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1 Introduction

There has been substantial progress from many different perspectives in understanding

and calculating perturbative scattering amplitudes in N = 4 super-Yang-Mills theory [1, 2],

particularly in the planar limit of a large number of colors. The standard Feynman diagram
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expansion, as well as more modern methods such as generalized unitarity, are based on the

expansion of the (multi)loop amplitude in terms of different sets of building blocks. These

pieces are then individually integrated over the loop momenta, and the final amplitude

corresponds to the sum over all terms. In recent years, it was shown that both the total

integrand and the final amplitudes enjoy some extraordinary properties. As it turns out,

there is a completely different way to think about each quantity, holistically and without

reference to any expansion in building blocks.

For the integrand there exists a complete geometric reformulation in terms of the

Amplituhedron, which is a generalization of projective polygons into Grassmannians [3, 4]

(see also refs. [5–10] for recent progress). The idea is to rewrite the kinematical and helicity

variables in terms of bosonized momentum twistors Z serving as vertices of a geometric

object — the Amplituhedron — whose volume is equal to the integrand of scattering

amplitudes in planar N = 4 SYM. The definition of this space involves a generalization of

the positive Grassmannian that appears in the context of on-shell diagrams [11].

On the other hand, there has also been great progress in understanding the space of

transcendental functions that contains the final amplitudes. In many cases these functions

are iterated integrals [12], also known as multiple polylogarithms [13, 14]. The weight, or

number of integrations, is 2` for perturbative amplitudes at loop order `. While the origin

of these functions comes from the “dlog” structure of the integrand, the precise connection

is still not understood in general. For example, there may be obstructions to carrying

out the dlog integrations in terms of iterated integrals. The two-loop equal-mass sunrise

integral is in this elliptic class [15, 16], as is an integral entering the N3MHV 10-point

scattering amplitude in planar N = 4 SYM [17]. However, it has been argued that MHV

and NMHV amplitudes in this theory should be expressible solely in terms of multiple

polylogarithms [11, 18, 19].

A function composed of multiple polylogarithms has a symbol [20], which is constructed

essentially by repeated differentiation of the function. The alphabet, or set of letters

appearing in the symbol, characterizes the function space. These letters seem to be closely

related to cluster algebras [21, 22]. Once one knows the alphabet, as well as where the

branch cuts are located, one can construct the function space iteratively. The number

of such functions turns out to be much smaller than the number of independent physical

constraints on them, allowing for a unique determination of the amplitude as a whole

without ever inspecting the precise integrand or its decomposition into building blocks.

This program has been carried out for the six-point amplitude through five loops [23–28],

and for the symbol of the seven-point amplitude through three loops [29].

Given this excellent progress in understanding both the integrand and amplitude holis-

tically, it would be great to bring them together. It is not clear yet how the properties

of the Amplituhedron extend from the integrand to the final amplitudes. However, there

is an extension of the Amplituhedron conjecture, namely the existence of the dual Am-

plituhedron, which we will test indirectly in this paper. In ref. [30] it was argued that if

the original Amplituhedron can be reformulated into a dual picture where the integrand

is directly a volume of this space, then this function should be positive when evaluated

inside the Amplituhedron. This positivity property has been verified explicitly for various
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integrands up to high loop order. It also turns out to be true for the integrand of the

ratio function — a ratio of amplitudes with different helicities which is free of infrared (IR)

divergences.

It was then conjectured that this positivity property might also hold for the final

transcendental function, rather than just the integrand. In general, the transcendental

functions that determine scattering amplitudes are complex-valued. However, there exists

a Euclidean region in which the amplitude is real-valued, and thus it is possible to define

positivity consistently. For the six-point amplitude, the cross-ratios u, v, w are all real and

positive in this Euclidean region. The conjecture is that the quantities under consideration

are positive in a subregion of this Euclidean region that is selected by the properties of the

Amplituhedron.

This conjecture was explicitly verified at one loop. In this paper we will check the

statement through five loops for the NMHV case, providing strong evidence that the con-

jecture is indeed true. In addition, we show that the same is true for the IR-finite BDS-like

normalized MHV amplitude. There are many ways to subtract IR divergences but the

positivity conjecture more or less singles out this function. The positivity property is very

non-trivial and we do not know how to prove it in full generality even at one loop, not to

mention higher-loop examples where our analytic understanding is even more limited.

To show a simple example, let us consider a function of positive variables u,w > 0,

F (u,w) = Li2(1− u) + Li2(1− w) + log u logw − ζ2 . (1.1)

This function will appear later in this paper in a particular limit of the NMHV one-

loop ratio function, as well as of the BDS-like remainder function. In the first case the

Amplituhedron picture dictates that F (u,w) < 0 whenever u+w > 1, while in the second

case it requires F (u,w) > 0 for u + w < 1. Even in this simple case positivity is not

manifest, i.e. the answer cannot be decomposed into a sum of obviously positive terms

(although the positivity proof here is simple, see section 3.2). Note that for w = 1− u we

get the famous dilogarithm identity which sets F (u, 1 − u) = 0, which also represents a

physical vanishing condition on the ratio function in a collinear limit.

In general, positivity relies not only on the sign of transcendental functions like F (u,w),

but also on the sign of rational prefactors. For generic kinematics neither has uniform sign

on its own. Nevertheless, the sign ambiguities of these individual parts conspire to produce

quantities with uniform sign. The statement is even more interesting because not only the

bosonic external data, but also the fermionic variables, play a crucial role in establishing

this surprising and remarkable property. In the rest of this paper we will flesh out this

statement, showcasing numerous regions in which positivity holds.

In this paper, whenever we refer to positivity, we mean that perturbative coefficients

in the loop expansion of a given quantity are positive when the expansion parameter is

the negative of the ’t Hooft coupling, −λ = −g2Nc. Or, in terms of a standard, positive

’t Hooft coupling (or multiple thereof), we will be testing for strict sign-alternation with

loop order. That is, one-loop terms should be negative, two-loop terms positive, three-

loop terms negative, and so on. From the point of view of the (dual) Amplituhedron, the

overall sign at a given loop order is not dictated; what is really expected is a uniform sign
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as a function of the kinematics. However, we know empirically that the sign alternates

for low loop orders, and we also expect it to alternate at very high loop orders. The

reason for the latter statement is that planar N = 4 SYM has no renormalons and no

instantons, and so it is expected to have a finite radius of convergence of the perturbation

theory. For some quantities, the radius of convergence is known: it is λc = π2 for the

light-like cusp anomalous dimension [31], and λc ≈ 14.7 for the Bremsstrahlung function,

which is another limit of the velocity-dependent cusp anomalous dimension [32, 33]. These

quantities have no singularity on the positive λ axis. Hence their finite radius of convergence

is controlled by a singularity for negative λ. This fact implies sign alternation at very large

perturbative orders, with successive perturbative coefficients increasing by a factor that

approaches −1/λc.

This paper is organized as follows. We begin in section 2 by describing the regions in

which the Amplituhedron construction leads to positive tree-level amplitudes; these regions

are where we wish to test the corresponding loop amplitudes for positivity. Section 3 then

presents some simple one-loop examples in which this positivity holds for the NMHV ratio

function. We also define the double-scaling limit, in which certain monotonicity properties

of the amplitude are manifest. In section 4 we explore this limit at higher loops, both

analytically on certain special lines and numerically throughout the full region. We go on

in section 5 to present numerical evidence for positivity outside of special limits, in the full

space of cross-ratios selected by the Amplituhedron construction. Section 6 discusses the

positivity properties of the MHV amplitude, and we conclude in section 7.

This paper has two appendices. Appendix A provides additional plots on the line w = 0

within the double-scaling surface, while appendix B proves positivity and monotonicity for

a quantity, c
(2)
1 (u,w), relevant at two loops. We also attach ancillary files containing

expressions for the quantities we consider on special lines threading the kinematic space.

2 From the Amplituhedron to positive kinematics

In this section we review the essential ingredients of the Amplituhedron construction of

the multi-loop integrand for planar N = 4 SYM, and show how this setup dictates where

we should inspect the multi-loop six-point amplitudes for positivity.

The Amplituhedron space [3, 4] Y is implicitly labeled by n, k, and `, where n is the

number of external legs, k is the number of negative gluon helicities minus 2, and ` is the

loop order. The formal definition of Y is given by the matrix multiplication

Y = C · Z, (2.1)

where C is a (k+ 2`)× n matrix with certain positivity properties, and Z is an n× (4 + k)

matrix with all (4+k)×(4+k) minors positive. The matrix Z corresponds to external data

(momentum twistors and Grassmann variables); Z only depends on k while the C matrix

also depends on `. The loop integrand Ω is then a form which behaves logarithmically on

the boundaries of Y.

The conjecture made in ref. [30] is that the form Ω is positive when the measure is

stripped off and it is evaluated inside the Amplituhedron, i.e. for Y satisfying eq. (2.1) with
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positive C and Z matrices. This property does not follow from the original Amplituhedron

proposal. Rather it would provide evidence for the existence of a “dual Amplituhedron”

of which Ω is literally the volume. This space has not been found yet, but the fact that Ω

is observed to be positive is very encouraging.

Let us now consider the final amplitude rather than the integrand. It has a very compli-

cated branch-cut structure, but no dependence on the loop momenta. If an Amplituhedron-

like construction exists for the final amplitude then it is natural to impose the same posi-

tivity constraints, but now with ` = 0, i.e.

Y = C · Z, (2.2)

where C is the matrix that appears in the definition of the tree-level Amplituhedron. The

conjecture now is that a properly-defined amplitude must be positive — or rather, sign-

alternating with loop order — if evaluated for Y and Z matrices satisfying the positivity

conditions. We restrict ourselves to our cases of interest, MHV and NMHV amplitudes

(k = 0 and 1), and review what these conditions imply.

2.1 MHV positive kinematics

For MHV amplitudes we have k = 0 and l = 0 so there is no C matrix. That is, the

Y space in eq. (2.2) becomes trivial and the only conditions come from the positivity of

the (4 × n) matrix Z. In this case the column vectors composing Z are directly the 4-

dimensional momentum twistors Za and we have to keep them positive — in the sense that

the following (4× 4) minors of the Z matrix should be positive:

Z =

 ↑ ↑ ↑ . . . ↑ ↑
Z1 Z2 Z3 . . . Zn−1 Zn
↓ ↓ ↓ . . . ↓ ↓

 with 〈abcd〉 ≡ det(Za, Zb, Zc, Zd) > 0

for a < b < c < d.
(2.3)

Let us now parametrize the positive Z matrix for n = 6. Using a GL(4) transformation

we fix the first four columns to be the unit matrix, and parametrize the remaining two

columns with eight positive parameters xa > 0, yb > 0. One solution that makes all (4×4)

minors positive is

Z =


1 0 0 0 −x1 −y1 − y2 x1x2 − y3

x1
x3
− y4 x1x4

0 1 0 0 x2 y2 + y3
x2
x3

+ y4
x2
x4

0 0 1 0 −x3 −y3 − y4 x3x4
0 0 0 1 x4 y4

 . (2.4)

We can now build three different dual-conformal cross ratios,

u =
〈6123〉〈3456〉
〈6134〉〈2356〉

, v =
〈1234〉〈4561〉
〈1245〉〈3461〉

, w =
〈2345〉〈5612〉
〈2356〉〈4512〉

. (2.5)

We also consider the combinations

ε ≡ 1− u− v − w, ∆ = ε2 − 4uvw. (2.6)
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From the positive parametrization (2.4) of the Z matrix we get,

u =
x22x

2
3y1y4
PQ

, v =
x3x4y2
P

, w =
x1x2y3
Q

, (2.7)

ε =
x2x3(x2x4y1y3 + x1x3y2y4)

PQ
, ∆ =

x22x
2
3(x1x3y2y4 − x2x4y1y3)2

P 2Q2
, (2.8)

where P = x3x4y2 + x2x4y3 + x2x3y4, Q = x2x3y1 + x1x3y2 + x1x2y3. For positive values

of xa, yb the cross ratios u, v, w and ε,∆ are all manifestly positive. These inequalities

combine to define conditions for the MHV positive region,

u, v, w > 0, u+ v + w < 1, (1− u− v − w)2 > 4uvw, (2.9)

which restrict the cross ratios to be relatively close to the origin, in contrast to what we

will find for the NMHV positive region. We refer to this region as Region I (see ref. [34] and

eq. (5.5) below). The only place that ε can approach zero in Region I, given the constraint

on ∆, is for v → 0, u+w → 1, or cyclic permutations of this line. In this limit, two gluons

become collinear.

Now that we have identified MHV positive kinematics, we would like to conjecture

that a properly-defined IR-finite part of the MHV amplitude is positive for any positive

values xa, yb > 0. However, individual on-shell amplitudes are IR divergent, and there is

not a unique way to obtain a finite quantity by removing the IR divergences. The original

way that IR divergences were removed (while preserving dual conformal symmetry) was

to divide by the BDS ansatz [35]. While this procedure leads to remainder functions

with smooth collinear limits [36, 37], it breaks a global analytic property known as the

Steinmann relations [38–40]. To preserve the Steinmann relations [28], at six points (or

seven points) one can divide by a unique “BDS-like” ansatz [27, 41]. Yet this procedure

sacrifices the vanishing in collinear limits of the six-point BDS remainder function, and the

collinear limits form a boundary of the positive region (e.g. v → 0, u+w → 1 makes ε and

∆ both vanish). There are also dual-conformal IR regulators based on the Wilson loop

interpretation of the amplitude [42], but they break a dihedral symmetry. In short, there

is no unique way to define an IR finite part of the MHV amplitude, nor one that is clearly

optimal. We will discuss the positivity properties of these various choices in section 6.

2.2 NMHV positive kinematics

In contrast, when we also consider the NMHV amplitude there is a natural way to form

an IR finite quantity, the ratio function, which is defined (at six points) by dividing the

NMHV super-amplitude by the MHV super-amplitude [43]. IR divergences are helicity-

independent and cancel between numerator and denominator. We will inspect the ratio

function for NMHV positive kinematics.

For the NMHV case, k = 1, the Amplituhedron lives in a projective space P4. It is

defined as all points Y that are linear combinations of Za with positive coefficients,

Y = C · Z = c1Z1 + c2Z2 + · · ·+ cnZn with ca > 0, (2.10)
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where the Za are now five-dimensional. They can be written as

Za =

(
za

φ · ηa

)
, (2.11)

where the first four components are momentum twistor variables za associated with each

particle label, a = 1, 2, . . . , n for n-point scattering. The fifth (last) component is the

contraction φ · ηa = εIJφ
IηJa , I, J = 1, 2, 3, 4, of an auxiliary Grassmann variable φI with

the standard Grassmann variable ηJa of on-shell superspace [43–46]. These bosonic variables

then carry all information about the external particles in the scattering. The bosonized

momentum twistors are projective variables, defined up to rescaling Za → tZa.

Positivity conditions are then imposed directly on the five-dimensional Za rather than

the four-dimensional part za. The (n × 5)-dimensional matrix Z has all (5 × 5) minors

positive; that is,

〈abcde〉 ≡ det(Za, Zb, Zc, Zd, Ze) > 0 for a < b < c < d < e. (2.12)

Geometrically, the Za form a convex configuration in real projective space P4.

In addition to five-brackets containing five Za, we can also have five-brackets including

the point Y in eq. (2.10), which lies inside the Amplituhedron. The Y -containing five-

brackets are given by,

〈Y abcd〉 ≡ det(Y,Za, Zb, Zc, Zd). (2.13)

A subset of these five-brackets is positive when Y is in the Amplituhedron, specifically those

with two pairs of consecutive indices: 〈Y a a+1 b b+1〉 > 0 for all a, b. The three-planes

(Za Za+1 Zb Zb+1) are boundaries of the Amplituhedron. The condition 〈Y a a+1 b b+1〉 > 0

puts the point Y on the correct side of the boundary, inside the Amplituhedron. From a

physics perspective, the term 〈Y a a+1 b b+1〉 ∼ sa+1...b ≡ (pa+1 + · · · + pb)
2 corresponds

to a factorization pole of the tree-level amplitude.

For the six-point case, we redefine the three cross ratios defined in eq. (2.5) by inserting

Y into all the four-brackets to make them five-brackets,

u =
〈Y 6123〉〈Y 3456〉
〈Y 6134〉〈Y 2356〉

, v =
〈Y 1234〉〈Y 4561〉
〈Y 1245〉〈Y 3461〉

, w =
〈Y 2345〉〈Y 5612〉
〈Y 2356〉〈Y 4512〉

. (2.14)

The positive parametrization is now much simpler than in the MHV case because the

matrix Z is (6 × 5) rather than (6 × 4). A natural parametrization of Z in terms of five

positive parameters xa > 0 is,

Z =


1 0 0 0 0 x1
0 1 0 0 0 −x2
0 0 1 0 0 x3
0 0 0 1 0 −x4
0 0 0 0 1 x5


〈12345〉 = 1, 〈23456〉 = x1,

〈13456〉 = x2, 〈12456〉 = x3,

〈12356〉 = x4, 〈12346〉 = x5.

(2.15)
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Using this parametrization and Y = C · Z from eq. (2.10), we can compute all
(
6
2

)
= 15

five-brackets 〈Y abcd〉:

〈Y 1234〉 = c5x6 + c6x5, 〈Y 1235〉 = c6x4 − c4x6, 〈Y 6123〉 = c4x5 + c5x4,

〈Y 1245〉 = c3x6 + c6x3, 〈Y 1246〉 = c3x5 − c5x3, 〈Y 1256〉 = c3x4 + c4x3,

〈Y 1345〉 = c6x2 − c2x6, 〈Y 3461〉 = c2x5 + c5x2, 〈Y 1356〉 = c4x2 − c2x4,
〈Y 4561〉 = c2x3 + c3x2, 〈Y 2345〉 = c1x6 + c6x1, 〈Y 2346〉 = c1x5 − c5x1,
〈Y 2356〉 = c1x4 + c4x1, 〈Y 2456〉 = c1x3 − c3x1, 〈Y 3456〉 = c1x2 + c2x1, (2.16)

where x6 ≡ 1 is added to make the expressions more uniform.

From eq. (2.14), the cross ratios are now

u =
(c1x2 + c2x1)(c4x5 + c5x4)

(c2x5 + c5x2)(c1x4 + c4x1)
, v =

(c2x3 + c3x2)(c5x6 + c6x5)

(c2x5 + c5x2)(c3x6 + c6x3)
,

w =
(c1x6 + c6x1)(c3x4 + c4x3)

(c1x4 + c4x1)(c3x6 + c6x3)
. (2.17)

As in the MHV case, the cross ratios are all positive.

Denoting W = (c1x4 + c4x1)(c2x5 + c5x2)(c3x6 + c6x3), we get for the quantities ε and

∆ defined in eq. (2.6),

ε = −P1(xa, cb)

W
< 0, ∆ =

[P2(xa, cb)]
2

W 2
> 0, (2.18)

where the Pj(xa, cb) are polynomials in xa, cb with positive coefficients. Notice that the

sign condition on ε has flipped from the MHV case, pushing the cross ratios away from the

origin.

The NMHV amplitude also contains R-invariants, defined as the following function of

momentum twistors za and Grassmann variables ηa:

R[a b c d e] =
(ηa〈bcde〉+ ηb〈cdea〉+ ηc〈deab〉+ ηd〈eabc〉+ ηe〈abcd〉)4

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (2.19)

In the bosonized language, the R-invariants become functions of five-brackets, projective

in all variables, which we denote as

[a b c d e] =
〈Y d4Y 〉〈abcde〉4

〈Y abcd〉〈Y bcde〉〈Y cdea〉〈Y deab〉〈Y eabc〉
, (2.20)

where 〈Y d4Y 〉 is the measure in Y . For the six-point case, it is convenient to label this

object by the missing index, and to omit the measure, defining

(1) ≡ [23456]

〈Y d4Y 〉
=

〈23456〉4

〈Y 2345〉〈Y 2346〉〈Y 2456〉〈Y 2356〉〈Y 3456〉
(2.21)

and similarly for (2) = [34561], (3) = [45612], etc.

The form for the tree-level NMHV Amplituhedron is then

Ωtree
6,1 = (1) + (3) + (5) = (2) + (4) + (6). (2.22)
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This is also the bosonized version of the tree-level NMHV ratio function Ptree
6,1 , see sec-

tion 2.3.

Using the positive parametrization (2.10), we can rewrite the bosonized R-invariants as

(1) =
x41

(c1x6 + c6x1)(c1x2 + c2x1)(c1x3 − c3x1)(c1x4 + c4x1)(c1x5 − c5x1)
,

(2) =
x42

(c1x2 + c2x1)(c2x3 + c3x2)(c2x4 − c4x2)(c2x5 + c5x2)(c2x6 − c6x2)
,

(3) =
x43

(c2x3 + c3x2)(c3x4 + c4x3)(c3x5 − c5x3)(c3x6 + c6x3)(c3x1 − c1x3)
,

(4) =
x44

(c3x4 + c4x3)(c4x5 + c5x4)(c4x6 − c6x4)(c1x4 + c4x1)(c4x2 − c2x4)
,

(5) =
x45

(c4x5 + c5x4)(c5x6 + c6x5)(c1x5 − c5x1)(c2x5 + c5x2)(c3x5 − c5x3)
,

(6) =
x46

(c5x6 + c6x5)(c1x6 + c6x1)(c2x6 − c6x2)(c3x6 + c6x3)(c4x6 − c6x4)
. (2.23)

Five-brackets corresponding to spurious poles can be identified in eq. (2.16) as the

expressions containing minus signs, while those corresponding to physical poles are man-

ifestly positive. Each R-invariant (a) contains two spurious poles. For example, (1) has

〈Y 2346〉 and 〈Y 2456〉. The spurious poles do not have a fixed sign for all cb, xa > 0, e.g.

〈Y 2346〉 = c1x5 − c5x1. Therefore, the invariant (1) also does not have a fixed sign and it

is not a manifestly positive object, and similarly for the other (a). Only in the sum (2.22)

do these poles cancel, so that Ωtree
6,1 can be positive in the full positive region.

In fact, we can write the tree amplitude in the form,

Ωtree
6,1 =

N (xa, cb)∏
|j−k|=1or 3

(cjxk + ckxj)
, (2.24)

where N (xa, cb) is a polynomial in xa, cb with all positive coefficients [30].

2.3 The ratio function

Scattering amplitudes of massless particles suffer from IR divergences from both soft and

collinear virtual exchange. It is necessary to introduce a regulator to get a well-defined

answer. In the planar theory, for gauge group SU(Nc) with Nc → ∞, the IR divergences

exponentiate in a relatively simple fashion. In dimensional regularization with D = 4− 2ε,

the poles in ε in planar N = 4 SYM amplitudes are captured by the BDS ansatz [35],

Mn,k =Mtree
n,k · exp

[ ∞∑
`=1

a`
(
f (`)(ε) · A1−loop

n,0 (`ε) + finite
)]

, (2.25)

where a = g2Nc/(8π
2) is the ’t Hooft coupling, f (`)(ε) = f

(`)
0 + f

(`)
1 ε + f

(`)
2 ε2 for some

constants f
(`)
k , andA1−loop

n,0 (ε) is the regulated one-loop MHV amplitudeM1−loop
n,0 (ε) divided

by the tree-level amplitude Mtree
n,0 .
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In the MHV case, k = 0, the finite part in the exponential in eq. (2.25) is called the

remainder function R
(`)
n ,

Mn,0 =Mtree
n,0 · exp

[ ∞∑
`=1

a`
(
f (`)(ε) · A1−loop

n,0 (`ε) +R(`)
n

)]
≡MBDS

n,0 (ε) · exp[Rn] , (2.26)

and it is dual conformally invariant. However, we can still move finite, dual conformally

invariant terms between the first and second terms in this expression. Correspondingly,

there are a few possible different definitions of the remainder function. In section 6 we will

discuss the possibilities in more detail, and describe one choice which appears to satisfy

MHV positivity properties.

There is a cleaner and less ambiguous way to define an IR-finite object in the context

of scattering amplitudes, simply by taking a ratio of two amplitudes with different helic-

ities [43]. Because the IR divergences (2.25) are universal, one can divide any amplitude

Mn,k by the MHV amplitude Mn,0 and get an IR finite ratio function Pn,k. Expanding

the ratio in the coupling constant a, we define the loop expansion coefficients of the ratio

function as,

Pn,k =
Mn,k

Mn,0
= Ptree

n,k + a · P1−loop
n,k + a2 · P2−loop

n,k + . . . , (2.27)

while those of the amplitude normalized by the MHV tree super-amplitude (an IR divergent

quantity) are denoted by

An,k =
Mn,k

Mtree
n,0

= Ptree
n,k + a · A1−loop

n,k + a2 · A2−loop
n,k + . . . . (2.28)

The two sets of expansion coefficients are related by,

P1−loop
n,k = A1−loop

n,k − Ptree
n,k · A

1−loop
n,0 ,

P2−loop
n,k = A2−loop

n,k − Ptree
n,k · A

2−loop
n,0 − P1−loop

n,k · A1−loop
n,0 , (2.29)

and so on.

The ratio function P`−loopn,k corresponds to a linear combination of products of ampli-

tudes with different signs. Therefore, it would be quite surprising if it had any positivity

properties. However, numerical checks performed in ref. [30] for the one-loop NMHV n-

point amplitude for n ≤ 12, and for the one-loop N2MHV amplitude for n ≤ 9 show that

this is indeed true!

Let us now focus on the six-point case in more detail. As was pointed out in ref. [43],

the ratio function can be expressed in terms of two transcendental functions, V (u, v, w)

and Ṽ (yu, yv, yw),

P6,1 =
1

2

(
[(1) + (4)]V (u, v, w) + [(2) + (5)]V (v, w, u) + [(3) + (6)]V (w, u, v)

+ [(1)− (4)]Ṽ (yu, yv, yw)− [(2)− (5)]Ṽ (yv, yw, yu) + [(3)− (6)]Ṽ (yw, yu, yv)
)
,

(2.30)
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where the cross ratios u, v, w are written in terms of our bosonized variables in eq. (2.14),

and the extended cross ratios yu, yv, yw [24] are also bosonized:

yu =
〈Y 1345〉〈Y 2456〉〈Y 1236〉
〈Y 1235〉〈Y 3456〉〈Y 1246〉

, yv =
〈Y 1235〉〈Y 2346〉〈Y 1456〉
〈Y 1234〉〈Y 2456〉〈Y 1356〉

,

yw =
〈Y 2345〉〈Y 1356〉〈Y 1246〉
〈Y 1345〉〈Y 2346〉〈Y 1256〉

. (2.31)

The function V is even under a parity symmetry that inverts yi ↔ 1/yi, and leaves u, v, w

invariant. The function Ṽ is parity-odd, changing sign under this inversion. For this reason,

it is better to think of Ṽ as a function of yu, yv, yw rather than u, v, w.

Note that the extended cross ratios do not have any positivity properties due to the

presence of spurious poles. Under a cyclic shift Za → Za+1 they transform as

yu →
1

yv
, yv →

1

yw
, yw →

1

yu
, (2.32)

and the standard cross ratios transform as u → v, v → w, w → u. The ratio function

is symmetric under both cyclic shifts and dihedral flips. The combined symmetry group

is D6, although acting on the cross ratios u, v, w it reduces to S3, i.e. all permutations of

u, v, w. The individual functions V and Ṽ are (anti)symmetric under a Z2 subgroup of S3
that leaves v fixed:

V (u, v, w) = V (w, v, u), Ṽ (yu, yv, yw) = −Ṽ (yw, yv, yu). (2.33)

The transcendental functions V and Ṽ have a Euclidean sheet on which they are real,

when the cross ratios lie in the positive octant u, v, w > 0. We evaluate them on this sheet,

with the cross ratios and R-invariants further restricted by the positive parametrization

cb, xa > 0. (In some physical scattering regions V and Ṽ would acquire imaginary parts,

which would make discussing positivity difficult.)

3 One-loop ratio function

At one loop, the parity-odd part vanishes, Ṽ (1) = 0, and the full ratio function can be

written as

2P1−loop
6,1 = [(1) + (4)]V (1)(u, v, w) + [(2) + (5)]V (1)(v, w, u) + [(3) + (6)]V (1)(w, u, v), (3.1)

where the one-loop function V (1)(u, v, w) is given by

V (1)(u, v, w) =
1

2

[
Li2(1− u) + Li2(1− v) + Li2(1− w)

+ log u log v − log u logw + log v logw − 2ζ2

]
. (3.2)

Our claim is that eq. (3.1) is negative (because the loop order is odd) within the

positive region. Note that the individual pieces in this formula do not have definite signs,

neither the R-invariants (a), nor the function V (1) which has both plus and minus signs in

front of individual terms. Depending on the values of u, v, w, different terms can dominate.
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For some purposes it is convenient to separate out the Li2 part of the expression.

Note that the Li2 part is invariant under S3 permutations, and therefore it multiplies all

R-invariants (a), which can be assembled into the tree-level amplitude,

2P1−loop
6,1 = Ptree

6,1 · [Li2(1− u) + Li2(1− v) + Li2(1− w)− 2ζ2]

+ [(1)− (2) + (3)] log u log v + [(2)− (3) + (4)] log v logw

+ [(3)− (4) + (5)] logw log u , (3.3)

where we have used the identity (1) + (3) + (5) = (2) + (4) + (6). For some purposes it is

more convenient to use eq. (3.1), for others eq. (3.3).

3.1 Simple examples of positivity

Let us give a few examples where the overall sign can be easily understood.

Example 1. Our first case is the point (u, v, w) = (1, 1, 1), which was studied in detail

in ref. [30]. To reach this point, we set c3 = c1x3/x1 and c5 = c1x5/x1. This preserves

positivity of cb, xa, and so it is inside the Amplituhedron. Kinematically, it corresponds to

setting 〈Y 2456〉 = 〈Y 2346〉 = 0, which is a spurious boundary of the tree-level Amplituhe-

dron, so we are not on the true physical boundary. Therefore, the tree-level term Ptree
6,1 is

completely regular and positive here. However, individual R-invariants (a) do blow up. In

order to approach this point, we first set all cross-ratios to be equal, u = v = w, and then

take u→ 1,

P1−loop
6,1 −−−−−→

u=v=w

1

2
Ptree
6,1 ·

[
3Li2(1− u) + log2 u− 2ζ2

]
−−→
u=1

−Ptree
6,1 · ζ2 < 0. (3.4)

Thus we obtain the desired negative value. In section 5.1 we will study the point (1, 1, 1)

at higher loops.

Example 2. Another interesting case is the point (u, v, w) = (1, 0, 0), which can be

reached by setting c2 = c3 = c4 = 0. Naively, the term log v logw dominates, but there is

a conspiracy of prefactors which makes the situation more complicated. We can approach

this limit by setting c2 → εc2, c3 → εc3, c4 → εc4 and then letting ε → 0. There are

many ways to approach the point (u, v, w) = (1, 0, 0), but this limit always keeps us in the

positive region.

For analyzing the one-loop ratio function in this limit, it is good to use the second

representation (3.3). The relevant combinations of R-invariants behave in this limit as

Ptree
6,1 =

1

ε2
· x3
c1c5c6(c3x2 + c2x3)(c4x3 + c3x4)

,

(1)− (2) + (3) = − 1

ε2
· x4
c1c5c6(c4x2 − c2x4)(c4x3 + c3x4)

,

(3)− (4) + (5) =
1

ε2
· x2
c1c5c6(c3x2 + c2x3)(c4x2 − c2x4)

. (3.5)
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while the term (2)− (3) + (4) = O(1) is subleading. Combining these limits with those of

the polylog parts, the individual pieces in eq. (3.3) behave like

Ptree
6,1 · (. . . ) =

log ε

ε
· X

c21c
2
5c

2
6x2x4(c3x2 + c2x3)(c4x3 + c3x4)

, (3.6)

[(1)− (2) + (3)] · (. . . ) = − log ε

ε
· c1x5 − c5x1
c21c

2
5c6x2(c4x3 + c3x4)

, (3.7)

[(3)− (4) + (5)] · (. . . ) =
log ε

ε
· c1x5 − c5x1
c21c

2
5c6x4(c3x2 + c2x3)

, (3.8)

where

X = c4c5x2x3(c6x1+c1x6)+c1c2x3x4(c6x5+c5x6)+c3x2x4(c5c6x1+c1c6x5+2c1c5x6), (3.9)

while the last term is subleading in this limit, [(2) − (3) + (4)] · (. . . ) = O(log2 ε). This

suppression may be counter-intuitive (as that term had the dominant logarithms), but the

rational prefactor is regular in this limit, while the prefactors of other terms diverge. We

see that the terms (3.7) and (3.8) do not have fixed sign, but if we combine all three pieces

together we get

P1−loop
6,1 =

log ε

ε
· Y

2c21c
2
5c

2
6x2x4(c3x2 + c2x3)(c4x3 + c3x4)

, (3.10)

where

Y = c5c6x1x4(c3x2 + c2x3) + c1c6x2x5(c4x3 + c3x4) + c1c5x6(c4x2x3 + 2c3x2x4 + c2x3x4),

(3.11)

which is manifestly negative for ε → 0 while keeping ca, xb > 0. The negativity of the

final expression requires a conspiracy between the rational prefactors and the polylog part,

as well as between different parts of the answer in eq. (3.3). We can also start with

representation (3.1), but in this case the cancellation is even more complicated. Individual

pieces would also contain logs of ca, xb as prefactors of log ε
ε . These logs would all cancel

when taking the sum, leaving us with the rational expression (3.10).

3.2 Double-scaling limit

In the previous examples the rational prefactors played a central role in proving positivity.

Let us now discuss an example where positivity relies on a relation between polylogarithms.

Such a case can be found near the boundary 〈Y 1234〉 = 0, which we can approach by

setting c5 = εĉ5, c6 = εĉ6 and taking the limit ε→ 0 with ĉ5, ĉ6 fixed. As can be seen from

eq. (2.23), the two dominant R-invariants are equal to each other in this limit,

(5) = (6) =
1

ε
· 1

c1c2c3c4(ĉ6x5 + ĉ5x6)
, (3.12)

while the R-invariants (1), (2), (3) and (4) remain finite. Similarly, the cross ratios become

u =
c4(c2x1 + c1x2)

c2(c4x1 + c1x4)
, v = O(ε), w =

c1(c4x3 + c3x4)

c3(c4x1 + c1x4)
(3.13)

in this limit.
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Thus this limit sends the cross ratio v → 0, but leaves u,w fixed. This limit has been

studied in the context of the operator product expansion (OPE), where it is referred to as

the double-scaling limit and corresponds to contributions with the maximum number of

gluonic flux-tube excitations [47–49]. While the conventional OPE addresses configurations

near the collinear limit v → 0, u + w → 1, the double-scaling limit allows u and w to

be generic.

For NMHV positive kinematics, u and w are not totally generic, because we have

[u+ w]c5,c6→0 = 1 +
c1c4(c2x3 + c3x2)

c2c3(c1x4 + c4x1)
> 1. (3.14)

This turns out to be the only additional constraint; that is, the correct NMHV positive

region within the double-scaling limit is the semi-infinite plane

u > 0, w > 0, u+ w > 1. (3.15)

In order to show that the entire region (3.15) corresponds to positive kinematics, we use

the fact that the lines u = 1 and w = 1 divide the region (3.15) into four subregions. Each

of the four subregions corresponds to solving eq. (3.13) for two of the cb, b = 1, 2, 3, 4,

in terms of u,w and the remaining cb, xa, in a manifestly positive manner. There are six

possible pairs of cb, but the pairs {c1, c3} and {c2, c4} do not work. For example, solving

eq. (3.13) for c2, c3 gives

c2 =
c1c4x2

uc1x4 + (u− 1)c4x1
, c3 =

c1c4x3
wc4x1 + (w − 1)c1x4

, (3.16)

which is manifestly positive in the subregion u > 1, w > 1. This solution shows that this

entire subregion is covered. The other subregions work in the same way.

Since polylogarithms can generate at most log ε behavior, the one-loop ratio function

in the double-scaling limit becomes dominated by terms involving the singular (and equal)

R-invariants (5) and (6):

P1−loop
6,1

∣∣∣
c5,c6→0

=
1

2ε
· 1

c1c2c3c4(ĉ6x5 + ĉ5x6)
· C(1)(u,w), (3.17)

where

C(1)(u,w) = Li2(1− u) + Li2(1− w) + log u logw − ζ2 . (3.18)

While the rational prefactor in this expression is manifestly positive for all positive values

of the ca, it’s not yet obvious what can be said about the sign of the polylogarithmic part

C(1)(u,w) in region (3.15). In fact, P1−loop
6,1 |c5,c6→0, and hence also C(1)(u,w), are required

to vanish on the boundary u+w = 1, because this line corresponds to a limit in which two

adjacent particles become collinear. In general, this would mean that the six-point ratio

function should match onto the five-point ratio function — but the five-point ratio function

receives no loop-level corrections [35]. The vanishing boundary condition holds to all loop

orders. At one loop, it is a trivial dilog identity, Li2(1− u) = ζ2− log u log(1− u)−Li2(u).

– 14 –



J
H
E
P
0
2
(
2
0
1
7
)
1
1
2

Given a vanishing boundary condition at the boundary u+w = 1, we can learn about

the sign of the one-loop ratio function throughout the NMHV positive region by looking

instead at the radial derivative of C(1)(u,w),

(
u∂u + w∂w

)
C(1)(u,w) =

log u

1− u
+

logw

1− w
. (3.19)

This derivative is manifestly negative for all u,w > 0. Also, radial flow can be used to reach

any point (u,w) starting from some point on the boundary, namely the point ( u
u+w ,

w
u+w ).

Thus C(1)(u,w) and P1−loop
6,1 |c5,c6→0 must be negative throughout region (3.15).

4 Positivity in the double-scaling limit

We now begin to extend our investigation of positivity from one loop to higher loop orders.

In this section, we focus on the double-scaling limit just discussed in section 3.2. Because

the R-invariants are independent of loop order, the only difference in going to higher loops

is that the transcendental function C(1)(u,w) in eq. (3.18) is replaced by the sum of the

coefficients of the R-invariants (5) and (6), in eq. (2.30) for P6,1. Up to a factor of 1/2, we

denote this sum by C(u, v, w). In terms of the functions V and Ṽ , it is given by

C(u, v, w) = V (v, w, u) + V (w, u, v) + Ṽ (yv, yw, yu)− Ṽ (yw, yu, yv) . (4.1)

The limit v → 0 with u,w held fixed (or c5, c6 → 0 in the positive parametrization)

acts on the extended cross ratios yi by sending

yu →
1− w
u

, yv →
(1− u− w)2

v(1− u)(1− w)
, yw →

1− u
w

. (4.2)

(Because u, v, w remain stationary under parity, while yu, yv, yw invert, one might think

that one could send the yi variables instead to the reciprocal of the three values chosen in

eq. (4.2). However, this choice is inconsistent with the positive parametrization (2.31).)

In general, the functions V and Ṽ diverge logarithmically in this limit, because the

amplitude has a physical branch cut at v = 0, where the Mandelstam variables s23 and

s56 vanish. We therefore parametrize the limiting behavior of C(u, v, w) as an expansion

in powers of log(1/v) as well as loop order,

C(u, v → 0, w) =

∞∑
`=0

`−1∑
n=0

(−a)`c(`)n (u,w) logn(1/v), (4.3)

up to power-suppressed terms. The upper limit on the sum over n reflects the empirical

observation that the leading-logarithmic contribution is log`−1(1/v) at ` loops. We expect

that this observation should have a OPE-based explanation.

The one-loop case studied in the previous section is the only one with no logarithmic

divergence:

C(1)(u, v → 0, w) = C(1)(u,w) = −c(1)0 (u,w). (4.4)
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The use of (−a) in eq. (4.3) ensures that all the coefficients c
(`)
n (u,w) will be empirically pos-

itive, given the overall sign alternation with loop order discussed in the introduction. The

boundary condition discussed in the previous subsection, that the ratio function vanishes

in the collinear limit, tells us that

c(`)n (u, 1− u) = 0, (4.5)

for all ` and n.

The limiting values (4.2) for the yi imply that the coefficient functions c
(`)
n (u,w) in

eq. (4.3) can be expressed as multiple polylogarithms [13, 14] of weight 2`−n with symbol

letters drawn from the set [25, 49]

SDS = {u,w, 1− u, 1− w, 1− u− w}, (4.6)

and branch cuts only in the letters u and w. This “double-scaling” function space is

a subspace of the 2dHPL function space introduced by Gehrmann and Remiddi [50] for

four-point scattering with one massive leg and three massless legs.

The c
(`)
n (u,w) can be computed from V and Ṽ by expressing them as multiple poly-

logarithms and taking the double scaling limit directly using the replacements (4.2) for

the yi variables. In this process, one can also extract the log(1/v) dependence. Alterna-

tively, one can construct the double-scaling function space more abstractly at first, using

the set of relations between derivatives and coproducts implied by the symbol alphabet

SDS. These relations are limiting versions of the coproduct relations used in the hexagon

function bootstrap. Then one can find matching conditions between these functions and

the v → 0 limit of one’s basis of hexagon functions. For an example of the latter procedure

see appendix D of ref. [27].

In the latter approach, at high loop order it may be preferable to perform interme-

diate steps using the BDS-like normalized MHV and NMHV amplitudes that satisfy the

Steinmann relations, because the space of Steinmann-satisfying hexagon functions is much

smaller [28]. The limiting behavior of the (non-Steinmann) functions V and Ṽ can then

be computed from the limiting values of the Steinmann functions.

In section 4.2 we will show plots for the coefficient functions c
(`)
n (u,w) on the full two-

dimensional double-scaling surface (3.15). First, however, we would like to examine their

behavior on three one-dimensional lines that trace through this surface.

4.1 Positivity along lines in the double-scaling limit

The space of functions relevant for six-gluon scattering amplitudes simplifies further in three

one-dimensional subspaces of the double-scaling limit, where everything can be expressed

in terms of harmonic polylogarithms (HPLs) of a single variable [51]. On these lines, we

can evaluate the ratio function numerically in Mathematica using the HPL package [52].

Correspondingly, we first explore the behavior of the functions c
(`)
n (u,w) in these special

kinematic regions, before enlarging the scope of our study to the full double-scaling limit.

As we will see later, these lines turn out to capture most of the interesting information

about the ratio function in the double-scaling limit.
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Figure 1. The coefficient functions c
(`)
n (u, 1) that multiply logn(1/v) in the double-scaling limit

at ` loops. Five loops is shown in blue, four loops in yellow, three loops in green, two loops in red,

and one loop in purple.

4.1.1 The line w = 1

The first simple line in the double-scaling limit corresponds to setting w = 1. This collapses

SDS to the simpler set of letters {u, 1− u}, which implies that the functions c
(`)
n (u, 1) can

be written as a sum of HPLs with argument 1 − u. This representation can be built up

through iterative integrations, using the fact that the u derivative of a generic hexagon

function F collapses to

∂F

∂u

∣∣∣∣
v→0;w=1

=
F u − F yu + 2F yv

u
− F 1−u − F yv + F yw

1− u
(4.7)

along this line. To carry out this integration on a generic hexagon function, one must also

set the integration constant at each weight. This can be done by integrating from the point

(u, v, w) = (1, 1, 1), where the additive constants of hexagon functions are usually defined,

to the point (1, 0, 1) along the line (1, v, 1). Hexagon functions all collapse to HPLs with

argument 1 − v along the line (1, v, 1), so this integration is also simple [34]. Using this

procedure, we have computed the functions c
(`)
n (u, 1) through five loops, which we plot in

figure 1. We also provide their HPL expressions in an ancillary file.

The vanishing of the ratio function along the collinear line u+w = 1, eq. (4.5), requires

that the c
(`)
n (u, 1) all vanish at the point u = 0. We can also check the behavior of these

functions as u→∞, where they reduce to polynomials in log u. For instance, the coefficient

– 17 –



J
H
E
P
0
2
(
2
0
1
7
)
1
1
2

functions c
(`)
0 (u→∞, 1) become

c
(1)
0 (u→∞, 1) =

1

2
log2 u+ 2ζ2 , (4.8)

c
(2)
0 (u→∞, 1) =

1

12
log4 u+

7

4
ζ2 log2 u+

1

2
ζ3 log u+

59

4
ζ4 , (4.9)

c
(3)
0 (u→∞, 1) =

1

80
log6 u+

25

48
ζ2 log4 u+

1

24
ζ3 log3 u+

287

16
ζ4 log2 u

+
7

4
ζ5 log u+

3

2
ζ23 +

6303

64
ζ6 , (4.10)

c
(4)
0 (u→∞, 1) =

37

20160
log8 u+

11

96
ζ2 log6 u− 1

480
ζ3 log5 u+

459

64
ζ4 log4 u

−
(

1

2
ζ2ζ3 +

19

48
ζ5

)
log3 u+

(
3

2
ζ23 +

108763

768
ζ6

)
log2 u

+

(
381

128
ζ7 −

443

32
ζ4ζ3 −

107

16
ζ5ζ2

)
log u

− 1

4
ζ5,3 +

3299555

4608
ζ8 +

63

4
ζ5ζ3 +

85

16
ζ23ζ2 , (4.11)

c
(5)
0 (u→∞, 1) =

13

48384
log10 u+

899

40320
ζ2 log8 u− 7

5760
ζ3 log7 u+

2559

1280
ζ4 log6 u

−
(

223

960
ζ3ζ2 +

71

320
ζ5

)
log5 u+

(
103

192
ζ23 +

105113

1536
ζ6

)
log4 u

−
(

1613

96
ζ4ζ3 +

1769

192
ζ2ζ5 +

1913

256
ζ7

)
log3 u

+

(
691

64
ζ2ζ

2
3 +

659

32
ζ5ζ3 −

3

8
ζ5,3 +

21436813

18432
ζ8

)
log2 u

−
(

79

48
ζ33 +

60801

256
ζ6ζ3 +

3209

16
ζ4ζ5 +

6913

64
ζ7ζ2 +

66545

1152
ζ9

)
log u

− 101

160
ζ2ζ5,3 −

543

512
ζ7,3 +

10267

128
ζ4ζ

2
3 +

2707

32
ζ2ζ5ζ3

+
1717

16
ζ7ζ3 +

28635

512
ζ25 +

592519707

102400
ζ10 , (4.12)

which all approach positive infinity, as expected. More generally, we have checked that

c
(`)
n (u→∞, 1)→ +∞ for all ` ≤ 5 and for all n between 0 and `− 1.

Since v is very small, positivity strictly requires only the leading-log coefficients

c
(`)
`−1(u, 1) to be positive. However, we find a much stronger result: the coefficients c

(`)
n (u, 1)

are all positive for u > 0 and for any n between 0 and `− 1. Furthermore, figure 1 shows

that they all increase monotonically with u.

4.1.2 The line w = 0

The second simple line we will look at is w = 0. It forms an edge of the positive double-

scaling region (3.15). As was the case for the w = 1 line, SDS collapses to {u, 1 − u}.
However, c

(`)
n (u,w → 0) diverges logarithmically in w due to a physical branch cut analo-

gous to the branch cut in v. The functions c
(`)
n (u,w → 0) are therefore expressible as an
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Figure 2. The coefficient functions c̃
(`)
0,k(u) for the w → 0 edge of the double-scaling limit at `

loops. Five loops is shown in blue, four loops in yellow, three loops in green, two loops in red, and

one loop in purple.

expansion in powers of log(1/w),

c(`)n (u,w → 0) =

`−n∑
k=0

c̃
(`)
n,k(u) logk(1/w). (4.13)

The coefficients c̃
(`)
n,k(u) are drawn from the space of HPLs with argument 1 − u, and

empirically they vanish unless k is between 0 and `−n, where we recall that n is the power

of log(1/v) in the expansion (4.3).

The derivative of a generic hexagon function F along the line (u,w → 0) is given by

∂F

∂u

∣∣∣∣
v,w→0

=
F u − F yu

u
− F 1−u + F yv + F yw

1− u
. (4.14)

The integration constant can be set at u = 1, using the v → 0 endpoint of the line

(u, v, w) = (1, v, 0), which is just an S3 permutation of the line (u, 0, 1) considered in the

previous subsection.

We have carried out the corresponding integration through five loops and we include

HPL representations of all the c̃
(`)
n,k(u) in an ancillary file. The functions c̃

(`)
0,k(u), which

multiply different powers of log(1/w) in the non-log(1/v) part, are plotted in figure 2. Due

to the large number of independent functions multiplying different powers of large logs on

this line, we have relegated plots of the other c̃
(`)
n,k(u) functions to appendix A.

The vanishing of the ratio function along the collinear line u+w = 1, eq. (4.5), requires

these coefficient functions to become zero at u = 1. We have also checked analytically that

each of these functions approaches positive infinity in the limit u → ∞. Once again, we
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observe that all the coefficient functions — not just the leading-log ones — are positive,

and furthermore that they are monotonically increasing with u.

Interestingly, there is an HPL representation in which the positivity and monotonicity

of the c̃
(`)
n,k(u) is almost manifest. We let the argument of the HPLs be z = 1 − 1/u.

As u increases from 1 to ∞, z increases from 0 to 1. In this range of z, the HPLs with

trailing 1’s in their weight vectors are manifestly positive and monotonic, simply from their

integral definition,

H0, ~w(z) =

∫ z

0

dt

t
H~w(t), H1, ~w(u) =

∫ z

0

dt

1− t
H~w(t), (4.15)

because the integrand is a lower-weight HPL of the same form, H~w(t), multiplied by a

kernel that is positive for 0 < t < 1. Hence if the c̃
(`)
n,k(u) could be written in terms of such

HPLs with only positive coefficients, positivity and monotonicity would both be manifest.

At one and two loops, this is the case; the non-vanishing coefficients are

c̃
(1)
0,1 = H1 ,

c̃
(1)
0,0 = H0,1 +H1,1 ,

c̃
(2)
1,1 =

1

2
H0,1 +

1

2
H1,1 ,

c̃
(2)
1,0 = H0,0,1 +H0,1,1 +

1

2
H1,0,1 +

1

2
H1,1,1 ,

c̃
(2)
0,2 =

1

4
H0,1 +

1

2
H1,1 ,

c̃
(2)
0,1 = 2H0,0,1 +

5

2
H0,1,1 +

3

2
H1,0,1 + 2H1,1,1 + ζ2H1 ,

c̃
(2)
0,0 =

9

2
H0,0,0,1 + 5H0,0,1,1 + 3H0,1,0,1 +

7

2
H0,1,1,1 + 2H1,0,0,1 +

5

2
H1,0,1,1

+
3

2
H1,1,0,1 + 2H1,1,1,1 + ζ2

(
1

2
H0,1 +H1,1

)
, (4.16)

where we have suppressed the argument z = 1 − 1/u of the HPLs H~w(z), displaying only

their weight vector ~w.

Since all the coefficients in eq. (4.16) are positive, positivity and monotonicity on the

line w = 0 is manifest through two loops. However, the plot thickens at three loops.

All 9 nonzero coefficient functions c̃
(3)
n,k have positive coefficients in their representations,

except for c̃
(3)
1,0 and c̃

(3)
0,0. The only negative coefficients in these functions are those in terms

containing ζ3 — for example,

c̃
(3)
1,0 = 6H0,0,0,0,1 +

45

4
H0,0,0,1,1 + 6H0,0,1,0,1 +

45

4
H0,0,1,1,1 + 4H0,1,0,0,1 +

31

4
H0,1,0,1,1

+4H0,1,1,0,1 +
23

4
H1,0,1,1,1 + 2H1,1,0,0,1 + 4H1,1,0,1,1 + 2H1,1,1,0,1 + 4H1,1,1,1,1

+
31

4
H0,1,1,1,1 + 3H1,0,0,0,1 +

23

4
H1,0,0,1,1 + 3H1,0,1,0,1

+ζ2

(
3

2
H0,0,1 +

7

4
H0,1,1 +

3

4
H1,0,1 +H1,1,1

)
− 1

2
ζ3H0,1 . (4.17)
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Figure 3. The functions c
(`)
`−1(u, u) and c

(`)
`−2(u, u) governing the leading-log and next-to-leading-

log behavior of the ratio function at ` loops in the double scaling limit. The variable u has been

shifted by 1
2 to make it possible to plot on a log scale. Five loops is shown in blue, four loops in

yellow, three loops in green, two loops in red, and one loop in purple.

Because the numerical coefficient in front of the ζ3 is relatively small, it doesn’t change the

actual positivity or monotonicity properties; it just makes them less manifest.

Continuing on to four and five loops, there are 14 and 20 nonzero coefficient functions,

respectively, with weights that range from 4 up to 10. The sign in front of each HPL in

each coefficient function is completely predictable: positive, unless the term has an odd

number of odd zeta values, in which case it is negative. The (mostly) consistent signs for

the HPL coefficients are reminiscent of the behavior found for the velocity-dependent cusp

anomalous dimension Ω0(x) in ref. [53].

4.1.3 The line u = w

The final simple line in the double-scaling limit is given by setting u = w. Here, the

symbol letters in SDS collapse to the set {u, 1 − u, 1 − 2u}. This makes the functions

c
(`)
n (u, u) expressible as HPLs of argument x ≡ 1− 2u with weight vectors involving −1, 0,

and 1. The derivative of a generic hexagon function F along this line takes the form

∂F

∂x

∣∣∣∣
v→0;u,w=(1−x)/2

=
2F yv

x
+
F 1−u + F 1−w + F yu + F yw − 2F yv

1 + x

− F u + Fw − F yu − F yw
1− x

, (4.18)

while the integration constant can be set by matching to the v → 0 endpoint of the

line (u, v, w) = (1, v, 1). This requires setting the argument x = −1, which introduces

transcendental constants beyond the multiple zeta values ζm and ζm,n. At low weights,

there are identities relating these new constants to multiple zeta values, log 2, and Lin(1/2)

with n ≥ 4, but starting at weight 6 new alternating sums alt ~w ≡ (−1)|~w|H~w(−1) are

needed [54], where |~w| is the depth of ~w. The numerical values of these constants can be

calculated using the HPL package.
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We have computed the functions c
(`)
n (u, u) through five loops and include their HPL

representations in an ancillary file. The functions governing the leading-log and next-to-

leading-log contributions in 1/v are plotted in figure 3. These functions must vanish at

u = 1
2 where they intersect the collinear line u+ w = 1. While c

(`)
n (u,w) diverges at large

u along the w = 1 and w = 0 lines, it has a finite large u limit along the line u = w.

That is, figure 3 shows that the coefficient functions c
(`)
n (u, u) all asymptote to a constant

as u→∞. This constant can be computed analytically using our HPL representation; for

instance, the constants for n = 0 are given through four loops by

c
(1)
0 (u, u)|u→∞ = 3ζ2 ,

c
(2)
0 (u, u)|u→∞ = 27ζ4 + 6ζ2 log2 2− 6Li4(1/2)− 1

4
log4 2 ,

c
(3)
0 (u, u)|u→∞ = 213ζ6 +

55

16
ζ23 +

341

64
ζ5 log 2 +

2835

32
ζ4 log2 2 +

23

16
ζ2 log4 2

− 51

2
ζ2Li4(1/2)− 30Li6(1/2)− 1

24
log6 2− 11

4
alt5,1 ,

c
(4)
0 (u, u)|u→∞ =

2714608937

1474560
ζ8 +

6793

512
ζ2ζ

2
3 +

10285

4096
ζ3ζ5 −

11683

20480
ζ5,3 +

20489

512
ζ3ζ4 log 2

+
2871

64
ζ2ζ5 log 2 +

354801

16384
ζ7 log 2− 729

512
ζ23 log2 2 +

477873

512
ζ6 log2 2

+
787

192
ζ2ζ3 log3 2 +

2015

384
ζ5 log3 2 +

7423

128
ζ4 log4 2− 221

960
ζ3 log5 2

− 457

720
ζ2 log6 2 +

11

768
log8 2− 5231

16
Li4(1/2)ζ4 −

43

2
Li4(1/2)ζ2 log2 2

+
43

48
Li4(1/2) log4 2 +

43

4
Li4(1/2)2 +

221

8
Li5(1/2)ζ3

+
9

2
Li5(1/2)ζ2 log 2− 135Li6(1/2)ζ2 − 175Li8(1/2)− 67

16
alt5,1,1,1

+
193

64
alt4,2,1,1 +

5281

256
alt7,1 −

327

16
alt5,1ζ2 +

67

16
alt5,1,1 log 2

− 193

64
alt4,2,1 log 2− 65

8
alt5,1 log2 2 , (4.19)

while the five loop expression c
(5)
0 (u, u)|u→∞ proves too unwieldy to present. At one loop

this constant is manifestly positive. Evaluating the higher-loop expressions numerically

confirms that they are positive as well:

c
(1)
0 (u, u)|u→∞ = 4.93480220054 . . . ,

c
(2)
0 (u, u)|u→∞ = 30.8020253462 . . . ,

c
(3)
0 (u, u)|u→∞ = 235.199512804 . . . ,

c
(4)
0 (u, u)|u→∞ = 2091.54312703 . . . ,

c
(5)
0 (u, u)|u→∞ = 22406.9101345 . . . . (4.20)

Indeed, numerical checks reveal that the functions c
(`)
n (u, u) are positive throughout the

positive region, and increase monotonically with u. This has been checked exhaustively

through four loops and for n > 1 at five loops. The higher-weight expressions c
(5)
1 (u, u) and
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c
(5)
0 (u, u) are more computationally challenging to check at finite u, and have only been

checked in the limit u→∞.

4.2 The full double-scaling surface

Figures 1, 2 and 3, as well as those in appendix A, exhibit a remarkable feature — the

functions c
(`)
n (u,w) are not only positive along these lines, but increase monotonically as

they move away from the u+w = 1 line. We proved this radial monotonicity at one loop,

for c
(1)
0 (u,w), in section 3.2. In appendix B we show it for the next simplest case, c

(2)
1 (u,w),

a weight-3 function. These results make it natural to conjecture that the monotonicity of

c
(`)
n (u,w) holds to all loop orders.

In the rest of this section we check the monotonicity of the c
(`)
n (u,w) numerically

throughout the double-scaling surface. This can be done by expressing the functions in

terms of Goncharov polylogarithms, which can be numerically evaluated using the program

GiNaC [55, 56] wherever these functions admit a convergent series expansion. The con-

vergence condition for a Goncharov polylogarithm G(~a, z) is that |z| ≤ |ai| for all nonzero

ai. This condition is satisfied in the triangle subregion u+w > 1, u < 1, w < 1 if we work

in the following basis of Goncharov polylogarithms:

GDS =

{
G(~a; 1− w)

∣∣∣ai ∈ (0, u, 1)

}
∪
{
G(~a; 1− u)

∣∣∣ai ∈ (0, 1)

}
. (4.21)

This basis can also be used in the remainder of the NMHV positive region, where u and/or

w is larger than 1, because GiNaC automatically employs identities to relate functions

outside their region of convergence to ones that do admit a convergent expansion. This

procedure can generate imaginary parts for individual G functions, but the imaginary parts

cancel out in the final result.

All the numerical checks we have performed on the double-scaling surface support both

positivity and monotonic radial growth for every function c
(`)
n (u,w). We plot the functions,

rather than their radial derivatives, in order to make interpretation of the magnitudes

appearing in these plots more clear. In particular, we provide two sequences of plots

that illustrate the trends the functions c
(`)
n (u,w) exhibit as n and ` are varied. The first

sequence, in figure 4, shows how the three-loop result c
(3)
n (u,w) changes as we move from

the coefficient of the next-to-next-to-leading log in 1/v (n = 0) to the leading log in 1/v

(n = 2) in the expansion (4.3). The plots all display the u ↔ w symmetry of C(u, v, w),

which is manifest from its definition (4.1) and the (anti)symmetry properties of V and Ṽ ,

eq. (2.33). More interestingly, the coefficient of the leading log term grows the most slowly

in the radial direction at a given loop order, particularly near the line of symmetry, u = w,

where it asymptotes to a constant. This result holds at least through four loops. (The five

loop expressions proved too computationally taxing to explore exhaustively.)

In figure 5 we plot the slowest-growing, leading-log coefficient functions c
(`)
`−1(u,w)

from one to four loops. As the loop order increases, the functions experience slower radial

growth. Moreover, the functions c
(`)
n (u,w) interpolate smoothly between the lines u = w

and w = 0, implying that most of the interesting information about these functions in
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Figure 4. The three-loop coefficient functions c
(3)
n (u,w) in the double-scaling limit, shifted to

make it possible to plot them on a log scale. By plotting these functions against log u and logw we

deform the u+ w = 1 line to the concave boundary seen in each plot.

present on these two lines. In particular, the functions always grow the most slowly along

the line u = w.

5 Bulk positivity at higher loops

The previous sections verified the positivity of the ratio function in various limits, nearly

all of which were on the boundary of the positive octant, i.e. the double-scaling limit. In

this section, we check the positivity of the ratio function in the bulk, where all three cross

ratios are bounded away from zero. Except for the point (u, v, w) = (1, 1, 1), the topic

of the next subsection, our investigations will be numerical. After a brief review of our

procedure for numerically evaluating hexagon functions, we outline the checks performed.

Positivity appears to continue to hold in the bulk through at least four loops, after which

it gets too computationally taxing to check.
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Figure 5. The leading-log coefficient functions c
(`)
`−1(u,w) in the double-scaling limit from one to

four loops, shifted to make it possible to plot them on a log scale. By plotting these functions

against log u and logw we deform the u+ w = 1 line to the concave boundary seen in each plot.

5.1 The point (u, v, w) = (1, 1, 1)

The parity-odd functions Ṽ (`) all vanish at the point (1, 1, 1), because they are odd about

the surface ∆(u, v, w) = 0, which includes this point. Thus we can repeat the analysis from

Example 1 in section 3.1, obtaining

P`−loop6,1 −−−−−→
u=v=w

Ptree
6,1 × V (`)(1, 1, 1). (5.1)

So all we need to do is check that the sign of V (`)(1, 1, 1) alternates with loop order `.

The value of the functions V (`)(1, 1, 1) were supplied through four loops in ref. [27], and

we have extracted the five-loop value from ref. [28]:

V (1)(1, 1, 1) = −ζ2 ,
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V (2)(1, 1, 1) = 9 ζ4 ,

V (3)(1, 1, 1) = −243

4
ζ6 ,

V (4)(1, 1, 1) =
5051

12
ζ8 + 3 ζ2 (ζ3)

2 − 15 ζ3 ζ5 − 3 ζ5,3 ,

V (5)(1, 1, 1) = −244257

80
ζ10 −

93

2
ζ4 (ζ3)

2 − 21 ζ2 ζ3 ζ5 +
399

2
ζ3 ζ7 +

777

8
(ζ5)

2

+
9

2
ζ2 ζ5,3 +

57

4
ζ7,3 . (5.2)

The desired sign alternation is manifest from eq. (5.2) through three loops; after that it

relies on the numerical values of the multiple zeta values:

V (1)(1, 1, 1) = −1.64493406684 . . . ,

V (2)(1, 1, 1) = +9.74090910340 . . . ,

V (3)(1, 1, 1) = −61.8035910155 . . . ,

V (4)(1, 1, 1) = +410.9535753669 . . . ,

V (5)(1, 1, 1) = −2825.3845732862 . . . . (5.3)

We remark that the numerical result for V (`)(1, 1, 1) is dominated by the ζ2` term through

five loops (it gives the correct value to within 10%).

5.2 Method for obtaining bulk numerics and positivity tests

Next we turn to numerical evaluation of the ratio function at random points in the bulk of

the NMHV positive region. To evaluate the ratio function numerically at higher loops, we

followed the procedure pioneered in ref. [34].

Representing the ratio function in terms of multiple polylogarithms allows us to eval-

uate them using powerful existing code like GiNaC [55, 56]. In order to do this, we choose

a representation in which the multiple polylogarithms have convergent series expansions.

We also prefer our representations to be manifestly real to reduce the potential for numer-

ical error.

These conditions lead to two conditions on our multiple polylogarithms. For a multiple

polylogarithm G(w1, . . . , wn; z), we obtain a convergent series expansion when |z| ≤ |wi|
for all nonzero wi, and our result is manifestly real if z and all wi are real and positive.

In order to avoid square roots and their attendant branch-cut ambiguities, we work

in the variables (yu, yv, yw). Following ref. [34], we find four different multiple polylog

representations, corresponding to four different kinematic regions. In particular, for MHV

studies we use

GLI =

{
G(~w; yu)|wi ∈ (0, 1)

}
∪
{
G(~w; yv)

∣∣∣wi ∈ (0, 1,
1

yu

)}
∪
{
G(~w; yw)

∣∣∣wi ∈ (0, 1,
1

yu
,

1

yv
,

1

yuyv

)} (5.4)
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which is manifestly convergent for points in Region I, the MHV positive kinematic region

defined by

Region I :

{
∆ > 0 , 0 < ui < 1 , and u+ v + w < 1,

0 < yi < 1 .
(5.5)

For studying the ratio function in NMHV positive kinematics, we use

GLII =

{
G

(
~w;

1

yu

)∣∣∣wi ∈ (0, 1)

}
∪
{
G

(
~w;

1

yv

)∣∣∣wi ∈ (0, 1, yu)

}
∪
{
G(~w; yw)

∣∣∣wi ∈ (0, 1,
1

yu
,

1

yv
,

1

yuyv

)} (5.6)

for points in Region II:

Region II :

{
∆ > 0 , 0 < ui < 1 , and u+ v − w > 1,

0 < yw <
1

yuyv
< 1

yu
, 1
yv
< 1 .

(5.7)

Cycling the yi in Region II lets us define two other regions, Region III and Region IV,

where we have multiple polylog representations in the bulk. Because the bosonized ratio

function is S3 symmetric, Regions III and IV do not add any new information. The NMHV

positive region always has ∆ > 0 (see eq. (2.18)). However, Region II lies entirely within

the unit cube in (u, v, w), and the bulk NMHV positive region extends well beyond it (as

is clear from the double-scaling plots in the previous section). So our bulk positivity tests

will be confined to points inside the unit cube.

In order to perform this test, we randomly generate a phase-space point in the NMHV

positive region by picking eleven random values of the positive parameters (cb, xa), each

between 0 and 100 (x6 is set to 1, as discussed in section 2.2). For each set of values we

use eqs. (2.16) and (2.14) to compute the three cross ratios u, v, w. If the point (u, v, w) is

not inside the unit cube, we stop and generate a new point. If it is inside the unit cube, we

use eqs. (2.23) and (2.31) to compute the R-invariants and extended cross ratios yu, yv, yw.

We plug the latter into the arguments of the multiple polylogarithms in our Region II (or

III or IV) representation of the ratio function, performing the numerical evaluation with

GiNaC. We examined 585 points at loop orders from one through four, and the ratio

function always has the expected sign, alternating with loop order.

6 MHV positivity

Having found strong evidence that the NMHV ratio function is positive through five loops

in the NMHV positive region, we now return to studying various IR-finite versions of the

MHV amplitude in the MHV positive region.

6.1 The remainder function fails

As mentioned in section 2.1, there are a variety of possibilities. They are all fairly simply

related to each other analytically, but they still can have different positivity properties.
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First we consider the six-point remainder function R6, which is defined as the logarithm of

the MHV amplitude divided by the BDS ansatz, as in eq. (2.26),

exp[R6] =
M6,0

MBDS
6,0

. (6.1)

The remainder function vanishes at one loop by construction. Its positivity in the MHV

positive region (2.9) was investigated at two loops [30], three loops [34], and four loops [26].

All points investigated numerically were found to have the correct sign.

However, it turns out that there are regions close to the origin in (u, v, w) that have

the wrong sign for R
(4)
6 . To exhibit such points, we consider the same line v = 0, w = 0 on

which the ratio function was studied for u > 1 in section 4.1.2, but now we take 0 < u < 1

in order to be in the MHV positive region. As was true for the ratio function, the remainder

function develops logarithmic singularities in both v and w as they approach zero,

R6(u, v → 0, w → 0) =
∞∑
`=2

`−1∑
n,k=0

(−a)` r
(`)
n,k(u) logn(1/v) logk(1/w), (6.2)

up to power-suppressed terms in v and w. Since R6 is S3 permutation symmetric, rk,n(u) =

rn,k(u). Also, the coefficient functions vanish unless n+ k ≤ `.
At two and three loops, there are no problems in this region. The independent nonzero

coefficient functions are given by,

r
(2)
1,1 =

1

4
H0,1 ,

r
(2)
1,0 =

1

4

[
2H0,0,1 +H1,0,1

]
,

r
(2)
0,0 =

1

4

[
6H0,0,0,1 + 3H0,1,0,1 + 4H1,0,0,1 + 2H1,1,0,1 − 2ζ2(H0,1 +H1,1)

]
, (6.3)

and

r
(3)
2,1 =

1

16

[
H0,0,1 −H0,1,1

]
,

r
(3)
2,0 =

1

16

[
3H0,0,0,1 − 2H0,0,1,1 +H0,1,0,1 +H1,0,0,1 −H1,0,1,1

]
,

r
(3)
1,1 =

1

4

[
3H0,0,0,1 − 2H0,0,1,1 +H1,0,0,1 −H1,0,1,1 + 2ζ2H0,1

]
,

r
(3)
1,0 =

1

8

[
18H0,0,0,0,1 − 9H0,0,0,1,1 + 3H0,0,1,0,1 + 7H0,1,0,0,1 − 4H0,1,0,1,1 +H0,1,1,0,1

+ 9H1,0,0,0,1 − 6H1,0,0,1,1 +H1,0,1,0,1 + 3H1,1,0,0,1 − 3H1,1,0,1,1

+ ζ2(5H0,0,1 −H0,1,1 + 2H1,0,1)
]
,

r
(3)
0,0 =

1

4

[
30H0,0,0,0,0,1 − 12H0,0,0,0,1,1 + 6H0,0,0,1,0,1 + 12H0,0,1,0,0,1 − 5H0,0,1,0,1,1

+ 2H0,0,1,1,0,1 + 15H0,1,0,0,0,1 − 8H0,1,0,0,1,1 + 2H0,1,0,1,0,1 + 5H0,1,1,0,0,1

− 4H0,1,1,0,1,1 + 18H1,0,0,0,0,1 − 9H1,0,0,0,1,1 + 3H1,0,0,1,0,1 + 7H1,0,1,0,0,1

− 4H1,0,1,0,1,1 +H1,0,1,1,0,1 + 9H1,1,0,0,0,1 − 6H1,1,0,0,1,1 +H1,1,0,1,0,1
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+ 3H1,1,1,0,0,1 − 3H1,1,1,0,1,1

+ ζ2(3H0,0,0,1 − 2H0,0,1,1 +H0,1,0,1 +H1,0,0,1 −H1,0,1,1)

− 2ζ3(H0,0,1 +H0,1,1)− 11ζ4(H0,1 +H1,1)
]
, (6.4)

where the suppressed HPL argument is 1 − u. It can be checked that they are all positive

for 0 < u < 1.

The problem starts at four loops with the leading log coefficients,

r
(4)
3,1(u) =

1

96

[
H0,0,0,1 − 2H0,0,1,1 − 2H0,1,0,1 +H0,1,1,1

]
,

r
(4)
2,2(u) =

1

32

[
H0,0,0,1 − 5H0,0,1,1 −H0,1,0,1 +H0,1,1,1

]
, (6.5)

which turn negative for u < 0.15 and u < 0.2, respectively, and stay negative as u → 0.

The leading terms in their expansions around u = 0 are clearly negative:

r
(4)
3,1(u) ∼ − u

96

[
1

6
log3(1/u) +

1

2
log2(1/u)− (2ζ2 − 1) log(1/u) + 3ζ3 − 2ζ2 + 1

]
,

r
(4)
2,2(u) ∼ − u

32

[
1

6
log3(1/u) +

1

2
log2(1/u)− (ζ2 − 1) log(1/u)− 2ζ3 − ζ2 + 1

]
, (6.6)

Thus R
(4)
6 (u, v, w) is negative for very small v and w and u < 0.14.

6.2 Logarithmic fixes fail

One might first try to fix the problem with R
(4)
6 at the logarithmic level. Consider the

logarithm of the BDS-like normalized amplitude,

E =
M6,0

MBDS−like
6,0

= exp

[
R6 −

γK
8
Y

]
, (6.7)

where γK is the cusp anomalous dimension and

Y (u, v, w) = Li2(1− u) + Li2(1− v) + Li2(1− w) +
1

2

(
log2 u+ log2 v + log2w

)
, (6.8)

so that

log E(u, v, w) = R6(u, v, w)− γK
8
Y (u, v, w). (6.9)

This attempt immediately runs into trouble, because the limiting behavior of Y ,

Y (u, v → 0, w → 0) ∼ 1

2
log2 v +

1

2
log2w +

1

2
log2 u+ Li2(1− u) + 2ζ2 , (6.10)

like that of any one-loop function, does not have enough logarithms of v or w to compete

with the four powers of logs in the problematic terms in R
(4)
6 .

One can also consider the logarithm of the hexagonal Wilson loop framed by two

pentagons and a box [42, 57],

Wratio =
〈Whex〉〈Wbox〉
〈Wpent〉〈Wpent′〉

= exp

[
R6 +

γK
8
X

]
, (6.11)
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where

X(u, v, w) = −Li2(1− u)− Li2(1− v)− Li2(1− w)

− log

(
uv

w(1− v)

)
log(1− v)− log u logw + 2ζ2 . (6.12)

Since X is a one-loop function, it cannot produce enough logs in the limit to compete with

R
(4)
6 , and thus logWratio cannot be strictly positive either by four loops.

6.3 Other fixes fail

Next we turn to functions that are defined at the level of the MHV amplitude, rather

than its logarithm. First we consider the BDS-normalized amplitude exp[R6]. At one

and two loops, it is the same as R6, while its four-loop coefficient receives an extra

positive contribution: [
exp[R6]

](4)
= R

(4)
6 +

1

2

[
R

(2)
6

]2
. (6.13)

Taking into account eq. (6.3), the leading-log [r
(2)
1,1]2 part of [R

(2)
6 ]2 can and does flip

the sign of the log2(1/v) log2(1/w) coefficient function to positive. But it clearly leaves

the log3(1/v) log(1/w) term unaltered. So the addition of [R
(2)
6 ]2 cannot cancel the

negative behavior of R
(4)
6 for kinematics with 0 < v � w � u < 0.14, for which

log3(1/v) log(1/w)� log2(1/v) log2(1/w).

Can the negative behavior be fixed by the framed Wilson loop Wratio defined in

eq. (6.11)? Now X is not S3 symmetric, and the three cyclically-related line segments

all belong to the MHV positive regions: v, w → 0, 0 < u < 1; w, u → 0, 0 < v < 1;

u, v → 0, 0 < w < 1. We need to ensure positivity along all three lines and for both

orderings of the two vanishing cross ratios. Equivalently, since R6 is S3 symmetric, we

should consider the v, w → 0, 0 < u < 1 limits of all six permutations of X. The original

orientation X(u, v, w) already reveals a problem:

X(u, v → 0, w → 0) ∼ − log(1/w) log(1/u)− Li2(1− u) . (6.14)

Because there are no log(1/v)’s in this expression, powers of X cannot fix the sign problem

that exp[R6] still has in the region 0 < v � w � u < 0.14.

6.4 BDS-like normalized amplitude works

Finally, we consider the BDS-like normalized amplitude itself, E(u, v, w) defined in eq. (6.7).

Since the limiting behavior of Y in eq. (6.10) contains both log2(1/v) and log2(1/w), it can

potentially fix the negative behavior. Indeed it does fix the problem through five loops,

at least for v, w → 0, 0 < u < 1, or (by symmetry) on cyclic permutations of this line

segment. It also leads to monotonically increasing behavior as u decreases from 1. The

expansion on this line segment now contains many higher powers of the singular logs, all

the way up to 2`,

E(u, v → 0, w → 0) =
∞∑
`=0

2∑̀
n,k=0

(−a)` ẽ
(`)
n,k(u) logn(1/v) logk(1/w), (6.15)
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up to power-suppressed terms. Here ẽ
(`)
k,n = ẽ

(`)
n,k and n+ k ≤ 2` for a nonzero coefficient.

As was the case for the NMHV ratio function on the continuation of this line to u > 1,

discussed in section 4.1.2, there is an HPL representation which almost makes manifest the

positivity and monotonicity. In this case we use the argument 1 − u rather than 1 − 1/u,

since the argument 1−u runs from 0 to 1 as u runs from the collinear point u = 1 down to

the origin. Positivity is manifest from the signs in front of the HPLs at one and two loops:

ẽ
(1)
2,0 =

1

4
, ẽ

(1)
1,1 = 0 , ẽ

(1)
1,0 = 0 , ẽ

(1)
0,0 =

1

2

[
H0,1 +H1,1 + 2ζ2

]
, (6.16)

ẽ
(2)
4,0 =

1

32
, ẽ

(2)
3,1 = 0 , ẽ

(2)
2,2 =

1

16
, ẽ

(2)
3,0 = 0 , ẽ

(2)
2,1 = 0 ,

ẽ
(2)
2,0 =

1

8

[
H0,1 +H1,1 + 4ζ2

]
, ẽ

(2)
1,1 =

1

4
H0,1 , ẽ

(2)
1,0 =

1

4

[
2H0,0,1 +H1,0,1

]
,

ẽ
(2)
0,0=

1

4

[
6H0,0,0,1 + 2H0,0,1,1 + 4H0,1,0,1 + 3H0,1,1,1 + 4H1,0,0,1 + 2H1,0,1,1

+3H1,1,0,1 + 3H1,1,1,1 + 2ζ2(H0,1 +H1,1) + 15ζ4

]
. (6.17)

At three loops the HPL representation no longer makes manifest the positivity of all

terms; for example,

ẽ
(3)
2,1 =

1

16

[
3H0,0,1 +H1,0,1 −H0,1,1

]
,

ẽ
(3)
1,0 =

1

8

[
18H0,0,0,0,1 + 3H0,0,0,1,1 + 9H0,0,1,0,1 + 6H0,0,1,1,1 + 9H0,1,0,0,1 + 2H0,1,0,1,1

+ 5H0,1,1,0,1 + 9H1,0,0,0,1 + 2H1,0,0,1,1 + 5H1,0,1,0,1 + 3H1,0,1,1,1 + 5H1,1,0,0,1

+H1,1,0,1,1 + 3H1,1,1,0,1 + ζ2(9H0,0,1 + 4H1,0,1 −H0,1,1)
]
. (6.18)

In both of these cases, it is easy to see that the terms with a minus sign are overpowered

by the previous term. At higher-loop orders, positivity and monotonicity of the coefficient

functions becomes tricky to prove analytically, but we have verified it numerically for all

ẽ
(`)
n,k coefficients through five loops.

What about positivity of E in other parts of the MHV positive region? The double-

scaling limit intersects this region in the triangle,

u > 0, w > 0, u+ w < 1. (6.19)

which is the complement of the NMHV double-scaling positive region (3.15) in the positive

quadrant. The expansion of E in this limit is

E(u, v → 0, w) =

∞∑
`=0

2∑̀
n=0

(−a)` e(`)n (u,w) logn(1/v). (6.20)

The one-loop coefficient functions are,

e
(1)
2 (u,w) =

1

4
,

e
(1)
1 (u,w) = 0 ,

e
(1)
0 (u,w) =

1

4
log2(u/w) + ζ2 +

1

2
C(1)(u,w). (6.21)
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Now C(1)(u,w) is negative in the NMHV positive region, but the same radial-derivative

argument shows that it flips sign around the collinear boundary, where it vanishes. So

C(1)(u,w) is positive in the MHV positive region, and the representation (6.21) makes

manifest the desired sign (and monotonicity) for E(1)(u, v, w) in the double-scaling limit of

the MHV positive region.

Similarly at two loops we have,

e
(2)
4 (u,w) =

1

32
,

e
(2)
3 (u,w) = 0 ,

e
(2)
2 (u,w) =

1

4

[
e
(1)
0 (u,w) + ζ2

]
,

e
(2)
1 (u,w) = −1

2
c
(2)
1 (u,w), (6.22)

where e
(1)
0 (u,w) was just argued to be positive. The positivity of c

(2)
1 (u,w) is proved in the

NMHV positive region in appendix B. But again the argument does not rely on u+w > 1

— except for the overall sign, which flips when crossing the collinear boundary dividing

the MHV and NMHV positive regions. Hence c
(2)
1 (u,w) is negative in the MHV positive

region, implying that e
(2)
1 (u,w) is positive.

The positivity and monotonicity of the last two-loop coefficient, e
(2)
0 (u,w), is not as

simple to prove, but has been confirmed numerically with GiNaC using the basis of multiple

polylogarithms given in eq. (4.21). Similar numerical checks confirm the positivity and

monotonicity of all the three loop coefficient functions e
(3)
n (u,w); we plot the functions

governing the leading-log and next-to-leading log behavior in figure 6. As can be seen in

these plots, E is not generically required to vanish on the line u + w = 1. However, the

collinear vanishing of R6 on this line is inherited by the coefficient functions e
(`)
n (u,w) that

multiply odd powers of logs. This is due to the fact that the function Y that converts

between E and R6 in eq. (6.7) can only provide even powers of logs, as can be seen from

its definition in eq. (6.8). Correspondingly, e
(3)
3 (u,w) vanishes along the line u + w = 1

while e
(3)
4 (u,w) does not. These plots also exhibit the u↔ w symmetry that the functions

e
(`)
n (u,w) inherit from the total symmetry of E .

Finally, we examined the values for E(`)(u, v, w) in the bulk MHV positive region

(Region I), from one to four loops, using the representations for E(`) in terms of multiple

polylogarithms referred to in section 5.2. After randomly generating 1608 points in this

region, we found that E(`) had the correct sign through four loops for every point examined.

7 Conclusion

In this paper we have demonstrated that the positivity properties of the Amplituhedron

persist after momentum integration, at least in some cases. In particular, the ratio function

(the IR-finite ratio of the NMHV and MHV amplitudes) has uniform sign in the same

region in which the Amplituhedron is positive. The MHV amplitude also has uniform sign

provided that we normalize by a “BDS-like” ansatz. In both cases, it appears that the
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Figure 6. The three-loop coefficient functions e
(3)
3 (u,w) and e

(3)
4 (u,w) in the double-scaling limit,

shifted to make it possible to plot them on a log scale. By plotting these functions against log u

and logw we deform the u+ w = 1 line to the convex boundary seen in each plot.

Minkowski contour of integration preserves positivity more completely than would have

been expected.

While we have not provided a general proof, we do provide analytic evidence on a

variety of lines, as well as numerical checks through the bulk of kinematic space, all of

which support positivity. In doing so, we have observed that the ratio function and E
both appear to be not just of uniform sign but, at least in the double-scaling limit, they

are monotonic in a radial direction away from the collinear limit. This property appears

to be quite robust, and falls in line with older observations of ratio function numerics,

all of which suggest that the ratio function is significantly simpler than the complicated

expressions used to represent it might imply.

In the future, it would be interesting to explore whether a more general proof of

positivity can be devised. It seems possible that one could find rules for which positive

integrands result in positive amplitudes, and such rules would likely be useful in much

broader contexts. This would likely involve finding some contour of integration that, un-

like the usual Minkowski contour, manifestly preserves positivity. Understanding such a

contour could also shed new light on the Amplituhedron, suggesting that there could be

an Amplituhedron-like construction of finite quantities such as ratio functions or BDS-like

normalized MHV amplitudes, both for the integrands and the final results.
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loops. Five loops is shown in blue, four loops in yellow, three loops in green, and two loops in red.

contract DE-AC02-76SF00515, and by Perimeter Institute for Theoretical Physics. Re-

search at Perimeter Institute is supported by the Government of Canada through the De-

partment of Innovation, Science and Economic Development Canada and by the Province

of Ontario through the Ministry of Research, Innovation and Science. LD is grateful to the

Walter Burke Institute at Caltech and the Kavli Institute for Theoretical Physics (National

Science Foundation grant NSF PHY11-25915) for hospitality. AM thanks the Higgs Centre

of the University of Edinburgh for its hospitality.

A More results for the double-scaling line w = 0

This appendix provides additional plots of the coefficient functions c̃
(1)
n,k(u) describing the

behavior of the ratio function on the w → 0 edge of the double-scaling limit, beyond the

case n = 0 already plotted in figure 2. Figure 7 gives the remaining cases n = 1, 2, 3, 4.

Again all coefficient functions are positive and monotonically increasing for the u > 1

region of NMHV positive kinematics.
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B Proof that c
(2)
1 (u,w) is positive and monotonic

The coefficient function c
(2)
1 (u,w) has weight 3, which guarantees that it can be represented

in terms of classical polylogarithms. From its coproduct representation we found that

c
(2)
1 (u,w) = −Li3

(
u+ w − 1

uw

)
+ Li3

(
u+ w − 1

u

)
+ Li3

(
u+ w − 1

w

)
− logw Li2

(
u+ w − 1

u

)
− log uLi2

(
u+ w − 1

w

)
−1

2
log(uw)

(
Li2(1− u) + Li2(1− w)− ζ2

)
−1

2

(
log2 u log(1− u) + log2w log(1− w)

)
. (B.1)

Note that it vanishes on the collinear boundary u + w = 1: c
(2)
1 (u, 1 − u) = 0. The

representation (B.1) is manifestly real for u,w > 0 and u,w < 1. It can acquire an

imaginary part in other regions, so another representation might be preferable in principle.

However, we are going to take its radial derivative now, and write the result in a

manifestly real form:

c
(2)
1,r(u,w) ≡ (u∂u + w∂w)c

(2)
1 (u,w) =

c
(1)
0 (u,w)

u+ w − 1
− 1

2

[
1

1− u
+

1

1− w

]
log u logw , (B.2)

where

c
(1)
0 (u,w) = −C(1)(u,w) = −Li2(1− u)− Li2(1− w)− log u logw + ζ2 (B.3)

is positive and monotonically increasing, from the previous one-loop analysis.

Although the first term in eq. (B.2) is positive in the positive double-scaling re-

gion (3.15), the second term can be negative (say, for u < 1 and w < 1). So we have

to show that the second term is outweighed by the first term.

Rather than working with dilogarithms, we take another radial derivative. First we

multiply by the quantity (u+w− 1), which is uniformly positive in the positive region. So

if we can show that (u+w− 1)c
(2)
1,r is positive, it’s the same as showing c

(2)
1,r is positive. It’s

easy to see that c
(2)
1,r(u,w) is regular on the collinear boundary, because c

(1)
0 (u,w) vanishes

there. Hence (u+ w − 1)c
(2)
1,r vanishes there, which allows a radial flow argument to work.

Multiplication by (u+w − 1) before differentiating also allows the radial derivative to kill

the polylogarithms:

c
(2)
1,rr(u,w) ≡ (u∂u + w∂w)

[
(u+ w − 1)c

(2)
1,r(u,w)

]
= −1

2

[
u

(1− w)2
+

w

(1− u)2

]
log u logw

−1

2

[
u

1− w
+
w + 2u

1− u

]
log u− 1

2

[
w

1− u
+
u+ 2w

1− w

]
logw .

=
1

2
log u

[
− u logw

(1− w)2
− u

1− w
− w + 2u

1− u

]
+ (u↔ w). (B.4)
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In the second form, it is enough to show that the term shown is positive everywhere in the

positive region; the same will then be true of the term obtained by (u↔ w) reflection.

Note that the contribution of the third term in brackets, −(w + 2u)(log u)/(1 − u),

always has the desired sign, positive. Suppose first that u > 1. Then we combine the

first two terms to get (−u)× (logw + 1−w)/(1−w)2. The last factor is always negative,

including w = 1 where it approaches a finite limit. So we are done with the u > 1 case.

Now let u < 1. In this case we have to combine all three terms, and use the identity,

u

1− w
+
w + 2u

1− u
>

u

w(1− w)
, (B.5)

which can be established by writing the difference, left minus right, as

w(w + u) + u(u+ w − 1)

w(1− u)
> 0. (B.6)

Therefore

u logw

(1− w)2
+

u

1− w
+
w + 2u

1− u
>

u logw

(1− w)2
+

u

w(1− w)
= u×

logw + 1−w
w

(1− w)2
. (B.7)

The last factor is always positive, so the quantity in brackets in eq. (B.4) is negative for

u < 1. Combined with the fact that log u < 0 for u < 1, we are done proving that c
(2)
1,rr > 0

in the positive region. This in turn proves that c
(2)
1,r > 0, and hence that c

(2)
1 (u,w) itself

is positive.

For the next simplest quantity, the weight-4 function c
(2)
0 (u,w), we tried to apply the

same method of taking repeated radial derivatives, but we were unable to remove all the

trilogarithms in the second iteration, because they come with different rational prefactors.

So an analytic proof would probably require another method. However, we could establish

numerically that the second such derivative, c
(2)
1,rr(u,w) was positive in the positive region,

consistent with the more general numerical study in section 4.2.
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