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1 Introduction

One of the central and most striking pillars of black hole thermodynamics is the Bekenstein-

Hawking entropy formula, which relates the entropy of a black hole to the area of its event

horizon [1, 2]. The notion that the microscopic degrees of freedom of a spacetime are con-

trolled by degrees of freedom on a codimension-one surface is known as holography, and the

area/entropy formula has been generalized in various directions. One such generalization

comes from the AdS/CFT correspondence in the form of the Ryu-Takayanagi formula (or

its covariant generalization by Hubeny, Rangamani, and Takayanagi [HRT]) [3–5]. This

formula relates the entropy of the dual CFT in some boundary region with the area of an

extremal surface through the bulk. A second generalization comes from the conjectured

Covariant Entropy Bound (or Bousso bound) which states that the area of an achronal

codimension 2 surface σ bounds some entropy flux through any orthogonal null congruence

to σ having non-positive expansion (θ ≤ 0). As noted in [6], marginally trapped surfaces

have a special status with respect to this bound, as the two future-directed congruences

have θ = 0 and θ ≤ 0. When the Null Curvature condition holds, the bound would then

apply to both congruences (and both future and past directions of the θ = 0 congruence).

Such surfaces can be stitched together to form a continuous codimension-one surface, called

a holographic screen, in which case the marginally trapped surfaces are called leaves of the

screen. It was further shown in [7, 8] that the leaves of the holographic screen obey a

monotonic area law, and thus presumably a thermodynamic second law.
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Despite this thermodynamic property, the nature of the entropy described by holo-

graphic screens has remained unclear.1 In contrast, the Ryu-Takayanagi formula computes

the von Neumann entropy, tr(ρ log ρ), of the dual CFT density matrix ρ. A natural ques-

tion, then, is whether these two notions can be connected. A first step in this direction is to

notice that the extremal surface used by RT has vanishing expansions in both of its orthog-

onal null directions. Though the usual definitions of marginally trapped surfaces require

that they be compact, if we generalize to the non-compact case the extremal surface can be

thought of as a leaf of a holographic screen.2 This suggests that it may be useful to define

a general notion of non-compact holographic screen anchored to appropriate boundary sets

∂A on an asymptotically locally anti-de Sitter (AlAdS) boundary.

We explore the properties of such screens below when all leaves are anchored to the

same boundary set ∂A, whereas for RT/HRT we take ∂A to be the boundary of a partial

Cauchy surface A for the boundary spacetime. In contrast, as can be seen by considering

screens where every leaf is an extremal surface, letting the anchor set vary from leaf to leaf

would generally result in infinite area-differences of either sign between nearby leaves, so

such screens do not appear to satisfy a useful second law of thermodynamics. However,

many of our results would nevertheless apply to that case as well.

We begin in section 2 with a brief review and discussion of the method we will use

to construct marginally trapped surfaces anchored to the AdS boundary. Section 3 then

shows that, with certain assumptions, a marginally trapped surface must lie inside the

entanglement wedge but outside the causal wedge associated with the same boundary

region. We further show that the area of the marginally trapped surface equals or exceeds

that of the corresponding extremal surface, suggesting that it describes a coarse graining

of the von Neumann entropy. In addition, when a marginally-trapped surface anchored at

∂A lies in the past horizon defined by an appropriate boundary region S (with ∂S = ∂A),

a construction naturally called future causal holographic information also gives on upper

bound on the marginally-trapped area. Section 4 studies divergences in the area of the

marginally trapped surfaces associated with the region near the AdS boundary and shows

that, while the leading order divergences of our marginally trapped surfaces match those of

the extremal surface, the subleading divergences generally differ. Section 5 then generalizes

the thermodynamic results of [7, 8] to holographic screens with non-compact leaves. We

close with some brief discussion in section 6. In particular, for surfaces on the past horizon

of a boundary set S as above, we note that the results of section 5 can take the form of a

standard second law in that they imply non-decrease in area under arbitrary deformations

of S toward the future, so long as ∂S remains fixed and the holographic screen moves in a

spacelike direction.

2 Preliminaries

This section provides some definitions and lemmas that will be used throughout the work

below. It also summarizes the method we use to construct boundary-anchored holographic

screens and thus defines the class of such surfaces to be studied.
1During the preparation of this work, [20] appeared which further clarified this issue. See section 6 for

further comments on [20].
2The connection between AdS/CFT holography and the Covariant Entropy Bound was explored in [5].
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We assume that the bulk spacetime obeys the Null Curvature Condition, Rabk
akb ≥ 0

for any null vector ka and is AdS globally hyperbolic. The latter condition (see e.g. [9])

means that there is an achronal surface Σ for which the AdS-domain of dependence D(Σ) =

D+(Σ) ∪ D−(Σ) is the entire spacetime. Here D+(Σ) (D−(Σ)) is the set of points p for

which all past-inextendible (future-inextendible) causal curve through p intersects either Σ

or the AlAdS boundary.

Definition. A future holographic screen H is a smooth hypersurface which admits a fo-

liation by marginally trapped surfaces, called leaves. A marginally trapped surface is a

smooth, codimension-two achronal spacelike surface whose future directed orthogonal null

congruences, k and `, have expansions satisfying

θk = 0,

θ` ≤ 0.
(2.1)

Similarly, we can define a past holographic screen as a smooth hypersurface which admits a

foliation by marginally anti-trapped surfaces, so that θl ≥ 0. Note that an extremal surface

will have θ` = θk = 0.

Holographic screens are also known as marginally trapped tubes [10], and are a gen-

eralization of dynamical horizons and future outer trapped horizons [11], removing the

restriction [7] that the surface be spacelike. Since we focus on the boundary-anchored case,

we also omit the usual requirement that the marginally trapped surfaces be compact. In

addition, we require such boundary-anchored marginally trapped surfaces σ to be homolo-

gous to some partial Cauchy surface A for the boundary spacetime. Here by ‘homologous

to A’, we mean that there is a bulk AdS-Cauchy surface Σ = Σ1 ∪ Σ2 with ∂Σ1 = σ ∪ A.

As a result, ∂σ = ∂A. In this work we use the symbol ∂X to denote the boundary of any

set X as computed in the conformal compactification of our AlAdS spacetime; i.e., ∂X will

include any limit points of X in the AlAdS boundary. In contrast, we will use the notation

Ẋ to refer to the boundary of X as defined by the natural topology of the bulk spacetime

in which the bulk is an open set. As a result, Ẋ cannot intersect the AlAdS boundary,

but ∂Ẋ := ∂(Ẋ) contains precisely those points in the AlAdS boundary which are limit

points of Ẋ.

We will focus in particular on future holographic screens where, for the boundary-

anchored case, we define the k, ` null congruences as follows: consider a boundary region

A and a marginally trapped surface σ homologous to A as above. We define the k null

congruence orthogonal to σ to be the one launched towards the future from the Σ1 side of

σ, while the l null congruence orthogonal to σ is the one launched toward the future from

the Σ2 side. Note that AdS-global hyperbolicity requires Ḋ+(Σ1)\Σ1 = İ+(Σ2), and in fact

Ḋ+(Σ1) \Σ1 ⊂ İ+(σ), which implies that it is generated by the k-congruence just defined.

A well known property of holographic screens is that they are highly non-unique:

changing the foliation of the spacetime generally changes the holographic screen (see,

e.g. [8]). Previous work has focused on generating them from null foliations (e.g. [7, 8, 12]),

building the leaves of the holographic screen by finding a codimension-two surface with

– 3 –
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Figure 1. A holographic screen can be constructed by null foliation from an observer’s light cones.

For example, given an spacetime path x(τ), on each future lightcone emanating from that path, we

can find the maximal area codimension-two surface, if it exists. This surface will then have θ = 0

along the lightcone. Stitching together all these surfaces on all of the future lightcones associated

with the observer will give us our holographic screen.

maximal area on each null slice (see figure 1). In the case where the null foliations are

taken to be the set of past or future light cones emanating from an observer’s worldine,

the foliation dependence of screens can be thought of as an observer dependence.

However, if we were to use this null construction in empty AdS, then the maximal

cut of any null surface would lie on the AdS boundary. The holographic screen would

then just be the usual conformal boundary of the spacetime. This is consistent with the

Bousso-bound picture, in that the degrees of freedom in the boundary CFT control the

bulk degrees of freedom, but seems rather trivial. In particular, even the renormalized area

is strictly infinite.

For a fixed subset A of some boundary Cauchy surface C, we instead wish to construct

a marginally trapped surface through the bulk and anchored to the boundary ∂A of that

region. To do so, instead of using a null foliation as above, we pick any foliation of our bulk

spacetime such that each slice Σi contains ∂A. On Σi, we can then attempt to solve for a

marginally trapped surface also anchored to ∂A, giving us our leaf σi(A). See figure 2 for

a depiction. Although we leave a complete analysis for future investigation, in practice we

find that solutions exist. While the leaves of the screen are required to be spacelike, the

same need not be true of the slices Σi used to construct them.

Indeed, we solve for our leaves in the following manner (see [5] for a similar setup): a

general codimension-two surface S can be specified by two constraints,

F (xµ) = 0,

G(xµ) = 0.
(2.2)

– 4 –
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Figure 2. For a fixed boundary region A, we construct our holographic screens by first fixing

a foliation (pictured here as green slices), such that each slice contains ∂A (where A is the pink

section). Then, on each slice, we solve for the trapped surface (the purple curves). Each trapped

surface is a leaf of a holographic screen, and stitched together, the collection of leaves comprises

our holographic screen. In practice, we find that solutions typically exist. The figure is based on

numerical results in Schwarzschild-AdS.

The gradients ∇νF (xµ) and ∇νG(xµ) are then vectors orthogonal to S. When they are

independent and S is spacelike, we can write the orthogonal null vectors as some linear

combinations

nν,a = ∇νF (xµ) + ca∇νG(xµ), (2.3)

for ca constants and a = `, k with kµ = nµ,k, `µ = nµ,`. The null extrinsic curvatures

are then

χµν,a = g̃ρµg̃
λ
ν∇ρnλ,a, (2.4)

where g̃ is the induced metric on S:

g̃µν = gµν + `µkν + `µkν . (2.5)

Finally, each expansion is the trace of the appropriate null extrinsic curvature:

θa = χµµ,a. (2.6)

The extremal surface anchored to ∂A is then found by solving θk = θ` = 0 to find

F and G. But for our marginally trapped surfaces, only θk need vanish so the solution is

– 5 –
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underdetermined. We may hope to specify a unique solution by taking G(xµ) = t−Ĝ(xi) =

0, for some particular Ĝ (with {xµ} = {t, xi}), and to then solve θk = 0 for F .

Once we have found our holographic screen, we will want to compare it to both the

causal wedge and entanglement wedge as defined below (following [5]).

Definition. For a given boundary region A, we will denote the boundary domain of de-

pendence by Dbndy(A). The causal wedge is then defined as the intersection of the bulk

past and future of this domain of dependence, C(A) = I−(Dbndy(A)) ∩ I+(Dbndy(A)). The

causal information surface or causal surface ΞA lies on the boundary of this region, and

is given by the intersection of the past and future bulk horizons of the boundary domain of

dependence of A, ΞA = İ−(Dbndy(A)) ∩ İ+(Dbndy(A)).

Definition. Let the HRT surface m(A) be the codimension-two surface with extremal area

in the bulk, anchored to the boundary ∂A of A. We also require that m(A) be homologous

to A in the sense discussed above for marginally trapped surfaces. If there are multiple

extremal surfaces satisfying this constraint, take the one with least area. The entanglement

wedge E(A) is then the bulk AdS-domain of dependence D(Σ) of any partial AdS-Cauchy

surface Σ satisfying ∂Σ = A ∪m(A).

We can also define a similar wedge M(σ) associated with any marginally trapped

surface.

Definition. For any marginally trapped surface σ homologous to A, we define the

marginally trapped wedge M(σ) to be the bulk domain of dependence D(Σ) of any partial

AdS-Cauchy surface Σ satisfying ∂Σ = σ ∪A.

In addition to the above definitions, we will repeatedly use the following lemma.

Lemma 2.1. (From [13]) Suppose N1 and N2 are two null hypersurfaces that are tangent

at some point x on some slice Σ. Then if there exists some neighborhood of x on Σ, such

that N2 is nowhere to the past of N1, then θN2 ≥ θN1 at p.

This lemma is especially useful when combined with the following result (often left

implicit in applications of lemma 2.1).

Lemma 2.2. If a smooth spacelike curve γ intersects the boundary of the future I+(S) of

some set S at a point p, then either i) γ enters the chronological future I+(S) or ii) all

null generators of İ+(S) through p intersect γ orthogonally.

Proof. By e.g. Theorem 8.1.6 of [14], p lies on a null geodesic λ (perhaps with a past

endpoint) that (at least to the past of p) lies entirely in İ+(S). Let ka and ζa be vectors

respectively tangent to λ and γ at p. Since ka is null and ζa is spacelike, then either a) ka

and ζa span a timelike plane or b) ka and ζa span a null plane, and are orthogonal. So if

any null generator λ through p fails to intersect γ orthogonally, case (a) must hold for that

generator. We can then find a local Lorentz frame where ka∂a ∝ ∂t + ∂x and ζa ∝ ∂x, so

γ clearly enters I+(S).

– 6 –
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Figure 3. Left: depiction of the Entanglement Wedge (blue) and Causal Wedge (orange). The

entanglement wedge E(A) is the domain of dependence lying between the extremal surface m(A)

and the boundary. In contrast, the causal wedge I−(Dbndy(A)) ∩ I+(Dbndy(A)) is defined as the

intersection of the bulk past and future of the domain of dependence Dbndy(A) in the boundary.

The intersection of the past and future horizons defines the causal surface. Right: depiction of the

marginally trapped surface σ(A) which (as shown in section 3) must lie in the entanglement wedge

but above the future horizon of Dbndy(A). The associated marginally trapped wedge M(σ) is also

shown (purple).

Figure 4. The lines depict tangent spacelike cuts of null congruences N1 and N2. N2 is nowhere

to the past of N1 and is thus expanding faster by lemma 2.1.

Combining lemmas 2.1 and 2.2 gives us the following:

Corollary 2.1. If a codimension-two surface σ intersects İ+(S) at p, then either σ enters

I+(S) or every generator λ of I+(S) at p has a well-defined expansion θλ(p) that is equal to

or greater than the expansion θσ(p) along the same null geodesic as defined by the associated

null congruence orthogonal to σ.

– 7 –
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Proof. If σ fails to enter I+(S), then by lemma 2.2, all null generators of I+(S) at p intersect

σ orthogonally. Consider such a generator λ, together with the nearby generators in İ+(S).

Unless λ has a conjugate point at p, at least in a neighborhood of p these generators define

a smooth null surface N nowhere to the past of σ. As a result, in a neighborhood of p the

orthogonal null congruence to σ containing λ is also smooth and lies nowhere to its future.

Thus θN (p) ≥ θσ(p) by lemma 2.1. Furthermore, if the expansion along λ at p is ill-defined

(i.e. if p is a conjugate point of λ), then any point q ∈ λ to the future of p also lies in the

chronological future of geodesic generators λ′ of I+(S) close to λ, and which differ from

λ only to first order in q − p. As a result, such geodesics λ′ also lie in front (i.e. to the

past) of the infinitesimal null plane N defined by λ by an amount that is first order3 in the

separation δλ between λ and λ′. But since σ is smooth, it can bend in front of this null

plane only at second order. Thus σ enters the future of some λ′ and thus enters I+(S).

3 Ordering of surfaces

The RT and HRT surfaces measure the fine-grained entropy of the dual CFT in the associ-

ated domain. In addition, the Causal Surface has been conjectured to give a coarse-grained

measure of the entropy known as the Causal Holographic Information [15]; see related dis-

cussion in [16–18]. The idea that the latter is a coarse-graining of the former is associated

with the fact that the causal surface lies closer to the boundary and has larger area than

the extremal surface anchored to the same region [5, 13].

In this section, we argue that any marginally trapped surface σ anchored to the bound-

ary at ∂A lies in some sense between the above two surfaces. Specifically, we show it to lie

inside the entanglement wedge but above the future horizon associated with A. We also

show the area of σ to be bounded below by the area of the extremal surface and — in

certain cases — bounded above by the area of a cut of the causal horizon associated with

future causal holographic information (fCHI). So in such cases we expect the area of σ to

describe a coarse-grained entropy for the dual CFT that is finer than the coarse-graining

associated with fCHI.

The proofs regarding the ordering of wedges are similar to proofs in [13, 14]. For

arguments in section 3.2, we assume that our marginal surface σ can be approximated by a

sequence σi of surfaces anchored to the same ∂A, lying in a common AdS-Cauchy surface

Σ in which all of the surfaces σ, σi are homologous to A, and maintaining θ` ≤ 0 but having

θk > 0. We can call such σ deformable, indicating that they may be deformed to cases

with θk > 0, θ` ≤ 0.

3.1 Leaves lie outside of the causal wedge

Our first result generalizes the well-known theorem that apparent horizons lie to the future

of event horizons [14].

3We believe this to be true. What is straightforward to argue rigorously is that if the expansion of İ+(S)

remains bounded when approaching p from any direction, then we may argue just as in the case where p

is not a conjugate point. If a direction-dependent limit diverges along some spacelike cut, then the cut

must deviate from N strictly faster than quadratically. Furthermore, it must do so by lying in front (to the

past) of N so that λ can enter its future immediately after the conjugate point at p. As a result, since σ is

tangent to N , it also lies to the past of σ. I.e., σ enters I+(S).

– 8 –
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Theorem 3.1.1. Let σ be a marginally trapped surface, anchored to a boundary region A.

Then it will lie above the future horizon of Dbndy(A), and in particular outside the causal

wedge C(A).

Proof. We assume A to be connected, as otherwise we can simply work with each connected

component. If σ fails to lie above the future horizon of Dbndy(A), then some p ∈ Dbndy(A)

lies in the future of σ. But by the homology constraint, σ lies on a Cauchy surface Σ

containing A, so A is not in the future of Σ. Thus, there are points in Dbndy(A) that are

not to the future of σ. But since A is connected, so is Dbndy(A), and so some q ∈ Dbndy(A)

must lie on the boundary of the future of σ. Since q is in the interior of Dbndy(A), there

is an open set U 3 q, U ⊂ Dbndy(A) that does not intersect the future of ∂A. As a result,

the closure K of the set of points r ∈ σ that can send future-directed timelike curves to U

is compact.

Thus q lies on the boundary of the future of K. Since K is compact, this means there

is a null generator λ of İ+(K) that reaches q, and which in particular reaches the AlAdS

boundary. Thus λ maintains θ = 0 for infinite affine parameter. It follows that adding any

perturbation which makes all null generators of the k-congruence from σ satisfy the generic

condition (i.e. that there exists non-vanishing null-curvature or shear along any segment

of any null congruence) moves ∂I+(σ) off of Dbndy(A). For example, we can throw null

particles into the bulk from Dbndy(A) just below every point of ∂I+(σ). Then, however,

such particles clearly intersect the generators of İ+(σ) near the AlAdS boundary and can

only move ∂I+(σ) by a small amount. But this contradicts the fact that Dbndy(A) is an

open set, so a small change in ∂I+(σ) cannot in fact remove the intersection with Dbndy(A).

We thus conclude I+(σ)∩Dbndy(A) = ∅ so that no part of σ is below the future horizon.

For a certain class of extremal surfaces, we can also use a cut of the causal horizon to

bound the area of the marginally trapped surface in the following sense:4

Theorem 3.1.2. Suppose a marginally trapped surface σ anchored to ∂A lies on the bound-

ary of I+(S) of some S in the AlAdS boundary for which ∂S = ∂A. Then the boundary of

I+(S) will also intersect the future causal horizon defined by Dbndy(A) in some cut Y , and

the generators of İ+(S) define a map from σ into Y under which the local area element is

everywhere non-decreasing.

Proof. Note that since the expansion of İ+(S) vanishes on the AlAdS boundary it is nega-

tive or zero everywhere on İ+(S). By theorem 3.1.1, any generator of İ+(S) that reaches σ

does so after (or simultaneously with) passing through Y . Thus the map defined by these

generators from σ to Y cannot decrease local areas.

The surface Y that gives the bound was introduced in [17] as a modification of causal

holographic information conjectured to be associated with the future boundary domain of

dependence D+
bndy(Y ). The quantity A/4G for Y is thus naturally called future causal

holographic information.

4We thank Aron Wall for a discussion regarding this point.
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Now, theorem 3.1.2 provides a sense in which the area of σ is bounded below by that

of Y . But one should be careful to ask to what extent the local non-decrease of area

guaranteed by this theorem implies non-decrease of meaningful measures of the total area.

The subtlety is that since both σ and Y have infinite area, comparing them requires some

process of regularization. Specifically, we impose that one must regularize the areas using

a cut-off z = z0 in terms of some Fefferman-Graham coordinate z. We then consider the

difference between the areas in the limit z0 → 0 in which the regulator is removed.5 One

should thus ask to what extent the map of theorem 3.1.2 can take some piece of σ that is

before the cutoff (i.e., with z > z0) into the part of Y beyond the cutoff (i.e., with z < z0).

If this effect is large enough as z0 → 0, theorem 3.1.2 might still allow the regulated area

to decrease even at leading order in z0.

To analyze this issue, we must understand how many generators of İ+(S) cross the

regulator surface z = z0 between Y and σ in the limit z0 → 0. The limiting flux of such

generators is known to be finite [21] when the boundary of Dbndy(S) is a boundary Killing

horizon, but extrapolating those results to the more general case suggests that the flux

generally diverges as z
−(d−2)
0 and that this divergence can take either sign. Indeed, the

total area of İ+(S) lost through the z = z0 regulator surface takes the form

Lost Area ∼
∫ σ

Y
dλ

∫
∂Az0

ld−2z−(d−2)
√
q̃0

1

z

∂z

∂λ
, (3.1)

where l is the AdS scale, ∂Az0 is a regulated version of ∂A located at z = z0,
√
q̃(0) is the

area element on ∂A of the finite-but-unphysical metric on the AlAdS conformal boundary

(see section 4.1), and λ is a smooth parameter along each geodesic between Y and σ. If

Y and σ admit power series expansions in z (perhaps with possible log terms at order zd)

we generally have 1
z
∂z
∂λ ∼ 1, and also

∫ σ
Y dλ ∼ z since Y and σ both intersect the AlAdS

boundary at ∂A. The lost area is then O(z−(d−3)), so we learn that if the areas of Y

and σ differ by a term more divergent than z−(d−3), then the regulated area of Y does

indeed exceed that of σ. In particular, the bound applies to the coefficient of the leading

divergence at O(z−(d−2)). However, if the areas are already known to coincide to higher

order, then theorem 3.1.2 tells us nothing further.

On the other hand, we expect the case of most interest to occur when both Y and σ

coincide asymptotically with the extremal surface m(A) anchored at ∂A. Consider then

the renormalized areas of Y and σ defined by subtracting the known counter-terms for

extremal surfaces areas. Since the regulated areas (before subtracting counter-terms) are

of the form

Regulated Areas ∼
∫
z0

dz

z

∫
∂Az0

ld−2z−(d−2)
√
q̃(0), (3.2)

the renormalized areas of Y and σ are generally finite only when these surfaces coincide

with m(A) up to corrections vanishing faster than zd−2 by some power law. Comparing

with (3.1) immediately yields the following result:

5One may also attempt to renormalize each quantity by subtracting an appropriate set of counter-terms.

However, since both intersect the boundary in the same set ∂A, any counter-terms locally constructed from

boundary information at ∂A will cancel when computing the area difference between σ and Y .
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Theorem 3.1.3. Suppose σ and Y in theorem 3.1.2 both agree with m(A) up to corrections

vanishing faster than zd−2 by some power law. Then the renormalized areas of σ and Y

are finite, and the renormalized area of Y equals or exceeds that of σ.

3.2 Leaves lie inside of the extremal wedge

We now show that boundary anchored marginally trapped surfaces lie inside the extremal

wedge E(A), as long as there is an appropriate region through which we can deform extremal

surfaces while keeping them extremal. This condition is related to the absence of extremal

surface barriers as defined in [9].

Theorem 3.2.1. Let σ be a deformable marginally trapped surface anchored to ∂A, with a

sequence of approximating surfaces σi. All σi lie in some AdS-Cauchy surface Σ, such that

∂Σ ⊃ A. Suppose there is a one parameter family m(I) of extremal surfaces6 anchored to

the boundary on non-overlapping sets ∂AI ⊂ ∂Σ such that i) m(I) is continuous in I for

I ∈ [0, 1], ii) m(I = 0) = m(A) but ∂AI ⊂ ∂Σ \ A for I > 0, iii) each σi is contained

in the extremal wedge associated with m(I = 1), and iv) each ∂AI is the boundary of

some boundary set AI homologous to m(I). Then σ lies in the closure of the entanglement

wedge E(A).

Proof. Define Σ1i, Σ2i to be the regions in Σ such that Σ1i ∪ Σ2i = Σ and ∂Σ1i = σi ∪ A.

For m(I), we similarly define ΣI , Σ1I , and Σ2I . Note that we may choose Σ1I to be

continuous in I.7 We can also define the wedges associated to each of the surfaces of

interest: E(I) = D(Σ1I), and M(σi) = D(Σ1i). Let Ii be the smallest I for which the

closure E(I) of E(I) contains M(σi); see figure 5. Then, since E(I) is continuous in Σ1I

(and thus in I), if Ii 6= 0 there must be some point p that lies in the boundaries of both

E(Ii) and M(σi). Note that in this case the point p cannot lie on the AdS boundary since

∂AIi ⊂ ∂Σ \ Ā.

Now, since p ∈ Ṁ(σi), it is connected to σi by a null geodesic λ ⊂ M(σi) ⊂ E(Ii).

But no point of λ can lie in the interior of E(Ii), as then p would also lie in the interior of

E(Ii) and not on the boundary of E(Ii). So if q is the past endpoint of λ on σi we must

also have q lying in the boundary of E(Ii). Furthermore, it is clear that the k-congruence

from σi is the one that locally does not enter I+(Σ2Ii). By the null convergence condition

and corollary 2.1 we then have that the expansions through q defined by the orthogonal

null congruences from m(Ii) and σi satisfy 0 ≥ θm(Ii) ≥ θσi > 0. This is a contradiction,

so Ii = 0 for all i. In particular, σi ⊂ E(A) and thus σ ⊂ E(A) as desired.

Note that condition (iii) that each σi be contained in the wedge associated with

m(I = 1) is realized whenever we can deform the boundary region ∂A to a point

through Σ \ Ā.

6Note that a general m(I) need not be an HRT surface, as it need not be the extremal surface of

minimal area.
7This continuity is automatic unless there is a connected component of the bulk spacetime that does not

have an AdS boundary; i.e. the bulk contains a closed cosmology in addition to the asymptotic AdS piece.

Such cases do not appear to be allowed in AdS/CFT, but for completeness we include them here.
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Figure 5. If a marginally trapped surface (or one of its approximating curves) σi(A) lies outside

the corresponding entanglement wedge E(A), we can continuously deform our boundary to larger

regions, until at some point the entanglement wedge just touches the wedge associated with σi.

This results in a contradiction.

We can also use the extremal surface anchored at ∂A to bound the area of appropriate

similarly-anchored marginally trapped surfaces. The useful notions of ‘appropriate’ are de-

fined by issues involving the regulator surfaces z = z0 as in the discussion of theorems 3.1.2

and 3.1.3.

Theorem 3.2.2. Given a marginally-trapped surface σ and an HRT surface m(A) both

anchored to ∂A, the renormalized area Arearen of σ equals or exceeds that of m(A) if i) ∂A

lies on a Killing horizon of the boundary or ii) σ coincides with m(A) up to corrections

vanishing faster than zd−2 by some power law. More generally, the coefficient of the leading

divergence in the area of σ equals or exceeds that for m(A).

Proof. We can use the maximin construction of HRT surfaces [13] to find an AdS-Cauchy

surface Σ on which m(A) is the minimal surface. Let N be the surface formed by following

the `-orthogonal null congruence from σ toward the future and by also following the k-

orthogonal null congruence from σ toward the past, with the convention that a given

geodesic remains in N only so long as it lies on the boundary of the future/past of σ.

Define σ̃ as the intersection of N with Σ, N ∩ Σ. Now, the future directed portion of

N has θ ≤ 0 at σ, while the past directed portion has θ = 0 at σ. The null curvature

condition implies that null rays can only focus as they move away from σ, decreasing the

total area of N . As in the discussion of theorems 3.1.1 and 3.1.2, either condition (i) or (ii)

suffices to guarantee that the flux of area through any regulator surface z = z0 vanishes

as z0 → 0, and otherwise we discuss only the coefficient of the leading divergence. Since

m(A) is minimal on Σ we thus find Arearen(σ) ≥ Arearen(σ̃) ≥ Arearen(m(A)).

4 Divergences

Entanglement entropy and Causal Holographic Information are both infinite, as are the

areas of the boundary anchored surfaces that measure them. In particular, it has been

shown [16] that subleading divergences in the area of the causal surface generally differ

from those of the extremal surface: while the entanglement divergences can be written

as the integral of local geometric quantities on ∂A, subleading divergences of the causal

surface generally cannot. However, [16] conjectured that the leading-order divergences

agree for d > 2. We investigate the analogous issues below for marginally trapped surfaces
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σ anchored to ∂A, showing first that the leading area-divergence of σ does in fact agree

with that of m(A), and then demonstrating that subleading divergences generally differ.

4.1 Leading order divergences

It is useful to begin with the Fefferman-Graham expansion of the metric [19]. In d ≥ 2

dimensions, this takes the form

ds2 = gabdx
adxb =

l2

z2
(dz2 + γ̃ij(x, z)dxidxj), (4.1)

where l is the AdS length scale, x ranges over the boundary coordinates, and8

γ̃ij(x, z) = γ̃
(0)
ij (x) + z2γ̃

(2)
ij (x) + . . . zd

(
γ̃
(d)
ij (x) + ¯̃γ

(d)
ij (x)log(z2)

)
. (4.2)

Here, γ̃
(0)
ij is the metric on the boundary, and the logarithmic term only appears for even d.

Note that ds2 = l2

z2
(dz2+γ̃

(0)
ij (x)dxidxj)+O(z0). In particular, the unphysical conformally-

rescaled metric

d̃s
2

= g̃abdx
adxb =

z2

l2
ds2 (4.3)

is finite as z → 0 and gives the bulk the structure of a manifold M̃ with boundary.

Consider any marginally-trapped surface σ whose derivatives are C1 in M̃ . Then

tangent vectors to σ are well-defined both on M̃ and on the AlAdS boundary, and the

geodesic equation on σ is also well-defined. We expect this condition to hold for surfaces

constructed as in section 2.

Near the boundary, we can use (generalized) Riemann normal coordinates {x̂α} =

{x̂i, z} on σ defined by using the unphysical metric (4.3) to construct a congruence of

geodesics orthogonal to the AlAdS boundary. Here we have generalized the notion of

Riemann normal coordinates slightly by not requiring z to be proper distance. The x̂i are

constant along the geodesics and agree with xi on the AlAdS boundary; however, they do

not generally agree with the Fefferman-Graham xi in the interior.

In terms of the coordinates x̂α on σ, the tangents to the above geodesics are τα∂α =

∂z|x̂i . As a result, the metric induced by (4.3) takes the form

h̃αβdx
αdxβ = q̃ij(z)dx̂idx̂j + |̃τ |

2
dz2, (4.4)

with q̃ij(z) = q̃
(0)
ij + O(z) for q̃(0)ji the projector onto the anchor set ∂A and where the

error term allows for ∂A to have non-vanishing extrinsic curvature in σ (as computed with

respect to (4.3)) even though the extrinsic curvature of the full AlAdS boundary vanishes

with respect to this metric. We remind the reader that we use γ̃
(0)
ij to raise and lower i, j

indices on the boundary. In (4.4), |̃τ |
2

is the norm of τα in the rescaled metric (4.3). Note

that while σ is spacelike in the bulk, a priori the norm |̃τ |2 might vanish as z → 0.

Since σ is marginally trapped, it has θk = 0. We are free to choose k to have Fefferman-

Graham components ka that vanish like z as z → 0 so that k̃a := ka/z remains finite. We

8At least when there are no operators or non-metric sources with conformal dimension d ≥ ∆ ≥ 0.
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also define a rescaled extrinsic curvature tensor K̃abc such that for any null vector field va

orthogonal to σ we have

vaK̃abc := zvaKabc =
1

2
z£v

(
l2

z2
h̃bc

)
, (4.5)

where £v denotes the Lie derivative along v and hb
c is the projector onto σ. Then the

condition θk = 0 is then equivalent to k̃aK̃abc
l2

z2
h̃bc = 0, where h̃bc is obtained from h̃bc

by raising indices with g̃ab. Note that converting (4.4) to Fefferman-Graham coordinates

{xa} = {xi, z} gives

h̃ab = q̃ab +
τ̃aτ̃bdx

adxb

|̃τ |
2 , (4.6)

where τ̃a = g̃abτ
b and q̃ab = g̃acq̃b

c, where q̃b
c is the projection onto the space tangent to σ.

We may therefore compute as follows:

2k̃aK̃abc = z£k̃

(
l2

z2
h̃bc

)
(4.7)

=
l2

z
£k̃q̃bc − 2l2

£k̃z

z2
q̃bc − l2z−1

(
£k̃ ln |̃τ |

2
)
τ̃aτ̃b

|̃τ |
2

+
l2

z |̃τ |
2

(
τ̃a£k̃τ̃b + τ̃b£k̃τ̃a

)
. (4.8)

Since τa is annihilated by q̃ab, we can derive the useful relation

τ bτ c£k̃q̃bc = τ b£k̃(τ
cq̃bc)− τ bq̃bc£k̃τ

c = 0. (4.9)

Contracting (4.7) with l2

z2
h̃bc thus yields

0 = 2
l2

z2
h̃bck̃aK̃abc = z£k̃

(
l2

z2
h̃bc

)
(4.10)

= O(z)− 2(d− 1)
(
£k̃z

)
− z

(
£k̃ ln |̃τ |

2
)

+
2z

|̃τ |
2 τ

b£k̃τ̃b. (4.11)

But we also find

τa£k̃τ̃a = τa£k̃(g̃abτ
a) =

1

2
£k̃ |̃τ |

2
− 1

2
τaτ b£k̃g̃ab (4.12)

=
1

2
£k̃ |̃τ |

2
− τaτ b∇̃ak̃b =

1

2
£k̃ |̃τ |

2
− τa∇̃a(τ bk̃b) =

1

2
£k̃ |̃τ |

2
, (4.13)

where ∇̃a is the covariant derivative for g̃ab and the steps on the last line follow from the

(non-affinely parametrized) geodesic equation τ b∇̃bτa ∝ τa and the orthogonality of τa
and k̃a. As a result, (4.10) yields

0 =
l2

z2
h̃bck̃aK̃abc = −2(d− 1)

(
£k̃z

)
+O(z) = −2(d− 1)k̃z +O(z). (4.14)
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I.e., to this order k̃ is tangent to the AlAdS boundary and is thus a null normal to ∂A with

respect to the boundary metric γ̃
(0)
ij .

On the other hand, since k̃ is orthogonal to σ we have k̃aτa

|τ |2 = 0, so τa lies in the null

plane defined by k̃a. And since τa is by definition orthogonal to ∂A, we may use the C1

nature of τ , the fact that τα∂α = ∂z|x̂i , and the equality of the z-component of τ in {x̂α}
coordinates with that in Fefferman-Graham coordinates to write τa = τkk̃a + ∂zx

a +O(z)

for some finite coefficient τk and where the O(z) term is again orthogonal to k̃. Since k̃a

is both null and (to order z) orthogonal to ∂z, we find |̃τ2| = 1 + O(z); in particular, τa

remains spacelike at z = 0.

We are now ready to calculate the leading area-divergence of σ. This is simplest in the

coordinates xα = {x̂i, z} where τα∂α = τ z∂z|x̂i and the metric induced by g̃ab is (4.4). It

is clear that the physical area of σ takes the form

Area[σ] =

∫
∂A
dd−2x

∫
dz
ld−1

√
q(0)

zd−1
+O(z−(d−1)), (4.15)

where the leading term agrees with the leading area-divergence for an extremal surface

anchored to ∂A (as it must, since an extremal surface is also marginally-trapped and we

have shown this term to be the same for all marginally-trapped surfaces).

Though we leave the details for future work, since we found |̃τ2| = 1 +O(z) but used

only limz→0 |̃τ2| = 1 it seems clear that this result also extends to marginally-trapped

surfaces which are more singular at the boundary. This plausibly includes all cases where

the constraints F,G of section 2 admit expansions in fractional powers of z.

4.2 Subleading divergences

While the area of σ agrees with that of an extremal surface to leading order, the subleading

divergences do not generally match. We can show this by example. Consider the d+ 1 = 5

dimensional bulk metric,

ds2 =
1

z2
(−dt2 + dz2 + dy2 +X(x, y, u)dx2 + du2), (4.16)

where X(x, y, u) is an arbitrary function. We will take our boundary region to be a strip

with y ∈ [−f0, f0], t = g0, and take the constraints to be t − G(z) = 0 and y − F (z) = 0.

We can take both the constraints and the metric to be expandable in power series:

F (z) = f0 + f1z + f2z
2 + f3z

3 + . . . , (4.17)

G(z) = g0 + g1z + g2z
2 + g3z

3 + . . . , (4.18)

X(x, y, u) = X0(x, u) + F (z)X1(x, u) + F 2(z)X2(x, u) + F 3(z)X3(x, u) + . . . , (4.19)

for some functions Xi and constants fi, gi. A calculation shows that for any F and G the

two σ-orthogonal null congruences have

θ± = ±
3z
(
f1g

2
1 − f31 − f1 ± g1

√
f21 − g21 + 1

)
(
f21 + 1

)√
f21 − g21 + 1

+O(z2). (4.20)

(4.21)
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Choosing θ+ = 0 would then impose f1 = g1, while θ− = 0 would impose f1 = −g1. We

can similarly solve θ+ = 0 or θ− = 0 to second order, and we find

f2 =
f20X2(y, u) + 2f0X1(y, u) + 3X0(y, u)

8f0
(
f30X3(y, u) + f20X2(y, u) + f0X1(y, u) +X0(y, u)

) ± g2 − 3

8f0
. (4.22)

Now, the area of the marginally trapped surface will be given by

A =

∫
dzdudx

1

z3

√
1 + F ′(z)2 −G′(z)2

√
X(x, y, u). (4.23)

Evaluating (4.23) on our solutions for f1 and f2, yields

A =

∫
dzdudx

1

z3

(√
X0(x, u) + f0X1(x, u) + f20X2(x, u) + f30X3(x, u)

)
+

∫
dzdudx

1

z2

(
g1X1(x, u) + 2f0g1X2(x, u) + 3f20 g1X3(x, u)

4
√
X0(x, u) + f0X1(x, u) + f20X2(x, u) + f30X3(x, u)

)
+O(lnz).

(4.24)

As expected, the leading divergence is fixed by boundary conditions only, as seen by the

fact that it depends only on f0. The subleading divergence, however, depends on g1 as well.

This g1 is the asymptotic slope of the slice determined by G(z), and thus will generally

differ from that of the extremal surface.

Since the divergence depends on the slope of the slice, we expect it to have some relation

to the tangent plane to the marginally trapped surface. Consider the unique tangent vector

τa = (t, x, y, u, z) =
∂

∂z
(G(z), x, F (z), u, z). (4.25)

that is orthogonal to the boundary of σ. We expect the divergence to be in part determined

by τa, though it must be contracted with some one index object that contains information

about the boundary region A. A natural candidate is the trace of the extrinsic curvature

of ∂A,

K(b),i
i = ∇in(A)i, (4.26)

where the i index runs over the boundary indices, the b index runs over the 2 vectors

orthogonal to our boundary subregion (and contained in the boundary), and n is the

normal to ∂A that points outwardly away from A. The only nonzero component is

K(y),i
i =

X1(x, u) + 2X2(x, u)y + 3X3(x, u)y2 + . . .

2 (X0(x, u) +X1(X,u)y +X2(x, u)y2 + 3X3(x, u)y3 + . . .)
. (4.27)

Define τ‖ to be the projection of τa into the AdS boundary. We can then contract

with K = (Kt, 0,Ky, 0) = (0,Ky, 0). This gives

K · τ‖ =

(
X1(x, u) + 2X2(x, u)y + 3y2X3(x, u) + . . .

)
f1

2 (X0(x, u) +X1(x, u)x+X2(x, u)y2 +X3(x, u)y3 + . . .)
. (4.28)
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Integrating (4.28) over ∂A and using y = f0 gives∫
∂A

dudx
√
X(x, y, u)K · τ‖

=

∫
dudx

g1
(
X1(x, u) + 2f0X2(x, u) + 3f20X3(x, u) + . . .

)
2
√
X0(x, u) + f0X1(x, u) + f20X2(x, u) + f30X3(x, u) + . . .

,

(4.29)

so that

A =

∫
dz

1

z3

∫
∂A

dudx
√
X(x, y, u)K · τ‖

=

∫
A

√
hA

(
− 1

2z2
− 1

z
K · τ‖

)
.

(4.30)

for hA the induced metric on A from the boundary metric. Thus, the subleading divergence

is given by the integral of the trace of the extrinsic curvature of ∂A contracted with the

tangent vector orthogonal to the boundary of the marginally trapped surface.

5 Thermodynamics

It has been previously shown that, when they are compact, the areas of leaves of holographic

screens monotonically increase [7, 8]. In this section, we generalize this proof to the case of

non-compact leaves. The main difficulty in the original proof is constraining the ways in

which holographic screens can change from spacelike to timelike. If, for instance, we knew

that flowing along our screen moved a given leaf only toward the past and/or toward the

boundary, we could quickly conclude that the area increased. If it was toward the past, we

could first flow infinitesimally to the past along the k-congruence (i.e., in the negative k

direction), and then to the past along the `-congruence (i.e., in the negative k direction).

Along the k-congruence, the area remains constant to first order as one moves away from

any leaf. Since the expansion is non-negative in the negative ` direction, to first order

the area cannot decrease. The net change is then non-negative, and the area of the leaves

will not decrease. Likewise, if the nearby leaf was spacelike and towards the boundary, we

could first flow along the future θk = 0 direction, then along the past θ` > 0 direction,

leading again to non-decreasing area. Reversing these arguments, if the nearby leaf were

to the future or spacelike away from the boundary, the area would decrease. We therefore

would like to rule out transitions — like moving towards the past and then away from the

boundary — that would lead to a non-monotonic area change.

Before we rule out the problematic flow directions, we will review the assumptions

of [8], and those made here.

Definition. We can define a set of leaf-orthogonal curves γ such that every point p in

our holographic screen H lies on one curve. We can further choose a parameter r that is

constant along each leaf σ but increases monotonically along each curve γ.

Since γ is taken to be orthogonal to each leaf, its tangent vector hµ can be written as

a linear combination of the null congruences,

hµ = α`µ + βkµ. (5.1)

– 17 –



J
H
E
P
0
2
(
2
0
1
8
)
0
4
9

where h is normalized such that r increases at unit length along h. Note that α and β

cannot be both zero, though they may approach zero at the AlAdS boundary.

We will then use the following assumptions about the spacetime, following [8]. As

above, we assume the null curvature condition, Rab = kakb ≥ 0. We also assume two

generic conditions. One, that Rabk
akb + ξabξ

ab > 0 at every point on our holographic

screen for the k-directed congruence. Two, if we denote by H0, H+, and H− the sets

where respectively α = 0, α > 0, and α < 0 on H, then H0 = ∂H− = ∂H+. Further, we

assume that every inextendible portion of our holographic screen is either entirely timelike,

or contains a complete leaf. Finally, we assume that every leaf σ on our screen splits a

Cauchy surface Σ into two disjoint components. The extent to which such assumptions are

reasonable for compact leaves is discussed in [8]; similar comments apply here. From these

assumptions, it follows that at least one leaf will have definite sign of α. We can take r = 0

on this leaf, and orient r such that α < 0. It suffices to consider each connected component

of H separately, so we may take H to be connected for the rest of the argument.

We make one additional assumption beyond those of [8], namely that H can be de-

formed continuously into a sequence of screens Ha by deforming the anchor sets of each

leaf σa(ri) in a spacelike direction such that A(σa(ri)) ⊃ A(σa(rj)) for ri < rj , and

A(σa(ri)) ⊂ A(σb(ri)) for a < b, with H0 = H.

We can now quickly reduce our setting to (almost) the one considered in [8]. We

proceed by first recalling that, as discussed above, the essence of the argument is really a

theorem about certain changes of sign as one moves along the holographic screen. Those

signs are conformally invariant, as they do not depend on the metric. So it suffices to

prove the ‘restricted changes of sign’ version of the theorem for our screen as embedded

in the unphysical conformally-rescaled spacetime associated with the metric d̃s
2

of (4.3).

The area increase theorem then follows for the original screen in the physical spacetime by

using the conditions θk = 0, θ` ≤ 0 that hold there.

In this unphysical spacetime the leaves are now compact, but they have boundaries at

the AlAdS boundary. To reduce this to the no-boundary case considered in [8], we now

consider two copies of the unphysical conformally rescaled spacetime and identify them

along their AlAdS boundaries. The resulting Z2-symmetric spacetime is compact, globally-

hyperbolic (in the usual non-AdS sense), and has no boundary. This procedure also glues

together the two copies of Ha and H to make holographic screens with compact leaves.

The only remaining difference from the setting of [8] is that, in the doubled spacetime,

the leaves are generally only continuous and may not be smooth. However, the proof of [8]

proceeds by firing null congruences from various leaves and studying their intersections (or,

at least the intersection of the associated boundaries of future and/or past sets) with the

screen. Having shown that these intersections lie entirely on one side of the r = 0 leaf,

continuity and compactness guarantee the intersection to have a minimum (or maximum)

r. Smoothness is then used to argue that the intersection is tangent to the leaf at this

minimum (maximum) r, and to find a contradiction with our corollary 2.1. In our case,

taking Ha to be small deformations of H satisfying the above conditions guarantees that

there can be no intersection on the AlAdS boundary, and so in particular the minimum
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(maximum) r does not occur there. Since the doubled screen is smooth away from the

AlAdS boundary, the rest of the argument then proceeds as in [8] to yield:

Theorem 5.1. Let H be a future holographic screen satisfying the above assumptions, with

a leaf orthogonal tangent vector field ha = α`a + βka. Then α ≤ 0 on all of H.

The desired result then follows immediately.

Theorem 5.2. The area of the leaves of H increases monotonically as measured by the

physical bulk metric ds2.

6 Discussion

We have shown that boundary-anchored holographic screens anchored in AlAdS spacetimes

have several interesting properties. First, for a boundary “spatial region” (partial Cauchy

surface) A with no extremal surface barriers between the screen and the compliment of A

in the boundary Cauchy surface, any screen anchored to ∂A lies above the future horizon

of Dbndy(A) but inside of the entanglement wedge of A. We further showed that the area of

the holographic screen is bound below by the area of the extremal surface, and in certain

cases, bounded above by the quantity we called future causal holographic information

(fCHI) defined by the area of a cut of the causal horizon.

We also studied the divergences in area of the holographic screens. While the leading

divergence of a holographic screen matches that of the extremal surface, the first sublead-

ing divergence generally differs from that of extremal surfaces. Finally, we have shown

that, under a continuous choice of flow along leaves, there is a monotonic change in area,

generalizing the results of [8] to the case of non-compact leaves.

A technical complication in our work is the large set of assumptions (matching those

of [8]) used to prove the 2nd law in section 5. Most of these are clearly true in the generic

case, but this is far from clear for the assumption that every inextendible portion of the

screen is either entirely timelike or contains a complete leaf. Another complication is

that the various bounds on the area of boundary-anchored marginally-trapped surfaces are

generally useful only for surfaces already known to coincide with extremal surfaces up to

corrections vanishing faster than zd−2 — the order required to make the area only finitely

different from that of an HRT surface. It would be much more natural to find a simple

construction of marginally-trapped surfaces for which these assumptions were guaranteed

to be satisfied, or which forced the desired results to apply more generally. It would also be

interesting to (perhaps numerically) explore whether the inextendible portion assumption

holds in general, either in our boundary-anchored setting or in the original compact context

of [8]. However, we leave such explorations for future work.

Since the holographic screen lies inside the entanglement wedge, it should describe

some property of any dual field theory in Dbndy(A). Interestingly, this differs substantially

from the original conjecture of [22] regarding the holographic properties of such screens

which took the screen to describe degrees of freedom on what we would call the ‘inside’

(i.e., the `-congruence side) of the screen. In contrast, our result suggests the screen to
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describe properties of Dbndy(A) and the associated part of the entanglement wedge ‘outside’

the screen (i.e., on the k-congruence side). As described in section 3, the above-mentioned

bounds on the area of any leaf suggest such areas to measure a coarse-grained entropy for

the dual CFT (though one that is finer-grained than that associated with fCHI).

Indeed, while this work was in preparation, ref. [20] appeared which studied a closely

related issue. Their work shows that the area of a black hole’s apparent horizon measures a

coarse-grained entropy, where the coarse-graining is over all solutions in the interior, keep-

ing the geometry of the exterior fixed. In particular, they show that the apparent horizon

area agrees with that of the largest HRT surface consistent with the above constraints.

Although [20] does not study boundary anchored surfaces, we anticipate it to admit an ex-

tension to boundary anchored leaves whose divergences match those of extremal surfaces.

In contrast, however, the analogous result is clearly forbidden when the divergences of the

leaf fail to match all state-independent divergences of the extremal surface.

Now, as in [7], the area-increase result of section 5 suggests a thermodynamic interpre-

tation for the area. Here we find that the area increases toward the boundary, in the sense

that one moves in the direction along the holographic screen that is most closely associated

with the k-congruence, when the screen moves in a spacelike direction. Interestingly, on a

timelike part of the screen this corresponds to moving the leaf toward the past [7]. There

is also the somewhat uncomfortable property that the area-increase theorem requires com-

paring entire leaves; deforming a cut of the screen locally toward the future (so that it no

longer coincides with a leaf) is not generally guaranteed to increase the area.

Recall, however, that section 3 noted that the area of a leaf is also bounded above by

the area of a cut Y of the future horizon when the leaf is constructed by requiring it to

lie in the boundary of the future İ+(S) of some set S in the AlAdS boundary satisfying

∂S = ∂A. This Y is the intersection of the future horizon with İ+(S) introduced in [17],

and its A/4G is naturally called future causal holographic information. Here we again

emphasize the difference in perspective from constructions of marginally-trapped surfaces

from light cones in [22], as the light cones of [22] were generated at σ by the k-congruence

while our İ+(S) is generated at σ by the l-congruence.

Since deformations of S toward the future now move İ+(S) outward when the screen

is spacelike, in such cases our second law makes the associated areas of marginally-trapped

surfaces monotonically non-decreasing under any such flow. This reinterpretation of the

results of section 5 would then remove the discomforts mentioned above. In particular,

when the screen is spacelike we now find non-increase toward what is clearly the future

and, in addition, the system may be pushed forward in time independently at each point.

We therefore hope to investigate this construction further in the future, as always with an

eye toward better understanding the interpretation in the dual CFT.

Finally, as always in such discussions, one would like to progress beyond leading order

in the bulk semi-classical expansion. This would presumably involve replacing the area of

each leaf with the generalized entropy as in [9, 23, 25, 26]. However, it is unclear just how

the bulk entanglement term should be defined for bulk gravitons. While the arguments

of [25] and [26] can be used to define this entanglement across an HRT surface, at least

at present there is no general understanding of how to define such entanglement across a
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general bulk surface — or even a general one that is marginally trapped. The issue is a

classic one associated with the failure of the linearized graviton action to be gauge invariant

on off-shell backgrounds such as those that would naturally be used in attempting to define

this entanglement using the replica trick. Nevertheless, it would still be natural to explore

the effects of entanglement terms associated with other bulk fields while awaiting a better

understanding of graviton entanglement.
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