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1 Introduction

In supersymmetric field theory, the energy-momentum tensor belongs to a supermul-
tiplet, called the supercurrent [1]. In the case of superconformal theories, the supercur-
rent multiplet is irreducible. It contains the energy-momentum tensor 7,,, the spinor
@Q-supersymmetry current S, and the R-symmetry current j,,, in conjunction with some
additional components that are required in order to have an equal number of bosonic and
fermionic components.!

!Those conserved currents, which correspond to the other continuous transformations in the supercon-
formal group, are constructed from the conformal supercurrent and conformal Killing supervector fields [2].



For theories without superconformal symmetry, the supercurrent multiplet is reducible,
as a rule.? The point is that the energy-momentum tensor is no longer traceless, and
its trace T™,, may belong to a smaller supermultiplet embedded in the non-conformal
supercurrent. This trace supermultiplet also contains the ~-trace of the Q-supersymmetry
current, ¥™S,,, as well as the divergence of the R-symmetry current, 9™j,,, if the R-
symmetry current is not conserved.

An example worth recalling is the supercurrent multiplet [1] corresponding to N' =1
Poincaré supersymmetry in four dimensions (4D). The conformal supercurrent is described
by a real axial vector superfield, .J,, = J,,, constrained by

D%J,e =0 . (1.1)
The non-conformal supercurrent proposed by Ferrara and Zumino [1] is
D%Jos = DoX, DgX =0. (1.2)

Here X is the trace supermultiplet.?

Unlike the conformal supercurrent, its non-conformal counterpart is not unique. The
reason for this is that there may exist several inequivalent trace supermultiplets supported
by different supersymmetric field theories [7]. For instance, another example of 4D N =1
non-conformal supercurrents is [7-9]

D%Jos = Xa s DBXQ =0, D% = Dax? . (1.3)
Here the trace supermultiplet x is a vector multiplet.

Similar to the energy-momentum tensor, which is the source of gravity, the supercur-
rent is the source of supergravity [10-12]. For a given Poincaré supergravity theory, there
often exist several off-shell formulations leading to the same dynamical system on shell.
However, different off-shell formulations for supergravity lead to different non-conformal
supercurrents. In the case of 4D N = 1 supergravity, for instance, the supercurrent mul-
tiplet (1.2) is associated with the old minimal formulation [13-15], while the conservation
equation (1.3) corresponds to the new minimal formulation [8].

The connection between the non-conformal supercurrents and different off-shell for-
mulations for supergravity becomes more apparent in the Weyl-invariant (or conformal)
approach to supergravity. Before discussing the supersymmetric case, it is instructive to
recall the Weyl-invariant formulation for gravity. Consider a system of matter fields ¢’
coupled to the gravitational field. In the approach of [16-18], the gravitational field is
described by the metric g, and the conformal compensator ¢, the latter being a nowhere
vanishing scalar field.* The action must be invariant under general coordinate and Weyl

*There exist counter-examples in five and six dimenisons [3, 4].

3Since D?X — D%2X = —2i0aq J‘m7 the chiral scalar X in (1.2) is an example of the so-called three-form
multiplet [5] (see [6] for a review). For instance, in quantum supersymmetric Yang-Mills theories it holds
that (X) = ktr(W*W,), where k is a real parameter, and W, the chiral field strength of the Yang-Mills
supermultiplet.

4As in [16-18], our discussion here is restricted to the 4D case, but generalisation to higher dimensions
is obvious.



transformations,
5an = VA + Vo, — 209mn 5(25 = )\mvm(ﬁ + U¢7 (14)

augmented by certain transformations of the matter fields. Consider the matter action

Sm :/d4m\/jg£ (¢i§gmna¢) : (1'5)

If the metric and the compensator acquire arbitrary infinitesimal displacements, ¢, —
Jmn + 0gmn and ¢ — ¢ + d¢, the action varies as

1
§Su = /d4x\/7—g {2Tm”59mn +T51ngb} , (1.6)

where T™" denotes the energy-momentum tensor of the system. If the matter fields are
chosen to obey their equations of motion, §.Sy/8¢" = 0, the conditions of invariance of Sy
under the local transformations (1.4) are

VI = TV Ing, (1.7a)
Gmn T =T . (1.7b)

The Weyl invariance may be used to impose a condition ¢ = const, in which case eq. (1.7a)
turns into

V™ =0, (1.8)

which is the standard conservation equation.

In analogy with the Weyl-invariant formulation for gravity [16-18], Poincaré or anti-
de Sitter supergravity theories may be formulated as conformal supergravity coupled to
a compensating supermultiplet [19, 20]. Unlike gravity, however, supergravity generally
allows for several choices of conformal compensator that differ in their auxiliary fields.
It turns out that different conformal compensators lead to different off-shell supergravity
theories and, as a consequence, to different supercurrent multiplets. For instance, the
conservation equation (1.2) of the old minimal formulation of supergravity corresponds to
a compensating chiral scalar multiplet, while the conservation equation (1.3) of the new
minimal formulation of supergravity corresponds to a compensating tensor multiplet.

For 6D N = (1,0) supersymmetry, the conformal supercurrent was described more
than thirty years ago [4]. However, to the best of our knowledge, no classification of
non-conformal supercurrents has been given. The only known non-conformal N' = (1,0)
supercurrent was proposed by Manvelyan and Riihl [21]. It proves to be a 6D analogue of
the 4D AN = 2 non-conformal supercurrent introduced by Stelle [22]. The latter obeys the
conservation equation

_ 1._ . _ .
DY J = nglLklU ,  DY:=D.DY, (1.9)

where J = J denotes the A" = 2 supercurrent [23, 24]. The trace supermultiplet Lkl =
L7k ig real, Lijkl = Lijki, and is subject to the analyticity constraints defining an O(4)
multiplet,

DULIFm) = pULikm) — ¢ . (1.10)



It was shown in [25, 26] that the conservation equation (1.9) naturally occurs in theories
which couple to the w-hypermultiplet compensator [27, 28] within the harmonic superspace
approach to 4D N = 2 supergravity (see [29] for a review).

The purpose of this paper is twofold: (i) to derive various consistent 6D non-conformal
supercurrents; and (ii) to lift them to an arbitrary curved conformal supergravity back-
ground with a conformal compensator. As a consequence, all non-conformal supercurrents
may be classified by the choice of compensating conformal supermultiplet.

This paper is organised as follows. In section 2 we present an infinite family of 6D N =
(1,0) non-conformal supercurrents involving O(n) multipletsfor n > 1 and we illustrate a
couple of them by analysing the equations of motion for certain models.® Section 3 is
devoted to the special case of using an NV = (1,0) tensor multiplet as a compensator. We
put forward a non-conformal supercurrent for the N' = (2,0) case in section 4. Finally, we
discuss our results in section 5.

We have included a number of technical appendices. Throughout this paper we will
make use of the superspace formulation of conformal supergravity known as 6D N = (1,0)
conformal superspace [41]. Therefore, we provide the salient details of conformal superspace
in appendix A. Appendix B is devoted to the prepotential description of the O(2) (or
linear) multiplet. In appendix C, we summarise the description of the Yang-Mills multiplet
in conformal superspace. Finally, we give a superform description of the N' = (2,0) tensor
multiplet and its deformation in appendix D.

2 Non-conformal N = (1, 0) supercurrents

In 6D NV = (1,0) supergravity, the conformal supercurrent J is a primary superfield of
dimension +4,
DJ=4J, S5}J=0, (2.1)

which satisfies the conservation equation [41]

» » 1 i
veik =, vk = aeawv(ﬁ vive . (2.2)

In the flat superspace limit, this equation reduces to the one originally given in [24].
In the presence of a conformal compensator the conservation equation (2.2) is de-
formed to
vk = Ak, (2.3)

where A% is a primary superfield of dimension % Using the identity

i) 1 i
VivAkD — Z&Qvg vkl (2.4)

5The O(n) multiplets are well known in the literature on supersymmetric field theories with eight
supercharges in diverse dimensions. For 4D N = 2 Poincaré supersymmetry, general O(n) multiplets, with
n > 2, were introduced in [30-33]. The case n = 4 was first studied in [34]. The terminology “O(n)
multiplet” was coined in [35]. As 6D A = (1,0) superconformal multiplets, their complete description was
given in [36] following the earlier approaches in four and five dimensions [37-40].



it can be checked that A%7* must satisfy the following integrability condition:
i ABj 1 i Avj
Vi APTRD — Zagvg AR (2.5)

In order to guarantee the existence of a conserved supersymmetry current and energy-
momentum tensor, the integrability condition (2.5) has to be accompanied with some
additional requirements on the structure of A%J* To understand this in more detail,
it is worth analysing the deformed conservation equation (2.3) in Minkowski superspace
and uncover the corresponding component structure. In what follows, we will refer to the
superfield A%J* as the trace superfield since in general it gives a trace contribution to the
energy-momentum tensor, while J only contains a symmetric traceless contribution.

2.1 Non-conformal supercurrents in Minkowski superspace

In this subsection we will make use of the spinor derivatives for 6D N = (1,0)
Minkowski superspace, D!, which satisfy the anti-commutation relation

{D},, D)} = —2ic" 0,9 (2.6)
and commute with partial vector derivatives, [9,, D] = 0.
We now analyse the component structure of the superfields J and A%J* subject to the
general constraints (2.3) and (2.5) in the flat-superspace case.’ Taking successive spinor
derivatives of the trace superfield A%7% one finds”

DE APIRE — 68 piakl | 15 A BRD 4 58210 ARD A2 =, (2.7a)

DP AUKL — gplip K (2.7b)

Dk A — %aa G APIR 4 KGpD) (2.7¢)
DEASY — 5N 1 iégAazjk _ ggk(iégAg n égk(i(ggAg R g

+2i0,5 AVIE — %(%aam“ﬂ“, Aag™ =0, Aag™ = Mg, (2.7d)

DGR = 2i0,5 AT + 0 A7) | Ap' = A, (2.7¢)

DiAL = e Ags + %%Aﬂf - éawAaW‘ + %aaﬁfv’j, Aop = Apag),  (2.7F)
DéAﬁvéj = géfﬁAW]aij + 5gABvij + 4iaa[ﬁA7]5ij + %8,37Aa5ij
+%5?ﬁaﬂp‘40m - géfﬁa\wlAW]pij
+§5fﬁaﬂamﬂ' + %53357141?‘

g 4 .. .
+eUe05,,S"° + gewafﬂAﬂa + 26980 Ag,, S =8P (2.7¢g)

5In the anomaly-free case, A*“* = 0, the component analysis was carried out in [4]. More recently, it
was generalised [21] to the case of a special trace supermultiplet A%** given by (2.11).
"The SU(2) indices on any field are always assumed to be symmetrized.



Taking successive spinor covariant derivatives of the superfield J satisfying the equa-
tion (2.3), one finds the following relations

DiJ =", (2.8a)
DLW), = Vog +€9Ca5 — 1690057, Cap=Clap), Vas” = Viag" (2.8D)
DiCsy = Zigyya + %aa(ﬁqu) , Tlans =0, (2.8¢)
D,V * = VL) 5y — %Ei(j Oug ) — %si(j 0, U8 — €aprs A", (2.8d)
65has = €9 Tag s + %aaﬁvvéij - %%Vaﬁ“ - %66[7‘/5]aij - %%wa"j

o % . % .
+215U8ah06]6 — 35”85[705}& + 36”8750045
1 »
—Eyseads™ + 05540 Tapag =0, Tapas = Tap)pe),  (28¢)
. 2% . . : o
DcTapas = 5 0an i 00 T 2106aXl) 6 + 20 Tiy s

1 ) i ) 1 1 )
+30058cys + 30165 cas + Sappellns” + 5E50ehas” (2.8f)

as well as the conditions
0PVo5'l = 4iAY | 9°P%E g =4iNl, 0P To5.s = 4idys . (2.9)

Note that the algebraic properties of the tensor 743,,5, which are given in eq. (2.8¢), imply
the identity

Tapns = Tys,ap - (2.10)

As a result, if we convert each of the two pairs of spinor indices of 7,3.,s into vector ones by
the standard rule Vo3 = —Vgo — V, = i(’ya)o‘ﬁ Vag, we end up with a second-rank tensor
Tub, which is symmetric and traceless, T = Tpe and T%, = 0.

The equations (2.9) tell us that if A% = 0 the component projections of Vagij , Zi,,aﬁ
and T,p~s are proportional to the conserved SU(2) current, supersymmetry current and
energy-momentum tensor, respectively.® If an arbitrary trace superfied A“J* is switched
on, they are no longer conserved. It follows from (2.9) that in order to be able to specify a
conserved supersymmetry current it is necessary to require that A% is a vector divergence,
AL = 9*%¢ 5. Tt is now important to note that if A? is a divergence then so is Aag, i.e.
a conserved supersymmetry current automatically implies a conserved energy-momentum
tensor. Similarly, a conserved SU(2) current implies both a conserved supercurrent and a
conserved energy-momentum tensor. One should, however, keep in mind that the conserved
supersymmetry current and energy-momentum tensor need no longer be ~y-traceless and
traceless, respectively.

Let us see how this works for the non-conformal supercurrent involving an O(4) mul-
tiplet [21]. The trace superfield A%* is chosen to be proportional to

AYTR = 198 D gLk (2.11)

80ne can also verify that the supercurrent has 40 + 40 component degrees of freedom.



where L7k = LK) gatisfies the reality condition LWk = L;jx and the defining constraint
for an O(4) multiplet
DULIFP) — . (2.12)

It is simple to check that this superfield satisfies the integrability condition (2.5) in the flat
case. Furthermore, since the trace multiplet (2.11) is a divergence, its descendent A% is a
divergence and a conserved SU(2) current can be introduced. As remarked above, it then
follows that a conserved Q-supersymmetry current and energy-momentum tensor exist as
well. These currents may be defined as follows:

jap"” = Vag + JDar D™, 0% j,5" =0, (2.13a)
. . 1 y .
Sapy =20 ap + §D’YjD[akDﬂ]lekl , 8“55aﬁ,27 =0, (2.13b)
1 .
Taprs = Tapns + ZD[az'D,BijkD(s}zL”kl , O Top s =0 . (2.13c)

Note that neither is the @-supersymmetry current -traceless nor is the energy-momentum
tensor traceless [21].

Within the conformal approach, the form of the trace superfield A,“* should depend
on conformal compensators. Therefore, a natural question one can ask is: what compen-
sator(s) should one associate with the construction (2.11)? Furthermore, how do we lift
the construction (2.11) to a primary superfield with the use of a compensator in conformal
supergravity? One can show that if we assume that the compensator is a tensor multiplet
and we try to lift the construction (2.11) to conformal superspace (see appendix A), it is
not possible to add compensator dependant terms such that the condition (2.5) is satisfied.
On the other hand, if the compensator was an O(2) (or linear) multiplet one would expect
a symmetric SU(2) tensor to appear in the construction (2.11), which is not the case.” For
this reason, it is necessary to use a different scalar compensating superfield instead that
of the tensor multiplet. We will present the appropriate compensator and show how to
generalise the construction in [21] to supergravity in section 2.3.

It is elucidating to ask what can be learned by allowing the O(4) multiplet L¥* to be
composite. For instance, suppose we have two O(2) multiplets described by the superfields
G = GU9) and HY = HU9) which satisfy the differential constraints

DYGI® = DUHIF =0 . (2.14)
We can then construct
Luk — gU g | (2.15)

We will further assume G% has a nowhere vanishing magnitude G # 0, which is defined by

G? .= %G”GU. If we freeze G to a constant we find

. 2 o 2 . .
0=D\G?= gc;”Dngk — DGk = ge’(JDaij)k =0, (2.16)

9The SU(2) tensor corresponding to the superfield describing the O(2) multiplet can be set to a constant
using super-Weyl transformations.



where we used GYGj; = 0iG?. Using (2.16), the superfield A*J* can be seen to take
the form

Acuk — qlrgyek) (2.17)
where we have defined 5
W .= gaaﬁDﬁjHU : (2.18)
One can verify that W satisfies the following differential constraints:
o 1 o
DUWAI) = 15QD$WW, (2.19a)
DWW =0, (2.19b)

which correspond to those of a vector multiplet, see e.g. appendix C.

It is important to point out that the representation (2.17) actually implies the ex-
istence of a conserved supersymmetry current and energy-momentum tensor due to the
constraints (2.19a) and (2.19b), irrespective of the form (2.18). In other words, we only
need to require W to be an off-shell vector multiplet for these currents to exist. In par-
ticular, the constraint (2.19a) implies the condition (2.5), while the constraint (2.19b) is
required to show!?

1 e 2 T

Al = gDajD,BkAﬁ” — gaaﬂ (GUWj) ’ (2.20)
which ensures the existence of a conserved supersymmetry current that is, however, no
longer v-traceless, as well as a conserved energy-momentum tensor that is no longer trace-
less. These may be defined as

) . 4 y .

Saﬁ,%, = Efy,aﬁ — glea/gnglJW?, aaﬁsa@; =0, (2.21&)
1 .

Tapas = Tapas + gapysG D Wi, 0P Tp5=0. (2.21D)

The off-shell conditions (2.19a) and (2.19b) do not lead to an SU(2) current, since one finds
AV = éG’fUngwg : (2.22)

However, as GY A;; = 0 we can instead introduce a conserved U(1) current j,sz defined by
Jag = Vap”Gij, 9*Pjap =0, (2.23)

where the U(1) subgroup is the stability group of G*. Only when the equations of motion
require Dgi W) to be a vector divergence up to terms proportional to G% can a conserved
SU(2) current be introduced.

We conclude this section by emphasising once more that eq. (2.17) leads to a non-
conformal supercurrent for any vector multiplet W®. The appearance of the constant
SU(2) tensor G¥ is to be interpreted as a compensator that has been frozen. It is precisely
the form (2.17) that we will generalise to curved superspace in the next subsection and it

will be verified by further analysis and a worked example.

0Keep in mind that G is constant.



2.2 The non-conformal supercurrent based on a compensating O(2) multiplet

Let us first describe how the conservation condition on the supercurrent originates from
superspace. We will consider a supergravity action with a compensating O(2) multiplet G%.
The supergravity equations of motion in superspace can be easily obtained if one knows
the dependence of the supergravity action on the unconstrained superfield prepotential for
N = (1,0) conformal supergravity. It is a real primary scalar H [4] of dimension —2 with

supergravity gauge transformation!!

6H = V" Noiie,  Naiji = Magiji) - (2.24)

In general, the constrained superfields must also transform under such a gauge transfor-
mation since their constraints must be preserved under shifts in the supergravity prepo-
tential. This tells us that under the gauge transformation (2.24) the prepotential for the
O(2) multiplet po; should transform. For a description of the O(2) multiplet in terms of
its prepotential in supergravity see appendix B.

If any additional matter fields other than the compensator are chosen to obey their
equations of motion, a general variation of the action with respect to the supergravity and
compensator prepotentials becomes

58 = /dﬁSZ E (5H J+ 80, W‘;) . (2.25)

The prepotential pf, is defined modulo gauge transformations
o= P =Pl + Vi + Vg, o =0, 7,0 = 7,A0) (2.26)

where 7 and 7,%¥ are dimensionless primary superfields. In order for the action to be
invariant under these gauge transformations, the superfield W¢* must obey the constraints

VWA = i(sgvg’wvﬁ, VaiWe =0, (2.27)

which are characteristic of the field strength of a vector multiplet. Now we wish to spe-
cialise to the supergravity gauge transformations where 5 = 0 but we need to know the
transformation of the prepotential p,;. Its transformation should involve the supergravity
gauge parameter A,;j; and covariant fields of the compensating O(2) multiplet since we
should obtain a covariant conservation equation.'? On dimensional grounds we must have'?

0pai = iMaijrGIF . (2.28)

Requiring 4.5 = 0 under the supergravity gauge transformations leads to the non-conformal
conservation equation

vk g = iGUgwer) (2.29)

" The gauge transformation presented here is the unique extension of the linearised transformation in [4]
to curved superspace, assuming the gauge parameter Ay is primary.

12The transformation must also be linear in the fields of the O(2) multiplet since its prepotential descrip-
tion must remain unchanged. We will also verify this by an explicit example.

13We can always rescale G by fixing its relative normalisation to its prepotential.



where the O(2) multiplet in conformal superspace is a primary superfield G¥ = GU) of
dimension 4 satisfying the constraint

viGiH =0 . (2.30)

Therefore, the general form of the trace superfield A%J* in the presence of a compensating
nowhere vanishing O(2) multiplet (with G := 3G%G;; # 0) in supergravity is

AYk — jqigyek) (2.31)

where W is the composite vector multiplet determined by the theory via (2.25).
It is interesting to note that if we weaken the constraint defining the O(2) multiplet
to a deformed O(2) multiplet [42, 43]

VEGT® = ieqg,s WAOWYIWOR) (2.32)

the postulated trace superfield (2.31) still satisfies the consistency condition (2.5) but a
conserved supersymmetry current is no longer guaranteed.

2.2.1 An example: Abelian gauge theory coupled to an O(2) multiplet

We now provide an explicit example of a non-conformal supercurrent in curved super-
space. Consider an Abelian gauge theory coupled to a linear multiplet. The action for the
theory is built out of two supersymmetric invariants: (i) a higher-derivative Abelian vector
multiplet action; and (ii) a BF action giving rise to the coupling of the vector multiplet to
the linear (or O(2)) multiplet.

A supersymmetric FOF action was described in [44] in Minkowski superspace and in
conformal supergravity in [41]. It is straightforward to construct its supercurrent (up to
some normalisation). In the Abelian case, it is'*

3 . P 1
J = XX+ GWOVasW) + Fa’Fs® (2.33)

while the equation of motion for the vector multiplet is
V=0, GY:=0XY-2Y,PUF"+ gXa(’VagW’@” : (2.34)

where we have defined 0 := V%V, and S vaU = SV,U—(V,S)U for arbitrary superfields
S and U. One can check that, upon using the equations of motion, the supercurrent is
conserved

veidk § — iWOé(’igjk) =0. (2.35)

The non-conformal conservation condition can be deduced if we consider the FOF
action coupled to a BF' action, where B is the gauge four-form of a nowhere vanishing
O(2) multiplet. The BF action is just the action formula for the product of a vector and
an O(2) multiplet [45, 46],

Spr = /dﬁ"ngW“pai . (2.36)

14We refer the reader to appendix C for our notation and conventions regarding the vector multiplet.

~10 -



We take the O(2) multiplet as a conformal compensator. For the combined action incorpo-
rating the FOF action and the BF action, the equation of motion for the vector multiplet
becomes

G = \GY | (2.37)
where ) is some constant and G% is the compensating O(2) multiplet with prepotential
Pai- 1t is straightforward to check that the non-conformal conservation equation (2.29)
holds due to the equation of motion,

which verifies the supercurrent conservation equation for a compensating O(2) multiplet.
In the above computation it is important to note that the supercurrent for the combined
action does not obtain a contribution from the BF action since it does not depend on the
supergravity prepotential as it admits a topological realisation.

Finally, it is worth mentioning that the equations of motion for this example lead to
a conserved SU(2) current. Indeed, using (2.37) and (2.34) we find, after reducing to flat
superspace,

Al = %GWX% — % (DXW) X9, = %aa< (aaX’f@') Xj)k> . (2.39)

The conserved SU(2) current is therefore

Jap” = Vag" — % (aaﬁXk(i) XDy, 0% jag" =0 (2.40)

2.3 The non-conformal supercurrent involving an O(4) multiplet

The trace multiplet based on the O(4) multiplet, eq. (2.11), must correspond to a con-
formal compensator described by a scalar superfield which cannot be the tensor multiplet
as mentioned previously. It turns out that the right compensating multiplet is built from

a primary dimension —4 scalar superfield T subject to the constraint!®

Vi VarT =0 = V{ V4T =0. (2.41)

It corresponds to the O*(4) multiplet described in [49] and the above constraint can be

solved in terms of an unconstrained prepotential U; ki = Ul ) as'0

ij ij L, i l
T =V, V= e PovivivEvy . (2.42)

Here Ujj; is primary and of dimension —6. One can check that Uz is defined up to the
gauge transformations
OUijie = V& ijkim » (2.43)

where §%jkim = €% (ijkim)-

15Coupling this multiplet to conformal supergravity is equivalent to working in the SU(2) superspace
formulation of [36] and setting the torsion component Nng = 0.
16 This was first worked out in Minkowski superspace in [4].
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We wish to work out the supercurrent conservation equation in the presence of the
compensating O*(4) multiplet. Let us first consider the general variation of the action
with respect to the supergravity and matter prepotentials

68 = / a8z E (5H J + 8Uijni ]U'W) : (2.44)

where H is the superfield prepotential for conformal supergravity and L¥* is some super-
field of dimension 8 required to be an O(4) multiplet as a result of the gauge transforma-
tion law (2.43). As in the previous subsection, in the variation (2.44) we have assumed
any additional matter fields satisfy their equations of motion. The conformal supergravity
prepotential transforms under the supergravity gauge transformations as eq. (2.24) and
0Uij11 should be expressed in terms of three spinor derivatives hitting A,;;; on dimensional
grounds. In any case, this should lead to a trace superfield A*J¥ linear in both the O*(4)
multiplet 7 and the O(4) multiplet LY*,

We expect that A%Y¥ reduces to the construction in [21] after fixing 7' to a constant
and reducing to flat superspace. Taking this into account and considering all possible terms
linear in 7" and L“* in conformal superspace, one can construct the most general ansatz
for the trace superfield. Then demanding the consistency condition (2.5) fixes it as

Aaijk —iT vaﬂvﬁlLijkl + %gaﬂwé (ng) v’ylvép]l‘jk)lp + % (V,BZT> vaﬂLZ]kl
3 ) ) 5i L 5 ) )
+ 2PV ) VPP 4 2 (Vv T ) LM 4 Seabrd (V5 Vs T LM
—25 X7 TILIM 4 4iw P TV g LKL 4 151 WP (Vg T) LUK (2.45)

One can check that this is also primary. If we gauge fix T" = 1 and reduce to Minkowski
superspace, V4 — (04, DY) and W*? — 0, we obviously recover (2.11).

The existence of conserved SU(2) and supersymmetry currents is then guaranteed by
the results (2.13).

2.3.1 An example: the relaxed hypermultiplet

It is illustrative to provide an example of a non-conformal supercurrent in curved
superspace with T chosen as a compensating superfield.

In the case of 4D N = 2 Poincaré supersymmetry, the relaxed hypermultiplet [47] was
the first off-shell formulation without intrinsic central charge for the massless hypermulti-
plet. This formulation was generalised to 6D N = (1,0) supersymmetry in [4]. In both
cases, the relaxed hypermultiplet was described only in Minkowski superspace. To the best
of our knowledge, its coupling to supergravity has never been constructed. Such a coupling
will be given below. In conformal supergravity one must introduce a compensating O*(4)
multiplet as we will show.

To begin with, the relaxed hypermultiplet is described by the superfields L%, L% and
T, subject to the following off-shell constraints

VUK = TV LI 4 5(VT) LI* (2.46a)
VELIRP) =, (2.46D)
ViV, T =0 (2.46¢)
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The independent off-shell component fields of the relaxed hypermultiplet can be extracted
from the above constraints.

The action for the relaxed hypermultiplet may be described in a covariant way using
the primary superform action [41, 48], which is built out of a primary superfield A,7*.17
It satisfies the differential constraint

(i jkl) _
Vieds =0 (2.47)
One only needs to allow the superfield A,%*, taking on the role of a Langrangian, to be
composed of the fields of the relaxed hypermultiplet and the compensating superfield T'.
The two supersymmetry invariants making up the action for the relaxed hypermultiplet

are: (i) I described by

AR = TV HIM 4 5(V o T)HIH (2.48)
where 0 4 15
B = SLW LM — o1 L0 - 2 LG L, (2.49)
and (ii) 2 described by
A = T, LM 45 (valf) Lkl (2.50)

Their linear combination gives the relaxed hypermultiplet action.'®

The superspace equations of motion for the relaxed hypermultiplet action are

TV ;LY +3(Vo,T) LY = AV, (T) , LUk =g, (2.51)
where A is some non-zero constant related to the relative coefficients of the invariants. The
equations of motion (2.51) are constructed such that they are primary and that they reduce
to those given in Minkowski superspace in [47] when T is set to a constant. Note that,
up to a constant, the equations of motion completely determine T in terms of other fields.

The supercurrent is
J=TLYL;;, (2.52)

which is the unique primary scalar that is linear in T, quadratic in L% and of dimension 4.
One may verify that the supercurrent conservation equation (2.3) recovers (2.45) with

a composite multiplet

4

Lk = —gL(iijl) : (2.53)

which is an O(4) multiplet once one imposes the equations of motion for the relaxed
hypermultiplet. This provides an example verifying the supercurrent conservation equation
for a compensating O*(4) multiplet.

" The superfield A,"* should not be confused with A“%*,
8Note that one could also choose T = G~! since G~ satisfies the appropriate differential constraint.
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2.4 Further generalisations

So far we have found two solutions for the trace superfield A%7* which lead to a
conserved supercurrent and energy-momentum tensor, cf. subsections 2.2 and 2.3. One
involves an O(2) multiplet with a vector multiplet, while the other involves an O(4) mul-
tiplet with an O*(4) multiplet. It turns out there is in an infinite family of solutions that
involve the product of an O(n) multiplet with an O*(n) multiplet for n > 2.9 The O*(n)
multiplets were introduced in [49] as ‘dual’ to the O(n) multiplets in the sense that there
exists an action formula that schematically involves the product of the two. We will de-
scribe the defining constraints of these multiplets below and introduce the infinite family

of non-conformal supercurrents.

The O(n) multiplet for n > 1 is given by a primary superfield L~ of dimension 2n
satisfying the differential constraint

Vi piine) = ¢ (2.54)

They are off-shell for n > 2.

The O*(3) multiplet is described by a primary superfield 7, of dimension —3/2 with
the differential constraint

ViaTy =0, (2.55)

while the O*(n) multiplet with n > 4 is described by a superfield T;,..;, , of dimension
4 — 2n satisfying the constraint

VT,

atigin_5j

0 = V{QVB)J-Til...in_4 =0. (2.56)
The prepotential formulations for these multiplets appeared in [49].

One can build a primary superfield A“J* satisfying (2.5) out of an O(3) multiplet and
an O*(3) multiplet as follows

Aa’ijk‘ _ TﬁvaﬁLUk o % Eaﬁ’yﬁ (ng’y> V&ij‘)l o igaﬁ’}/fs <vgv’le§> L]k)l + <v0¢ﬁTﬁ) LZ]k
+ 6 WLk (2.57)

9The O*(2) multiplet is defined to be a vector multiplet [49].
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One can do the same with an O(4 + p) and an O*(4 + p) multiplet with p > 0 as follows

ANk — ﬁ]’ilm%_l(ivalmnljk)il-..ipfﬂmn +ifrilmipvaﬁvﬂl]Lijklil-..ip
pt3 ( (i aBy jk)lmiy i i(p+3)(p+5) B iy i
(V3T )V LiRImir-ip NPT T O p gaBy ijkinipg
+2(p+4) Brinip ) Vim + (p+1)(p+4) Birdiz-ipiq
+3 : N
s (Vi Ty ) a0

(p+3)(p+5) 575( (i TAVINN
“ i1 Vig Lig...i )LJ S ipe
TRprprn eV Vol

i(p+3)P+5) (ca ijkin-ipi1
3p+1)(p+2) (v 5vﬂ“Ti2'“if’+l>L ’
_10(p+1)(p+5)
p+2
2i(p +3)(p +5)
(p+1)(p+2)

where we have introduced the definition

X Ty LI 00 4 4§ WOPT, L W g LRI

Waﬁ(vﬁhTiz'"ip+1)Lijkil...ip+1 ) (258)

aBij 1 aBvSw (ivd)
Ve = 5€ oy . (2.59)

One can check that when p = 0, the non-conformal supercurrent corresponding to (2.58)
agrees with (2.45). The above general form for the trace superfield corresponds to com-
pensating O*(n) multiplets. However, for n > 4 the general form also makes sense if one
takes the conformal compensator to be an O(n) multiplet. It can be checked that in either
case, after freezing the compensator to a constant and reducing to flat superspace, one
obtains a conserved SU(2) and, therefore, also a conserved supersymmetry current and
energy-momentum tensor. Higher-derivative actions for both cases were described in [49].

3 The supercurrent associated with the dilaton-Weyl multiplet

As mentioned earlier, the tensor multiplet may be used as a conformal compensator in
supergravity [46]. In conformal superspace, the tensor multiplet is described by a primary
superfield ® of dimension 2 satisfying the following differential constraint

vivle =0. (3.1)

However, the multiplet is on-shell in the flat case in the sense that the constraint (3.1)
implies (0® = 0%°0,P = 0 and there is no description in terms of an unconstrained superfield
for such a multiplet. Despite this, it is still possible to work out a candidate for the trace
superfield A% for a supergravity theory involving a compensating tensor multiplet.?’ We
present this candidate below.

We first observe that we can construct an appropriate primary field A7 as follows

aijk _ 1 g olimragik) | : (ol aBjk)
Ak = ZQViH +1(V5<I>)H k) (3.2)

20The fact that it exists is related to the fact that there is an invariant which is essentially a product of
the tensor multiplet and a gauge three-form multiplet [41].
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where HoPU = HleBl() g 4 primary superfield of dimension 3. Now we need to impose
additional constraints on H*?¥ in order for the trace superfield A““* to both satisfy the
consistency condition (2.5) and imply the existence of a conserved supersymmetry current.
One can show that the consistency condition (2.5) is satisfied if we impose the constraint

. . 92 ; .
VAR = —gagﬂvg H0K) | (3.3)

One can check that eq. (3.3) is a primary constraint.
There exists another primary constraint that one can impose on H*% and it is

VUV g HPDE 4 31V, s HYP =0 . (3.4)

The constraints (3.3) and (3.4) are exactly the primary constraints that ensure H%%
describes the lowest dimension component of a closed four-form [48].

One can check that in the flat case with the tensor multiplet set to unity, i.e. ® = 1,
and using the constraint (3.4), the descendent A%, defined by (2.7a), is

3
16

- 1 -
Do AYTE = Zaaﬁmaﬂw . (3.5)

AY =
Since AY is a divergence we have a conserved SU(2) current, together with a conserved
supersymmetry current and energy-momentum tensor according to the analysis of subsec-
tion 2.1. These are

jaﬂij = Vocb’ij - iHoz,Bij ’ 8aﬁja5ij =0, (3.6&)
. ‘ 92 3 .
Sapy = Byap = 5 DyHag"”, 0950 =0, (3.6b)
i i y
T s = Tapas = DaiDpHys” = 2D3iDsHag” . 0Tapps=0.  (3.60)

One should note that the supersymmetry current is not gamma-traceless and neither is the
energy-momentum tensor traceless. To prove conservation of the energy-momentum tensor

one uses
9P DoiDgjH.5"9 = 0°P Dy DgjHap™ (3.7)

which follows from the differential constraints on H,s%, eqgs. (3.3) and (3.4).
Remarkably, if we deform the constraint defining the tensor multiplet to

VOV = iHas" | (3.8)

the postulated superfield (3.2) still satisfies the consistency condition (2.5) but a conserved
supersymmetry current is no longer guaranteed.
3.1 An example: non-abelian gauge theory involving a compensating tensor

multiplet

For an illustrative example of a non-conformal supercurrent in curved superspace, we
consider non-abelian gauge theory involving a compensating tensor multiplet. We refer the
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reader to appendix C for details on the description of the Yang-Mills multiplet in conformal
superspace. The action for the theory is composed of two parts: (i) a higher-derivative non-
abelian vector multiplet action; and (ii) the Yang-Mills action which involves the tensor
multiplet and contains the term oTr(f% f,,) at the component level [46]. Here o is the
component projection of ® and f,, is the field strength of the non-abelian gauge field.
The higher-derivative non-abelian vector multiplet action is the non-abelian exten-
sion of the supersymmetric FIIF' action mentioned in subsection 2.2. It was described in
Minkowski superspace in [44] and in conformal superspace in [41]. The supercurrent is

3 . 4i ; 2
J = gTI‘ <XUX1']' + éWmVQBWf + 3FQBF5Q> . (3.9)

It is the unique dimension four primary superfield quadratic in the fields of the vector
multiplet. The equation of motion for the vector multiplet is

Gy =0, (3.10)
where we have introduced the superfield
G = VIV, X7 — 2[WeC VWP — g[xk“,xﬁk] — 2V, g™
%Xa(i?aﬁwﬂj), (3.11)

which is constructed to be primary of dimension 4 and to satisfy Vg G'*) = 0.2! Tt can be
checked that the supercurrent (3.9) is conserved,

vk = m(W"‘“gik)) ~0, (3.12)

as a consequence of the equation of motion (3.10).

We can now check the non-conformal conservation condition if we consider the higher-
derivative non-abelian vector multiplet action coupled to the Yang-Mills action. The Yang-
Mills action was described in conformal superspace in [41] by making use of a closed six-form
with the lowest component given by the primary superfield

A% = g5 sVBU0K) | B Ty (Wa(iwﬁj>> , (3.13)

where V® is the constrained prepotential for the tensor multiplet [36, 50], which satisfies??
P | o .

viyhI) Za{jvglvw =0, ®=V,VY, K®=0, D®=25. (3.14)

It should be noted that the primary superfield H*?% satisfies the same differential con-
straints as H*? does.

21JN is grateful to Daniel Butter for checking this result using the computer algebra program Cadabra.
ZInvariance under gauge transformations of the prepotential was shown in [41].
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For the combined action incorporating the higher-derivative non-abelian vector mul-
tiplet action and the Yang-Mills action, the equation of motion for the vector multiplet
becomes

Gl + A(@X” n i(VE;’@) W"‘”) ~0, (3.15)
where A is a coupling constant. We also need to know the supercurrent J for the combined
theory. Interestingly, the supercurrent J does not obtain a contribution from the Yang-Mills
action. The point is that such a supercurrent would have to be linear in ® and quadratic
in the fields of the vector multiplet and no such scalar superfield of dimension 4 exists.
Therefore, much like the BF invariant, the Yang-Mills action can have no dependence on
the supergravity prepotential H and one can use the supercurrent of the higher-derivative
Yang-Mills action for the combined system. Now using the supercurrent (3.9) and the
equation of motion we find

Ok g = SOVEHM (Vi@ )HIN  HO = AP, (3.16)

which verifies the non-conformal supercurrent equation in the presence of a compensating
tensor multiplet, cf. (3.2).

3.2 The dilaton-Weyl multiplet

We now discuss some subtleties about the non-conformal supercurrent just presented.
As we have seen in previous sections, the supercurrent may be understood in terms of the
variation of an action with respect to the conformal supergravity prepotential and possibly
the prepotential of some supermultiplet that is to take on the role as a compensator.
However, we obviously bump into a problem when we choose the compensator to be a
tensor multiplet which has no prepotential formulation.

The tensor multiplet is quite special because its defining constraint (3.1) allows one to
express the super-Weyl tensor in terms of the fields of the tensor multiplet,

1 i

Wabc = _ZHabc - @(S/abc)vdvgv(ﬂcq)a (317)

where Hg,. is the three-form field strength of the tensor multiplet. One should keep in
mind that the combined system, tensor + Weyl-multiplet, is off-shell (with 40 + 40 degrees
of freedom) and upon replacing the covariant fields of the Weyl multiplet with those of the
tensor multiplet leads to what is known as the dilaton-Weyl or type II Weyl multiplet [46].
One expects that the dilaton-Weyl multiplet should possess a prepotential formulation,
albeit potentially taking a different form than that of the standard Weyl multiplet. We do
not derive the details of such a formulation here but we wish to emphasise some important
points below.

It is instructive to consider a superconformal action that may be described in standard
conformal supergravity without a tensor multiplet, which possesses the supercurrent J with
the usual conservation condition (2.2).23 We can always replace the fields of the standard

3 An example is provided by the linear (or O(2)) multiplet action [45, 46] where the supercurrent is given
(up to normalisation) by J = G.
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Weyl multiplet in the action with those of the dilaton-Weyl multiplet, which involves the
tensor multiplet and thus gives a new action. However, this should only lead to a rewriting
of the conservation condition on the supercurrent:

g g J i o N
aijk 7 yyaijk Rt R (¢ FrapBik) o : (i aBjk) _
veiik f — v (fb(b> SOViH +1(Vﬁ<1>)H 0, (3.18)
where g
o' = iVivY) (5) (3.19)

and H,3" satisfies the differential constraints (3.3) and (3.4). We see that for every such
theory there always exists a superfield H*% subject to the conservation condition (3.18).

The observation that the conservation of the supercurrent J can be rewritten in
terms of the superfield H*P% is important since the Yang-Mills action does not pos-
sess a supercurrent J as discussed earlier. Omne can instead understand the superfield
HB = iTr(W*@WhI)) as the supercurrent in the dilaton-Weyl multiplet. This is con-
sistent with the fact that the action is linear in the tensor multiplet and built out of
covariant derivatives of H*P. Furthermore, the superfield H*? corresponding to the
Yang-Mills action satisfies the conservation condition (3.18) when the equation of motion
for the Yang-Mills multiplet is enforced.

For the reasons mentioned above, one should think of the superfield J*% satisfying the
constraints (3.3) and (3.4) (with H*%% replaced with J**¥) and the on-shell conservation
condition

écw‘;ﬂﬂj’“) +i(V§e) b — o (3.20)

as the supercurrent for a theory coupled to the dilaton-Weyl multiplet.

The dilaton-Weyl multiplet is expected to be described by an unconstrained prepoten-
tial haﬁij such that its infinitesimal displacement generates the following variation of an
action

68 = / A8 B 6hP; a5 (3.21)

The constraints (3.3) and (3.4) imposed on the supercurrent J, 5% should be the conditions
of the invariance of the action S under certain gauge transformations of the gravitation
superfield ho‘ﬁij. In fact these conditions follow from the gauge transformations

Shap'? = Vaphag 7 + iV Vg ADE — 3V,5A7 (3.22)
where the gauge parameters are primary and satisfy the conditions
Agg "k = A[amv(iﬂ'k)7 Apg®k =0, A9 = NG (3.23)
The conservation condition (3.20) follows from the supergravity gauge transformations
Shas =10V g 7" — 2i(V@ @) A5, A% = ATF) (3.24)

One can see that in the Minkowski superspace limit, the supercurrent J*%% satisfies the
constraints
DEJPIR) =0, 9% ]9 = 0. (3.25)
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Corresponding to the supercurrent put forward in [4, 51]. One can also check that J afBij
possesses 40 4 40 degrees of freedom.

Suppose a matter action .S couples to a compensator, for instance the linear multiplet.
Then the conservation equation (3.20) gets deformed to take the form

%(I)VSJ‘W’“) + i(vgcb) JoBIk) = poiik (3.26)

The consistency condition (2.5) follows from the above conservation condition keeping in
mind the constraints (3.3) and (3.4) imposed on J*¥ as well as the constraint (3.1) on
®. Using the results of subsection 2.1, we find that in the Minkowski superspace limit
with ¢ =1

0% Jog = —4AY | 0P8 gk =4ink | 0T, 5.5 = 4iAs, (3.27)
where we have defined
o 2 y . i oo y
Ea[g’,y = —gDﬁ,jJag I N I —gDaingJw J — éDW-D(;jJag J . (3.28)

This tells us that we still require Aﬁ and A,s to be divergences in order for a conserved
supersymmetry current and energy-momentum tensor to exist. However, now the super-
symmetry current contains a gamma-trace component and the energy-momentum tensor
contains a trace in addition to any contribution from the trace superfield A%J* which can
be chosen to be any of the trace superfields derived in section 2.

4 The N = (2,0) non-conformal supercurrent

In this section, we discuss the N' = (2,0) superconformal current and put forward an
N = (2,0) extension of the N' = (1, 0) non-conformal supercurrent based on a compensat-
ing tensor multiplet.

We first review some basic notation and conventions in regards to N' = (2,0) super-
symmetry. A symplectic Majorana spinor ¥;, decomposed as in [41], has Weyl components
that satisfy the reality conditions

=¥ Xai = Xa, (4.1)

where i = 1,...,4 are USp(4) indices corresponding to the R-symmetry group. The USp(4)
indices are raised and lowered as

U=QUW;, W= Q500 Q008 = §F (4.2)
where QY = QY] is a symplectic metric of USp(4).2* It satisfies
Eijkl = 3Q

3 1.
i) = Q”:—iwkl@kz, (4.3a)

Qlid ) — % (qu,k]l _ Ql[k@iJ']) —0, (4.3b)

2N = (1,0) is recovered by restricting i = 1,2 and setting QY = %,
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where &7 = &l is an antisymmetric rank 2 isospinor such that ®% 2;; = 0. Note that
every antisymmetric rank 2 USp(4) tensor U% admits the decomposition UY = &% + Q¥
Finally, the chiral N' = (2,0) supersymmetry algebra is

{Di, D)} = 21070, = — 2807 (") 000 - (4.4)

The N = (2,0) conformal supercurrent is described by the USp(4) tensor superfield
Jupkl — - JlgLlkll — jklij — _9 jklidll which is completely traceless with respect to the
sympletic metric §2;; of USp(4), and satisfies the superspace conservation condition [4]

g o 1 . | g
D;njm,k‘l . Qm[z\yé},k’l - ZQZ]\PZL,M _ Qm[kq/g,m - Zle\pgz,zy =0, (45)

where \Ifi;jk = \IJZW] is completely traceless, \I/f);ijjk = \Iié’{ijij = 0. The condition (4.5)

is a constraint on the completely traceless part of D'.J ikl and it fixes Wi k= %Dal Jldk,

We can now insert a superfield A™%-* in the conservation equation (4.5) as follows:2®

D ikl _ il _ iQij\Isz,kl ikl _ ile\pgmj _ Mk (4.6)
where we require the trace superfield to satisfy the symmetry properties
Aokl Agl,[ij],[kl} = AmkLis AZL,Z’j,leij _ A;n,[ij,kl] _ A([;n,ij],kl —0, (4.7)
and the integrability condition®®
D AR 4 DR AT — (traces) =0, (4.8)

where (traces) represents all terms proportional to the metric Q% consistent with the
symmetry properties of ATk,

We now put forward a candidate for the superfield A™% 1 that is analogous to the
non-conformal supercurrent based on a compensating AN/ = (1,0) tensor multiplet. As a
compensator, we will choose an A = (2,0) tensor multiplet HST83, which is described by
an antisymmetric and Q-traceless superfield ®%,

) = @i, =0, (4.9)
satisfying the following differential constraint
o o 1 .,
D&% — i NF ZQJ’CA; =0. (4.10)

The constraint (4.10) eliminates the completely traceless part of D! ®7* and determines
N, = 2D 970
Inspired by the N/ = (1,0) case, we write down the following candidate for the trace
superfield
AT — @i ekl @R (traces) (4.11)

#5This was also considered in [21] but with only a partial solution.
26This condition follows from requiring closure of supersymmetry on J*,
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where H’ 7% = H!:.UM is completely traceless and satisfies the constraint
Dleé"kl + D%Hi’kl — (traces) =0 . (4.12)

The above constraint ensures that A™4-* satisfies its integrability condition (4.8). It is

important to mention that the superfield H?7* is still very long and should be constrained

to ensure the existence of a conserved supersymmetry current. In analogy with the A/ =
(1,0) case, we can constrain H:7* to be the lowest component of a closed four-form. This
ensures that there exists an N' = (1,0) component field which is the lowest component of
a four-form in the N' = (1,0) case. The postulated trace superfield (4.11) is expected to
be the N' = (2,0) extension of the one in the /' = (1,0) case. The additional constraints

on H!7* and the closed superform are described in appendix D.

5 Discussion

In this paper, we have presented various non-conformal supercurrents by finding so-
lutions to the deformed conservation equation (2.3). Remarkably, we have managed to
uncover an infinite number of solutions that are based on O(n) multiplets. The n = 2 case
corresponds to choosing the well-known linear multiplet as a compensator. For n > 2 the
possible compensators have not been extensively considered in detail before. Nevertheless,
their usefulness was demonstrated in the description of the relaxed hypermultiplet given in
this paper and such compensators can be used in the description of higher derivative actions
(see the discussion section of [49]). In this light, it would be interesting if our results could
be used to derive the equations of motion for higher derivative actions. Furthermore, the
results in this paper should have analogues in lower dimensions and it would be interesting
to work out their details in future work.

We explored the curious case of using the tensor multiplet as a compensator in section 3.
Since coupling the Weyl multiplet to a tensor multiplet leads to a variant version of the
Weyl multiplet, called the dilaton-Weyl multiplet, the supercurrent for the combined system
needed to be modified. As an application of this supercurrent, we give the superspace
equations of motion for minimal Poincaré supergravity [52] below.

Minimal Poincaré supergravity is derived from the action for the linear (or O(2))
multiplet in conformal supergravity [46], which in superspace can be described by the full
superspace integral

Sy, = /d% d®0 E po ;W . (5.1)

Here pg; is the prepotential for the linear multiplet and W corresponds to an off-shell
vector multiplet built out of the fields of the linear multiplet as follows [53]

ai 1 «Q 7 4 Q ) e Tal 1 « ij k
WOl = VOO, 4 = (WOT) + 100X G ) — oG (VPGY) T

1 . L
+2—G3G”Fa5“fgj + Y5 Y TGP G (5.2)

i

16G?
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where we have defined Y?, := %VajGU and Fig3 1= inaT Bk The equations of motion in
the standard Weyl multiplet read?’

WY =0, JxG=0. (5.3)

These equations of motion are obviously incompatible with the requirement that the linear
multiplet is a conformal compensator since G needs to be set to a non-vanishing con-
stant. To remedy this, we should instead replace the Weyl multiplet with the dilaton-Weyl
multiplet. Upon doing so, the equations of motion become

A g Te.

W =0, Hag” o VOVY) (5) —0, (5.4)
which are now consistent. The superspace equations of motion for gauged minimal super-
gravity [54] can be written down by considering a linear combination of the linear multiplet,

the BF and the Yang-Mills multiplet actions, and using the results in this paper. They are

W = —2g W, (5.5a)

DX +i(vEJ<I>) wel) = —gG¥, (5.5D)
L o AV G a(i ]

G ﬁvévg Vf;) <<I>> = Weliyyhi) (5.5¢)

where W describes an abelian vector multiplet, and g is a coupling constant.

It is worth discussing the results in this paper in the context of Weyl anomalies. When
one lifts a classical conformal field theory to curved space the resulting theory remains
independent of any compensating scalar field. However, the conformal symmetry is anoma-
lous at the quantum level. In the Weyl invariant formulation for gravity, the presence of
conformal (or Weyl) anomalies is equivalent to the fact that the effective action acquires
dependence on some compensator. The situation with supersymmetric field theories is
analogous. Given a superconformal field theory, its action is independent of any compen-
sator. The presence of superconformal (or super-Weyl) anomalies is equivalent to the fact
that the effective action acquires dependence on a special compensator. In the case of 4D
N = 1 superconformal theories, it was argued in [9] that the chiral scalar compensator of
old minimal supergravity couples to the super-Weyl anomalies. The 4D A = 1 super-Weyl
anomalies were studied in [55, 56]. For 4D N = 2 superconformal theories, the super-Weyl
anomalies are associated with the vector multiplet compensator [57].

It is natural to ask if any of the non-conformal supercurrents correspond to those
associated with the super-Weyl anomalies in six dimensions. Here it is important to realise
that unlike in four dimensions, the super-Weyl anomalies in six dimensions should be

2TThe first equation can, in principle, be derived by varying the action with respect to pa:; this is tedious
because of the explicit p-dependence of W*. Alternatively, one can construct the most general primary
field with the same index structure and weight (3/2) as W*. The equation of motion for the supergravity

multiplet is, g—H = J = 0. The supercurrent J is a covariant expression built from the linear multiplet.
Dimensional arguments fix it to be proportional to G.
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accompanied with Lorentz anomalies. However, each of the non-conformal supercurrents
in this paper describe a conserved energy-momentum tensor with no Lorentz anomaly. This
includes the non-conformal supercurrent corresponding to the conservation equation (1.9)
and given in [21].2® The absence of a Lorentz anomaly is evident from the fact that we
assumed the supergravity actions were invariant under supergravity gauge transformations.
Therefore, we need to change our set-up and this will be discussed elsewhere.
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A The geometry of N/ = (1,0) conformal superspace in six dimensions

Here we collect the essential details of the superspace geometry of [41]. We refer the
reader to appendix A of [41] for our notation and conventions.

We begin with a curved six-dimensional N' = (1,0) superspace MOI® parametrized by
local bosonic (") and fermionic coordinates (6;):

M= (2™, 0, (A.1)

where m =0,1,--- ,5, p=1,--- ,4 and ¢ = 1,2. The structure group is chosen to be the
full 6D N = (1,0) superconformal group and the covariant derivatives are postulated to
have the form

1
Vi=E4— §QA“bMab — &4 g — BAD — GapKE . (A.2)

Here E4 = EoM0,, is the inverse vielbein, M, are the Lorentz generators, J% are gener-
ators of the SU(2) group, D is the dilatation generator and K4 = (K¢, S&) are the special
superconformal generators. We associate the Lorentz 2 4%, SU(2) 4R dilatation B4 and
special conformal §4p connections with their respective generators.

The Lorentz generators obey

[Maba Mcd] = 2770[(1Mb]d - 277d[aMb]c ) (A3a)

[MalH VC] = 2770[avb] ) (A3b)
1

(M., VE] = —65VE + 155V5 . (A.3c)

28In this sense it is very much like its counterpart described by (1.9), which does not couple to the 4D
N = 2 super-Weyl anomalies [57].
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The SU(2) and dilatation generators obey
[Ji, JH] = gkl gl 4 G gk [J9,VE] = FOvd) (A.3d)
, 1_.
D, V4] = V. D, Vi) = 5V, . (A.3¢)

The Lorentz and SU(2) generators act on the special conformal generators K4 as

1
[Map, Ko = 20Ky (Mo’ S]) = 835, — 048] (A.3f)
[J9,57) =657 (A.3g)

while the dilatation generator acts on K4 as
1
D, K, =—-K,, [D,S]= —55‘1—“ . (A.3h)
Among themselves, the generators K4 obey the algebra
{52, 87} = =2iei;(7°) P K. . (A.3i)
Finally, the algebra of K4 with V 4 is given by

[Ka, Vi) = 200D + 2Myy,, (Ko, Vi) = =i(7a)apS™ | (A.3))
", Va| = —1(a i . ‘ :204-‘ — 467 a+8ail. 3
SeV AV S, VY = 26567D — 467 Ms* + 855 T A3k

The covariant derivatives obey (anti-)commutation relations of the form

1
[Va,Vp}= —TupVe — iR(M)ABCndd — R(J)as" Ty
— R(D) 4D — R(S) a5k S) — R(K) ap K, (A.4)

where T4g® is the torsion, and R(M)ap°?, R(J)ap", R(D)ap, R(S)ABé( and R(K)apc
are the curvatures corresponding to the Lorentz, SU(2), dilatation, S-supersymmetry and
special conformal boosts, respectively.

The full gauge group of conformal supergravity, G, is generated by covariant general
coordinate transformations, dcgct, associated with a parameter &4 and standard supercon-
formal transformations, d3, associated with a parameter A2. The latter include the dilata-
tion, Lorentz, SU(2), and special conformal (bosonic and fermionic) transformations. The
covariant derivatives transform as

ogVa=[K, V4], (A.5)
where K denotes the first-order differential operator
c Lyab ij A
K=¢ VC+§A Map + A7 Ty + AD + ApK* . (A.6)
Covariant (or tensor) superfields transform as

56T = KT . (A7)
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To describe conformal supergravity, the covariant derivative algebra (A.4) must be
constrained as [41]
{Vi, V) = =21 (7")asVa, (A.8a)
[V, V4] = (a)as <W57V17 +4i XML — %XWMﬁ — 51X+ ZIXB’D

i ijgr, 1 86 cvi _ Ol opi
Y2 IS] 4 (VWS - 2

+% (7”0)57 (V,,X;” - iaﬁvat‘i> K> , (A.8D)
where WP is the super-Weyl tensor, which satisfies
wed =whe - SIwef =0, DWW =W, (A.9)
and the Bianchi identities
VIVIW = —5vE VW, (A.10a)
VEV WA — iagvsvgkww = 8iV,, W’ . (A.10b)
Here the descendents of W are defined as
xhod .= —ivﬁwaﬁ L G G —%V%W“B, (A.lla)
Y, B = —g (vgxﬁﬂ - %5§V$XW)> - —gvgxﬁﬂ , (A.11b)
Y = ivﬁxg, (A.1lc)
Yap? i= VX, — éagvﬁxakﬁp - édgv’;xﬁkfﬂp . (A.11d)

Note that ijaﬁ is traceless, Y% is symmetric in its SU(2) indices and traceless in its
spinor indices, and Ya575 is separately symmetric in its upper and lower spinor indices and
traceless.

Upon taking a spinor covariant derivative of the descendent fields one finds

. ) 9 9 1 ..
Vi XPI = —gYaﬁ” - gngVMWW —~ 55”553/, (A.12a)
o 1 . 1 D 1 ..
i vive _ vy 8)ig sy 8)ig L ij v¥6 T _ij ~¥6
VaXﬁ = 2(5a Yg 1055 Y. 25 Yag 48 Vagw
3 . 1 ..
+%a”5gva,,wé>ﬂ — 190V (A.12D)
VLY = —2iV,5 X7, (A.12¢)
. 2 ) ) )
vEy, B = 35’““( — 8iV,s X728 — 4iV 05 XD + 31V, X )
T .
+3i05V 05 X0 — 21(5§V75X‘53)> , (A.12d)

) 4 8i
v 5 _ AV 1 ~6 ( v 15 (
6Ya,37 = —4 E(O‘Xﬂ)’y + 3 5(31 5)PX6 e + 3 6(

+8160V 0 X5V (A.12¢)

Y l 6
WV 1o X by "
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The descendant superfields transform under S-supersymmetry as follows:

SEXT = —lgW + Zalslwe, X = %cgwaﬁ, (A.13a)

STy, B = 5};’( — 16X 4 268 x9) — 853)(5]’)) , (A.13b)

SPY,g =24 (60 X, 0 150X oe) | goy — _gxo (A.13¢)
jroB (@ B)j 3% B)j v P i '

B The prepotential for the O(2) multiplet

The prepotential formulation for the O(2) multiplet was first given in Minkowski su-
perspace in [45] in terms of a spinor superfield pZ,. In this appendix we extend the con-
struction in [45] to supergravity by making use of projective superspace techniques. The
projective superspace approach is a method to construct general off-shell supersymmetric
theories with eight supercharges. Originally it was introduced in four and three dimen-
sions [33, 35, 58, 59] and then extended to five [60] and six [45, 61, 62] dimensions. The
projective-superspace approach to conformal supergravity was first developed in five di-
mensions [39, 63] and then extended to four [40, 64, 65] and six dimensions [36].

In the projective superspace setting, the supermanifold M58 is augmented with an
additional CP! parametrized by an isotwistor coordinate v* € C2?\ {0}. Matter fields are
constructed in terms of covariant projective multiplets Q) (z,v), which are holomorphic
in the isotwistor v* and of definite homogeneity, Q™ (z, cv) = ¢*Q™(z,v), on an open
domain of C2\ {0}. Such superfields are intrinsically defined on CP!.

It is useful to introduce an additional fixed isotwistor u; which obeys v'u; # 0. Given a
superfield 7% with symmetric SU(2) indices 7% n = T(iin) (and suppressed Lorentz
indices) we define

TM=n) = gy, -0 Yimpr - Yin_rpiy-in (v, u) := vy, . (B.1)

D) . (-1 Y i
Vo' =vVy,, Vg ) V., (B.2)
and the following derivative operations
0 - 0 0 1 ;0
2 = Y (0) — i o (=2) — (i
0 (v, u)v; 0, 0 Vi T Ui 00, 0 (v,u)u 5 (B.3)

Fields and operators of definite homogeneity in v* can be interpreted as possessing definite
09 charge. Note that one can express the SU(2) generator in terms of the above derivative
operators as follows

iUy 1
Jij = —v0;002 4 2089 50) 4 — ;0@ . (B.4)

Let us now use the above isotwistor notation to write down a candidate for the prepo-
tential description of the O(2) multiplet, G® = viijij , which satisfies the constraint

vila® = . (B.5)

«
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Considering the generalisation of the result in [45] to supergravity, one is led to the
following natural ansatz

G = v (v 1+ aiv IV 4 v (WerfY)) . (B6)

where a and b are some coefficients to be determined and p}, is the prepotential which
we assume to be primary and of dimension 1/2. Here we have introduced the covariant
differential operators

1 1
O ﬂgawvgﬂvg)vgﬂvg”, ve®) = ggawvgﬂvg)vg) . (B.7)

For consistency we require independence of the isotwister u’, which amounts to requiring
92a® = . (B.8)

Using the property vé}’v(@ = V(4)V&1) = 0 and the above requirement fixes the coefficients
a and b as

G2 = g (v - 2w TIverylh - siv D (werp)) o (BY)

The prepotential is defined up to some gauge freedom. Specifically, G(?) is unchanged
by the following shift in the prepotential

P = A VT £ VT 1, =0, 1B = 1, 0 (B.10)

where 7 and 7,°% are dimensionless primary superfields. It is rather simple to show that
the transformations associated with the scalar 7 leave G(?) invariant since

(VD v}y = 2w IVevile 4 v D (Wedv D) (B.11)

To show that G is also invariant with respect to the transformations associated with
7,29 one uses the identities

vivil) = o, (B.12a)
va(—3)vl(8_1) — 5gv(_4) , (B12b)
{V(OC_I)VO‘B,VE/I)}T/BV(_Q) = —4v(Y (W“ﬁvgl)rﬁ”’(_”) , (B.12¢)

v, y W} SOED — iy~ yesy (=D (1)
— &ivED (W“ﬁvg—”mﬂl)(—l)) . (B.12d)

We now have to check that G is primary. To do so, we apply the following identities

[Sa(fl)j V(4)] — —12ve® 4 yB®) (%g@ — 4Mg® — 4538(0)) . (B.13a)
(501 A3y = 4506575Vg71)v§—1)3(*2)7 (B.13b)
{590 vEDYIPY = _gveBg(-2) 20ty -Dy (B.13¢)
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to show
se=a® = . (B.14)

Furthermore, since G is independent of the isotwistor u’ we must have
SeqIF =0, (B.15)

and thus G¥ is primary.
Finally, since G® is independent of the isotwistor u!, G¥ can be written without
isotwistors as follows

G = 5vU’flv kippl) — =V gkl (vakv P o1 + AV o, (W 6%1)) : (B.16)

C The Yang-Mills multiplet in conformal superspace

In this appendix, we give the results needed for the description of the Yang-Mills
multiplet in conformal superspace. It is based almost verbatim on appendix C of [41].

To describe a non-abelian vector multiplet, the covariant derivative V4 is replaced
with a gauge covariant one,

Va:=Va4—-1Vy . (C.1)

Here the gauge connection one-form V4 takes its values in the Lie algebra of the (unitary)
Yang-Mills gauge group, Gywm, with its (Hermitian) generators commuting with all the
generators of the superconformal algebra. The algebra of the gauge covariant derivatives is

1
[Va,Vi} = -Tup“Ve - §R(M)ABCndd — R(J)a™ Jit — R(D) 4D
—R(S) 4515% — R(K)AB°K: — iFag, (C.2)

where the torsion and curvatures are those of conformal superspace and F4p is the gauge
covariant field strength two-form. It satisfies the Bianchi identity

ViaFpey + Tiag” Fipjey =0 . (C.3)

The Yang-Mills gauge transformation acts on the gauge covariant derivatives V 4 and a
matter superfield U (transforming in some representation of the gauge group) as

Vi — "V e 7, U - U=U, =1, (C.4)

where the Hermitian gauge parameter 7(z) takes its values in the Lie algebra of Gyy;.

Some components of the superform field strength have to be constrained in order to
describe an irreducible multiplet. In conformal superspace, the components of the field
strength are constrained as

Fil =0, (C.5a)

Fa% = ('Ya)a,BWﬁza (C.5b)
i

Fup = — g (vab)s" VEWY, (C.5¢)
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where W is a conformal primary of dimension %, S,ZWM =0 and DWW = %W“i. The

Bianchi identity (C.3) constrains W to obey the differential constraints
1 o
k ) )
vEwl =0, viwf = iagvg W) (C.6)
It is useful to introduce the following descendant superfield:
y i
X .= ng w9 (C.7)
The superfield W and X%, together with
_ (ks _ Lok __lgkyys
F,’ = = <VaWk ~ 45§V7le> ==V, (C.8)

satisfy the following identities:

ViWhI = —igf X — 2V F,P (C.9a)
7 7 [ 1 7
ViFs" = VoW — 51V 3sW 4 §5gvaéw5 , (C.9b)
Vi Xk = 2610y sWP) | (C.9¢)
STES = —4isywpf +i6fwy,  SyxY = —ais{w) (C.9d)

D A superform description for the N/ = (2,0) tensor multiplet and its
deformation

Here we give the superform description for the AV = (2,0) tensor multiplet and intro-
duce a closed four-form by deforming the constraints defining the tensor multiplet.?’

The tensor multiplet can be described by a two-form gauge potential in superspace [67,
68]. The field strength three-form Hs = %dzcdzB dzAH spc is given in terms of its two-
form gauge potential By = %dzdeABAB by

Hs =dBy = Hapc =3DuBpcy +3Tap” Bip|cy » (D.1)
where the only non-vanishing component of the torsion is
T3 = 2107 (1) 45 . (D.2)
The existence of the gauge potential requires that the Bianchi identity
3
ng:O — D[AHBCD}+§T[ABEH|E\CD} =0 (D3)

be satisfied. To describe the tensor multiplet, one must impose the following constraints
on the lowest components of the superform field strength:

h =0, Hil=2i(a)ap®, @) =00, =0, (D.4a)

2The superform description of the A" = (1,0) tensor multiplet was given in [66].
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The Bianchi identities for Hs can then be solved giving the remaining components:

Hapo = _E(Vab)aﬁ/\ﬁv (D.4b)
[ o
Hape = g(')/abc) 'BHa,By H[aﬁ] =0, (D4C)

where ®% is required to satisfy the differential constraint

o . 1 . .
D! @7k — il Nk Zﬂjk)\’a =0, (D.5)
and its corollaries
DiN, = 2107 Hyg + 410,597 (D.6a)

The constraint (D.5) is the defining constraint for the A" = (2,0) tensor multiplet.
We now wish to describe a closed four-form Hy = %dzD dz¢dzBdzAH ABCD, which
satisfies the closure condition

dH; =0 — D[AHBCDE}+2T[ABFH|F|C’DE} =0. (D?)

To do this we proceed by obstructing the constraint defining the tensor multiplet by a

closed 4-form H, as®0

dHs = Hy = 4DHpepy + 6T1a5" Hipicpy = Hasep (D.8)
such that the constraint on the tensor multiplet is deformed to
Dl Ik — ilizk ZQJ]“)\ZQ = H. I (D.9)

where H! 7% = H?:UK is completely traceless and the four-form is constructed completely
in terms of H:7*. The first non-vanishing component of Hy is fixed by the condition (D.8)
and the constraint (D.9) to be

Haflé’ﬁ = _Qi(’Va)aBHs’ij - Qi(Va)ﬁ'yHijk - 21(’7a)'yaHé’ki . (D.10)

The remaining components can be determined by finding the conditions that follow from
the constraint (D.9) and using eq. (D.8). The consistency conditions on H{ ¥ that follow
from the constraint (D.9) will give the requirements for Hy to be closed.

By taking successive spinor derivatives of the superfield ®% one finds the following
results at dimension 4:

DLN, = Hog" + 210 Hop + 4100507, QijHoap" =0, (D.11a)

D LM + DI HLM = — Qi g 110 — itk pr, i) — iaklﬂaﬂiﬂ' - %leﬂﬂaﬁ, (D.11b)

39A similar procedure of obstructing the closure condition of a p-superform to obtain a closed (p+ 1)-
superform was used in [48] to construct a chain of closed N = (1, 0) superforms.
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while at dimension 9/2 one finds

D Hap = 0,00y = 55 Dot Hiasy™ + 12 Dot i)™ (D-12a)
15105\ = DarHiapm™ — 4D Hyyg™ (D.12b)
30i0y, 5\, = Dy Hag 5" — 3D Haps™ (D.12¢)

0= DiHg % + 40 HL* + Q%0 T+ Qe g 5% + (@ 8) . (D.12d)

Finally, at dimension 5 one finds

1 \v6,- 1\,
40, Hyeq) = @(V[a)7 (’chd])aﬁDykDalHa,@kl - @(’Y[a)V (’chd])aﬁDykDalekl .
(D.12e)
All constraints on H?7* are encoded in the closure of the four-form Hjy.
From the above results one can determine the components of the four-form:
. 1 1 g
Hablajﬁ = _§<7ab)afyH,6"yﬂ - i(W/ab)ﬁ’yHa'y” 5 (D.13a)
i, . . .
Habc']i = m(’yabc)aﬁ (D'yjHaﬁk] - 4Daijyﬁk]) ) (D.13b)
1 . . 1 N
Hpea = ﬁ(%a)w(%cd])aﬁDykDalHaﬁkl - @(’Y[a)w(%az})aﬂDykDazHa,Bkl . (D.13c)

It is important to emphasise that all the differential constraints on Hagij can be projected
out of the closure condition (D.7). However, we do not give them explicitly here for
simplicity.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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