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1 Introduction

Recently there has been renewed interest in the asymptotic symmetries associated with

black hole horizons. In this case one considers the subset of diffeomorphisms that preserve

the boundary conditions associated with the existence of a null surface in the metric, for

early works see [1–3]. These can be thought of as symmetries of the horizon system,

potentially responsible for the universality of the Bekenstein-Hawking entropy via, for

example, the central charge of a Virasoro algebra. Recently it was shown that this analysis

generically leads to a set of infinite dimensional symmetries that is closely analogous [4] to

the Bondi-Metzner-Sachs (BMS) symmetries associated with null infinity in asymptotically

flat spacetimes [5, 6]. The horizon BMS symmetries are associated with “soft hair” on black

holes, which potentially can help to resolve the black hole information loss paradox [7]. For

related works see for example [8–16].

The near-horizon geometry of a black hole in D dimensions can be expressed in null

Gaussian coordinates (v, xi, r) with i = 1 . . . D − 2

ds2 =
(
−2κ(v, xi)r +O(r2)

)
dv2 +

(
4Ωi(v, x

i)r +O(r2)
)
dxidv+2dvdr+γij(v, x

i, r)dxidxj .

(1.1)

The horizon is located at r = 0. The quantity κ is generally a measure of the non-affinity

of the horizon’s null geodesic generators

`B∇B`A = κ`A. (1.2)
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Ωa is an extrinsic curvature one form

Ωi = kB∇A`B, (1.3)

where kA is a null vector such that kA`
A = 1.

One can consider diffeomorphisms that satisfy the following gauge fixing conditions

Lξgrr = 0, Lξgvr = 0, (1.4)

along with horizon preserving conditions

Lξgvv = 0 +O(r), Lξgvi = 0 +O(r). (1.5)

The vector field generating this class of (infinitesimal) diffeomorphisms has the generic form

ξA∂A = ε(v, xi)∂v +
(
Ri(xi)− rγij∂jε(v, xi)

)
∂i −

(
r∂vε(t, x

i)− r2Ωi∂
iε(v, xi)

)
∂r + · · · ,

(1.6)

where ε and Ri are arbitrary functions. The function ε generates “supertranslations”, while

Ri generates “superrotations”; these names are chosen in analogy with BMS transforma-

tions at null infinity.

Here we will concentrate on the behavior of the horizon supertranslations. Unlike

asymptotic BMS supertranslations at null infinity, here ε can be a function both of time and

space. If we consider the simplest case of a two dimensional black hole geometry (D = 2)

then no superrotations are possible, but there is a remaining horizon “supertranslation”

freedom

v → v + ε(v), (1.7)

amounting to a time reparametrization freedom on the horizon. The same time reparame-

trization freedom appears as the asymptotic symmetry of AdS2 spacetimes, see e.g. [17, 18].

In the AdS/CFT correspondence, the time reparametrizations amount to one-dimensional

conformal transformations of the boundary metric ds2 = −dt2.

Recent work has shown that the proper formulation of holography is in terms of a near

AdS2/near CFT1 duality [18–21]. On the gravity side, one works with dilaton gravity [22],

allowing for a non-trivial dilaton field in the bulk AdS2. The presence of the dilaton breaks

the time parametrization symmetry explicitly. There is also a spontaneous breaking by the

choice of the AdS2 vacuum. Therefore the system is characterized by reparametrization

mode pseudo-Goldstones. Maldacena, Stanford, and Yang showed the equations of motion

for dilaton gravity imply a relationship between the (renormalized) boundary value of the

dilaton φr and the reparametization mode t(u) (i.e. t → t(u)). This equation can be

derived from the gravitational boundary action, which is an effective Schwarzian action

invariant under SL(2) transformations [18]. Interestingly, [20] showed that this action can

be expressed in a hydrodynamical form following [23], where the basic variables are maps

between a reference manifold and the physical spacetime (e.g. the mapping between the

Lagrangian and Eulerian descriptions of a fluid). Indeed, the reparametrization mode is a

mapping between two times.
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In this paper we study the breaking of the horizon reparametrization symmetry and

show that it governs a type of out of equilibrium dynamics of the horizon membrane system.

In two-dimensional gravity we show that the pattern of reparametrization symmetry break-

ing at the horizon is analogous to the behavior at asymptotic infinity in AdS2. The horizon

constraint equation for dilaton gravity yields a relation between the reparametrization mode

α(v) and the horizon value of the dilaton field φH . This equation can also be derived from

an effective action, which is the on-shell gravitational action for a null boundary. This

action has symmetries which turn out to be associated with time reparametrizations that

preserve the non-affinity κ of the horizon. The associated conserved Noether charges can

be interpreted via the membrane paradigm, following [24]. We can also express this action

in a hydrodynamical sigma model form.

In the case of the AdS2 black hole, there are in principle two boundaries, one at infinity

and the other at the horizon. In equilibrium, the horizon terms are topological, but for

perturbations around equilibrium they describe the behavior of the horizon membrane and

can be thought of as capturing the infrared degrees of freedom in a dual field theory. The

Noether charges associated with the infrared action turn out to be two of the three charges

associated with the SL(2) symmetry of the Schwarzian action.

Some of these results generalize when we consider higher dimensional gravity, where

the horizon constraint equation is the Raychaudhuri equation. In D = 3 the Raychaud-

huri equation simplifies and effectively one just has to map φH into the determinant of

the horizon metric,
√
γ. Therefore a sector of the horizon dynamics is controlled by the

generalized mode α(v, x) via the same type of hydrodynamical action. For horizons in

D > 3, the story is more complicated. Here the Raychaudhuri equation has shear squared

terms, which act as a dissipation due to gravitational waves crossing the horizon. Even if

we absorb these into a generalized matter-energy flux across the horizon, our action still

only describes linearized perturbations of the Raychaudhuri equation.

The organization of this paper is as follows. In section 2 we review the gravitational

construction of the Schwarzian action in AdS2 via symmetry breaking. In section 3 we

follow a similar logic to derive the effective action at any horizon in two-dimensional gravity.

We examine the symmetries of this action, interpretation of the Noether charges, and how

one can consider contributions from matter fields. In section 4 we discuss the role of this

action in the recently proposed near AdS2/near CFT1 correspondence. In section 5 and 6

we generalize our results to three and higher dimensional gravity. We conclude with a

discussion of future directions.

2 Reparametrizations and their breaking in nearly AdS2

Here we briefly review the time reparametrization symmetry and its breaking in nearly

AdS2 spacetime, following [18]. Consider first the (Euclidean) AdS2 vacuum in Poincare

coordinates

ds2 =
dt2 + dz2

z2
(2.1)
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and a curve defined by (t(u), z(u)) where u is the internal time parameter. The curve

defines a timelike boundary in the spacetime. As we approach the AdS boundary, the

proper time on the curve will diverge. Therefore we introduce a cutoff `c such that

1

`c
=

√
t′2 + z′2

z2
, (2.2)

where primes indicate derivatives. From this equation, we deduce that for small

`c, z = `ct
′ + · · · . Thus, a given t(u) specifies the boundary cut-off trajectory.

As an asymptotic symmetry, the one-dimensional conformal symmetry/time reparame-

trization maps one AdS2 spacetime into another and therefore one boundary curve into

another via t(u) → t(u) + ε(u). The choice of the AdS2 vacuum state spontaneously

breaks the infinite dimensional symmetry. In this case it is broken down to the group

of SL(2,R) symmetries that preserve the vacuum state. In particular, under the global

SL(2,R) transformation

t→ at+ b

ct+ d
, ad− bc = 1, (2.3)

the boundary cut-off shape is unchanged.

In two-dimensions Einstein gravity is trivial. Since the Ricci scalar is a total derivative,

the Einstein-Hilbert action is topological and there is no dynamics. On the other hand,

one can define a gravitational theory with a scalar degree of freedom, the dilaton. The

dilaton arises from the dimensional reduction of a higher dimensional gravitational theory

to two-dimensions. A simple early model of dilaton gravity is the Jackiw-Teitelboim (JT)

theory [25, 26],

IJT =
1

16πGN

[∫
d2x
√
gφ (R+ 2) + 2

∫
dtφbK

]
, (2.4)

where in the additional Gibbons-Hawking term φb is the boundary value and K is the

extrinsic curvature of the boundary. The equations of motion imply that the solutions are

AdS2 with the non-trivial dilaton profile

φ =
a1 + a2t+ a3(t2 + z2)

z
. (2.5)

Note that if we consider the diffeomorphisms φ→ φ+ ξA∂Aφ that preserve the asymptotic

form of the dilaton (z−1 divergent piece) then the arbitrary time reparametrization is

broken explicitly down to SL(2).

The boundary value φb can be expressed in terms of a renormalized φr(u) on the cutoff

boundary via φb = φr(u)/`c. Using (2.5), one finds

a1 + a2t(u) + a3t(u)2

t′(u)
= φr(u) (2.6)

relating the dilaton coupling to the reparametrization mode. One can derive (2.6) from the

variation of the on-shell gravitational action, which is the Gibbons-Hawking term in (2.4).

Note that one has imposed the dilaton equation of motion, but not the metric field equation.

Evaluating the extrinsic curvature of the boundary curve, one finds

I = − 1

8πGN

∫
duφr(u){t, u}, (2.7)
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where {t, u} is the Schwarzian derivative

{t, u} =
t′′′(u)

t′(u)
− 3

2

t′′(u)2

t′(u)2
. (2.8)

The action is invariant under global SL(2,R) transformations and one can study the associ-

ated conserved charges. The Schwarzian derivative also describes the low energy (strongly

coupled), large N regime of the SYK model, which is a one-dimensional quantum mechan-

ical theory with 2N Majorana fermions (see, for example [27, 28]).

To describe the AdS2 black hole case, one can re-analyze the system with metric given

by, for example

ds2 = − sinh2 ρdτ̄2 + dρ2, (2.9)

or simply redefine t(u) = tanh(πτ̄(u)/β0), which is the conformal transformation from the

vacuum to a state at finite temperature β−1
0 . The resulting effective action is

I = − 1

8πGN

∫
duφr(u)

(
{τ̄ , u}+

2π

β0
τ̄ ′2
)
. (2.10)

Jensen showed that this action can be expressed in hydrodynamical sigma model

form [20]. We think of u as the time coordinate on the physical spacetime, the bound-

ary. τ̄ labels time on a reference manifold M . The metric on M is

h = −u′(τ̄)2dτ̄2. (2.11)

On the reference manifold one works with a fixed vector field βa such that the temperature

and velocity are defined as

T =
1√

−habβaβb
, ua =

βa√
−habβaβb

. (2.12)

In one-dimension we have β τ̄ = β0 = T−1
0 , yielding

T =
T0√
−h

, uα =
1√
−h

. (2.13)

In terms of these variables the action (2.10) has the general hydrodynamical form

Ieff =
1

8πGN

∫
dτ̄
√
−hφr

(
3

2

Ṫ 2

T 2
− T̈

T
+ 2π2T 2

)
. (2.14)

In the case where φr is a constant, we can eliminate total derivatives to find the form

given in [20].
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3 Horizon reparametrizations and effective action

We now describe how an analogous pattern of symmetry breaking exists in the two-

dimensional horizon system. In the horizon setting, the remaining “supertranslation”

symmetry can be thought of as the freedom to reparametrize the time along the null

geodesics of the horizon surface. We will allow for a generic dilaton theory

Idil =
1

16πGN

[∫
d2x
√
g (φR+ V (φ)) + 2

∫
duφbK

]
, (3.1)

where the potential V (φ) is arbitrary (V (φ) = 2φ gives the JT theory). A black hole

solution has the near-horizon metric (in null Gaussian coordinates)

ds2 = (−2κr + · · · )dv2 + 2dvdr. (3.2)

At this stage, the asymptotic behavior of this solution at infinity is arbitrary, we are focusing

strictly on the near-horizon physics. The transformations v → α(v) map the solution into

a different black hole with different κ. The metric field equation is

EAB = ∇A∇Bφ− gAB�φ+ gABV (φ) = 0. (3.3)

Contracting with two null normals `A and evaluating on the horizon yields the horizon

constraint equation

`A`B∇A∇BφH = `A∇A(`B∇BφH)− κ`B∇BφH = 0. (3.4)

The solution to this equation in a general time parametrization is

φH(v) = c0 + c1

∫ α(v)

dt′e
∫ v′′ κ(v′′)dv′′ . (3.5)

For simplicity, we will typically consider the case where κ is a constant, which yields

φH(v) = c0 +
c1

κ
eκα(v). (3.6)

This gives us a relation between the reparametrization mode α(v) and the boundary value

φH in analogy with (2.6) at the AdS2 boundary.

The presence of the non-trivial dilaton on the horizon breaks the infinite dimensional

reparametrization symmetry. We should require that diffeomorphisms φ→ φ+ ξA∂Aφ also

preserve asymptotic form of the dilaton solution,

φ(v, r) = c0 +
c1

κ
eκα +O(r). (3.7)

We find that

ξt =
G

α′
+
F

α′
e−κα (3.8)

preserves this form, for constants G and F , mapping into another solution with different

constants c0 and c1.
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Note that just as in the AdS2 boundary case there is also a spontaneous breaking of the

reparametrization symmetry, coming from our choice of state with a particular κ. Under

the infinitesimal reparametrization

κ→ κ+ ε∂vκ+ ∂2
vε+ κ∂vε . (3.9)

Neglecting the time dependence in κ, we that the condition for κ to be preserved is [24]

ε(v) = G+ Fe−κv, (3.10)

which agrees with (3.8). For finite transformation one can find the change in the surface

gravity by reparametrizing the time v̄ = α(v) in the null geodesic equation (1.2). The

result is

κ = κ̄α′ +
α′′

α′
. (3.11)

Setting κ = κ̄ in (3.11), yields the general transformation

α(v) =
ln(k1e

κv + k0)

κ
. (3.12)

Interestingly, it is also possible to derive the condition (3.6) from an effective action,

analogous to that of the AdS2 boundary. We can construct the effective action for the

reparametrization modes in the following way. For a timelike boundary, one must sup-

plement the gravitational action with the Gibbons-Hawking term in (3.1). The on-shell

gravitational action reduces to just this boundary term, which should correspond to the

effective action for the Goldstone modes. For a null surface, one can evaluate the dilaton

boundary term in null geodesic coordinates and then take the null r = 0 limit. The result is

Inull =
1

8πGN

∫
dvφHκ, (3.13)

which is consistent with earlier results for null boundaries [29]. We take κ to have the form

κ = α′′

α′ + α′κ0, with κ0 a fixed background surface gravity associated with an equilibrium

state. We propose that the effective action has the form

Ieff =
1

8πGN

∫
dvφH

(
α′′

α′
+ α′κ0

)
, (3.14)

where φH acts like an external coupling. Variation of the field α(v) produces the equation

of motion (
φ′H
α′

)′
− κ0φ

′
H = 0. (3.15)

We can re-express this in the form

φ′′H −
(
α′′

α′
+ κ0α

′
)
φ′H = 0, (3.16)

which is exactly the general form of the horizon constraint equation in (3.4). Therefore

the one-dimensional gravity action captures the near-horizon physics. Note that if φH is a

– 7 –
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constant, then the action is a total derivative and the dynamics are trivial. Therefore (3.14)

describes a type of non-equilibrium dynamics of the horizon, characterized by Goldstones

v → v + ε(v).

We can also consider the special case where the horizon is extremal and κ0 = 0. Here

the transformation preserving extremality is ε(λ) = G+Fλ, which is an affine transforma-

tion, with λ the affine parameter. The effective action takes the form

Iext
eff =

1

8πGN

∫
dλφH

(
α′′

α′

)
. (3.17)

Finally, we note in passing that one may wonder about the generic case of a time depen-

dent κ0. Here the form of the effective action is less clear, but we conjecture the action is

Ieff =
1

8πGN

∫
dvφH

(
α′′

α′
+ α′κ0 + ακ′0

)
, (3.18)

which again leads to the horizon constraint equation when we vary α.

3.1 Symmetries and Noether charges

We now consider the Noether charges associated with the horizon action (3.14). As ex-

pected, it is invariant under the infinitesimal global symmetry in (3.8), i.e α → α + G +

Fe−κ0α. Computing the conserved Noether charges associated with the symmetry yields

the two parameter family

Q =
1

8πGN

[
G

(
κ0φH −

φ′H
α′

)
− Fφ′H

e−κ0α

α′

]
. (3.19)

Note that the first charge proportional to G is conserved trivially by horizon constraint

equation, which can be expressed as dQG
dt = 0. If we consider small perturbations in α,

we find

QG =
1

8πGN

(
κ0φH − φ′H

)
(3.20)

QF = − 1

8πGN
φ′He

−κ0v. (3.21)

In the equilibrium case where φH is a constant, we find

Q
(0)
G = T0s

(0), (3.22)

where T0 = κ0
2π and entropy s(0) =

φ
(0)
H

4GN
. This reproduces the Wald entropy formula in the

stationary case, which tells us that entropy is proportional to a time translation Noether

charge [30].

The action in the extremal case (3.17) is invariant under the global affine transforma-

tion α→ α+G+ Fα. Here the two corresponding Noether charges are

Qext
G = −

φ′H
α′

(3.23)

Qext
F = φH −

φ′H
α′
α. (3.24)

– 8 –
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To investigate further the physical properties of the conserved charges we follow [24]

and consider membrane paradigm picture, where the expectation value of the Brown-York

stress tensor is thought of as the stress tensor of the horizon field theory system. The

Brown-York stress tensor is defined as the canonical momentum with respect to the induced

metric on the hypersurface. However, in one-dimension, there is only one component, the

energy. To compute the energy for dilaton gravity, we consider the action (3.1). The 1+1

dimensional decomposition of the Ricci scalar yields

R = −∇A(nA∇CnC) +∇C(nA∇AnC) (3.25)

where nA is the normal to the timelike slice. Integrating by parts, the action can be

expressed as

S =
1

16πGN

∫
N
√
hd2x

(
nA∇Aφ)(∇CnC)−∇Cφ(nA∇AnC) + V (φ)

)
. (3.26)

To find the canonical momentum we are interested in terms containing radial derivatives

of the induced one-dimensional metric htt. The result is

E = − 1

8πGN
nA∇Aφ . (3.27)

In the horizon limit the membrane energy is

Ememb = − 1

8πGN
`A∇AφH . (3.28)

Therefore we can re-express the conserved Noether charges as

Q = G(T0s+ Ememb) + FEmemb e
−κ0α, (3.29)

where we take s ∼ φH(v). The second conserved charge (term proportional to F ) is

associated with the energy of the membrane system. If we take the time derivative of the

second charge, we find the expected dQ/dv = 0 by virtue of the constraint equation (3.4)

which can be written as `A∇AEmemb − κ0Ememb = 0. Of course, for our solution (3.6),

Ememb = c1e
κ0α.

In the extremal case we find

Qext = GEmemb + F (s+ Emembα) . (3.30)

Here horizon constraint equation implies dEmemb/dλ, so that the membrane energy is

a constant.

3.2 Adding matter

Now suppose that we add matter-energy to the horizon system. In this case the horizon

constraint equation is modified to

`A∇AEmemb − κEmemb = 2TAB`
A`B (3.31)

– 9 –
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where TAB the stress-energy tensor for the matter fields. The flux of matter-energy leads to

non-conservation of the membrane energy. As an example, we first consider the case where

a light-like shell of mass M falls across the horizon. Here the stress tensor has the form

Tv̄v̄ = Mδ(v̄ − v0) (3.32)

where `A∇A = ∂v̄. Solving (3.31) we find

Ememb = c1e
κv̄ +Meκ(v̄−v0)(1− θ(v0 − v̄)) . (3.33)

Thus we see that the mass of the shell has been incorporated into the conserved energy

of the membrane system. In affine parametrization the result is somewhat cleaner: here

Ememb = c1 + M(1 − θ(λ0 − λ)). After the passage of the shell there is a shift in the

membrane energy of magnitude M .

We can understand this effect more generally by considering the stress tensor for scalar

field(s), ψ. In this case the contribution to (3.31) is of the form

TAB`
A`B = `A`B∇A∇Bψ = `A∇A(`B∇Bψ)− κ`A∇Aψ. (3.34)

Any terms proportional to gAB in the stress tensor vanish due to the contraction with null

vectors. Therefore we can write an effective action for the contribution of scalar matter as

Imatt =

∫
dtψHκ =

∫
dvψH

(
α′′

α′
+ κ0α

′
)
. (3.35)

The variation of Imatt plus our earlier gravitational action (3.14) with respect to the

reparametrization mode α yields the full horizon constraint equation (3.31). Therefore the

matter fields also carry the two Noether charges we discussed earlier. In the total system

Qtot = Qgrav +Qmatt (3.36)

remains conserved.

Another thing we can do is take our effective action (3.14) and couple it to a quan-

tum effective action that arises from integrating out matter fields on the two-dimensional

spacetime background. The quantum effective action encodes information about the renor-

malized stress tensor operator. In this way we can describe a semi-classical backreaction

process (such as evaporation). If we consider conformal matter, then the effective action

is controlled by the conformal anomaly, via the Polyakov action

Ip =

∫
d2x
√
gR�−1R . (3.37)

We can write this in a local form via the auxiliary scalar field χ

Ip =

∫
d2x
√
g (∂µχ∂

µχ+ χR) +

∫
dtχκ , (3.38)

where we have included a Gibbons-Hawking like term in the presence of the null boundary.

This boundary term has the form of our matter effective action. Inserting κ = α′′

α′ + α′κ0

and integrating over χ, one can in principle find a non-local action in terms of the scalar

Green’s function.
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4 AdS2 black hole case

In the previous analysis we have worked solely at the horizon and used no information about

the global behavior of the solution. However, one can ask about the about the interpretation

of (3.14) in terms of the near AdS2/ near CFT1 correspondence when we have an AdS2

black hole solution. We start with the metric in Eddington-Finkelstein coordinates

ds2 = −(ρ2 − ρ2
0)dτ2 + 2dτdρ, (4.1)

where ρ0 is a constant. If we then consider the diffeomorphisms that preserve the AdS

metric, which as we described in section 2 amount to one-dimensional conformal transfor-

mations, we find

ds2 = −(ρ2 − ρ2
s)du

2 + 2dudρ. (4.2)

Here ρ2
s(u) = −2{τ, u} + ρ2

0τ
′2. The horizon radius a priori depends on time and can be

found from the condition that the null normal `A = ∂A(ρ − ρh(u)) is null. The result is

that κ(t) = ρh(u) = ρs + ρ̇s
ρs

+ · · · . The other important variable is the energy. The total

energy of the solution is given by the holographic Brown-York stress tensor (3.27), in the

limit as r →∞. Here there is a divergence which must be canceled by a counterterm. The

resulting total energy turns out to be given by

E = − 1

8πGN
lim
ρ→∞

ρ
(
nA∇Aφ− φ

)
. (4.3)

For the dilaton φ(u, ρ), the ρρ component of the metric field equation (3.3) implies

φ(u, ρ) = ρφr +A(u). Inserting this form into the uρ component yields A(u) = φ′r. With

this form, using (4.3) one finds that the total energy is proportional to −φ′′r + ρ2
sφr.

The remaining uu component of the Einstein equation is just the conservation equation

dE/du = 0. If we re-define u such that φr is a constant, then we have the equation

dρs/du = 0.

The horizon action (3.14) should encode information about the infrared degrees of free-

dom in the dual finite temperature theory. Following [31], one can think about this action

as arising from integrating out UV degrees of freedom in the framework of the Wilsonian

renormalization group. In holography one integrates out the bulk degrees of freedom and is

left with a low energy theory consisting of Goldstone bosons (the reparametrization mode)

and near horizon variables (φH).

Suppose we consider the gravitational action to have contributions from both the

boundary and the horizon. This takes the form

Itot =
1

16πGN

[∫
d2x
√
g

(
φ(R+ 2) + 2

∫
duφbK + 2

∫
dtφHκ

)]
. (4.4)

Imposing the dilaton equation of motion, we arrive at the following total on-shell action,

which is the sum of (3.14) and (2.10)

Ibdry,tot =
1

8πGN

∫
du

[
φH(u)

(
τ ′′

τ ′
+ κ0τ

′
)
− φr(u)

(
τ ′′′

τ ′
− 3

2

τ ′′2

τ ′2
− κ2

0

2
τ ′2
)]

. (4.5)

– 11 –



J
H
E
P
0
2
(
2
0
1
7
)
0
5
2

In writing this action we have identified the horizon time with the boundary time. The

horizon terms proportional to φH are the lowest order terms in an expansion in derivatives

of the reparametrization mode. As expected, these terms characterize the infrared regime,

while the terms from the Schwarzian action at the boundary describe the UV.1 Note that

both [18, 20] added by hand to the Schwarzian action the term proportional to τ ′ in order

to capture the extremal entropy of the AdS2 black hole horizon. In the case where φH is

a constant and the horizon is in identically in equilibrium, both terms from the horizon

are topological.

Following the same procedure as in section 2, it is easy to show that (4.5) can be

expressed in hydrodynamical sigma model form. The result is

Ieff =
1

8πGN
dτ
√
−h

[
φH

(
Ṫ

T
+ 2πT

)
+ φr

(
3

2

Ṫ 2

T 2
− T̈

T
+ 2π2T 2

)]
. (4.6)

Again, the horizon terms are the lowest order terms in an expansion in temperature and

its derivatives. There is a freedom to add a constant ground state energy E0, which will

not affect the equations of motion. If we go to the equilibrium frame where τ = u and

rotate to Euclidean signature, one finds the expected partition function and Wald entropy

proportional to φ
(0)
H .

The total action is composed of the reparametrization mode acting as the field, plus

two external couplings in the UV and IR. If we vary the action with respect to τ we find

the sum of the horizon constraint equation and the field equation capturing the boundary

dynamics, (
φ′H
τ ′

)′
− κ0φ

′
H −

[
1

τ ′

(
(τ ′φr)

′

τ ′

)′]′
− κ2

0(φrτ
′)′ = 0 . (4.7)

This equation implies there is a relationship between the UV variables and IR horizon value

φH . If we consider the case where τ(u) = u this reduces to

φ′′H − κ0φ
′
H − φ′′′r − κ2

0φ
′
r = 0 . (4.8)

From this equation we find that there is a relationship between the UV and IR values

φH = κ0φr + φ′r . (4.9)

This relation also follows from the radial evolution parts of the metric field equation we

discussed above, where φ(u, ρ) = ρφr+φ′r. In writing (4.5) we have consistently coupled the

UV and IR degrees of freedom. With the condition (4.9) imposed, the boundary constraint

equation for φr is encoded in the horizon constraint equation. Note that if we were to

choose φr = 1 then φH = ρh(u). When τ = u, φH = ρ0, which is equilibrium.

1A similar statement about the derivative expansion appears to be valid also in the case where κ0 = 0

in (4.5), which corresponds to a boundary at the z = ∞ (extremal) horizon of the Poincare patch of

AdS2 (2.1). Here the temperature is identically zero though.

– 12 –



J
H
E
P
0
2
(
2
0
1
7
)
0
5
2

Finally, we can also consider the symmetries and conserved charges of the UV and

IR parts of the action. The UV part of the action is invariant under the three-parameter

transformation

τ → τ +G+ Fe−κ0τ +Heκ0τ (4.10)

which can be thought of as a generalization of the SL(2,R) symmetry in the vacuum AdS2

case to the thermal state dual to the AdS2 black hole.This symmetry can be inferred

from the solution to the constraint equation for φr in the case where τ = u, which is

φ′′′r − κ2
0φ
′
r = 0. This yields

φr = c0 + c1e
κ0u + c2e

−κ0u. (4.11)

The three parameter transformation is the subset of infinitesimal diffeomorphisms that

map one solution for φr into another.

The Noether charges were found in [18], where they were labeled as Q0 and Q± and

interpreted in terms of symmetries of the thermofield double state of the extended AdS2

black hole geometry. When we consider the infrared terms in the action, we see that

the symmetry reduces to just the two parameter family of (F,G) described earlier, which

correspond to Q0 and Q−. This happens because we are considering asymptotic symmetries

near the future horizon in one wedge of the geometry. If we were to consider the other

wedge or the past horizon (via outgoing Eddington-Finkelstein coordinates) the relevant

symmetries would instead involve the other two parameter family (G,H). For the charges,

one finds, for example

QG =
1

8πG

((
φr
τ ′

)′′
− φr

(
τ ′′′

τ ′2
− 3

τ ′′2

τ ′3
+ κ2

0τ
′
))

(4.12)

QF =
1

8πG
e−κ0τ

(
−φr

τ ′′′

τ ′2
+ 3φr

τ ′′2

τ ′3
+ 3φrκ0

τ ′′

τ ′
+ 3

(
φrτ

′′

τ ′2

)′
+ κ0τ

′
(
φr
τ ′

)′
+

(
φr
τ ′

)′′)
.

(4.13)

QG is the total ADM energy. If we consider τ = u, this reduces to T0s0 in terms of horizon

data. For QF , we can take τ = u as well. Then for the above solution (4.11),

QF = 2κ2
0c1 . (4.14)

The charge is only sourced by the exponentially growing mode, which also mirrors the

behavior we found earlier in section 3 at the horizon. Maldacena, Stanford, and Yang

showed the exponentially growing mode is associated with a ghost mode, which they argued

can be dealt with by treating (4.10) as a gauge symmetry of the quantum state. Taking

into account the left wedge in the extended geometry, the charges vanish and the doubled

state is invariant. However, for the wedge geometry associated with the mixed thermal

state the charges do seem to have physical consequences. The existence of these modes was

crucial to the exponentially growing behavior of the out of time ordered correlators, e.g.

∼ eκ0u for Lyapunov exponent κ0, used diagnose chaotic behavior in the dual (SYK model)

theory. Here we can also see this type of behavior locally at the horizon using our infrared

action, which implies that, for example, Ememb is an exponentially increasing variable.
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5 Three-dimensional gravity case

Now that we have investigated the two-dimension dilaton gravity case, it is interesting to

see whether these results generalize into the usual GR setting. We first consider the case of

horizons in three-dimensional gravity. In this case the horizon supertranslations generalize

to the transformation v̄ = α(v, x) which acts on the metric (1.1). This is no longer just a

time reparametrization on the horizon. Note that we also have the superrotation freedom,

which is a spatial diffeomorphism x̄ = R(x). If we contract the Einstein field equation with

two null normal vectors, we find the Raychaudhuri equation

RAB`
A`B = `A∇Aθ − κθ + θ2 = 0. (5.1)

Here there is no shear since the horizon cross-section is one-dimensional. Re-expressing this

equation in terms of the derivative of the cross-sectional metric
√
γ using the definition of

the horizon expansion,

θ =
L`
√
γ

√
γ
, (5.2)

yields

`A∇A(`B∇B
√
γ)− κ`A∇A

√
γ = 0 . (5.3)

This has the same form as the two-dimensional horizon constraint equation, via the replace-

ment φH →
√
γ. Indeed, φH is proportional to the entropy for a two-dimensional black hole,

while in higher dimensions the Bekenstein-Hawking entropy density is proportional to
√
γ.

To solve (5.3) we again take `A∇A = ∂v̄. The solution to the constraint equation is

then (for the simplest case of κ = κ0)

√
γ(v̄, x) = c0(x) +

c1(x)

κ0
eκ0v̄, (5.4)

which can be re-expressed as

√
γ(v, x) = c0(x) +

c1(x)

κ0
eκ0α(v,x). (5.5)

This is the generalization of (3.6).

In this case there is no explicit breaking of the horizon asymptotic symmetries, but

there is spontaneous breaking associated with the choice of state. As before, the set of

diffeomorphisms that map one solution to another, or equivalently act as symmetries of

the constraint equation, are associated with subset of supertranslations that preserve the

surface gravity. At the infinitesimal level, the subset v → v + ε(v, x) that solve the no

change condition in (3.9) has the form

ε(v, x) = F (x)e−κ0v +G(x). (5.6)

The nature of the supertranslation G(x) was discussed in [24], we saw that this leads to a

shift in the one-form Ωx via

Ωx → Ωx − κ0∂xG. (5.7)

– 14 –



J
H
E
P
0
2
(
2
0
1
7
)
0
5
2

Using the membrane paradigm to identify Ωi with the momentum Pi of a non-relativistic

horizon field theory system, we argued the spontaneous breaking of the supertranslations

is a spontaneous breaking of a particle number U(1) type of symmetry.

As in the two-dimensional case, one can construct an effective action whose variation

yields the horizon constraint equation. In the case of a null boundary in GR it was argued,

see e.g. [29] that the proper form of the Gibbons-Hawking term is in general dimension D

Inull =
1

8πGN

∫
dvdD−2x

√
γ(κ+ θ). (5.8)

Neglecting the θ term as a total derivative, we propose that in three-dimensions the relevant

action is

Ieff =
1

8πGN

∫
dvdx

√
γ

(
∂2
vα

∂vα
+ κ0∂vα

)
. (5.9)

The equation of motion for α yields

∂2
t

√
γ −

(
∂2
vα

∂vα
+ κ0∂vα

)
∂v
√
γ = 0 (5.10)

which is the horizon constraint equation. As in the two-dimensional case, we can also write

down an action for the extremal case where κ0 = 0, which is just

Ieff =
1

8πGN

∫
dλdx

√
γ

(
∂2
λα

∂λα

)
. (5.11)

The finite temperature action (5.9) is invariant under the global transformation α →
α+G(x) + F (x)e−κ0α. The resulting Noether charge densities are

Qden =
1

8πGN

[
G(x)

(
κ0
√
γ −

∂v
√
γ

∂vα

)
− F (x)

e−κ0α

∂vα
(∂v
√
γ)

]
. (5.12)

Here we have an infinite set of charges. For ∂vα = 1, these charges agree with those

found by different methods in [34]. In the case where G(x) is a constant, and we are in

equilibrium, we find as before that the Noether charge density is proportional to entropy

density. The higher harmonics of G(x) (thinking of the horizon with spherical/circular

symmetry) will yield a vanishing contribution. When F (x) is a constant we can argue that

the charge is associated with the membrane paradigm energy density [32, 33], which is

exponentially growing,

ρmemb = − 1

8πGN
θ. (5.13)

Integrating to find the total energy yields

Ememb = − 1

8πGN

∫
dx
√
γθ = − 1

8πGN

∫
dxL`

√
γ. (5.14)

We see that in this case L`
√
γ plays a similar role to that of φ′H . In this case the quantity

Emembe
−κ0α is conserved via the horizon constraint equation. For the Noether charges, we

find in general

Qden = G(x) (T0s+ ρmemb) + F (x)ρmembe
−κ0α. (5.15)
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Since G(x) is associated with the breaking of a U(1) symmetry in the horizon system, we

conjecture that the contribution from G(x) in the out of equilibrium case is related to the

particle number of the non-relativistic system.

In the extremal case, the action (5.11) is invariant under generalized global affine

transformations α→ α+G(x)+F (x)α. The resulting Noether charges can be expressed as

Qext
den = G(x)ρmemb + F (x)(s+ ρmembα). (5.16)

We can attempt to express the action (5.9) in hydrodynamical form, following the two-

dimensional dilaton example. In this case we have two-dimensional physical and reference

manifolds. If we assume that we are implicitly in a reference frame where the vector field

βa = βα = β0 (purely in the timelike direction), then the one-dimensional hydrodynamical

action generalizes naturally

Ieff =
1

8πGN

∫
dαdx

√
−h√γ

(
Ṫ

T
+ 2πT − E0

)
. (5.17)

However, this doesn’t seem to capture the dynamics entirely since it is possible to have

spatial gradients in the system, via terms like P ba∂bT , where P ab = hab + uaub is the

transverse projector.

Finally, one can also add matter to the system just as in the two-dimensional case. We

expect matter fields to also carry the conserved Noether charges. For scalar matter one

can write down an effective action

Ieff =

∫
dvdx ψH

(
∂2
vα

∂vα
+ κ0∂vα

)
(5.18)

which captures their contribution to the Raychaudhuri equation.

6 D > 3 gravity?

In this case, the story with supertranslations is a simple generalization of the D = 3 case.

However, here the horizon constraint equation/Raychaudhuri equation has the form

RAB`
A`B =

dθ

dt
− κθ +

1

D − 2
θ2 + σabσ

ab = 0. (6.1)

In this case we can no longer re-express this equation in the form of (5.3) due to the different

factor in front of the θ2 term. In higher dimensional GR there are dynamical degrees of

freedom. In particular, there is also a shear term, which can be thought of as encoding

the contribution from the flux of gravitational waves across the horizon. This acts like a

dissipation term in the horizon system.

Neglecting the shear squared term for the moment, we find

∂2
t̄

√
γ − κ∂t̄

√
γ +A

(∂t̄
√
γ)2

√
γ

= 0, (6.2)
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where A = D−3
D−2 . The solution is

√
γ =

(
(A+ 1)

(
F (xi)

κ
eκα +G(xi)

)) 1
A+1

. (6.3)

It is not clear whether one can construct an action whose variation will give back this

equation of motion and solution. For small perturbations ε one can write down, for example,

Ieff ∼
∫
dvdD−2x

√
γ
(
∂2
vε+ κ0∂vε−Aθ∂vε−Aε∂vθ

)
. (6.4)

On the other hand, linearized perturbations of the horizon are governed by (5.3), where

one drops the θ2 term as higher order. One could also absorb the shear squared term into

any generalized matter-energy flux. Another alternative is to work at lowest orders in a

(hydrodynamic) expansion in time derivatives. In this setting the effective action would

generate the ideal entropy conservation equation ∂v
√
γ = 0. Higher order dissipative

corrections to this equation, which involve the θ2 and σ2 terms, would not be captured.

Thus, we conclude that the horizon effective action can likely only describe the horizon

dynamics in the case where the metric degrees of freedom are only slightly perturbed, or

at lowest orders in a hydrodynamic expansion.

7 Discussion

In this paper we constructed an effective action for the Goldstone modes associated with

the spontaneous breaking of horizon supertranslations. The variation of this action pro-

duces the horizon constraint/Raychaudhuri equation in two and three-dimensional gravity

theories, but only approximately in higher dimensions. We found that this action can be

expressed in a hydrodynamical sigma model form and, in the context of holography, it

captures the low-energy degrees of freedom near the horizon.

One may wonder if a similar type of effective action exists for the spontaneous breaking

of horizon superrotations in three and higher dimensions. Under a superrotation, the

horizon metric γij → γij + LRγij , which implies that
√
γ → √γ + ∂iR

i. This means that

for a state with a given area, there is a spontaneous breaking of the superrotations down

to area-preserving (spatial) diffeomorphisms. The resulting effective action is therefore

invariant under these symmetries and appears to be closely related to the effective actions

for holographic ideal fluids constructed in [35, 36].

Finally, black holes in two and three dimensions are important toy models for under-

standing issues such as the information paradox and the microstate origin of the Bekenstein-

Hawking entropy. In the future it would be interesting to understand whether these soft

mode “hairs” on non-stationary horizons play any role in the resolution of these problems.

Acknowledgments

I would like to thank Yaron Oz for valuable discussions. This research was supported by the

European Research Council under the European Union’s Seventh Framework Programme

(ERC Grant agreement 307955).

– 17 –



J
H
E
P
0
2
(
2
0
1
7
)
0
5
2

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Carlip, Entropy from conformal field theory at Killing horizons, Class. Quant. Grav. 16

(1999) 3327 [gr-qc/9906126] [INSPIRE].

[2] M. Hotta, K. Sasaki and T. Sasaki, Diffeomorphism on horizon as an asymptotic isometry of

Schwarzschild black hole, Class. Quant. Grav. 18 (2001) 1823 [gr-qc/0011043] [INSPIRE].

[3] J.-i. Koga, Asymptotic symmetries on Killing horizons, Phys. Rev. D 64 (2001) 124012

[gr-qc/0107096] [INSPIRE].

[4] L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and Superrotations at

the Black Hole Horizon, Phys. Rev. Lett. 116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].

[5] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general

relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962)

21 [INSPIRE].

[6] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat

space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

[7] S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett.

116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].

[8] R.F. Penna, BMS invariance and the membrane paradigm, JHEP 03 (2016) 023

[arXiv:1508.06577] [INSPIRE].

[9] M. Blau and M. O’Loughlin, Horizon Shells and BMS-like Soldering Transformations, JHEP

03 (2016) 029 [arXiv:1512.02858] [INSPIRE].

[10] A. Averin, G. Dvali, C. Gomez and D. Lüst, Gravitational Black Hole Hair from Event
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