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solutions for the operator coefficients allowed by the current data of mesonic decays, we
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asymmetry. With future measurements of these observables in Λb → Λcτ ν̄τ decay at the
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the other NP explanations for the RD(∗) anomalies. We also discuss the feasibility for the
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1 Introduction

While no direct evidences for physics beyond the Standard Model (SM) have been found

at the LHC so far, there are some interesting indirect hints for New Physics (NP) in

the flavour sector [1–3]. It is particularly interesting to note that intriguing effects of

lepton favour universality violation (LFUV) have been observed in rare B-meson decays.

To be more specific, the ratios of charged-current decays, RD = B(B̄→Dτν̄τ )
B(B̄→D`ν̄`)

and RD∗ =

B(B̄→D∗τ ν̄τ )
B(B̄→D∗`ν̄`)

, with ` = e, µ, have been measured by the BaBar [4, 5], Belle [6–8] and LHCb [9]

Collaborations. The latest averages by the Heavy Flavor Average Groups (HFAG) [10],

Rexp.
D = 0.397± 0.040(stat.)± 0.028(syst.) , Rexp.

D∗ = 0.316± 0.016(stat.)± 0.010(syst.) ,

(1.1)

exceed the SM predictions,

RSM
D = 0.300± 0.008 [11] , RSM

D∗ = 0.252± 0.003 [12] , (1.2)

by 1.9σ and 3.3σ, respectively. Once the measurement correlations between RD and RD∗

are taken into account, the deviation will be at 4.0σ level. Another hint of LFUV has also

been reported in the b→ s`+`− process by the LHCb experiment [13]:

Rexp.
K =

Γ(B+ → K+µ+µ−)

Γ(B+ → K+e+e−)

∣∣∣∣
q2∈[1,6] GeV2

= 0.745+0.090
−0.074(stat.)± 0.036(syst.) , (1.3)

which is about 2.6σ lower than the corresponding SM prediction RSM
K = 1.00±0.03 [14, 15].

– 1 –



J
H
E
P
0
2
(
2
0
1
7
)
0
6
8

The observed RD(∗) and RK anomalies, if confirmed with future more precise data,

would be clear signs for NP beyond the SM, and have already inspired lots of studies;

for a recent review, the readers are referred to refs. [1–3] and references therein. Here we

are interested in the possible NP solutions with a single scalar or vector leptoquark (LQ)

scenario [16, 17]. In ref. [16], it has been shown that the anomalies RD(∗) , RK and (g− 2)µ
could be addressed by adding to the SM just one TeV-scale scalar LQ transforming as

(3,1,−1
3) under the SM gauge group. On the other hand, as shown in ref. [17], the RD(∗) ,

RK and the angular observable P ′5 in B̄ → K̄∗µ+µ− decay could be explained by just one

vector LQ transforming as (3,3, 2
3) under the SM gauge group. Under the constraints from

both the ratios RD(∗) and the q2 spectra of B̄ → D(∗)τ ν̄τ decays provided by the BaBar [5]

and Belle [6, 7] Collaborations, four best-fit solutions are found for the operator coefficients

induced by the scalar LQ [18], two of which are, however, already excluded by the purely

leptonic B−c → τ−ν̄τ decay [19]. At the same time, two best-fit solutions are also found for

the operator coefficients induced by the vector LQ [18].

To further explore the two interesting LQ scenarios, in this paper, we shall study their

effects in the semi-leptonic Λb → Λcτ ν̄τ decay, which is induced by the same quark-level

transition as the B̄ → D(∗)τ ν̄τ decays. While the Λb baryons are not produced at an

e+e− B-factory, they account for around 20% of the b-hadrons produced at the LHC [20].

Remarkably, the produced number of Λb baryons is comparable to that of Bu or Bd mesons,

and is significantly higher than that of Bs meson [20, 21]. Due to the spin-half nature of Λb,

its decay may provide complementary information compared to the corresponding mesonic

one. Motivated by the RD(∗) anomalies, the semi-leptonic Λb → Λc`ν̄` decay has been

studies recently in refs. [22–27].

In this paper, besides the total and differential branching fractions, as well as the ratio

RΛc = B(Λb→Λcτ ν̄τ )
B(Λb→Λc`ν̄`)

, discussed already in previous studies [23–26], we shall also discuss the

longitudinal polarizations of the daughter baryon Λc and the τ lepton, and the lepton-side

forward-backward asymmetry in this decay [24]. The feasibility for the measurements of

these observables at the LHC, which is the currently available experiment to explore the

Λb decays, as well as at the future e+e− colliders, such as the International Linear Collider

(ILC) and the Circular Electron Positron Collider (CEPC), will also be discussed. We

calculate these observables using the helicity formalism developed in refs. [28, 29], and have

rederived and confirmed the helicity amplitudes associated with both the (axial-)vector

and (pseudo-)scalar interactions given already in refs. [23–25]; for the (pseudo-)tensor-type

current, however, the corresponding helicity amplitudes are new and presented here for the

first time. As the Λb → Λc transition form factors are not yet determined quite well and

still bring large uncertainties, it is instructive to check the sensitivity of these observables

to the different values of form factors obtained, for example, in a covariant confined quark

model [24] (used in ref. [24]), in the QCD sum rules [30] (used in ref. [23]), or in the lattice

calculations [26] (used in refs. [25, 26]). To this end, rather than choosing a single form for

these form factors, we use, as a comparison, the results obtained both from the QCD sum

rules [30], which satisfy the heavy quark effective theory (HQET) relations [31–33], and

from the latest lattice calculations with 2 + 1 dynamical flavours [26].1 Using the best-fit

1There are currently only the lattice results for the (axial-)vector form factors [26]. For the (pseudo-

)tensor form factors, since there are no lattice results yet, we still use the HQET relations to relate them

to the corresponding (axial-)vector ones.
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solutions for the operator coefficients allowed by the current data of mesonic decays, we find

that the two scenarios give similar amounts of enhancements relative to the SM predictions

for the branching fraction B(Λb → Λcτ ν̄τ ) and the ratio RΛc , and the two best-fit solutions

in each of the two scenarios are also indistinguishable from each other based only on these

two observables. On the other hand, both of these two scenarios give nearly the same

predictions as the SM for the longitudinal polarizations of Λc and τ as well as the lepton

forward-backward asymmetry. With future precise measurements of these observables at

the LHCb, the two scenarios could be further tested and even differentiated from the other

explanations to the RD(∗) anomalies [18, 34–94].

This paper is organized as follows: in section 2, we recapitulate briefly both the scalar

and vector LQ scenarios [16, 17]. In section 3, we calculate the helicity amplitudes and list

the relevant physical observables for the semi-leptonic Λb → Λc`ν̄` decays. In section 4,

the scalar and vector LQ effects on the branching fraction B(Λb → Λcτ ν̄τ ), the ratio

RΛc , the Λc and τ longitudinal polarizations, as well as the lepton-side forward-backward

asymmetry are discussed. We finally conclude in section 5. The Λb → Λc transition form

factors and the helicity-dependent differential decay rates are collected in appendices A

and B, respectively.

2 The scalar and vector LQ scenarios

In this section, we recapitulate the scalar and vector LQ models, where a single TeV-scale

scalar or vector LQ is added to the SM to address the aforementioned anomalies [16, 17].

For a recent comprehensive review of LQ models, the readers are referred to ref. [95].

2.1 The scalar LQ scenario

Firstly, we consider the scalar LQ φ transforming as (3,1,−1
3) under the SM gauge group,

in which its couplings to SM fermions are described by the Lagrangian [16]

Lφint = Q̄cLλ
Liτ2Lφ

∗ + ūcRλ
R`Rφ

∗ + h.c. , (2.1)

where λL,R are the Yukawa coupling matrices in flavour space, and QL, L denote the

left-handed quark and lepton doublet, while uR, `R the right-handed up-type quark and

lepton singlet, respectively. The charge-conjugated spinors are defined as ψc = Cψ̄T ,

ψ̄c = ψTC (C = iγ2γ0). Such a scalar φ mediates the b → cτ ν̄τ decay at tree level, and

the resulting effective weak Hamiltonian including the SM contribution is given as [16, 19]

Heff =
4GFVcb√

2

[
CV c̄γµPLb τ̄γ

µPLντ + CS c̄PLb τ̄PLντ −
1

4
CT c̄σµνPLb τ̄σ

µνPLντ

]
, (2.2)

where CV , CS , CT are the Wilson coefficients of the corresponding four-fermion operators

and, at the matching scale µ = Mφ, are given explicitly as

CV (Mφ) = 1 +
λLbντλ

L∗
cτ

4
√

2GFVcbM
2
φ

, (2.3)

CS(Mφ) = CT (Mφ) = −
λLbντλ

R∗
cτ

4
√

2GFVcbM
2
φ

. (2.4)
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In order to resum potentially large logarithmic effects, the Wilson coefficients CS and CT
should be run down to the characteristic scale of the process we are interested in, i.e.,

µb ∼ mb, while CV is not renormalized because of the conservation of vector currents. The

explicit evolution equations could be found, for example, in ref. [95].

As shown in ref. [16], such a scalar LQ could explain the RD(∗) , RK and (g − 2)µ
anomalies, while constraints from other precision measurements in the flavour sector can be

satisfied without fine-tuning. Especially, under the constraints from both the ratios RD(∗)

and the measured q2 spectra in B → D(∗)τ ν̄τ decays, four best-fit solutions are found for

the operator coefficients induced by the scalar LQ [18], two of which are, however, already

excluded by the purely leptonic B−c → τ−ν̄τ decay [19]. Consequently, in this paper, we

shall consider only the remaining two solutions denoted by PA and PC in ref. [19].

2.2 The vector LQ scenario

We now introduce the second scenario in which the SM is extended by a vector SU(2)L
triplet Uµ3 transforming as (3,3, 2

3) under the SM gauge group. The coupling of the vector

multiplet Uµ3 to a lepton-to-quark current with (V −A) structure is given by [17]

LU3 = gijQ̄iγ
µτAUA3µLj + h.c. , (2.5)

where τA (A = 1, 2, 3) are the Pauli matrices in the SU(2)L space, and Li and Qi (i, j =

1, 2, 3) denote the left-handed lepton and quark doublets, respectively. The Lagrangian

eq. (2.5) is written in the fermion mass basis, with gij defined as the couplings of the Q =

2/3 component of the triplet, U
(2/3)
3µ , to d̄Li and `Lj . Expanding the SU(2)L components,

we get explicitly

LU3 = U
(2/3)
3µ

[
VgU)ij ūiγ

µPLνj − gij d̄iγµPL`j
]

+ U
(5/3)
3µ (

√
2Vg)ij ūiγ

µPL`j

+ U
(−1/3)
3µ (

√
2gU)ij d̄iγ

µPLνj + h.c. , (2.6)

where V and U represent the Cabibbo-Kobayashi-Maskawa (CKM) [96, 97] and the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [98, 99] matrix, respectively. Here we assume

the neutrinos to be massless and, therefore, the PMNS matrix can be rotated away through

field redefinitions.

The vector multiplet Uµ3 can also mediate the b → cτ ν̄τ transitions at tree level, and

the resulting effective weak Hamiltonian including the SM contribution can be written

as [17]

Heff =
4GFVcb√

2
C ′V (c̄γµPLb)(τ̄ γµPLντ ) , (2.7)

where C ′V is the Wilson coefficient at the matching scale µ = MU and is given by

C ′V = 1 +

√
2g∗bτ (Vg)cτ

4GFVcbM
2
U

. (2.8)

Unlike in the scalar LQ case, the vector LQ only generates (V −A) couplings and, therefore,

the Wilson coefficient C ′V need not be renormalized.
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As shown in ref. [17], the vector LQ scenario could also accommodate the RD(∗) , RK
as well as the angular observable P ′5 in B̄ → K̄∗µ+µ− decay. Fitting to the measured

ratios RD(∗) , along with acceptable q2 spectra, two best-fit solutions, denoted as RA and

RB, respectively, are found in this scenario [18]:

g∗bτ (Vg)cτ =

{
0.18± 0.04, RA

−2.88± 0.04, RB
, (2.9)

where MU = 1 TeV is taken as a benchmark. It should be noted that the triplet nature

of Uµ3 also leads to various charged lepton-flavour-violating decays, such as the B → Kµτ

and Υ(nS)→ τµ decays, which have been discussed in refs. [17, 88].

3 Λb → Λc`ν̄` decays in scalar and vector LQ scenarios

3.1 Helicity amplitudes

In this subsection, we give the helicity amplitudes for the process Λb → Λc`ν̄` both within

the SM and in the two LQ scenarios. Following refs. [24, 100] and starting with the effective

weak Hamiltonian given by eqs. (2.2) and (2.7), one can get the helicity amplitudes of the

decay. Since all types of the leptonic helicity amplitudes can be found in ref. [44], we give

only the hadronic helicity amplitudes. For the (V −A)-type current, we have [24]

Hλ2,λW = HV
λ2,λW

−HA
λ2,λW

, H
V (A)
λ2,λW

= ε†µ(λW )〈Λc, λ2|c̄γµ(γµγ5)b|Λb, λ1〉 , (3.1)

where λ2 and λW denote the helicities of the daughter baryon Λc and the effective (axial-

)vector-type current, respectively. The explicit expressions of Hλ2,λW in terms of the

hadronic matrix elements defined by eqs. (A.1) and (A.2) could be found in ref. [24].

For the (S − P )-type current, the corresponding helicity amplitudes are given by [23]

HSP
λ2,0 =HS

λ2,0 −H
P
λ2,0 , (3.2)

HSP
± 1

2
,0

=

√
Q+

mb −mc

(
F V1 M− + F V3

q2

M1

)
±
√
Q−

mb +mc

(
FA1 M+ − FA3

q2

M1

)
, (3.3)

where we use the abbreviations M± = MΛb ±MΛc and Q± = M2
± − q2. The hadronic

helicity amplitudes of the (pseudo-)tensor-type current are defined as

HT
λ2,λW ,λW ′

= ε†µ(λW )ε†ν(λ′W )〈Λc, λ2|c̄ iσµν(1− γ5)b|Λb, λ1〉 , (3.4)

and their explicit expressions, in terms of the hadronic matrix elements defined by eqs. (A.5)

and (A.6), are given, respectively, by

HT
1
2
,+,0

= −
√

2

q2

(
fT
√
Q+M− + gT

√
Q−M+

)
,

HT
1
2
,+,− = − fT

√
Q+ − gT

√
Q− ,

HT
1
2
,+,t

= −
√

2

q2

(
fT
√
Q−M+ + gT

√
Q+M−

)
+
√

2q2
(
fVT
√
Q− − gVT

√
Q+

)
,

– 5 –
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HT
1
2
,0,t

= − fT
√
Q− − gT

√
Q+ + fVT

√
Q−M+

− gVT
√
Q+M− + fST

√
Q−Q+ + gST

√
Q+Q− ,

HT
− 1

2
,+,− = fT

√
Q+ − gT

√
Q− ,

HT
− 1

2
,0,− =

√
2

q2

(
fT
√
Q+M− − gT

√
Q−M+

)
,

HT
− 1

2
,0,t

= − fT
√
Q− + gT

√
Q+ + fVT

√
Q−M+

+ gVT
√
Q+M− + fST

√
Q−Q+ − gST

√
Q+Q− ,

HT
− 1

2
,−,t = −

√
2

q2

(
fT
√
Q−M+ − gT

√
Q+M−

)
+
√

2q2
(
fVT
√
Q− + gVT

√
Q+

)
. (3.5)

The helicity amplitudes satisfy the relations HT
λ2,λW ,λW

= 0 and HT
λ2,λW ,λW ′

=

−HT
λ2,λW ′ ,λW

, while all the others are found to be zero. Using the HQET relations given

by eq. (A.7), we can further simplify these helicity amplitudes.

3.2 Observables in Λb → Λc`ν̄` decays

Here we follow the conventions used in refs. [23–25], and write the two-fold differential

angular decay distribution as

d2Γ(Λb → Λc`ν̄`)

dq2 d cos θ`
= N

[
A1 +

m2
`

q2

(
AV2 +AT2

)
+ 2A3 +

4m`√
q2
A4 +A5

]
, (3.6)

with

N =
G2
F |Vcb|2q2|~p2|
512π3M2

Λb

(
1−

m2
`

q2

)2

,

A1 = C2
V

[
2 sin2 θ`

(
H2

1
2
,0

+H2
− 1

2
,0

)
+ (1− cos θ`)

2H2
1
2
,+

+ (1 + cos θ`)
2H2
− 1

2
,−

]
,

AV2 = C2
V

[
2 cos2 θ`

(
H2

1
2
,0

+H2
− 1

2
,0

)
+ sin2 θ`

(
H2

1
2
,+

+H2
− 1

2
,−
)

+ 2
(
H2

1
2
,t

+H2
− 1

2
,t

)
− 4 cos θ`

(
H 1

2
,0H 1

2
,t +H− 1

2
,0H− 1

2
,t

)]
,

AT2 =
C2
T

4

[
2 sin2 θ`

(
HT2

1
2
,+,− +HT2

1
2
,0,t

+HT2
− 1

2
,+,−

+HT2
− 1

2
,0,t

+ 2HT
1
2
,+,−H

T
1
2
,0,t

+ 2HT
− 1

2
,+,−H

T
− 1

2
,0,t

)
+ (1 + cos θ`)

2
(
HT2
− 1

2
,0,− +HT2

− 1
2
,−,t + 2HT

− 1
2
,0,−H

T
− 1

2
,−,t
)

+ (1− cos θ`)
2
(
HT2

1
2
,+,0

+HT2
1
2
,+,t

+ 2HT
1
2
,+,0

HT
1
2
,+,t

)]
,

A3 =
C2
T

8

[
2 cos2 θ`

(
HT2

1
2
,+,−+HT2

1
2
,0,t

+HT2
− 1

2
,+,−+HT2

− 1
2
,0,t

+ 2HT
1
2
,+,−H

T
1
2
,0,t

+ 2HT
− 1

2
,+,−H

T
− 1

2
,0,t

)
+ sin2 θ`

(
HT2

1
2
,+,0

+HT2
1
2
,+,t

+HT2
− 1

2
,0,− +HT2

− 1
2
,−,t

+ 2HT
1
2
,+,0

HT
1
2
,+,t

+ 2HT
− 1

2
,0,−H

T
− 1

2
,−,t
)]

+ C2
S

(
HSP2

1
2
,0

+HSP2
− 1

2
,0

)
,

– 6 –
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A4 = CV CS

[
− cos θ`

(
H 1

2
,0H

SP
1
2
,0

+H− 1
2
,0H

SP
− 1

2
,0

)
+
(
H 1

2
,tH

SP
1
2
,0

+H− 1
2
,tH

SP
− 1

2
,0

)]
+ CV CT

[
cos2 θ

2

(
H 1

2
,0H

T
1
2
,+,− +H 1

2
,0H

T
1
2
,0,t

+H− 1
2
,0H

T
− 1

2
,+,− +H− 1

2
,0H

T
− 1

2
,0,t

)
− cos θ

2

(
H 1

2
,tH

T
1
2
,+,− +H 1

2
,tH

T
1
2
,0,t

+H− 1
2
,tH

T
− 1

2
,+,− +H− 1

2
,tH

T
− 1

2
,0,t

)
+

(1− cos θ)2

4

(
H 1

2
,+H

T
1
2
,+,0

+H 1
2
,+H

T
1
2
,+,t

)
+

(1 + cos θ)2

4

(
H− 1

2
,−H

T
− 1

2
,0,− +H− 1

2
,−H

T
− 1

2
,−,t
)

+
sin2 θ

4

(
H 1

2
,+H

T
1
2
,+,0

+H 1
2
,+H

T
1
2
,+,t

+H− 1
2
,−H

T
− 1

2
,0,− +H− 1

2
,−H

T
− 1

2
,−,t

+ 2H 1
2
,0H

T
1
2
,+,− + 2H 1

2
,0H

T
1
2
,0,t

+ 2H− 1
2
,0H

T
− 1

2
,+,− + 2H− 1

2
,0H

T
− 1

2
,0,t

)]
,

A5 = − 2CSCT cos θ
(
HSP

1
2
,0
HT

1
2
,+,− +HSP

1
2
,0
HT

1
2
,0,t

+HSP
− 1

2
,0
HT
− 1

2
,+,− +HSP

− 1
2
,0
HT
− 1

2
,0,t

)
,

(3.7)

where |~p2| =
√
Q+Q−/(2MΛb) is the Λc momentum in the Λb rest frame, q2 the momentum

transfer squared, and θ` the polar angle of the lepton, as defined in figure 1 of ref. [24].

Integrating out cos θ` in eq. (3.6), one can then obtain the differential decay rate dΓ(Λb →
Λc`ν̄`)/dq

2. The above results are given for the scalar LQ scenario. For the vector LQ case,

we need only to replace CV by C ′V given by eq. (2.8), while setting CS and CT to zero.

With eqs. (3.6) and (3.7) at hand, we can get the following physical observables:

• The differential and total branching fractions

dB(Λb → Λc`ν̄`)

dq2
= τΛb

dΓ(Λb → Λc`ν̄`)

dq2
, B(Λb → Λc`ν̄`) =

∫ M2
−

m2
`

dq2 dB
dq2

, (3.8)

where τΛb is the lifetime of Λb baryon, and m` the lepton mass.

• The differential and integrated ratios

RΛc(q
2) =

dΓ(Λb → Λcτ ν̄τ )/dq2

dΓ(Λb → Λc`ν̄`)/dq2
, RΛc =

∫M2
−

m2
τ

dq2dΓ(Λb → Λcτ ν̄τ )/dq2∫M2
−

m2
`

dq2dΓ(Λb → Λc`ν̄`)/dq2
. (3.9)

• The lepton-side forward-backward asymmetry

AFB(q2) =

∫ 1
0 d cos θ(d2Γ/dq2d cos θ)−

∫ 0
−1 d cos θ(d2Γ/dq2d cos θ)

dΓ/dq2
, (3.10)

defined as the relative difference between the differential decay rates where the angle

θ` is smaller or greater than π/2.
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Once the individual helicity-dependent differential decay rates are calculated, which are

collected in appendix B, we can obtain another two observables, the q2-dependent longitu-

dinal polarizations of Λc baryon and τ lepton, which are defined, respectively, as

PΛc
L (q2) =

dΓλ2=1/2/dq2 − dΓλ2=−1/2/dq2

dΓ/dq2
, P τL(q2) =

dΓλτ=1/2/dq2 − dΓλτ=−1/2/dq2

dΓ/dq2
.

(3.11)

Although the case with a polarized Λb can bring in a number of new observables [101,

102], we assume here that the parent baryon Λb is unpolarized, based on the observation

that the Λb polarization in the LHCb setup is measured to be small and compatible with

zero [103]. This leaves with us the above interesting observables. Unlike the case for

light leptons ` = e, µ, in which the phase space can be fully constrained [104], the decay

Λb → Λcτ ν̄τ poses several experimental challenges. Firstly, it is not possible to determine

the Λb momentum from the tagging side at the LHCb. Secondly, as the τ decays inside the

detector, there exist at least two neutrinos in the final state, prohibiting a direct signal-side

reconstruction. Finally, the fact that the Λc is long lived and decays only weakly increases

further the difficulty in determining the Λb decay vertex. Thus, it is very challenging to

determine the kinematic distributions on an event-by-event basis at the LHCb. However,

the heuristic methods employed to determine approximately the B-meson momentum in

B → D∗τ ν̄τ decay [9] open the possibility to study the b-hadron decays with multiple

missing particles in hadron colliders. Also, it might be feasible to measure this decay

at the future e+e− colliders, such as the ILC and CEPC, where two jets of hadrons are

produced at the Z0 peak and appears mostly in opposite side with a large boost. These

facilities are also featured by the high reconstruction and tagging efficiencies, as well as the

capability to measure the missing momentum.2

As detailed recently by Ivanov, Körner and Tranin in ref. [94], the information on the τ

polarization can be extracted from the angular distribution of its subsequent decay modes,

such as the hadronic τ → πντ and τ → ρντ and the leptonic τ → µν̄µντ and τ → eν̄eντ
decays. Especially, the analyzing power of the decay τ → πντ is found to be 100% [94, 105].

It is particularly interesting to note that the Belle Collaboration has recently reported on

the first measurement of the τ longitudinal polarization in the decay B → D∗τ ν̄τ with the

subsequent decays τ → πντ and τ → ρντ [106]. Although the experimental environment is

different, this pioneering measurement would be very beneficial for future detailed studies

of the τ polarization at the LHC and future e+e− colliders.

The Λc polarization can also be probed by analyzing the angular decay distribution of

its subsequent decays, among which the Λc → Λπ and Λc → Λ`ν` modes are of particular

interest [24, 107, 108]. As shown in ref. [24], the analyzing power of Λc → Λπ is close

to maximal, and that of Λc → Λ`ν`, although being not as large as the former, may still

lead to reliable measurement. The biggest experimental challenge for the Λc polarization

measurement in the cascade decay Λb → Λc(→ Λπ)`ν̄` is still how to reconstruct the Λb

2It should be mentioned that, even if measured, the q2 distributions will be sculpted by the phase

space cuts; for example, in practice one cannot integrate over all the helicity angle θ`, because minimum

lepton-energy cuts might be needed to somewhat isolate the Λc baryon and the lepton.
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Parameter Value Reference

GF 1.166378× 10−5 GeV−2 [113]

αs(MZ) 0.1185± 0.0006 [113]

MZ 91.188 GeV [113]

mt (173.21± 0.87) GeV [113]

mb(mb) (4.18± 0.03) GeV [113]

mc(mc) (1.275± 0.025) GeV [113]

τΛb 1.466 ps [113]

MΛb 5.61951 GeV [113]

MΛc 2.28646 GeV [113]

mτ 1.7769 GeV [113]

mµ 105.66 MeV [113]

me 0.511 MeV [113]

|Vcb| (41.1± 1.3)× 10−3 [113]

Table 1. Input parameters used in our numerical analyses.

continuum model κ F V1 (q2) −F V2 (q2)/MΛb

rectangular 1 6.66/(20.27− q2) −0.21/(15.15− q2)

rectangular 2 8.13/(22.50− q2) −0.22/(13.63− q2)

triangular 3 13.74/(26.68− q2) −0.41/(18.65− q2)

triangular 4 16.17/(29.12− q2) −0.45/(19.04− q2)

Table 2. Pole parameterizations of the Λb → Λc transition form factors for two values of κ and for

two choices of the continuum model in QCD sum rules [30].

rest frame mentioned already. But it is still hoped that, with more and more information

on the Λc decays from the Belle [109] and BESIII [110–112] Collaborations, and sufficient

statistics for the Λb baryon at the LHC and future e+e− colliders, the Λc polarization could

be measured in this decay.

4 Numerical results and discussions

4.1 Input parameters

In this section, we investigate the scalar and vector LQ effects on the aforementioned

observables, to see if their effects are large enough to cause sizable deviations from the

corresponding SM predictions. Firstly, we collect in table 1 all the input parameters used

in this paper.
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κ

B(Λb → Λceν̄e) B(Λb → Λcτ ν̄τ ) RΛc

SM SM
scalar LQ vector LQ

SM
scalar LQ vector LQ

PA PC RA RB PA PC RA RB

1 2.50 0.74 0.95 0.93 0.95± 0.05 0.94± 0.05 0.30 0.38 0.37 0.38± 0.02 0.37± 0.02

2 2.67 0.73 0.93 0.91 0.93± 0.05 0.92± 0.05 0.27 0.35 0.34 0.35± 0.02 0.34± 0.02

3 5.16 1.39 1.77 1.73 1.78± 0.09 1.75± 0.09 0.27 0.35 0.34 0.35± 0.02 0.34± 0.02

4 5.74 1.50 1.92 1.88 1.93± 0.10 1.90± 0.10 0.26 0.34 0.33 0.34± 0.02 0.33± 0.02

Table 3. Predictions for the branching fractions (in unit of 10−2) and the ratio RΛc
of Λb →

Λc`ν̄` (` = e/τ) decays both within the SM and in the scalar/vector LQ scenarios, with the form

factors taken from QCD sum rules [30].

For the Λb → Λc transition form factors, we firstly use the results obtained in QCD sum

rules [30], together with the HQET relations among the form factors [31–33]. Four types

of form-factor parametrizations for two values of the parameter κ, which is introduced to

account for deviations from the factorization hypothesis for four-quark condensates, and

for two choices of the continuum model are shown in table 2. For a comparison, we also

adopt the latest lattice QCD results for the (axial-)vector form factors [26], where the q2

dependence of the form factors is parameterized in a simplified z expansion [114], modified

to account for pion-mass and lattice-spacing dependence. All relevant formulae and input

data can be found in eq. (79) and tables VII–IX of ref. [26]. While for the (pseudo-)tensor

form factors, since lattice result is unavailable so far, we still use the HQET relations to

relate them to the corresponding (axial-)vector ones.

4.2 Numerical analyses

We now give our predictions for the branching fractions B(Λb → Λc`ν̄`) and the ratio RΛc

both within the SM and in the scalar and the vector LQ scenarios in table 3 with the form

factors taken from QCD sum rules [30], and in table 4 with the form factors taken from

lattice QCD calculations [26]. The theoretical uncertainties in table 3 come only from the

NP parameters given by eq. (2.9), whereas in table 4 we have also included the uncertainties

from the form-factor parameters following the procedure recommended in [26]. Specifically,

we have taken into account the correlation matrices between the form-factor parameters,

and calculate the central values, statistical uncertainties, and total systematic uncertainties

of any observable depending on these parameters, according to eqs. (82)–(84) specified in

ref. [26].

From the numerical results given in tables 3 and 4, we can draw the following

conclusions:

• The branching fractions are very sensitive to the form-factor parameterizations used

in QCD sum rules [30]. The triangular region (with κ = 3 or κ = 4) for the continuum

model gives more reliable predictions compared to the rectangular one, because,

within the SM, the former leads to consistent results with that obtained using the

lattice-based form factors, and also with the experimental data B(Λb → Λceν̄e) =

– 10 –



J
H
E
P
0
2
(
2
0
1
7
)
0
6
8

B(Λb → Λceν̄e) SM 5.34± 0.33

B(Λb → Λcτ ν̄τ )

SM 1.77± 0.09

scalar LQ
PA 2.26± 0.12

PC 2.22± 0.12

vector LQ
RA 2.27± 0.17

RB 2.24± 0.17

RΛc

SM 0.33± 0.01

scalar LQ
PA 0.42± 0.01

PC 0.42± 0.01

vector LQ
RA 0.43± 0.02

RB 0.42± 0.02

Table 4. Same as in table 3 but with the form factors taken from lattice QCD calculation [26].

(6.5+3.2
−2.5)% [113]. Thus, from now on, we consider only the triangular continuum

model with two different values of κ. The ratio RΛc , on the other hand, is insensitive

to the form-factor parameterizations, as is generally expected. It is also noted that

the predicted RΛc using the lattice-based form factors is a little bit larger than that

obtained from QCD sum rules, both within the SM and in the two LQ scenarios.

• In the scalar LQ scenario, the predicted branching fraction B(Λb → Λcτ ν̄τ ) is en-

hanced by about 28% (25%) in the PA (PC) case, no matter the form factors are

taken from QCD sum rules or from the lattice QCD calculations. The slight differ-

ence between the two solutions results from the ∼ 1.2% numerical difference in the

dominated coefficient |Cfit
V |, which has been discussed in ref. [19]. As the decay modes

with light leptons (` = e, µ) are assumed to be free from the scalar LQ contribution,

the ratio RΛc is also enhanced by the corresponding percentages relative to the SM

prediction.

• In the vector LQ scenario, compared to the SM prediction, the branching fraction

B(Λb → Λcτ ν̄τ ) is found to be enhanced by about 28% in the RA and by about 27%

in the RB case, respectively. To understand this, we should note that there is only

one (V −A) coupling in this scenario, and the resulting effective coefficients C ′V , cor-

responding to the two solutions RA and RB (cf. eq. (2.9)), are given, respectively, as

C ′ fit
V =

{
1.133± 0.030, for RA

−1.124± 0.030, for RB
. (4.1)
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Figure 1. The q2 distributions of the differential branching fraction dB(Λb → Λcτ ν̄τ )/dq2 ((a): in

the scalar and (b): in the vector scenario) and the ratio RΛc(q2) ((c): in the scalar scenario and (d):

in the vector scenario). The bands in (a) and (c) due to the uncertainties of form-factor parameters

obtained in lattice QCD, and in (b) and (d) also include the varyings of the NP parameters in the

vector scenario

One can see clearly that, just like Cfit
V in scalar LQ scenario, C ′ fit

V also has nearly

the same absolute values for the two solutions RA and RB, both enhancing the SM

result by ∼ 13%, but the sign of solution RB is flipped relative to the SM part.

• As the two effective couplings |Cfit
V | and |C ′ fit

V | are both enhanced by about 12% ∼
13%, compared to the SM part, they would give quite similar predictions for the

other observables in Λb → Λcτ ν̄τ decay.

The q2 dependences of the differential branching fraction dB(Λb → Λcτ ν̄τ )/dq2 and the

ratio RΛc(q
2) are displayed in figure 1, both within the SM and in the two LQ scenarios. As

the results based on the form-factor parametrizations with κ = 3 are similar to that with

κ = 4, we show only the case with κ = 3. One can see that these two observables present

the same features as the corresponding q2-integrated ones discussed above: the predicted

dB(Λb → Λcτ ν̄τ )/dq2 using the lattice-based form factors are a little bit larger than that

based on QCD sum rules, and are enhanced at q2 ∼ 9 GeV2 at most in both the two LQ

scenarios. However, the ratio RΛc(q
2) is insensitive to the choices of the form factors.
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Figure 2. The q2 dependences of the Λc (a) and τ (b) longitudinal polarizations as well as the

lepton-side forward-backward asymmetry (c), both within the SM and in the two LQ scenarios.

Finally, we show in figure 2 the q2 dependences of the Λc and τ longitudinal polariza-

tions as well as the lepton-side forward-backward asymmetry. Since the resulting effective

coefficients CV and C ′V of the dominated (V −A) couplings appear both in the numerator

and in the denominator of these ratios, the NP effects are cancelled exclusively. At the

same time, the form-factor dependences of these observables are reduced to a large extent,

and all the four cases in QCD sum rules (κ = 1, · · · , 4) give almost the same curves for

each observable, while being only slightly different from that obtained with the lattice-

based form factors, as shown in figure 2. As a consequence, all these three observables are

insensitive to the two LQ scenarios and behave nearly the same as in the SM.

5 Conclusions

As demonstrated in refs. [16–18], both the scalar and vector LQ scenarios could explain the

anomalies observed in B̄ → D(∗)τ ν̄τ and B̄ → K̄`+`− decays and, for each scenario, there

exist two best-fit solutions for the operator coefficients, because the other two solutions

for scalar LQ are already excluded by the B−c → τ−ν̄τ decay [19]. To further explore

these two interesting scenarios, in this paper, we have studies their effects in the semi-

leptonic Λb → Λcτ ν̄τ decay, which is induced by the same quark-level transition as in

B̄ → D(∗)τ ν̄τ decays. Besides the branching fraction B(Λb → Λcτ ν̄τ ) and the ratio RΛc ,

we have also discussed the q2 distributions of these two observables, as well as the Λc and

τ longitudinal polarizations and the lepton-side forward-backward asymmetry, using the

Λb → Λc transition form factors from both the QCD sum rules and the latest lattice QCD

calculations. In addition, we have also discussed the feasibility for the measurements of

these observables at the LHC and the future e+e− colliders.

Using the best-fit solutions for the operator coefficients allowed by the current data

of mesonic decays, we have found that the two LQ scenarios give the similar amounts of

enhancements relative to the SM predictions for the branching fraction B(Λb → Λcτ ν̄τ )

and the ratio RΛc . The two best-fit solutions in each of the two scenarios are still found

to be indistinguishable from each other based only on these two observables. On the other

hand, both of the two LQ scenarios give nearly the same predictions as the SM for the Λc

and τ longitudinal polarizations, as well as the lepton-side forward-backward asymmetry.

As a consequence, we conclude that, while the two LQ scenarios could be distinguished
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from the SM, it is quite difficult to distinguish between them using the semi-leptonic

Λb → Λcτ ν̄τ decay.

With large numbers of Λb produced at the LHC and the future e+e− colliders, we expect

that the two LQ scenarios could be further tested, and even differentiated from other NP

explanations to the RD(∗) anomalies, with the measurement of Λb → Λcτ ν̄τ decay.
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A Λb → Λc transition form factors

The hadronic matrix elements of the vector and axial-vector currents between the two spin-

half baryons Λb and Λc can be parameterized in terms of three form factors, respectively,

as [24]

〈Λc, λ2|c̄γµb|Λb, λ1〉 = ū2(p2, λ2)

[
F V1 (q2)γµ −

F V2 (q2)

MΛb

iσµνq
ν +

F V3 (q2)

MΛb

qµ

]
u1(p1, λ1) ,

(A.1)

〈Λc, λ2|c̄γµγ5b|Λb, λ1〉 = ū2(p2, λ2)

[
FA1 (q2)γµ −

FA2 (q2)

MΛb

iσµνq
ν +

FA3 (q2)

MΛb

qµ

]
γ5u1(p1, λ1) ,

(A.2)

where σµν = i
2(γµγν − γνγµ), q = p1− p2 is the four-momentum transfer, and λi = ±1

2 (i =

1, 2) denote the helicities of the Λb and Λc baryons, respectively. Using the equations of

motion, we can then obtain the hadronic matrix elements of the scalar and pseudo-scalar

currents between the two baryons, which are given, respectively, as

〈Λc, λ2|c̄b|Λb, λ1〉 =
1

mb −mc
ū2(p2, λ2)

[
F V1 (q2)(M1 −M2) +

F V3 (q2)

MΛb

q2

]
u1(p1, λ1) ,

(A.3)

〈Λc, λ2|c̄γ5b|Λb, λ1〉 =
1

mb +mc
ū2(p2, λ2)

[
FA1 (q2)(M1 +M2)− FA3 (q2)

MΛb

q2

]
γ5u1(p1, λ1) ,

(A.4)

where mb and mc are the current quark masses evaluated at the scale µ ∼ mb.

The hadronic matrix elements of the tensor and pseudo-tensor currents between the

Λb and Λc baryons can be generally parameterized as [115]

〈Λc, λ2|c̄iσµνb|Λb, λ1〉 = ū2(p2, λ2)
[
fT iσµν + fVT (γµqν − γνqµ)

+ fST (Pµqν − Pνqµ)
]
u1(p1, λ1) , (A.5)
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〈Λc, λ2|c̄iσµνγ5b|Λb, λ1〉 = ū2(p2, λ2)
[
gT iσµν + gVT (γµqν − γνqµ)

+ gST (Pµqν − Pνqµ)
]
γ5u1(p1, λ1) , (A.6)

where P = p1 + p2. The Λb → Λc transition form factors have also been studies based on

the HQET [31–33], and the following relations among the form factors can be found [115]:

F V1 = FA1 = fT = gT , (A.7)

F V2 = FA2 = −F V3 = −FA3 , (A.8)

fVT = gVT = fST = gST = 0 . (A.9)

An alternate helicity-based definition of the Λb → Λc form factors can be found in ref. [116],

and the explicit relations between these two sets of form factors are also given in ref. [116].

In this paper, we use the results obtained both in the QCD sum rules [116] and in the

most recent lattice QCD calculation with 2 + 1 dynamical flavours [26]. However, since

there are currently no lattice results for the (pseudo-)tensor form factors yet, we still use

the following HQET relations to relate them to the corresponding (axial-)vector ones,

fT = gT = F V1 =
(MΛb +MΛc)

2f+ − q2f⊥
(MΛb +MΛc)

2 − q2
, fVT = gVT = fST = gST = 0 . (A.10)

B Helicity-dependent differential decay rates

In order to discuss the Λc and τ polarizations, we need the helicity-dependent differential

decay rates, which are collected below (normalized by the prefactor N defined in eq. (3.7)):

dΓλ2=1/2

dq2
=
m2
`

q2

[
4

3
C2
V

(
H2

1
2
,+

+H2
1
2
,0

+ 3H2
1
2
,t

)
+

2

3
C2
T

(
HT2

1
2
,+,− +HT2

1
2
,0,t

+HT2
1
2
,+,0

+HT2
1
2
,+,t

+ 2HT
1
2
,+,−H

T
1
2
,0,t

+ 2HT
1
2
,+,0

HT
1
2
,+,t

)]
+

8

3
C2
V

(
H2

1
2
,0

+H2
1
2
,+

)
+ 4C2

SH
SP2
1
2
,0

+
C2
T

3

(
HT2

1
2
,+,− +HT2

1
2
,0,t

+HT2
1
2
,+,0

+HT2
1
2
,+,t

+2HT
1
2
,+,−H

T
1
2
,0,t

+ 2HT
1
2
,+,0

HT
1
2
,+,t

)
+

4m`√
q2

[
CV CT

(
H 1

2
,0H

T
1
2
,+,− +H 1

2
,0H

T
1
2
,0,t

+H 1
2
,+H

T
1
2
,+,0

+H 1
2
,+H

T
1
2
,+,t

)
+ 2CV CS

(
H 1

2
,tH

SP
1
2
,0

)]
,

dΓλ2=−1/2

dq2
=
m2
`

q2

[
4

3
C2
V

(
H2
− 1

2
,−+H2

− 1
2
,0

+ 3H2
− 1

2
,t

)
+

2

3
C2
T

(
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− 1

2
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2
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+
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3
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V
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− 1

2
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T

3
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)
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+
4m`√
q2

[
CV CT

(
H− 1

2
,0H

T
− 1

2
,+,− +H− 1

2
,0H
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[95] I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in
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[100] J.G. Korner and M. Krämer, Polarization effects in exclusive semileptonic Λ(c) and Λ(b)

charm and bottom baryon decays, Phys. Lett. B 275 (1992) 495 [INSPIRE].

[101] A. Kadeer, J.G. Korner and U. Moosbrugger, Helicity analysis of semileptonic hyperon

decays including lepton mass effects, Eur. Phys. J. C 59 (2009) 27 [hep-ph/0511019]

[INSPIRE].
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