can be rewritten as

ηabX
aXb = X+X− − L2 , (5.6)

for p > 0, where X± = Vq+1 ± Up and Xa = {Ui, Vj} with the signature (p − 1, q) metric

ηab = diag(1, . . . ,−1, . . .). For X+ > 0, we can solve

X+ = r , X− =
L2

r
+

r

L2
ηabx

axb , Xa =
rxa

L
, (5.7)

which gives the geometry

ds2 =
r2

L2
ηabdx

adxb +
L2

r2
dr2 =

L2

u2

(
du2 + ηabdx

adxb
)
, (5.8)

known as the Poincare patch, where u = L2/r. Comparing with (5.3), we conclude that

the near horizon geometry of negative D3-branes is AdS2,3×S5, depicted in figure 10. The

bosonic symmetry group SO(2, 4)× SO(6) ∼= SO(4, 2)× SO(6) is unchanged, and matches

the bosonic part of the N = 4 superconformal group as expected. Thus, we are led to

conjecture that the N = 4 U(0|N) theory is holographically dual to IIB−−7,3 string theory

on AdS2,3 × S5; see also [6, 24] for prior discussion of these solutions.

A mildly annoying feature of this proposed duality is that the boundary of AdS2,3 has

signature (1, 3). We can remedy this moving to the spacetime mirror description, (4.4),26

for which the dual theory is IIB−−3,7 compactified on dS3,2× S̄
5
, where S̄

5
denotes a timelike

five-sphere. The two descriptions are physically equivalent, but from the CFT perspective

the latter is more natural. In this case, the emergent fifth dimension is timelike, and the

proposed duality should perhaps be thought of as “dS/CFT”, albeit unrelated to dS4,1

(similar ideas were explored in [24]).

A classic test of the AdS/CFT correspondence for U(N) is the agreement between the

dimensions of chiral primary operators in the gauge theory and the masses of supergravity

modes in AdS5 [32], which are related by

(∆− 2)2 = m2L2 + 4 , (5.9)

26We assume for the remainder of this section that the spacetime mirrors are exactly equivalent. All our

subsequent results still follow if this is not the case, but the notation would differ.
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7,3IIB− −
9,1IIB+ +

Figure 10. The near horizon geometry of negative branes lies within the bubble of exotic string

theory surrounding the brane.

for scalar operators, with similar expressions for other spins. Scalar chiral primary oper-

ators are operators of the form Tr[φ(i1 . . . φin)] with all SO(6) traces removed, where φi

denotes one of the six adjoint scalars of U(N) transforming in the vector representation of

the SO(6) R-symmetry. These can be matched to the harmonics of the supergravity fields

on S5 [33].

The same spectrum of chiral primary operators exists in the U(0|N) theory, which

should match the mode decomposition of IIB−−3,7 on dS3,2 × S̄
5

according to our conjec-

ture. In fact, the computation is almost trivially the same, because the two supergravities

are related by an analytic continuation of the background by L2 → ±iL2, g → ±ig, as

in section 4.3, (4.11), whereas the spectrum of m2L2 does not depend on L. Similar con-

siderations apply to other observables which are independent of λ = L4/α′2.

To obtain nontrivial tests of our conjectural holographic duality we consider

λ-dependent observables in both the U(0|N) gauge theory and in IIB−−3,7 string theory,

where the latter arise from α′ corrections to the supergravity action. On the gauge theory

side, these observables can be computed by analytically continuing λ→ −λ. By (5.8), each

factor of the metric g contributes an L2 = α′
√
λ, so that λ→ −λ corresponds to g → ±ig,

which is the singularity crossing prescription of section 4.3, (4.11)!

So far, we have not shown how to compute α′ corrections in exotic string theories

such as IIB−−3,7 . As we have just shown, the AdS/CFT correspondence predicts that, at

least for IIB−−3,7 (equivalently IIB−−7,3 ), these corrections are related to those for IIB++
9,1 by

the singularity crossing prescription. To test this prediction, we will compute the α′3R4

corrections to the IIB−−3,7 low-energy effective action, first in section 6 via a chain of S- and

T-dualities relating them to those of ordinary M-theory (M+
10,1) and then in section 7 by

worldsheet methods.

Before proceeding with the calculation we encounter an immediate puzzle, since the

prescription g → ±ig takes

(R+ α′3R4)→ (R± iα′3R4) (5.10)

up to an overall phase that cancels against the volume integration measure. Thus (un-
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dS3,2× S 5
_

λ-plane

Figure 11. The analytic structure of generic planar observables as a function of λ. The dotted circle

|λ| < λ0 denotes the radius of convergence of the loop expansion in the gauge theory description.

Analytically continuing λ → +∞, we obtain tree-level string theory on AdS4,1 × S5 according to

the ordinary AdS/CFT correspondence at the planar level. Analytically continuing λ → −∞ we

encounter a branch cut starting at (or outside) the radius of convergence. Depending on which way

we go around the branch cut, we obtain an ambiguous answer of the form ∆1± i∆2, corresponding

to the sign ambiguity in α′ corrections to IIB−−3,7 on dS3,2 × S̄
5
.

like at the two-derivative level) the singularity crossing prescription introduces imaginary

terms into the action, which moreover have signs which depend on the choice of branch in

continuing around the H = 0 singularity. This is surprising because the U(N) planar loop

expansion is analytic in λ, hence λ → −λ produces a real result for planar observables in

the U(0|N) theory.

This apparent inconsistency is resolved by the fact that the planar loop expansion

has a finite radius of convergence beyond which branch cuts and other singularities can

appear [34, 35]. For instance, the spectrum of string excitations in the plane wave limit of

AdS5 × S5 describe a set of operators with twists [36]

∆− J =

∞∑
n=−∞

Nn

√
1 + λ

n2

J2
,

∞∑
n=−∞

nNn = 0 , (5.11)

for large spin J ∼ O(N1/2). Expanding ∆ − J in λ � 1, we find a radius of convergence

|λ| <
√
J/nmax, beyond which a branch cut appears on the negative λ axis. Analytically

continuing λ→ −∞, we obtain opposite imaginary results for ∆− J , depending on which

way we go around the branch cut, as depicted in figure 11. Similar factors of i inducing

a sign-change in the gauge coupling have been anticipated in the context of analytic con-

tinuation from AdS to dS spacetimes, for which it has been suggested the corresponding

gauge theory is nonunitary; see [37].

More generally, the appearance of half-integer powers of λ in the λ � 1 supergravity

expansion indicates the presence of such a branch cut in generic λ-dependent observables,
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and the ambiguity in the supergravity effective action corresponds to the ambiguity in

going around the branch cut on the negative λ axis.

5.1 Other holographic duals

Besides the conjectural duality between the N = 4 U(0|N) negative brane gauge theory

and IIB−−3,7 on AdS2,3 × S5, there are several other holographic dualities predicted by our

work, most notably between the worldvolume theory on negative M2-branes and M+
2,9 on

AdS2,2 × S7 and between the worldvolume theory on negative M5-branes and M−5,6 on

AdS2,5 × S4. The latter two examples do not have exactly marginal couplings, hence the

only expansion parameter is N . In principle, the negative brane theories are related to

their ordinary cousins by analytically continuing N → −N , and a similar analysis to that

given above may be possible, though it is more difficult in the absence of a weak coupling

limit for the dual CFT.27 We leave any further discussion of these prospective holographic

dualities for a future work.

In principle, we can derive holographic duals of the worldvolume theories on D3-branes,

M2-branes, or M5-branes in any of the exotic string/M-theories considered above by taking

the near horizon limit of their large N backreacted geometries. However, additional diffi-

culties arise in cases other than those considered above, because the “horizon” Sd becomes

a non-compact space (A)dSs,t, making it unclear whether standard arguments apply or

how to interpret the result if they do. This, too, is left for future work.

6 Curvature corrections

In this section, we analyze the R4 corrections in exotic string theories by relating them

to one loop corrections in the low energy effective supergravity description. The results of

this section will be used to confirm the predictions of AdS/CFT derived in section 5, and

will be cross checked against explicit worldsheet calculations in section 7.

6.1 R4 corrections from KK loops

There are two R4 corrections to the effective action of type IIA string theory, of the

schematic form:

SR4 ∼
α′3

2κ2
10

∫
d10x

√
|g|(e−2ΦR4 +R4) , (6.1)

appearing at tree level and one loop in the string loop expansion, respectively. Here we

suppress the overall coefficient and index structure for simplicity, as this is not essential to

our analysis (see, e.g., [39] for the details). Lifting to M -theory, we obtain (A.4), (A.5)

R ∼ e−
2
3

ΦR(11) ,
√
|g| = e

8
3

Φ
√
|g(11)| . (6.2)

27For negative M2-branes we can introduce a second parameter by placing the M2-branes at a C4/Zk
singularity (breaking some of the supersymmetry), where k corresponds to the Chern-Simons level in the

dual ABJM theory [38], which is perturbative for k � N . An analysis of this configuration and its dual is

beyond the scope of the present work.
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In the M-theory lift, the Einstein-Hilbert term
√
|g|e−2ΦR and the one-loop correction√

|g|R4 are independent of R11 ∼ e2Φ/3, but the tree-level correction
√
|g|e−2ΦR4 scales as

1/R3
11 and vanishes as we take the eleven-dimensional limit, R11 →∞. Thus, the M-theory

effective action is corrected:

S
(11)
R4 ∼

`6P
2κ2

11

∫
d11x

√
|g|R4 , (6.3)

due to the one-loop correction of type IIA string theory, but no trace of the tree-level

correction remains in the eleven-dimensional theory.

The reason for this discrepancy is that the “tree-level” correction in type IIA string

theory is generated by one loop diagrams involving KK modes in the eleven dimensional

effective supergravity description [40], whereas the “one-loop” correction corresponds to

the tree-level coupling (6.3) in eleven dimensions.

This means that the string tree-level R4 correction of type IIA string theory can be

obtained by a one-loop computation in eleven-dimensional supergravity. The string one-

loop correction can also be obtained by one-loop supergravity calculation when we consider

the T-duality between type IIA and type IIB string theory. In particular, compactifying

type IIA and type IIB string theory on a circle leads to the same nine-dimensional theory,

whose two-derivative low-energy effective action is (A.11). The radion σ and dilaton Φ

in nine-dimensions are related to the ten-dimensional dilaton and compactification radius

as follows:

eσ = R(IIA)/`s = `s/R(IIB) , eΦ = eΦ(IIA) , eΦ−σ = eΦ(IIB) . (6.4)

The R4 corrections (6.1) reduce to

S
(9A)
R4 ∼

α′3

2κ2
9

∫
d9x
√
|g|(eσ−2ΦR4 + eσR4) . (6.5)

An analogous set of corrections exist in type IIB string theory. These reduce to

S
(9B)
R4 ∼ α′3

2κ2
9

∫
d9x
√
|g|(eσ−2ΦR4 + e−σR4) . (6.6)

To explain the discrepancy between (6.5) and (6.6), note that in the ten-dimensional type

IIA description, the
√
|g|e−σR4 correction scales as 1/R2

(IIA), and disappears as R(IIA) →
∞. In direct analogy with the M-theory compactification considered above, we conclude

that the additional
√
|g|e−σR4 correction in the compact theory is generated a loop of KK

modes.28 Likewise, the
√
|g|eσR4 correction is generated by a loop of KK modes in the ten-

dimensional IIB description. The nine-dimensional effective theory has all three corrections

S
(9)
R4 ∼

α′3

2κ2
9

∫
d9x
√
|g|(eσ−2ΦR4 + eσR4 + e−σR4) , (6.7)

28The relation between the computations can be established by considering M-theory compactified on a

torus. Exchanging which cycles we label as the M-theory and IIA circles exchanges the two computations.
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in addition to an infinite set corrections which are non-perturbative in gs, and which we

ignore in the present analysis.29

Thus, all the R4 corrections in string/M-theory can be thought of as effective couplings

generated a loop of KK modes in some dual description. We now exploit this fact to

compute the R4 corrections in the exotic string/M-theories considered previously. To do

so, we first consider how the spacetime signature and the difference between spacelike and

timelike compactification affect these corrections.

6.2 Feynman rules and spacetime mirrors

We now derive the Feynman rules for the effective supergravity theories described in sec-

tion 4.2. To avoid any possible ambiguities, we do so by relating the quantized effective

theories to each other and to the ordinary supergravities IIA++
9,1 , IIB++

9,1 and M+
10,1 via

spacelike and timelike compactification in the language of Feynman diagrams.

Since the vertices are local, the physics of compactification is encoded in the propaga-

tor. Before compactifying, we have the Feynman propagator30

GD(x− y;m2) =

∫
dDp

(2π)D
−ieip·(x−y)

p2 +m2 − iε
, (6.8)

for a scalar field in D dimensions. Compactifying on a spatial circle, xµ ∼= xµ + 2πRµ for

spacelike Rµ, the Green’s function becomes a sum over images

ĜD(x;m2) =

∞∑
n=−∞

GD(xµ + 2πnRµ;m2) . (6.9)

The infinite sum on n can be evaluated using Poisson resummation,
∑∞

n=−∞ e
2πinx =∑∞

k=−∞ δ(x− k). Fixing Rµ = (. . . , 0, R) with a Lorentz transformation, we obtain

ĜD(x̂, y;m2) =
∞∑

k=−∞

e
iky
R

2πR
Gd(x̂;m2 + k2/R2) , (6.10)

where xµ = (x̂α, y) and d = D− 1. Thus, for each D-dimensional scalar there is an infinite

tower of KK modes in d dimensions, labeled by their KK number k ∈ Z with masses

M2 = m2 + k2/R2. For each vertex, the integral
∫ 2πR

0 dy
∏
i e

ikiy

R = (2πR)δ∑
i ki

enforces

conservation of KK number. The Feynman rules of the d-dimensional theory are otherwise

the same as those of the D-dimensional theory.31

The case where Rµ is timelike is closely analogous. We fix Rµ = (T, 0, . . .) with a

Lorentz transformation, which gives

ĜD(t, ~x;m2) =

∞∑
k=−∞

e−
iky
T

2πT
Gd(~x;m2 − k2/R2) . (6.11)

29These additional corrections are also present in type IIB but not in type IIA. In the type IIA description,

they are generated by the KK modes of the D0 brane and its marginal bound states. In the eleven-

dimensional description, they are generated by the lattice of KK modes on T 2.
30We follow the conventions of [41], converting to a mostly-plus metric signature.
31The factors of 1

2πR
(2πR) for each propagator (vertex) appear because we have not canonically nor-

malized the fields and couplings in d dimensions.
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Thus, the Feynman rules are the same as for spacelike compactification, except that the

metric signature is (+ . . .+) instead of (− + . . .+) and the masses of the KK modes are

M2 = m2 − k2/R2.

Comparing the various supergravities via S and T-dualities, we conclude that all of

them have Feynman rules which follow from a path integral of the standard form

Z =

∫
[Dφ]eiS[φ] , (6.12)

with the epsilon prescription p2 + m2 − iε for the propagators, where now p2 involves

the signature (s, t) metric. While this is the expected result, it is important to establish

definitively, as our subsequent conclusions will follow from it.

As a preliminary exercise, we verify the equivalence of the spacetime mirror theo-

ries (4.4) at the quantum level in effective field theory. Mapping g → −g (reversing the

metric signature) has two effects on the quantum theory:

1. The Feynman rules are mapped onto those of the parity-reversed spacetime mirror,

with an extra minus sign for each vertex and propagator, see (4.9) and following

discussion.

2. The epsilon prescription is reversed (ε→ −ε).

Combining these two effects, we see that

M(p, j,Q; in)g→−g = −M(p̃, j̃, Q; out)∗ , (6.13)

whereM denotes any scattering amplitude,M the same scattering amplitude in the space-

time mirror, p, j, and Q the momenta, spins, and charges of the external particles — con-

sidered to be incoming on one side of the equation and outgoing on the other — and p̃, j̃

the parity reversed momenta and spins. Thus, the scattering amplitudes for the spacetime

mirror theories are related by T (up to a physically insignificant overall minus sign),32 and

the two effective theories are physically equivalent. Notice that the minus sign in (4.9) is

crucial to the success of (6.13). Without this, the two theories would be inequivalent!

6.3 KK loop diagrams

We now consider the effect of one loop diagrams involving KK modes, which will generate

effective couplings for the KK zero modes in d = D − 1 dimensions. Denote the signature

of the D-dimensional theory as (s, t). The amplitude contains an integral of the form

iM∼ IR =

∫
dd`

(2π)d
(`2)m[

`2 +
∑

i<j uiuj(pi − pj)2 +
∑

i uim
2
i + k2

R2 − iε
]n , (6.14)

in the spacelike case, where we introduce Feynman parameters ui ≥ 0 with
∑

i ui = 1,

and pi are related to the external momenta. In the low-energy limit |~pi|,mi � 1/R, the

32For theories with multiple times, we define T as the antilinear operator which exchanges in and out states

combined with a spacetime parity flip, where spatial and temporal parity flips are equivalent for s, t > 1.
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ui-dependent terms can be neglected, and we obtain

IR = it
Γ
(
n−m− d

2

)
Γ
(
m+ d

2

)
(4π)

d
2 Γ(n) Γ

(
d
2

) (R2/k2)n−m−
d
2 , (6.15)

after Wick rotating `µ̂ → i`µ̂ for µ̂ timelike, as dictated by Re ε > 0. By contrast, a

tree-level effective coupling contributes iM∼ iλeff , so that

λeff ∼ it−1 , (6.16)

up to an overall sign. In particular, for t = 1 the effective couplings are real, as expected

from unitary field theory, but for t 6= 1 this no longer holds in general.

Similar reasoning applies to the case of time-like compactification, except that the

denominator is of the form ~̀2 − k2/T 2 − iε, so we Wick rotate `µ̂ → −i`µ̂ for µ̂ spacelike,

giving

IT = (−1)m+n(−i)s
Γ
(
n−m− d

2

)
Γ
(
m+ d

2

)
(4π)

d
2 Γ(n) Γ

(
d
2

) (T 2/k2)n−m−
d
2 , (6.17)

and the effective coupling takes the form

λeff ∼ (−1)m+n(−i)s+1 , (6.18)

so the result can be real or imaginary, depending on the spacetime signature.

Using (6.16), (6.18), we can fix the phase of the R4 corrections in all of the exotic

string/M-theories by relating them to KK loop calculations. We find

SR4 [Mα] ∼
`6P

2κ2
11

∫
d11x

√
|g|R4 ,

SR4 [IIAαβ ] ∼ α′3

2κ2
10

∫
d10x

√
|g|(i

1−α
2 e−2ΦR4 +R4) ,

SR4 [IIBαβ ] ∼ α′3

2κ2
10

∫
d10x

√
|g|(i

1−α
2 e−2ΦR4 + i

1−α
2 R4) ,

(6.19)

for α = ±1, where we have not attempted to compute the overall sign, coefficient, or

index structure for each term. For each correction, there are multiple ways to relate it

to a KK loop along the lines of section 6.1, all of which give the same phase. Notice in

particular that spacetime mirrors have R4 corrections with the same phases, and that these

phases agree with the singularity crossing prescription of section 4.3, (4.11), and with the

AdS/CFT analysis of section 5.

In type IIB theories there are additional corrections which are non-perturbative in the

string loop expansion. These are discussed briefly in section 9.4.

7 Worldsheet theories

In the previous section, we quantized the low energy effective theories described in sec-

tion 4.2 and used them to learn something about R4 corrections. In this section, we will

– 30 –



J
H
E
P
0
2
(
2
0
1
8
)
0
5
0

try to understand the full UV behavior of these theories. We will work under the assump-

tion that the exotic IIA/B theories have a worldsheet description, much like ordinary type

IIA/B string theory.

A novel feature which occurs in some of these theories is that the fundamental strings

have Euclidean signature. To better understand the consequences of this, we will study

bosonic string theory with a Euclidean worldsheet. This should share some features with

the putative worldsheet theories for the exotic IIA/B−± theories. We leave a construction

of the full superstring in these exotic theories for future work.33

7.1 The classical bosonic Euclidean string

The Polyakov action generalized to arbitrary worldsheet signature is

S =
ε

4πα′

∫
Σ

d2σ
√
ε det γγabηµν∂aX

µ∂bX
ν , (7.1)

where the worldsheet metric γab has signature (ε, 1) with ε = +1 (ε = −1) for a Euclidean

(Lorentzian) worldsheet, and the overall sign is chosen so that (∂τX)2 has a positive coef-

ficient.

We proceed to solve the classical theory for the closed string in the usual fashion,

keeping the parameter ε generic throughout the calculation. Gauge-fixing to a flat world-

sheet metric γττ = ε, γσσ = 1, γτσ = 0 and introducing left and right-moving coordinates

σ± = τ ±
√
−εσ, the Xµ equations of motion have the general solution

Xµ = Xµ
L(σ+) +Xµ

R(σ−). (7.2)

The mode expansion takes the form

Xµ(σ+, σ−) = xµ + α′pµτ −
√
α′

2ε

∑
n 6=0

[
αµn
n
e−
√
εnσ+

+
α̃µn
n
e−
√
εnσ−

]
, (7.3)

where xµ, pµ are real and the oscillator modes satisfy

αµ∗n , α̃
µ∗
n =

{
αµ−n, α̃

µ
−n ε = −1 ,

α̃µn, α
µ
n ε = +1 .

(7.4)

Notice that the reality conditions for the Euclidean worldsheet theory differ from those for

the Wick rotated Lorentzian worldsheet theory. Wick rotation does not alter the reality

conditions because the Wick rotated time coordinate is imaginary τ∗E = (iτ)∗ = −τE . By

contrast, the time coordinate in the Euclidean worldsheet theory is real, implying that

complex conjugation exchanges left and right movers.

Defining αµ0 = α̃µ0 =
√
α′/2 pµ, the Virasoro constraints (∂+X)2 = (∂−X)2 = 0 take

the form
∑

n αn · αm−n =
∑

n α̃n · α̃m−n = 0 , for every m. In particular, the m = 0

constraint determines the spectrum

α′p2

4
+
∑
n>0

α−n · αn =
α′p2

4
+
∑
n>0

α̃−n · α̃n = 0. (7.5)

33Note that there is no guarantee that the exotic string theories admit a worldsheet description — even if

they exist as mathematically consistent spacetime theories with stringlike excitations. However, the results

of this section suggest that a worldsheet description is possible.
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7.2 The quantized Euclidean string

We now compute the spectrum of the quantized Euclidean string. Surprisingly, all the

massive states will turn out to have imaginary m2. We later show that this novel feature

is in fact required for the consistency of the theory when toroidally compactified.

The quantum dynamics associated to the Euclidean worldsheet theory is formally

encoded in the path integral over Euclidean worldsheets,

Z =

∫
[Dγ][DX] eiS . (7.6)

The Lorentzian worldsheet theory can also be written as a Euclidean path integral, but

now of the form:

Z =

∫
[Dγ][DX] e−SE . (7.7)

The crucial difference between (7.6) and (7.7) is that the former is oscillatory, whereas the

latter is damped. Thus, although both variants admit a Euclidean path integral description,

they are physically distinct.34 The effect of these differences will soon become apparent.

To canonically quantize the theory, we introduce the equal-time commutator

[Xµ(σ, τ),Πν(σ′, τ)] = iηµνδ(σ − σ′) , Πµ =
δS

δ∂τXµ
=

1

2πα′
∂τX

µ. (7.8)

Using (7.3), we obtain the mode algebra

[xµ, pν ] = iηµν , [αµm, α
ν
n] = [α̃µm, α̃

ν
n] =

m√
−ε

δm,−nη
µν . (7.9)

Observe that for ε = +1 the commutator (7.9) is imaginary. Define the number operators

N =
√
−ε
∑
n>0

α−n · αn , Ñ =
√
−ε
∑
n>0

α̃−n · α̃n , (7.10)

whose normalization is chosen to ensure real eigenvalues. The mass-shell condition (7.5)

is then

−p2 =
4

α′
√
−ε

(N +A) =
4

α′
√
−ε

(Ñ + Ã) (7.11)

where the normal ordering constants are A = Ã = −1 by a standard computation. Thus,

the quantized Euclidean string has an imaginary spectrum!35

34We have already seen examples of (low energy effective) quantum field theories in different spacetime

signatures in the previous section. As in (6.12), the integrand of the path integral always takes the form eiS

for real S in the physical signature (before Wick rotation). See section 9.3 for further discussion of some

related issues.
35In the above, we have not been careful about the subtleties of gauge fixing and physical states. This

can be addressed systematically either through BRST quantization or the use of light-cone gauge. Both

approaches proceed in straightforward analogy with the usual, Lorentzian string, and we omit any further

discussion of these issues.
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7.3 T-duality

We now consider the spectrum of the Euclidean worldsheet theory compactified on a circle

of signature ηDD = ±1. The mode expansion becomes

XL = xL +
α′

2
pLσ

+ −
√
α′

2ε

∑
n 6=0

αn
n
e−
√
εnσ+

,

XR = xR +
α′

2
pRσ

− −
√
α′

2ε

∑
n 6=0

α̃n
n
e−
√
εnσ− ,

(7.12)

where

pDL =
n

R
+

1√
−ε

wR

α′
, pDR =

n

R
− 1√
−ε

wR

α′
, (7.13)

for a periodic coordinate XD ∼= XD+2πR. Here w is the winding number, XD(τ, σ+2π) =

XD(τ, σ) + 2πRw, and the compact momentum (pDL + pDR )/2 is quantized in units of 1/R.

The mass-shell condition is

−k2 = ηDD
(
n

R
+

1√
−ε

wR

α′

)2

+
4

α′
√
−ε

(N−1) = ηDD
(
n

R
− 1√
−ε

wR

α′

)2

+
4

α′
√
−ε

(Ñ−1) ,

(7.14)

where km is the momentum in the non-compact directions. This can be rewritten as

−k2 = ηDD
n2

R2
− εηDDR

2w2

α′2
+

2

α′
√
−ε

(N + Ñ − 2) , 0 = ηDDnw +N − Ñ . (7.15)

Consider the limit R→ 0. The low-energy modes have n = 0, with the mass-shell condition

0 = k2 + (−εηDD) w2

(α′/R)2
+ 4

α′
√
−ε(N − 1) and Ñ = N . The winding contribution can

be interpreted as the quantized momentum on a T-dual circle of radius R′ = α′/R and

signature (ηDD)′ = −εηDD. In particular, for a Euclidean worldsheet ε = +1, the T-dual

circle has opposite signature! This matches the D-brane based results of section 4.1 and

the effective supergravity analysis of appendix A.36

T-duality extends to the complete theory as follows

R
T−→ α′

R
, ηDD

T−→ −εηDD , XD
L

T−→
√
−εXD

L , XD
R

T−→ −
√
−εXD

R , (7.16)

where pDL −→
√
−εpDL and αDn −→

√
−εαDn pick up the same overall phase as XD

L , and

likewise for the right-movers The effect on the spectrum is

n
T−→ w , w

T−→ −εn , N
T−→ N , Ñ

T−→ Ñ , (7.17)

where the phases picked up by the oscillators αDn , α̃Dn and ηDD cancel, leaving N , Ñ in-

variant.

36This is also an important check that we have correctly placed the factors of i in our canonical quanti-

zation of the Euclidean string.
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Note that (7.14), (7.15) contain an interesting interplay between the zero modes and

oscillators. The change of signature during T-duality for ε = +1 arises because of the

relative ±i between the momentum and winding contributions to pL,R, but this creates an

imaginary level mismatch which must be cancelled by the oscillators. Thus, the imaginary

oscillator spectrum is a necessary consequence of the change of spacetime signature during

T-duality.

The spectrum (7.15) admits extra massless states with nonzero compact momentum

and winding for the radii R =
√

2α′ and its T-dual R =
√
α′/2. Consider the former

case without loss of generality. Massless states appear for n = ±2, w = ±1, and either

(N, Ñ) = (2, 0) or (0, 2) depending on the relative sign of n and w. The spectrum for

(N, Ñ) = (2, 0) consists of two scalars, a vector, and a symmetric tensor from αM−1α
N
−1|0〉

and a further scalar and vector from αM−2|0〉. Due to the appearance of additional massless

symmetric tensors (gravitons) charged under momentum and winding, we conclude that

the physics at this radius must be quite exotic!

7.4 Modular invariance

A thorough treatment of string interactions in the Euclidean worldsheet theory is beyond

the scope of this paper. It is relatively straightforward, however, to verify the modular

invariance of the one loop zero-point amplitude.37 The torus partition function is

Z = Tr

[
q
√
−ε
(
L0− c

24

)
q̄
√
−ε
(
L̃0− c̃

24

)]
, (7.18)

where q = e2πiτ , τ = τ1 + iτ2 is the complex structure of the torus, and

L0 =
α′

4
p2
L +

∑
n>0

α−n · αn , L̃0 =
α′

4
p2
R +

∑
n>0

α̃−n · α̃n . (7.19)

The factor of
√
−ε appears in (7.18) because the generators of τ and σ translations are

H =

∫ 2π

0
Tττdσ =

1

2πα′

∫ 2π

0
[(∂+X)2 + (∂−X)2] , (7.20)

P =

∫ 2π

0
Tτσdσ =

√
−ε

2πα′

∫ 2π

0
[(∂+X)2 − (∂−X)2] , (7.21)

whereas the time translation is imaginary (real) for the Lorentzian (Euclidean) worldsheet

theory, due to the Wick rotation involved in the former case. Thus, the oscillators con-

tribute qN q̄Ñ , independent of the signature, and the partition function for a non-compact

boson Xµ is virtually unchanged:

ZX(τ, τ̄) ≡ Z/V = (−ε)−1/4(4π2α′τ2)−1/2|η(τ)|−2 , (7.22)

where the phase for ε = +1 comes from the oscillatory integral over zero modes and V

is the target space volume. Modular invariance of the one-loop amplitude follows in close

analogy with the Lorentzian case.

37Our treatment closely follows [42].
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The compact free boson Xµ ∼= Xµ + 2πR is relevant to our study of T-duality above.

In this case, the integral over zero modes becomes a sum,38

Z =
1

|η(τ)|2
∞∑

n,w=−∞
exp

[
−πτ2

(√
−ε α

′n2

R2
+

1√
−ε

w2R2

α′

)
+ 2πiτ1nw

]
, (7.23)

for spacelike Xµ. Modular invariance can be established using Poisson resummation on n:

Z = (2πR)ZX(τ, τ̄)

∞∑
m,w=−∞

exp

[
− πR2

√
−εα′

|m− τw|2

τ2

]
, (7.24)

where ZX(τ, τ̄) is the non-compact result, (7.22). This is manifestly invariant under the

modular transformations

τ −→ aτ + b

cτ + d
,

(
m

w

)
−→

(
a b

c d

)(
m

w

)
. (7.25)

7.5 The effective action

The non-linear sigma model for the bosonic string generalizes to the Euclidean worldsheet

as follows

S =
1

4πα′

∫
d2σ

[(
ε|γ|1/2γabgµν(X)−εabBµν(X)

)
∂aX

µ∂bX
ν−βεα′|γ|1/2RΦ(X)

]
, (7.26)

where R is the worldsheet Ricci scalar and ε12 = −ε21 = +1. This follows from the

Polyakov action (7.1) by replacing ηµν → gµν(X) and adding a B-field and dilaton in the

usual way. For the dilaton term we including an extra phase βε (with β−1 = 1), which will

turn out to be necessary.39

In principle, by requiring the beta functions of this sigma model to vanish we can

compute the low energy effective action in a derivative expansion. Instead, we relate the

Euclidean (ε = +1) and Lorentzian (ε = −1) sigma models to each other and use known

results for the latter. In the Lorentzian case, we first Wick rotate to obtain the action

iSE =
i

4πα′

∫
d2σ

[(
|γ|1/2γabgµν(X)+ iεabBµν(X)

)
∂aX

µ∂bX
ν +α′|γ|1/2RΦ(X)

]
. (7.27)

The Euclidean sigma models (7.27) and (7.26) (with ε = +1) are related by an analytic

continuation of the background fields

gµν −→ −igµν , Bµν −→ Bµν , Φ −→ iβ1Φ , (7.28)

where we equate the path integral weights eiS = ei(iSE) = e−SE . Since gµν(X), Bµν(X),

and Φ(X) are essentially the couplings of the sigma model, this can be thought of as an

analytic continuation of the couplings.

38For ε = +1, the sum is oscillatory, and can be made convergent by taking R to have a small positive

imaginary part.
39The phase of the B-field is fixed (up to a conventional overall sign) by the requirement that the path

integral weight eiS is invariant under large gauge transformations
∫
B →

∫
B + (2π)2α′n.
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To fix the phase βε, we expand

gµν(X) = ηµν + sµνe
ik·X + . . . , Bµν(X) = aµνe

ik·X + . . . , Φ(X) = φeik·X + . . . , (7.29)

in a plane wave background. The coefficients sµν , aµν , and φ correspond to vertex operators

on the worldsheet. By a calculation in [42], for the ordinary bosonic string φ ∝ ηµνsµν in

light-cone gauge, i.e., the dilaton arises from the trace part of the graviton vertex operator.

Making the replacements ηµν → −iηµν , sµν → −isµν , φ → iβ1φ according to (7.28),

we obtain iβ1φ ∝ ηµνsµν for the Euclidean worldsheet theory. Since the dilaton remains

the trace part of the graviton, we must have iβ1 = 1 up to a conventional sign, so that

βε = 1/
√
−ε.

Using the above results, we can fix the two-derivative effective action of the bosonic

string:

S =
1

2κ2
26

∫
d26x

√
|g|e−2Φ

[
R+

ε

2
|H|2 + 4(∇Φ)2

]
, (7.30)

for ε = ±1. Here we apply the analytic continuation (7.28) to the known result for ε = −1.

Apart from the different critical dimension of the bosonic string, this agrees precisely

with the NSNS part of the superstring result (4.7), which we derived by duality argu-

ments. Moreover, the analytic continuation (7.28) is essentially the singularity crossing

prescription (4.11). The only difference is the signature-dependent phase acquired by e−2Φ

in (4.11), but in the absence of RR fields this only affects loop calculations, which we have

not addressed.

In particular, (7.28) is sufficient to reproduce the i prefactor of the e−2ΦR4 curvature

correction for Euclidean worldsheets that we found in (6.19). Heuristically, since derivative

corrections introduce new propagating degrees of freedom, the imaginary R4 correction

can be thought of as a consequence of the imaginary spectrum of massive string modes for

the Euclidean theory.

A more detailed development of the worldsheet description of the exotic string theories

considered in our work would likely provide further insight into their properties, but we

leave this for a future work.

8 Non-perturbative dynamics of supergroup gauge theories

For much of this paper, we have focused on isolated negative branes. In this section,

we consider supergroup gauge theories, arising as the low energy effective description of

coincident positive and negative branes. We present evidence that these gauge theories

exist non-perturbatively.

8.1 The difference between U(N |M) and U(N −M)

We begin by commenting on a subtle issue associated with supergroup gauge theories.

A long-standing observation about these theories is that U(N |M) closely mimics U(N −
M) [5, 43, 44]. Consider, for example, gauge-invariant correlation functions in the N = 4

theory discussed above. Using the ’t Hooft double line notation for Feynman diagrams, N
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and M only appear in the combination Str 1 = N −M , so that U(N |M) is perturbatively

equivalent to U(N −M)!

The partition function of the N = 4 U(N) theory on S4 is given by a Gaussian

matrix model [45]. By a supersymmetric localization argument, the same should be true of

supergroup gauge theories, and hence we can learn something about their non-perturbative

physics by studying Gaussian supermatrix models. Recently it was observed that, despite

earlier claims to the contrary [44], the U(N |M) supermatrix model is not equivalent to

the U(N −M) matrix model [3], as there are gauge invariant operators whose expectation

values are zero in the latter but non-zero in the former. It turns out that even the exact

partition functions of these two theories are not the same: the differences appear to arise

from subtleties associated to fermionic gauge symmetries [10], which are best resolved by

gauge-fixing.

This suggests that the groups U(N |M) and U(N −M) are associated to inequivalent

theories, distinguished at least by their behavior on S4, and likely in other ways as well. If

so, this has interesting consequences for negative branes in string theory. For instance, this

implies that an equal number of superposed positive and negative branes are not equivalent

to the string vacuum, contrary to [5]. Nonetheless, this configuration looks identical to the

vacuum from the perspective of closed strings in perturbation theory, and it is not immedi-

ately clear what distinguishes this configuration from the vacuum non-perturbatively. One

possibility is that the supermatrix model only detects a difference between these two con-

figurations because the supermatrix model describes a brane wrapping a compact cycle, for

which the Coulomb branch is integrated over, as opposed to a brane with a non-compact

worldvolume, for which the Coulomb branch parameterizes different superselection sectors.

However, this explanation cannot be the complete answer, because the set of operators in

the U(N |M) theory is strictly bigger than the set of operators in the U(N −M) theory.

8.2 Negative D-brane intersections and negative matter

As is well known, the boundary of a brane can live on the worldvolume of another brane.

Given the above discussion, we anticipate that this kind of configuration can also be realized

with negative branes. For example, consider N D4 branes ending on a pair of parallel NS5-

branes — this should give rise to N = 2 SU(N) Yang-Mills in four dimensions. Now

instead, imagine a collection of N ordinary D4-branes and M negative D4-branes. Since

N = 2 SYM makes sense, this construction should be able to accommodate negative

branes. In particular, suspending N ordinary D4 and M negative D4-branes between two

NS5-branes should produce a SU(N |M) gauge theory with N = 2 supersymmetry. As far

as the mechanism of branes ending on branes is concerned, the only difference between

a positive brane and a negative brane is that the respective charges they induce on the

boundary are opposite; the amount of supersymmetry they preserve is the same.

The above example also illustrates the type of matter these theories can have. Consider

N D4-branes suspended between a pair of parallel NS5-branes, and add one D4-brane

ending on the other side of one of the NS5-branes. This gives rise to a theory with one

fundamental SU(N) matter. In terms of geometric engineering, this configuration can be

viewed as the result of breaking a supersymmetric SU(N + 1) theory to an SU(N)×U(1)
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theory with some of the matter of the former theory appearing as matter content in the

latter theory. Now we might ask what happens if we replace the D4-brane on the other side

of the NS5-brane with a negative D4 brane. Similarly, this kind of configuration can be

viewed as the result of breaking of a SU(N |1) theory to a SU(N)×U(0|1) theory, where the

extra matter is now in the fundamental representation of SU(N) with opposite statistics.

We call this “fermionic” or “negative” fundamental matter.

8.3 N = 2 supergroup theories

As discussed in section 2, in order to provide evidence for the non-perturbative existence of

gauge theories with supergroup symmetry, it would be useful to perform some exact non-

perturbative computations in these theories. It turns out to be possible to do computations

similar to those done in usual case of ordinary Lie groups. In this section we explain how

such computations can be carried out for N = 2 supersymmetric theories with gauge

supergroup SU(N |M).

First of all we have to note that the negative of the beta function for an N = 2 SU(N)

theory is proportional to N , which implies that in the supergroup case the negative of

the beta function is proportional to N −M . If N > M we have an asymptotically free

theory; if N = M we should get a conformal theory; and if N < M the theory is not UV

complete. We will study the Seiberg-Witten (SW) curve for this theory, which will depend

on N + M − 1 parameters. In fact, as we explain shortly, we learn that the SW curve in

this case is the same as that of an ordinary SU(N) gauge theory with 2M fundamental

matters, where the masses of the 2M flavors are pairwise equal. Such a theory has (N −1)

Coulomb and M mass parameters, also leading to a total of N + M − 1 parameters. In

this context, we find that the Seiberg-Witten curve has genus N − 1, suggesting that the

coupling constants for the SU(M) part do not get corrected. Moreover, the Coulomb

branch parameters of the SU(M) part behave as if they are the mass parameters of the

SU(N) theory.

Recall that for an ordinary SU(N) theory, the Seibeg-Witten curve is given by

z + det(x− Φ) +
1

z
= 0, (8.1)

with Φ representing the scalar SU(N) matrix of the Coulomb branch parameters. The SW

differential is given by

λ = x
dz

z
. (8.2)

The SW curve we find for the SU(N |M) gauge theory is given again by the same formula

except that the determinant is replaced with the super-determinant:

z + sdet(x− Φ) +
1

z
= 0. (8.3)

In particular, if we diagonalize, Φ = diag(a1, . . . aN ; b1, . . . , bM ), we get the SW curve

z +

∏N
i=1(x− ai)∏M
j=1(x− bj)

+
1

z
= 0, (8.4)
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Figure 12. A configuration of D4 branes suspended between two NS5 branes that reproduces a

SU(N+k) gauge theory with 2k flavors. This configuration can be Higgsed to a pure SU(N) theory.

which can be expressed alternatively as

z

M∏
j=1

(x− bj) +

N∏
i=1

(x− ai) +
1

z

M∏
j=1

(x− bj) = 0 (8.5)

In this form we recognize this as the SW curve for SU(N) theory with 2M fundamental

flavors with two fundamentals of masses bj .

We will now derive the above results using negative branes in string theory in two

different ways, as well as check them against the instanton calculus of Nekrasov.

8.4 The brane perspective

As discussed in section 8.2, following the construction in [46], we can construct N = 2

supersymmetric SU(N |M) gauge theories by suspending N ordinary D4-branes and M

negative D4-branes between two parallel (ordinary) NS5-branes. We now show how we can

use this picture to obtain the SW curve for this theory.

As a warmup exercise, let us consider an SU(N + k) theory with 2k flavors, where the

Coulomb branch and flavor masses are such that the SU(N + k) theory can be Higgsed to

an SU(N) theory as depicted in figure 12. In other words we are now in a configuration

where we can remove k D4-branes that pass through both NS5-branes. This subspace of

mass and Coulomb branch parameters of the SU(N + k) theory with 2k flavors will have

the same SW geometry as a pure SU(N) theory because the hypermultiplet and Coulomb

branch moduli spaces are decoupled. We could have described this setup in an “inverse”

manner: adding extra D4-branes that pass through both NS5-branes of the pure SU(N)

theory does not change the geometry of the Coulomb branch. We now use this idea to

solve for the SW curve of the SU(N |M) theory. See figure 13.

The idea is simple: consider now the brane realization of a N = 2 SU(N |M) gauge

theory and introduce M additional ordinary D4-branes which pass through both NS5-

branes. As already discussed, this will not affect the SW geometry of the Coulomb branch.

Next, move these additional M D4-branes so that they coincide with the M negative D4-

branes in the region between the two NS5-branes. In this way, the M D4-branes and M

– 39 –



J
H
E
P
0
2
(
2
0
1
8
)
0
5
0

NS5 NS5

N

D4
+

M M M

N

M

N

D4
−

M

Figure 13. A configuration of positive and negative D4-branes suspended between two NS5-branes

that reproduces a SU(N |M) gauge theory. This configuration can be deformed to a SU(N) theory

with 2M flavors.

negative D4-branes cancel each other out in the region between the parallel NS5-branes and

we are left with only positive branes! More precisely, the resulting configuration consists of

N ordinary D4-branes suspended between the NS5-branes, M semi-infinite ordinary D4-

branes attached to the ‘outside’ of one NS5-brane and M semi-infinite D4-branes attached

the ‘outside’ of the other NS5-brane, see figure 12. This configuration is exactly the same

as the brane construction for a SU(N) theory with 2M flavors where the masses of the

flavors are pairwise equal to the Coulomb branch parameters for the U(M) ⊂ SU(N |M)

part of the theory and hence leads to the SW curve given in (8.5).

Incidentally, the construction we have discussed here also explains some of the results

in [47] where it was shown that N and M D3-branes ending on opposite sides of an NS5-

brane engineer a U(N |M) Chern-Simons theory on the three dimensional boundary. This

configuration can be derived from the present set up by considering N ordinary D3-branes

and M negative D3-branes on the same side, which manifestly realizes a N = 4 U(N |M)

theory and naturally leads to a U(N |M) Chern-Simons theory on the boundary in the same

fashion. Adding M ordinary D3-branes passing through the NS5-branes and coinciding

with the negative D3-branes reproduces the two-sided configuration (involving only positive

D3-branes) realizing a boundary U(N |M) Chern-Simons theory as described in [47].

8.5 Geometric engineering and mirror symmetry

Next we use geometric engineering to identify the SW geometry. Let us recall how this is

done in the SU(N) case [48, 49] and then generalize the construction to the supergroup case.

We consider an AN−1 singularity in ordinary type IIA string theory,

xN = uv, (8.6)

which gives rise to a SU(N) gauge theory in d = 6. We then compactify this theory on a

P1 which gives rise to an N = 2, SU(N) gauge theory in d = 4. Next, we apply mirror

symmetry to this geometry to obtain a type IIB geometry, which leads to the SW geometry.

The mirror geometry can be assembled in pieces: the mirror of P1 leads to the z + 1/z
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monomial and the mirror of SU(N) geometry leads to det(Φ−x) = uv, the total being the

local Calabi-Yau 3-fold geometry

z + det(Φ− x) +
1

z
= uv. (8.7)

As usual, the SW curve is the surface where we set the right hand side of the above

equation equal to zero. Now we apply the same idea to a SU(N |M) theory with N = 2.

Here, to engineer a geometry corresponding to the SU(N |M) theory we require a multi-

center Taub-NUT geometry, specifically with N positive charge and M negative charge

centers, as discussed in section 4.

Moreover, since mirror symmetry in two complex dimensions is simply a hyperKähler

rotation, to get the type IIB mirror we only need to write the complex geometry associated

with this TN geometry. Recall that the standard Taub-NUT space on S1 ×R3 is given by

ds2 =
1

V
(dθ +A)2 + V dy2, (8.8)

with

V = 1 +
∑
i

Ni

2|~y − ~yi|
, (8.9)

where the Ni are positive integers and A is the vector potential dual to V , ∂iV = εijk∂jAk.

It can be given a complex structure by defining complex coordinates x = y1 + iy2 and

log u = y3 + iθ +
∑
i

Ni

2
log
(
|~y − ~yi|+ (y3 − y3

i )
)
, (8.10)

log v = −y3 − iθ′ +
∑
i

Ni

2
log
(
|~y − ~yi| − (y3 − y3

i )
)
, (8.11)

where θ and θ′ are the local coordinates on S1 associated to vector potentials with Dirac

strings located at x = xi and y3 < y3
i or y3 > y3

i , respectively. The transition function is

θ − θ′ =
∑
i

Ni arg(x− xi) , (8.12)

therefore x, u, v obey the equation

uv =
∏
i

(x− xi)Ni , (8.13)

with the holomorphic two-form Ω = du
u ∧ dx = −dv

v ∧ dx. This describes a collection of

ANi−1 singularities at the points u = v = 0, x = xi, corresponding to the Taub-NUT

charges located at ~y = ~yi.

The above analysis can be extended to the case with both positive and negative Taub-

NUT charges Ni, with the result that the right-hand side of (8.13) will contain poles as

well as zeros. This can be cast in terms of a superdeterminant with eigenvalues ai, bj :

sdet(Φ− x) =

∏
i(x− ai)∏
j(x− bj)

= uv. (8.14)
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Putting these two pieces together we obtain the mirror geometry

z + sdet(Φ− x) +
1

z
= 0 , (8.15)

as was to be shown.

There is an interesting subtlety in this derivation. By construction, every point in the

Taub-NUT geometry is mapped to a point on the complex hypersurface (8.14), but the

mapping is not one-to-one in the presence of poles (negatively charged). Since x = y1 + iy2

and arg u = θ are shared between the two descriptions, the injectivity of the map depends on

∂ log |u|
∂y3

= V . (8.16)

So long as V > 0 everywhere (or V < 0 everywhere), the map is one-to-one, but precisely

when Ni < 0 for some i, there is a V = 0 surface surrounding each negative charge, and

the map is not one-to-one in this vicinity.40

In other words, the Taub-NUT geometry is a multiple cover of (8.14), with a com-

plicated and unusual map between the two near the negative charges. Since the Seiberg-

Witten curve depends only on the complex structure, it is possible that this subtlety does

not affect its calculation. However, this point deserves further study, which might provide

additional insight into the dynamics of the corresponding N = 2 supergroup gauge theory.

8.6 Instanton calculus

We can also use Nekrasov’s instanton calculus. It is easiest to first study the SU(N |N)

case and then generalize to SU(N |M) for N > M case by taking N −M of the Coulomb

branch parameters for the SU(0|M) part to be large. One way to solve for the SW curve

of the SU(N |N) theory, as was explained to us by Nekrasov, is to relate this problem to

the following ordinary N = 2 theory: SU(N)× SU(N) with two bifundamentals where the

coupling constantes of the two SU(N)s have opposite signs τ1 = −τ2, or in the exponenti-

ated form, q1q2 = 1. The reason this comes about is that if we first break the SU(N |M)

theory to a SU(N) × SU(M) theory, the off-diagonal blocks, which are fermionic, have

ghosts associated with them that behave as if they are ordinary matter. Therefore, the

N = 2 instanton calculus and localization computation maps the supergroup case to the

ordinary N = 2 case noted above, with one restriction: since there is only one coupling τ

in the SU(N |N) theory and the coupling of the SU(N |0) and SU(0|N) theories differ by a

sign, because of the supertrace we need to impose τ1 = −τ2 = τ . Of course this is different

from the physical region of the SU(N) × SU(N) theory where Im τ1 and Im τ2 are both

positive. Nevertheless we can analytically continue the answer for the SU(N) × SU(N)

theory to the case of interest for the supergroup case.

The SW curve for the SU(N)×SU(N) with two bi-fundamental matter fields has been

worked out in [50] (see (7.81)) and was found to be:(
q2

q1

)1/4 ϑ2(z2; q2)

ϑ3(z2; q2)
=
P2(x)

P1(x)
, (8.17)

40It is interesting to note that this V = 0 surface is also a signature-changing singularity.
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where P1(x) and P2(x) are the polynomials controlling the Coulomb branches of the two

SU(N)s and q = q1q2. We are instructed to take q → 1. Using the product formulas

ϑ3(z2; q2) =

∞∏
m=1

(
1− q2m

) (
1 + q2m−1z2

) (
1 + q2m−1/z2

)
, (8.18)

ϑ2(z2; q2) = 2q1/4(z + z−1)

∞∏
m=1

(
1− q2m

) (
1 + q2mz2

) (
1 + q2m/z2

)
, (8.19)

we see that
ϑ3

ϑ2

q→1−→ 2(z + z−1). (8.20)

Identifying
P2(x)

P1(x)
= sdet(Φ− x) (8.21)

leads to

2q
−1/2
1 (z + z−1)− sdet(Φ− x) = 0 , (8.22)

which, up to rescaling of z and a choice of the scale in the theory leads to the curve (8.4)

obtained using the other string theoretic methods.

9 Potential issues and concluding remarks

In this section, we discuss some potential issues with the ideas discussed in this paper and

their possible resolution. We hope to address some of these issues in future work.

9.1 The Cauchy problem

Field theories with multiple times generically do not have a well posed initial value problem.

While the spacetime can be foliated by choosing a fiducial time direction, the initial value

surface now has mixed signature, implying that signals can propagate along the surface,

rather than just forwards in “time”. This means that for generic initial data there is no

solution to the field equations. A solution can be guaranteed by specifying initial data on

a spacelike hypersurface, but these have codimension greater than one, so the resulting

solution is highly non-unique.

While this naively seems to rule out classical determinism in a theory with multiple

times, the issue can be solved — at least in the free field case [51, 52]—by imposing

constraints on the initial data sufficient to guarantee a solution. As analyzed in [51], a

sufficient condition is to restrict the support of the initial data to spacelike/null momenta

along the initial value surface. This is an interesting, non-local constraint on the physics

which also removes unstable exponentially growing and decaying modes from the theory.

While it remains unproven whether a similar condition can be applied to an interact-

ing theory, this suggests that issues with determinism in multiple time theories may be

circumventable. A more thorough development of this topic would be of great physical and

mathematical interest.
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9.2 Stability

If negative branes exist then ordinary string theory is potentially unstable. For instance,

in type IIA string theory negative D0-branes have negative squared mass, and appear to

be tachyons. More generally, nothing seems to prevent the pair creation of an arbitrary

number of negative branes, a process which releases energy due to their negative tension.

We suggest two possible resolutions. Firstly, one could speculate that this problem is

analogous to that encountered by Dirac in quantizing the electron field. Perhaps what is

required is an appropriate analog of “filling the negative brane sea.” Unfortunately, branes

do not obey the Pauli exclusion principle, so it is unclear how “filling the sea” will prevent

the instability, but some yet unknown variation of this idea may succeed.

More concretely, we have seen that negative branes induce a dynamic change of space-

time signature. This suggests that it is perhaps too naive to treat them as negative energy

probes. In particular, while we have focused exclusively on BPS configurations of branes,

brane pair creation is inherently non-BPS, and it may be that the spacetime associated to

negative brane pair creation actually has positive energy, due to the need to create a bub-

ble connecting to one of the exotic string theory vacua. Indeed, large contributions to the

energy may arise from the divergent background fields near the singular signature-changing

domain wall.

Unfortunately, while this idea is plausible, it is nearly impossible to check: the only

reason we have been able to work with singular spacetimes with any confidence is the

high degree of supersymmetry involved. Calculating the tension of the signature-changing

domain wall without supersymmetry is presently out of reach. One approach would be

to study negative D0-branes exclusively and seek a smooth solution describing their pair

creation in the M-theory lift. Even this is technically quite involved, and we will not

attempt it in the present work.

Another process of interest is the mixing between vacua with no branes and those with

mutually BPS coincident pairs of positive and negative branes. Since the brane tensions

and charges cancel, these vacua are nearly indistinguishable from each other, and there

may be instantons connecting them. If so, the true vacuum of the theory will involve a

superposition, and may realize the vague notion of “filling the sea” discussed above.

Addressing such questions of stability is imperative for the consistency of negative

branes and the associated exotic string theories. We leave this as an important open

problem for future work.

9.3 Complex actions and holography

Another confusing aspect of many of the exotic string and field theories we have described

are the complex effective actions that naturally appear, as we saw in the context of R4

corrections in section 5–7. However, in some situations this appears to be a feature, not a

bug. Besides the natural connection between imaginary curvature corrections and branch

cuts in the λ-plane that we discovered in section 5, holography with emergent time such as

the dS/CFT correspondence [53] appears to be another such example. Conventional logic

implies that CFTs dual to de Sitter space are pure Euclidean. However, a holographic rep-
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resentation of quantum mechanics will necessarily lead to complex amplitudes, reproducing

the familiar quantum phase factors eiS/~. This suggests that the corresponding Euclidean

CFT should have a complex, or even purely imaginary action.

Note that the path-integral for a Euclidean supergroup gauge theory∫
[DA] ei

∫
StrF 2

, (9.1)

is less problematic then the (Wick-rotated) Lorentzian case, since it is merely rapidly

oscillating instead of divergent, and may admit a convergent regulator. Of course, the

issue with complex actions in the exotic string theories we consider is somewhat more severe

because, unlike the above example, these actions do not have a definite phase. Nonetheless,

while puzzling in its implications for semiclassical dynamics, a complex effective action is

not obviously inconsistent.

9.4 Consistency of the low energy limit

In section 6 we have attempted to extract as much information as possible about the exotic

string theories from their low energy effective actions. This is advantageous, as these

actions are perhaps simpler to work with than any worldsheet description, are available in

M-theory as well as string theory, and are derived from dualities and known results (unlike

the consistent but conjectural Euclidean worldsheet description developed in section 7).

Nonetheless, there could be problems with taking the low energy limit in a theory

without a positive-definite notion of energy. Because of the existence of negative energy

excitations, in principle such a theory can generate high energy excitations from minimal

input energy. If this occurs, the low-energy effective description would likely be invalidated.

However, the solution to the stability problem mentioned above may prevent this from

happening. So long as negative energy excitations only appear off shell and not in the final

state, high energy modes cannot be produced on shell either, and an effective field theory

approach may still be justified.

To illustrate these issues, we consider the exotic string theories IIB+−
9,1 and IIB−+

9,1 .

These can be described as M-theory on a mixed signature torus T 1,1 in the small vol-

ume limit, by analogy with the usual M-theory construction of F-theory. Similar to the

discussion in section 9.1 above, null rays can propagate along the T 1,1 due to its mixed

signature. As a result, some KK modes will be massless for most choices of metric on T 1,1.

In particular, the KK mode masses are

m2
KK = − 1

R2
· 2(mτ+ − n)(mτ− − n)

τ+ − τ−
, (9.2)

where the metric on T 1,1 takes the form41

ds2 =
1

τ2
(dx+ τ1dy)2 − τ2dy

2 =
2

τ+ − τ−
(dx+ τ+dy)(dx+ τ−dy) , (9.3)

for τ± = τ1 ± τ2, and τ1 = C0, τ2 = e−Φ (τ2 = −e−Φ) in the dual type IIB+− (IIB−+)

description. Here x ∼= x+2πR and y ∼= y+2πR parameterize the fundamental cycles of T 1,1,

41To allow for all possible non-degenerate metrics on T 1,1, we take τ± ∈ R ∪ {∞} with τ+ 6= τ−.
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and τ+ 6= τ− describe its shape. Modular transformations on the torus map τ± → aτ±+b
cτ±+d ,

for a, b, c, d ∈ Z, ad− bc = 1.

When either τ+ or τ− is rational, there are infinitely many non-trivial solutions to

m2
KK = 0 in (9.2)! Even when τ+ and τ− are both irrational, there are an infinite number

of KK modes in the range

− 2√
5
− ε < m2

KKR
2 <

2√
5

+ ε , (9.4)

for any ε > 0,42 which is almost as bad. The failure of KK modes to decouple suggests

that naive dimensional reduction on T 1,1 may be inconsistent.

R4 corrections at strong coupling. To further illustrate the problem, we reconsider

the calculation of the R4 corrections in these theories. Our discussion in section 6 ignored

non-perturbative corrections in gs, which are present in type IIB string theory, and are

generated by integrating out the KK modes on T 2 in the M-theory description, or equiv-

alently by D-instantons in the type IIB description. In ordinary IIB++
9,1 , these corrections

take the form [39]

SR4 ∼
∫

d10x
√
|g|f(τ, τ̄)R4 , (9.5)

in Einstein frame, where τ = C0 + ie−Φ = τ1 + iτ2 and

f(τ, τ̄) = ζ(3)E 3
2
(τ, τ̄) =

∑
(m,n) 6=(0,0)

τ
3/2
2

|mτ − n|3
= 2ζ(3)τ

3/2
2 +

2π2

3
τ
−1/2
2 +O(e−2πτ2) . (9.6)

Here the summand is related to the KK mode masses, m2
KKR

2 = |mτ−n|2
τ2

, and modular

invariance is manifest because the various KK modes are interchanged under τ → aτ+b
cτ+d ,

ad−bc = 1. The first two terms are the string tree-level and one-loop corrections discussed

in section 6, and the remaining corrections are suppressed by factors of e−2π/gs .

Since the additional corrections are small, ignoring them is justifiable in this case.

However, for IIB+−
9,1 , the sum over KK modes becomes

∑
(m,n) 6=(0,0)

(
τ+ − τ−

2(mτ+ − n)(mτ− − n)

)3/2

, (9.7)

which diverges regardless of τ± due to the infinite number of KK modes satisfying (9.4)!

We can attempt to regulate (9.7), of course, but most regulators will break modular

invariance. There are two simple possibilities that respect modular invariance:

1. Assume that Im τ± 6= 0. The sum converges, and is invariant under τ± → aτ±+b
cτ±+d ,

but we cannot restrict | Im τ±| � 1 in a modular invariant fashion, so the underlying

physics is complexified.

42This can be shown using Hurwitz’s theorem: for irrational τ− there are infinitely many m, n with

gcd(m,n) = 1 such that |τ− − n
m
| < 1√

5m2 . Putting this into the mass formula and noting that
τ+−n/m
τ+−τ−

=

1 +O(1/m2) for m� 1, we obtain the desired result.
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2. Assume that τ± ∈ Q ∪ {∞} and remove the terms from the sum where n/m = τ+

or n/m = τ−. The result converges and is modular invariant, but is not a smooth

function of τ±.

Both approaches have their disadvantages.43 Ideally, we might like a smooth modular

invariant function of real τ±, but we strongly suspect this is impossible.

We will not attempt a definitive resolution this puzzle in the present paper. The

appearance of complex actions discussed above suggests that the first option may be the

right one. We note, however, that the second option has an intriguing parallel to section 9.1,

in that we remove by hand certain Fourier modes along T 1,1, in this case those with null

momenta. In type IIB language, this corresponds to removing certain tensionless (p, q)

string bound states,44 whereas in M-theory language we remove the massless non-zero

modes. This cures the problems with the KK spectrum (9.2), in that the number of KK

modes with mass below any fixed threshold is finite.

Moreover, the series (9.7) now has a finite sum. Consider the generalized Eisenstein-like

series [54]

Ẽ±s (τ+, τ−) ≡ 1

ζ(2s)

∑
(m,n) 6=(0,0)
n/m 6=τ±

(
τ+ − τ−

2(mτ+ − n)(mτ− − n)
± iε

)s
, (9.8)

for τ± ∈ Q ∪ {∞}, τ+ 6= τ−, where ε > 0 indicates the choice of branch cut. This can be

summed explicitly in terms of the Hurwitz zeta function ζ(s, x) ≡
∑∞

n=0(x+ n)−s. Fixing

τ+ = ∞ by a modular transformation, the result can be expressed in terms of τ− = q/p,

p > 0, gcd(p, q) = 1:

Ẽ±s (τ+, τ−) =
2

(2p)sζ(2s)

p∑
k=1

ζ
(
s,
k

p

)(
ζ
(
s,
[kq
p

])
± iζ

(
s,
[
−kq
p

]))
, (9.9)

where we define the symbol [x] = x+1−dxe for convenience. The modular transformations

which fix τ+ =∞ map q → q+np (τ− → τ−+n), so the result is indeed modular invariant.

The regulated R4 correction is then proportional to f(τ+, τ−) = ζ(3)Ẽ±3
2

(τ+, τ−) for

some choice of branch cut we do not attempt to fix. This result is interesting and finite,

but it is unclear how to interpret the τ± dependence as a coupling to the background fields

C0 and Φ, since the latter are continuous dynamical fields.

The above example demonstrates that low energy effective description we have used

in parts of our paper may be subject to important corrections or even may break down

entirely in some cases. This bears further consideration.

9.5 Concluding thoughts

In this paper we argued that two unusual ideas about gauge theory and string theory are

connected. Previous work has explored, on the one hand, the possibility of supergroup

43Another possibility would be to form new modular invariant combinations, similar to what is done for

theta functions for indefinite lattices. We leave the study of such a possibility to future work.
44Another possibility is that the correct low-energy description is a higher spin theory generated by these

tensionless strings.
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gauge theories and their connection to negative branes in string theory [3–5], and on the

other hand, the possibility of exotic spacetime signatures and timelike compactifications

in string theory [2, 22–24]. We have shown that these two ideas are directly related. In

particular, negative D0-branes arise from a smooth M-theory background with an S1 that

becomes timelike near the branes, giving a dynamic change of spacetime signature in the

type IIA description. Using duality arguments, all other types of negative branes can be

related to dynamic signature changes and the exotic string theories originally explored

by Hull.

It remains possible that neither of these ideas is consistent, in which case we have

added nothing to the general knowledge of string theory and gauge theory. However, the

deep connections we have found between these two seemingly disparate areas are intriguing,

and provide circumstantial evidence that both may actually be realized in string theory.

In our paper we have presented both consistency checks and puzzles. The most promis-

ing approach to definitively establish the existence of these exotic string theories would be

to non-perturbatively construct supergroup gauge theories in four dimensions, e.g., on a lat-

tice, which would in principle prove the existence of the exotic string theory IIB−−3,7 via the

AdS/CFT correspondence. While this remains a difficult (though perhaps not impossible)

problem, understanding supermatrix models is a small step in the right direction [3, 10].
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A Duality and effective actions in various signatures

To determine the supergravity actions for the exotic string theories obtained by timelike

compactification and T-duality, all we need to do is keep track of the two-derivative effective

action during compactification. Our approach is to consider a general compactification of

the supergravity actions posited in section 4.2 and to show that these actions are related

to each other under KK reduction and T-duality as claimed in the text. After matching

the actions to known results for the standard string theories, this shows that the exotic

string theories have the low energy effective actions given in section 4.2.

In section A.1 we consider the dimensional reduction from eleven-dimensional super-

gravity to type IIA supergravity, in section A.2–A.4 we discuss T-duality between type IIA
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and type IIB supergravities, and in section A.5 we discuss S-duality in type IIB supergrav-

ities. A computation of the Ricci scalar for KK reduction in arbitrary spacetime signature

is included in section A.6 for completeness.

A.1 Reduction of eleven-dimensional supergravity to IIA

We consider the theory Mβ :

S =
1

2κ2
11

∫
d11x

√
|g|
[
R− β

2
|F4|2

]
− 1

12κ2
11

∫
C3 ∧ F4 ∧ F4 , (A.1)

where β = ±1 and β = +1 gives the standard M-theory action in signature (10, 1).

We reduce this theory on a circle with the ansatz:

ds2
11 = e−

2
3

Φds2
10 + ηyye

4
3

Φ(dy + C1)2 , (A.2)

F
(11)
4 = F4 +H3 ∧ dy = F̃4 +H3 ∧ (dy + C1) , C

(11)
3 = C3 +B2 ∧ dy , (A.3)

where Fp ≡ dCp−1, H3 ≡ dB2, and F̃4 ≡ F4 − H3 ∧ C1. Here ηyy = ±1 encodes the

signature of the compact dimension, and y ∼= y + 2πR. Using (A.50), we find:

e−
2
3

ΦR(11) = R− ηyy
2
e2Φ|F2|2 −

16

3
(∇Φ)2 +

14

3
∇2Φ , (A.4)

where F2 = dC1. We also have

|F (11)
4 |2 = e

8
3

Φ|F̃4|2 + ηyye
2
3

Φ|H3|2 ,
√
|g11| = e−

8
3

Φ
√
|g10| . (A.5)

Putting this into the action and integrating by parts, we obtain:

S =
1

2κ2
10

∫
d10x

√
|g|
(
e−2Φ

[
R− α

2
|H3|2 + 4(∇Φ)2

]
− αβ

2
|F2|2 −

β

2
|F̃4|2

)
− 1

4κ2
10

∫
B2 ∧ F4 ∧ F4 , (A.6)

for α ≡ βηyy = ±1 and κ2
10 ≡ κ2

11/(2πR), which is the action for IIAαβ .

A.2 IIA compactified on a circle

To determine the T-dual of IIAαβ , we start with the action (A.6),45 and compactify on a

circle with the ansatz:

ds2
10 = ds2

9 + γe2σ(dy +A1)2 ,

F̃
(10)
4 = F̃4 + F̃3 ∧ (dy +A1) , C

(10)
3 = C3 + C2 ∧ (dy +A1) ,

F̃
(10)
2 = F̃2 + F1 ∧ (dy +A1) , C

(10)
1 = C1 + C0 ∧ (dy +A1) ,

H
(10)
3 = H̃3 +H2 ∧ (dy +A1) , B

(10)
2 = B2 +B1 ∧ (dy +A1) ,

(A.7)

45For simplicity, we set the Romans mass to zero.

– 49 –



J
H
E
P
0
2
(
2
0
1
8
)
0
5
0

where γ = ±1 specifies the signature of the compact dimension,

F̃4 ≡ F4 +G2 ∧ C2 − H̃3 ∧ C1 , F̃2 ≡ F2 +G2 ∧ C0 ,

F̃3 ≡ F3 +H2 ∧ C1 − H̃3 ∧ C0 , H̃3 ≡ H3 −G2 ∧B1 ,
(A.8)

and G2 = dA1, Hp = dBp−1, and Fp = dCp−1. These satisfy the modified Bianchi

identities:
dF̃4 = G2 ∧ F̃3 + H̃3 ∧ F̃2 , dF̃2 = G2 ∧ F1 ,

dF̃3 = H2 ∧ F̃2 + H̃3 ∧ F1 , dH̃3 = −G2 ∧H2 .
(A.9)

Using

R(10) = R(9) − 1

2
γe2σ|G2|2 − 2e−σ∇2eσ ,

√
|g(10)| = eσ

√
|g(9)| ,

|F̃ (10)
4 |2 = |F̃4|2 + γe−2σ|F̃3|2 , |F̃ (10)

2 |2 = |F̃2|2 + γe−2σ|F̃1|2 ,

|H(10)
3 |2 = |H̃3|2 + γe−2σ|H2|2 ,

(A.10)

we obtain the dimensionally reduced action:

S =
1

2κ2
9

∫
d9x
√
|g|eσ−2Φ

[
R+ 4∇Φ·∇(Φ− σ)− α

2
|H̃3|2 −

αγ

2
e−2σ|H2|2 −

γ

2
e2σ|G2|2

]
− 1

4κ2
9

∫
d9x
√
|g|
[
αβγe−σ|F1|2 + αβeσ|F̃2|2 + βγe−σ|F̃3|2 + βeσ|F̃4|2

]
− 1

4κ2
9

∫
[B1 ∧ F̂4 ∧ F̂4 + 2B2 ∧ F3 ∧ F̂4] , (A.11)

where κ2
9 = κ2

10/(2πR) and F̂4 ≡ F4 +G2∧C2. Here, gauge invariance of the Chern-Simons

term can be proven by taking the formal exterior derivative of the integrand, which is

d[B1 ∧ F̂4 ∧ F̂4 + 2B2 ∧ F3 ∧ F̂4] = H2 ∧ F̃4 ∧ F̃4 + 2H̃3 ∧ F̃3 ∧ F̃4 , (A.12)

equivalent to the dimensional reduction of d(B2 ∧ F4 ∧ F4) = H3 ∧ F̃4 ∧ F̃4.

A.3 IIB compactified on a circle

We compare this result with the compactification of IIBαβ , which has the pseudo action

S =
1

2κ2
10

∫
d10x

√
|g|e−2Φ

[
R− α

2
|H3|2 + 4(∇Φ)2

]
− 1

4κ2
10

∫
d10x

√
|g|
[
αβ|F1|2 + β|F̃3|2 +

αβ

2
|F̃5|2

]
− 1

4κ2
10

∫
B2 ∧ F3 ∧ F5 , (A.13)

where F̃3 = F3 − H3 ∧ C0, F̃5 = F5 − H3 ∧ C2, and the equations of motion need to be

supplemented with the self-duality constraint, F̃5 = αβ ? F̃5. We compactify on a circle

with the ansatz:46

ds2
10 = ds2

9 + γe2σ(dy +A1)2 ,

F̃
(10)
5 = F̃5 + F̃4 ∧ (dy +A1) , C

(10)
4 = C4 + C3 ∧ (dy +A1) ,

F̃
(10)
3 = F̃3 + F̃2 ∧ (dy +A1) , C

(10)
2 = C2 + C1 ∧ (dy +A1) ,

H
(10)
3 = H̃3 +H2 ∧ (dy +A1) , B

(10)
2 = B2 +B1 ∧ (dy +A1) ,

(A.14)

46We do not consider the case where F1 has a leg along the compact circle, which is T-dual to a non-zero

Romans mass.
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where γ = ±1 specifies the signature of the compact dimension,

F̃5 ≡ F5 −G2 ∧ C3 − H̃3 ∧ C2 ,

F̃4 ≡ F4 −H2 ∧ C2 − H̃3 ∧ C1 , F̃2 ≡ F2 −H2 ∧ C0 ,

F̃3 ≡ F3 −G2 ∧ C1 − H̃3 ∧ C0 , H̃3 ≡ H3 −G2 ∧B1 ,

(A.15)

and G2 = dA1, Hp = dBp−1, and Fp = dCp−1. These satisfy the modified Bianchi

identities:
dF̃5 = −G2 ∧ F̃4 + H̃3 ∧ F̃3 ,

dF̃4 = −H2 ∧ F̃3 + H̃3 ∧ F̃2 , dF̃2 = −H2 ∧ F1 ,

dF̃3 = −G2 ∧ F̃2 + H̃3 ∧ F1 , dH̃3 = −G2 ∧H2 .

(A.16)

Using

R(10) = R(9) − 1

2
γe2σ|G2|2 − 2e−σ∇2eσ ,

√
|g(10)| = eσ

√
|g(9)| ,

|F̃ (10)
5 |2 = |F̃5|2 + γe−2σ|F̃4|2 , |F̃ (10)

3 |2 = |F̃3|2 + γe−2σ|F̃2|2 ,

|H(10)
3 |2 = |H̃3|2 + γe−2σ|H2|2 ,

(A.17)

we obtain the dimensionally-reduced pseudo-action:

S =
1

2κ2
9

∫
d9x
√
|g|eσ−2Φ

[
R+ 4∇Φ·∇(Φ− σ)− α

2
|H̃3|2 −

αγ

2
e−2σ|H2|2 −

γ

2
e2σ|G2|2

]
− β

4κ2
9

∫
d9x
√
|g|
[
αeσ|F1|2 + eσ|F̃3|2 + γe−σ|F̃2|2 +

α

2
eσ|F̃5|2 +

αγ

2
e−σ|F̃4|2

]
+

1

4κ2
9

∫
[F̃4 ∧ F̃5 +A1 ∧ F̂4 ∧ F̂4 − 2B̂2 ∧ F3 ∧ F̂4] , (A.18)

where κ2
9 = κ2

10/(2πR), F̂4 ≡ F4−H2∧C2, and B̂2 ≡ B2+B1∧A1. The manipulations lead-

ing to the Chern-Simons term given above can be quite complicated. To simplify them, we

write the ten-dimensional Chern-Simons term in a formal, manifestly gauge-invariant way:

SCS = − 1

4κ2
10

∫
X11

H
(10)
3 ∧ F̃ (10)

3 ∧ F̃5 , (A.19)

where X11 is an eleven-dimensional manifold whose boundary is the ten-dimensional space

of interest. Reducing on a circle, we obtain

SCS =
1

4κ2
9

∫
X10

[−H2 ∧ F̃3 ∧ F̃5 + H̃3 ∧ F̃2 ∧ F̃5 − H̃3 ∧ F̃3 ∧ F̃4] . (A.20)

Using

d[F̃4 ∧ F̃5] = −H2 ∧ F̃3 ∧ F̃5 + H̃3 ∧ F̃2 ∧ F̃5 −G2 ∧ F̃4 ∧ F̃4 + H̃3 ∧ F̃3 ∧ F̃4 ,

d[A1 ∧ F̂4 ∧ F̂4 − 2B̂2 ∧ F3 ∧ F̂4] = G2 ∧ F̃4 ∧ F̃4 − 2H̃3 ∧ F̃3 ∧ F̃4 ,
(A.21)

we recover the above result.
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The self-duality constraint is now

F̃5 = −e−σαβγ ? F̃4 , (A.22)

hence the potentials C3 and C4 are electromagnetic duals, and not independent. The terms

of the pseudo-action which depend on C4 are

Ŝ = − 1

4κ2
9

∫ [
αβ

2
eσF̃5 ∧ ?F̃5 − F̃4 ∧ F̃5

]
, (A.23)

where C4 does not appear explicitly and the variation of the action with respect to F5 is

Ŝ = − 1

4κ2
9

∫
δF5 ∧ (eσαβ ? F̃5 − F̃4) , (A.24)

which is proportional to the self-duality constraint. Thus, if we replace F5 = dC4 with an

auxilliary field Λ5, then the Λ5 equation of motion enforces the constraint and Λ5 can be

integrated out to give:

Ŝ = − 1

4κ2
9

∫
αβγ

2
e−σF̃4 ∧ ?F̃4 . (A.25)

Having solved the constraint, the pseudo-action becomes the bona fide action

S =
1

2κ2
9

∫
d9x
√
|g|eσ−2Φ

[
R+ 4∇Φ·∇(Φ− σ)− α

2
|H̃3|2 −

αγ

2
e−2σ|H2|2 −

γ

2
e2σ|G2|2

]
− 1

4κ2
9

∫
d9x
√
|g|
[
αβeσ|F1|2 + βγe−σ|F̃2|2 + βeσ|F̃3|2 + αβγe−σ|F̃4|2

]
− 1

4κ2
9

∫
[−A1 ∧ F̂4 ∧ F̂4 + 2B̂2 ∧ F3 ∧ F̂4] . (A.26)

A.4 Buscher rules

To read off the Buscher rules, we compare the actions (A.11), (A.26), bearing in mind the

differences between (A.8) and (A.15). We find that the actions are mapped to each other

by the field redefinitions

σ → −σ , Φ→ Φ− σ ,
A1 → −B1 , B1 → −A1 , B2 → B2 +B1 ∧A1 ,

(A.27)

in the NS-NS sector, with Cp and gµν invariant, where the signs α, β, γ are related by

IIAα,β
γ
∼= IIBα,βγ

αγ , (A.28)

and the subscript denotes the signature of the compact dimension. These are the T-

duality relations derived from brane considerations in section 4.1. Written in components,

the rules (A.27) become

g′yy = α
1

gyy
, g′ym = α

Bym
gyy

, g′mn = gmn +
αBymByn − gymgyn

gyy
, (A.29)

Φ′ = Φ− 1

2
log |gyy| , B′ym =

gym
gyy

, B′mn = Bmn +
gymByn − gynBym

gyy
, (A.30)

which reproduce the usual Buscher rules for α = +1.
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A.5 Einstein frame and S-duality

The above discussion covers all possible T-dualities between type IIA and type IIB theories,

as well as S-dualities between type IIA theories and M theories, at the two derivative

level. This is sufficient to connect any two theories by dualities, hence to derive the two-

derivative effective action for all of the exotic string theories considered by Hull. As a

further consistency check, we verify the S-dualities between type IIB theories shown in

figures 3, 4 at the two derivative level.

The type IIBαβ pseudo-action becomes

S =
1

2κ2
10

∫
d10x

√
|g|
[
R− 1

2
(∇Φ)2 − αβ

2
e2Φ|F1|2 −

αβ

4
|F̃5|2

]
− 1

4κ2
10

∫
d10x

√
|g|
[
βeΦ|F̃3|2 + αe−Φ|H3|2

]
− 1

4κ2
10

∫
C4 ∧H3 ∧ F3 , (A.31)

in Einstein frame, where

gµν = e−Φ/2g(str)
µν , C4 = C

(str)
4 − 1

2
B2 ∧ C2 , (A.32)

so that F̃5 = F5− 1
2C2∧H3 + 1

2B2∧F3 , with F̃5 = αβ ? F̃5 as before. To make the SL(2,Z)

invariance explicit, we form the hypercomplex combinations

τ ≡ C0 + je−Φ , G3 ≡ F3 − τH3 , (A.33)

where j is a hypercomplex number satisfying j2 = −αβ and j∗ = −j. Written in terms of

τ and G3, the pseudo-action becomes

S =
1

2κ2
10

∫
d10x

√
|g|
[
R− αβ

2(Im τ)2
|dτ |2 − β

2 Im τ
|G3|2 −

αβ

4
|F̃5|2

]
− 1

4κ2
10

∫
C4 ∧H3 ∧ F3 , (A.34)

where we define |Gp|2 ≡ 1
p!G

µ1...µpG∗µ1...µp for hypercomplex forms. This action is invariant

under the SL(2,R) transformation

τ ′ =
aτ + b

cτ + d
,

(
F ′3
H ′3

)
=

(
a b

c d

)(
F3

H3

)
, ad− bc = 1 , (A.35)

where

dτ ′ =
dτ

(cτ + d)2
, G′3 =

G3

cτ + d
, Im τ ′ =

Im τ

|cτ + d|2
. (A.36)

The spectrum of branes is only invariant for a, b, c, d ∈ Z, so that the symmetry of the full

theory is SL(2,Z).

Note that for αβ = +1, we can choose j = i so that τ is a complex number, whereas

for αβ = −1, j generates the split complex numbers. In the former case, τ → aτ+b
cτ+d maps

the upper half plane Im τ > 0 to itself, whereas in the latter it does not. In cases where
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Im τ ′ < 0 we can redefine τ → τ∗, G3 → G∗3 to fix Im τ > 0, but this maps β → −β
with αβ = −1 fixed, exchanging IIB+− with IIB−+. This implies that for C0 = 0 IIB+−

and IIB−+ are S-dual (related by τ → −1/τ). More generally, it is convenient to think

of IIB+− and IIB−+ as occupying the upper and lower half of the split-complex plane,

with τ → aτ+b
cτ+d mapping some points to the same half plane and some to the opposite. By

contrast, for IIB++ and IIB−− τ is confined to the upper half of the complex plane, and

the theory is self-dual for any τ .

A.6 Riemann tensor computation

We consider the metric ansatz:

dŝ2
d+1 = ds2

d + ηyye
2λ(dy +A)2 = ηijθ

iθj + ηyyθ
2 , (A.37)

where ηij and ηyy are arbitrary constants (allowing any signature), and θ = eλ(dy + A).

We compute:

dθ = dλ ∧ θ + eλF , dθi = −ωij ∧ θj , (A.38)

where ωij is the spin connection for ds2
d and F ≡ dA. The solution to Cartan’s structure

equations is:

ω̂ij = ωij − ηyyeλ
1

2
F ijθ , ω̂yi = (∇iλ)θ + eλ

1

2
Fijθ

j , ω̂iy = −ηyyηijω̂yj , (A.39)

where ω̂ij is the spin connection for dŝ2
d+1.

To compute the curvature two-form, we note that all factors of ωij must eventu-

ally cancel from the result by general covariance, except for derivatives of ωij , such as

dωij = Rij − ωij ∧ ω
j
k, so we can set ωij = 0 without loss of generality where it appears

undifferentiated. We then have:

dFij = (∇kFij)θk
(
ωij = 0

)
, (A.40)

and so on for other tensors. We find:

R̂ij = Rij −
1

4
ηyye

2λF ikFjlθ
k ∧ θl − 1

2
ηyye

2λF ijF −
1

2
ηyye

λ
(
∇kF ij

)
θk ∧ θ

−1

2
ηyye

λ(∇iλ)Fjlθ ∧ θl −
1

2
ηyye

λ(∇jλ)F ikθ
k ∧ θ − ηyyeλF ijdλ ∧ θ , (A.41)

R̂yi = (∇iλ)[dλ ∧ θ + eλF ] +
1

2
eλFijdλ ∧ θj + (∇i∇jλ)θj ∧ θ

+
1

2
eλ(∇kFij)θk ∧ θj −

1

4
ηyye

2λFijF
j
kθ ∧ θ

k , (A.42)

R̂iy = −ηyyηijR̂yj , (A.43)

where Rij denotes the curvature two-form for ds2
d. From this, we compute the Ricci one-

form RB = iEARAB:

R̂j = Rj −
1

2
ηyye

2λF ijFikθ
k − 1

2
ηyye

−2λ∇i(e3λF ij)θ − e−λ(∇i∇jeλ)θi , (A.44)

R̂y =
1

4
η2
yye

2λF ijFijθ −
1

2
ηyye

−2λ∇i(e3λF ij)θ
j − ηyye−λ(∇2eλ)θ , (A.45)
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and the Ricci scalar R = ηABiEARB:

R̂ = R− 1

4
ηyye

2λF ijFij − 2e−λ∇2eλ . (A.46)

This result can be combined with the well-known conformal transformation of the Ricci

scalar to generalize the ansatz. For dŝ2
d = e2ωds2

d we have

e2ωR̂ = R− (d− 1)(d− 2)(∇ω)2 − 2(d− 1)∇2ω , (A.47)

e2ω∇̂2φ = ∇2φ+ (d− 2)∇ω · ∇φ . (A.48)

Thus, for the more general ansatz

dŝ2
d+1 = e2ωds2

d + ηyye
2λ(dy +A)2 , (A.49)

we obtain

e2ωR̂ = R− 1

4
ηyye

2(λ−ω)F ijFij − (d− 1)(d− 2)(∇ω)2

− 2(d− 1)∇2ω − 2(∇λ)2 − 2∇2λ− 2(d− 2)∇ω · ∇λ . (A.50)

B Comments on pp-waves

In this appendix, we briefly describe the properties of the pp-wave background (3.10) for

negative D0 branes, comparing with the well-known case of ordinary (positive) D0 branes.

The M -theory metric is

ds2
11 = d~x2 + 2dtdy +Hdy2 (B.1)

where y ∼= y + 2πR11 and H = 1 + Q
r7

where Q > 0 (Q < 0) for positive (negative) branes.

This metric is singular at r = 0 for any Q 6= 0. Because all curvature invariants

vanish for a pp-wave, this is non-trivial to check. One can for instance consider a geodesic

that intersects r = 0, construct an orthonormal frame at some point with r > 0 along

the geodesic, and parallel transport the frame along the geodesic to r = 0.47 Measuring

the components of the Riemann tensor in the chosen frame, one finds that they diverge,

whereas for any smooth metric this cannot occur. Therefore, r = 0 is an actual singularity

in the metric, not just a coordinate singularity.

For the positive brane case, Q > 0, this singularity is well known and corresponds to

the fact that supergravity solutions for Dp branes in string theory have singular horizons

for p 6= 3. (This is a general fact about extremal black p-branes with non-zero dilaton

coupling.) Here the r = 0 plane corresponds upon dimensional reduction to the singular

horizon of a stack of D0 branes in type IIA string theory.

To determine the nature of the r = 0 singularity in the negative brane case, Q < 0, we

consider geodesics which approach it. The geodesic equations for (B.1) are

ÿ = 0 , ẗ+ ẏ(~̇x · ~∇H) = 0 , ~̈x− ẏ2

2
~∇H = 0 . (B.2)

47For instance, du, dv + (H/2)du and dxi can be shown to be parallel transported along any curve with

constant u, where ds2 = 2du(dv + (H/2)du) + d~x2. Since there are geodesics with constant u which reach

r = 0, this choice of frame is sufficient to probe the singularity.
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There are then two kinds of geodesics: those with constant y, which are straight lines in

the (t, ~x) plane, and those with constant ẏ 6= 0. Among the first class, the geodesics are

null if ~̇x = 0 and spacelike otherwise, so in particular the only geodesics in this class which

can approach r = 0 are spacelike.

We now consider the second class of geodesics. Note that the second equation in (B.2)

follows from the third equation and

Hẏ2 + 2ẏṫ+ ~̇x2 = µ , (B.3)

for some constant µ = gµν ẋ
µẋν , where we can fix µ = 0,+1 or −1 by rescaling the affine

parameter, corresponding to null, spacelike, and timelike geodesics, respectively. This

equation specifies how the coordinate time t evolves along the geodesic. The remaining

differential equation is that for Newtonian motion in the ~x plane with potential energy

Veff = − ẏ2

2 H. The potential is central, hence only radial geodesics can reach r = 0. For

Q > 0 (the positive brane case), there is an infinite potential well at r = 0, and radial

geodesics approaching r = 0 exist, whether timelike, spacelike or null. By contrast, for

Q < 0, there is an infinite potential barrier at r = 0 and no geodesics of this type can

reach it.

Thus, in the negative brane case the singularity at r = 0 has the interesting property

that timelike and null geodesics cannot reach it! More generally, one could consider timelike

worldlines that are not geodesics. These can reach r = 0 in finite proper time, but as we

show in section B.1, the proper acceleration along such a worldline diverges.

To interpret this, we first consider the negative brane pp-wave (B.1) in the decompact-

ification limit, where the periodic identification y ∼= y + 2πR11 is absent. In this case, the

spacetime has no closed timelike curves because ẏ 6= 0 on timelike worldlines, which there-

fore never self-intersect. The spacetime is thus causally well behaved and as argued above

the r = 0 singularity is causally isolated from the spacetime: finite energy processes cannot

access it. Therefore, it is consistent to omit it from the spacetime entirely, and we obtain a

smooth M-theory background with no curvature corrections and no apparent pathologies.

We now compactify by identifying y ∼= y + 2πR11. This is a non-trivial step, not

only because it introduces closed timelike curves like any timelike compactification, but

also because we previously relied on the causal structure of the spacetime to exclude the

singularity at r = 0, whereas now this structure is disrupted by the closed timelike curves.

Indeed, we cannot ignore these issues since any complete treatment must impose the quan-

tization condition

Q ∈
(2π)7`9P

7R2
11 VolS8

· Z , (B.4)

which is trivial for R11 →∞ but non-trivial for finite R11.

The same condition must arise in the pp-wave description of “ordinary” (positive)

D0 branes in Hull’s IIA−+
10,0 exotic string theory (if it exists), which is (B.1) with H =

−1− Q
r7

. Observe that this spacetime is nearly the same as the negative D0 brane pp-wave

we have been considering, with the same issues as above; in fact, it is identical in the

decompactification limit, differing only by a coordinate redefinition t→ t+ y.
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A resolution of these compactification issues is beyond the scope of this paper, in part

because we know of no existing criteria for what is a “good” spacetime with closed timelike

curves. We speculate, however, that the correct method of excluding the r = 0 singularity

in the compact case (with closed timelike curves) will ultimately impose the quantization

condition (B.4) as a prerequisite for this exclusion in both the negative brane and exotic

positive brane cases.

Finally, we note in passing that there is a potential duality connection between these

two similar but distinct spacetimes which is very much in the same spirit as the connection

between negative branes and exotic spacetime signatures explored throughout this paper.

Beginning with N D0 branes in Hull’s IIA−+
10,0 (with warp factor H = −1 − Q

r7
), we com-

pactify on a circle with the D0 brane worldlines wrapping the circle. In M-theory language,

this corresponds to introducing a further periodic identification t ∼= t+ 2πR10. Redefining

t→ t+ y, the warp factor becomes H = 1− Q
r7

but the periodic identification is

(y, t) ∼= (y, t) + 2πR11(1,−1) , t ∼= t+ 2πR10 . (B.5)

However, if R10 = R11 then this is equivalent to y ∼= y+ 2πR11, t ∼= t+ 2πR10, which is the

negative brane background with the time circle compactified!48 This intriguing connection

deserves further study, but we will not attempt it here.

B.1 Proof of causal isolation of r = 0

Here we show that for the negative brane case, timelike worldlines which reach r = 0

in finite proper time have infinite proper acceleration. Together with the fact that null

geodesics cannot reach r = 0, this shows that the r = 0 singularity is causally isolated from

the spacetime.

The covariant acceleration is aµ = (u · ∇)uµ where uµ = d
dτ x

µ is the covariant velocity

and τ is fixed up to constant shifts by the constraint uµu
µ = −1. Since uµa

µ = 0 the

covariant acceleration is always spacelike (or vanishing). Its components aµ = (ay, at, ~x)

are the left-hand sides of the geodesic equations (B.2), and its invariant magnitude is

given by

a2 =
ÿ2

ẏ2
+

[
~̈x− 1

2
ẏ2~∇H − ÿ

ẏ
~̇x

]2

, (B.6)

which is non-negative as expected, where we use the constraint uµu
µ = −1 and its derivative

to eliminate ẗ from the expression.

We proceed by contradiction. If (B.6) remains finite along the worldline, then both

terms must be individually finite. In particular, if we reach r = 0 in finite proper time then∫
ÿ

ẏ
dτ = log

ẏfinal

ẏinitial
, (B.7)

48More generally, if R10 6= R11 we need to introduce a C1 Wilson line on the IIA circle to relate the

two backgrounds, and charge quantization and modular invariance seem to require that this Wilson line is

quantized. This is possibly related to the issues discussed in section 9.4.

– 57 –



J
H
E
P
0
2
(
2
0
1
8
)
0
5
0

is finite. In particular, this implies that |ẏ| has a finite lower bound, |ẏ| > Y0 > 0 for some

fixed Y0. This means that the integral

I =

∫ r2

r1

Ar
ẏ2

dr , (B.8)

must also be finite, where r(τ) is assumed to be monotonic for the time period in question

and Ar is the radial component of ~A := ~̈x− 1
2 ẏ

2~∇H − ÿ
ẏ ~̇x. Writing ~x = rx̂, we find

Ar = r̈ − r ˙̂x2 − 1

2
ẏ2 dH

dr
− ÿ

ẏ
ṙ , (B.9)

from which we obtain

I =
1

2

[
ṙ2

ẏ2
−H

]r2
r1

−
∫ r2

r1

r ˙̂x2dr , (B.10)

where we substitute dr = ṙdτ to integrate the first and last terms in Ar.

Suppose first that there is a time after which r decreases monotonically to zero. In this

case, let r2 be fixed and finite and take r1 → 0 in the above integral. For Q < 0, H → −∞
as r → 0, causing a divergence I → −∞ from the H boundary term at r1 which cannot

be cancelled by either the centrifugal integral or the ṙ2/ẏ2 boundary term at r1, both of

which are negative semidefinite. Thus, the integral diverges, which is a contradiction.

The remaining case, where ṙ changes sign an infinite number of times before we reach

r = 0 in a finite proper time, τ = 0 for definiteness, is clearly pathological. We can deal

with it as follows. We break the worldline into segments τ1 < τ < τ2 with ṙ(τ1,2) = 0 and

r(τ) monotonic on each segment. Evaluating I for each segment, we obtain a lower bound

|I| ≥ |H(r2)−H(r1)|/2, which translates into a lower bound on |Ar|(max) for the segment:

|Ar|(max) ≥ Y 2
0

2|r1 − r2|
·
∣∣∣∣Qr7

2

− Q

r7
1

∣∣∣∣ , (B.11)

where we use |ẏ| ≥ Y0 as above. Consider an outgoing segment, r2 > r1. We must have:

(ṙ)max ≥
r2 − r1

τ2 − τ1
, (−r̈)max ≥ −

0− (ṙ)max

τ2 − τ1
≥ r2 − r1

(τ2 − τ1)2
. (B.12)

The other contributions to Ar are negative definite, except for − ÿ
ẏ ṙ, which however is

bounded by ∣∣∣∣ ÿẏ ṙ
∣∣∣∣ ≤ (ṙ)maxY1 (B.13)

where |ÿ/ẏ| ≤ Y1 must be bounded for a2 to be bounded. Thus, for τ2 − τ1 � Y1, which

inevitably occurs as we approach r = 0 in this pathological manner, the last term in Ar is

small compared to (−r̈)max and we have

|Ar|max &
|r2 − r1|

(τ2 − τ1)2
. (B.14)

The same result is easily obtained for ingoing segments, r1 > r2. Combining (B.11)

and (B.14), we find

(A2
r)

max &
Y 2

0

2(τ2 − τ1)2
·
∣∣∣∣Qr7

2

− Q

r7
1

∣∣∣∣ . (B.15)
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The only way that |Ar| can remain bounded consistent with this constraint as we approach

τ = 0 and r = 0 is if |r1 − r2| � r1,2, but then the right-hand side of (B.11) blows up.

Therefore |Ar| is unbounded, which is a contradiction.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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