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Abstract: In this paper we revisit the question that in what sense empty AdS5 black brane

geometry can be thought of as RG-flow. We do this by first constructing a holographic

c-function using causal horizon in the black brane geometry. The UV value of the c-

function is aUV and then it decreases monotonically to zero at the curvature singularity.

Intuitively, the behavior of the c-function can be understood if we recognize that the dual

CFT is in a thermal state and thermal states are effectively massive with a gap set by

the temperature. In field theory, logarithmic entanglement negativity is an entanglement

measure for mixed states. For example, in two dimensional CFTs at finite temperature

the renormalized entanglement negativity of an interval has UV (Low-T) value cUV and IR

(High-T) value zero. So this is a potential candidate for our c-function. In four dimensions

we expect the same thing to hold on physical grounds. Now since the causal horizon goes

behind the black brane horizon the holographic c-function is sensitive to the physics of

the interior. Correspondingly the field theory c-function should also contain information

about the interior. So our results suggest that high temperature (IR) expansion of the

negativity (or any candidate c-function) may be a way to probe part of the physics near

the singularity. Negativity at finite temperature depends on the full operator content of

the theory and so perhaps this can be done in specific cases only.

The existence of this c-function in the bulk is an extreme example of the paradigm that

space-time is built out of entanglement. In particular the fact that the c-function reaches

zero at the curvature singularity correlates the two facts: loss of quantum entanglement in

the IR field theory and the end of geometry in the bulk which in this case is the formation

of curvature singularity.
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1 Introduction

In AdS-CFT black brane is a thermal state of the boundary conformal field theory living

on the Minkowski space-time. This is not a relevant deformation of the CFT Hamiltonian

and there is no renormalization group flow in the ordinary sense. Therefore the question

of the existence of a c-function, in the sense of Zamolodchikov [1–11], does not naturally

arise in this situation. Moreover Zamolodchikov c-function is constant at a fixed point

and independent of the state of the CFT. The purpose of this note is to point out that

AdS-CFT duality and the thermodynamic nature of classical gravity allows us to introduce

a generalized notion of c-function, at least for large-N theories with classical gravity dual.

This generalized c-function cannot be interpreted as an off-shell central charge. Rather it

can be interpreted as a measure of quantum entanglement that exists at different energy

scales in the given state. We will construct this c-function holographically when the CFT

is in thermal state and the gravity dual is an empty black brane geometry. We focus on

four dimensional field theories only. Our choice of the thermal state is motivated by the

fact that the gravity dual has a curvature singularity and the Lorentz invariance is broken

everywhere except near the UV boundary of AdS. So it can teach us some lessons about

RG-flow interpretation of more general geometries.

Throughout this paper we will assume that the bulk theory is Einstein gravity coupled

minimally to a set of matter fields.

2 Holographic view

The holographic picture is based on the fact that the gravity dual of c-theorem is the

second law of causal horizon thermodynamics in asymptotically AdS spaces [20, 21]. In a

nutshell, second law for causal horizons say that if we consider the future bulk light-cone of

a boundary point then the expansion of the null geodesic generators of the light-cone is neg-

ative [26, 27]. Now one can assign Bekenstein-Hawking entropy to the causal horizon. The
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fact that the expansion is negative then implies that as we move away from the boundary the

entropy density decreases monotonically. This is essentially holographic c-theorem [14–19]

if we specialize to a domain-wall geometry. The bulk future light-cone interpolates be-

tween the UV-AdS and the IR-AdS and the monotonically decreasing Bekenstein-Hawking

entropy density gives the holographic c-function [20, 21].

If we focus on domain-wall geometry then the second law has the interpretation of

holographic c-theorem. But what about other asymptotically AdS (AAdS) geometries?

Second law of causal horizon thermodynamics holds in any AAdS geometry and in fact

holographic RG [17] applies to any such setup. It has been argued that the holographic

RG in the bulk is dual to the Wilsonian RG in the boundary [22–25]. So is it possible

to associate a notion of irreversibility to any classical AAdS geometry? It seems that the

existence of second law for classical gravity allows us to do precisely this thing. In the field

theory side its interpretation will require us to generalize the concept of Zamolodchikov-

type c-function. We will have almost nothing to say on it in this paper.

To gain some experience with such generalized c-functions we will work out a reason-

ably simple but interesting example of empty black brane geometry in AdS5.
1 It has curva-

ture singularity hidden behind the black brane horizon and the geometry is not Lorentz in-

variant except near the AdS5 boundary. The c-function we construct is just the Bekenstein-

Hawking entropy density of a causal horizon in the black brane geometry [20, 21]. The

causal horizon originates at some point of the AdS boundary and terminates at the cur-

vature singularity. Nothing depends on the choice of the boundary point where the causal

horizon originates because of space-time translation invariance. Second law guarantees that

our function monotonically decreases as we move away from the boundary along the null

geodesic generators of the causal horizon. We will see that the c-function monotonically

decreases from aUV to zero at the curvature singularity.

2.1 Calculation and results

The causal horizon is just the future bulk light-cone of a boundary point (figure 1). We

take the boundary point, p, to have coordinates, xµ = z = 0.

The metric of the five-dimenional black brane is,

ds2 =
1

z2

[
− (1− z4)dt2 +

dz2

1− z4
+ d~x2

]
(2.1)

Our job is to construct the ingoing null geodesics in this geometry which originate

from the boundary point p.

Let us define the ingoing Eddington-Finkelstein coordinate as, v = t − z∗ where

z∗ = 1
2 tan−1 z + 1

4 log
(
1+z
1−z

)
, so that the metric takes the form

ds2 =
1

z2

[
− (1− z4)dv2 − 2dvdz + d~x2

]
(2.2)

1Construction of holographic c-function by viewing the black brane background as RG flow, was also

considered in [55–57]. c-function for attractor flows were considered in [78–80].
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p

Figure 1. Penrose diagram of the maximally extended AdS5 black brane [59]. We have shown only

the radial null geodesic coming out from the boundary point p. Other non-radial null geodesics

from p are not shown here. In this paper we do not need the setup of the two sided black brane.

We have drawn it for the sake of completeness.

There is no singularity at the horizon, z = 1, and so we can follow the null geodesics

all the way to the curvature singularity at, z = ∞. Since we want to find out the null

geodesics we can as well work with the conformally transformed metric2 given by,

ds̃2 = −(1− z4)dv2 − 2dvdz + d~x2 (2.3)

Let λ denote the affine parameter along a null geodesic in the conformally transformed

metric ds̃2.3

So we have,

g̃AB
dxA

dλ

dxB

dλ
= 0 (2.4)

We also have four conserved charges corresponding to the translations in v and the xi’s.

−(1− z4)dv
dλ

= −E +
dz

dλ
,

dxi

dλ
= −pi,

(2.5)

where i = 1, 2, 3. E and ~p are the conserved charges along a null geodesic. Here we are

assuming that the affine parameter λ increases as we move away from the boundary at

2Null geodesics are invariant under conformal transformation of the metric. In other words if g and g′

are two conformally related metrics then the null geodesics of g and g′ are the same. What changes under

the conformal transformation is the parametrization of a specific null geodesic. For example if xµ(α) is an

affinely parametrized null geodesic in metric g, then xµ(α) is also a null geodesic for the conformally related

metric g′, but α is not necessarily an affine parameter in the new metric g′. For a detailed derivation and

explanation of this fact please see [77, appendix D].
3We could not solve the equation for z(λ) by using the affine parameter corresponding to the original

geometry. But this does not affect the physics. This is just a change in scheme. It will of course be better

to solve this in terms of the original affine parameter.
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z = 0. We will be working with the future bulk light-cone of the boundary point p and so

with our convention for the affine parameter, dt
dλ ≥ 0. So E ≥ 0.

Now using (2.4) and (2.5) we get,(
dz

dλ

)2

= E2 − p2(1− z4) (2.6)

So we can see that the null geodesics which can reach the boundary point must satisfy

the constraint, E2 − p2 ≥ 0. This constraint together with the constraint E ≥ 0, allow us

to parametrize the conserved charges as,

E = α cosh η

pi = α sinh η n̂i
(2.7)

where α > 0, 0 ≤ η ≤ ∞ and n̂ is a unit vector in R3. Now it is easy to see that α is

redundant because it can be absorbed by an affine reparametrization, λ→ αλ. Therefore

we will set α = 1.

So the equation for z simplifies to,

dz

dλ
=

√
1 + z4 sinh4 η (2.8)

We have chosen the positive root because our convention is dz
dλ ≥ 0. So we can write,

λ =

∫ z

0

dz′√
1 + z′4 sinh2 η

(2.9)

where the boundary condition, z(0) = 0 has been imposed.

The solution of this equation is,4

z2(λ) =
1

sinh η

1− cn(2λ
√

sinh η, 1/
√

2)

1 + cn(2λ
√

sinh η, 1/
√

2)
(2.10)

where cn is one of the Jacobian elliptic functions. Its properties are well studied although

a closed form expression in terms of elementary functions does not exist.

Given the solution for z(λ) we can in principle determine v(λ) from (2.5), but we were

unable to do so in any convenient way. In any case the complete set of solutions can be

written as,

z(λ, η) =

√
1

sinh η

1− cn(2λ
√

sinh η, 1/
√

2)

1 + cn(2λ
√

sinh η, 1/
√

2)

v(λ, η) =

∫ λ

0
dλ′F (λ′, η)

xi(λ, η, n̂i) = −λ sinh η n̂i

(2.11)

4We are using the convention of Gradshteyn and Ryzhik. In Mathematica, 1√
2

in the argument of cn

should be replaced by 1
2
.
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where we have defined,

F (λ, η) = sinh2 η
(1 + cn)2 cosh η −

√
2
√

1 + cn2(1 + cn)

(1 + cn)2 sinh2 η − (1− cn)2
(2.12)

and cn ≡ cn(2λ
√

sinh η, 1√
2
). We have imposed boundary conditions such that, z(0, η) =

v(0, η) = xi(0, η, n̂i) = 0 for all values of η and n̂i. This corresponds to the fact that the

null geodesics are all coming out of the point p with coordinates xi = v = z = 0. Note that

v = t at the boundary z = 0.

For any fixed values of η and ni, the above equation (2.11) reduces to the equation of the

null geodesic parametrised by the affine parameter λ and coming out of the fixed boundary

point p(xi = t = z = 0). As we vary η and ni, we scan over all the geodesics coming out of

the point p. All these null geodesics form a null hyper surface whose parametric equation

is given by (2.11). The intrinsic coordinates on the null hyper surface are (λ, η, n̂i). (η, n̂i)

are comoving coordinates along a null geodesic parametrised by λ. This null hyper surface

is the sought for bulk future light-cone or the past causal horizon of the point p.

Our next job is to find out the induced metric on the null-hypersurface (2.11). To find

out the induced metric we have to use the original black brane metric (2.1). Using this

we get,

ds2ind =
1

z2

[
−(1− z4)

(
∂v

∂η

)2

− 2
∂v

∂η

∂z

∂η
+ λ2 cosh2 η

]
dη2 +

1

z2
λ2 sinh2 ηdΩ2

2 (2.13)

where dΩ2
2 is the metric of a unit two-sphere parametrised by n̂i. The induced metric

is degenerate as it should be because (2.11) is a null-hypersurface. (2.13) is the met-

ric on a λ = constant space-like slice of the causal horizon (2.11), parametrised by the

coordinates (η, n̂i).

The volume form can be written as,

dVind = c(λ, η) dVH3 (2.14)

where we have defined,

c(λ, η) =
λ2

z3

√√√√[−(1− z4)
(
∂v

∂η

)2

− 2
∂v

∂η

∂z

∂η
+ λ2 cosh2 η

]
(2.15)

dVH3 is the volume form on a unit three dimensional hyperbolic space given by,

ds2H3 = dη2 + sinh2 ηdΩ2
2

dVH3 = sinh2 η sin θdηdθdφ
(2.16)

where we have parametrised n̂i as (sin θ cosφ, sin θ sinφ, cos θ). The fact that c is a function

only of λ and η is a consequence of the rotational symmetry of the metric. In the more

standard domain-wall geometry c is function only of λ because of the Lorentz invariance of

the metric. In the black brane geometry Lorentz invariance is broken down to the spatial

rotation group and so the η dependence is non-trivial.
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Now second law for causal horizons is the statement that,

∂

∂λ

∣∣∣
η
c(λ, η) ≤ 0 (2.17)

Here we have used the fact that dVH3 is a comoving volume element and η is a comoving

coordinate i.e, η is constant along a null geodesic generator of the causal horizon.

The Bekenstein-Hawking entropy density associated to the volume element dVind is,

dSBH =
dVind
4GN

=
c(λ, η)

4GN
dVH3 (2.18)

We can put in the AdS radius L by replacing dVind → L3dVind. This gives,

dSBH =
dVind
4GN

=
L3

4GN
c(λ, η)dVH3 (2.19)

So our c-function is,

cη(λ) =
L3

4GN
c(λ, η) (2.20)

We get a family of c-functions parametrised by η (figure 2). We check in the appendix

using perturbation theory for small λ that c(λ, η) → 1 as λ → 0 for all values of η i.e,

c(0, η) = 1. It will be true for any AAdS geometry, not just the black brane. Note that

λ = 0 is the AdS boundary and λ increases as we move away from the boundary along

the null geodesics. So for any fixed value of η the c-function cη(λ) starts at the UV value

aUV and decreases monotonically as a result of the second law (2.17). It turns out that in

the case of the black brane the c-function becomes zero at the curvature singularity for all

values of η. So for black brane in five dimensions, the c-function monotonically decreases

from the UV central charge to zero at the curvature singularity. It does not show any

characteristic behavior while crossing the black brane horizon.

We would like to emphasise that the fact that we have obtained a family of c-functions

parametrized by η, instead of just one, is no cause for concern. c-function is not unique. For

example in two dimensions one can construct the standard Zamolodchikov c-function [1]

and also the entanglement entropy c-function due to Casini and Huerta [3–11]. It is know

that they are not the same, but they both monotonically interpolate between the UV and

the IR central charges. In fact if we can construct one c-function then we can construct an

infinite family all of which contain the same physical information [2].

The plot of the c-function in figure 2 shows that it is not stationary at the singularity.

This is not a problem because strictly speaking the function is not analytic there. We do

not know how to extend the function beyond the singularity. But the fact that it is zero

at the singularity shows that the flow comes to an end at the singularity. The c-function is

an element of area of the causal horizon and so it is positive semidefinite by construction.

So the flow saturates the lower bound at the singularity. This is similar to what sometimes

happens in case of the c-function constructed out of entanglement entropy. For example in

three dimensions, the entropic c-function for a massive scalar is not stationary at the UV

fixed point [50–53]. This is attributed to the fact that a scalar field with negative mass

– 6 –
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sinhΗ=0.5sinhΗ=2
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cHΛL
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Figure 2. We have plotted the c-function for three different values of η. All of them start at the

UV value aUV(= cUV) and monotonically decreases to zero at the curvature singularity. The values

of λ at the singularity for different values of η can be obtained from (2.9) by setting z = ∞. Of

course from a physical point of view going to the singularity with GR is meaningless. But if we

forget about any stringy physics for the time being, then as a classical theory GR holds everywhere

except at the singularity.

squared is pathological and the entropic c-function knows about that [54]. Also another is

that in our case the geometry is not Lorentz-invariant anywhere except near the boundary

and so our standard intuition about c-function may need some modification.

Before we conclude we would like to mention an important point. In Einstein gravity

one cannot really distinguish between the a and c central charges. In order to do that

one has to include higher-derivative terms in the bulk gravity action. In the presence of

higher derivative terms instead of Bekenstein-Hawking entropy we have to use the entropy

expression which satisfies the second law in the bulk and reduces to the Wald entropy

when evaluated on a Killing horizon [81–97]. If we do this we will recover the a-charge at

the asymptotic UV boundary as was shown in [21]. That means the a-function will start

decreasing from aUV. The important point is the fate of this a-charge in the deep IR i.e,

when the causal horizon reaches the singularity. We expect it to go to zero because the

thermal state has a finite correlation length even in the presence of the higher-derivative

terms, but proving this in general seems to be a complicated thing.

3 Towards a physical interpretation

Empty black brane in AdS is dual to a thermal state of the boundary conformal field

theory (CFT) [28, 29]. This is not a relevant deformation of the CFT Hamiltonian and

there is no renormalization group (RG) flow in the ordinary sense. So it is unlikely that the

holographic c-function is an off-shell central charge. To make further progress, it will be

useful to take note of the fact that a thermal state is effectively massive with a gap set by

– 7 –
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the temperature. There is a finite correlation length of the order of inverse temperature.

The IR behavior of the holographic c-function that we have constructed shows the presence

of this effective mass gap. It is monotonically decreasing from the central charge of the

UV-CFT, aUV, to zero at the curvature singularity which is in the deep IR and space-time

ends there. Therefore the causal-horizon c-function faithfully quantifies the amount of pure

quantum correlation or the effective number of “quantum degrees of freedom” that exists at

different scales in the thermal state.

Can this be related to renormalized entanglement entropy in the boundary theory?

First of all space-like slices of the causal horizon are not in general extremal surfaces in the

bulk [31–34]. In the field theory side, suppose we consider a ball in R3 of radius R. This is

our subsystem for which we want to compute the renormalized entanglement entropy [30]

when the field theory is in the thermal state. Since the the theory is scale invariant the

renormalized entanglement entropy will have the functional form SREE(RT ), where T is

the temperature. It is known that as T → 0, SREE → aUV [30]. This matches with the

behavior of our c-function in the same limit. In the opposite limit of T →∞ on the other

hand the renormalized entanglement entropy SREE is nonzero and dominated by thermal

entropy of the system [30]. This does not match with the behavior of the c-function. This

is not surprising because entanglement entropy is not an entanglement measure in a mixed

state. In the high temperature limit it is contaminated by classical correlations and fails to

capture the quantum part, which should go to zero. On the contrary the behavior of the

causal horizon c-function shows that it is sensitive only to quantum correlations. Is there

a candidate for such a quantity in the field theory?

3.1 Is finite temperature entanglement negativity a generalized c-function?

As we have discussed entanglement entropy at finite temperature is not a candidate for this

generalized c-function because it is not an entanglement measure in a mixed state. One such

measure which can be calculated in field theory is entanglement negativity [35–47]. Entan-

glement negativity was studied from a holographic point of view in [45], but to the best of

our knowledge a geometric prescription of computing this in gravity does not exist so far.

Entanglement negativity at finite temperature in a two dimensional CFT was computed

in [44].5 They calculated this for a single interval of length L when the total system lives

on an infinite line and the temperature is T = β−1. In this case the answer is given by,

E =
c

2
ln

[
β

πa
sinh

(
πL

β

)]
− πcL

2β
+ f

(
e
− 2πL

β

)
+ 2 ln c 1

2
(3.1)

where a is the short distance cutoff, c is the central charge of the CFT and c 1
2

is a constant.

f(x) is a universal scaling function which depends on the full operator content of the CFT

such that f(1) = 0 and f(0) =constant. Given this we can calculate its value in the UV

and the IR. UV is the region where β � L and we get,

EUV =
c

2
ln
L

a
+ 2 ln c 1

2
(3.2)

5See also [43].
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which is the correct zero temperature result. Similarly in the IR, a� β � L and we get,

EIR =
c

2
ln

β

2πa
+ f(0) + 2 ln c 1

2
(3.3)

So in the IR this becomes a non-universal constant independent of the length L of the

subsystem [44]. The second term in (3.1) is very important in the high temperature limit

because it cancels the contribution to the negativity which is extensive in L. This is the

principal difference from entanglement entropy which is useful for us. Now if we define a

renormalized negativity, ER, just like renormalized entanglement entropy [12, 13, 30], as,

ER = L
d

dL

∣∣∣
β
E (3.4)

then we get,

ER(UV) =
c

2

ER(IR) = 0
(3.5)

ER is a UV-finite quantity. Therefore we can see that the renormalized entanglement

negativity at least satisfies the asymptotic conditions, i.e, in the UV it is given by the

central charge of the theory and in the IR this is zero. The reason that it is going to

zero in the IR or in the high temperature limit is that it is an entanglement measure and

at very high temperature quantum entanglement goes to zero because the system should

crossover to a classical one [44]. This is a non-trivial constraint. Anything that is sensitive

to classical correlations may fail to satisfy the IR-condition. Therefore the question is does

it satisfy the monotonicity condition, i.e,

T
d

dT

∣∣∣
L
ER ≤ 0 ? (3.6)

If this condition is satisfied then it is a generalized c-function. In four dimensions we

expect the same thing to happen in the UV. We have to compute the logarithmic negativity

for a ball of radius R when the field theory is in a thermal state with temperature T . The

structure of the UV divergences of the negativity is the same as that of entanglement

entropy in the same dimension [46]. So if we apply the Liu-Mezei operator then we will get

a UV finite quantity. The main question is what happens in the IR. Does the renormalized

negativity go to zero? This will be the case if negativity becomes independent of the size

of the ball in the high temperature limit. This is a reasonable thing to expect given that

there is a finite correlation length of order β. So we expect the same thing to happen but

we cannot prove this right now. It will be fascinating to prove the monotonicity of the

negativity at least in two dimensions.

In the large c limit we expect some simplifications [48, 49]. In fact negativity in the large

c limit was considered in [47]. Their calculation was for the vacuum sector of the CFT. It

will be fascinating to extend the calculation to the thermal state using technology of [47–49].

Before we end this section we would like to emphasize that we are not saying that

the causal horizon entropy density is computing some entanglement measure in a thermal
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state. That may turn out to be the case but our calculation does not show that. What we

can infer from this is the existence of such a monotonic function in field theory which is

most likely an entanglement measure. In two dimensional CFT we have shown a potential

candidate for this. Causal horizon entropy density represents that quantity in the bulk but

perhaps in a different choice of scheme. So numerically they can be different but they will

have the same physical content just like in more conventional c-theorem.

3.2 Black hole singularity from loss of quantum correlation

There is a different aspect to this problem. Our results can be thought of as a realization

of the paradigm that space-time is built out of entanglement [61–68], but in a different

setting. In the IR there is no quantum correlation or entanglement because of the effective

mass gap in the thermal state. In the bulk our holographic c-function is monotonically

decreasing and nonzero everywhere except at the curvature singularity. The curvature sin-

gularity is the end of space-time and represents the extreme IR of the dual field theory.

Therefore the behavior of our c-function correlates the two facts: loss of quantum correla-

tion/entanglement in the IR field theory and the end of geometry which in this case is the

formation of curvature singularity behind the horizon. In fact this is one of our main moti-

vations for interpreting the c-function as an effective bulk measure of quantum correlation

or quantum entanglement between the field theory degrees of freedom at different scales.

There is another thing which we would like to point out is that since the causal horizon

goes behind the black brane horizon and reaches the singularity, the holographic c-function

is affected by things behind the horizon. Therefore the corresponding boundary c-function

knows something about physics behind the horizon. If it turns out that the entanglement

negativity indeed satisfies the monotonicity condition then this function will have some

information about the interior.6 At infinite temperature when the negativity is zero we are

on the singularity because there is no quantum entanglement. As we lower the temperature

we are moving away from the singularity but space-time is still very curved because there is

only a very small amount of entanglement. So high temperature expansion is an expansion

around the singularity. This is a difficult expansion because negativity depends on the full

operator content of the theory, but this may be a virtue of the function for many purposes.

In [58–60] behind the horizon physics was explored using the analytically continued

correlation functions in the CFT. The entanglement negativity (or any candidate thermal

c-function) does not seem to have any simple expression in terms of thermal correlators.

It is a highly non-local object. It will be interesting to see if there are more fine-grained

characterisations of RG-flow which can tell us about the physics behind the horizon.

3.3 An infalling observer?

Let us now go back to the issue of irreversibility associated to a particular geometry. In a

black hole geometry there is a natural notion of irreversibility, which is crossing the horizon

6We would like to clarify that we are not talking about a two-sided eternal AdS black hole. We have

in mind a black hole, at sufficiently late time, which has formed out of collapsing matter and so the other

part of the geometry does not exist. We are making the approximation of a thermal state because the CFT

correlators at sufficiently late time are well approximated by thermal correlators.
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or falling into the the black hole. Anything that goes into the black hole does not come

out. Nothing comes out of the black hole singularity. How is that irreversibility encoded in

the field theory? This is a very difficult question and so we will only try to make a guess.

First of all, our c-function does not show any particular sharp feature which can be used to

predict the existence of horizon.7 So a natural guess will be that this is a quantity which

is associated with an infalling observer. In GR an infalling observer does not see anything

special happening while crossing the horizon. So let us make the assumption that the RG-

flow or coarse-graining of the thermal state of the CFT describes an infalling observer. We

cannot make this statement more precise right now. This assumption together with the

fact that this coarse-graining is an irreversible process due to the existence of the c-theorem

seem to imply that the observer can never come out of the black hole. The coarse graining

starts in the UV when the observer is near the AdS boundary. As we lower the energy

scale the observer moves deeper into the bulk. In the extreme IR when the c-function hits

zero the observer hits the singularity. This is consistent with the fact that our holographic

c-function reaches zero at the curvature singularity. Things cannot come out of the black

hole singularity because in the field theory there is no unitary RG-flow which starts at

c = 0 and go to c = aUV. This is forbidden by c-theorem.8 No unitary RG-flow can

start at c = 0 because along the RG-flow c has to decrease. So in RG-time there is an

ordering in which the c = 0 theory always lives in the future. This is also the ordering of

time for the infalling observer for whom the black hole singularity is always in the future.

This is not quantitative and many things need to be checked before one can say anything

conclusive, but at least it is clear that the existence of the c-theorem imposes an ordering

among different scales in the field theory which, it looks like, can be translated to the bulk

under certain assumption and does not immediately produce a contradiction.

3.4 Tensor network

There is another reason to suspect that this may be a correct interpretation. This is re-

lated to the tensor network representation of the thermofield double of a scale invariant

theory after time evolution. This representation was proposed by Hartman and Malda-

cena [69]. In this picture the tensor network has a scale-invariant UV region and a gapped

IR region. The gapped region arises due to the effective mass gap of the thermal state

and this represents the interior of the black brane. This resonates well with the behav-

ior of our holographic c-function because it shows the extreme thinning of the “effective

number of degrees of freedom” near the curvature singularity. A better understanding of

this will probably require a more covariant formulation of tensor network ideas. Overall,

it seems that MERA [70–76] might be a proper framework to think about such general-

ized holographic c-functions. The function we have constructed measures the quantum

correlation that exists at different scales in the thermal density matrix. MERA does a

coarse-graining of the wave function and the generalized c-theorem seems to be associated

to the irreversibility of that coarse graining procedure.

7We do not know how this picture will change if there is a firewall.
8We have in mind the generalization of the c-theorem to the thermal state. We have proved such a

theorem only in the bulk.
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A Perturbation near λ → 0

We have

z2(λ, η) sinh η =
1− cn(2λ

√
sinh η, 1/

√
2)

1 + cn(2λ
√

sinh η, 1/
√

2)

⇒ z(λ, η) = λ+
sinh2 η

10
λ5 +

sinh4 η

120
λ9 (A.1)

where we have kept terms upto order λ9. Thus we get the solution for v(η, λ) as

v(λ, η) = (−1 + cosh η)λ− 2

5
sinh4(η/2)λ5 − 1

45

(
(−7 + 3 cosh η) sinh6 η/2

)
λ9 (A.2)

Using these solutions and the solutions for xi we get

c(λ, η) = 1− sinh η4

75
λ8 + . . . (A.3)

Thus

∂c

∂λ

∣∣∣
η

= −8 sinh η4

75
λ7 ≤ 0

c(0, η) = 1

(A.4)
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