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1 Introduction

The physics of soft photons and gravitons has drawn much attention since the 1960s as

the soft limit can reveal many aspects of gauge theory and gravity that are not easily

accessible by massive particles. One famous folklore is that the infrared (IR) divergences

of soft photon and graviton are governed by gauge symmetries [1] and thus factorized

from other hard processes [2]. Recently, such ‘soft theorems’ were given a new inter-

pretation in terms of the asymptotic symmetries (for a review and summary of earlier

works, see [3]). It is motivated by the observation that while gauge redundancy is neces-

sarily eliminated through gauge fixing, a part of the gauge transformation emerges as an

asymptotic symmetry to an observer far away from the source. These ‘large gauge trans-

formations’ (LGTs) are well studied in the asymptotic flat spacetime, where appropriate

fall-off boundary conditions permit gauge transformation parameters depending only on

the angular coordinates to become approximate symmetry around null infinity. The LGTs

connect different solutions of the classical equations of motion under the given boundary

conditions, or equivalently, degenerate vacuum configurations corresponding to different

coherent excitations of soft photons/gravitons. As a result, the LGT generators create or

annihilate soft photons/gravitons, and the associated soft theorem can be interpreted as

a Ward identity of the LGT. Indeed, the change of the vacuum configuration after soft

photon/graviton emission gives rise to physically observable effects known as the electro-

magnetic/gravitational memory. The common structure shared by the memory effect and

the soft theorem, together with the fact that the change of the vacuum configuration from

the memory effect is described by a LGT, led one to conjecture a ‘triangular relation’ that

governs the IR properties of gauge theory and gravity [3]. The ‘triangular relation’ holds

even in the scalar theory [4–6].

The triangular relation for gravity has been extensively studied in the context of asymp-

totic flat background, where the LGT is known as the Bondi-van der Burg-Metzner-Sachs
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(BMS) transformation [7–9]. For more generic backgrounds, different spacetime structures

with e.g. the absence of light-like null infinity or the existence of a horizon makes closure of

the triangular relation more challenging. Yet, some of these IR relations seem to hold even

in cosmological backgrounds [10–15] where the spacetime is not asymptotically flat. On

the other hand, the conceptual and technical difficulties arising from the close connection

between the background spacetime and the LGTs do not exist in Abelian gauge theory

like quantum electrodynamics (QED) in flat spacetime [16, 17]. In QED, the photons at

null infinity distinguish the two different helicity states. Since the helicity structure of the

photon originates from the representation of the Lorentz group for massless particles, it is

natural to associate the LGT with the structure of the Lorentz group. More concretely, the

helicity states correspond to the irreducible representation of the little group, a subgroup

of the Lorentz group that does not change the momentum of particle. For a massless par-

ticle, the little group is given by ISO(2), which contains not just a helicity operator, but

also two non-compact generators. When acting on a photon, these two non-compact gen-

erators create a longitudinal mode in a helicity-dependent and a helicity-independent way,

respectively, which have been interpreted as gauge transformations. Interestingly, the LGT

takes the form of a helicity-independent gauge transformation at null infinity. Moreover,

we find that in order to close the algebra describing the soft photon around null infinity, we

need another infinite-dimensional generator corresponding to the large distance limit of a

helicity-dependent gauge transformation. Then three symmetry charges of the soft photon:

its helicity, LGT charge and the newly introduced generator form the ISO(2) algebra [18].

In this article, we study in detail such helicity related issues of the LGT and the non-

compact generator of ISO(2). In section 2, we provide an interpretation of the new non-

compact generator in light of electromagnetic duality. In the absence of massive charged

particles, only soft photons propagate at null infinity, whose equations of motion are given

by the source-free Maxwell equations locally. Hence, we expect that electromagnetic duality

introduces a ‘dual gauge field’ Ã defined by F̃ = dÃ, where F̃ is the dual electromagnetic

field strength whose components are given by F̃µν = 1
2ǫµνρσF

ρσ. We claim that the dual

gauge transformation Ã → Ã+dΛ is a helicity-distinguishing gauge transformation, whose

long distance limit is given by the action of the other non-compact ISO(2) generator on the

soft photons. In section 3, hinted by the helicity-independent nature of the LGT charge,

a property shared by the electric field, we propose the ‘electric Aharonov-Bohm effect’ as

a way to observe the memory effect in QED. It was previously suggested that the electro-

magnetic memory effect can be observed through the well-known magnetic Aharonov-Bohm

effect [19] by measuring the vector field in different gauges. It is interesting to point out

that the original Aharanov-Bohm paper [20] also mentioned the electric Aharonov-Bohm

effect, as a way to measure the electric potential difference. We show here that the LGT

generator with a delta functional gauge transformation parameter can be interpreted as

an electric potential, so the electric Aharonov-Bohm effect may be a more direct way to

measure the electromagnetic memory.
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2 Completion of the LGT algebra and its interpretation

2.1 LGT around null infinity

In this section, we review how the LGT emerges around null infinity and the vector field

transforms under the LGT. Since gauge symmetry is a redundancy of physical degrees of

freedom, the quantization of gauge field requires gauge fixing, i.e., choosing only one ‘orbit’

of the physical degrees of freedom through the condition G(Aµ) = 0. All the redundancies

are completely eliminated provided that Faddeev-Popov determinant does not vanish,

Det

[
δG

δAµ
∂µ

]
6= 0. (2.1)

In the case of Abelian gauge theory such as QED, we need one gauge fixing condition

for each spacetime point, so in principle, the ‘residual gauge transformation’, the gauge

transformation surviving the gauge fixing does not exist. Instead, even though not exact,

an approximate residual gauge symmetry can emerge at some specific region [21]. More

specifically, a residual gauge symmetry that emerges at null infinity is called a large gauge

transformation (LGT). Therefore, in the gauge fixed Lagrangian,

L = −1

4
FµνF

µν +
1

2ξ
B2 +B∂µA

µ − c∂2c, (2.2)

where B is the auxiliary field used to impose the gauge fixing condition and c, c are ghosts,

while gauge transformation appears as a BRST transformation,

δAµ = ǫ∂µc, δc = 0, δc = ǫB, δB = 0, (2.3)

the LGT is just an accidental symmetry which holds around null infinity, under which

δAµ = ∂µε, δc = 0, δc = 0, δB = 0, (2.4)

making δL(r → ∞) = O(r−n) for some positive n.

To see the situation explicitly, we consider the ‘retarded time’ coordinate (u, r, z, z̄)

where the retarded time u = t − r and the complex parametrizations for the angular

variables z = tan(θ/2)eiφ and z̄ are used, with the flat spacetime metric given by

ds2 = −du2 − 2dudr + 2r2γzz̄dz̄dz, γzz̄ =
2

(1 + z̄z)2
. (2.5)

Taking the Lorenz gauge, G = ∂µA
µ = 0, for example, the LGT forming the residual gauge

symmetry is parametrized by the solution of the ‘zero mode equation’ ε(x),

δG(A)

δAµ
∂µε(x) = �ε(x) = 0. (2.6)

Under the boundary condition limr→∞ ε(x) = 0, we only have a trivial solution ε = 0.

On the other hand, when we loosen the boundary condition with an appropriate falloff

behavior, say,

lim
r→∞

Au = O(r−1), lim
r→∞

Ar = O(r−2), lim
r→∞

Az/z̄ = O(1), (2.7)
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the parameter ε may solve the zero mode equation allowing O(r−n) (n > 0) corrections

which are not so important around null infinity. Hence, expanding ε in terms of r,1

ε(x) = ε(0)(u, z, z̄) +
1

r
ε(1)(u, z, z̄) +

1

r2
ε(2)(u, z, z̄) + · · · , (2.8)

and inserting this into the zero mode equation,

0 = �ε =
1√−g

∂µ(
√−ggµν∂νε) = −∂u∂rε+

1

r2
∂r[r

2(∂rε− ∂uε)] +
2

r2γzz̄
∂z∂z̄ε

= −2

r
∂uε

(0) +
1

r2

[
2

γzz̄
∂z∂z̄ε

(0)

]
+ · · · ,

(2.9)

so far as O(r−2) terms are neglected, ∂uε
(0) = 0, or ε(0) = ε(0)(z, z̄) is a good approximation

to a residual gauge symmetry, or large gauge symmetry as it approximately solves the zero-

mode equation.

Since the LGT parameter ε depends only on the angular variables (z, z̄), only the

angular components of the gauge field transform non-trivially under the LGT: Az/z̄ →
Az/z̄ + ∂z/z̄ε(z, z̄). Indeed, from the behavior of a plane wave at r → ∞ [3, 23],

lim
r→∞

e−ik·x =
2πi

ωr

[
ei(ω+iǫ)(u+2r)δ2(x̂+ k̂)− ei(ω+iǫ)uδ2(x̂− k̂)

]
, (2.10)

we find that the photon momentum direction becomes parallel to the direction of the

photon’s classical trajectory given by

x̂ =
1

1 + z̄z
(z + z̄,−i(z − z̄), 1− z̄z). (2.11)

Moreover, the angular components of the gauge field Az = ∂zx
µAµ and Az̄ are written as

Az = −i
√
γzz̄

∫ ∞

0

dω

8π2
(a+(ωx̂)e

−iωu − a†−(ωx̂)e
iωu),

Az̄ = −i
√
γzz̄

∫ ∞

0

dω

8π2
(a−(ωx̂)e

−iωu − a†+(ωx̂)e
iωu),

(2.12)

showing a similar structure as a Weyl fermion. That means that in the Weyl representation

of a massless fermion, the left-handed Weyl field describes the negative helicity particle

and the positive helicity antiparticle whereas the right-handed Weyl field pairs the positive

helicity particle with the negative helicity antiparticle. Of course, the vector field is real,

so the same structure appears that Az contains the positive helicity photon annihilation

operator and the negative helicity photon creation operator while Az̄ contains the negative

helicity photon annihilation operator and the positive helicity photon creation operator.

Hence, the gauge field at null infinity shows its helicity structure explicitly through its

complexified angular components.

Now, as shown in eq. (2.4), LGT corresponds to the replacement of operators Az/z̄

with helicity ±1 by the scalar functions ∂z/z̄ε, contrary to the original gauge transformation

1See also [3, 22] for the solution of the zero mode equation.
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which replaces the unphysical polarization states by the ghost (eq. (2.3)). That means, the

action of the LGT generator Qε satisfying i[Qε, Az/z̄] = ∂z/z̄ε changes the helicity of the

photon states. This can be checked explicitly from the expression of the LGT generators,

which was found in [16, 17, 23]. Applying Noether’s theorem to the gauge symmetry

(Aµ → Aµ + ∂µΛ), we obtain

Jµ
N =

∂L
∂(∂µAν)

δAν + JµΛ = −Fµν∂νΛ + JµΛ = −(FµνΛ);ν + (Fµν
;ν + Jµ)Λ, (2.13)

where the second term vanishes by the equations of motion. Taking Λ to be global, we

obtain the conventional electric charge after dropping Λ. In the case of the LGT generated

by ε(z, z̄), we also have the LGT charges coming from an infinite number of Noether

currents, Jµ
N,ε = −(Fµνε);ν ,

Qε = −
∫

S
d2zr2γzz̄ε(z, z̄)Fru. (2.14)

Under the boundary conditions given by eq. (2.7), the dominant terms of the r component

of the Maxwell equations around null infinity is written as

−∂uFru+
1

r2γzz̄
[∂z(Frz̄ −Fuz̄)+∂z̄(Frz −Fuz)] ≃ −∂uFru−

1

r2γzz̄
∂u(∂zAz̄ +∂z̄Az) = −Jr.

(2.15)

Note that even though eq. (2.15) is a part of ~∇× ~B = ∂ ~E/∂t+ ~J , all the dominant terms

come from the electric field. In particular, the angular components Az/z̄ we are interested

originated from Fuz/z̄, which appears due to the choice of the retarded time coordinate.

Integrating eq. (2.15) over the spherical surface of null infinity (r → ∞), and again over

retarded time, we obtain the change of LGT charge,

Qε(u = +∞)−Qε(u = −∞) = −
∫ +∞

−∞

du

∫
d2zr2γzz̄ε∂uFru

= −
∫ +∞

−∞

du

∫
d2zr2γzz̄εJ

r +

∫ +∞

−∞

du

∫
d2zε∂u(∂zAz̄ + ∂z̄Az).

(2.16)

Hence, the conservation law does not just equate the change of charge with flux (the first

term of r.h.s.), but should be supplied by an additional contribution, the second term of

the r.h.s. Using eq. (2.12), we find that the second term represents the sum of the soft

photons on null infinity over −∞ < u < +∞, in the form of

∆Q(s)
ε =

∫
d2z lim

ω→0

ω
√
γzz̄

8π

[
(∂zε(z, z̄)a+(ωx̂) + ∂z̄ε(z, z̄)a

†
+(ωx̂))

+ (∂z̄ε(z, z̄)a−(ωx̂) + ∂zε(z, z̄)a
†
−(ωx̂))

]
.

(2.17)

For this reason, we call the second term the “soft part” of the LGT charge, in contrast

with the “hard part” given by the first term. In the absence of massless charged particle,

only the soft part is considered at null infinity. Since the soft part ∆Q
(s)
ε is linear in the

creation/annihilation operators of soft photon for each helicity and momentum direction,

its action on a soft photon state is a linear superposition of states with one more and one

less left- and right-handed soft photon [18]. It is clear that the helicity of these states are

different from the original one.

– 5 –
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2.2 Completion of the LGT algebra: ISO(2) structure

The fact that the two symmetry generators of the soft photon at null infinity, namely, the

helicity operator J and the soft part of LGT charge ∆Q
(s)
ε do not commute with each other

indicates that more charge(s) need to be introduced to close the algebra. As shown in [18],

the minimal closed algebra is ISO(2) which requires one more generator. To see this, we

notice that J and ∆Q
(s)
ε has the structure of

J =

∫
d2z

[
a†+,za+,z − a†−,za−,z

]
,

∆Q(s)
ε =

∫
d2z

∑

λ=±

g(z, z̄)
[
(a+,z + a†+,z) + (a−,z + a†−,z)

]
,

(2.18)

where the commutation relations are given by

[aλ,z, a
†
λ′,z′ ] = δλ,λ′δ2(z − z′), [aλ,z, aλ′,z′ ] = 0 = [a†λ,z, a

†
λ′,z′ ]. (2.19)

Moreover, in order to define a common, real weight function g(z, z̄) = (ω
√
γzz̄/8π)|∂zε|, we

absorb the phase of ∂zε into aλ,z. Obviously, for a fixed angle z, ∆Q
(s)
ε has the structure

of the position operator for the two-dimensional simple harmonic oscillator, corresponding

to the two distinct helicities. Hence, if we introduce another operator ∆P
(s)
ε given by

∆P (s)
ε =

∫
d2z

∑

λ=±

g(z, z̄)
[
i(a+,z − a†+,z)− i(a−,z − a†−,z)

]
, (2.20)

three operators J , ∆Q
(s)
ε , and ∆P

(s)
ε satisfy the ISO(2) algebra,

[∆Q(s)
ε ,∆P (s)

ε ] = 0, [J,∆Q(s)
ε ] = i∆P (s)

ε , [J,∆P (s)
ε ] = −i∆Q(s)

ε . (2.21)

Interestingly, as pointed out in [18], the ISO(2) algebra also appears in the representation

of the Lorentz group. More precisely, instead of the non-compact Lorentz group, we take

its subgroup that does not alter the momentum of the state, such that a ‘particle’ is defined

in terms of a discrete, finite dimensional representation of such ‘little group’ [24]. Whereas

the little group for a massive particle is given by SO(3), generated by the spin operators,

the little group of the massless particle is given by ISO(2). In the ISO(2) algebra, besides

the helicity operator J , we have two non-compact generators Π1 and Π2 satisfying

[Π1,Π2] = 0, [J,Π1] = iΠ2, [J,Π2] = −iΠ1. (2.22)

Since Π1,2 give continuous and infinite eigenvalues, the common practice is to fix them

to specific values, and take the helicity as a quantum number labelling the particle state.

However, as pointed out in [1], the action of Π1,2 on the vector field has the same form

as the gauge transformation. This can be explicitly checked by considering the photon

moving in the z-direction. In this case, the helicity operator is just J3, and the other two

non-compact generators are given by Π1 = J2 +K1 and Π2 = −J1 +K2, which induce the

– 6 –
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non-compact little group transformation

W (α, β) = exp[i(αΠ1 + βΠ2)] =




1 + α2+β2

2 α β −α2+β2

2

α 1 0 −α

β 0 1 −β
α2+β2

2 α β 1− α2+β2

2


 . (2.23)

Its action on the polarization vectors is given by

W (α, β)ǫµ± = ǫµ± +
α∓ iβ√

2

kµ

ωk
, (2.24)

which seems to be equivalent to the gauge transformation. Indeed, this fact was used to

introduce a gauge symmetry to the vector field even in the absence of charged particle [25].

Since the action of the non-compact little group on the vector field is a ‘gauge transforma-

tion’, we expect that the residual symmetry emerging at null infinity generated by one of

the two non-compact little group generators appears as the LGT charge. The appearance

of the same algebraic structure ISO(2) gives evidence to this assertion that the gauge trans-

formation generated by Π1 appears as ∆Q
(s)
ε at null infinity. In addition, comparing the

action of ∆Q
(s)
ε and ∆P

(s)
ε in eq. (2.18) and eq. (2.20), we immediately find once again the

common feature between the closed LGT algebra and the little group. Whereas ∆Q
(s)
ε acts

on the left- and the right-handed helicity operators in the same way, i.e., helicity universal,

∆P
(s)
ε acts differently on different helicity states. The action of the non-compact little

group generators (eq. (2.24)) also has the same property. The transformation generated

by Π1 is helicity universal but that generated by Π2 is helicity distinguishing.

Our discussion so far supports a close relation between the closed LGT algebra and

the little group for massless photons. But still, the nature of ∆P
(s)
ε is not clear. Which

type of gauge transformation distinguishes the helicities, and why it does not appear as a

residual gauge symmetry at null infinity?

2.3 Dual gauge transformation

In order to answer to the question raised in the previous section, we go back to the little

group action on the polarization vector, eq. (2.24). Since both Π1 and Π2 generate the

longitudinal polarization proportional to kµ, we naively expect that these two operators

generate the gauge transformation. However, we find that the gauge transformation at null

infinity is in fact helicity universal, and this is the reason why only ∆Q
(s)
ε is induced from the

gauge transformation. To see this, let us consider the mode expansion of the gauge trans-

formation parameter Λ(x) in Aµ → Aµ + ∂µΛ. In terms of BRST cohomology, Λ(x) in the

gauge transformation corresponding to the ghost operator c(x). In the case of LGT, Λ(x)

is just a scalar function ε(z, z̄). In any case, Λ(x) has the free field expansion in the form of

Λ(x) =

∫
d3k

(2π)3(2ωk)
(c†(k)e−ik·x + c(k)eik·x). (2.25)

– 7 –
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Using eq. (2.10), we find that

∂µΛ(x) (2.26)

=

∫
dωkd

2zk
8π2r

[
− i(c†(k)eiωku − c(k)e−iωku)(∂µzk∂zkδ

2(z − zk) + ∂µz̄k∂z̄kδ
2(z − zk) + · · · )

+ i(c†(k)eiωk(u+2r) − c(k)e−iωk(u+2r))(∂µzk∂zkδ
2(z + zk) + ∂µz̄k∂z̄kδ

2(z + zk) + · · · )
]
,

thus

∂zΛ(x) (2.27)

=

∫
dωkd

2zk
8π2r

[
− i(c†(k)eiωku − c(k)e−iωku)∂zkδ

2(z − zk)

+ i(c†(k)eiωk(u+2r) − c(k)e−iωk(u+2r))∂zkδ
2(z + zk)

]

=

∫
dωk

8π2r

[
i(∂zc

†(~k)eiωku − ∂zc(~k)e
−iωku)− i(∂zc

†(−~k)eiωk(u+2r) − ∂zc(−~k)e−iωk(u+2r))
]
.

At null infinity, we take r → ∞, and the u- and r-independent term consistent with

the LGT comes from soft photon satisfying ωr ≪ 1: the ±2iω term in e±iω(u+2r)/r ≃
(1/r)(1 ± iω(u + 2r) + · · · ). Hence, as a LGT, ∂zΛ appears to be a residual gauge trans-

formation of Az with polarization ǫ+ = (ǫ−)
∗, while ∂z̄Λ is a gauge transformation of Az̄

with polarization ǫ− = (ǫ+)
∗, satisfying

a+(ωx̂zz̄) → a+(ωx̂zz̄) +
2iω√
γzz̄

∂zc(−z,−z̄),

a−(ωx̂zz̄) → a−(ωx̂zz̄) +
2iω√
γzz̄

∂z̄c(−z,−z̄).

(2.28)

By identifying kµ = i∂µ,
2 we see that after absorbing the phase of the second term in

eq. (2.28), the gauge transformation at null infinity is universal for both polarizations,

which shares the same structure as ∆Q
(s)
ε .

Now, we recall that ∆Q
(s)
ε comes from the electric field Fuz/z̄. When we describe the

electromagnetic radiation, given an electric field in the circular polarization ~E = E0(~ǫ+ +

~ǫ−)e
−ik·x, the magnetic field is given by ~B = k̂ × ~E = E0(i~ǫ− − i~ǫ+)e

−ik·x so that the

two polarizations are distinguished by the relative phase. From this, we notice that the

helicitiy structure of ∆Q
(s)
ε and ∆P

(s)
ε are those of the electric and the magnetic field,

respectively. Indeed, the symmetry of the soft photon at null infinity that is magnetic

in nature was already discussed in, e.g., [26–28]. Notably, [28] suggests to consider such

magnetic effect in terms of electromagnetic duality. This can be easily understood from the

fact that under the electromagnetic duality, the roles of the electric field and the magnetic

field are interchanged with each other. In our discussion, we have focused on the behavior

of soft photons around null infinity, where any massive particle cannot reach. Assuming

the absence of massless charged particle, the Maxwell equations at null infinity are given

2In fact, as we go to r → ∞, k̂ → x̂ and kz = ∂zx
µ
k
µ = 0. But at least formally, we may regard i∂z/z̄

as kz/z̄.
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by the sourceless form, dF = dF̃ = 0, and electromagnetic duality becomes evident. In

this case, just as gauge field and field strength are related by F = dA, we can introduce the

‘dual gauge field’ Ã such that the dual electromagnetic field strength is written as F̃ = dÃ.

In addition, the ‘dual gauge transformation’ under which Ãµ → Ãµ + ∂µΛ can be imposed

as a symmetry of QED at null infinity. Then it is natural to think of the emergent residual

gauge symmetry at null infinity for the dual gauge transformation. Such ‘large dual gauge

transformation’(LdGT) charge is, in analogous to LGT charge defined in eq. (2.14) [28],

Pε = −
∫

S
d2zr2γzz̄ε(z, z̄)F̃ru = −i

∫

S
d2zε(z, z̄)Fzz̄. (2.29)

From this, the change of LdGT charge is given by

∆Pε = −i

∫ +∞

−∞

du

∫
d2zε∂u(∂zAz̄ − ∂z̄Az)

= −
∫

d2z lim
ω→0

ω
√
γzz̄

8π

[
i(∂zε(z, z̄)a+(ωx̂)− ∂z̄ε(z, z̄)a

†
+(ωx̂))

− i(∂z̄ε(z, z̄)a−(ωx̂)− ∂zε(z, z̄)a
†
−(ωx̂))

]
,

(2.30)

the structure we expect from ∆P
(s)
ε . Therefore, after taking the soft part of the LGT

and the LdGT into account, the soft photon has three quantum numbers, i.e., its helicity,

∆Q
(s)
ε , and ∆P

(s)
ε . Together, these operators form a closed ISO(2) algebra.

This conclusion in turn motivates us to revisit the meaning of the little group action,

eq. (2.24). As mentioned previously, the appearance of the longitudinal mode as a result

of the non-compact little group action has been regarded as a way to introduce a gauge

symmetry to the system with gauge bosons only: having charged matter is not an essential

ingredient for the gauge symmetry. However, so far as the vector field is concerned, the

system has not only a gauge symmetry, but also a dual gauge symmetry. An interchange

between the electric and the magnetic fields under the dual gauge transformation is reflected

in the action of Π1 and Π2, such that while the action of Π1 is helicity universal (electric

in nature), the action of Π2 distinguishes the helicity (magnetic in nature). Looking at

how the gauge and the dual gauge transformation appears at null infinity, their residual

symmetry appear as LGT and LdGT.

3 Detecting the LGT charge via the electric Aharonov-Bohm effect

One interesting aspect of LGT is its connection to the memory effect. Originally, the mem-

ory effect was defined in the context of gravitational waves, as a permanent change between

two gravitational wave detectors after the gravitational wave passes through. Analogously,

we can think of the electromagnetic memory as describing a permanent change of the mo-

tion of charged particle after the passage of an electromagnetic wave [29]. Another point

of view in interpreting the memory effect is the change encoded in the gauge field resulting

from the passage of the wave. This later viewpoint turns out to be useful in relating the

memory effect with the soft theorem. In the case of the gravitational memory, the change of
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curvature is restricted to be a subleading effect, thus maintaining the asymptotic flatness.

That means that whereas two geometries before and after the passage of the gravitational

wave are distinct, the difference in curvature is very small, and hence the same flat space-

time background is dominant around null infinity. This is exactly the setting where the

super-translation/rotation in the BMS group emerges as the approximate symmetry at null

infinity: different asymptotically flat geometries are connected by the BMS transformation.

Moreover, asymptotic flatness is maintained if only the soft gravitons affect the dynam-

ics around null infinity. Hence, asymptotic symmetry and the memory effect are closely

relevant to the physics of soft gravitons.

We can apply the discussion above to electrodynamics. Basically, the memory effect

is characterized by the integration of the electric field over an infinite range of time. As

discussed in [29], this integral can be expressed as a jump of the vector field Aµ before and

after the passage of the electromagnetic wave. To have a non-vanishing memory effect, the

vector field Aµ before and after need to be gauge inequivalent, but such inequivalence is

a subleading effect at null infinity, where the leading order vector field is given by a pure

gauge. Then we can say that two vector fields are approximate gauge equivalent, connected

by the LGT. Soft photons are important in this regard, as they just alter the subleading

effects of the vector field, which are suppressed by some positive power of r.

Two gauge equivalent fields can be distinguished by the Aharonov-Bohm effect. Hence,

we can utilize the Aharonov-Bohm effect to distinguish two gauge fields connected by a

LGT, where the inequivalence is suppressed by O(r−n) (n > 0). The suggestion of [19] is

based on such considerations. The Aharonov-Bohm effect in [19] is the conventional one,

trading the phase difference of test charged particles moving along different trajectories

with the magnetic flux. On the other hand, our discussion so far shows that the LGT

has the nature of an electric field, rather than a magnetic field. This will be evident

shortly as we show that the combination of the gauge fields contributing to the LGT charge

∆Q
(s)
ε is equivalent to the scalar potential.3 That means that a more direct measure of

the electromagnetic memory effect is the potential difference made by the passage of soft

photons, which can be measured by the electric Aharonov-Bohm effect.

To see the discussion above in detail, let us go back to the Maxwell equation, eq. (2.15).

In the usual (t, r′, z, z̄) coordinate, the scalar and the vector potential are given by Aµ =

(At, ~A) = (φ, ~A). In the retarded time coordinate where t = u + r ad r′ = r, the vector

potentials are related by Au = At = −φ and Ar = At+Ar′ = −φ+Ar′ . Now, consider the

radial gauge Ar = 0. Assuming no massless charged particle at null infinity, Jr = 0. Then,

∂uFru = ∂u∂rAu = −∂u∂rφ = − 1

r2γzz̄
∂u(∂zAz̄ + ∂z̄Az), (3.1)

or

∂uφ = − 1

rγzz̄
∂u(∂zAz̄ + ∂z̄Az). (3.2)

3Note that, in [19], the temporal gauge where the scalar potential is zero was taken.
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Therefore, the difference between the scalar potential φ at u = +∞ and at −∞ corresponds

to

φ(u = +∞)− φ(u = −∞) = − 1

rγzz̄

∫ +∞

−∞

du∂u(∂zAz̄ + ∂z̄Az). (3.3)

The r.h.s. is equivalent (after scaling out the factor of 1/r) to the LGT charge ∆Q
(s)
ε with

ε = δ2(z0 − z)/γzz̄ at a specific angular parameter z0.

In the Lorenz gauge ∂µA
µ = 0, since

∂uAr =
1

r2
∂r[r

2(−Au +Ar)] +
1

r2γzz̄
[∂zAz̄ + ∂z̄Az], (3.4)

the Maxwell equations become

∂uFru = ∂u∂rAu − ∂2
uAr

= ∂u∂rAu − ∂u

[
1

r2
∂r[r

2(−Au +Ar)] +
1

r2γzz̄
[∂zAz̄ + ∂z̄Az]

]

= − 1

r2γzz̄
∂u(∂zAz̄ + ∂z̄Az).

(3.5)

Comparing the last two equalities, we find that the electric field Fuz/z̄’s contribution to

the memory effect vanishes. Instead, the gauge fixing condition itself relates the scalar

potential to the memory effect. Following the boundary condition eq. (2.7), we neglect Ar

compared to Au, then the Lorenz gauge fixing condition becomes

0 = ∂µA
µ ≃ −∂rAu +

1

r2γzz̄
(∂z̄Az + ∂zAz̄) = ∂rφ+

1

r2γzz̄
(∂z̄Az + ∂zAz̄), (3.6)

to give eq. (3.2) again with the sign flipped.

In any case, the potential difference between the long time separation comes from the

soft photon reaching null infinity, or a detector far away from the source, so it is a direct

measure of the LGT charge with the parameter ε localized at a specific angle. If we start

with the universal initial potential i.e., φ(u = −∞)=const. everywhere on the spherical

surface, after a long enough time, φ(u = ∞, z, z̄) becomes different for each angular coor-

dinates parametrized by z as different number of soft photons reach the spherical surface.

Even locally, we may measure φ(u = ∞, z, z̄) − φ(u = −∞, z, z̄) at some specific z in

the following way: first, we connect the external voltage generator to both the BD region

and the CE region in figure 1 to make the initial potentials in the two regions take the same

value, φ2 = φ(u = −∞). Next, while keeping the connection between the voltage generator

and the CE region, we connect the BD region to the ground such that the potential in the

BD region is changed to φ1 = φ(u = +∞) resulting from the passage of soft photons.

Then by sending test charges, we can compare the potentials in the BD region and the CE

region to measure the soft part of the LGT charge ∆Q
(s)
ε . This is how the so-called electric

Aharonov-Bohm effect works.

Of course, such experimental setup is an ideal one. In real situations, there are several

corrections arising from e.g., having a finite r, a finite time interval, and a limitation of

the resolution of the angular coordinate z. The finite r correction is controllable as every
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Figure 1. Experimental setup for the electric Aharonov-Bohm effect, as shown in [20].

argument so far was made based on an O(1/r) expansion. Hence, we comment instead on

the effects of a finite time interval and a limited angular resolution. Both effects have to

do with the sharpness of the delta function, so we can focus our discussion on the former.

For this purpose, suppose instead of ∞, we use a finite but large boundary value U :

φ(u = +U, z0)− φ(u = −U, z0) = − 1

rγzz̄(z0)

∫ +U

−U
du∂u(∂zAz̄(u, z0) + ∂z̄Az(u, z0)). (3.7)

But we find that the potential difference is insensitive to U when U is very large. To see

this, consider the ω integration using regulators U and ǫ as

∫ +U

−U
dueiωu = lim

ǫ→0

[ ∫ +U

0
dueiu(ω+iǫ) +

∫ 0

−U
dueiu(ω−iǫ)

]

= lim
ǫ→0

e−ǫU

[
eiωU

iω − ǫ
− e−iωU

iω + ǫ

]
+

[
− 1

iω − ǫ
+

1

iω + ǫ

]

= lim
ǫ→0

e−ǫU

[
2ω sin(ωU)

ω2 + ǫ2
− 2ǫ cos(ωU)

ω2 + ǫ2

]
+

2ǫ

ω2 + ǫ2
.

(3.8)

The first term with the bracket (i.e., the oscillating term) rapidly attenuates as ǫU ≫ 1.

The last term gives the Dirac delta function 2πδ(ω) through

δ(x) =
1

π
lim
ǫ→0

ǫ

ω2 + ǫ2
. (3.9)

Here, ǫ is interpreted as the resolution of the frequency. Hence, so far as the measurement

time scale U is much longer than 1/ǫ, the oscillating term can be neglected. Since the

U dependence is contained in the oscillating term only, we may neglect the U effects.

From now on, we change our notation: in order to emphasize the role of ǫ as a frequency

resolution, we denote ǫ ≡ ∆ω.
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Using the mode expansion eq. (2.12), the r.h.s. of eq. (3.7) becomes

− 1

rγzz̄(z0)

∫ +U

−U
du∂u(∂zAz̄(u, z0) + ∂z̄Az(u, z0))

= −
∫

d2z
δ2(z0 − z)

rγzz̄(z)

∫ +U

−U
du∂u(∂zAz̄(u, z) + ∂z̄Az(u, z))

= −
∫

d2z
√
γzz̄

∫ Λ

0

dω

8π2r
ω

2∆ω

ω2 +∆ω2

[
∂z

(
δ2(z0 − z)

γzz̄

)
(a+(ωx̂) + a†−(ωx̂))+

+ ∂z̄

(
δ2(z0 − z)

γzz̄

)
(a−(ωx̂) + a†+(ωx̂))

]

= −
∫

d2z
√
γzz̄

1

8π2r
∆ω log

(
1 +

Λ2

∆ω2

)[
∂z

(
δ2(z0 − z)

γzz̄

)
(a+(ωx̂) + a†−(ωx̂))+

+ ∂z̄

(
δ2(z0 − z)

γzz̄

)
(a−(ωx̂) + a†+(ωx̂))

]
.

(3.10)

As already implied in eq. (2.17), the potential difference vanishes for the exact zero fre-

quency, ∆ω = 0. This is an expected result since zero energy transferred by photons does

not change the potential energy at all. The change in potential arises from extremely small

but not exactly zero frequency photons, which we conventionally refer to ‘soft’ photons.

Of course, as U → ∞, high frequency effect would be strongly suppressed.

We note here that in detecting both the electric and the magnetic Aharonov-Bohm

effects, we need to use a test charge. As soon as we introduce a test charge, the electro-

magnetic duality, which arises in the sourceless Maxwell equation, is spoiled. This breaks

the dual gauge symmetry explicitly, and as a result the LdGT generated by ∆Pε, which

has a direct connection to the well-known magnetic Aharonov-Bohm effect, is no longer

the symmetry. Since the magnetic flux can be measured with only a non-negligible amount

of charge of the test particle, the measurement of ∆Pε becomes unreliable.

4 Conclusions

In this article, we have emphasized the electric field nature of the large gauge transformation

charge. If we neglect the charged matter, electromagnetic duality emerges, and large dual

gauge transformation, governed by the magnetic field nature needs to be taken into account.

Together with the helicity operator, these two charges form an ISO(2) algebra, which has

the same algebraic structure as the little group of massless particles. This is consistent

with the little group action on the polarization vector of the vector field. In this regard, we

can make a more precise interpretation of the little group action on the polarization vector:

while the helicity universal part is the gauge symmetry of the pure Abelian gauge theory, the

helicity distinguishing part is then the dual gauge transformation. Moreover, we find that

the electric field nature of the large gauge transformation suggests an interesting possibility

that the large gauge transformation can be measured by the electric Aharonov-Bohm effect.

While we focus our investigation on QED, we expect a similar structure to appear in

the gravitational case. Indeed, the gravitational memory effect relevant to supertranslation
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is encoded in the electric field part of the Weyl tensor, as emphasized in, e.g., [30]. More-

over, the electric part of the Weyl tensor comprises of the Bondi mass aspect whose angular

integration provides the BMS charge for supertranslation [31]. As the BMS charges also

create/annihilate soft gravitons at null infinity, they do not commute with the helicity op-

erator, and another soft photon generator made up of the magnetic part of the Weyl tensor

may be included to close the algebra. On the other hand, it was recently suggested that

asymptotic symmetries in gravity are associated with the Berry phase [32, 33], from which

we may design detection of the gravitational memory effect through the electric Aharonov-

Bohm-like effect. We hope to return to these interesting issues about the gravitational

memory effect in the future.
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[30] T. Mädler and J. Winicour, The sky pattern of the linearized gravitational memory effect,

Class. Quant. Grav. 33 (2016) 175006 [arXiv:1605.01273] [INSPIRE].
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