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1 Introduction

Classical solutions of supergravity theories have been intensely studied. Of particular

interest are supersymmetric bosonic solutions where the supersymmetry variations of all

fermionic fields present in the theory vanish. These have been classified in many cases,

nevertheless a complete description of all supersymmetric solutions has not been obtained

yet.1 In this paper we exclusively focus on maximally supersymmetric solutions, that is

solutions which preserve all supercharges of a given supergravity. In this case the resulting

Killing spinor equations have to admit an independent Killing spinor for each supercharge

which considerably constrains the allowed space-time backgrounds.

If one excludes background fluxes, the Killing spinor equations take a particularly sim-

ple form and can be integrated directly. In this case one finds that in supergravities with

D space-time dimensions only two backgrounds are possible: D-dimensional Minkoswki

space MD or D-dimensional anti-de Sitter space AdSD. While MD is a solution of all un-

gauged supergravities, AdSD backgrounds require a non-trivial scalar potential and hence

the supergravities have to be gauged or otherwise deformed.2 It turns out that generically

additional algebraic conditions have to be satisfied which further restrict the gauged and/or

deformed supergravity.

More complicated solutions only arise if non-trivial background fluxes of gauge poten-

tials in the gravitational multiplet are turned on. However, these fluxes generically enter

the supersymmetry variation of the spin-1/2 fermions in the gravitational multiplet and

break supersymmetry (at least partially). The only exception occurs for gauge potentials

1For the ungauged case see for example [1–26] and [27–39] for the gauged case.
2By deformed supergravities we denote theories which are deformed by mass parameters or the super-

potential in D = 4, N = 1 supergravity, for example.
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with (anti-)self-dual field strengths in a chiral theory which drop out of the spin-1/2 varia-

tions. As we will see, this limits the possible supergravities to a small subset where either

the gravitational multiplet does not contain spin-1/2 fermions or the theory is chiral and

features (anti-)self-dual fields.

We further show that in the presence of non-trivial fluxes the background values of

the supersymmetry variations have to coincide with the supersymmetry variations of the

corresponding ungauged theories. Concretely this means that the fermionic shift matrices

as well as the gauge connection for the R-symmetry have to vanish in the background.3

We prove this property by deriving a generic expression for the R-symmetry connection.

As a by-product we show that in maximally supersymmetric backgrounds the R-symmetry

can only be gauged by vector fields of the gravitational multiplet.4

The correspondence with the ungauged theories implies that also the background so-

lutions coincide. It turns out that for all situation where background fluxes are pos-

sible the maximally supersymmetric solutions have already been determined and classi-

fied [1, 4, 5, 8, 9]. They are either space-times of the Freund-Rubin form AdSd×S(D−d) [40]

or Hpp-wave solutions [41, 42]. Only in five space-time dimensions one can have more ex-

otic solutions [4]. Although all these solution were known previously our analysis shows

that this list is exhaustive.

This paper is organized as follows. In section 2 we set the stage for our analysis and

recall the supersymmetry transformations of the fermionic fields. In particular we establish

a notation which allows us to discuss the various supergravities in a common framework.

In section 3 we show that supergravities with D-dimensional space-times without fluxes

have supersymmetric backgrounds that are either AdSD or MD. In section 4 we turn on

background fluxes and argue that the vanishing of the supersymmetry transformation of

the spin-1
2 fermions requires that all background fluxes are zero except in chiral theories

with (anti-)self-dual fluxes. We further show that solutions with non-trivial fluxes coincide

with the solutions of the corresponding ungauged theories. Some of the technical analysis

is relegated to three appendices. In appendix A we summarize our Γ-matrix conventions,

in appendix B we supply some of the technical details necessary in section 4 and finally in

appendix C we determine the general gauging of the R-symmetry in maximally supersym-

metric backgrounds.

2 Preliminaries

In this paper we discuss properties of supergravity backgrounds in arbitrary space-time

dimensions and for varying number of supercharges in a given dimension. In order to avoid

a case-by-case analysis we introduce a unifying notation which allows us to more or less

discuss all cases simultaneously. It is the purpose of this section to set the stage for this

analysis and provide a common notation.

3This result has been obtained previously for gauged D = 4, N = 2 supergravity in [28, 37], for minimal

gauged D = 5, N = 2 supergravity in [27] and for D = 6, N = (1, 0) supergravity in [26]. However theses

results always rely on the specific formulation of the particular gauged supergravities under consideration.
4In the generic situation it is precisely speaking not the R-symmetry which is being gauged but a

subgroup of the scalar field space’s isometry group which in turn induces R-symmetry transformations. For

a more detailed discussion see the explanations around (2.14) and also in appendix C.
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Supergravities in D space-time dimensions contain a gravitational multiplet whose

generic field content includes the metric gMN , M,N = 0, . . . , D − 1, N gravitini ψiM ,

i = 1, . . . ,N , a set of (p − 1)-form gauge potentials A(p−1) (with p-form field strengths

F (p)), a set of spin-1
2 fermions χa as well as a set of scalar fields φ. Note that not all of

these component fields necessarily have to be part of a given gravitational multiplet but

we gave the most general situation. Moreover, there might be additional multiplets in the

spectrum (e.g. vector, tensor or matter multiplets) which can also have gauge potentials

among their component members. For the moment we denote all gauge potentials by

A(p−1) but we distinguish them shortly. The spin- 1
2 fermions in the extra multiplets we

collectively call λs while all scalars we universally denote as φ.

Let us first focus on the kinetic terms for the gauge potentials. They are of the generic

form (for a review see, for example, [43])

Lkin = −1

2

∑
p

M
(p)
IpJp

(φ) F (p)Ip ∧ ∗F (p)Jp , (2.1)

where the indices Ip, Jp label field strengths of the same rank p and the sum runs over

all possible p-forms which are present in a given theory. The matrices M (p) generically

depend on all scalar fields, are symmetric and positive definite. Therefore they can be

diagonalized via

M
(p)
IpJp

= δαpβpV
αp
Ip
VβpJp , (2.2)

where the vielbeins VαpIp are again scalar dependent. Later on it will be important to

distinguish which of the form fields enter the supersymmetry variations of the gravitini.

For this purpose we introduce the abbreviation5

Fαp = VαpIp F
Ip , (2.3)

and split the indices αp according to

αp = (α̂p, α̃p) . (2.4)

We then denote by F α̂p the field strengths in the gravitational multiplet (e.g. the gravipho-

tons for p = 2) and by F α̃p the field strengths of gauge potentials which arise in all other

multiplets that might be present. Note that this split depends on the scalar fields via the

vielbeins V and thus is background dependent.

After this preparation we recall the supersymmetry variations of the fermions, which

are of special importance in the following. The transformation of the gravitini takes the

generic form

δψiM = DM ε
i + (FM )ij ε

j +Ai0 jΓM ε
j , (2.5)

where

DM ε
i = ∇M εi − (QM )ij ε

j . (2.6)

5In the following we frequently drop the labels (p) in order to not overload the notation.
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∇M denotes the Levi-Cevita connection and QM is the R-symmetry connection which we

discuss in more detail shortly. The second term in (2.5) contains the various field strengths

and is given by

(FM )ij =
∑
p≥2

∑
α̂p

(
B

(p)
α̂p

)i
j
F
α̂p
N1...Np

T
N1...Np
(p) M , (2.7)

where the B(p) are constant matrices. The matrices T
N1...Np
(p) M are defined as

T
N1...Np
(p) M = ΓN1...Np

M + β(p) Γ[N1...Np−1δ
Np]
M , (2.8)

where ΓN1...Np is an antisymmetrized product of Γ-matrices (see appendix A for our con-

ventions) and

β(p) =
p(D − p− 1)

p− 1
. (2.9)

Finally, the matrix A0 in the third term of (2.5) arises in gauged and/or deformed super-

gravities and is parameterized by the gaugings or deformations and in general depends on

all scalar fields in the spectrum [43]. Its precise form is specific to the supergravity under

consideration.

Let us now turn to the spin- 1
2 fermions χa and λs. The χa are part of the gravitational

multiplet and their transformations take the generic form

δχa =
∑
p≥1

∑
α̂p

(
C

(p)
α̂p

)a
i
F
α̂p
N1...Np

ΓN1...Npεi +Aa1 i ε
i . (2.10)

The λs are members of other multiplets present (e.g. vector-, tensor- or matter-multiplets)

and we similarly have

δλs =
∑
p≥1

∑
α̃p

(
D

(p)
α̃p

)s
i
F
α̃p
N1...Np

ΓN1...Npεi +As2 i ε
i . (2.11)

Note that the field strengths appearing in (2.10) and (2.11) form a disjoint set. Accordingly

they are labeled by α̂p, α̃p that we introduced in (2.4). Contrary to (2.7) the sums in (2.10)

and (2.11) start already at p = 1 and thus include the fields strengths of the scalar fields

Fα1
M = DMφ

α1 which do not enter the gravitino variations (2.5). As in the gravitino

variations Cp and Dp are constant matrices while A1 and A2 arise in gauged supergravities

and depend on the gaugings/deformations and the scalar fields. They have a specific form

in a given supergravity. Supersymmetry relates the fermionic shift matrices A0, A1 and

A2 to the scalar potential V and generically one has

V = −c0tr
(
A†0A0

)
+ c1tr

(
A†1A1

)
+ c2tr

(
A†2A2

)
, (2.12)

where c0, c1 and c2 are numerical constants fixed by supersymmetry in a given supergravity.

Let us return to the connection QM in the covariant derivative (2.6) as it will play an

important role in the following and we need to establish some of its properties. In a generic

supergravity QM splits according to [43–45]

QM = Qscalar
M +Qgauge

M , (2.13)
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where Qscalar
M is a composite connection which only depends on the scalar fields and their

derivatives and already exists in the ungauged theory. A transformation along a possible

isometry of the scalar field space can induce a scalar field dependent R-symmetry transfor-

mation and the connection term Qscalar
M is necessary to make DM ε

i transform covariantly.6

These transformations can be made local (i.e. not only scalar field but also explicitly space-

time dependent) by introducing another term Qgauge
M which contains a linear combination

of gauge fields Aα2 , i.e.

Qgauge
M = Aα2

M tα2 . (2.14)

The matrices tα2 are often called moment maps and generically depend again on the scalar

fields. They take values in the Lie-algebra gR of the R-symmetry group, but at most

points in field space they do not need to span a proper Lie-subalgebra of gR. However,

we will show in appendix C that the tα2 close under the action of the Lie-bracket in every

maximally supersymmetric background. In this specific situation we say for simplicity that

the subgroup of the R-symmetry group which is generated by the background values of

the tα2 is gauged in this background, or shortly that the R-symmetry is gauged (in this

background). As explained above it would be however generically more precise to speak

about gauging a certain subgroup of the scalar manifold’s isometry group which in turn

induces R-symmetry transformations. Moreover, let us stress that in principle all gauge

fields, those from the gravitational multiplet (the graviphotons) as well as gauge fields from

other multiplets (e.g. vector multiplets), can appear in (2.14).

In the following we also need the curvature or field strength HMN of QM . As usual it

appears in the commutator of the covariant derivatives defined in (2.6) as follows

[DM ,DN ] εi =
1

4
RMNPQΓPQ εi − (HMN )ij ε

j , (2.15)

where RMNPQ is the Riemann tensor of the background space-timeMD. As a consequence

of (2.13) HMN similarly decomposes as

HMN = Hscalar
MN +Hgauge

MN , (2.16)

with

Hgauge
MN = Fα2

MN tα2 , (2.17)

and tα2 being the same matrices as in (2.14). The field strength of the composite connection

Hscalar
MN can be expressed in terms of the field strengths of the scalar fields Fα1

M and takes

the generic form

Hscalar
MN = h1C

†
α̂1
Cβ̂1F

α̂1

[MF
β̂1
N ] + h2D

†
α̃1
Dβ̃1

F α̃1

[MF
β̃1
N ] , (2.18)

where C,D are the matrices appearing in (2.10) for p = 1 and (2.11) respectively and h1

and h2 are numerical constants determined by supersymmetry in a given supergravity.

6To be more specific let us assume that the scalar fields φ span some manifold T , i.e. φ : MD → T ,

where MD denotes the space-time manifold. Generically the gravitini and hence also the supersymmetry

parameters εi are sections of a (non-trivial) vector bundle over T with connection ω. Then Qscalar is just

the pullback of this connection with respect to φ, i.e. Qscalar = φ∗ω.
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Let us close this section by recalling that a supergravity background which preserves

some supersymmetry has to admit spinors εi which satisfy

δψiM = δχa = δλs = 0 . (2.19)

The number of linearly independent such spinors then determines the number of preserved

supercharges. In this paper we only consider backgrounds which preserve all supercharges

of the supergravity under consideration. This considerably simplifies the analysis as we

will see shortly.

3 Supersymmetric backgrounds without fluxes

Let us first analyze the situation where all background fluxes vanish and hence

eqs. (2.5)–(2.11) simplify. If all supercharges are preserved, δχa = δλs = 0 imply via (2.10)

and (2.11) that7

A1 = A2 = 0 . (3.1)

On the other hand, the vanishing of the gravitino variation (2.5)

δψiM = DM ε
i +Ai0 jΓM ε

j = 0 (3.2)

says that εi has to be a Killing spinor. Its existence implies a strong constraint on the

space-time manifold which can be derived by acting with another covariant derivative,

antisymmetrizing and using (2.15). This implies[(
1

4
RMN

PQδik + 2Ai0 jA
j
0 kδ

P
Mδ

Q
N

)
ΓPQ + 2

(
D[MA0

)i
k

ΓN ]

]
εk = 0 , (3.3)

where we also used that HMN vanishes in backgrounds without any fluxes and where the

covariant derivative of A0 is defined as DMA0 = ∂MA0− [QM , A0]. In a background which

preserves all supercharges the expression in the bracket has to vanish at each order in the Γ-

matrices independently. From the term linear in Γ we learn that A0 is covariantly constant.

The part quadratic in Γ then says that A2
0 needs to be proportional to the identity matrix

and must be a constant since

∂MA
2
0 = DMA

2
0 = 0 . (3.4)

Moreover it implies that in a given supergravity the maximally supersymmetric back-

grounds have to be maximally symmetric space-times with a Riemann tensor given by

RMNPQ = − 4

N
tr
(
A2

0

)
(gMP gNQ − gMQgNP ) . (3.5)

From the canonical Einstein equations one readily infers that in such backgrounds the

cosmological constant Λ is given by

Λ = − 2

N
(D − 1)(D − 2) tr

(
A2

0

)
, (3.6)

7Both equations only have to hold in the background, i.e. the conditions read 〈A1〉 = 〈A2〉 = 0. However,

in order to keep the notation manageable we generically omit the brackets henceforth.
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and the background value of the scalar potential is related by 〈V 〉 = Λ. Note that consis-

tency then determines the coefficient c0 of V in (2.12) to be c0 = 2
N (D − 1)(D − 2). For

A0 6= 0 we thus have an AdS-backgroundMD = AdSD while for A0 = 0 the background is

flat. So altogether fully supersymmetric backgrounds without background fluxes have to

be one of the following cases

MD = AdSD or MD = Md × T (D−d) , 1 ≤ d ≤ D , (3.7)

up to local isometries. We see in particular that without fluxes supersymmetric back-

grounds with an AdSd factor cannot exist for d < D.

Before we proceed let us note that in a given D-dimensional gauged supergravity the

existence of the MD = AdSD background requires the existence of a solution with

A2
0 = − Λ

2(D − 1)(D − 2)
1 , A1 = A2 = 0 . (3.8)

This can only be checked in a case-by-case analysis and explicit solutions have indeed

been constructed in a variety of supergravities (see, for example, [37, 46–50] and references

therein). However, from ref. [51] it is known that AdS superalgebras only exist for D < 8

and in D = 6 only for the non-chiral N = (1, 1) supergravity. In the other cases no solution

of (3.8) can exist.

4 Supersymmetric backgrounds with fluxes

In this section we extend our previous analysis in that we consider backgrounds with

non-trivial fluxes and reanalyze the implications for the possible space-time manifolds. In

this case the vanishing supersymmetry variations of the spin-1/2 fermions given in (2.10)

and (2.11) immediately impose additional constraints. As we will see, they are particularly

strong for the fermions χa in the gravitational multiplet. Since the Γ-matrices and their

antisymmetric products are linearly independent, δχa = δλs = 0 enforces

A1 = A2 = 0 and F (p) = 0 , (4.1)

for all possible values of p.8 This seems to imply that no background fluxes can be turned

on. However, this conclusion can be evaded either if there simply are no spin-1/2 fermions

in the gravity multiplet or if there is an (anti-)self-dual field strength in a chiral theory.

In the first case there is no condition on the fluxes F α̂p which appear in the gravitino

variation (2.5) and (2.7) but only on the fluxes F α̃p which feature in (2.11). The second

exception follows from the definition of the chirality operator Γ∗ (given in (A.3)) which

implies that in even dimensions D the Hodge-dual of a p-form F (p) satisfies

∗ F (p) · Γ = −(−1)p(p−1)/2iD/2+1
(
F (p) · Γ

)
Γ∗ , (4.2)

8In even dimensions D all antisymmetric products of gamma matrices are linearly independent while in

odd dimensions only those up to rank (D− 1)/2 are linearly independent as can bee seen from (A.5). This

however is strong enough to enforce (4.1).
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dimension supersymmetry q possible flux ref.

D = 11 N = 1 32 F (4) [5]

D = 10 IIB 32 F
(5)
+ [5]

D = 6 N = (2, 0) 16 5× F (3)
+ [9]

D = 6 N = (1, 0) 8 F
(3)
+ [8]

D = 5 N = 2 8 F (2) [4]

D = 4 N = 2 8 F (2) [1]

Table 1. Supergravity theories which allow for a background flux that does not break supersym-

metry. q denotes the number of real supercharges. In the last column we give the reference for the

classification of maximally supersymmetric solutions.

where we abbreviated F (p) ·Γ = F
(p)
N1...Np

ΓN1...Np (and used (A.4)). Note that the prefactor

is real in dimensions D = 2 mod 4, which are precisely those dimensions in which chiral

theories can exist. In these dimensions one finds for an (anti-)self-dual D/2-form F± =

± ∗ F± that

F± · Γ = (F± · Γ)P± , (4.3)

where P± = 1
2 (1± Γ∗). In the chiral supergravities in D = 6, 10 [52–55] the supergravity

multiplet contains two or four-form fields, respectively, with self-dual field strengths F
α̂D/2
+ .

In these theories the gravitini and consequently also the supersymmetry parameters εi are

left-handed. Therefore, a term of the form (F
α̂D/2
+ · Γ) εi− cannot appear in (2.10) which

indeed shows that a non-vanishing background value for a self-dual field strength does not

break supersymmetry in these theories. Nevertheless F
α̂D/2
+ still enters the variation of the

gravitini, as a different contraction with Γ-matrices appears in (2.7). Hence maximally

supersymmetric solutions with non-trivial background flux are possible.

The previous considerations in this section enable us to conclude that solutions which

preserve all supercharges of a given supergravity and which are different from the ones

described in the previous section can only exist if at least one of the following two condi-

tions hold:

Either the gravity multiplet contains p-form gauge fields but no spin- 1
2

fermions χa or the theory is chiral and (some of) the gauge potentials in the

gravity multiplet satisfy an (anti-)self-duality condition such that they drop out

of δχa.

In table 1 we list all possible supergravities in dimensions D ≥ 3 which satisfy these

conditions, together with the possible background fluxes.9 We now proceed by analyzing

the supersymmetry variation of the gravitini (2.5) for these theories in more detail.

9It is in fact easy to see that such theories cannot exist in D = 3 dimensions. Since three-dimensional

gravity is non-dynamical, the graviton, and via supersymmetry also the gravitini, do not carry any on-shell

degrees of freedom. So whenever the gravity multiplet contains vector or scalar fields (which are dual in

three dimensions) it must also contain spin-1/2 fields as supersymmetric partners.
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Taking a covariant derivative of (2.5) and using (2.15) we arrive at the integrability

condition (
1

4
RMNPQΓPQδij − (HMN )ij + 2

(
D[MFN ] + D[MA0ΓN ]

)i
j

+
[
(FM +A0ΓM )ik (FN +A0ΓN )kj − (M ↔ N)

])
εj = 0 .

(4.4)

In a maximally supersymmetric background this has to vanish at each order in the Γ-

matrices independently. As we show in appendix B for all the theories in table 1 the only

term at zeroth order in Γ is HMN and thus we arrive at

HMN = 0 . (4.5)

Furthermore, due to (4.1) all scalar fields have vanishing field strengths, F α̂1 = F α̃1 = 0,

and therefore, using (2.18), Hscalar
MN automatically vanishes. From (2.16) we then learn

that (4.5) implies

Hgauge
MN = 0 . (4.6)

In a next step we show that (4.6) says that there can be either no background fluxes

at all or that alternatively both A0 and Qgauge
M vanish in the background. To see this we

derive in appendix C that the supersymmetry conditions A1 = A2 = 0 of (4.1) enforce

Hgauge
MN to be of the generic form

Hgauge
MN ∼ F α̂2

MN

{
A0, Bα̂2

}
, (4.7)

where the precise factor of proportionality is given in (C.8) but is not important for the

following discussion. Due to (2.14) and (2.17) the same relation holds for Qgauged
M with

F α̂2
MN replaced by Aα̂2

M .

Eq. (4.7) has a few notable features. First of all the appearance of F α̂2
MN says that in

the background the R-symmetry can only be gauged (in the sense discussed below (2.14))

by graviphotons, i.e. by vector fields in the gravity multiplet.10 Moreover, (4.7) uniquely

determines the gauged subgroup of the R-symmetry group for maximally supersymmetric

vacua and gives an explicit formula for its computation in terms of A0 and Bα̂2 . We finally

want to stress that this is a generic result, not restricted to the theories in table 1 but true

for all gauged supergravity theories with D ≥ 4.

Let us study the implications of (4.7) for the supergravities of table 1. We already

showed that the theories which are not in this list cannot have non-vanishing background

fluxes so that (4.6) is trivially satisfied and does not impose any conditions on A0. Similarly,

for the first three theories in table 1 it is known that deformations by a non-vanishing A0 do

not exist. In addition no massless vector fields appear in the gravitational or in any other

multiplet. Hence Hgauge
MN and Qgauge

M do not exist and the theories are always ungauged,

10This is intuitively plausible but we are not aware of any previous general proof. Moreover notice that

this is a priori only a statement about the maximally supersymmetric background. At an arbitrary point

in field space other gaugings might be in principle possible. See also the discussion at the beginning of

appendix C.
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consistent with (4.7). On the other hand the possible background fluxes of higher rank

field strengths are not restricted. Similarly, the six-dimensional N = (1, 0) theories cannot

be deformed by A0 6= 0 and do not feature any vector fields in the gravity multiplet.

In principle it is possible to gauge these theories by coupling them to vector multiplets.

However, in the maximally supersymmetric background this is forbidden due to (4.7) and

therefore also here Qgauge
M = 0 holds. This was explicitly shown in [26].

The analysis of the two remaining supergravities in the list, the four- and five-

dimensional N = 2 theories, is slightly more involved. Both can be deformed by A0 6= 0

and both have one single gauge field, the graviphoton Aα̂2 , in the gravity multiplet. Con-

sequently there is also only one single matrix Bα̂2 . As the graviphoton is an R-symmetry

singlet, Bα̂2 has to be proportional to the identity. Therefore (4.7) simply reads

Hgauge
MN ∼ FMNA0 , (4.8)

where FMN is the field strength of the graviphoton. As a consequence, (4.6) implies that

either FMN or A0 has to vanish in the background. For N = 2 theories in D = 4 this has

been explicitly shown for pure gauged supergravity in [28] and for arbitrary gauging in [37].

For pure gauged supergravity in D = 5 this has been obtained in [27] and related results

for arbitrary gaugings in [35]. In contrast to their results our analysis here is completely

general and does not rely on the concrete formulation of the gauged supergravities.

Let us summarize our results so far. There are two different branches of maximally

supersymmetric solutions:

i) A0 6= 0.

In this case all background fluxes must necessarily vanish and the background space-

time is AdSD as described in section 3.

ii) A0 = 0.

In this case non-vanishing background fluxes are allowed but QM vanishes in the

background. As a consequence the fermionic supersymmetry transformation (2.5)

take exactly the same form as for the ungauged theory and hence the maximally

supersymmetric solutions coincide with the solutions of the ungauged theories.

The solutions of the ungauged theories have been classified for all supergravities listed

in table 1 and this classification can thus be used for case ii). These solutions can be found

in the references given in table 1. Let us shortly review the main results. For vanishing A0

and QM the integrability condition (4.4) simplifies considerably and reads

1

4
RMNPQΓPQδij + 2

(
∇[MFN ]

)i
j

+ 2
(
F[M

)i
k

(
FN ]

)k
j

= 0 . (4.9)

Expanding in powers of the Γ-matrices and collecting all terms quadratic in Γ we observe

that the Riemann tensor of the space-time background is expressed solely in terms of the

background flux F α̂p and its derivatives. Furthermore, all supergravities listed in table 1

have solutions with the property

∇F α̂p = 0 . (4.10)
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Only in the five-dimensional N = 2 supergravity one finds solutions of (4.9) which do not

satisfy (4.10) [4]. In all other cases there are no additional solutions or in other words

all solutions share the property (4.10). For these solutions also the Riemann tensor is

parallel, i.e. ∇MRNPQR = 0, which says that the space-time is locally symmetric. The

locally symmetric spaces with Lorentzian signature are classified [5, 56].11 Furthermore,

in [5, 8, 9] it was shown that F α̂p can be written as

F α̂p = vα̂pF or F α̂p = vα̂p (F + ∗F ) , (4.11)

where vα̂p is constant and F is decomposable, i.e. it can always be expressed as the wedge-

product of p one-forms. The second decomposition holds for a self-dual F α̂p .12 Excluding

the trivial case where F = 0 and where the background is flat, there are therefore only two

cases to be distinguished:

1. F is not a null form (i.e. F 2 6= 0).

These are the well-known solutions of Freund-Rubin type [40] for which the space-

time is the product of an AdS space and a sphere such that F is a top-form on one

of the two factors, i.e.

MD = AdSp × S(D−p) or MD = AdS(D−p) × Sp . (4.12)

We explicitly list all these solutions in table 2. Notice that besides the pure AdSD
solutions discussed in section 3 these are the only possible maximally supersymmetric

solutions with an AdS-factor. All other AdS solutions in supergravity will necessarily

break supersymmetry.

2. F is a null form (i.e. F 2 = 0).

These solutions are homogeneous pp-waves (Hpp-waves) first discovered by Kowalski-

Glikman [41, 42] and therefore often referred to as KG solutions. They can be

obtained from the respective AdS × S solutions by a Penrose limit [57–60].

As we have already mentioned above this list of solutions is exhaustive if one excludes

the five-dimensional N = 2 supergravity. In the latter theory there can be more exotic

solutions with F not parallel or decomposable and consequently also the background space-

timeMD not locally symmetric. These exceptional solutions are classified in [4] and are a

Gödel-like universe and the near-horizon limit of the rotating BMPV black hole [61].13 The

latter family of solutions contains the AdS2×S3 and AdS3×S2 solutions as special cases.

Even though there are maximally supersymmetric solutions which are not locally symmet-

ric, they all happen to be homogeneous space-times [9, 56, 63]. It is also interesting to note

that the maximally supersymmetric solutions of the theories with 8 real supercharges in

D = 4, 5, 6 dimensions are related via dimensional reduction or oxidation [9, 64].

11They have to be locally isometric to a product of a Riemannian symmetric space times a Minkowskian,

dS, AdS or Hpp-wave geometry.
12Notice that in D = 4 dimensions F α̂2 itself is not necessarily decomposable. Instead we have to split it

into a complex self-dual and anti-self-dual part and use the appropriate form of the second decomposition

in (4.11).
13In [4] three additional solutions have been found but were left unidentified, it was shown in [62] that

they also belong to the family of near-horizon BMPV solutions. See also [9].
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dim. SUSY q AdS× S Hpp-wave others

D = 11 N = 1 32
AdS4 × S7

[40] KG11 [41] –
AdS7 × S4

D = 10 IIB 32 AdS5 × S5 [52, 53] KG10 [65] –

D = 6
N = (2, 0) 16

AdS3 × S3 [66] KG6 [67] –
N = (1, 0) 8

D = 5 N = 2 8
AdS2 × S3

[66, 68] KG5 [67]
Gödel-like [4],

AdS3 × S2 NH-BMPV [69, 70]

D = 4 N = 2 8 AdS2 × S2 [71, 72] KG4 [42] –

Table 2. All possible maximally supersymmetric solutions with non-trivial flux; q denotes the

number of real supercharges, cf. [73].

5 Conclusions

In this paper we studied maximally supersymmetric solutions of all supergravities in space-

time dimensions 3 ≤ D ≤ 11 — including gauged supergravities as well as supergravities

with background fluxes. We found that the maximally supersymmetric solutions generically

split into three separate classes. First of all there are the ungauged and undeformed

supergravities without fluxes and a D-dimensional Minkowskian background. The second

class of solutions consists of backgrounds without fluxes but the supergravity is gauged

or otherwise deformed. In this case the Killing spinor equations are straightforward to

integrate, implying that the space-time is maximally symmetric and therefore either again

Minkowskian or AdSD. There are however certain algebraic conditions (3.8) which the

fermionic shift-matrices A0, A1 and A2 have to satisfy and which restrict the possible

gaugings or deformations.

The third class of solutions has non-trivial background fluxes. This requires that all

shift matrices A0, A1, A2 vanish and the R-symmetry connection has no background value.

It implies that the fermionic supersymmetry variations take exactly the same form as

for the corresponding ungauged theories. Moreover, this class of solutions can only exist

if either the gravitational multiplet has no spin- 1
2 fermions or the theory is chiral. This

selects among all supergravities the ones listed in table 1 and in addition selects the possible

fluxes. Using the correspondence with the ungauged theories we argued that for all these

theories all solutions are known and classified; we list them in table 2. One aspect of our

analysis was to show that this list is exhaustive.

Of course in certain cases solutions from different classes can be related to each other.

The solutions of the form AdSd×S(D−d) — which might arise in ungauged theories — can be

truncated to an effective d-dimensional description in terms of a gauged supergravity with

an AdSd background. The gauge group in this case is SO(D−d+1), i.e. the isometry group

of the sphere S(D−d). At the same time not every AdS-solution of a gauged supergravity

can be obtained from a sphere compactification.

– 12 –



J
H
E
P
0
2
(
2
0
1
7
)
0
8
5

As a technical by-product of our analysis we derived the general formula (C.8) for the

gauging of the R-symmetry in maximally supersymmetric solutions in dimensions D ≥ 4.

It shows that in the background the R-symmetry can only be gauged by vector fields from

the gravitational multiplet (i.e. graviphotons) and that this gauging is completely fixed by

the first shift matrix A0 and therefore uniquely determined.
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A Γ-matrix conventions

In this appendix we collect some useful Γ-matrix identities used throughout the paper.

We mainly follow the definitions and conventions of [74]. The ΓM are defined via their

anti-commutation relation

ΓMΓN + ΓNΓM = 2gMN1 . (A.1)

Frequently in the main text their antisymmetric products appear and we abbreviate

ΓM1...Mp = Γ[M1 . . .ΓMp] , (A.2)

where the antisymmetrization [. . . ] is with total weight 1, i.e. ΓMN = 1
2

(
ΓMΓN − ΓNΓM

)
.

In even dimensions D = 2m we additionally have the chirality operator Γ∗ defined by

Γ∗ = (−i)m+1Γ0Γ1 . . .ΓD−1 . (A.3)

From its definition one infers [74]

ΓM1...Mp Γ∗ = −(−i)m+1 1

(D − p)!
εMp...M1

N1...ND−p ΓN1...ND−p , (A.4)

while in odd dimensions D = 2m+ 1 one has instead

ΓM1...Mp = im+1 1

(D − p)!
εM1...Mp

ND−p...N1ΓN1...ND−p . (A.5)

In even dimensions all anti-symmetric products ΓM1...Mp are linearly independent whereas

in odd dimensions this only holds for p ≤ m due to (A.5). Moreover we denote the

contraction with Γ-matrices by a dot “·”, i.e. for a p-form F we define

F · Γ = FM1...Mp ΓM1...Mp . (A.6)
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B Analysis of the integrability condition

In this appendix we analyze the integrability condition (4.4) and argue that for all the

theories listed in table 1 the term HMN can be the only term at zeroth order in the

Γ-matrices and has therefore to vanish in a maximally supersymmetric background.

Let us first note that all the theories in table 1 only allow for background fluxes

F α̂p for one particular value of p, so the expression (2.7) for FM simplifies as we do not

have to sum over different values for p. We want to inspect (4.4) term by term. While

the Riemann tensor RMNPQ enters only at the quadratic order in Γ, also the third term(
D[MFN ] + D[MA0ΓN ]

)
cannot contain any terms at zeroth order in Γ as can be directly

seen from (2.7) and (2.8) with p > 1. To analyze the remaining term in (4.4) we notice that

this term can only produce something of vanishing order in Γ from the anti-commutator

of two equal powers of Γ-matrices, i.e.{
ΓM1...Mr ,ΓN1...Nr

}
= p! δ

[M1

Nr
. . . δ

Mr]
N1

+ . . . , (B.1)

where the dots denote terms of higher order in Γ. On the hand the corresponding commu-

tator yields at least a term quadratic in Γ and also the (anti-)commutator of two different

powers of Γ-matrices cannot give anything at zeroth order. With this knowledge we can

finally compute the last term in (4.4) to find(
(FM +A0ΓM ) (FN +A0ΓN )− (M ↔ N)

)
=

=
[
FM ,FN

]
+
[
FM , A0ΓN

]
−A0

[
FN , A0ΓM

]
+ 2A0A0ΓMN

=
1

2
(p− 1)!

(
β2

(p) − p
2
) [
Bα̂p , Bβ̂p

]
F
α̂p
MP1...Pp−1

F
β̂p Pp−1...Pp
N

+ δp,2 4(D − 3)
[
Bα̂2 , A0

]
F α̂2
MN + . . . ,

(B.2)

where we suppressed the indices (i, j, . . . ) and the dots denote again higher order terms.

For the computation of the commutator
[
FM ,FN

]
we used (2.7), (B.1) and[

Bα̂pΓ
M1...Mr , Bβ̂pΓ

N1...Nr
]

=
1

2

([
Bα̂p , Bβ̂p

] {
ΓM1...Mr ,ΓN1...Nr

}
+
{
Bα̂p , Bβ̂p

} [
ΓM1...Mr ,ΓN1...Nr

])
.

(B.3)

For all the theories where α̂p can take only one possible value the commutator
[
Bα̂p , Bβ̂p

]
on the right hand side of (B.2) clearly vanishes. Moreover in this case Bα̂p is proportional

to the unit matrix, therefore also the second commutator
[
Bα̂2 , A0

]
vanishes. The only

theory in table 1 for which α̂p can take multiple values is the six-dimensional N = (2, 0)

theory. But here p = D/2 = 3 and hence using (2.9) we have β(p) = p so that also in this

case the terms at zeroth order in Γ vanish.

It remains to check that in odd dimensions D there are also no terms of order D in

Γ. These could be dualized into zero order terms using (A.5). Since we can restrict the

analysis to p < D
2 it is clear that such terms cannot arise from D[MFN ] or

[
FMA0,ΓN

]
as can be seen from the definition (2.7). The commutator

[
FM ,FN

]
can however produce

only terms of even order in Γ.
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C The gauged R-symmetry connection

In this appendix we show that in a maximally supersymmetric background the R-symmetry

can only be gauged by vector fields from the gravity multiplet (graviphotons).14 To be more

specific, we will show that a non-vanishing background value for those moment maps tα̃2

from (2.14) which couple to the vector fields from other multiplets (i.e. vector multiplets)

is not compatible with unbroken supersymmetry. We should stress that this is only a state-

ment about the maximally supersymmetric background, at an arbitrary point in field space

these restrictions on the gaugings do not necessarily need to be satisfied. In other words, a

theory in which there are gauge fields that do not belong to the gravity multiplet might still

admit maximally supersymmetric vacua. Note that the following analysis does not rely on

any specific formulation of a gauged supergravity and is valid in any dimension D > 3.

As explained in section 2 the R-symmetry connection QM generically splits into a

pure scalar dependent part Qscalar
M and a gauge field depend part Qgauge

M . The latter can be

expressed in terms of the gauge fields Aα2 as(
Qgauge
M

)i
j

= Aα2
M (tα2)ij . (C.1)

Equivalently the corresponding part of the field strength HMN reads Hgauge
MN = Fα2

MN tα2 .

In the following we determine the explicit form of the matrices tα2 in the maximally su-

persymmetric background, i.e. for vanishing fermionic shift matrices A1 and A2.

The field strength HMN enters the supersymmetry variation of the Lagrangian via the

kinetic term for the gravitini which always takes the form

e−1Lψ̄∂ψ = −1

2
ψ̄iMΓMNPDNψ

i
P . (C.2)

Inserting into this the supersymmetry variation (2.5) of ψiM produces a term of the form

e−1δLψ̄∂ψ =
1

2

(
Hgauge
MN

)i
j
ψ̄iPΓMNP εj + . . . . (C.3)

To read off HMN we collect all possible terms which produce similar terms under a super-

symmetry transformation. If we demand A1 = A2 = 0 these are given by

e−1Lψ̄ψ =
1

2
d0A

i
0 jψ̄iMΓMNψjN ,

e−1LFψ̄ψ =
1

2
e0F

α̂2
MN (Bα̂2)ij ψ̄

P
i Γ[PΓMNΓR]ψ

jR ,

(C.4)

where the numerical constants d0 and e0 are fixed by supersymmetry and can be determined

to take the values

d0 = −e0 = (D − 2) . (C.5)

From (2.5) it follows that the supersymmetry variations of (C.4) contain precisely terms

of the required form

e−1δLψ̄ψ = d0F
α̂2
MNA

i
0 j (Bα̂2)jk ψ̄

P
i

(
−(D − 3)ΓMN

P + 2δ
[M
P ΓN ]

)
εk + . . . , (C.6)

14See also the discussion below equation (2.14).
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and

e−1δLFψ̄ψ = e0F
α̂2
MN (Bα̂2)ij A

j
0 kψ̄

P
i

(
(D − 3)ΓMN

P + 2δ
[M
P ΓN ]

)
εk + . . . . (C.7)

The terms cubic in Γ-matrices have to cancel (C.3), so we finally determine

tα̂2 = 2(D − 2)(D − 3)
{
A0, Bα̂2

}
, tα̃2 = 0 . (C.8)

This means in particular that in a maximally supersymmetric background the R-symmetry

can only be gauged by the graviphotons Aα̂2 , but not by gauge fields Aα̃2 in additional

vector multiplets.

Finally we want to argue that the matrices tα̂2 satisfying (C.8) span a Lie-subalgebra of

the R-symmetry algebra gR, i.e. that they close with respect to the Lie-bracket. Using the

fact that we always need A2
0 ∼ 1 in a maximally supersymmetric background (according

to (3.8)), we immediately find that

[tα̂2 , A0] = 0 , (C.9)

i.e. that A0 is invariant under the adjoint action of the tα̂2 . To proceed, let us denote the

generators of gR by TA, A = 1, . . . , dim(gR). Now invariance of the gravitino variations (2.5)

under R-symmetry transformations requires all the B-matrices to be gR invariant, in the

sense that

(TA)α̂2

β̂2Bβ̂2 − [TA, Bα̂2 ] = 0 . (C.10)

Here (TA)α̂2

β̂2 and (TA)i
j denote the R-symmetry generators in the representations of the

graviphotons and the gravitini respectively. So loosely speaking the B-matrices “translate”

between different representations of gR. As tα2 ∈ gR we can always find (generically scalar

dependent) matrices Θα2
A such that

tα2 = Θα2
ATA . (C.11)

Using this information it follows from (C.9) and (C.10) that[
tα̂2 , tβ̂2

]
= 2(D − 2)(D − 3)

{
A0,

[
tα̂2 , Bβ̂2

]}
= 2(D − 2)(D − 3)

{
A0, (tα̂2)β̂2

γ̂2Bγ̂2

}
= (tα̂2)β̂2

γ̂2 tγ̂2 ,

(C.12)

where we have introduced (tα̂2)β̂2
γ̂2 = Θα̂2

A(TA)β̂2
γ̂2 .
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[19] J. Belloŕın and T. Ort́ın, All the supersymmetric configurations of N = 4, D = 4

supergravity, Nucl. Phys. B 726 (2005) 171 [hep-th/0506056] [INSPIRE].

[20] T. Ishino, H. Kodama and N. Ohta, Time-dependent solutions with null Killing spinor in

M-theory and superstrings, Phys. Lett. B 631 (2005) 68 [hep-th/0509173] [INSPIRE].

[21] P. Meessen and T. Ort́ın, The supersymmetric configurations of N = 2, D = 4 supergravity

coupled to vector supermultiplets, Nucl. Phys. B 749 (2006) 291 [hep-th/0603099] [INSPIRE].

– 17 –

http://dx.doi.org/10.1007/s00220-004-1066-y
https://arxiv.org/abs/hep-th/0205050
http://inspirehep.net/search?p=find+EPRINT+hep-th/0205050
http://dx.doi.org/10.1088/0264-9381/20/21/005
https://arxiv.org/abs/hep-th/0209114
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209114
http://dx.doi.org/10.1088/1126-6708/2003/03/048
https://arxiv.org/abs/hep-th/0211089
http://inspirehep.net/search?p=find+EPRINT+hep-th/0211089
http://dx.doi.org/10.1088/1126-6708/2003/04/039
https://arxiv.org/abs/hep-th/0212008
http://inspirehep.net/search?p=find+EPRINT+hep-th/0212008
http://dx.doi.org/10.1103/PhysRevD.69.086002
http://dx.doi.org/10.1103/PhysRevD.69.086002
https://arxiv.org/abs/hep-th/0302158
http://inspirehep.net/search?p=find+EPRINT+hep-th/0302158
http://dx.doi.org/10.1088/0264-9381/20/23/008
https://arxiv.org/abs/hep-th/0306235
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306235
https://arxiv.org/abs/hep-th/0306278
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306278
http://dx.doi.org/10.1088/1126-6708/2003/12/049
https://arxiv.org/abs/hep-th/0311112
http://inspirehep.net/search?p=find+EPRINT+hep-th/0311112
http://dx.doi.org/10.1088/0264-9381/21/18/005
https://arxiv.org/abs/hep-th/0402153
http://inspirehep.net/search?p=find+EPRINT+hep-th/0402153
http://dx.doi.org/10.1016/j.nuclphysb.2004.06.037
https://arxiv.org/abs/hep-th/0403220
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403220
http://dx.doi.org/10.1103/PhysRevD.70.125009
http://dx.doi.org/10.1103/PhysRevD.70.125009
https://arxiv.org/abs/hep-th/0407127
http://inspirehep.net/search?p=find+EPRINT+hep-th/0407127
http://dx.doi.org/10.1103/PhysRevD.71.045002
http://dx.doi.org/10.1103/PhysRevD.71.045002
https://arxiv.org/abs/hep-th/0408122
http://inspirehep.net/search?p=find+EPRINT+hep-th/0408122
http://dx.doi.org/10.1088/0264-9381/22/6/009
https://arxiv.org/abs/hep-th/0410155
http://inspirehep.net/search?p=find+EPRINT+hep-th/0410155
https://arxiv.org/abs/hep-th/0411194
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411194
http://dx.doi.org/10.1088/0264-9381/22/12/010
https://arxiv.org/abs/hep-th/0501177
http://inspirehep.net/search?p=find+EPRINT+hep-th/0501177
http://dx.doi.org/10.1088/1126-6708/2005/10/039
https://arxiv.org/abs/hep-th/0505185
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505185
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.020
https://arxiv.org/abs/hep-th/0506056
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506056
http://dx.doi.org/10.1016/j.physletb.2005.09.080
https://arxiv.org/abs/hep-th/0509173
http://inspirehep.net/search?p=find+EPRINT+hep-th/0509173
http://dx.doi.org/10.1016/j.nuclphysb.2006.05.025
https://arxiv.org/abs/hep-th/0603099
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603099


J
H
E
P
0
2
(
2
0
1
7
)
0
8
5

[22] M. Huebscher, P. Meessen and T. Ort́ın, Supersymmetric solutions of N = 2 D = 4 SUGRA:

The whole ungauged shebang, Nucl. Phys. B 759 (2006) 228 [hep-th/0606281] [INSPIRE].
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