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1 Introduction

Entanglement Entropy is being increasingly recognised as an important measure of quantum
correlations in a system. For gauge theories the entanglement entropy turns out to be non-
trivial to define. Physically, this is because of extended excitations in the system, like
loops of electric or magnetic flux created by Wilson and ’t Hooft loop operators. More
precisely, it is because the Hilbert space of physical states in a gauge theory, i.e. the set of
gauge-invariant states, does not admit a tensor product decomposition between the region
of interest, the “inside”, and the rest of the system, the “outside”.

Several ways to deal with this difficulty have been discussed in the literature leading to
different definitions of the entanglement entropy. In [1] and [2], a definition, called the Ex-
tended Hilbert Space definition, was given for a gauge theory on a spatial lattice, by embed-
ding the gauge-invariant states in a larger Hilbert space which now admits a tensor product
product decomposition between the inside and the outside regions. See also earlier impor-
tant work in [3–6]. This definition has several positive features. It is gauge-invariant, meets
the strong subadditivity condition, and can be applied to all gauge theories; Abelian and
Non-Abelian, discrete and continuous, with and without matter. It was also argued in [1]
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that this definition agrees with the Replica Trick definition of Entanglement Entropy, which
is an alternate way to define entanglement based on carrying out a Euclidean path integral.

In [7, 8], the extended Hilbert space definition was analysed in more detail and it was
also shown that the definition does not agree with an operational measure of entanglement
which comes from quantum information theory, and which is related to the entanglement
that can be extracted from two halves of a bipartite system in the form of Bell pairs, or the
entanglement which is available for use in the process of entanglement dilution.

The underlying reason for this is the extended Wilson and ’t Hooft operators mentioned
above. Without using them, and restricting only to gauge-invariant operators localised in
the inside or outside regions, only some of the total entanglement can be extracted. In fact,
the set of inside states breaks up into sectors differing in the value the normal component
of the electric flux takes at the boundary of the inside region. Wilson loop operators
which cross the boundary from the inside to the outside change this boundary electric
flux and are needed to connect these sectors. Without them, the different sectors act like
different superselection sectors and the probability to lie in these sectors cannot be altered.
This puts a limitation on how much total entanglement can be extracted. [7, 8] precisely
determined just how much of the total entanglement entropy could actually be extracted
in entanglement distillation and dilution. Unlike the total entanglement entropy which
depends on the extended Hilbert space definition that is used to define it, the extractable
part is tied to an operational definition, based on physical measurements, and is independent
of this definition.

In this paper we explore the extended Hilbert Space definition in the concrete context
of a free U(1) gauge theory without matter in 3 + 1 dimensions. Our main focus here is the
continuum limit and this is one of the simplest theories to admit such a limit. By starting
with the theory on the lattice at weak coupling and taking the continuum limit, we show that
one obtains from this definition the replica trick path integral for the continuum U(1) theory.
More specifically, we obtain the replica trick path integral with a suitable Faddeev-Popov
gauge-fixing term to render it gauge-invariant. While we focus on the U(1) theory, this result
is in fact general and extends to non-Abelian theories, and theories with matter etc, also.

In 3 + 1 dimensions the entanglement entropy has the behaviour

SEE = C1
A

ε2
+ C log

(
A/ε2

)
+ · · · (1.1)

where A is the area of the region of interest, ε is a short distance cut-off and the ellipses
denoted finite terms in which ε does not appear. The coefficient C is cutoff independent
and therefore universal.

For a spatial region which is the inside of a sphere, S2, we obtain from the replica trick
path integral for the U(1) theory, by a standard argument, the coefficient C. It is given by

C = −31

90
(1.2)

and agrees with the A anomaly coefficient in the theory.
Next we analyse how much of the entanglement is extractable through the processes

of entanglement distillation and dilution in this system. As was mentioned above, sectors
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differing in the value the normal component of the electric flux takes at the boundary of
the inside region act as different superselection sectors. Let i schematically denote such a
sector and let pi be the probability for the normal component of the boundary electric flux
associated with this sector to arise. Then it was argued in [7, 8] that for an Abelian theory,

SEE = −
∑
i

pi log pi + Sext, (1.3)

where SEE is the full entanglement in the extended Hilbert space definition and Sext is
the amount of entanglement which can be extracted using operators localised in the inside
and outside regions in the processes of entanglement distillation and dilution. We see that
the full entanglement differs from the extractable piece by a “classical” Shannon -like term
determined by the probability distribution for the electric flux at the boundary of the inside
region. Let us also clarify that eq. (1.3) is only schematic. In general the probability will
be a functional of the normal component of the electric field which can take varying values
along the boundary, and the first term in eq. (1.3) will be a functional integral over all such
values for the electric field.

By analysing the probability distribution for the electric field on the boundary S2 region
we find that the extractable piece also has a term proportional to log(A),

Sextractable = D1
A

ε2
+D log

(
A

ε2

)
+ finite (1.4)

where
D = −16

90
(1.5)

The difference C − D is accounted for by the first term in eq. (1.3) which also has a
contribution proportional to log(A).

There has been some confusion in the literature on the coefficient of the logarithmic
term for the U(1) theory. Conformal mappings and related techniques, it has been known
for some time, give, eq. (1.2) [9, 10]. On the other hand, the calculation done by Dowker [11]
gave the result, eq. (1.5). More recently, Casini and Huerta [12], using a definition different
from the extended Hilbert space definition used here, obtained the same result as Dowker
also agreeing therefore with eq. (1.5). Our results show clearly that these differences are due
to different definitions being adopted for the entanglement entropy. The total extractable
piece, eq. (1.4), is tied to the number of Bell pairs one can obtain from the system, which is
an operational quantity with physical significance. Similarly, this difference in definitions
can drop out of quantities constructed from the entanglement like the mutual information
in the continuum limit [3, 13].

This paper is organised as follows. After a brief outline of the extended Hilbert space
definition, we turn to the connection with the replica trick path integral in section 3 and
take its continuum limit via the replica trick in section 4. The following sections, 5 and 6,
then discuss the coefficients C and D respectively, eq. (5.16), and (6.22). We end with some
conclusions in 7.

Before we close let us comment on some of the relevant literature. Besides the references
above, some key references in the discussion of gauge theory entanglement are [1–8, 12–20].
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The replica trick has been discussed in many places, for example [21, 22]. The calculations
in section 6 where we compute the extractable piece are closely related to those by Donnelly
and Wall [15, 16], Huang [17] and Zuo [18].

2 Overview of the extended Hilbert space definition

Consider a gauge theory, associated with a gauge group G, on a spatial lattice. We will
work in the Hamiltonian formulation where time is continuous. The dynamical degrees of
freedom are associated with links of the lattice. We denote a link which emanates from
vertex i and extends to vertex j by Lij . The degree of freedom associated with Lij is a
group element, gij ∈ G. In the quantum theory, this degree of freedom gives rise to a
Hilbert space, Hij , associated with Lij . As an example, for the U(1) theory of interest here
a group element is specified by an angle θij ∈ [0, 2π]. The Hilbert space is then the set of
states in quantum mechanics associated with an angle degree of freedom, or a particle on
a circle.

The extended Hilbert space is given by the tensor product of Hij for all links,

H = ⊗Hij . (2.1)

Each link Hilbert space, Hij is endowed with an inner product meeting the usual positivity
conditions. This in turn gives rise to an inner product on H also meeting these conditions.1

Gauge transformations are defined on a vertex of the lattice and correspond to the
action by a group element on every link emanating from this vertex. Physical states must
be invariant under these gauge transformations. This follows from Gauss’ laws. For the
U(1) theory, in the Hilbert space Hij on link Lij , there is an operator conjugate to θij , Lij ,
which satisfies the commutation relation

[θij ,Lij ] = i. (2.2)

Given a vertex Vi we can define the operator

Gi(θ) = eiθ
∑
j Lij (2.3)

where the index j in the sum on the r.h.s. takes values over all links emanating from
vertex Vi. This operator generates gauge transformations at Vi corresponding to shifting
θij → θij + θ for all links emanating from Vi.

Given a set of links of interest, “the inside”, and the rest of the links, “the outside”, two
Hilbert spaces Hin,Hout, which are subspaces of H, can be defined by taking the tensor
product of the Hilbert spaces associated with the inside and outside links respectively. For
example,

Hin = ⊗〈ij〉Hij (2.4)

where the links included on the r.h.s. lie in the inside, and similarly for Hout.
1In the Hamiltonian formulation we set the group elements on the links directed in the time direction

to be unity, in effect setting A0 = 0. The resulting inner product then has positive norm.

– 4 –



J
H
E
P
0
2
(
2
0
1
7
)
1
0
1

The set of gauge-invariant states lie in a Hilbert space Hginv. The extended Hilbert
space admits a decomposition in terms of Hginv and its orthogonal complement, H⊥ginv,

H = Hginv ⊕H⊥ginv. (2.5)

In the extended Hilbert space definition, a physical state |ψ〉 ∈ Hginv is first uniquely
embedded in H by requiring it to have no component in H⊥ginv. Next, a density matrix for
the inside region can be obtained by tracing over Hout,

ρin = TrHout |ψ〉 〈ψ| . (2.6)

The extended Hilbert space definition for the entanglement is then given by the von Neu-
mann entropy of ρin,

SEE = −TrHinρin log(ρin). (2.7)

We will explore some consequences of the entanglement entropy defined in this way for
the U(1) case in the continuum limit below.

3 The replica trick for gauge theories on the lattice

In this section we consider a replica trick path integral which calculates the entanglement
entropy in the extended Hilbert space definition for the gauge theory defined on a spatial
lattice. Te discussion holds for any gauge theory. For concreteness though we will focus
on the case of the U(1) theory, without matter, in 3 + 1 dimensions. Also, we consider
a rectangular lattice, allowing for the lattice spacing in the space and time directions to
be unequal.

3.1 The U(1) theory

The degrees of freedom in this system are associated with links. For the U(1) case there is
one angular degree of freedom θµν associated with each link Lµν , with θµν ∈ [0, 2π].

The action of this theory is given by

S =
1

g2

∑
P

cos
∑
〈µν〉

θµν − 1

 , (3.1)

where the over all sum is over all elementary plaquettes of the lattice, schematically denoted
by P , and the sum within the argument of the cosine is over all links in the elementary
plaquette. g2 is a dimensionless coupling constant, which plays the role of ~. We will
be interested in the U(1) theory at weak coupling, where g2 → 0. Note that the sum in
eq. (3.1) includes plaquettes with links extending along both space and time directions.

Starting from eq. (3.1) we can go to the Hamiltonian description in which time is taken
to be continuous. This is the formulation we will use in much of the discussion that follows.
To obtain this description, we first set the link variables for links that extend in the time
direction to unity, by doing suitable gauge transformations. Next, we take the continuum
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limit along the time direction by making the lattice space along the time direction to go to
zero, while keeping the lattice spacing along the spatial directions fixed.

The dynamical variables of the system are then the link variables along each link of
the spatial lattice θij . It is easy to see that the Hamiltonian for the system is

H =
∑
〈ij〉

g2Lij −
1

g2

∑
P

cos
∑
〈ij〉

θij − 1

 (3.2)

Here Lij are conjugate variables of θij . We have also absorbed a factor of the lattice cutoff
along the time direction in H to make it dimensionless. In the quantum theory Lij , θij
satisfy the commutation relations

[θij ,Lij ] = i (3.3)

Here the subscripts i, j refer to the same link variable. For different links, the variables θ, L
commute.

As was mentioned above, the Hilbert space associated with each link Hij is that of an
angular degree of freedom. The extended Hilbert space H is obtained by taking the tensor
product, eq. (2.1). All physical states must be invariant under spatial gauge transforma-
tions. If |ψ〉 is such a state, and Vi is a vertex in the spatial lattice then this implies

eiεi
∑
j Lij |ψ〉 = 0 (3.4)

where the sum is over all links emanating from the vertex Vi, and εi denotes an infinitesimal
parameter.

Note that under the gauge transformation, eq. (3.4),

θij → θij − εi (3.5)

for all links 〈ij〉 emanating from vertex i. We will also use the notation θji = −θij for the
angular variable on the oppositely oriented link. Carrying out a gauge transformation with
parameters εi, εj at adjacent vertices Vi, Vj , we get that θij transforms as

θij → θij − εi + εj . (3.6)

3.2 The replica trick

We now turn to the replica trick path integral. Suppose we are interested in the entan-
glement between a region R and the rest of the system for the ground state of the theory
discussed above. Let us denote the three dimensional spatial lattice by L3 below. To cal-
culate the entanglement entropy using the replica trick we first calculate a Euclidean path
integral on an n-fold cover of L3×T , where T is the extent in the continuous imaginary time
direction. The entanglement entropy is then recovered by taking a suitable n→ 1 limit.

The n-fold cover is obtained as followed. The path integral extends from [−∞,∞] in
the T direction. We take n copies of L3 × T . In each copy, for the L3 spatial lattice, at a
particular instance t = 0, we introduce a cut along the spatial region R of interest. Fields
in the path integral are taken to be discontinuous along the cut. Let us generically denote
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a field by φi(t, x), where the subscript i denotes its value in the ith copy. Then φi satisfies
the relation

φi
(
t = 0−,x

)
= φi+1

(
t = 0+,x

)
, x ∈ R (3.7)

So that the value of the field below the cut in the ith copy is identified with its value above
the cut in the (i+ 1)th copy. For the nth copy the value below the cut is identified with the
value for the 1st copy above the cut. Outside the region R the fields are continuous across
the t = 0 surface meeting the condition,

φi
(
t = 0−,x

)
= φi

(
t = 0+,x

)
, x 6∈ R. (3.8)

These boundary conditions define the n-fold cover.
Let us denote the path integral over the n-fold cover by Z(n). The Replica trick value

for the entanglement entropy is then given by

SRT = −∂n lnZ(n)|n→1 + lnZ(1) (3.9)

Note, to obtain the r.h.s. one needs to continue the function Z(n) for non-integer values, and
then take the derivative. Subtleties may arise in this continuation, see [22] for a discussion,
but we ignore them here.

Note that the above description is general and immediately applies to the U(1) theory
as well. In this case the field φ corresponds to a phase Uij = eiθij on each spatial link. The
region R will be specified by a set of spatial links. And the condition eq. (3.7) identifies
the value of the phase on a spatial link in R below the cut, in the ith copy with its value
above the cut in the (i+ 1)th copy.

It was argued in [1] quite generally that this replica trick path integral agrees with the
extended Hilbert space definition. The reason is as follows. Consider one copy of L3 × T .
The path integral from t = [∞, 0−] essentially gives rise to the wave function of the ground
state. If Uij(0−) is the value the link variables take on link Lij at t = 0− then on general
grounds we get that 〈

Uij(0
−)
∣∣ψ〉 =

∫ Uij(0
−)

t=−∞
[DUij ] e

−S . (3.10)

On the r.h.s. the action which appears, S, is obtained from the Hamiltonian by the standard
relation between the path integral and time evolution obtained from the Hamiltonian. The
boundary conditions are that the link variables take values Uij at t = 0−, which are the
arguments for the wave function on the l.h.s. The boundary conditions at t = −∞ drop
out, except in determining the total normalisation of |ψ〉. The reason that the path integral
in eq. (3.10) gives rise to the ground state wave function is that only the lowest energy state
survives after time evolving from t = −∞ to t = 0−.

For the U(1) theory S is given by eq. (3.1) with the link variables along the time like
links being set to vanish. Similarly we get that

〈
ψ
∣∣Uij(0+)

〉
=

∫ t=∞

Uij(0+)
D[U ]e−S . (3.11)
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It is now easy to see that doing the path integral from t = −∞ to t = ∞ with
discontinuous boundary conditions at t = 0 across the region R gives rise to the density
matrix for the region R: 〈

Uij(0
−)
∣∣ρ∣∣Uij(0+)

〉
=

∫
[DUij ]e

−S , (3.12)

where
ρ = |ψ〉 〈ψ| . (3.13)

In the path integral on the r.h.s. of eq. (3.12) Uij takes the value Uij(0+) for t = 0+, and
Uij(0

−), for t = 0− for links lying in R, and is continuous for links outside R, so that

Uij(0
+) = Uij(0

−), 〈ij〉 6∈ R, (3.14)

in agreement with eq. (3.8).
The key point for our present discussion is that this density matrix agrees with what one

obtains in the extended Hilbert space definition. The reason is simply that in carrying out
the path integral each link variable Uij is independent of the others, and as a result the wave
function one obtains in eq. (3.10) by the path integral is the wave function automatically
embedded inH, the extended Hilbert space. The boundary condition for links in the outside
region, eq. (3.14), then means that the path integral from t = [−∞,∞] carries out the trace
over the outside links to give the density matrix of the inside, eq. (3.12).

It then follows that the path integral over the n fold cover,

Z(n) = Trρn, (3.15)

and standard manipulations then lead to the conclusion that SRT defined in eq. (3.9) is in
fact the entanglement entropy SEE in the extended Hilbert space definition, eq. (2.7).

4 The continuum limit of the extended Hilbert space definition

In this section we will analyse the behaviour of the entanglement entropy, defined in the
extended Hilbert space definition, in the continuum limit of the gauge theory. Since we have
shown that on the lattice the extended Hilbert space definition is equivalent to a replica
trick path integral, we can study this limit by analysing the continuum limit of the replica
trick path integral.

In the continuum limit the lattice spacing, ε→ 0, keeping physical distances fixed. In
particular we are interested in the behaviour of the entanglement entropy, for the ground
state of the gauge theory, of region R which is kept fixed as ε → 0. Note also that in the
Hamiltonian formulation ε refers to the size of the spatial lattice, since the lattice spacing
in the time direction has already been taken to vanish, as discussed at the beginning of
section 3 above.

The continuum limit needs to be taken carefully. There are two complications. The first
one is the standard complication associated with taking the continuum limit in quantum
field theory, and arises because the coupling constants of the theory need to be renormalised

– 8 –



J
H
E
P
0
2
(
2
0
1
7
)
1
0
1

in a suitable way as ε → 0. We are spared this complication for the weakly coupled U(1)

theory under consideration since it goes over to the Maxwell theory in the continuum limit,
which is free. However there is another complication which arises for entanglement that
cannot be avoided even in the U(1) case. This arises because the path integral involved in
calculating the entanglement, in the continuum limit, needs to be carried out over a singular
space and not a smooth manifold. For example, for computing Z(n), the partition function
on the n-fold cover, the path integral needs to be carried out over a singular space with
a conical singularity of definite angle 2π(n − 1) along the boundary of the region R. The
singular nature of this space gives rise to additional divergences which need to be regulated.
As mentioned above the leading and sub-leading divergences in 3 + 1 dimensions take the
form, eq. (1.1). We are in particular interested in the coefficient C of the term proportional
to log(A) that arises in the continuum limit. In the discussion below we will take ε to be
small but non-zero and study the resulting path integrals.

4.1 Z(1): the partition function

Let us start by considering Z(1) first. From eq. (3.15), eq. (3.12) we see that Z(1) is
obtained by sewing the bra and ket of the ground state wave function |ψ〉 , 〈ψ| together,

Z(1) = Trρ =

∫
[DU ] 〈Uij |ψ〉 〈ψ|Uij〉 . (4.1)

The path integral on the left hand side is over gauge fields Uij living on link variables in
the spatial lattice at t = 0. And in this case the path integral is over one copy of L3 × T
since the fields are continuous at t = 0. From eq. (3.12) we get

Z(1) =

∫
[DU ]e−S , (4.2)

where the path integral on the r.h.s. is now from t ∈ [−∞,∞]. The measure in eq. (4.2)
is defined as follows. We discretise the time direction as well to take values ti = T

N i with
i ∈ [−N/2, N/2]. At each time step the link variables are denoted by Uij(ti). The measure
for each link variable at a time step is the Haar measure. The full measure DU is then
given by the product of the measures for link variables at each time step. In the U(1) case
the measure on each link is given by

[DUij ] =
dθij
2π

(4.3)

with θ ∈ [0, 2π]. This measure is invariant under the gauge transformation, eq. (3.6).
Since |ψ〉 is gauge-invariant,

〈Uij |ψ〉 =
〈
Ugij

∣∣∣ψ〉 , (4.4)

where Ugij is a transformed value of the link variables obtained after a gauge transformation
schematically denoted by superscript g here. For the U(1) theory this is of the type given
in eq. (3.6).
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As a result the path integral over the gauge fields at t = 0 in eq. (4.1) has a redundancy
since 〈Uij |ψ〉 〈ψ|Uij〉 yields the same result for different values of the link variables Uij
related by gauge transformations. This redundancy is not a problem in the lattice since the
integration is over a group manifold which is compact. In the U(1) case this is simply the
fact that θij is periodic. In the continuum limit however, as we see below, we shall replace
the angular degrees of freedom by the gauge potential Ai which is taken to be non-compact.
Before taking this limit it is therefore important to make this gauge redundancy manifest.
This can be done in the standard fashion by breaking up the path integral in eq. (4.2) into
two parts: a sum over gauge-inequivalent configurations and for each such choice a further
sum over all gauge-transformed values of these configurations.

Let φ(n) denote the parameter for a gauge transformation at site n. Then it is a
mathematical identity that∫  ∏

n∈L3

dφ(n)

 δ (f(φn))

∣∣∣∣det

(
∂f

∂φn

)∣∣∣∣ = 1. (4.5)

Here the product is over all NV sites of the spatial lattice and f(φn) is actually condensed
notation for a set of functions fi, i, · · ·NV such that the conditions fi(φn) = 0, determines
the gauge parameters, φn, on all sites uniquely. Similarly, the determinant on the r.h.s. is
for the NV ×NV matrix, ∂fi

∂φn
.

Introducing this identity in eq. (4.1) and rearranging terms gives

Z(1) =

∫
[Dφ]

∫
[DUij ] |ψ(Uij)|2 δ(f(φn))

∣∣∣∣det

(
∂f

∂φn

)∣∣∣∣ , (4.6)

where [Dφ] denotes the measure
∏

n dφ(n).
Next we take f(φn) = f(Uij(φn)), i.e. f to depend on the gauge transformation pa-

rameters φ(n) only implicitly through its dependence on Uij . Using the invariance of the
measure under a gauge transformation, as discussed above, and also the invariance of the
wave function, we then get∫
DUij |ψ(Uij)|2 δ(f(φn))

∣∣∣∣det

(
∂f

∂φn

)∣∣∣∣ =

∫
DUij(φn)|ψ(Uij(φn))|2δ(f(φn))

∣∣∣∣det

(
∂f

∂φn

)∣∣∣∣
(4.7)

=

∫
DUij |ψ(Uij)|2δ(f(Uij)

∣∣∣∣det

(
∂f

∂φn

)∣∣∣∣ (4.8)

Note, in the first line on the r.h.s., Uij(φn) denotes the element of the group obtained from
Uij after the gauge transformation generated by φn. The second line is then obtained by
relabelling the integration variable of the r.h.s. in the first line, Uij(φn), to be Uij . On
general grounds one can argue that the determinant det

(
∂f
∂φn

)
is independent of φn. Using

eq. (4.8) in eq. (4.6) then gives

Z(1) =

∫
[Dφ]

(∫
DUij |ψ(Uij)|2δ(f(Uij))

∣∣∣∣det

(
∂f

∂φn

)∣∣∣∣) , (4.9)

where the terms within the big brackets are independent of φn.
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The integral over φn can therefore be easily done. For the U(1) case we get∫
[Dφ] =

∏
n

∫ 2π

0
dφn = (2π)NV , (4.10)

where NV is the total number of sites on the spatial lattice. For a more general gauge group
we would get (Vol(G))NV where Vol(G) is the volume of the group manifold as computed
from the Haar measure. Pugging eq. (4.10) in eq. (4.9) then gives,

Z(1) = (2π)NV
∫
DUij |ψ(Uij)|2δ(f(Uij))

∣∣∣∣det

(
∂f

∂φn

)∣∣∣∣ . (4.11)

One choice of the set of functions fn is given as follows. A vertex denoted by n has six
nearest neighbours in the spatial lattice, let us denote them by n± î, where î, î = 1̂, 2̂, 3̂,
stand for the lattice unit vectors along the x, y, z directions. The link variable on the link
extending from n to n + î is denoted by θn,n+̂i etc. We take

fn =
∑
î

θn,n+̂i + θn,n−̂i. (4.12)

Under a gauge transformation generated by the set {φn} this transforms as

fn → fn +
∑
î

(2φn − φn+̂i − φn−̂i). (4.13)

It is easy to see that the conditions fn = 0, ∀n ∈ L3, fixes all the gauge redundancy2 and
the resulting determinant det

(
∂fn
∂φm

)
is independent of {φn}.

We can now take the continuum limit of the integral which appears on the r.h.s. of
eq. (4.11). We assume that the path integral is dominated by configurations which are
smooth on the scale of the lattice, we will come back to discussing this assumption below.
The cos

(∑
<ij> θij

)
term in the action, eq. (3.1) then can be expanded unto quadratic

order. Consider a plaquette extending in the i− j directions. For this plaquette we get

cos

∑
<ij>

θij

 ' 1− 1

2

(
θn,n+̂i − θn+ĵ,n+̂i+ĵ + θn+̂i,n+̂i+ĵ − θn,n+ĵ

)2
. (4.14)

The kinetic energy term, from eq. (3.1), is given by

KE =
ε2

4g2

∑
n,̂i

(
θ̇n,n+̂i

)2
. (4.15)

where the prefactor of 1
4 is because each link is being counted twice, and ε is the lattice

cut-off.3

2These conditions fix φn upto one overall gauge transformation, but the link variables do not transform
under this transformation, so it is not a redundancy of the variables in the gauge theory.

3We are not distinguishing between the cut-off in the time and spatial directions here.
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It can be then easily seen that the wave function eq. (3.10) goes over to the continuum
expression 〈

Ai(x, 0
−)
∣∣ψ〉 =

∫ Ai(x,0
−)

t=−∞
[DA]e−SM , (4.16)

with the identifications
Ai(x, t) =

1

gε
θn,n+̂i (4.17)

and the action S which appears in eq. (4.16) is the Maxwell action

SM =
1

4

∫
d4xFµνF

µν (4.18)

with A0 = 0. The path integral, eq. (4.16), is carried out over non-compact variables Ai
with the standard continuum measure.

Note the fact that the spatial gauge transformations are unfixed in path integral in
eq. (4.16) does not pose a problem since specifying the value of Ai(x, 0−) breaks this
symmetry. However it is important that we fixed this residual gauge symmetry on the
lattice for the partition function Z(1), eq. (4.11), otherwise we would have got a divergent
answer. From eq. (4.11) we now get,

Z(1) = (2π)NV
∫

[DAi]|ψ[Ai]|2δ(f(Ai))

∣∣∣∣det

(
δf(Aωi )

δw(x)

)∣∣∣∣ , (4.19)

where ω(x) is the gauge transformation parameter as the location x, and Aωi is the gauge
potential obtained after gauge transforming Ai under this gauge transformation.

For the choice eq. (4.12) we get

f(Ai) = ∇ ·A (4.20)

det

(
δf(Aωi )

δw(x)

)
= det′

(
∇2
)

(4.21)

The prime on the determinant on the r.h.s. of the second line indicates that the zero mode
has been removed (this mode does not change Ai and does not need to be included).

Using eq. (4.16) and the analogous expression for 〈ψ|Ai〉 we can write eq. (4.19) as

Z(1) = (2π)NV
∫

[DAi]e
−SM δ(f(Ai))

∣∣∣∣det

(
δf(Aωi )

δw(x)

)∣∣∣∣ (4.22)

We should clarify that on the r.h.s. the path integral in eq. (4.22) is now from t ∈ [−∞,∞],
but the delta function fixing the spatial gauge transformations and associated determinant
is only present at t = 0.

To obtain the more conventional result of the Path integral with gauge-fixing at all times
we return to the expression for path integral on the lattice in eq. (4.11), using eq. (3.10)
and eq. (3.11) this can be written as

Z(1) = (2π)NV
∫
D[Uij ]e

−Sδ(f(Uij))

∣∣∣∣det

(
∂f

∂φn

)∣∣∣∣ (4.23)

where again the path integral is from t ∈ [−∞,∞] but the delta function is only at t = 0.
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As was mentioned above, the path integral should be thought of more correctly by
breaking up the time direction also into discrete time steps, ti, i = [−N/2, N/2]. For any
value of ti other than t = 0, we can introduce gauge parameters φn(ti) for independent
gauge transformation at sites in the spatial lattice at this time step using eq. (4.5). This
introduces the gauge-fixing delta function and FP determinant now at the time step ti along
with the extra integrals for φn(ti). The parameter φn(ti)−φn(i+1) can be associated with
the link variable along the time direction going from site n at ti to n at t = i + 1. Note
that since φn(t = 0) = 0, the counting is just right, there are as many time like links as
parameters φn(ti).

After some further manipulations analogous to the change of variables in eq. (4.7),
eq. (4.8), we then get in the continuum limit,

Z(1) = (2π)NV
∫

[DAi][DA0]e−SM δ(f(Ai))

∣∣∣∣det

(
δf(Aωi )

δw(x)

)∣∣∣∣ (4.24)

Now the integral is over both Ai and A0. The action S which appears in eq. (4.24) is the
Maxwell action, including the contribution from A0. And the gauge-fixing delta function
and associated Faddeev-Popov (FP) determinant are present at each time step. Eq. (4.24)
is the standard path integral for the U(1) gauge theory after FP gauge-fixing. E.g., for the
choice, eq. (4.20), eq. (4.21) this gives the usual path integral in Coulomb gauge.

Note that the path integral on the r.h.s. in eq. (4.24) is indeed gauge-invariant. The
usual arguments tell us that any dependence on the choice of function f , which fixes gauge,
drops out when we include the FP determinant, The fact that we obtained this gauge-
invariant form of the continuum path integral is expected since it has been argued on
general grounds, [1], that the extended Hilbert space definition gives a gauge-invariant
result. The careful manipulations also yielded the extra prefactor of (2π)Nv .

Two comments are now in order. First, we have assumed above that the path inte-
gral is dominated by configurations which are smooth on the scale of the lattice. In the
classical theory, which follows from taking the g2 → 0 limit, the ground state is one where
cos
(∑

<ij> θij

)
= 1 for all plaquettes. This condition can be met by setting

θij = 0, (4.25)

up to gauge transformations. In the quantum theory there will be zero point fluctuations
due to the uncertainty principle, and θij will acquire a spread. At weak coupling these
fluctuations will be suppressed.

This can be easily estimated. Consider a mode with spatial momentum k � 1/a

where, a is the lattice spacing in the spatial directions. For such a mode it is easy to see
that dispersion relation takes the form

ω2 ' k2 (4.26)

where ω is the frequency of the mode. And the spread is given by

〈(θij)2〉 ∼ g2 a

k
(4.27)

instead of eq. (4.25). We see that as g2 → 0 the spread also vanishes.
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Thus, at weak coupling fluctuations are suppressed and we expect that smoothly vary-
ing configurations will dominating justifying the expansion unto quadratic order in eq. (4.14).

Second, the fact that the time evolution from [−∞, 0] gives the ground state wave
function, as mentioned above, eq. (3.10), is certainly true for a system with a gap. In
our case though, since the spatial gauge transformations are not fixed, things are a bit
more subtle. While the ground state is certainly gauge-invariant, the spectrum of the
Hamiltonian, eq. (3.2), is un-gapped with low lying states, in the g2 → 0 limit, which are
not gauge-invariant. These modes might be present even after evolving from [−∞, 0] and
could contaminate the ground state wave function. However, since the potential energy
term is invariant under these gauge transformations, the Hamiltonian which governs these
pure gauge modes is free, and as a result the dependence of the wave function on these
modes is a pure phase, which drops out of |ψ|2. This renders the arguments above which
follow from eq. (3.10), etc, valid.

4.2 The n-fold cover: Z(n)

Having dealt with Z(1) quite carefully we are now ready to consider the more general case
of Z(n), the partition function on the n-fold cover. Actually, the Z(2) case reveals all the
additional points which must be dealt with so we focus on this case. Th generalisation to
Z(n) will then be straightforward.

As discussed above for Z(2) we start with the double cover of L3×T . The fields at t = 0

are discontinuous meeting boundary conditions, eq. (3.7), eq. (3.8). We will first set up the
path integral on the lattice, then write it in a form where the gauge redundancy has been
made manifest by fixing the residual gauge freedom to do spatial gauge transformations at
t = 0. The resulting form of the result will then admit a well defined continuum limit.

We denote the value of the fields at t = 0± inside and outside R, the region of interest,
on the first and second sheet by U t=0±,in

1 , U t=0±,out
1 , U t=0±,in

2 , U t=0±,out
2 , respectively. Here

we have suppressed the indices i, j which appear as subscripts in the link variables Uij and
specify the precise link we are referring to. Then the boundary conditions used for sewing
up the path integral are

U t=0+,out
1 = U t=0−,out

1 ≡ Uout
1 (4.28)

U t=0+,out
2 = U t=0−,out

2 ≡ Uout
2 (4.29)

U t=0−,in
1 = U t=0+,in

2 ≡ U in
1 (4.30)

U t=0+,in
1 = U t=0−,in

2 ≡ U in
2 . (4.31)

This gives

Z(2) = Trρ2

=

∫
D[U in

1 ]D[Uout
1 ]D[U in

2 ]D[Uout
2 ]

〈
ψ
∣∣U in

2 U
out
1

〉 〈
U in

1 U
out
1

∣∣ψ〉 〈ψ∣∣U in
1 U

out
2

〉 〈
U in

2 U
out
2

∣∣ψ〉
(4.32)
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where
∣∣U in

1 U
out
1

〉
is a state which is the eigenvector of the link operators Û in ⊗ Ûout with

eigenvalue U in
1 U

out
1 , etc. Once again the indices i, j, on link variables U have been suppressed

to save clutter.
We now come to making the redundancy present in eq. (4.32), due to spatial gauge

transformation at t = 0, more explicit. There are three kinds of vertices on the spatial
lattices at t = 0 in the double cover. Those which are in the outside region, the inside
region and on the boundary. The outside and inside vertices are those in which all links
ending on the vertex lie in region outside or inside R. The boundary vertices are those for
which some links terminating on the vertex lie inside and some outside the region R. Let
us introduce a set of delta function f(Uij), which fix all the gauge redundancy, analogous
to the Z(1) case, by using the identity, eq. (4.5), now for the double cover. The steps from
eq. (4.5) to eq. (4.11) can now be repeated for the Z(2) case. This leads to

Z(2) = (2π)2NV −NB
∫
D[Uij ]

〈
ψ
∣∣U in

2 U
out
1

〉 〈
U in

1 U
out
1

∣∣ψ〉 〈ψ∣∣U in
1 U

out
2

〉
〈
U in

2 U
out
2

∣∣ψ〉 δ(f(Uij))

∣∣∣∣det

(
∂f

∂φn

)∣∣∣∣ (4.33)

The measure D[Uij ] stands for the integration over U in
1 , U

out
1 , U in

2 , U
out
2 , the delta functions

denoted schematically by f(Uij) fix the gauge freedom at all vertices, and the accompanying
determinant is the standard Faddeev-Popov determinant. The pre factor is non-trivial and
needs some explanation. Gauge transformations can be carried out independently on the
inside and outside vertices of both copies of L3. However the gauge transformations on
the boundary vertices must be the same on the two L3’s in order to be an invariance
of the integrand in the path integral in eq. (4.32). For suppose g denotes such a gauge
transformation in a boundary vertex of the first L3, then both the inside and outside links
in U in

1 , U
out
1 which end on this vertex transform under it,(

U in
1 , U

out
1

)
→
(
Ug,in1 , Ug,out1

)
. (4.34)

Now the wave function
〈
U in

1 U
out
1

∣∣ψ〉 is invariant under this transformation. However the
term

〈
ψ
∣∣U in

2 U
out
1

〉
is not invariant unless U in

2 is also transformed, similarly invariance of〈
ψ
∣∣U in

1 U
out
2

〉
requires Uout

2 to also transform. Thus the spatial gauge symmetry for boundary
vertices involves simultaneous transformation on both copies L3 × L3. Another way to say
this is that the boundary vertices have enhanced coordination number. The requirement
of the simultaneous transformation results in the prefactor in eq. (4.33) where, NV is the
number of vertices in one copy of L3 and NB is the number of vertices on the boundary of
the region R. More generally the prefactor would be Vol(G)2NV −NB .

The continuum limit of eq. (4.33) can now be taken in a straightforward manner fol-
lowing the analogous steps from eq. (4.11) to eq. (4.24). We get

Z(2) = (2π)(2NV −NB)

∫
D[A0]D[Ai]e

−SM δ(f(Ai))

∣∣∣∣det

(
∂f(Aω)

∂ω(x)

)∣∣∣∣ , (4.35)

where now the path integral is being done on the double cover, the variable A0 has been
introduced along with the delta function fixing gauge and the Faddeev-Popov determinant,

– 15 –



J
H
E
P
0
2
(
2
0
1
7
)
1
0
1

at each time step. We note that the result above is also gauge-invariant, and independent
of the choice of function f made for gauge-fixing. Let us also comment that, as mentioned
before, in the continuum limit the path integral has divergences since the double cover is
singular with a conical deficit along the boundary of R. Thus, we need to carry out the
path integral with the cut-off ε being held non-zero but small to get a well defined result.

The generalisation for the Z(n) case is now immediate. Analogous arguments give

Z(n) = (2π)(nNV −(n−1)NB)Zcont(n) (4.36)

where Zcont(n) stands for the discretised version, with small ε, of the continuum path
integral

Zcont(n) =

∫
D[A0]D[Ai]e

−SM δ(f(Ai))

∣∣∣∣det

(
∂f(Aωi )

∂ω(x)

)∣∣∣∣ . (4.37)

This path integral is over the n-fold cover which has a conical deficit (n − 1)2π along the
boundary of R.

Also, since the path integral with the Faddeev-Popov determinant is well known to
be independent of the gauge-fixing function, we can choose a more general function f too
which depends on Aµ = (Ai, A0), giving more generally,

Zcont(n) =

∫
D[A0]D[Ai]e

−SM δ(f(Aµ))

∣∣∣∣det

(
∂f(Aωµ)

∂ω(x)

)∣∣∣∣ . (4.38)

4.3 Final result

We can now calculate the entanglement entropy, using eq. (3.9). We get that

SEE = −NB log(2π) + SEE,cont (4.39)

where
SEE,cont = −∂n logZcont(n)|n→1 + logZcont(1). (4.40)

Since NB = A/ε2 where A is the area of the boundary and ε is the lattice cutoff, we see
that the first term on the r.h.s. of eq. (4.39) only contributes to the area law divergence of
the entanglement. We will ignore this term below and study the contribution of eq. (4.40)
to the log(A) term in the entanglement. For a more general group the factor of (2π) in
the first term in eq. (4.39) will be replaced by Vol(G), and this term will continue to only
contribute to the area law divergence.

5 The continuum limit of the U(1) theory

In this section we turn to the explicit calculation of interest. We would like to calculate the
coefficient of the log term in the entanglement, C, eq. (1.1), for a spherical region of radius
R. The boundary of this region is an S2 boundary with area

A = 4πR2. (5.1)

Also, in this section we will drop the suffix “cont” when referring to the partition function
Z(n) or Entanglement, in the continuum limit, see, eq. (4.37), eq. (4.40) etc.
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As is well known, the answer for C can be readily extracted from well known facts
about the U(1) theory since it is conformally invariant.

The argument is as follows. Consider infinitesimally rescaling the radius of the sphere

R→ R(1 + δ), (5.2)

δ � 1, while keeping the UV cut-off ε in eq. (1.1) fixed. Then the change in SEE is given by

∂SEE
∂δ

∣∣∣∣
δ=0

= 2C1
A

ε2
+ 2C. (5.3)

The coefficient of interest, C, is the term on the r.h.s. which is independent of ε. Note
that by scale-invariance the terms in the ellipses in eq. (1.1) must be independent of A and
therefore do not contribute to the r.h.s. of eq. (5.3).

The rescaling of the radius R can be carried out by rescaling the metric. To analyse
the consequences, consider the path integral, eq. (4.38), but now in the presence of a
background metric,

Z[gµν ] =

∫
[DA]e−S[gµν ,Aµ]δ(f(Aµ))

∣∣∣∣det

(
∂f(Aωµ)

∂ω(x)

)∣∣∣∣ . (5.4)

The metric appears in the action as shown explicitly above, but also in the measure and
in general in the gauge-fixing delta function and associated determinant. The stress energy
tensor is given by

〈Tµν〉 =
δ lnZ[gµν ]

δgµν
. (5.5)

For a conformal theory in 3 + 1 dimensions, it is well known that∫
√
g〈Tµµ 〉 = aE4 + cW 2 (5.6)

where E4 is the integral of the Euler density,

E4 =
1

64π2

∫
√
g
(
RµναβR

µναβ − 4RµνR
µν +R2

)
(5.7)

and W 2 is the integral of the square of the Weyl tensor given by

W 2 = − 1

64π2

∫
√
g

(
RµναβR

µναβ − 2RµνR
µν +

1

3
R2

)
. (5.8)

The coefficient of the E4 term is called the “a-anomaly" coefficient.
Now if the metric is rescaled by gµν → gµν(1+2δ) then this will accomplish the required

scaling of R, eq. (5.2). The change ∂δ lnZ[gµν ] is given by,

∂δ lnZ[gµν ]|δ→0 = 2

∫
M

√
gTµµ (5.9)

= 2aE4 + 2cW 2. (5.10)
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From eq. (4.40) we therefore get that

∂SEE
∂δ

∣∣∣∣
δ→0

= (1− ∂n)∂δ lnZ[n, δ]|δ→0,n→1 (5.11)

Comparing with eq. (5.3) we see that C can be obtained once the r.h.s. in eq. (5.11) can
be calculated.

An important point, already emphasised, is that the n-fold cover is a singular space.
So the strategy we can use, as in [23], is to first slightly “de-singularise” the space and then
take the singular limit of interest. For calculating Z(n) for the entanglement of the sphere
of radius R we work on a smoothed out space with metric,

ds2 = r2dτ2 +
r2 + b2n2

r2 + b2
dr2 +

(
R+ rnc1−n cos τ

)2 (
dθ2 + sin2 θdφ2

)
(5.12)

Here b, c are extra parameters introduced to smooth out the conical singularity at r = 0

along an S2 of radius R. One then calculates the various integrals involved (for integer n)
and takes the n→ 1 limit, in which the dependence on these extra parameters drops out.

In [23] it was shown that for the case, eq. (5.12) one gets that∫
√
gR2 = O

(
(n− 1)2

)
∫
√
gRµνR

µν = 32π2(n− 1)∫
√
gRµναβR

µναβ = 64π2(n− 1). (5.13)

As a result W 2 ∼ O((n− 1)2), while

E4 = −(n− 1). (5.14)

From eq. (5.11) it then follows that
C = a. (5.15)

In the U(1) it is well known that a = −31
90 leading to

C = −31

90
, (5.16)

which agrees with eq. (1.2).

6 Extractable part of entanglement for the U(1) case

As was mentioned in the introduction the entanglement entropy in the extended Hilbert
space definition does not agree with the entanglement which can be extracted using entan-
glement distillation of dilution, Sext. The relation between the two is given in eq. (1.3).
We have calculated the coefficient C which appears in coefficient of the log

(
A/ε2

)
term in

SEE , eq. (1.1), above. Here we will calculate the coefficient of the log term in Sext. We will
see that it is different. This difference will also allow us to understand some puzzles in the
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existing discussion of the entanglement entropy for the U(1) theory. This calculation has
been previously performed, using different techniques, in [15–18].

Our strategy will be to calculate the “classical” term, −
∑

i pi log(pi), which arises due
to the probability for being in different superselection sectors. The difference between SEE
and this term will then give the extractable part, eq. (1.3).

The different superselection sections correspond to different values for the normal com-
ponent of the electric field. For the case of interest the boundary is an S2 and the normal
component is the radial component of the electric field. Since the U(1) theory is free
the probability distribution governing the radial electric field Er on the boundary S2 is a
Gaussian which is entirely determined by the two-point function. We get

p[Er(x)] = Ne−
1
2

∫
d2xd2yEr(x)Er(y)G−1

rr (x−y). (6.1)

Grr(x− y) is the two-point function

Grr(x− y) = 〈Er(x)Er(y〉 (6.2)

on the sphere, and G−1
rr is its inverse which satisfies the condition,∫

d2yGrr(x− y)G−1
rr (y − z) = δ2(x− z). (6.3)

The integrals in eq. (6.1) and eq. (6.3) are in 2 dimensions over the surface of the S2.
It is easy to see from eq. (6.1) that the required classical term is given by

−
∑
i

pi log(pi) = − logN +

∫
d2x d2y Grr(x− y)G−1

rr (y − x) (6.4)

From eq. (6.3) we see that the second term on the r.h.s. gives∫
d2x d2yGrr(x− y)G−1

rr (y − x) =

∫
d2x δ2(0) ∼ A

ε2
(6.5)

where A = 4πR2 is the area of the S2 and ε is the short distance cut-off which regulates
the divergence in the two dimensional delta function, δ2(0).

We see that the log(A) term which is our focus here will arise therefore from the first
term on the r.h.s. in eq. (6.4), − logN . From eq. (6.1) we see that the normalisation N is
determined by requiring that ∫

D[Er]p[Er(x)] = 1. (6.6)

The Gaussian integral in eq. (6.6) can be done and gives

logN = D4 +
1

2
log detG−1

rr . (6.7)

Determining the constant D4 (which actually turns out also to diverge as A/ε2) requires
a careful definition of the measure in the functional integral for Er. Starting from the
lattice and passing to the continuum gives rise to a well defined measure and thus to a
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normalisation constant. However, let us not be very specific about this for now, since the
resulting contribution does not give rise to a term proportional to log(A) term. We will
comment on this again towards the latter part of this section. Also, we have not kept track
of possible zero modes in eq. (6.7), we will be more precise in the discussion below in this
regard as well.

There is one more subtlety which however must be addressed at the outset. The Green’s
function eq. (6.2) has short distance divergences which arise when the two points approach
each other, x→ y. These need to be regulated in order to make the calculation well defined.
One way to do so is to work with the probability not for electric fields at points Er(x) but
instead for electric fields which are smoothed out over a small distance scale. Here, instead
we will take the two points x,y to lie on two different spheres of radius R,R′ respectively,
with, R′ = R+ ∆, where

∆� R. (6.8)

This turns out to be equivalent, for our purposes, to the smoothing out procedure and is
easier to implement.

We now have two small distance cut-offs that have been introduced, ∆ above and
ε which appears in the entanglement entropy eq. (1.1). The spherical symmetry of this
problem ensures that the operator G−1

rr is diagonal in the spherical harmonic basis. The
short distance cut-off leads to a maximum value for the angular momentum, lmax, of the
modes that are being included. We take

lmax ∼
R

ε
, (6.9)

so that in effect ∆ is the cut-off along the radial direction, whereas ε is the cut-off in the
angular directions on the sphere. Of course, if the underlying regulator is a lattice of the
kind we have considered above, the two cut-offs would be the same, but it is convenient for
our case, having introduced them as distinct, to instead consider the limit,

∆� ε. (6.10)

This amounts to keeping the effects of modes l < lmax where

lmax �
R

∆
. (6.11)

We will see that imposing the condition eq. (6.11) on the modes will simplify the calcu-
lations. The log(A) term gets contributions from a range of l and its coefficient can be
reliably obtained by looking at the range which meets eq. (6.11).

The Greens function, eq. (6.2), can be calculated, as described in appendix A. We get,

Grr = − 1

π2 (R2 +R′2)2

α− cos γ

(1− α cos γ)3
, (6.12)

where γ is the angle between the two points

cos γ = x̂ · ŷ (6.13)
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and

α =
2RR′

R2 +R′2
= 1− ∆2

2R2
. (6.14)

To express this in the spherical harmonic basis we expand Grr in a power series in cos γ

and then use the relation

Pl(cos γ) =
4π

2l + 1

∑
m

Y m
l (θ1, φ1)Y m∗

l (θ2, φ2). (6.15)

Note that the power series expansion in cos γ is valid when

α < 1, (6.16)

from eq. (6.14) this requires,
∆ 6= 0. (6.17)

It is also clear that the resulting power series will have a divergence when α→ 1. We will
be interested in small values of ∆/R and thus in the leading divergence which arises in
this limit.

Some of the resulting algebra is described in more detail in appendix A. Working
self-consistently in the limit where eq. (6.11) is met we get that the leading divergence is
logarithmic going like log

(
R2

∆2

)
, and gives rise to a contribution

Glmrr =
1

πR4

(
log

R2

∆2

)
l(l + 1). (6.18)

Additional terms in Grr are sub-dominant when ∆/R� 1.
Notice that the Green’s function is proportional simply to the two-dimensional Lapla-

cian on S2. Using standard heat kernel methods we then get that
1

2
log detG−1

rr = −1

3
log

(
R

ε

)
+ · · · (6.19)

The coefficient, 1
3 , is determined by the central charge of the two dimensional free scalar

field theory. The ellipses in eq. (6.19) denote additional terms which do not contribute to
the log term. The prefactor, 1

πR4 log R2

∆2 , gives rise to a term going like A/ε2 in eq. (6.19).
Neglecting the D4 term in eq. (6.7)we then see from eq. (6.4) that

−
∑
i

pi log(pi) = −1

6
log

(
A

ε2

)
+ · · · (6.20)

where the ellipses denote terms which do not contribute to the log term of interest, and A
and R are related by eq. (5.1).

Putting all this together we finally get that the logarithmic contribution to the ex-
tractable part of the entanglement goes like,

Sextract =

[
−31

90
+

1

6

]
log

(
A

ε2

)
(6.21)

= −16

90
log

(
A

ε2

)
, (6.22)

which agrees with eq. (1.5). As mentioned above, that this is different from the full entan-
glement entropy.
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6.1 Comments

Let us end this section with some comments. We begin by addressing some of the points
in the calculation above more carefully.

We have not been careful about the exact definition of the normalisation, N , eq. (6.1),
which in turn in tied to the measure for the functional integral. Ambiguities in defining this
measure can be absorbed into different choices of local counter terms on the two-dimensional
boundary. These can change the coefficient of the leading area law divergence and also the
finite terms but not the coefficient of the log term. One can think of these as changes
in the coefficient D4 or the non-log pieces in log detG−1

rr of eq. (6.7). This is also clear
from our final result which is expressed in terms of the determinant of the two-dimensional
Laplacian. This determinant has ambiguities related to the two-dimensional cosmological
constant, etc. These give rise to a change in the coefficient of the area term but not the
coefficient of the log piece.

A precise definition for N will arise in any well defined way to regulate the theory,
e.g. if we start with the lattice definition used above. It is worth pointing out that the
normalisation constant in this case will depend on the coupling constant g. The link vari-
ables θij on the lattice are compact, θij ∈ [0, 2π], as a result their conjugate variables Lij ,
are quantised with integer eigenvalues, which we denote as n here. From the lattice and
continuum actions, eq. (3.1), eq. (4.18) and the Hamiltonian, eq. (3.2) it follows, that

Ej(xi) =
g

ε2
Lij . (6.23)

where Ej(xi) is the electric field along the ĵ direction emanating from4 xi. As a result
the sum, ∑

n

→
∫
dEj

ε2

g
(6.24)

and this gives rise to the measure for the sum over the electric fields,∫
D[Er] =

∏
xi,j

dEj(xi)
ε2

g
(6.25)

where to define the product on the r.h.s. we are considering discrete values of xj valued on
a spatial lattice of size ε. Here the spatial lattice lies on the S2 boundary. For small enough
g we see from eq. (6.24) that it is a good approximation to replace the sum over integer n
by a continuous integral (analogous to the sum over discrete momenta being replaced by∫ dp

2π~ for a free particle). We also see from eq. (6.25) that the normalisation N must then
go like N ∼ gNb , since Nb ∼ A/ε2 is the total number of points on the S2 boundary. From
eq. (6.4) we now see that this dependence on g givers rise to a contribution

∆[−
∑
i

pi log pi] ∼ − log(g)
A

ε2
. (6.26)

4ε in eq. (6.23) is a lattice cutoff, we are not being careful here about the cutoffs in the spatial and
temporal directions which can be different.
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More precisely, since the Gauss law constraint must be met and
∫
ErdΩ = 0, there

are Nb− 1 number of independent normal components of the boundary electric field. Thus
N ∼ gNb−1 leading to

∆

[
−
∑
i

pi log pi

]
= −(Nb − 1) log(g) (6.27)

The reduction by −1 in the prefactor, is analogous to what happens in the toric code model
for 2 + 1 dimensional discrete gauge theories [24, 25] as has been emphasised in [26].

As a result of this reduction, the topological entanglement proposed in [27], which is
a generalisation of the topological entanglement in 2 + 1 dimensions, proposed in [24, 25],
acquires a contribution,

∆Stop = − log(g). (6.28)

Note however that eq. (6.28) is not the full result for Stop in the U(1) theory.5 There
are additional contributions, since there are massless excitations in the system, and these
contributions are in fact non-topological, changing under smooth deformation of the three
regions involved in the definition of the topological entanglement. This is clear, for example,
from the classical term above, eq. (6.18), which depends on the two dimensional massless
scalar Laplacian on the boundary.

In fact the Gauss law constraint is also important for understanding the zero modes, to
which we turn next. From our result, eq. (6.18), we see that the contribution of l = 0 mode
to the two point function vanishes. This also follows from Gauss’ law since the integral∫
ErdΩ = 0 on S2 must vanish, a fact which can be directly verified from eq. (6.12) as

well.6 As a result, more precisely, the determinant in eq. (6.19) has been evaluated over
the non-zero modes, l 6= 0.

The fact that the two dimensional scalar Laplacian appears in eq. (6.18) is a striking
fact and can be argued to be true more generally as well. Consider any region R, whose
entanglement is of interest. Then one can argue the leading contribution to the Green’s
function for the normal component of E will arise from the scalar Laplacian on the boundary
of R. To see this let us first redo the calculations above in a somewhat different way which
makes the appearance of the two-dimensional Laplacian for the S2 case more transparent.

As discussed in appendix A, the two point function, eq. (6.12) , can be written as

Grr =
2

π

 1

12

(
R2 −R′2

)2
2RR′

∑
l,m

∫
dkk5jl(kR)ji(kR

′)Ylm(θ, φ)Y ∗lm(θ′, φ′) (6.29)

+
1

α

∑
lm

∫
dkk3jl(kR)jl(kR

′)Ylm(θ, φ)Y ∗lm(θ′, φ′)

]

where α is given in eq. (6.14).
5Also note that in eq. (6.28) g is the coupling constant, unlike [26] who obtain a contribution going like

log(L), where L is the size of the region.
6It is important for this check to work, that ∆ 6= 0 and the two points have been separated in the radial

direction.
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Note that φklm = jl(kr)Ylm(θ, φ) is an eigenvalue of the scalar Laplacian in 3 dimensions,

∇2φklm = −k2φklm (6.30)
1

r2
∂r(r

2∂rφklm)− l(l + 1)

r2
φklm = −k2φklm (6.31)

with l(l + 1) being the eigenvalue of the two dimensional Laplacian on S2.
In the limit, eq. (6.11), the contribution to the sum, eq. (6.29), is dominated by modes

with radial momentum bigger than the momentum along the S2 boundary, k � l
R .

We can use the WKB approximation to understand the behaviour of the modes in this
limit. In this approximation a solution goes like,

φ ∼ ei±
∫
dr
√
E−V , (6.32)

where E = k2r2 and the potential term arises from the two dim. Laplacian, V = l(l+1)/r2.
The leading term in eq. (6.32) comes from neglecting V and goes like e±i(kr+θ), where θ is
a phase. The next term comes from expanding the square root

√
E − V '

√
E[1 − 1

2
V
E ],

and is proportion to l(l + 1), the eigenvalue of the two-dim Laplacian.
Done more carefully, this gives rise to the standard asymptotic expansion [28],

jl(kr) =

√
π

2kr

[
H

(1)
l+1/2(kr) + c.c.

]
∼
{
eikr−θ

[
Pl+ 1

2
(kr) + iQl+ 1

2
(kr)

]
+ c.c.

}
. (6.33)

The leading behaviour which comes from setting Ql+ 1
2

= 0, Pl+ 1
2

= 1 cancels out in
the two integrals in eq. (6.29). The first non-trivial contribution then comes from keeping
the sub-leading term. From arguments given above it follows that its coefficient is therefore
proportional to the eigenvalue of the two dim. Laplacian. In addition, it is logarithmically
divergent going like, ∫

dk

k
eik(R−R′) ∼ log

(
R

∆

)
. (6.34)

We see that this reproduces the result, eq. (6.18) up to an overall constant, which we did
not keep track of.

These arguments make it clear that in the more general case as well, since we are
working in the limit where the component of the momentum normal to the boundary is
much bigger than the component along the boundary, the final result for the greens function,
eq. (6.18), will be given by the two dimensional Laplacian on the boundary, ∇2

B multiplied
by a logarithmic divergence,

Grr ∝ log

(
R2

∆2

)(
−∇2

B

)
. (6.35)

Thus det
(
∇2
B

)
will determine the difference between the full and extractable entanglement

entropy, eq. (6.18), eq. (6.19).
Finally, let us note that the results above help us understand some of the discrepancies

in the literature. Both results, eq. (5.16) and eq. (6.22) have been obtained earlier, for
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the coefficient of the log term, when considering the U(1) theory. We see that the first
result, eq. (5.16),which follows from the a anomaly coefficient is the total entanglement in
the extended Hilbert space definition and also the Replica trick that follows from it. The
second, eq. (6.22), is the extractable part corresponding to the number of Bell pairs which
can be distilled from the system, etc. The second result is tied to physical measurements
and thus independent of definitions. We also note that naively speaking one might think
that the U(1) theory would give the same result as two massless scalars in 3+1 dimensions,
since there are two transverse modes for a photon. However using the a anomaly coefficient
for the massless scalar we get that two scalars would give a log term,

SEE = 2×
(
− 1

180

)
log

(
A

ε2

)
= − 1

90
log

(
A

ε2

)
. (6.36)

This does not agree with either of the two results above, for SEE , eq. (5.16), or Sext,
eq. (6.22). The fact that the gauge theory result could differ from that obtained from two
scalars was first noted in [20] and is related to the presence of extra terms in the path
interval, called “Kabat terms”.

7 Conclusions

In this paper we have explored some features of the extended Hilbert space definition of
entanglement entropy in gauge theories by focusing on a simple example of the free U(1)

theory in 3 + 1 dimensions in the continuum. It has been noted earlier that this definition
agrees with the replica trick method of calculating the entanglement [1, 2]. It has also been
noted [7, 8] that the extended Hilbert space definition differs from the extractable entan-
glement, which is the maximum number of Bell pairs that can be obtained in entanglement
distillation or available for entanglement dilution, and the difference between the two was
precisely stated in [7, 8].

Here we start with the U(1) theory on the lattice at weak coupling and take the limit
carefully to arrive at the continuum limit of the path integral needed for the replica trick.
The path integral is gauge-invariant with the gauge-fixing delta function being accompanied
with the required Faddeev-Popov determinant. We then calculate both the full entangle-
ment, as given in the extended Hilbert space definition, and the extractable piece. More
precisely we calculate the coefficient of the log term, eq. (1.1), in these cases. We find that
the two are different. While the full entanglement has a coefficient C = −31

90 the extractable
piece has coefficient D = −16

90 , eq. (5.16) and eq. (6.22), eq. (1.5). The difference is related
to the central charge of a masses scalar that lives on the two-dimensional boundary. We
also argued that this is a general feature. For any region R in this theory the two kinds
of entanglement will differ and the difference will be related to the determinant of the
Laplacian for a massless scalar living on the two dimensional boundary of R.

We hope our analysis has helped resolve some of the differences in the literature where
both results, C, eq. (5.16), and D, eq. (1.5), for the coefficient of the log term in the
entanglement have been obtained. We see that these difference arise because the two
calculations pertain to two different quantities.
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Let us also comment that on the lattice we identify a contribution to the entanglement
entropy, which arises due to the Gauss law constraint. This contribution given in eq. (6.28),
goes like log(g), where g is the coupling constant of the theory, and is the analogue of a
term known to arise in the toric code model for discrete gauge theories [26]. In turn, this
contribution to the entanglement entropy gives rise to a term in the topological entangle-
ment entropy, Stop, eq. (6.28), although there are other contribution to Stop as well, due to
the presence of massless degrees of freedom.

It is also worth mentioning that the U(1) gauge symmetry could arise as the low-
energy limit of a more complete theory. In this case it could be that the full entanglement is
extractable using operators or excitations present in the full theory but not in its low-energy
limit. This could happen, for example, in condensed matter systems like quantum spin
liquids some of which are known to give rise to a free U(1) gauge theory in the infrared. Even
in such cases the difference found above between the full entanglement and its extractable
piece is interesting, since the extractable piece tells us about the Bell pairs which can be
obtained using only low-energy probes which couple to gauge invariant operators.

The entanglement entropy in the extended Hilbert space definition agrees with the
electric centre choice [1, 3]. Other definitions for the entanglement can also be given, these
will not agree with the replica trick path integral we have obtained. On the other hand,
the extractable entanglement has an operational significance in terms of extractable Bell
pairs. We also expect, for the same reasons, that the extractable entanglement is invariant
under electro-magnetic duality.

It is worth clarifying that the classical piece, −
∑

i pi log(pi), eq. (1.3), is also experi-
mentally accessible, since pi — the probability to belong to different superselection sectors
— is determined from the two-point function of the normal component of the electric field,
En, in the free U(1) theory, which can clearly be experimentally measure.7 Thus both
the extended Hilbert space definition and the extractable entanglement are experimentally
significant quantities, but they provide answers to experimentally distinct questions and
should not be confused with each other.

It is also worth commenting, as emphasised in [3, 13], that other quantities like the
mutual information or the relative entropy are less sensitive to the choice of the centre than
the entanglement entropy itself. For the U(1) theory considered here it was shown in [13]
by a numerical analysis that the dependence on the choice of the centre drops out for the
mutual information in the continuum limit.

One direction is which these results should be generalised is to consider non-Abelian
theories. The difference between the two kinds of entanglement in this case has an ex-
tra term, tied to the fact that irreducible representations in the non-Abelian case have
dimensions greater than unity. One expects that the difference between the two kinds of
entanglement can be expressed in terms of a contribution arising from the boundary of the
region of interest in this case as well.

It is also important to connect this discussion to gravity. The Ryu-Takayanagi entan-
glement [29] in AdS gravity, which corresponds to a minimal area surface, has been shown

7More generally in an interacting theory pi would be determined by the N -point correlators of the
electric field.
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to follow from the replica trick in the boundary [30]. Since we have argued that the replica
trick is equivalent to the extended Hilbert space definition, it follows in turn that the Ryu-
Takayanagi entanglement in the bulk agrees with this definition. However, we have seen
that the extractable entanglement, which has a clear physical significance, is different in
general. It will be very interesting to ask what the difference corresponds to on the gravity
side and whether it can be expressed in terms of geometric quantities, for example related
to minimal area surfaces or degrees of freedom living on such surfaces.
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A Calculation of the Green’s function

In this section, we will calculate the two-point function Grr of the radial component of the
electric field on the sphere, and from there prove that its contribution to the log term in
the entropy is −1

6 logA/ε2, eq. (6.20).
The strategy for finding the Green’s function will be to find the two-point function

in momentum space, using the standard quantisation rules, then Fourier transform it to
position space, and then finally decompose this answer in terms of spherical harmonics.
Then, log detGrr can be calculated using a standard heat kernel expansion.

The vector potential is quantised, in A0 = 0 and ~∇ · ~A = 0 gauge, as

Ai =

∫
d3k

(2π)3

1√
2k

∑
α

{
ak,αε

α
i (k)e−i(kt−k·x) + a†k,αε

α∗
i (k)ei(kt−k·x)

}
,

∑
α

εαi (k)εα∗i (k) = δij −
kikj
k2

.

(A.1)

Because of this, the electric field is

Ei = −i
∫

d3k

(2π)3

√
k

2

∑
α

{
ak,αε

α
i (k)e−i(kt−k·x) − a†k,αε

α∗
i (k)ei(kt−k·x)

}
(A.2)

and the Green’s function is

〈Ei(x)Ej(y)〉 =
1

2

∫
d3k

(2π)3
k

(
δij −

kikj
k2

)
eik·(x−y). (A.3)

The classical contribution is given by the two-point function with both points on the
sphere. However, naively choosing both points on the sphere gives un-physical divergences,
including the monopole term not vanishing as it should because of Gauss’ law. So, we
regularise by smoothing out the electric field a little in the radial direction; we choose the
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two points to be on spheres of radii R1 = R and R2 = R+∆ respectively. Since we want the
two spheres to be coincident, we take the spacing between the spheres to be much smaller
than the lattice scale, ∆� ε.

We can now proceed to calculate this regularised Green’s function. Defining ξ = x−y,
we rewrite the Green’s function as

Grr(ξ) =
1

2(2π)2

∫
dkd(cos θ)

(
k3x̂ · ŷ − kk · x̂k · ŷ

)
eikξ cos θ. (A.4)

The first term is

x̂ · ŷ
8π2

∫ ∞
0

dkk3

∫ 1

−1
d(cos θ)eikξ cos θ =

x̂ · ŷ
8π2

∫
dkk3 e

ikξ − e−ikξ

ikξ

=
x̂ · ŷ
4π2ξ

(
−∂2

ξ

)
Im

∫
dkeikξ

= − x̂ · ŷ
2π2ξ4

. (A.5)

And the second term is

− 1

8π2

∫
dkd(cos θ)kk · x̂k · ŷeik·ξ = − 1

8π2

(
−x̂ · ~∇ξ ŷ · ~∇ξ

)∫
dkk

∫
d(cos θ)eikξ cos θ

= − 1

8π2

(
−x̂ · ~∇ξ ŷ · ~∇ξ

) 2

ξ
Im

∫
dkeikξ

=
x̂iŷj
4π2

∂i∂j
1

ξ2

= − 1

2π2ξ4

(
x̂ · ŷ − 4

ξ · x̂ξ · ŷ
ξ2

)
. (A.6)

Calling the angle between the points γ, the various inner products above are

x̂ · ŷ = cos γ

ξ · x̂ = R1 −R2 cos γ

ξ · ŷ = R1 cos γ −R2

ξ2 = R2
1 +R2

2 − 2R1R2 cos γ. (A.7)

So, the Green’s function is

Grr = − 1

π2(R2
1 +R2

2)2

α− cos γ

(1− α cos γ)3
, α =

2R1R2

R2
1 +R2

2

= 1− 1

2

∆2

R2
. (A.8)

To diagonalise it, we will expand this in a basis of Legendre functions and use the
relation

Pl(cos γ) =
4π

2l + 1

∑
m

Y m
l (θ1, φ1)Y m∗

l (θ2, φ2). (A.9)
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To expand it in terms of spherical harmonics, we first expand out the denominator to
write it as a power series in α,

Grr = − 1

π2(R2
1 +R2

2)2
(α− cos γ)

∞∑
n=0

(n+ 1)(n+ 2)

2
αn cosn θ

=
1

π2(R2
1 +R2

2)2

∞∑
n=0

n+ 1

2

[
1− α2

α
n− 2α

]
αn cosn γ, (A.10)

and then use the relations [31]

t2n =

∞∑
k=0

(4k + 1)
2n!!

(2n− 2k)!!

(2n− 1)!!

(2n+ 2k + 1)!!
P2k(t)

t2n+1 =

∞∑
k=0

(4k + 3)
2n!!

(2n− 2k)!!

(2n+ 1)!!

(2n+ 2k + 3)!!
P2k+1(t). (A.11)

We plug eqn (A.11) into eqn (A.10),

π2
(
R2

1 +R2
2

)2
Grr =

∞∑
k=0

(4k + 1)

{ ∞∑
n=0

(
1− α2

α
n− α

)
2n!!

(2n− 2k)!!

(2n+ 1)!!

(2n+ 2k + 1)!!
α2n

}
P2k

+
∞∑
k=0

(4k + 3)

{ ∞∑
n=0

(
1− α2

α
n− 3α2 − 1

2α

)
(2n+ 2)!!

(2n− 2k)!!

(2n+ 1)!!

(2n+ 2k + 3)!!
α2n+1

}
P2k+1.

(A.12)

Note that the factors of 4k+1 and 4k+3 will exactly cancel those that come from converting
the Legendre polynomial into spherical harmonics.

The part of the sum contributing to its divergence is

n ∼ 1

1− α2
=
R2

∆2
. (A.13)

Since the maximum angular momentum allowed is

lmax ∼
R

ε
� R

∆
� R2

∆2
, (A.14)

as long as we’re interested in only the divergent pieces, we can safely work in the regime

k � n (A.15)

and look at terms order by order in a 1/n expansion.
To do this expansion, we rewrite the double factorials as

2n!!

(2n− 2k)!!

(2n+ 1)!!

(2n+ 2k + 1)!!
=

k−1∏
r=0

(
1− 1

2

2k + 1

n+ k + 1
2 − r

)
and (A.16)

(2n+ 2)!!

(2n− 2k)!!

(2n+ 1)!!

(2n+ 2k + 3)!!
=

k−1∏
r=−1

(
1− 1

2

2k + 1

n+ k + 1
2 − r

)
. (A.17)
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Clearly, in both terms the r.h.s. goes as 1 + 1/n + 1/n2 + · · · at large n. Now, there
are two terms multiplying the double factorial, in eq. (A.12) one proportional to n and one
proportional to 1. Thus, the even term in eq. (A.12) splits into two terms, one of which
goes as n+ 1 + 1/n+ · · · and the other of which goes as 1 + 1/n+ 1/n2 + · · · , and similarly
for the odd term. Naively, then, the leading divergence is quadratic. However, the term
proportional to n comes with a factor of 1−α2, which reduces the power of the divergence
by one order, and so the leading divergence is linear.

In fact, the linear divergence actually cancels. The terms corresponding to the leading
divergences all come from when the term which is only a product of 1s for every r in
eqs. (A.16) or (A.17). For the even term, this part is

1− α2

α

∑
nα2n − α

∑
α2n =

1− α2

α

α2

(1− α2)2
− α 1

1− α2
= 0. (A.18)

Similarly, for the odd term, this part is

1− α2

α

∑
nα2n+1 − 3α2 − 1

2α

∑
α2n+1 =

1− α2

α

α3

(1− α2)2
− 3α2 − 1

2α

α

1− α2
=

1

2
,

(A.19)
which, while not 0 per se, is regular.

So, the leading divergence is logarithmic. Only the part that didn’t have an n multi-
plying the double factorials in eq. (A.12) can contribute to the log divergence, since the log
divergent piece in the part with the n vanishes because of the multiplication with 1 − α2.
In the part without the n, the first sub-leading term is the one where exactly one of the
factors in the products (A.16) or (A.17) doesn’t contribute a 1, resulting in a piece that is
overall of O(1/n). For the even term, it is

α
∑
n

k−1∑
r=0

2k + 1

2n+ 2k + 1− 2r
α2n =

α

2
(2k + 1)

k−1∑
r=0

∑
n

(
α2n

n
+O

(
1/n2

))
=
l(l + 1)

4
log

(
1

1− α2

)
. (A.20)

In obtaining the second line on the r.h.s. we have set 2k = l, and also set the prefactor α
outside the sum to be unity. And for the odd term it is

3α2 − 1

2α

∑
n

k−1∑
r=−1

2k + 1

2n+ 2k + 1− 2r
α2n+1 =

3α2 − 1

2α

2k + 1

2

k−1∑
r=−1

∑
n

(
α2n+1

n
+O

(
1/n2

))
=
l(l + 1)

4
log

(
1

1− α2

)
. (A.21)

Once again, in obtaining the second line on the r.h.s. we set α = 1 in the prefactor multi-
plying the sum and also set 2k + 1 = l.

All the rest of the terms do not contribute to the log part and we ignore them. Thus,
putting R1 = R and R2 = R+ ∆, the Green’s function to leading order is

Glmrr =
1

πR4
l(l + 1) log

R2

∆2
. (A.22)
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As noted in the main text, this means that the Green’s function to leading order is ∇2,
where∇2 is the Laplacian on the two-dimensional sphere. Thus, the entropy is 1

2 log det∇2.
To evaluate this, we use a heat kernel expansion

1

2
tr log∇2 = −1

2

∫ ∞
ε2

dt

t
tr et∇

2

. (A.23)

For two-dimensional manifolds without boundary, the short-time asymptotic expansion of
the heat kernel for the Laplacian is known to be (see for example [32])

tr et∇
2

≈ 1

4πt

{
tr1 + t tr

(
R

6
1

)}
, (A.24)

where R is not the radius but the Ricci scalar.
Clearly, it is the second term that gives a log divergence. Substituting the Ricci scalar

in terms of the radius as 2/R2 and tr1 = 4πR2, we get the log divergent piece to be

− 1

6
log

R2

ε2
. (A.25)

This agrees with eq. (6.19) above.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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