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1 Introduction

Three independent lines of investigation have recently converged on a long list of new

dualities, which relate the low-energy (IR) behavior of two different (2+ 1)d field theories.

One source of input came from the condensed matter literature (e.g. [1–6]). Another

approach was based on the study of Chern-Simons (CS) theories coupled to matter in the

fundamental representation with large N and large k with fixed N/k. In some cases two

different theories, one of them fermionic and the other bosonic, were argued [7–9] to be dual

to the same Vasiliev high-spin gravity theory on AdS4 (see e.g. [10]), and thus dual to each

other by a duality exchanging strong and weak coupling. Another approach to finding such

– 1 –



J
H
E
P
0
2
(
2
0
1
7
)
0
7
2

dualities with finite N and k is based on starting with a pair of dual N = 2 supersymmetric

theories [11–23] and turning on a relevant operator that breaks supersymmetry. If the flow

to the IR is smooth, we should find a non-supersymmetric duality [24, 25]. Motivated

by this whole body of work, a number of dualities based on unitary gauge groups were

conjectured in [26] and elaborated in [27]:

Nf scalars with SU(N)k ←→ Nf fermions with U(k)
−N+

Nf

2
,−N+

Nf

2

Nf scalars with U(N)k,k ←→ Nf fermions with SU(k)
−N+

Nf

2

(1.1)

Nf scalars with U(N)k,k±N ←→ Nf fermions with U(k)
−N+

Nf

2
,−N∓k+

Nf

2

for Nf ≤ N . All CS theories here and below are viewed as the low-energy limits of the

corresponding Yang-Mills-Chern-Simons theories; our conventions and more details on CS

couplings and fermion determinants are collected in appendix A. Here and throughout this

paper we take N, k ≥ 0; additional dualities follow from reversing the spacetime orientation

in these dualities. The matter fields are in the fundamental representation of the gauge

group and it is implicit that the scalars φ are at a |φ|4 fixed point. The U(L) groups have

two levels when L > 1. See [27] for more details. The N = k = Nf = 1 versions of

these dualities were analyzed and coupled to appropriate background fields in [28–30], and

their relation to supersymmetric dualities was analyzed in [31, 32], thus providing further

evidence for their validity.

Our goal in this paper is to extend this line of investigation to orthogonal and sym-

plectic gauge groups. We will conjecture the following IR dualities:1

Nf real scalars with SO(N)k ←→ Nf real fermions with SO(k)
−N+

Nf

2

Nf scalars with USp(2N)k ←→ Nf fermions with USp(2k)
−N+

Nf

2

(1.2)

The matter fields are in the fundamental representation of the gauge group. The SO

dualities are conjectured to hold for Nf ≤ N − 2 if k = 1, Nf ≤ N − 1 if k = 2, and

Nf ≤ N if k > 2. Notice that these dualities, as opposed to the ones considered before,

involve real scalars and real (Majorana) fermions. The USp dualities are conjectured to

hold for Nf ≤ N . In the ’t Hooft limit of large N and k, with fixed Nf and N/k, these

dualities are supported by the same considerable evidence as their U(N) counter-parts

(since the orthogonal and symplectic theories are just projections of the U(N) theories at

leading order in 1/N).

As a particularly interesting special case, if we set k = 1 in the SO dualities, we con-

jecture that the SO(N)1 CS theory coupled to Nf scalar fields in the vector representation

(with any N ≥ Nf + 2) flows to Nf free Majorana fermions.

1For the symplectic groups our notation is USp(2N) = Sp(N), and in particular USp(2) = Sp(1) =

SU(2). It is worth noting that for the orthogonal groups the level k, which is an integer, is normalized such

that the Chern-Simons term is k
2·4π

Tr
(

AdA + 2

3
A3

)

with a trace in the vector representation. As we will

discuss below, the SO(N)k theory with even k is a conventional non-spin topological quantum field theory

(it does not require a spin structure), while the theory with odd k is spin.
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In a companion paper [33] we will discuss a number of non-trivial fixed points with

enhanced global symmetry. Every one of them has a number of dual descriptions. The full

global symmetry appears classically in some descriptions, but it only appears as a quantum

enhanced low-energy symmetry in others. For example, taking special cases of (1.1), all

the theories

one scalar with U(1)2 ←→ one fermion with U(1)− 3
2

l l

one fermion with SU(2)− 1
2

one scalar with SU(2)1

(1.3)

lead to the same nontrivial fixed point with a global SU(2) symmetry. The two descriptions

at the bottom make the SU(2) global symmetry manifest at the classical level. (Actually,

only SO(3) acts faithfully on gauge invariant operators.) However, the symmetry only

appears quantum mechanically in the two descriptions at the top.

The duality between the two theories at the bottom of (1.3) is the simplest example of

the USp dualities (1.2), thus providing a nontrivial check of them. Also the duality between

the two theories at the top of (1.3) appears among our SO dualities for SO(2) = U(1) (1.2),

but the SO duality acts on the operators in a different way, that is related to the U(1)

duality by a global SU(2) rotation. Thus, the enhanced global symmetry plays a crucial

role in the consistency checks of the dualities (1.2).

If we set Nf = 0 in the suggested dualities (1.1) and (1.2), we find simple dualities

involving topological quantum field theories (TQFTs):

SU(N)k ←→ U(k)−N,−N

U(N)k,k±N ←→ U(k)−N,−N∓k

SO(N)k ←→ SO(k)−N

USp(2N)k ←→ USp(2k)−N .

(1.4)

These are level-rank dualities in pure Chern-Simons theory. They provide one of the main

motivations for the dualities (1.1), (1.2), or conversely, they are a nontrivial check of them.

Although there exists a large literature about such level-rank dualities, we could not find

a precise version of them. In [27] a careful analysis derived the first two lines in (1.4) and

clarified that they hold, in general, only when the theories are spin-Chern-Simons theories

(see [27] for details). Below we will provide a similar proof of the orthogonal and symplectic

dualities in (1.4) and will establish the need for the theories to be spin.2

The level-rank dualities can be used to show that several TQFTs, although not man-

ifestly so, are time-reversal invariant at the quantum level. We provide a rich set of ex-

amples, summarized in table 1. These theories represent new possible gapped boundary

states of topological insulators and topological superconductors.

In section 2 we analyze in detail the Chern-Simons-matter dualities for USp(2N) gauge

groups, and in section 3 for SO(N) groups. In section 4 we comment on the relation to

2However we will also find that for special values of N, k the dualities (1.4) are valid for conventional

TQFTs as well. In particular the first SU/U duality is non-spin for N even and Nk = 0 mod 8, the SO

duality is non-spin for N, k even and Nk = 0 mod 16, and the USp duality is non-spin for Nk = 0 mod 4.
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T -invariant theories N property framing anomaly

U(N)N,2N even N T -invariant spin theory (N2 + 1)/2

odd N need to add ψ

PSU(N)N even N T -invariant spin theory (N2 − 1)/2

odd N T -invariant non-spin theory

USp(2N)N even N T -invariant non-spin theory N2

odd N need to add ψ

SO(N)N odd N T -invariant spin theory

N = 0 mod 4 T -invariant non-spin theory N2/4

N = 2 mod 4 need to add ψ

Table 1. Some TQFTs that are time-reversal invariant (up to an anomaly) at the quantum level.

In each case we indicate whether the theories are spin or non-spin TQFTs, and in the latter case

whether they need to be tensored with a trivial spin theory ψ to exhibit time-reversal symmetry.

high-spin gravity theories on AdS4. Section 5 gives a detailed description of level-rank

dualities for orthogonal and symplectic groups, and section 6 describes their implications

for constructing new time-reversal-invariant TQFTs. Appendix A explains our notation

and conventions.

After the completion of this work, we received [34] where the duality of free fermions

to SO(N)1 with scalars is worked out.

2 Dualities between USp(2N) Chern-Simons-matter theories

In section 5 we will derive and discuss certain dualities of spin-TQFTs that take the form

of level-rank dualities:

USp(2N)k × SO(0)1 ←→ USp(2k)−N × SO(4kN)1 . (2.1)

In our conventions USp(2N) = SU(2N) ∩ Sp(2N,C), and further details are collected in

appendix A. We recall that a spin-TQFT — as opposed to a conventional topological

quantum field theory — can only be defined on a manifold with a spin structure, and if

multiple spin structures are possible, then the spin-TQFT will depend on the choice. A

spin-TQFT always has a transparent line operator of spin 1
2 . In (2.1) the USp factors

are non-spin, while the SO factors are trivial spin-TQFTs (discussed e.g. in [35]), whose

presence is important for the duality to work.

We can then add matter in the fundamental representation, bosonic on one side and

fermionic on the other, and conjecture new boson/fermion dualities. This is done in such

a way that renormalization group (RG) flows in which all matter becomes massive are

consistent with (2.1). We thus propose the following dualities between the low-energy
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limits of Scalar and Fermionic theories:

Theory S: a USp(2N)k theory coupled to Nf scalars with φ4 interactions

and (2.2)

Theory F: a USp(2k)
−N+

Nf

2

theory coupled to Nf fermions

for Nf ≤ N . (The meaning of half-integer CS levels is the standard one, reviewed in

appendix A.) More precisely, Theory S also includes the spin-topological sector SO(0)1
that makes it into a spin theory and provides a transparent line of spin 1

2 . Theory F is

already manifestly spin, however to correctly reproduce its framing anomaly3 we include

SO
(
4k(N −Nf )

)
1
. For completeness, let us rewrite the duality including its time-reversed

version:

USp(2N)k × SO(0)1 with Nf φi ↔ USp(2k)
−N+

Nf

2

× SO
(
4k(N −Nf )

)
1
with Nf ψi

USp(2N)−k × SO(0)1 with Nf φi ↔ USp(2k)
N−

Nf

2

× SO(4kN)−1 with Nf ψi

(2.3)

where φi are scalars and ψi are fermions.

Theory S contains Nf complex scalars in the fundamental 2N representation of

USp(2N). Since the representation is pseudo-real, we can rewrite them in terms of 4NNf

complex scalars subject to the reality condition ϕaiΩ
abΩ̃ij = ϕ∗

bj , where a = 1, . . . , 2N is a

fundamental index of USp(2N), i = 1, . . . , 2Nf is a fundamental index of USp(2Nf ), and

Ωab, Ω̃ij are the corresponding symplectic invariant tensors. This description makes the

USp(2Nf ) flavor symmetry of the theory manifest. There is one quadratic term and two4

quartic terms one can write that preserve the USp(2Nf ) flavor symmetry: in terms of the

antisymmetric meson matrix Mij = ϕaiΩ
abϕbj they are

O(2) = Tr(Ω̃M) =
∑

ai
|ϕai|

2 , O
(4)
1 =

(
Tr(Ω̃M)

)2
, O

(4)
2 = Tr(Ω̃M Ω̃M) . (2.4)

All these three terms are relevant in a high-energy Yang-Mills-Chern-Simons theory with

these matter fields. We turn them on with generic coefficients and make a single fine-

tuning (which we can interpret as the coefficient of the quadratic term). We conjecture

that by doing that the long distance theory is at an isolated nontrivial fixed point. It is

a generalization of the Wilson-Fisher fixed point, and it has a single USp(2Nf )-invariant

relevant deformation which may be identified with O(2). Theory S is defined at such a

fixed point.

Note that the Z2 center of the USp(2N) gauge group acts in exactly the same way as

the Z2 center of the USp(2Nf ) global symmetry group. So local gauge-invariant operators

actually sit in representations of USp(2Nf )/Z2 (e.g. for Nf = 1 they always have integer

spin under SU(2)). However we can have non-local operators like a ϕai attached to a

3In general, the two sides of the duality have different framing anomalies (see [36]). We fix that by

adding a trivial spin-TQFT that has the difference in the anomaly. For our purposes this is the same as a

gravitational Chern-Simons term with an appropriate coefficient.
4For Nf = 1 there is only one independent quartic term.
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Wilson line, where the charge of the Wilson line under the center of USp(2N) is correlated

with the charge of the operator that it ends on under the center of USp(2Nf ). In this sense

the gauge × global symmetry group is
(
USp(2N)×USp(2Nf )

)
/Z2.

Theory F contains Nf complex spinors in the fundamental 2k representation of

USp(2k), and again, rewriting them in terms of 4kNf Dirac spinors with a reality con-

dition ψaiΩ
abΩ̃ij = ψc

bj (where ψc is the charge conjugate) makes the USp(2Nf ) flavor

symmetry manifest. At high energies the corresponding Yang-Mills-Chern-Simons theory

has a single relevant USp(2Nf )-invariant operator, which is the quadratic mass term. We

tune it to zero in the IR, and assume it is the only USp(2Nf )-invariant relevant operator

there. The bare CS levels (see appendix A) are (Nf −N) in (2.2) and N in (2.3).

Notice that while the spin-TQFTs involved in the level-rank duality (2.1) have a Z2

one-form global symmetry associated to the center of the group, such a symmetry is broken

in the theories with matter because the latter transforms under the center [37]. In fact,

the theories in (2.2) do not have any discrete global symmetries.

2.1 RG flows

We cannot prove the dualities in (2.2), however we can perform some consistency checks.

For instance, we can connect different dual pairs by RG flows triggered by mass deforma-

tions. In both Theories S and F, turning on a mass at high energies leads to turning on the

unique relevant deformation of the low-energy conformal field theory (CFT). So turning

on a bosonic mass-squared m2
φ in Theory S should have the same effect at low energies as

turning on a fermion mass mψ in Theory F.

In Theory S, if we give a positive mass-squared to one of the complex scalars we simply

reduce Nf by one unit. However, if we turn on a negative mass-squared, a complex scalar

condenses Higgsing the gauge group to USp(2N − 2)k, in addition to reducing the number

of flavors. In Theory F, when giving mass to one of the complex fermions, the phase of its

partition function becomes either e−iπη(A) or 1 in the IR limit, depending on the sign of the

mass. In both cases the number of flavors is reduced by one, however in the first case one

can use the APS index theorem [38] (see appendix A) to rewrite the leftover regularization

term e−iπη(A) in terms of a shift of the bare gauge and gravitational CS terms. Thus, tuning

the mass of the remaining (Nf−1) flavors to zero, the RG flow leads5 to the following pairs:

USp(2N)k × SO(0)1 with φi ↔ USp(2k)
−N+

Nf−1

2

× SO
(
4k(N −Nf + 1)

)
1
with ψi

USp(2N − 2)k × SO(0)1with φi ↔ USp(2k)
−N+

Nf+1

2

× SO
(
4k(N −Nf )

)
1
with ψi

(2.5)

each with Nf − 1 matter fields. These are consistent with the proposed duality.

If Nf < N , by flowing with different combinations of positive and negative masses

squared, in Theory S the gauge group can range between USp(2N)k and USp
(
2(N−Nf )

)
k
,

while in Theory F the level can range between USp(2k)−N and USp(2k)−N+Nf
. In all

these cases we do not find any inconsistency in the duality. Starting with a dual pair

5Here we assume that the RG flow still leads to a non-trivial CFT with a single USp(2Nf − 2)-invariant

relevant operator.
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with Nf = N , we can give negative mass-squared to all flavors and flow to a dual pair

with Nf = N = 0. In this case, Theory S is gapped and empty in the IR; Theory F is a

USp(2k)0 Yang-Mills theory, which confines and has a single gapped ground state. Thus

the duality is still valid.

On the other hand, consider the case Nf ≥ N + 1 and turn on generic masses for

all the flavors. Theory F flows to a non-trivial topological theory. Let us compare with

Theory S. Here generic negative mass-squared for all matter fields Higgses the gauge group

completely. The IR theory could be gapped or could have massless Goldstone bosons,

but since the gauge group is completely Higgsed, it cannot include a topological sector.

Hence, the duality cannot be correct in this case. We conclude that none of the pairs with

Nf ≥ N + 1 can be dual.

2.2 Coupling to background gauge fields

Given that our system has a global USp(2Nf ) symmetry, we can couple it to background

gauge fields for that symmetry. Our goal here is to identify the CS counterterms [39] for

these fields that are needed for the duality.

Let us start with the scalar side of the duality. We start with a USp(2N)k CS theory for

the dynamical fields and we can also have USp(2Nf )ks for some integer ks for the classical

fields. If we give masses to all scalars such that the gauge symmetry is not Higgsed, then

the low energy theory is purely topological. It is a USp(2N)k × USp(2Nf )ks CS theory,

where the second factor is classical. In the fermionic side of the duality we start with

USp(2k)
−N+

Nf

2

for the dynamical fields and USp(2Nf )kf for the classical fields. These

mean that the bare CS levels for these two groups are −N +Nf and kf + k
2 respectively.

Repeating the mass deformation of the bosonic side we find at low energy a topological

USp(2k)−N as well as a CS counterterm for the classical fields USp(2Nf )kf− k
2

. For this to

match with the bosonic side we must choose6

kf = ks +
k

2
. (2.6)

Of course, we have the freedom to add the same CS counterterm on the two sides of the

duality. This will add an arbitrary integer to ks and the same integer to kf .

We can repeat the same considerations with an opposite sign for the mass deformations.

In the scalar theory, Higgsing occurs and the symmetry group is reduced to USp
(
2(N −

Nf )
)
k
× USp(2Nf )ks+k, where the broken part of the gauge group is identified with the

flavor group and this causes the shift of the CS counterterm for the classical fields. In the

6It is common in the literature to argue for ’t Hooft-like anomaly matching conditions restricting the

level of CS terms for the global symmetry. These levels could be half-integral in theories with fermions and

they are always integral in theories with bosons. Based on that, one might attempt to exclude many of these

boson/fermion dualities. Instead, as in appendix A, the fractional part of the CS terms always arise from the

dynamics and the bare CS levels are always integral. In the cases where our theories have fermions leading

to a fractional level, the bosonic dynamics in the other side of the duality must lead to equal fractional

levels. Indeed, our analysis of the renormalization group flow out of the fixed point is consistent with this

assertion. However, as we will now show, there do exist non-trivial ’t Hooft-like anomaly matching of the

integer bare CS terms for the global symmetries.
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fermionic theory we find USp(2k)−N+Nf
×USp(2Nf )kf+ k

2

. As a non-trivial check, equality

on the two sides requires the very same relation (2.6).

As we discussed above, the global symmetry that acts faithfully on local operators

is USp(2Nf )/Z2 and this puts restrictions on the CS counterterms. More precisely, in

the bosonic side we would like the bare CS terms to be consistent for
(
USp(2N)k ×

USp(2Nf )ks
)
/Z2 and the Z2 quotient is consistent only for

Nk +Nfks ∈ 2Z . (2.7)

In the fermionic side the bare CS terms are
(
USp(2k)−N+Nf

× USp(2Nf )ks+k

)
/Z2, where

we used (2.6). This is consistent for

− kN + 2kNf + ksNf ∈ 2Z . (2.8)

Fortunately, (2.7) is the same condition as (2.8). In the spirit of ’t Hooft anomaly matching,

this is a non-trivial consistency check on our duality. The obstruction to the Z2 quotient

is the same in the two sides of the duality.

When the condition (2.7) is not satisfied, we cannot mod out by the Z2 and fewer

backgrounds of the gauge fields are allowed. In those cases it might still be possible to

extend the USp(2Nf ) classical gauge fields to a (3 + 1)d bulk and consistently take the Z2

quotient there.

2.3 Small values of the parameters

It is instructive to look at the dualities (2.2) for small values of N , k and Nf . We already

discussed that the case N = Nf = 0 is the statement that USp(2k)0 confines with a single

vacuum. The case k = 0 is the statement that USp(2N)0 with Nf ≤ N complex scalars

confines with a single vacuum: although we have no proof that this is true, it is surely

plausible.

As discussed around (1.3), the case N = k = Nf = 1 can be derived from the dualities

in [26, 27], giving us more confidence that the duality is correct.

2.4 New fermion/fermion and boson/boson dualities

Combining the dualities for symplectic groups in (2.2) with those for (special) unitary

groups in [26, 27], we can find new fermion/fermion and boson/boson dualities.

For instance, we can take (2.2) with N = Nf = 1 and combine it with the first duality

of (5.5) in [27]. This gives us a fermion/fermion duality

USp(2k)− 1
2
with 1 fermion in 2k ←→ U(k)− 3

2
with 1 fermion in k . (2.9)

(To be precise, the theory on the right should include a decoupled SO(2k)1 factor.) As we

discussed, the duality with k = 1 can be derived from [26, 27], but the other ones are new.

Note that for all k the theories in (2.9) have a global SU(2) symmetry, which is manifest

in the l.h.s. of (2.9). On the r.h.s. of the duality we have a manifest U(1) monopole number

symmetry and charge conjugation C, which does not commute with it because it maps the

– 8 –
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monopole number n to −n. Our duality suggests that this U(1)⋊Z
C
2 classical symmetry is

enhanced in the quantum theory to SU(2). The currents that extend the Abelian symmetry

to SU(2) must carry monopole charge. We suggest that they are constructed out of the

monopole operator and its conjugate in the U(k) theory. Since these carry charge, each of

them should be dressed by a fermion to be gauge-invariant.

Similarly, from (2.2) with k = 1 and [26, 27] we can obtain the boson/boson duality

USp(2N)1 with Nf scalars in 2N ←→ U(N)2 with Nf scalars in N (2.10)

with Nf ≤ N . Both sides should include SO(0)1 and be regarded as spin theories. The

case N = Nf = 1 was already found in [26, 27], but the other ones are new. As above,

the global symmetry of these theories is USp(2Nf ), which is manifest in the l.h.s. , thus

we conjecture that the manifest U(Nf ) and charge conjugation symmetries in the r.h.s. are

enhanced to USp(2Nf ).

3 Dualities between SO(N) Chern-Simons-matter theories

For orthogonal groups there exists a similar level-rank duality of spin-TQFTs (derived in

section 5):

SO(N)k × SO(0)1 ←→ SO(k)−N × SO(kN)1 . (3.1)

(For our conventions on CS terms see appendix A and footnote 1.) Arguments similar to

those of the previous section, and to those used for SU(N) and U(N) groups, suggest a

duality between the low-energy limits of:

Theory S: an SO(N)k theory coupled to Nf real scalars with φ4 interactions

and (3.2)

Theory F: an SO(k)
−N+

Nf

2

theory coupled to Nf real fermions.

As we explain below, the duality can only be true for Nf ≤ N − 2 if k = 1, for Nf ≤ N − 1

if k = 2, and for Nf ≤ N if k > 2. Moreover, one should remember that Theory S includes

the trivial spin-topological sector SO(0)1, while Theory F includes SO
(
k(N −Nf )

)
1
. The

matter fields are all in the vector representation. There is considerable evidence for this

duality at large N and k; at finite values of N and k we can check its consistency by mass

flows, including flows to the level-rank dualities between pure Chern-Simons theories (3.1)

described in section 5.

The two low-energy theories are defined by tuning the masses to zero, and assuming

that both sides flow to a fixed point, which has a single relevant operator consistent with

the global symmetries of the high-energy theory. For finite values of N , k and Nf we do

not know when this is true; additional operators could become relevant at low energies,

which would prevent the two theories from flowing to the same fixed point, or the fixed

point may cease to exist (say because a mass gap develops, or because we spontaneously

break some of the flavor symmetries on one side but not the other). The limits on Nf

above arise because we show that for larger values of Nf the duality cannot hold, but we

conjecture that it does hold for the values mentioned above.
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3.1 Flows

We can flow from the duality with (N, k,Nf ) to the dualities with (N, k,Nf − 1) and with

(N −1, k,Nf −1) by adding a mass for a single flavor. Both the mass-squared deformation

in Theory S, and the mass deformation in Theory F, are expected to flow to the same

relevant operator in the low-energy CFT (which is in the symmetric tensor representation

of the SO(Nf ) flavor group). Previously we mentioned the SO(Nf )-invariant component of

this relevant operator, but we assume here that it also has a symmetric-traceless counter-

part that is relevant. In theory F we can integrate out the massive flavor, schematically

shifting the Chern-Simons level of the remaining low-energy theory by ±1
2 , depending on

the sign of the mass. In theory S the same flavor, depending on the sign of its mass-squared,

either becomes massive, or condenses and breaks the gauge group to SO(N − 1) (this is

all similar to the U and USp cases). In this flow we fine-tune the mass of the remaining

(Nf − 1) flavors to zero. The flow to the lower duality exists whenever no additional

operator becomes relevant, and whenever the new IR CFT exists; under these assumptions

it leads to a new duality between the lower theories S′ and F′.

Reversing this logic, if we have a non-trivial duality for some values of (N, k,Nf ), we

can assume that the duality holds for all (N ′, k,N ′
f ) with N + N ′

f − Nf ≥ N ′ ≥ N and

N ′
f > Nf . If for some such value the duality fails but we still have a non-trivial theory with

no extra relevant operators, then we expect the duality to fail also for the corresponding

higher values (since otherwise we get a contradiction by first flowing to the “higher” IR

CFT and then performing the mass flow).

When giving a mass to all Nf fermions, Theory F flows to a pure SO(k) Chern-Simons

theory with a level between (−N) and (Nf −N), depending on the signs of the masses of

the different flavors. Depending on the same signs, some flavors could condense in theory

S, so that its gauge group is between SO(N)k and SO(N−Nf )k. The resulting theories are

then dual by level-rank dualities of SO(N) spin-TQFTs (see section 5), giving a consistency

check on our dualities. Note that this assumes Nf < N .

For Nf = N and an appropriate sign of the mass deformation, the gauge theory in

Theory S is completely broken, and for generic values of the masses all scalars become

massive and the theory develops a mass gap. In Theory F for the same masses the low-

energy Chern-Simons level vanishes and the fermions are massive, so again we expect a

mass gap. For Nf > N with the same choice of signs for the masses for all the flavors, we

break the gauge group completely in Theory S, and generically all scalars are massive and

we have a mass gap with a trivial theory at low energies. On the other hand, in Theory

F for the same choice, all fermions become massive, but we end up with a non-trivial

topological theory, so the duality necessarily breaks down for this case, as in the U(N) and

USp(2N) cases.

3.2 Global symmetries

The UV Yang-Mills-Chern-Simons theories we start from have an O(Nf ) flavor symmetry,

as well as two discrete symmetries discussed below. The definition of the IR Theories

S and F involves flows from these UV theories that preserve these SO(Nf ) and discrete
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symmetries. The SO(Nf ) symmetry allows for a single mass term which needs to be tuned,

both on the scalar and on the fermion sides. As in (2.4), for Nf > 1 the UV description of

Theory S has two possible φ4 terms. In terms of Mij = φaiφaj (i, j are flavor indices and

a is a color index) they are O
(4)
1 =

(
Tr(M)

)2
and O

(4)
2 = Tr(M2) . We assume that for

generic couplings of these operators they do not lead to any new relevant operator at low

energies.7 For some small values of N and k there are enhanced continuous symmetries,

which we will discuss below.

In addition there are two discrete symmetries, that were discussed in detail in [23].

There is a global “charge conjugation” symmetry C, which acts on the matter fields as

φ1i → −φ1i and all other φai are invariant. When C is gauged the gauge group changes

from SO(N) to O(N).8 The SO(N) vector indices may be contracted to form singlets either

with δab or with ǫa1a2···aN . Operators that involve the latter contraction are odd under C,

while all others are even. Since the product of two epsilon symbols may be replaced by a

sum of products of δ’s, the symmetry is Z2.

In the fermionic SO(k) theory, the lowest-dimension operator charged under C is a

baryon operator, involving k fermions contracted with an epsilon symbol. Classically the

dimension of this operator is k, and in the quantum theory it has some anomalous dimen-

sion. Its Lorentz×SO(Nf ) representation is a symmetric product of k spinors which are

vectors of SO(Nf ). In the scalar SO(N) theory a similar contraction vanishes (for Nf < N)

because of the statistics of the scalar operators. For Nf = 1 the lowest-dimension C-odd

operator comes from choosing N different derivative operators acting on the scalar, and

then contracting them with an epsilon symbol. Similarly for Nf > 1 we need to choose N

different combinations of derivatives and flavor indices; when Nf = N we can contract Nf

different scalars with no derivatives. In the large N limit with fixed Nf , the classical dimen-

sion of the lightest C-odd operator scales as N3/2 [40]. The Lorentz representation of these

operators comes from the product of those of the derivative operators that we need to use.

Monopole operators in an SO(N) theory are characterized by having some quantized

flux around them, which can be chosen to be in the Cartan algebra of SO(N) (this is a semi-

classical characterization; in the quantum theory operators with different GNO charges can

mix). The lowest one carries one unit of flux under a single SO(2) subgroup of SO(N).

The flux breaks the SO(N) gauge group to
(
O(2)×O(N − 2)

)
/Z2. The smallest monopole

charge (which we normalize to be 1) in the SO(N) theory is defined by requiring mutual

locality with matter fields (or Wilson lines) in the vector representation of SO(N). In a

Spin(N) theory we need to require mutual locality also with fields (or Wilson lines) in

the spinor representation, and thus the minimal monopole charge is 2. This implies that

the monopoles carry a Z2 global “magnetic” symmetry M, and operators that are allowed

in SO(N) but not in Spin(N) are odd under M. Note that unlike in U(N) theories, the

monopoles do not carry a U(1) global charge (except when the gauge group is SO(2)), but

a Z2 charge.

7For some values of N , k and Nf there are additional fixed points where one or both quartic operators

are tuned to zero, and that also have fermionic Gross-Neveu-like duals, but we will not discuss them here.
8For N even, this symmetry always exchanges the two spinor representations of Spin(N). They are in

fact complex conjugate representations for N = 2 mod 4, but not for N = 0 mod 4.
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This description of the monopole operator is not manifestly SO(N) invariant. Alterna-

tively, we can define this operator by removing a point from our spacetime and specifying a

non-trivial bundle on the sphere that surrounds it. Specifically, this monopole corresponds

to having nontrivial second Stiefel-Whitney class w2 on that sphere. This makes it clear

that the M charge is a Z2 charge.

Gauge-invariance requires that a monopole in the SO(N)k Theory S must come to-

gether with k fields charged under the SO(2) ⊂ SO(N) gauge group. Charged scalars in

the monopole background carry spin 1
2 [41], and their scaling dimension is shifted from 1

2

to 1. Thus the lightest monopole operator that is charged under M has classical dimension

k, and lies in a Lorentz×SO(Nf ) representation that is a symmetric product of k spinors

that are fundamentals of SO(Nf ).

Charged fermions in a monopole background have integer spins, and in particular each

fermion has a zero mode, and defining the monopole operator requires quantizing these Nf

zero modes. After quantizing the zero modes, one has to add in the SO(k)
−N+

Nf

2

Theory

F N additional fermionic operators charged under SO(2), of various integer spins, in order

to form a gauge-singlet.

The Lorentz×SO(Nf ) representations of these fermionic monopole operators are iden-

tical to those of the baryons in Theory S that were described above, and their classical

dimensions are also the same (since the fermion modes in the monopole background have

the same Lorentz quantum numbers and dimensions as derivatives acting on scalars). In

particular their classical dimension in the large N limit scales as N3/2 [42] (and this state-

ment is true also quantum mechanically [43]). Similarly, the lightest baryon operator in

the fermionic theory has precisely the same quantum numbers and classical dimension as

the lightest monopole operator in the scalar theory.

Above we were not careful about precisely which monopole we choose in the SO(2)

theory, and how it transforms under charge conjugation; these issues were discussed in

detail in [23], and we review the discussion here. In an SO(2) = U(1) theory, there

are monopoles Vn that carry n units of the U(1)J magnetic charge (topological charge).

Charge conjugation in this theory takes n to (−n), so we have one lightest monopole

(V1 + V−1) = V+ which is C-even, and another (V1 − V−1) = V− which is C-odd. We

can choose the SO(N) monopole discussed above to correspond to either one of these

operators in the SO(2) subgroup. However, since the precise gauge group that remains

in the monopole background is
(
O(2) ×O(N − 2)

)
/Z2, if we choose the C-even monopole

operator in SO(2), we need to dress it by a C-even operator in SO(N−2), while if we choose

the C-odd monopole in SO(2), it has to come with a C-odd operator in SO(N −2), in order

to be SO(N)-gauge-invariant. The monopoles we discussed above in SO(N) theories were

singlets of SO(N−2), so they are C-even and involve the monopole V+ in the O(2) subgroup.

In order to form a C-odd monopole operator (which was called a monopole-baryon in [23])

we need to take V− and multiply it by a C-odd operator in O(N − 2), namely a product

of (N − 2) matter fields contracted with an epsilon symbol (in addition to the extra fields

required for canceling the SO(2) charge of the monopole). Repeating the same arguments

as above, we find that the lightest monopole-baryon-operator in both theories F and S
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has a classical dimension scaling as N3/2 in the large N, k limit with fixed Nf , and the

operators also lie in identical Lorentz×SO(Nf ) representations in the two theories.

The arguments above strongly suggest that the duality exchanges monopoles and

baryons, and takes the monopole-baryon operators to themselves, namely it exchanges

the two Z2 global symmetries C and M. In fact, we can see that this must be the case by

performing the mass flow to the pure Chern-Simons theories, and noting (see section 5)

that the level-rank duality in these theories indeed exchanges C with M. So this gives a

nice consistency check for the duality. The fact that the classical dimensions on both sides

match (at least at large N) is somewhat surprising, since one would expect their dimension

to receive quantum corrections (except for the monopole operator in the fermionic theory

which was shown in [43] to receive no quantum corrections to its dimension in the ’t Hooft

large N limit). This is all very similar to the duality between SU(N) and U(k) CS-matter

theories, which also exchanges baryon number with monopole number [26, 43].

By gauging C and/or M we can find related dualities involving O(N), Spin(N) and

Pin±(N) gauge theories. These theories can have additional labels, which are the coeffi-

cients of terms like w2w1 of the gauge bundle [23]. These can be thought of as CS terms

of various discrete gauge fields or as discrete theta parameters analogous to those studied

in [37, 44, 45]. We will not discuss them here.

In the N = 2 supersymmetric version of the Chern-Simons-matter dualities between

SO(N) gauge theories [23], the duality maps CSUSY to itself, while mapping MSUSY to

CSUSYMSUSY. Given the fact that one can flow from the supersymmetric theories to the

pure Chern-Simons theories, and perhaps also to the non-supersymmetric Chern-Simons-

matter theories along the lines of [24, 25], this is confusing. The resolution is that in the

N = 2 supersymmetric Chern-Simons-matter theories there is also a complex gaugino field

in the adjoint representation. It has (N − 2) zero modes in the monopole background,

which are a vector of SO(N − 2), and their product is odd under CSUSY. Thus the minimal

monopole in the supersymmetric theory, that carries those zero modes, has an opposite

charge-conjugation transformation from the minimal monopole in the non-supersymmetric

theory (bosonic or fermionic). So we have MSUSY = M, but CSUSY = CM (where C and

M are defined as above in the non-supersymmetric theory). With this relation, the two

dualities are consistent with the flows and identifications discussed above.

3.3 Small values of N and k

When the theories on both sides are non-Abelian it is difficult to check the dualities.

However, for k = 1, 2, and for Nf = N − 1, N , we can (possibly after Higgsing) have

Abelian or empty gauge groups, so we can test the dualities in more detail.

When k = 1 or N = 1 we have no gauge group on one of the two sides, and also no

magnetic symmetry, though the charge conjugation symmetry remains and changes the

sign of the matter fields. On the fermionic side for k = 1 we have Nf free real (Majorana)

fermions. On the bosonic side for N = 1 we have an O(Nf )-invariant Wilson-Fisher fixed

point, which arises by turning on the quartic operator in the theory of Nf real scalars.

When k = 2 or N = 2 we have an Abelian gauge theory on one of the two sides. In

this theory the magnetic Z2 symmetry M is enhanced to a U(1)J symmetry (equal to M
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modulo 2). As mentioned above, the charge conjugation symmetry does not commute with

U(1)J : it takes a monopole of U(1)J charge n to one of charge (−n). In addition, the UV

theory in this case is equal to a U(1) Maxwell-Chern-Simons theory (since U(1)k′ with Nf

flavors is identical to SO(2)k′ with Nf flavors) which has, for Nf > 1, an enhanced SU(Nf )

flavor symmetry.

In the bosonic N = 2 theory, the mass operator (which we can write in the U(1)

language as O(2) = Φ†
iΦi in terms of complex fields Φi carrying U(1) charge 1) is SU(Nf )-

invariant. For Nf = 2, we have additional gauge-invariant quadratic operators: there is

an operator charged under the flavor SO(2) containing |Φ1|2 − |Φ2|2 and (Φ†
1Φ2 + Φ†

2Φ1)

which is C-even, and a flavor SO(2) singlet O
(2)
2 = (Φ†

1Φ2 − Φ†
2Φ1) which is C-odd. So in

flows from the UV Yang-Mills-Chern-Simons theory that preserve both SO(Nf ) and C we

do not need to consider either one of them, and we still require a single fine-tuning at low

energies. For Nf > 2 there is only one quadratic SO(Nf )-invariant operator.

At quartic order there is an SU(Nf )-invariant C-even operator (O(2))2 = Φ†
iΦ

†
jΦiΦj .

For Nf > 1, though, there is another SO(Nf )-invariant C-even quartic operator Φ†
iΦ

†
iΦjΦj .

When we view the theory as an SO(2) gauge theory, and in particular when we flow to it

from higher SO(N) gauge theories, we only preserve the SO(Nf ) symmetry, so the latter

operator is also turned on during the flow. We expect this extra operator to be irrelevant

at the SU(Nf )-invariant fixed point of the U(1) theory, and if so then the SO(2) flow also

reaches the same fixed point, at least for some values of the deformations from the UV

theory. However, we do not know how to prove that this is the case, and there may be a

different flow if the SU(Nf )-non-invariant operator is turned on with a large coefficient. We

will assume below that we do end up at the same fixed point. ForNf = 2 this extra operator

is a linear combination of (O(2))2 and (O
(2)
2 )2, and there is another SO(2)-invariant C-odd

operator O(2)O
(2)
2 which will not be turned on in a C-invariant flow (an additional operator

coming from the SO(2)-charged operator squared is a linear combination of these).

In the fermionic k = 2 theory we have similar quadratic operators, and the quartic

operators are irrelevant in the UV.

Thus, in both theories we expect the SO(Nf )-invariant C-invariant flow of the SO(2)

theory to end up at the same fixed point as that of the SU(Nf )-invariant U(1) flow. We

can then use known facts about the latter flow to learn about the status and implications

of the SO(N) dualities.

Now let us discuss the dualities for various small values of k and N .

3.4 The k = 1 case

For k = 1 we have a duality between the theory of Nf free real (Majorana) fermions, and

an SO(N)1 theory coupled to Nf real Wilson-Fisher scalars.

For N = 1 (implying also Nf = 1) this duality is obviously wrong, since the usual

Wilson-Fisher fixed point is not free (and thus the duality cannot hold also for higher

N = Nf which can flow to this value).

For N = 2 we have on the bosonic side the fixed point of U(1)1 coupled to Wilson-

Fisher scalars. In this case we need Nf = 1, and then the U(L) dualities [26, 28], assuming
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they hold for L = 1, imply that this scalar theory is dual to a free complex fermion. So

under this assumption the SO duality cannot be correct for (N, k,Nf ) = (2, 1, 1), and thus

also for k = 1 and higher values of N with Nf = N − 1.

For higher values of N , with Nf ≤ N − 2, we cannot rule out the k = 1 duality by

known results. Thus we conjecture an IR duality between:

Theory S: an SO(N)1 theory coupled to Nf real scalars with φ4 interactions

and (3.3)

Theory F: Nf free Majorana fermions.

As discussed above, the monopole operator of the scalar theory maps to the real fermion.

The lowest case is N = 3 and Nf = 1, where we have an SO(3)1 theory with a single

scalar in the vector (adjoint) representation flowing to a free Majorana fermion. Since

Theory F in this case has no magnetic symmetry, the duality implies that all baryons and

monopole-baryons of Theory S decouple at low energies.

3.5 The N = 1 case

In this case, since we should have Nf = 1, the scalar theory is just a real Wilson-Fisher

scalar. The dual fermionic theory has a real fermion coupled to an SO(k)− 1
2
CS theory.

The case k = 1 was already ruled out above. The case k = 2 is related to a U(1)− 1
2
theory,

which maps by the dualities of [26, 28] to a complex Wilson-Fisher scalar. So, assuming

the validity of the U(1) duality, the SO duality cannot hold in this case, and thus also for

other cases with k = 2 and Nf = N .

For higher values of k and N = Nf = 1, the duality may be correct, namely the

SO(k)− 1
2
CS theory coupled to a single fermion may flow to the fixed point of a real Wilson-

Fisher scalar. Again this implies that all baryonic operators of this theory decouple at low

energies.

3.6 The k = 2 case

In this case we have a duality between the theory of Nf fermions coupled to SO(2)
−N+

Nf

2

=

U(1)
−N+

Nf

2

, and the theory of Nf real scalars coupled to SO(N)2. Such a duality implies

that the charge conjugation Z2 symmetry of the scalar theory is enhanced to U(1), and its

SO(Nf ) flavor symmetry is enhanced to SU(Nf ), at low energies.

As discussed above we can rule out the cases with Nf = N , so the lowest case is N = 2

and Nf = 1. This case is interesting because, as discussed around (1.3), the two dual

Abelian theories admit two more non-Abelian descriptions in which the full SU(2) global

symmetry of the fixed point is manifest in the UV.

Our duality maps Theory S, a U(1)2 CS theory coupled to a complex Wilson-Fisher

scalar (for Nf = 1 there is no difference between the SO(2) and U(1) flows) to Theory F,

a U(1)− 3
2
CS theory coupled to a complex fermion. The very same two theories, viewed

as U(1) theories, are also mapped to each other by the U(1) duality of [26–28]. However,

interestingly enough, the operator mappings are not the same in the U(1) duality and the
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SO(2) duality: the U(1) ↔ U(1) duality preserves the magnetic symmetry and the charge

conjugation, while the SO(2) ↔ SO(2) duality exchanges them. Fortunately, this perfectly

fits with the enhanced quantum SU(2) global symmetry. In each U(1) CS description there

is a manifest U(1)J ⋊ Z
C
2 magnetic and charge conjugation symmetry. The U(1) duality

trivially maps the two copies of U(1)J ⋊Z
C
2 one into the other. The SO(2) duality, instead,

maps U(1)J ⋊ Z
C
2 in a nontrivial way, which follows from its embedding inside the global

SU(2) symmetry: it is an SU(2) rotation.

For k = 2 and N > 2 we obtain more complicated dualities, which we cannot rule out.

The U(1) dualities map the fermionic SO(2) = U(1) theories to SU(N)1 theories coupled

to Nf scalars, so we obtain boson-boson dualities between SU(N)1 and SO(N)2 theories

coupled to Nf < N Wilson-Fisher scalars (which are complex and real, respectively).

3.7 The N = 2 case

For N = 2 we have an SO(2)k = U(1)k CS theory coupled to Nf charged scalars with

Wilson-Fisher couplings; here we can have Nf = 1 or Nf = 2. The dual for Nf = 1 is an

SO(k)− 3
2
theory coupled to a real fermion, and for Nf = 2 an SO(k)−1 theory coupled to

two real fermions. For k = 1 and k = 2 we have already discussed these theories above.

For k > 2 the dual theory is non-Abelian, and we cannot rule the duality out. Again, it

implies that the charge conjugation symmetry of the fermionic theory should be enhanced

to U(1) at low energies, and its SO(Nf ) flavor symmetry to SU(Nf ).

The U(1) duality with Nf = 1 maps the same scalar theory to an SU(k)− 1
2
theory

coupled to a complex fermion, giving another fermion-fermion duality between SO(k)− 3
2

and SU(k)− 1
2
theories with one real/complex fermion flavor. For Nf = 2 the U(1) duality

breaks down, but the SO(N) duality of the previous paragraph may still be valid.

4 Relation to theories of high-spin gravity

The SO(N) theories with k = 0 and Nf = 1 were the first ones to be suggested to be dual

at large N to Vasiliev’s high-spin gravity theory on AdS4 [46, 47]; they are dual to the

minimal Vasiliev theory, which has only even-spin excitations. There are two versions of

this theory, differing by a discrete parameter, that were argued to be dual to theories of

N scalars and N fermions, respectively. This was later generalized to U(N) and SU(N)

theories being dual to non-minimal Vasiliev theories that have excitations of all spins.

There is an obvious generalization of both dualities to higher Nf , with the SO(N) theory

containing Nf (Nf + 1)/2 excitations of even spins, and Nf (Nf − 1)/2 excitations of odd

spins. The Vasiliev theory is only known by its classical equations of motion, so a priori

it is not known how to quantize it; the dual field theories with finite N can be viewed as

giving a non-perturbative definition of this theory.

For the U(N) scalar/fermion theories, it was argued that a parameter θ0 in the Vasiliev

theory is related to N/k when the U(N) Yang-Mills theory is replaced by U(N)k [8]. This

parameter interpolates between the theory dual to parity-invariant scalars, and the one

related to parity-invariant fermions, and this led to the conjectured duality between CS-

scalar and CS-fermion theories. The same parameter exists also in the minimal Vasiliev
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theories, so it is natural to conjecture that turning it on in the minimal Vasiliev theories

corresponds to having SO(N)k or USp(2N)k CS-matter theories. Again the fact that

the Vasiliev theory has two interpretations, as a CS-scalar and as a CS-fermion theory,

suggests that at least at large N the SO(N) and USp(2N) dualities that we discussed

above are correct.

At leading order in large N , the orthogonal, symplectic and unitary theories are all the

same, consistent with having the same classical equations of motion in the minimal and

non-minimal Vasiliev theories (up to having a projection removing half of the fields in the

SO and USp cases). However, the one-loop corrections should be different. In particular

there should be a discrete parameter distinguishing the SO(2N) and USp(2N) theories,

whose effect is to change the sign of all l-loop diagrams with odd values of l. This can

be realized by inverting the signs of ~ and of Newton’s constant.9 There should also be

discrete parameters on the gravity side distinguishing the different versions of the SO(N)

theories, where one gauges some of the Z2 discrete symmetries.

5 Level-rank dualities with orthogonal and symplectic groups

5.1 Level-rank dualities of 3d TQFTs

Level-rank dualities of 2d chiral algebras can be derived starting from systems of free

fermions. For instance, consider a system of Nk free real (Majorana) fermions: writing

them as ψaã with a = 1, . . . , N and ã = 1, . . . , k one obtains the following conformal

embeddings of chiral algebras (see also [50, 51]):

Spin(Nk)1 ⊃
(
Spin(N)k × Spin(k)N

)
/Z2 N, k odd

Spin(Nk)1 ⊃ Spin(N)k × SO(k)N N even, k odd

Spin(Nk)1 ⊃ SO(N)k × SO(k)N N, k even .

(5.1)

Here Spin is the standard Kac-Moody chiral algebra, while SO = Spin/Z2 is the extended

chiral algebra [52, 53] obtained from Spin by adding a suitable Z2 generator of spectral

flow (see below). The Z2 quotient in the first line is the extension by the diagonal element.

The centers match on the two sides. A series of equalities of chiral algebras follows:

Spin(N)k ←→
Spin(Nk)1
Spin(k)N

N, k odd

Spin(N)k ←→
Spin(Nk)1
SO(k)N

N even, k odd

SO(N)k ←→
Spin(Nk)1
Spin(k)N

N odd, k even

SO(N)k ←→
Spin(Nk)1
SO(k)N

N, k even .

(5.2)

9Note that this is not the same as the case where only Newton’s constant is inverted, giving a theory in

de Sitter space, as studied in [48, 49].
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On the right hand sides we have GKO cosets [54]. Moving from two-dimensional chiral

algebras to three-dimensional Chern-Simons theories [53], one obtains dualities between

the following Lagrangian theories:

Spin(N)k ←→
Spin(Nk)1 × Spin(k)−N

Z2
N, k odd

Spin(N)k ←→ Spin(Nk)1 × SO(k)−N N even, k odd

SO(N)k ←→
Spin(Nk)1 × Spin(k)−N

B
N odd, k even

SO(N)k ←→
Spin(Nk)1 × SO(k)−N

Z2
N, k even .

(5.3)

On the right hand sides, the Lagrangian is the one corresponding to the Lie algebra of

the numerator, while the gauge group is the result of the quotient. On the third line,

B = Z2×Z2 for k = 0 mod 4 and B = Z4 for k = 2 mod 4. We stress that these level-rank

dualities of 3d TQFTs (or equivalently of 2d chiral algebras) can be rigorously proven.

They have also been analyzed in [55, 56].

Similarly, one can start with a system of 4Nk 2d real fermions, and writing them as

4Nk complex fermions with a symplectic Majorana condition one obtains the conformal

embedding

Spin(4Nk)1 ⊃ USp(2N)k ×USp(2k)N . (5.4)

This leads to the duality of chiral algebras

USp(2N)k ←→
Spin(4Nk)1
USp(2k)N

, (5.5)

and in terms of three-dimensional Chern-Simons theories one has the duality

USp(2N)k ←→
Spin(4Nk)1 ×USp(2k)−N

Z2
(5.6)

between 3d TQFTs.

5.2 Matching the symmetries

Before going on with the analysis of those dualities, let us fix some notations for orthog-

onal and symplectic chiral algebras. The center B(G) of the simply-connected group G

associated to a Lie algebra g acts on the affine Lie algebra Gk as an outer automorphism,

and its action is generated by elements σi of Gk via spectral flow. In the corresponding

3d CS theory, B(G) appears as a one-form symmetry [37] generated by the lines σi. Such

lines can act in two different ways on the other lines of the theory: either by “fusion” (or

spectral flow), if they are placed parallel to the lines they act upon, or by “monodromy”,

if they are wound on a small circle around the other lines.

Whenever the generator of spectral flow has integer dimension, it can be included

in the chiral algebra to give an extended chiral algebra; equivalently, in 3d the one-form

symmetry can be gauged to give a Gk/H CS TQFT, where H is a subgroup of B(G).

When the generator has half-integer dimension, the chiral algebra can be augmented to a
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Z2-graded chiral algebra (with half-integer dimensions) that depends on the spin structure;

equivalently, in 3d the one-form symmetry can be gauged but the Gk/H CS theory is a

spin-TQFT. In our case, the center of USp(2N) is Z2 while the center of Spin(N) is Z2

for N odd, Z2 × Z2 for N = 0 mod 4 and Z4 for N = 2 mod 4. Let us identify the

corresponding generators of spectral flow.

In USp(2N)k, the Z2 spectral flow is generated by10

σ : [λ0, λ1, . . . , λN ] → [λN , λN−1, . . . , λ0] . (5.7)

The generator is given by σ = (0, . . . , 0, k) with dimension h(σ) = kN
4 . The action of σ via

monodromy is

Qσ[λ] = (−1)c [λ] , (5.8)

where the congruence class c of a representation [λ] is given by c =
∑N

j odd λj mod 2.

In particular the self-parity of σ is (−1)Nk. For Nk = 0 mod 4, one can consider

the PUSp(2N)k ≡ USp(2N)k/Z2 CS theory; for Nk = 2 mod 4, one can consider the

PUSp(2N)k spin-CS theory.

In Spin(N)k with N odd, the Z2 spectral flow is generated by

σ : [λ0, λ1, λ2 . . . , λr] → [λ1, λ0, λ2, . . . , λr] . (5.9)

The generator is given by σ = (k, 0, . . . , 0) with dimension h(σ) = k
2 . The action via

monodromy is

Qσ [λ] = (−1)λr [λ] . (5.10)

For N even we have the two spectral flow operations

js : [λ0, λ1, . . . , λr−1, λr] →

{
[λr−1, λr, λr−2, . . . , λ1, λ0] for N = 2 mod 4

[λr, λr−1, λr−2, . . . , λ1, λ0] for N = 0 mod 4
(5.11)

and

σ : [λ0, λ1, . . . , λr−1, λr] → [λ1, λ0, λ2, . . . , λr−2, λr, λr−1] . (5.12)

They are generated by js = (0, . . . , 0, k) with dimension h(js) =
Nk
16 and σ = (k, 0, . . . , 0)

with dimension h(σ) = k
2 . For N = 2 mod 4 the group structure is Z4: j2s = σ and

j4s = σ2 = 1I. The action via monodromy is

Qjs [λ] = i
N
2
c [λ] (5.13)

where the congruence class is c =
∑N

2
−2

j odd 2λj + λr − λr−1 mod 4. For N = 0 mod 4 the

group structure is Z2 × Z2: j
2
s = σ2 = 1I and jsσ = σjs. The action via monodromy is

Qjs [λ] =

{
(−1)cc [λ] for N = 0 mod 8

(−1)cs [λ] for N=4 mod 8
(5.14)

10We indicate a highest weight representation by its Dynkin labels (λ1, . . . , λr) or by its extended Dynkin

labels [λ0, . . . , λr], where r is the rank. In sp(2N), λr refers to the long root. In so(2n + 1), λr refers to

the short root, while in so(2n), λr−1 and λr refer to the two roots at the “bifurcated tail” of the Dynkin

diagram.
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where cs =
∑N

2
−3

j odd λj + λr mod 2 and cc =
∑N

2
−3

j odd+λr−1 mod 2. The action of σ via

monodromy is

Qσ[λ] = (−1)λr+λr−1 [λ] (5.15)

in both N even cases. The one-form symmetry generated by σ can always be gauged to

obtain the SO(N)k CS theory: it is a TQFT for k even, and a spin-TQFT for k odd. Only

for N, k both even there is another generator js that survives the quotient, thus only in

this case SO(N)k has a Z2 one-form symmetry.

Let us also discuss what type of conventional zero-form symmetries the Chern-Simons

theories can have. In Spin(N)k and SO(N)k with N even, one defines a “charge conjuga-

tion” Z2 symmetry C that transforms representations as

C : λr−1 ↔ λr . (5.16)

In SO(N)k gauging this symmetry gives O(N)k. Counterterms for the classical gauge field

of C lead to additional parameters in the O(N)k theory [23]. In SO(N)k with k even, we de-

fine a “magnetic” Z2 symmetry M that exchanges the two representations of the extended

chiral algebra resulting from a fixed point of the Z2 spectral flow of Spin(N)k [52, 53].

From the 3d point of view, the magnetic quantum number of a monopole operator is the

second Stiefel-Whitney class w2 of the SO(N) bundle around its location. This symmetry

is gauged when going from SO(N)k to Spin(N)k.

Whenever a three-dimensional TQFT has a Z2 one-form global symmetry generated

by σ with spin h(σ) = 1
2 mod 1, we can define a quantum zero-form symmetry Kσ acting

on the lines in the following way:

Kσ[λ] =

{
[λ] if Qσ[λ] = [λ]

σ · [λ] if Qσ[λ] = −[λ],
(5.17)

where by σ · [λ] we mean fusion. This definition guarantees that K preserves the fusion

rules and that K[λ] has the same spin as [λ].

Having settled the basic definitions, we can analyze the precise mapping of symmetries

between the dual theories in (5.3) and (5.6).

Consider

Spin(N)k ←→
Spin(Nk)1 × Spin(k)−N

Z2
N, k odd , (5.18)

where the quotient is generated by σ ⊗ σ (which has fixed points). Both sides have a Z2

one-form global symmetry, and the map of generators is11 σ ↔ σ ⊗ 1I ∼ 1I⊗ σ. Both sides

have Z2 zero-form symmetry. On the r.h.s. it is the quantum symmetry Kσ. On the l.h.s.

it is the magnetic symmetry MZ2
associated to the fixed points of the Z2 quotient. The

map of generators is Kσ ↔ MZ2
.

Consider

Spin(N)k ←→ Spin(Nk)1 × SO(k)−N N even, k odd . (5.19)

11Here and in the following, ∼ means identification by the quotient.
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Both sides have a Z2 × Z2 one-form global symmetry for N = 0 mod 4, and Z4 for N =

2 mod 4. The map of generators is js ↔ js ⊗ 1I, σ ↔ σ ⊗ 1I. Both sides have a Z2 × Z2

zero-form symmetry, and the map of generators is CKσ ↔ 1I⊗M, Kσ ↔ C ⊗ 1I.

Consider

SO(N)k ←→
Spin(Nk)1 × Spin(k)−N

B
N odd, k even . (5.20)

For k = 2 mod 4, B = Z4 is generated by js ⊗ js, while for k = 0 mod 4, B = Z2 × Z2

is generated by js ⊗ js and σ ⊗ σ (the quotient has no fixed points). Both sides have no

zero-form symmetry (on the r.h.s. , all generators of the numerator are projected out by

the quotient). The zero-form symmetry is Z2 and the map of generators is M ↔ CKσ

(on the r.h.s. , all other generators do not commute with the quotient action and are thus

broken).

Consider

SO(N)k ←→
Spin(Nk)1 × SO(k)−N

Z2
N, k even , (5.21)

where the quotient is generated by js⊗js (with no fixed points). On both sides the one-form

global symmetry is Z2 and the map of generators is

js ↔

{
js ⊗ 1I ∼ 1I⊗ js

Nk
4 even

σjs ⊗ 1I ∼ σ ⊗ js
Nk
4 odd.

(5.22)

On the r.h.s. , all other generators are projected out by the quotient. The zero-form sym-

metry is Z2 × Z2, and the map of generators is C ↔ 1I⊗M, M ↔ 1I⊗ C.

Finally, consider

USp(2N)k ←→
Spin(4Nk)1 ×USp(2k)−N

Z2
, (5.23)

where the quotient is generated by js⊗σ (with no fixed points). On both sides the one-form

symmetry is Z2 and the map of generators is

σ ↔

{
js ⊗ 1I ∼ 1I⊗ σ Nk even

σjs ⊗ 1I ∼ σ ⊗ σ Nk odd.
(5.24)

The zero-form symmetry is Z2 for Nk = 2 mod 4 and nothing otherwise. The map of

generators is Kσ ↔ 1I⊗Kσ.

5.3 Level-rank dualities of spin-TQFTs

So far we have discussed level-rank dualities between TQFTs. We can obtain simpler

dualities if we consider spin-TQFTs. As we explain below, we obtain the following:

SO(N)k × SO(0)1 ←→ SO(k)−N × SO(Nk)1 (5.25)

USp(2N)k × SO(0)1 ←→ USp(2k)−N × SO(4Nk)1 . (5.26)
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We recall that SO(N)1 is a trivial spin-TQFT with two transparent lines of spins
{
0, 12

}

and with framing anomaly c = N
2 (see e.g. [35]).

Before deriving (5.25) and (5.26), let us discuss the symmetries and their map, starting

with the orthogonal case (5.25). As we discussed after (5.15), SO(N)k has a Z2 one-form

global symmetry for N, k both even, and not otherwise. Thus the one-form symmetries

match. Moreover, SO(N)k has a charge conjugation Z2 zero-form symmetry C for N even,

and a magnetic Z2 symmetry M for k even.12 Those two symmetries are exchanged in the

duality (5.25),

C ←→ M , (5.27)

as it also follows from the derivation of the duality that we give below.

In the symplectic case (5.26), on both sides there is a Z2 one-form global symmetry

generated by σ, and a quantum zero-form symmetry Kσ for Nk = 2 mod 4.

Note that in the CS theories with matter in the fundamental representation discussed

in the main text, both for gauge group SO and USp, the possible one-form global symmetry

is broken by the presence of matter [37].

Next, we derive the dualities (5.25) and (5.26). The simplest case is to start with

Spin(N)k ↔ Spin(Nk)1 × SO(k)−N with N even, k odd. We can gauge the Z2 one-form

symmetry generated by σ ↔ σ ⊗ 1I to directly obtain (5.25). Since k is odd, SO(N)k is a

spin theory and hence adding SO(0)1 does not change it. Another simple case is to start

with Spin(N)k ↔
(
Spin(Nk)1 × Spin(k)−N

)
/Z2 with N, k odd. The quotient is by σ ⊗ σ,

and it preserves the Z2 generator σ ↔ σ ⊗ 1I ∼ 1I ⊗ σ. If we gauge the latter one-form

symmetry as well, we obtain

SO(N)k ←→
Spin(Nk)1

Z2
×

Spin(k)−N

Z2
, (5.28)

which is precisely (5.25).

To get the other cases, we make use of the following identity of spin-TQFTs:

Spin(2L)1 × SO(0)1 ←→ SO(2L)1 × (Z2)−L , (5.29)

discussed in [35]. Starting from USp(2N)k ↔
(
Spin(4Nk)1×USp(2k)−N

)
/Z2, we multiply

both sides by SO(0)1 making them into spin theories, then apply (5.29) and obtain

USp(2N)k × SO(0)1 ←→
SO(4Nk)1 × (Z2)−2Nk ×USp(2k)−N

Z2
. (5.30)

The theory (Z2)−2Nk is a TQFT with Z2 × Z2 one-form symmetry. The Z2 quotient is

generated by pairing σ in USp(2k)−N , whose spin is h = −Nk
4 mod 1, with a generator in

(Z2)−2Nk that has opposite spin. In the quotient SO(4Nk)1 remains as a spectator. The

product of USp(2k)−N by (Z2)−2Nk gives four times as many fields, however the freely-

acting quotient by Z2 reduces to the original ones (one can check that the surviving states

have the same dimensions as the original ones). Thus one has a simple duality of TQFTs:

12For k even, the Z2 quotient Spin(N)k/Z2 = SO(N)k has fixed points, but not for k odd when SO(N)k
is spin.
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(
(Z2)−2Nk × USp(2k)−N

)
/Z2 ↔ USp(2k)−N . This leads to the duality in (5.26). Exactly

the same reasoning can be applied to the case SO(N)k ↔
(
Spin(Nk)1×SO(k)−N

)
/Z2 with

N, k even. We multiply both sides by SO(0)1, then we apply (5.29), and finally observe

that the quotient can be “unfolded” by the simple duality:
(
(Z2)−2nm×SO(2m)−2n

)
/Z2 ↔

SO(2m)−2n. Here we set N = 2n and k = 2m. This leads to (5.25).

The last case is SO(N)k ↔
(
Spin(Nk)1 × Spin(k)−N

)
/B, with N odd, k even. After

multiplication by SO(0)1 and application of (5.29), we obtain

SO(N)k × SO(0)1 ←→ SO(Nk)1 ×
(Z2)−Nk

2

× Spin(k)−N

B
. (5.31)

This case is a little bit more intricate. For Nk = 0 mod 4, B = Z
(js)
2 ×Z

(σ)
2 . The first factor

is obtained by pairing js in Spin(k)−N , whose spin is h(js) = −Nk
16 mod 1, with a generator

in (Z2)−Nk
2

that has the opposite spin. Therefore the first quotient is non-spin. The second

factor is generated byW1,0⊗σ (in the notation of [35]) and it is a spin quotient. We can first

use (Z2)−Nk
2

to unfold the quotient by Z
(js)
2 , and be left with Spin(k)−N/Z

(σ)
2 = SO(k)−N .

This reproduces (5.25). For Nk = 2 mod 4, B = Z4. Its generator is obtained by pairing

js in Spin(k)−N with a generator in (Z2)−Nk
2

that has the opposite spin. This quotient

has no fixed points, and its effect is to restrict to the lines with c = 0 mod 4 with respect

to js, times the transparent lines
{
0, 12

}
. This is precisely the effect of the spin quotient

Spin(k)−N/Z
(σ)
2 for N odd. Again we end up with (5.25).

5.4 More non-spin level-rank dualities

For special values of N, k the spin dualities (5.25)–(5.26) can be upgraded to non-spin

dualities. This uses the fact when N = 0 mod 8, the spin duality (5.29) can be replaced

by the non-spin duality

Spin(16L)1 ←→ (Z2)0 × (E8)
L
1 . (5.32)

We will omit the trivial TQFT (E8)1. For even N, k and Nk = 0 mod 16, repeating the

derivation of (5.25) with (5.32) replacing (5.29) gives the non-spin duality

SO(N)k ←→ SO(k)−N . (5.33)

Similarly, for Nk = 0 mod 4, repeating the derivation of (5.26) with (5.32) gives the

non-spin duality

USp(2N)k ←→ USp(2k)−N . (5.34)

A special case of (5.33) is SO(8L)2 ↔ SO(2)−8L, which can be rewritten as SU(8L)1 ↔

U(1)−8L using some relation in appendix A. In turn this can be used in the arguments of [27]

to show the non-spin duality

SU(N)k ←→ U(k)−N (5.35)

for even N and Nk = 0 mod 8.

In the next section we will make use of the non-spin level-rank dualities (5.33)

and (5.34) to find new T -invariant TQFTs.
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6 T -invariant TQFTs from level-rank duality

It is of considerable interest to find topological field theories that are time-reversal invari-

ant (T -invariant) up to an anomaly, because they can lead to gapped boundary states of

topological insulators or topological superconductors. Some known examples are based

on Chern-Simons theories with various product groups and possibly appropriate quo-

tients [35, 57–63]. It turns out that level-rank duality is a powerful tool to find new

examples.13 Specifically, a level-rank duality that exchanges N ↔ k, when applied to a

theory with N = k, shows that such a theory is T -invariant quantum mechanically.

Let us examine a few examples. First, from the dualities of spin-TQFTs (4.15), (4.19)

in [27], and (5.25), (5.26) here, we find spin-TQFTs that are T -invariant, up to an anomaly.

In some cases the theory involved is already a spin theory. In some other cases the theory

is not spin but the level-rank duality, and therefore T -invariance, only holds after we

tensor with a trivial spin theory, which we denote by ψ. Second, from the dualities of

non-spin TQFTs (4.18) in [27] and (5.33), (5.34) here we find conventional TQFTs that

are T -invariant, up to an anomaly. This leads to the examples in table 1.

The special case SO(3)3 appears in the literature as SU(2)6/Z2 [57]. The special case

U(1)2 is known as the “fermion/semion theory” [57] and was discussed recently in [28, 35].
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A Notations and useful facts about Chern-Simons theories

Let us start by reviewing some facts about the fermion determinant [64, 65] and our

notation. A (2 + 1)d fermion coupled to a gauge field A and transforming in a complex or

pseudo-real representation r has partition function

Zψ = |Zψ| exp
(
− iπη(A)/2

)
, (A.1)

13We thank E. Witten for a useful discussion about this point.
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where η(A) is the eta-invariant of the Dirac operator and the sign in the exponent is a

matter of convention. For a fermion in a real representation, the phase of the partition

function is exp
(
− iπη(A)/4

)
instead.

By the Atiyah-Patodi-Singer index theorem [38],

eiπη(A) = exp

(
2πi

∫

X
Â(R) Trr e

F/2π

)
= exp

(
2ixr

∫
CS(A) + 2i(dim r)

∫
CSgrav

)
(A.2)

where X is a bulk four-manifold that bounds the three-manifold, xr is the Dynkin index of

the representation r,14 and
∫
CSgrav = π

∫
X Â(R) is the gravitational Chern-Simons term.

In particular e−in
∫
CSgrav is the partition function of the almost trivial spin-TQFT SO(n)1.

The Lagrangian of a Chern-Simons-matter theory can include a bare Chern-Simons

term kbare. This must be properly normalized. For example, if the gauge group is SU(N)

we have kbare ∈ Z, while in SU(N)/ZN we must have kbare ∈ NZ. In (1.1), (1.2) and below

we define the level k as the sum of the bare value and the possibly fractional value δk that

comes from (A.1):

k = kbare − δk , (A.3)

where δk = xr for complex or pseudo-real representations, and δk = 1
2xr for real represen-

tations.

Let us collect some useful formulas. First, in our notation:

SO(2)k = U(1)k , Spin(2)k = U(1)4k

SO(3)k = SU(2)2k/Z2 , Spin(3)k = SU(2)2k .
(A.4)

Second, chiral algebras at small level satisfy special relations:

SO(N)2 ↔ SU(N)1 . (A.5)

Finally, the theories of a U(1) or Z2 gauge field with an action expressed in terms of the

eta-invariant are dual to simple spin-TQFTs:

SU(N)1 × SO(0)1 ↔ S = −Nπ η
(
U(1) gauge field

)

Spin(N)1 × SO(0)1 ↔ S = −
Nπ

2
η
(
Z2 gauge field

)
,

(A.6)

where SO(1)1 and Spin(1)1 are the spin and non-spin Ising TQFT, respectively [35]. These

dualities are proven in [27] and [35].
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any medium, provided the original author(s) and source are credited.

14For SU(N), the fundamental has xr = 1

2
and the adjoint has xr = N . For SO(N), the vector has xr = 1

and the adjoint has xr = N−2. For USp(2N), the fundamental has xr = 1

2
and the adjoint has xr = N+1.
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