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1 Introduction

In scenarios of physics beyond the Standard Model (SM), the early Universe may have

been inhabited by exotic particles charged under QCD. Due to their strong interactions

with SM particles, they were initially in thermal equilibrium and later froze out.

If the colored particle is stable, stringent constraints for a strongly interacting dark

matter (DM) particle apply (see [1] and references therein). On the other hand, if

metastable, it may first freeze out and then decay. This can happen in, e.g., the R-parity

conserving Minimal Supersymmetric extension of the Standard Model (MSSM) where the

next-to-lightest supersymmetric particle (NLSP) is colored, and the lightest supersymmet-

ric particle (LSP), which is a DM candidate, is extremely weakly interacting (the super-

WIMP), such as the gravitino or axino. Typically, observational and experimental bounds

are applicable only to a metastable colored particle with a lifetime & 0.1 sec. In par-

ticular, important constraints can be derived from Big-Bang nucleosynthesis (BBN) (see

e.g. [2]). Moreover, the decays of the colored particles into superWIMPs can contribute

non-thermally to the relic density of DM.

The massive colored particle can also play a role in determining the relic abundance of

the DM when the latter is a weakly interacting massive particle (WIMP), especially when
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the mass of the colored particle is almost degenerate with the DM. In this case, coannihila-

tions can significantly reduce the relic abundance of the DM [3]. This has been considered

in the MSSM scenarios where the neutralino is the LSP, and the coannihilator is a squark

(in particular a lighter top squark) [4–13] or a gluino [12, 14–25]. The coannihilator can also

be a Kaluza-Klein (KK) quark in the Universal Extra Dimension (UED) models [26–31].

The main purpose of this paper is to study the effects of exotic massive colored particles

on DM relic abundance, assuming that they share the same discrete symmetry stabilizing

DM (e.g., R-parity in supersymmetric models and KK-parity in UED models). We calcu-

late the DM relic abundance in scenarios where the colored particle coannihilates with the

WIMP. We also discuss implications of a metastable colored particle on BBN and the DM

relic abundance in the superWIMP scenario.

The major update of our work compared to previous calculations is the inclusion of

the effects of QCD bound states of the exotic colored particles, X1 and X2. The formation

of a QCD bound state, η, occurs via the process X1X2 → ηg, in which the gluon, g,

takes away the binding energy. η can then decay to SM particles via the annihilation of

its constituents, X1 and X2. The net effect is to remove X1 and X2 from the thermal

bath. As will be shown in the following, these processes increase significantly the effective

annihilation cross section of the X’s or DM. We note that due to color charge conservation,

the QCD potential between X1 and X2 before they form a bound state can be different

from the one after they become the constitutes of η, with a gluon emitted. Moreover, in

contrary to the Sommerfeld effect [32] which can enhance the effective annihilation cross

section when the potential between the incoming X1 and X2 is attractive, bound-state

effects can enhance the effective annihilation cross section no matter whether the potential

between the incoming X1 and X2 is attractive, repulsive or zero. In addition, we calculate

the corrections to the bound-state effects when the colored particle is electrically charged.

Furthermore, we study the compatibility of these scenarios with collider constraints,

especially those derived from the Large Hadron Collider (LHC) experiments. Studying

LHC constraints is particularly timely as the undergoing LHC experiments are capable of

excluding masses of colored particles up to the TeV scale. It is worth noting that while

the DM relic abundance and BBN constraints often imply upper limits on the masses

of colored particles or DM, collider results impose lower limits on the masses of colored

particles. Studying both BBN/DM relic density and collider constraints therefore probe

the experimentally allowed parameter “window” of the long-lived colored particles or the

coannihilating DM scenarios.

The rest of the paper is organized as follows. In section 2, we discuss the formation,

dissociation and annihilation decay of bound states formed by a pair of massive colored

particles in the early Universe, focusing in particular on the cases of complex scalars (S3)

or Dirac fermions (F3) in the color SU(3) fundamental representation, and real scalars (S8)

or Majorana fermions (F8) in the adjoint representation. In section 3, we calculate the

DM relic abundance in massive colored particle - WIMP coannihilation scenarios and the

contributions from decays of metastable massive colored particles on the relic density of a

superWIMP DM, by including the Sommerfeld and bound-state effects in the Boltzmann

equation. We also consider the constraints from BBN on the long-lived massive colored
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particle scenarios, and discuss the electric charge corrections for the bound-state effect. The

thermally-averaged s- and p-wave annihilation cross sections needed in the calculations are

listed in appendix A. In section 4, we study the collider limits on the exotic massive colored

particles. Finally, we summarize our conclusions in section 5.

2 Bound state formalism

In this section, we discuss the formation and dissociation of the QCD bound state,

X1X2 ↔ ηg, in the early Universe. DM bound-state formation due to some new abelian

gauge force was considered in [33], and a systematic study of its effects on DM relic abun-

dance was performed in [34]. Using the SM non-abelian color SU(3) group, gluino bound-

state effects on neutralino DM coannihilation in the MSSM have been investigated in [23].

A field-theoretic framework for the computations of bound-state effects was established

in [35]. A formalism for bound states based on non-relativistic effective theories was given

in [36, 37]. Bound-state formation due to a Yukawa potential was studied in [38]. See

e.g. [39–42] for other phenomenological implications of DM bound-state formation.

We are concerned with massive colored particles with masses mX1 ,mX2 � ΛQCD. In

the early Universe before the quark-hadron phase transition era, the long-range interac-

tion between two massive colored particles can be described by a perturbative one-gluon

exchange Coulomb-like potential, which has the form:

V (r) = − ζ
r
, (2.1)

in which ζ is determined by the quadratic Casimir coefficients of the color representations

of the individual colored particles, X1 and X2 (CX1 and CX2 , respectively), as well as of

the one by taking X1 and X2 together in a specific color state (CX1X2):

ζ =
1

2
(CX1 + CX2 − CX1X2)αs , (2.2)

where αs > 0 is the QCD coupling strength. A positive, negative or zero value of ζ gives

an attractive, repulsive or zero potential, respectively.

The colored particles we consider in this paper include a complex scalar and a Dirac

fermion in the color SU(3) fundamental representation, a real scalar and a Majorana

fermion in the adjoint representation. The X1X2 combinations are S3S3, F3F3, S8S8

and F8F8, abbreviated in the following as S3, F3, S8 and F8, respectively, and hence

mX1 = mX2 ≡ mX . Examples of S3 and F8 are a squark-antisquark pair and a gluino-

gluino pair, respectively, in the MSSM. A KK quark-antiquark pair in models of UED is

a realization of F3. One can also build models for the S8 case [43, 44]. The product of a

color triplet and an anti-triplet is decomposed as

3⊗ 3 = 1⊕ 8, (2.3)

and the product of two color octets is decomposed as

8⊗ 8 = 1S ⊕ 8A ⊕ 8S ⊕ 10A ⊕ 10A ⊕ 27S , (2.4)
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where the subscripts “S” and “A” indicate symmetric and anti-symmetric color states,

respectively. Therefore, the relevant quadratic Casimir coefficients of the color representa-

tions for our calculations are C1 = 0, C3 = 4/3, C8 = 3, C10 = 6 and C27 = 8.

In principle, a bound state can form as long as the potential for it is attractive.1 In

this paper, we focus on the color-singlet bound state, since it is expected to be the deepest

bound (i.e., the ground state) and the most copiously produced one, in analogy to atomic

physics.2 Therefore, the coefficient, ζ, in eq. (2.1) for the bound states in the S3 and F3

cases is 1/2× (4/3 + 4/3− 0)αs = (4/3)αs, and is 1/2× (3 + 3− 0)αs = 3αs for the S8 and

F8 cases. In all the four cases, we consider that the color-singlet bound states have total

orbital angular momentum L = 0 and spin S = 0.3 The normalized spatial wave function

of such a bound state is

φη(r) = (πa3)−1/2e−r/a, (2.5)

where a is the Bohr radius, given as

a = (ζµ)−1, (2.6)

where µ ≡ mX1mX2/(mX1 + mX2) = mX/2 is the reduced mass. The binding energy of

the bound state is

EB =
ζ2µ

2
. (2.7)

1We note that at a temperature T of the Universe, the screening effect from the quarks and gluons

in the thermal plasma induces a thermal mass mth ∼
√
αsT to the gluon, modifying the QCD Coulomb

potential to a Yukawa one. However, as emphasized in [38], the Coulomb potential is a good approximation

as long as the momentum transfer between the two incoming particles, ∼ mX

√
T
mX

, is larger than mth.

We can see that this condition is well satisfied at the usual freeze-out temperature T ∼ mX/20, and further

better satisfied for the bound-state effect calculation since the effect of which is important at even lower

temperature T ∼ α2
smX , as will be shown in the next section.

2In [41], the formation of bound states at excited energy levels is discussed for bound-state effects in

the late Universe, and it is found that the total bound-state formation cross section is dominated by levels

with principle quantum numbers n < ζ/vrel, where vrel is the relative velocity of the incoming particles.

Compared to the ground state, the contribution from the excited states enhances the total bound-state

formation cross section by a logarithmic factor ∼ log(ζ/vrel), which is significant for vrel ∼ 10−3 in the

galactic halo. However, in the early Universe at temperatures relevant for the dark matter relic abundance

calculation, vrel is of order 10−1, so that ζ/vrel ∼ 1. Moreover, compared to the ground state, the excited

states are easier to be dissociated by gluons in the thermal bath, while the dissociation is not a concern for

bound states in the late Universe. Therefore, the contribution from the excited states is not significant for

the relic abundance calculation. Nevertheless, in the next section we will also show results with a factor of

2 enhancement of the bound-state effect from the considerations of the excited states contribution as well

as other uncertainties in our calculations.
3The total wave function of the bound state is a product of the spatial, spin and color parts of the wave

functions. For the S8 (F8) case, because of the nature of identical particles, the total wave function should

be symmetric (anti-symmetric). L = 0 gives symmetric (symmetric) spatial wave function, and S = 0 gives

symmetric (anti-symmetric) spin wave function. Together with the symmetric color wave function of the

color-1S state, indeed the requirement for the total wave function is satisfied.
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2.1 Bound-state formation, dissociation, and annihilation decay

We start with a general description of the formation, dissociation and annihilation decay

processes of bound states without specifying the color representation of the particles.

First of all, due to color charge conservation, the emission (absorption) of a gluon

during bound-state formation (dissociation) makes the color representation of the bound

state η not necessarily be the same as the free pair X1X2. Therefore, the coefficient in the

Coulomb potential for the free pair, denoted as ζ ′, is not necessarily equal to the one for the

bound state. In particular, ζ ′ can be negative, so that the potential is repulsive for the free

pair. As will be shown, at high temperature in the early Universe, the massive colored parti-

cles can have enough kinetic energy to overcome a repulsive potential to form a bound state.

We follow [23] to calculate the bound-state formation and dissociation cross sections,

where the method is adapted from the calculations of the photoelectric effect for an

atom [45]. The essence of the calculation is to evaluate the transition matrix element

between the bound state and the free pair state:

Mfi =

∫
φ∗f

(
−i

~∇ · ~εc

µ

)
ei
~k·~rφid

3~r, (2.8)

where φf is the wave function of the free pair and φi ≡ φη(r). The gluon has a momentum
~k and a polarization ~εc, where “c” is the color index.

For the free pair, the normalized spatial part of the wave function is (see section 136

of [46])

φf =
1

2|~p|

∞∑
L=0

iL(2L+ 1)e−iδLRpL(r)PL

(
~p · ~r
|~p|r

)
, (2.9)

where |~p| is the relative momentum of the free pair, expressed in terms of the reduced

mass and their relative velocity as |~p| = µvrel. PL( ~p·~r|~p|r ) is the Legendre polynomial and δL
(a real number) is the phase shift. Note that the form of the radial function RpL(r) for an

attractive potential between the free pair is different from the one for a repulsive potential

(see section 36 of [46] for details). Consider the spatial part of the wave functions only, the

differential dissociation cross section is given as

dσ0
dis = αs

µ|~p|
2πω
|Mfi|2dΩ~p , (2.10)

where ω ≡ |~k| is the energy of the gluon. The explicit αs factor in the above equation

comes from the coupling between the emitted gluon and the massive colored particle. In

the Lagrangian of the quantum field theory, this coupling is from the covariant derivative

of the kinetic term of the massive colored particle, and it takes the form of igsTc, where

gs =
√

4παs is the strong coupling, and Tc are the generator matrices for the color represen-

tation in which the massive colored particle lies. We will specify Tc in the next subsection

when we consider the color part of the wave functions for the four cases of our interest.

We use the dipole approximation,4 ei
~k·~r ' 1, to calculate the transition matrix element

eq. (2.8). This means that only the L = 1 term in φf has a non-zero contribution. Also,

4We refer the reader to [23] for details. For the four cases of our interest (S3, F3, S8, F8), we have

checked that the dipole approximation is always justified. Also, the kinetic energy of the bound state is

negligible compared to the gluon energy, so that ω ≈ EB + 1
2
µv2rel.
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considering that it is the absolute square of the transition matrix element that appears in

eq. (2.10), we can drop the phase factors and rewrite φf as

φf =
3

2|~p|
Rp1(r)P1

(
~p · ~r
|~p|r

)
. (2.11)

Defining dimensionless quantities

ν ≡ |ζ ′|/vrel (2.12)

and

κ ≡ ζ/|ζ ′|, (2.13)

we can write down the integrated dissociation cross section, averaged over the incoming

gluon spin polarizations. The result depends on whether the free pair feels an attractive

(denoted by the subscript “a”) or a repulsive (denoted by the subscript “r”) Coulomb

potential:

σ0
dis,a =

29π2

3
αsa

2

(
EB
ω

)4 1 + ν2

1 + (κν)2

e−4ν arccot(κν)

1− e−2πν
κ−1 , (2.14)

σ0
dis,r =

29π2

3
αsa

2

(
EB
ω

)4 1 + ν2

1 + (κν)2

e4ν arccot(κν)−2πν

1− e−2πν
κ−1 . (2.15)

In the case that the free pair feels no potential (denoted by the subscript “free”, and see

section 33 of [46] for the radial function), we find

σ0
dis,free =

29π2

3
αsa

2

(
EB
ω

)4 (aµvrel)
3

2π [1 + (aµvrel)2]
. (2.16)

One can check that in the ζ ′ → 0 limit, eq. (2.14) and eq. (2.15) both become eq. (2.16).

The superscript “0” in the above three equations indicates that we have considered the

spatial part of the wave functions only, while the full wave functions are products of spatial,

color and spin wave functions. Also, if the particles are identical, one needs to symmetrize

or anti-symmetrize the wave functions. The full dissociation cross section, σdis, after taking

into account color, spin and the symmetry factors, is related to the bound-state formation

cross section, σbsf , via the Milne relation:

σbsf =
gηggω

2

gX1gX2 (µvrel)
2σdis, (2.17)

where gg,X1,X2,η are the degrees of freedom of gluon, X1, X2 and η, respectively. Note that

if X1 and X2 are identical, the left-hand side of eq. (2.17) has to be multiplied by 1/2 to

avoid double counting the number of bound-state formation reactions.

Bound state can be destroyed not only by the dissociation process, but also by decays.

Moreover, the decays can happen in two ways: the constituent particles inside the bound

state can annihilate between themselves (annihilation decay) or an individual constituent

particle can decay by itself. The effects of these two kinds of decays on the relic density of
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the metastable colored particles or DM are different. Since we assume that the constituent

particles in the bound state have the same discrete symmetry as the DM particle, the

annihilation decay to SM particles removes, for example, two R-odd numbers in supersym-

metry, while the individual constitute particle decay does not change the R-odd number.

For the colored particle coannihilating in the WIMP DM scenario and the metastable col-

ored particle in the superWIMP DM scenario, the individual constituent particle decay rate

is suppressed either by the small mass difference or by the very small coupling between

the massive colored particle and the DM particle,5 while the annihilation decay rate is not

suppressed and is proportional to the large mass of the colored particle. Therefore, we will

hereafter neglect the individual constitute particle decay rate compared to the annihilation

decay rate.

2.2 Results for S3, F3, S8 and F8

Here we present the full bound-state formation and dissociation cross sections for the cases

of S3, F3, S8 and F8, as well as the annihilation decay rates.

S3 and F3. Since we consider that the bound state is a color-singlet state, the emission

(absorption) of a gluon in the bound-state formation (dissociation) process dictates that

for both S3 and F3 the free pair state must be in a color-octet state (see eq. (2.3)), due

to color charge conservation. The normalized color wave function is δkj/
√

3 for the bound

state, and λbij/
√

2 for the free pair, where λbij are the Gell-Mann matrices, and the color

indices i, j, k = 1 − 3, b = 1 − 8. The generator Tc takes the form λcki/2 . Therefore, the

color part of the wave functions contributes to σdis as∣∣∣∣∣λbij√2

λcki
2

δkj√
3

∣∣∣∣∣
2

=

∣∣∣∣ δbc√6

∣∣∣∣2 =
4

3
. (2.18)

For S3, there is no spin wave function to worry about. While for F3, without consider-

ing the bound state, a pair of heavy colored fermion and anti-fermion can have 3/4 chance

in spin-triplet configurations with S = 1 and 1/4 chance in a spin-singlet configuration with

S = 0. Since we only consider a bound state with S = 0, then by neglecting the spin-orbit

interaction we will only consider a free pair that is also in S = 0 state. Therefore, we

consider that both the bound state and the free pair have the same spin wave function,

given as

(↑↓ − ↓↑)/
√

2 , (2.19)

so that the spin part of the wave functions does not introduce a factor for σdis. However, in

the next section we will see that when including the bound-state formation and dissociation

cross sections in the Boltzmann equation, we need to introduce an additional factor of 1/4

5This is the case in the MSSM for a Bino-like neutralino LSP coannihilating with a stop, when the

two-body decay of the stop into top and neutralino is kinematically forbidden, and indeed coannihilation

is responsible for giving the correct DM relic abundance for the small mass difference range [11]. For a

neutralino LSP coannihilating with a gluino, the gluino decay rate can be very suppressed by the small

mass difference as well as by large squark masses in the propagator [23]. For a gravitino or axino LSP, its

coupling with the NLSP is suppressed by the Planck or the Peccei-Quinn scale.
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for F3 compared to S3 to take into account the fact that we have only considered the S = 0

possibility in the former.

Putting the factor of 1/8 from the incoming gluon color averaging, the factor of 4/3

from the color part of the wave functions, and by noticing that the free pair has a repulsive

potential with ζ ′ = 1/2 × (4/3 + 4/3 − 3)αs = (−1/6)αs (see eq. (2.2)), we get the full

dissociation cross section for S3 and F3,

σS3,F3
dis =

1

8
× 4

3
× σ0

dis,r , (2.20)

in which the quantities inside σ0
dis,r are given in eqs. (2.6), (2.7), (2.12) and (2.13) with

ζ = (4/3)αs. From eq. (2.17), the bound-state formation cross sections are

σS3
bsf =

1× 16

3× 3

ω2

(µvrel)
2 × σ

S3,F3
dis (2.21)

and

σF3
bsf =

1× 16

6× 6

ω2

(µvrel)
2 × σ

S3,F3
dis , (2.22)

where the degrees of freedom are written explicitly.

For the bound-state annihilation decay, we consider the dominant decay mode only,

which is the two-gluon final state (see e.g. [47]), and the results are

ΓS3
η =

1

3
µα2

sζ
3 (2.23)

and

ΓF3
η =

2

3
µα2

sζ
3, (2.24)

where ζ = (4/3)αs. In the above two equations, the αs factor explicitly written is evaluated

at the scale of 2mX , while the αs inside ζ is evaluated at the scale of the inverse Bohr

radius, a−1.

S8 and F8. Due to the nature of identical particles, the total wave functions need to be

symmetric for S8 whereas anti-symmetric for F8.

The F8 case was studied in detail in [23], and the result for the gluon dissociation of

a color-1S bound state with (S = 0, L = 0) into a free pair in an 8A state with (S = 0,

L = 1) is

σF8
dis = 3× 4× 1

8
× 1

2
× σ0

dis,a , (2.25)

where the factor 3 comes from the color part of the wave functions together with the

generator Tc = −ifcde in the coupling between the gluon and the massive colored particle,

where fcde are the SU(3) structure constants. The factor 4 comes from symmetrization of

the spatial part of the bound-state wave function (L = 0) and anti-symmetrization of the

spatial part of the free pair wave function (L = 1). 1/8 comes from the color averaging of the
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incoming gluon. The factor 1/2 is introduced to avoid double counting of the two identical

massive colored particles in the outgoing free pair phase-space integration. The spin part of

the wave functions do not introduce any extra factor. The quantities inside σ0
dis,a are given

in eqs. (2.6), (2.7), (2.12) and (2.13) with ζ = 3αs and ζ ′ = 1/2× (3 + 3− 3)αs = (3/2)αs.

The S8 case is exactly the same as the F8 case, namely, a transition from the color-1S
bound state with (S = 0, L = 0) into the 8A free pair state with (S = 0, L = 1). The only

difference is that while for the F8 case the S = 0 state means that the spin wave function is

anti-symmetric (i.e., a spin-singlet configuration), for the S8 case there is no spin to worry

about, so that for the latter the total wave functions for both bound state and free pair

state are symmetric, as they should be. Therefore, we have

σS8
dis = σF8

dis ≡ σS8,F8
dis . (2.26)

The corresponding bound-state formation cross sections are

σS8
bsf = 2× 1× 16

8× 8

ω2

(µvrel)
2 × σ

S8,F8
dis (2.27)

and

σF8
bsf = 2× 1× 16

16× 16

ω2

(µvrel)
2 × σ

S8,F8
dis , (2.28)

where the factor of 2 in the front of the right-hand side of the two equations is actually

the factor of 1/2 which would have been in the left-hand side of eq. (2.17) to avoid double

counting the number of bound-state formation reactions. In eqs. (2.27) and (2.28), the

degrees of freedom are written explicitly.

Again, we consider the dominant two-gluon annihilation decay channel only, and the

annihilation decay rates are (see e.g. [47]),

ΓS8
η =

9

4
µα2

sζ
3 (2.29)

and

ΓF8
η =

9

2
µα2

sζ
3, (2.30)

where ζ = 3αs. The scales of evaluating the αs explicitly written and the one inside ζ in

the above two equations are understood similarly as in the S3 and F3 cases.

2.3 Thermal averaging

To study the bound-state effects on the relic abundance of the massive colored particles or

the DM, we need the thermally-averaged bound-state dissociation and annihilation decay

rates, as well as the formation cross section times the relative velocity of the free pair,

since it is these quantities that appear in the Boltzmann equation which determines the

evolution of the density of the massive colored particles or the DM with temperature, T .

By defining two dimensionless variables, z ≡ EB/T and u ≡ 1
2µv

2
rel/T , we can rewrite σdis
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and σbsf as functions of z and u, together with factors not changing with T . In particular,

the relevant quantities are expressed as

ω = EB

(
1 +

u

z

)
, (2.31)

ν =
( z
u

) 1
2
κ−1 , for ζ ′ 6= 0 , (2.32)

vrel = ζ
(u
z

) 1
2
. (2.33)

The thermally-averaged bound-state dissociation rate is

〈Γ〉dis = gg
4π

(2π)3

∫ ∞
EB

σdis
ω2dω

eω/T − 1
= gg

4π

(2π)3

∫ ∞
0

σdis
E3
B

(
1 + u

z

)2
du

z (ez+u − 1)
. (2.34)

The thermally-averaged bound-state formation cross section times relative velocity is

〈σv〉bsf =

∫ ∞
0

σbsfvrelf(vrel)

(
1 +

1

eω/T − 1

)
dvrel , (2.35)

where f(vrel) is the Maxwell-Boltzmann distribution function for vrel, given as

f(vrel) =
( µ

2πT

)3/2
4πv2

rel e
−µv

2
rel

2T . (2.36)

The factor 1
eω/T−1

in eq. (2.35) accounts for the stimulated emission due to the gluons in

the thermal bath. Using eqs. (2.33) and (2.7), 〈σv〉bsf can be rewritten as

〈σv〉bsf =

∫ ∞
0

σbsfζ
(u
z

) 1
2 2√

π
u1/2e−u

(
1 +

1

ez+u − 1

)
du . (2.37)

The thermally-averaged bound-state annihilation decay rate is

〈Γ〉η = Γη〈
mη

Eη
〉 ≈ Γη

∫∞
0

mη
Eη
e−Eη/Td3~pη∫∞

0 e−Eη/Td3~pη
= Γη

K1(mη/T )

K2(mη/T )
, (2.38)

where mη is the mass of the bound state, given as mη = mX1 + mX2 − EB. In the

above formula, we have assumed the Maxwell-Boltzmann approximation for the bound-

state equilibrium distribution, and K1,2(mη/T ) are the modified Bessel functions of the

second kind. At mη � T , 〈Γ〉η ≈ Γη.

3 Relic abundance calculation

We need to set up a Boltzmann equation (or a coupled set of Boltzmann equations) to solve

for the relic abundance of the massive colored particles in superWIMP scenario or of the

DM in WIMP scenario. The necessary ingredients for the bound state in the Boltzmann

equation, i.e., the thermally-averaged bound-state formation cross section, dissociation

and annihilation decay rates, are given in the previous section. There is another important

ingredient — the Sommerfeld effect — needs to be considered for massive annihilating

particles feeling a long-range force. The Sommerfeld effect in the calculations of thermal

relic abundance has been studied extensively in the literature (see e.g. [48–55]). Let us

first briefly describe the Sommerfeld corrections to the annihilation cross sections of the

massive colored particles of our interest.

– 10 –
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3.1 Sommerfeld effect

We consider the Sommerfeld effect resulting from the long-range Coulomb potential be-

tween the two annihilating massive colored particles. Under the influence of a Coulomb

potential of the form V (r) = −α/r, the Sommerfeld corrected s-wave annihilation cross

section can be written as

σvrel = aS(α/vrel) , (3.1)

where

S(α/vrel) =
2πα/vrel

1− e−2πα/vrel
. (3.2)

An attractive potential (α > 0) results in an enhancement (S > 1), while a repulsive

potential (α < 0) results in a suppression (S < 1). In eq. (3.1), the perturbative s-

wave cross section, a, does not depend on temperature. Therefore, the thermally-averaged

Sommerfeld corrected s-wave cross section is a〈S(α/vrel)〉, where

〈S(α/vrel)〉 =

∫ ∞
0

S(α/vrel)f(vrel)dvrel , (3.3)

with f(vrel) given in eq. (2.36).

For the massive colored particles of our interest, we expect that the dominate annihila-

tion channels are S3S3, F3F3, S8S8 and F8F8 annihilation into a pair of gluons, gg, and

into quark-antiquark pairs, qq. We consider the Sommerfeld corrected s-wave cross sec-

tions and the tree-level p-wave cross sections in our calculation. The relevant expressions

are collected in appendix A. To consider the Sommerfeld effect, we need to decompose an

s-wave cross section into partial cross sections contributed from each of the two-body states

in different color representations, as given in eqs. (2.3) and (2.4), because different repre-

sentations correspond to different Coulomb-like potentials. We follow the decompositions

given in [54]. The thermally-averaged Sommerfeld factors are

〈σvrel(S3S3 or F3F3→ gg)〉s-wave, Sommerfeld

〈σvrel(S3S3 or F3F3→ gg)〉s-wave, pertubative

=
2

7
〈S
(

4αs/3

vrel

)
〉+

5

7
〈S
(
−αs/6
vrel

)
〉 ,

〈σvrel(F3F3→ qq)〉s-wave, Sommerfeld

〈σvrel(F3F3→ qq)〉s-wave, pertubative

= 〈S
(
−αs/6
vrel

)
〉 ,

〈σvrel(S8S8 or F8F8→ gg)〉s-wave, Sommerfeld

〈σvrel(S8S8 or F8F8→ gg)〉s-wave, pertubative
=

1

6
〈S
(

3αs
vrel

)
〉+ 1

3
〈S
(

3αs/2

vrel

)
〉+ 1

2
〈S
(
−αs
vrel

)
〉,

〈σvrel(F8F8→ qq)〉s-wave, Sommerfeld

〈σvrel(F8F8→ qq)〉s-wave, pertubative
= 〈S

(
3αs/2

vrel

)
〉 . (3.4)

The s-wave cross sections vanish for S3S3→ qq and S8S8→ qq.

3.2 Boltzmann equation

We now have all the ingredients to write down and solve the Boltzmann equation. The

general formulae for N species of exotic particles in calculating the thermal relic densities

are given in [25]. In that formalism, the possibility of when the rates for interconverting

some of the species are not sufficiently large is taken into account, and in such case a
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coupled set of Boltzmann equations, rather than a single Boltzmann equation, is needed.

Also, a simple method for implementing the bound-state effects in the Boltzmann equations

is given, and a detailed example for the gluino-gluino bound state is shown in [23].

In this paper, we consider two exotic species — the massive colored particle and the

DM, and by considering that they share the same discrete symmetry stabilizing DM, we

assume that the decay of one massive colored particle produces one DM together with

some SM particles. In the superWIMP scenario, because the DM has long been out of the

thermal bath when the freeze-out of the massive colored particle happens, we only need to

solve the Boltzmann equation for the latter. In the WIMP scenario, we are interested in

the coannihilation between the two exotic species. As highlighted in [23, 24], coannihila-

tion is effective only if the interconversion rate between the two species is sufficiently large

compared to the Hubble expansion rate, otherwise the two species would freeze out sepa-

rately. Without committing to specific particle theory models, in this work we assume the

interconversion rate is sufficiently large so that the two species freeze out together and we

can use a single Boltzmann equation to calculate the DM density. We emphasize that this

condition needs to be checked when one consider coannihilations in specific DM models.

Also, as we are mainly interested in QCD interactions and further model specifications

would have been needed, in our calculation we neglect the (co)annihilation cross sections for

DM-DM and DM-massive colored particle, in comparing to the annihilation cross sections

between the massive colored particles. In the WIMP DM scenario, indeed this is usually

a good approximation. For example, for the right-handed stop-Bino coannihilation in the

MSSM, the stop-antistop annihilation to gg channel dominates the effective annihilation

cross section in the coannihilation region for an O(TeV) Bino [13], if the ratio of the lighter

stop- heavier stop-Higgs coupling to heavier stop mass is not very large [11]; for the gluino-

neutralino coannihilation, the gluino pair annihilations to gg and qq dominate over the

neutralino-gluino and neutralino pair (co)annihilation cross sections.

With these assumptions and approximations, in the WIMP DM scenario the evolution

of the total yield, that is, the total number density of exotic particles (i.e., the DM χ and

the massive colored particles X) over the entropy density, Ỹ ≡ YX +Yχ, where YX ≡ nX/s
and Yχ ≡ nχ/s, can be described by a single Boltzmann equation as follows:

dỸ

dx
= − xs

H(mχ)

(
1 +

T

3g∗s

dg∗s
dT

)
〈σeffv〉

(
Ỹ 2 − Ỹ 2

eq

)
, (3.5)

where

x ≡ mχ

T
, s =

2π2

45
g∗sT

3, H(mχ) ≡ H(T )x2 =

(
4π3GNg∗

45

) 1
2

m2
χ , (3.6)

and GN is the gravitational constant, mχ is the DM mass, g∗s and g∗ are the num-

bers of effectively massless degrees of freedom associated with the entropy density and

the energy density, respectively. Ỹeq is the equilibrium value of the total yield, given as

Ỹeq = Y eq
X + Y eq

χ = (neq
X + neq

χ )/s, where

neq
X =

T

2π2
gXm

2
XK2(mX/T ) , neq

χ =
T

2π2
gχm

2
χK2(mχ/T ) (3.7)
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are the thermal equilibrium number densities [56–58]. gχ is the DM degrees of freedom.

gX is the degrees of freedom of massive colored particles, being 6, 12, 8 and 16 for the cases

of S3, F3, S8 and F8, respectively. We note that for the S3 and F3 cases nX and neq
X take

into account both the massive colored particles and anti-particles, assuming that there is

no asymmetry between the number densities of them. The condition of a sufficiently large

interconversion rate between χ and X comparing to the Hubble expansion rate guarantees

that nX/nχ ≈ neq
X /n

eq
χ , to a very good approximation.6 By further defining

∆ ≡ (mX −mχ)/mχ , geff ≡ gχ + gX(1 + ∆)3/2e−∆x , (3.8)

the thermally-averaged effective annihilation cross section, 〈σeffv〉, can be written as

〈σeffv〉 = 〈σv〉XX→SM
g2
X(1 + ∆)3e−2∆x

g2
eff

, (3.9)

where 〈σv〉XX→SM is the thermally-averaged total annihilation cross section of X’s into

SM particles, with the Sommerfeld and bound-state effects taken into account, given as

〈σv〉XX→SM = 〈σvrel(XX → gg, qq)〉+ 〈σv〉bsf
〈Γ〉η

〈Γ〉η + 〈Γ〉dis
. (3.10)

For the S3 and F3 cases, since nX includes both particles and anti-particles, we need

to time a factor of 1/2 to the 〈σv〉XX→SM term in the right-hand side of eq. (3.9), if we

are using the usual spin and color averaged cross sections, as explained in the appendix

of [56]. Furthermore, for the F3 case, we need to time another factor of 1/4 to the 〈σv〉bsf

and 〈Γ〉dis in eq. (3.10), since we only consider the bound-state formation and dissociation

for the S = 0 state, which occurs with 1/4 of the possibilities of the total numbers of the

spin configurations for two spin-1/2 fermions.

The physical interpretation of the above formulae is as follows. First of all, since

the mass of the bound state, mη = 2mX − EB, is much larger than mX (note that

EB ∼ O(10−2)mX for αs ∼ 0.1), the equilibrium number density of the bound state

is negligible compared to the one for X, for mX � T . Also, since the bound-state anni-

hilation decay rate, 〈Γ〉η, is many orders of magnitude larger than the Hubble expansion

rate for a massive colored particle with a mass of O(1–100) TeV (note that 〈Γ〉η/H ∼
α5
sG
−1/2
N mXT

−2 > α5
sG
−1/2
N m−1

X , for mX > T ), which is of our interest in this paper, the

yield of the bound state keeps decreasing and is always negligible compared to the one for

X. These explain why we do not have to worry about the yield of the bound state in the

Boltzmann equation (3.5).

The second term on the right-hand side of eq. (3.10) accounts for the bound-state effect:

once formed, the bound-state can be destroyed either by dissociation back to individual

X’s or by annihilation decay to SM particles (as explained in section 2.1, we neglect the

individual X decay rate compared to the annihilation decay rate); only the latter process

6By setting up a coupled set of Boltzmann equations for χ and X with sufficiently large interconversion

rate between them (through decay, inverse decay and scatterings with SM particles), one can check that

the solutions of the set of Boltzmann equations, nχ and nX , satisfy this relation very well.
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reduces the total number of X’s. At high temperatures, a large fraction of the gluons in

the thermal bath have enough energy to break up the bound states before they can annihi-

lation decay, so that the bound-state effect is negligible. With the temperature falling, this

energetic fraction becomes smaller, and eventually when the temperature becomes com-

parable and then is below the bound-state binding energy, the annihilation decay process

dominates over the dissociation process, and the bound-state effect helps to reduce the

total number of X’s. Since we assume that X and the DM particle share the same discrete

symmetry which stabilizes DM, the net effect is to reduce the DM relic abundance. In

other words, the formation and the subsequent annihilation decay of bound states enhance

as a new channel of the annihilation of X’s. We note that to have the bound-state effect

reduce the total number of X’s efficiently, the bound-state formation rate should be larger

or comparable to the Hubble expansion rate, otherwise bound states essentially cannot

form in the first place. Indeed eventually the bound-state effect will cease to be effective

as the building block of the bound state, nX , is decreasing with the expanding of the Uni-

verse, as long as the bound state formation cross section does not increase too fast with

the decrease of temperature so that it compensates the decreasing of nX .

Following the usual procedure to obtain the DM relic abundance [56–58] by integrating

eq. (3.5) from a small value of x (when Ỹ = Ỹeq) to the current temperature of the Universe

(when essentially x→∞), we get Ỹ0, where the subscript “0” indicates today, and the DM

relic abundance is

Ωχh
2 = 2.755× 108 mχ

GeV
Ỹ0 . (3.11)

The above formulae can describe the evolution of the yield of the massive colored

particles in the superWIMP scenario by the following modifications: in eqs. (3.5), (3.6)

and (3.11), change Ỹ to YX , Ỹeq to Y eq
X , mχ to mX , and 〈σeffv〉 to 〈σv〉XX→SM, which is

given in eq. (3.10). After solving for the relic abundance of X would have today, if it had

not decayed, the amount of DM produced from the decays of X’s is obtained as

Ωnon-th
SW h2 =

mSW

mX
ΩXh

2 , (3.12)

where mSW is the mass of the superWIMP DM, and the superscript “non-th” indicates

that there can be also thermally produced amount, Ωth
SWh

2, which contributes to the total

DM relic abundance together with Ωnon-th
SW h2.

3.3 Bound-state effects

To get an idea of the size of bound-state effects, we plot in figure 1 with orange curves the

ratio of thermally-averaged Sommerfeld corrected XX → gg, qq annihilation cross section

to the one without Sommerfeld correction, i.e.,

〈σvrel(XX → gg, qq)〉Sommerfeld

〈σvrel(XX → gg, qq)〉w/o Sommerfeld
, (3.13)

the thermally-averaged bound-state formation cross section with (solid black curve) and

without (dotted black curve) considering bound state dissociation and annihilation decay
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rates, also normalized to the tree-level XX → gg, qq annihilation cross section, i.e.,

〈σv〉bsf
〈Γ〉η

〈Γ〉η+〈Γ〉dis
〈σvrel(XX → gg, qq)〉w/o Sommerfeld

and
〈σv〉bsf

〈σvrel(XX → gg, qq)〉w/o Sommerfeld
, (3.14)

respectively, and with purple curves for the same ones but multiplied by a factor of 2 in the

bound-state formation cross section (solid and dotted) and dissociation rate (solid), that is,7

2〈σv〉bsf
〈Γ〉η

〈Γ〉η+2〈Γ〉dis
〈σvrel(XX → gg, qq)〉w/o Sommerfeld

and
2〈σv〉bsf

〈σvrel(XX → gg, qq)〉w/o Sommerfeld
. (3.15)

The left and right panels are for the S3 and F8 cases, respectively.8 As can be observed

from both panels, at early times when EB/T � 1, the solid black curves are much smaller

than 1, although the dotted black curves have already bigger than 1. This is because for

this high temperature range, a large fraction of the gluons in the thermal bath are ener-

getic enough to break up the newly formed bound states before the latter can annihilation

decay, that is, 〈Γ〉dis � 〈Γ〉η. Also, a factor of 2 increase of the bound-state formation

cross section and also in the dissociation rate (since they are related via the Milne relation)

has little effect. With the decrease of temperature, 〈Γ〉dis becomes smaller and eventually

negligible compared to 〈Γ〉η when EB/T � 1, so that the solid and dotted black (and

purple) curves merge. By comparing the orange and solid black (and purple) curves, one

can see that when EB/T & 1, the size of the full-fledged bound-state effect is of the same

order and even larger than that of the Sommerfeld enhancement.

There is a qualitative difference between the S3 and F8 cases at EB/T � 1: while in the

F8 case the solid black and purple curves keep growing with the decrease of temperature, in

the S3 case they are decreasing after achieving maximum values around EB/T ∼ 2. This is

due to the fact that an S3 incoming pair feels a repulsive potential prior to forming a bound

state, while the potential is attractive for an F8 incoming pair. At lower temperature, there

is a smaller fraction of the incoming S3 pairs which have enough kinetic energy to overcome

the repulsive potential to form bound states. While for the F8 case, a low temperature

(and hence small velocities) favors the formation of bound states, similar to that of the

Sommerfeld enhancement.

7To account for the errors involving the evaluations of αs’s [59], the corrections from a more accurate

QCD potential and the thermal mass of the gluon [54], as well as the possibility that excited bound states

may also contribute to the bound-state effect [33], we plot purple curves in this and following figures with

an uncertainty of a factor of 2.
8We use a common value, αs = 0.1, for all the αs’s appearing in the formulae for the curves in figure 1

and the upper left, upper right and lower left panels in figure 6. In this way, all the ratios do not depend

on mX . However, we note that in other parts of this paper and other plots, αs’s are evaluated differently:

the αs’s appearing in the Sommerfeld factors in eq. (3.4) are evaluated at βmX which is the typical scale

of the momentum transfer of the soft-gluon exchanges which are responsible for the Sommerfeld effect [48],

and we take β = 0.3, which is roughly the average of the thermal velocities of the X’s at the freeze-out

temperature; the αs’s in the bound-state formation cross sections and dissociation rates, as well as in the

ζ part of the annihilation decay rates (given in eqs. (2.23), (2.24), (2.29) and (2.30)), are evaluated at the

bound-state inverse Bohr radius scale; the αs’s in the tree-level XX → gg, qq annihilation cross sections and

the ones appearing explicitly in the bound-state annihilation decay rates, are evaluated at the scale of 2mX .
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Figure 1. The thermally-averaged Sommerfeld corrected XX → gg, qq annihilation cross section

(orange curve), bound-state formation cross section with (solid black curve) and without (dotted

black curve) considering bound state dissociation and annihilation decay rates, as functions of

EB/T , for the S3 (left panel) and F8 (right panel) cases. The purple curves have the same meaning

as the corresponding black curves, but multiplied by a factor of 2 in the bound-state formation cross

section (solid and dotted) and dissociation rate (solid). All curves are normalized to the tree-level

thermally-averaged XX → gg, qq annihilation cross section without Sommerfeld correction. The

thin vertical black lines correspond to, from left to right, mX/T = 20, 30, 100.

In order to see the bound-state effect on the evolution of the yield and on the result

of final DM relic abundance, we plot in figure 2 the change of Ỹ with EB/T in the WIMP

coannihilation scenarios for the S3 (left panel) and F8 (right panel) cases, by assuming

a WIMP DM with the number of degrees of freedom gχ = 2. For S3 (F8), we take

mχ = 2 TeV (8 TeV), and the mass difference between DM and the colored particle 5 GeV

(15 GeV). The solid red, orange, black and purple curves are results calculated from

eq. (3.5) without the Sommerfeld and bound-state effects, with the Sommerfeld effect but

without bound-state effect, with both the Sommerfeld and bound-state effect, and with

Sommerfeld effect and a factor of 2 enlargement of the bound-state effect (i.e., 〈σv〉bsf →
2〈σv〉bsf and 〈Γ〉dis → 2〈Γ〉dis), respectively. In particular, the limiting values of the solid

black curves at EB/T → ∞ give roughly the correct DM relic abundance consistent with

the observational value, as we will show more in the next subsection by parameter scans.

The equilibrium yield, Ỹeq, is shown by a green dotted line. The thin vertical black lines

correspond to, from left to right, mX/T = 20, 30, 100. As can be seen from the plots,

the thermal freeze-out, defined when (Ỹ /Ỹeq − 1) becomes order unity, happens between

mX/T ∼ 20 and ∼ 30.9 After freeze-out, Ỹ keeps decreasing to its limiting value at

EB/T → ∞, which can be more than one order of magnitude smaller than its value

at freeze-out, especially when considering the Sommerfeld and bound-state effects. At

EB/T � 1, the black and purple curves are very close to the orange curve, indicating

that comparing to the Sommerfeld effect, bound-state effect is not important for that

temperature range. However, at EB/T ∼ 1, the black and purple curves depart from

the orange curve, and eventually result in significantly lower values of Ỹ at EB/T → ∞
(the limiting values for the purple and black curves are ∼ 40%–60% of the ones for the

9mX/T ≈ mχ/T since mX −mχ � mχ.
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orange curve, for the two parameter sets shown). We can also see that the purple curves

almost overlap with the black curves until EB/T ∼ 1, indicating that enlarge bound-state

formation and dissociation by a factor of 2 has little effect on the yield at high temperature.

These features are expected from the relative sizes of the Sommerfeld and bound-state

enhancement factors illustrated in figure 1.10

To understand the evolution of Ỹ more transparently, we also plot in figure 2 approx-

imate solutions of Ỹ with dashed red, orange, black and purple curves by using the fact

that Ỹeq becomes negligible compared to Ỹ shortly after freeze-out, so that eq. (3.5) can

take the approximate form

dỸ

dx
≈ − xs

H(mχ)

(
1 +

T

3g∗s

dg∗s
dT

)
〈σeffv〉Ỹ 2 , (3.16)

which has the solution

Ỹ (x2) =

[
1

Ỹ (x1)
+

∫ x2

x1

xs

H(mχ)

(
1 +

T

3g∗s

dg∗s
dT

)
〈σeffv〉dx

]−1

. (3.17)

We plot the dashed curves by using eq. (3.5) until x1 = 30, at which Ỹ is already much

larger than Ỹeq, then we input the value of Ỹ (x1 = 30) in eq. (3.17) and use it to plot Ỹ

at larger values of x. One can see that this approximation is very accurate, as the dashed

curves completely overlap with the corresponding solid curves. It is easier to see from

eq. (3.17) that with a large 〈σeffv〉 for at least a range of not-too-large x (in other words,

when nX has not been too diluted away by Hubble expansion), the contribution from the

integration part can be large compared to 1/Ỹ (x1). This explains why for the S3 case the

bound-state effect on the result of the final relic abundance is still significant, even though

the bound-state formation cross section decreases to zero at x→∞.

3.4 Coannihilations in the WIMP DM scenario

Let us now study scenarios in which the WIMP DM χ has a mass close to a certain massive

colored particle X, such that χ − X coannihilation is important in determining the DM

relic abundance. We assume that the DM has degrees of freedom gχ = 2, corresponding

to, for example, the Bino in the MSSM. The relic abundance of DM then depends only on

the DM mass, mχ, and the mass splitting between DM and the colored particle, mX −mχ.

We plot in figure 3 in the (mχ,mX − mχ) planes the contour bands of the DM relic

abundance falling within the 3-σ range of the Planck determination of the cold DM density,

ΩCDMh
2 = 0.1193 ± 0.0014 [60]. These bands are calculated using eq. (3.5) without the

Sommerfeld and bound-state effects (red), with the Sommerfeld effect but without bound-

state effect (orange), with both the Sommerfeld and bound-state effect (black), and with

Sommerfeld effect and a factor of 2 enlargement of the bound-state effect (purple). We

can see that for the S3, S8 and F8 cases, on top of the Sommerfeld enhancement, bound-

state effects further push upwards the largest mass splittings which can result in correct

10The relative sizes of the Sommerfeld and bound-state effects, as well as the positions of the vertical

lines for mX/T = 20, 30, 100 in figure 1, are a little different from the ones in figure 2, due to the different

αs’s used as mentioned earlier.
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Figure 2. The yield Ỹ as a function of EB/T for S3 (left panel) and F8 (right panel) coannihilating

with a WIMP DM. The solid red, orange, black and purple curves are results calculated from

eq. (3.5) without the Sommerfeld and bound-state effects, with the Sommerfeld effect but without

bound-state effect, with both the Sommerfeld and bound-state effects, and with the Sommerfeld

effect and a factor of 2 enlargement of the bound-state effect, respectively. The dashed red, orange,

black and purple curves are the corresponding results given by the approximation eq. (3.17). The

green dotted line is for the equilibrium value Ỹeq. The thin vertical black lines correspond to, from

left to right, mX/T = 20, 30, 100.

DM relic density. Also, the largest possible DM masses achieved at the endpoints of the

coannihilation strips when the mass splittings approach zero, increase by ∼ 50%, 100% and

30% with respect to the Sommerfeld-enhanced-only values, reaching ∼ 2.5, 11 and 9 TeV

for the S3, S8 and F8 cases, respectively.11 For the F3 case in the upper right panel,

however, the Sommerfeld and bound-state effects are much smaller compared to the other

three cases. As can be seen from the positions of the red and orange bands, the Sommerfeld

effect gives a slightly suppressed rather than an enhanced 〈σeffv〉.12

Figure 4 shows in the (mχ,Ωχh
2) planes the locations of the endpoints of the coan-

nihilation strips for different values of Ωχh
2, achieved when mX −mχ = 0, for S3 (upper

left), F3 (upper right), S8 (lower left) and F8 (lower right) coannihilating with a WIMP

DM which has gχ = 2. The color conventions are the same as in figure 3. The horizontal

green band shows the 3-σ range determined by Planck, 0.1151 < Ωχh
2 < 0.1235. We

can see that for the S3, S8 and F8 cases, for a given value of mχ the Sommerfeld effect

greatly reduces the calculated Ωχh
2 compared to the one without the inclusion of Sommer-

feld factors. Also, the calculated Ωχh
2 is further significantly reduced after including the

bound-state effect, in particular for a DM mass of TeV scale or larger. On the other hand,

for the F3 case, again we see that the Sommerfeld and bound-state effects are small, and

the Sommerfeld effect is opposite compared to the other three cases.

11The numerical differences for the F8 case in figures 3 and 4 compared to figures 4 and 5 in [23] are due

to a different use of αs in the bound-state formation and dissociation cross sections, as well as the effect

from the squark masses in the tree-level cross section of gluino pair annihilation into quark-antiquark pairs.
12The red and orange bands and curves in figures 3 and 4 are consistent with the red and light green

bands and curves in figures 1 and 2 in [54] for the S3, S8 and F8 cases. For the F3 case, the red band and

curve presented here are also consistent with the ones in [54], but the orange band and curve are different.

– 18 –



J
H
E
P
0
2
(
2
0
1
7
)
0
9
1

0.5 1.0 1.5 2.0 2.5 3.0
0

10

20

30

40

mχ [TeV]

m
X
-
m

χ
[G
eV

]
S3

0.5 1.0 1.5 2.0 2.5 3.0
0

10

20

30

40

50

60

mχ [TeV]
m
X
-
m

χ
[G
eV

]

F3

2 4 6 8 10 12 14
0

50

100

150

200

mχ [TeV]

m
X
-
m

χ
[G
eV

]

S8

2 4 6 8 10
0

50

100

150

200

mχ [TeV]

m
X
-
m

χ
[G
eV

]
F8

Figure 3. The (mχ,mX −mχ) planes showing bands where 0.1151 < Ωχh
2 < 0.1235 (3-σ range

of the Planck determination of the cold DM relic density), for S3 (upper left), F3 (upper right), S8

(lower left) and F8 (lower right) coannihilating with a DM which has degrees of freedom gχ = 2.

These results are calculated without the Sommerfeld and bound-state effects (red), with the Som-

merfeld effect but without bound-state effect (orange), with both the Sommerfeld and bound-state

effects (black), and with the Sommerfeld effect and a factor of 2 enlargement of the bound-state

effect (purple).

3.5 Implications of metastable particles on BBN and superWIMP DM

abundance

It is well-known that the concordance of the standard BBN predications of the primordial

light-element abundances with the values inferred from observational data, provides strong

constraints on the abundance, mass, lifetime, and decay spectra of a massive particle

– 19 –



J
H
E
P
0
2
(
2
0
1
7
)
0
9
1

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

mχ [TeV]

Ω
χ
h2

S3

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

mχ [TeV]

Ω
χ
h2

F3

2 4 6 8 10 12 14
0.00

0.05

0.10

0.15

0.20

mχ [TeV]

Ω
χ
h2

S8

2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

mχ [TeV]

Ω
χ
h2

F8

Figure 4. The locations of the endpoints (i.e., mX − mχ = 0) of the coannihilation strips for

different values of Ωχh
2, using the same color conventions as in figure 3 for S3 (upper left), F3 (upper

right), S8 (lower left) and F8 (lower right), respectively. The 3-σ range 0.1151 < Ωχh
2 < 0.1235 is

shown by the horizontal green band.

decaying during or after BBN (see e.g. [2]). Since our focus in this work is to study

the impacts of the bound-state effect of massive colored particles, we want to see how

much the bound-state effect can change the BBN constraints on the abundance and mass

comparing to in particular the Sommerfeld effect, for a given lifetime and decay spectra

which depend on other details of a specific particle theory model. With this in mind, we

simply use the parametrization given in eq. (56) of [59] for the BBN constraints obtained

by [2] for a massive metastable particle with a lifetime of ∼ 0.1–102 sec and assuming that

its hadronic decay branching ratio is 1 (which can be a good approximation for a massive

colored particle), given as

YX 6 1.0× 10−13
( mX

1 TeV

)−0.3
for τX ∼ 0.1–102 s . (3.18)

The above constraint comes from the would be overproduction of 4He, due to new proton

↔ neutron interconversion reactions induced by the hadronic shower from X decays. In

eq. (3.18), YX is the sum of the yield for particle and anti-particle in our convention.

We show in figure 5 YX as functions of mX for the S3 (left panel) and F8 (right

panel) cases, calculated using eq. (3.5) with the meanings of the variables understood as

mentioned at the end of section 3.2 for massive colored particles. As before, the red,
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Figure 5. The total yield of the massive colored particles as a function of the mass, for the S3 (left

panel) and F8 (right panel) cases, calculated without the Sommerfeld and bound-state effects (red

line), with the Sommerfeld effect but without bound-state effect (orange line), with both the Som-

merfeld and bound-state effects (black line), and with the Sommerfeld effect and a factor of 2 enlarge-

ment of the bound-state effect (purple line). The blue dashed line is the constraint given in eq. (3.18).

orange, black and purple lines are results without the Sommerfeld and bound-state effects,

with the Sommerfeld effect but without bound-state effect, with both the Sommerfeld

and bound-state effects, and with the Sommerfeld effect and a factor of 2 enlargement of

the bound-state effect, respectively. The blue dashed line is given by eq. (3.18), and the

parameter region above this line is excluded for an X with a lifetime of ∼ 0.1–102 sec.

We can see that the bound-state effect pushes the allowed regions of mX to larger values

compared to the ones with the Sommerfeld effect included only, namely, ∼ 1.1 → 2.1 TeV

and ∼ 8 → 11 TeV for S3 and F8, respectively. As will be discussed more in the next

section, since the LHC is pushing the exclusion limit of long-lived colored particles to TeV

scale, it is useful to update the exclusion limit from BBN as well by including the previously

omitted bound-state effect, so that we can be more confident to close or to leave open the

mass window a long-lived colored particle can have.

We now consider the contribution to superWIMP DM relic abundance from the out-of-

equilibrium decays of the massive colored particles. The gravitino [61, 62] and axino [63, 64]

LSP in R-parity conserving supersymmetric models serve as good examples of superWIMP

DM. Using eq. (3.12) and including the Sommerfeld and bound-state effects, the contribu-

tion can be parameterized approximately as

Ωnon-th
SW h2 ∼ 0.1

( mSW

1 TeV

)( mX

7 TeV

)1.2
, for X = S3, (3.19)

Ωnon-th
SW h2 ∼ 0.1

( mSW

1 TeV

)( mX

60 TeV

)1.2
, for X = F8. (3.20)

We note that in our calculations of the relic abundance of massive colored particles, we

have not included the possible further reduction of the abundance due to annihilations of

heavy exotic color-neutral hadrons, which are formed by not-yet-decayed massive colored

particles together with quarks and gluons after the quark-hadron phase transition in the

early Universe [65, 66]. In this sense, the BBN constraints given here are conservative. The
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contribution to Ωnon-th
SW h2 from the massive colored particle decays becomes smaller as well

if there is further reduction of ΩXh
2 after the quark-hadron phase transition.

3.6 Electric charge corrections for the bound-state effect

So far we have focused on bound-state effects with a gluon being emitted/absorbed in

the bound-state formation/dissociation process. If a massive colored particle also carries

some electric charge, for example, the squark in supersymmetry, a bound state can form

(or be dissociated) by emitting (or absorbing) a photon, i.e., X1X2 ↔ ηγ. Also, the

previously calculated bound-state formation/dissociation cross sections associated with

gluon emission/absorption are modified due to the change of the potentials between the

massive colored particles. To see the impacts of the electric charge on the bound-state

effect, we use the S3 case as an example by assigning a charge Q (−Q) to S3 (S3), and

consider the processes S3S3↔ ηg and S3S3↔ ηγ.

For S3S3 ↔ ηg, we still consider the transition between the (color-octet, L = 1,

S = 0) free pair state and the (color-singlet, L = 0, S = 0) bound state. By modifying

the coefficients of the Coulomb potentials, ζ → ζ + αEMQ
2 and ζ ′ → ζ ′ + αEMQ

2, where

αEM is the electromagnetic fine structure constant, the formulae given in section 2 still

apply. Quantities depending on ζ and/or ζ ′, e.g., a,EB, κ, and the cross sections and rates

into which they enter, therefore all change. With an electric charge, for the bound state

the previous attractive potential becomes more attractive. On the other hand, for the free

pair state the previous repulsive potential becomes less repulsive, and even it can become

attractive when |Q| is large enough, i.e., (−1/6)αs + αEMQ
2 is positive when |Q| & 3/2.

The bound-state annihilation decay rate changes as well due to the change of ζ.

For S3S3 ↔ ηγ, the bound state and the free pair state are in the same color state,

so that ζ = ζ ′. Using dipole approximation,13 we consider the transition between the

(color-singlet, L = 1, S = 0) free pair state and the (color-singlet, L = 0, S = 0) bound

state. The calculation is the same as for S3S3↔ ηg, except that there is no color factors

to worry about and the explicit coupling factor αs in eq. (2.10) is changed to αEMQ
2. The

bound-state dissociation and formation cross sections are

σγdis =
29π2

3
αEMQ

2a2

(
EB
ω

)4 e−4ν arccot ν

1− e−2πν
, (3.21)

σγbsf =
1× 2

3× 3

ω2

(µvrel)
2 × σ

γ
dis , (3.22)

where the superscript “γ” indicates photon emission/absorption. The quantities a,EB etc.

are evaluated taking into account the change of potential due to the electric charge as

mentioned above. In the thermally-averaged dissociation rate given in eq. (2.34), gg is

changed to gγ = 2. The formula for the thermally-averaged formation cross section times

relative velocity given in eq. (2.35) stays the same.

We show in figure 6 the impacts of electric charge on the bound-state effect for the

S3 case. The red dashed, red dotted, blue dashed, blue dotted and brown dashed lines

13We have checked that the dipole approximation is still justified with the inclusion of the electric charges

we consider.
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Figure 6. Impacts of the electric charge on the bound-state effect for the S3 case. The upper left

panel is for the gluon emission/absorption bound-state effect, corresponding to eq. (3.23). The upper

right panel is for the photon emission/absorption bound-state effect, corresponding to eq. (3.24).

The lower left panel takes both of the above two into account, corresponding to eq. (3.25). The

lower right panel shows the locations of the endpoints (i.e., mX −mχ = 0) of the coannihilation

strips for different values of Ωχh
2, for a WIMP DM with the degrees of freedom gχ = 2. The 3-σ

range 0.1151 < Ωχh
2 < 0.1235 of the Planck determination of the cold DM relic density is shown

by a horizontal green band. In all panels, the red dashed, red dotted, blue dashed, blue dotted and

brown dashed lines correspond to cases of |Q| = 1/3, 2/3, 1, 2 and 3, respectively. The grey dashed

lines in the upper left, upper right and lower left panels are for the case with the Q chosen such

that the potential for the free pair is zero. The black lines in the upper left, lower left and lower

right panels are for the case of Q = 0.

correspond to cases of |Q| = 1/3, 2/3, 1, 2 and 3, respectively. The grey dashed lines in the

upper left, upper right and lower left panels are for the case with the electric charge chosen

such that ζ ′ = 0. The black lines in the upper left and lower left panels are the same as

the one in the left panel of figure 1, and the black line in the lower right panel is the same

as the one in the upper left panel of figure 4, all for Q = 0. We use αEM = 1/128 in these

plots, and take values of αs’s as noted in section 3.3. The upper left panel shows the ratio

〈σv〉gbsf
〈Γ〉η

〈Γ〉η+〈Γ〉gdis
〈σvrel(XX → gg, qq)〉w/o Sommerfeld

, (3.23)
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where the superscript “g” indicates that only S3S3 ↔ ηg is considered. We can see that

larger |Q| makes the bound-state effect stronger. Also, for a large enough |Q| such that

the free pair potential becomes attractive (the blue dotted line and especially the brown

dashed line), the behavior of the ratio at large EB/T becomes more like the black line in

the right panel of figure 1 where the free pair potential is attractive. The upper right panel

shows the ratio
〈σv〉γbsf

〈Γ〉η
〈Γ〉η+〈Γ〉γdis

〈σvrel(XX → gg, qq)〉w/o Sommerfeld
. (3.24)

Again, larger |Q| leads to larger bound-state effect with photon emission/absorption. By

comparing with the corresponding lines in the upper left panel, we see that for |Q| < 2, at

EB/T . 10 the bound-state effect due to gluon emission/absorption is much larger than

the one due to photon emission/absorption, while they become comparable for larger |Q|.
The lower left panel shows the ratio(

〈σv〉gbsf + 〈σv〉γbsf

) 〈Γ〉η
〈Γ〉η+〈Γ〉gdis+〈Γ〉

γ
dis

〈σvrel(XX → gg, qq)〉w/o Sommerfeld
, (3.25)

in which the numerator is the one entering into the Boltzmann equation as the second

term in eq. (3.10). The shape of curves at smaller EB/T is controlled by the gluon

emission/absorption bound-state effect, while the one from photon emission/absorption

becomes important at larger EB/T .

We plot in the lower right panel the locations of the endpoints of the coannihilation

strips for different values of Ωχh
2, after taking into account the total impacts of electric

charge on the bound-state effects. As before, the horizontal green band shows the 3-σ

range of the Planck determination of the cold DM relic density, 0.1151 < Ωχh
2 < 0.1235,

and we assume a WIMP DM with the degrees of freedom gχ = 2. Comparing to the

black line which corresponds to Q = 0, the |Q| = 1/3 and 2/3 cases (corresponding to the

charges of squarks) only slightly increase the endpoint values of mχ for a given Ωχh
2, and

by ∼ O(10) GeV on the Planck band. For larger |Q|, the increase becomes significant, and

the endpoint on the Planck band reaches ∼ 3 (4) TeV for |Q| = 2 (3).

4 Collider constraints

As shown in the previous section, the DM relic abundance in the WIMP DM coannihilation

scenarios and the BBN constraints on the long-lived massive particle decays impose upper

bounds on the masses of exotic massive colored particles. On the other hand, collider

experiments are constraining the masses from below.

In the massive colored particle coannihilating with a WIMP DM scenario, the coannihi-

lation region is characterized by a small mass splitting, which typically is difficult to probe

at the LHC using the conventional multiple jets plus large missing energy searches. Mas-

sive colored particle pair production accompanied by a hard initial-state radiation, i.e., the

monojet search, is utilized to constrain scenarios with such a compressed mass spectrum.

For simplicity, we focus only on the mX −mχ → 0 region so that the kinematics of decay
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Bounds (TeV) S3 F3 S8 F8

DM 2.5 2.4 11 9

LHC 0.32 0.41 0.43 0.63

Table 1. The DM masses at the endpoints of the coannihilation strips including the Sommerfeld

and bound-state effects and giving the observed DM relic abundance, and the LHC monojet bounds

for these coannihilation scenarios.

products of the colored particles can be ignored.14 The 13 TeV limits for S3 (stop) and F8

(gluino) are 0.32 TeV [67] and 0.63 TeV [68], respectively. To impose limits on F3 and S8,

we perform monojet simulations [69, 70] using the MadGraph-Pythia-Checkmate [71–78]

pipeline. The obtained mass limits are 0.41 TeV and 0.43 TeV for F3 and S8, respectively.

The results are summarized in table 1, together with the endpoint values for the coannihi-

lation strips including the Sommerfeld and bound-state effects read from figure 3.

Let us briefly comment on the discovery reach of a prospective 100 TeV proton-proton

collider at an integrated luminosity of 3000 fb−1, in particular for the S3 case. The bound-

state effect increases the mass range of DM significantly, making the coannihilation scenario

more difficult to probe. With the inclusion of the bound-state effect so that the right-

handed stop-Bino coannihilation strip ends at ∼ 2.5 TeV when the Bino accounts for the

total DM density (the inclusion of additional electroweak coannihilation channels [13] and

a large lighter stop- heavier stop-Higgs coupling to heavier stop mass ratio [11] can shift

the endpoint to even larger values), the ending part of the strip may be not within the

discovery reach any more, though may be still within the exclusion reach given sufficiently

low systematics [79].

In the long-lived massive colored particle scenario, the produced massive colored par-

ticles at a collider form R-hadrons and travel through the detector with velocities sig-

nificantly less than the speed of light, leaving ionization energy dE/dx characteristically

higher than that of charged SM particles. Searches for such events have been performed by

both ATLAS and CMS collaborations at the LHC [80, 81]. The current 13 TeV limits on

long-lived (stable at collider scales) S3 (stop) and F8 (gluino) are 890 GeV and 1580 GeV,

respectively [82]. While a dedicated simulation of R-hadron events at the LHC is beyond

the scope of this work, in order to make a simple estimate of the bounds on long-lived

F3 and S8, we assume that the signal efficiency and hadron formation probability of F3

(S8) equal to that of S3 (F8). The pair production cross section of F3 is estimated up to

the next-to-next-to leading order (NNLO) using Hathor [83], while a next-to leading order

(NLO) K-factor of 2 is used for the S8 scenario [84]. The obtained mass limits are 1.2 TeV

and 1.4 TeV for F3 and S8, respectively. The results are summarized in table 2, together

with the upper bounds from BBN for the masses of long-lived massive colored particles

14Opening the mass splitting mX−mχ will lower the monojet sensitivity as the missing energy is reduced

by additional jets or objects from the decays of the massive colored particles. On the other hand, the signal

efficiency of multi-jet plus missing energy searches is increased as the mass splitting opens, albeit the

efficiency depends on how the colored particle decays. It is interesting to study how these complementary

approaches can probe the coannihilation region. The detailed study is left for future work.
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Bounds (TeV) S3 F3 S8 F8

BBN 2.1 1.7 17 11

LHC 0.89 1.2 1.4 1.6

Table 2. BBN upper bounds on the masses of long-lived massive colored particles assuming lifetimes

between 0.1 and 100 sec, including the Sommerfeld and bound-state effects. Also shown are the

LHC lower bounds on the masses of long-lived colored particles.

assuming lifetimes between 0.1 and 100 sec, including the Sommerfeld and bound-state

effects, as discussed in section 3.5.

5 Summary

We have studied in this paper the bound-state effects of exotic massive colored particles on

DM relic abundance calculations in scenarios where the massive colored particles coanni-

hilating with a WIMP DM. In general the bound-state effect increases the effective anni-

hilation cross section through the formation and then annihilation decays of bound states,

draining the number of DM particles in the thermal bath, when the massive colored parti-

cles and DM share the same discrete symmetry which stabilizes the latter, and provided the

interconversion rate between the two particle species is fast enough compared to the Hubble

expansion rate. For a given DM relic abundance, this effect allows a larger DM mass and

a larger mass splitting between the massive colored particle and the DM. As examples, we

consider the massive colored particles being complex scalars (S3) or Dirac fermions (F3)

in the color SU(3) fundamental representation, and real scalars (S8) or Majorana fermions

(F8) in the adjoint representation. We find that the bound-state effect significantly in-

creases the largest possible DM masses which can give the observed DM relic abundance,

reaching ∼ 2.5, 11 and 9 TeV for the S3, S8 and F8 cases, respectively. Comparing to the

corresponding ones when considering only the Sommerfeld effect but without the bound-

state effect, these values increase by ∼ 50%, 100% and 30%, respectively. The increase for

the F3 case is smaller, but still the bound-state effect can more than counterbalance the

Sommerfeld effect which is a suppression rather than an enhancement in this case.

We note that while the potentials for the bound states are attractive, due to color

charge conservation the potential for an incoming massive colored particle pair can be

attractive, zero or repulsive. In the early Universe bound states can form when incom-

ing pairs have sufficiently large relative velocities to overcome the repulsive potential. In

particular, for the S3 case, we find that although fading at low temperatures, the large

bound-state formation cross section achieved when temperatures are comparable to the

bound-state binding energy makes the bound-state effect significant enough, such that to

probe the entire stop-Bino coannihilation strip can be quite challenging, if possible, even

in a prospective 100 TeV proton-proton collider at an integrated luminosity of 3000 fb−1.

We have also calculated the corrections for the bound-state effect when the massive

colored particles carry electric charges. Using the S3 case as an example, we find that larger

electric charge makes the bound-state effect stronger, and the enhancement can make the
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above mentioned ∼ 2.5 TeV coannihilation endpoint to ∼ 3 (4) TeV for |Q| = 2 (3), for

which the incoming pair potential changes from being repulsive to attractive. However, for

|Q| < 1, the enhancement is quite small.

As we have briefly discussed, bound-state effects should also be included in calculations

of superWIMP DM relic density from the decays of metastable massive colored particles,

as well as when applying BBN constraints on long-lived massive colored particles. Fur-

thermore, considering that BBN constraints and the DM relic abundance in coannihilation

scenarios impose upper bounds on the masses of massive colored particles, we have studied

the collider limits on the exotic massive colored particles we consider in this paper.

Before we close, we note that many other QCD bound states are possible. For example,

in supersymmetry there can be di-squark and squark-gluino bound states [85]. Also, a

squark and an antisquark with different flavors can form a bound state. Studying the

effects of these bound states in specific supersymmetric models is left for future works.
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A Thermally-averaged annihilation cross sections for S3, F3, S8 and F8

We follow the procedure given in [56, 86] in calculating the thermally-averaged s- and

p-wave annihilation cross sections for a pair of massive colored particles into gg or qq,

given as 〈σvrel〉 = a+ b T/mX +O
(
(T/mX)2

)
. Keeping results at leading order in αs, for

qq final state we only need to evaluate the s-channel gluon exchange diagram, while for

the gg final state we need to evaluate the s-channel gluon exchange, t- and u-channel X

exchange diagrams, and the point interaction diagram when X is a scalar. For the S3 case,

the relevant squared amplitudes are covered in the stop-antistop annihilation calculations,

given in [5]. The results for the F8 case are covered in the gluino-gluino annihilation

calculations, listed in [23]. The results for the F3 case are covered in the heavy quark-

antiquark annihilation calculations in the SM. For the relatively less familiar S8 case,

the relevant part of the Lagrangian is L = 1
2Dµφ

bDµφb − 1
2m

2
Xφ

bφb [87], with the color

index b summed over through 1 to 8. φb is a real scalar filed in the color SU(3) adjoint

representation, and Dµφ
b = ∂µφ

b + gsf
abcGaµφ

c, where Gaµ is the gluon field.

Up to the common factor πα2
s/m

2
X , the a and b terms in 〈σvrel〉 we found are listed in

table 3. The results for the qq channel have summed over all 6 types of SM quarks, and we

have dropped quark mass dependent terms, as we are considering massive colored particles

much heavier than the SM quarks.
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S3 F3 S8 F8

a for gg 14/27 7/27 27/16 27/32

b for gg −61/27 1/6 −261/32 9/64

a for qq 0 4/3 0 9/8

b for qq 4/3 −14/3 9/8 −63/16

Table 3. The coefficients a and b in 〈σvrel〉 for massive colored particle pair annihilation to gg or

qq, up to the common factor πα2
s/m

2
X , for the S3, F3, S8 and F8 cases.
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