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is observed around the three flavor chiral limit mu/d = 0,ms = 0, while at sufficient large

quark masses it turns to be a crossover phase transition. The first order and crossover

regions are separated by a second order phase transition line. The second order line is

divided into two parts by the mu/d = ms line, and the ms dependence of the transition

temperature in these two parts are totally contrast, which might indicate that the two

parts are governed by different universality classes.
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1 Introduction

Quantum Chromodynamics(QCD) is widely accepted as the fundamental theory of strong

interactions, and QCD vacuum is characterized by spontaneous chiral symmetry break-

ing together with color charge confinement. The dynamically generated chiral condensate

〈ψ̄ψ〉 in the vacuum serves as quarks’ dynamical mass and spontaneously breaks the chi-

ral symmetry, which is an exact symmetry of QCD lagrangian when quarks are massless.

It is believed that at sufficient high temperature and/or density, quark condensate might

be destroyed completely and the spontaneous breaking symmetry would be restored. Un-

derstanding the property of chiral phase transition has been an important topic in both

non-perturbative QCD and cosmology for decades [1].

The order of chiral phase transition depends sensitively on the degrees of freedom of the

system, such as the number of flavors(Nf ) and the mass of quarks(mu,md and ms). Based

on theoretical consideration and lattice QCD simulations [2–4], the expected three flavor

phase diagram in the quark mass plane, describing quark mass dependence of the order of

QCD phase transitions, is summarized in the sketch plot (it is also called “Columbia Plot”)

shown in figure 1(a). In this sketch plot, the whole mu/d−ms plane are divided into three

simply connected region: two first order zones in the bottom left corner and the upper

right corner as well as the crossover region in the middle. The upper right corner is near

the infinite quark mass limit mu = md = ms = ∞, where the breaking and restoration

of Z3 centre symmetry, related to confinement/deconfinement phase transition, are well

defined. The bottom left corner is near the chiral limit mu = md = ms = 0, where the

breaking and restoration of chiral symmetry, related to chiral phase transition, are well

defined. In between these two regions, there are no known exact symmetries and the phase

transitions are expected to be a continual and rapid transition between different phases,

usually named “crossover”. The boundary of these three regions are second order lines,

where the phase transitions are expected to be of second order. Furthermore, we noted

that the second order line between the bottom left first order region and the crossover
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Figure 1. Panel.(a) shows the “Columbia Plot” which gives expected phase diagram in the quark

masses mu = md,ms plane (Taken from [2]). Panel.(b) gives the prediction of the mass diagram of

Nf = 2 and Nf = 3 in a modified soft-wall model(Taken from [5]).

region is divided by the SU(3) diagonal line with mu = md = ms into two parts, the upper

one of which is expected to be governed by the O(4) universality class [6] while the lower

one of which is expected to be governed by the Z(2) universality class.

Theoretically, the dynamics of QCD near phase transition is non-perturbative, and nor-

mal perturbative methods of quantum field theory become invalid here. Lattice QCD has

been considered as the most reliable non-perturbative method to study non-perturbative

properties of QCD. However, lattice QCD simulations still require further improvements

in several aspects, especially the difficulty called sign problem at finite chemical poten-

tial, which is waited to be solved in order to extract full understanding on QCD phase

diagram. Hence, it is quite necessary to develop other non-perturbative methods. The

recent progress of anti-de Sitter/conformal field theory (AdS/CFT) correspondence and

the conjecture of the gravity/gauge duality [7–9] does provide such a new powerful tool to

tackle the strong coupling problem of gauge theory like QCD.

In the framework of holography, by breaking the conformal symmetry of the original

AdS/CFT correspondence in different ways, efforts towards realistic holographical descrip-

tion of non-perturbative physics of QCD, such as hadron physics [10–34] and hot/dense

QCD matter [35–52], have been made both in top-down approaches and in bottom-up

approaches(see refs. [53–57] for reviews). Different from top-down approach, bottom-up

holographic QCD starts from QCD phenomena and try to build up more realistic holo-

graphic models. In this approach, chiral phase transition has been studied in several

different models [5, 58–67]. Most of these studies considered the case with equal quark

masses for all quarks. As can be seen from figure 1(a), it is also interesting to consider the

cases when mu/d 6= ms, where the physical point locates. In our previous studies [5, 65],

based on soft-wall AdS/QCD model [11], the mass dependence of chiral phase transition is

– 2 –



J
H
E
P
0
2
(
2
0
1
7
)
0
4
2

extracted, as shown in figure 1(b)(Taken from [5]). The qualitative results for SU(2) and

SU(3) cases are in good agreement with the current understanding from figure 1(a): for

two flavor case it starts from a second order phase transition and turns to be crossover at

any finite quark mass while for three flavor case it starts from a first order phase transition

and only at sufficient large quark masses it turns to be crossover. Furthermore, in [67], we

extend these studies to finite magnetic field, and find that it can provide good description

on inverse magnetic catalysis effect, which was discovered in lattice QCD [68, 69] and stud-

ied in other methods [70–80] recently. However, the cases when mu/d 6= ms have not been

examined in this model. Therefore, in this work, we will extend our studies in [5, 65] to

Nf = 2 + 1 when ml ≡ mu = md 6= ms and study the property of chiral phase transition.

The paper is organized as follows. In section 2, we give a short introduction on the

model and the numerical method we used, especially on how to introduce quark masses

and chiral condensates in the model. Then in section 3 we show numerical results from

our model study, especially the quark mass dependence of the order of the chiral phase

transition like figure 1. Finally in section 4 a brief discussion will be given.

2 Soft-wall model in Nf = 2 + 1 case

2.1 Background

In the original paper of soft-wall model [11], the 4D global chiral symmetry SU(Nf )L ×
SU(Nf )R is promoted to 5D and becomes local gauge symmetry of the following action

S = −
∫
d5x
√
−ge−ΦTr

(
DmX

+DmX + VX(X) +
1

4g2
5

(F 2
L + F 2

R)

)
, (2.1)

with Φ the dilaton field, X a complex scalar field, VX the scalar potential, Fmn the field

strength defined as F
L/R
mn = ∂mA

L/R
n − ∂nAL/Rm − i[AL/Rm , A

L/R
,n ] in terms of the left/right

hand gauge potential AL/R, g5 the gauge coupling, g the determinant of metric gmn, and

the covariant derivative Dm defined as DmX = ∂mX−iALmX+iXARm. The scalar potential

VX only takes the mass term and has the form of

VX(X) = M2
5X

+X. (2.2)

From the AdS/CFT prescription M2
5 = (∆ − p)(∆ + p − 4) [9], the mass of the complex

scalar field X M2
5 can be determined as M2

5 = −3
L2 (we will take the AdS radius L = 1 in

this work) by taking ∆ = 3, p = 0. The dilaton field is taken to be a simple quadratic form

Φ(z) = µ2z2. In this way, the meson spectra are shown to be linear with respect to the radial

excitation quantum number n at large n, which gives good description of the linear behavior

of meson spectra. However, in the original soft-wall model, there is no spontaneous chiral

symmetry breaking in QCD vacuum and also no restoration at sufficient high temperature.

As pointed out in [5, 65], further modifications of the dilaton field and the scalar

potential are necessary in order to describe the spontaneous chiral symmetry breaking in

QCD vacuum and its restoration. The specific profile of the dilaton field are proposed [5, 65]

and it takes the following form

Φ(z) = −µ2
1z

2 + (µ2
1 + µ2

0)z2 tanh(µ2
2z

2), (2.3)
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which tends to be pure negative quadratic Φ(z) ' −µ2
1z

2 + o(z2) in ultraviolet(UV) region

z → 0 and positive quadratic form Φ(z) ' µ2
1z

2 in the infrared(IR) region z → ∞. The

positive quadratic behavior of Φ(z) is responsible for the linear spectra, which is well known

in the soft-wall AdS/QCD. The scalar potential takes the first several leading powers of

VX and has the form of

VX(X) = M2
5X

+X + λ|X|4 + γRe[det(X)]. (2.4)

In [5, 65], we have shown that the negative part as well as the quartic term λ|X|4 in the

scalar potential are essential for the spontaneous chiral symmetry breaking in the vacuum

as well as its restoration at sufficient high temperature. In SU(2) or two-flavor case, the

t’Hooft determinant term γRe[det(X)] is taken to be zero, and we find a second order

phase transition in the chiral limit and a crossover transition at any finite quark mass

case. In SU(3) or three-flavor case, we consider the t’Hooft term, and we find a first

order chiral phase transition in the chiral limit, while only at sufficient quark mass the

phase transition turns to be a crossover one. Furthermore, in our recent study [67], we

show that after introducing magnetic field through the Einstein-Maxwell sector, the above

SU(2) model can describe inverse magnetic catalysis in the soft-wall model quite well.

All the qualitative results are in agreement with the current understanding from lattice

simulations [2–4, 68, 69] and other non-perturbative studies.

Nevertheless, in our previous study, we have only considered equal mass in both the

SU(2) and SU(3) cases, i.e., mu = md and mu = md = ms. Therefore, we can only

obtain the top line and the diagonal line in figure 1(a). As shown in figure 1(a), it is also

interesting to consider the case Nf = 2 + 1 with ml ≡ mu = md 6= ms case. It would be

a quite natural extension of our previous study in SU(3) case to the Nf = 2 + 1 case. In

the following, AL, AR will be set to be zero, since only the scalar field X is relevant for the

chiral phase transition. Since ml ≡ mu = md 6= ms, the complex scalar field should take

the following form

X =


χl(z)√

2
0 0

0 χl(z)√
2

0

0 0 χs(z)√
2

 , (2.5)

instead of a simple χI3 with I3 the 3 × 3 matrix. Here, we assume that χl(z), χs(z) are

functions of the 5D coordinate z only and the factor 1√
2

is just a normalization constant.1

When ml 6= ms, we should have χl 6= χs, since the boundary values of χl, χs are related to

the quark masses. Under this ansatz, we can get the effective form of the action eq. (2.1)

as following

S[χl, χs] = −
∫
d5x
√
−ge−Φ (2.6)

×
{
gzz
(
χ

′2
l +

1

2
χ

′2
s

)
+

1

L2

[
−3

(
χ2
l +

1

2
χ2
s

)
+ v4(2χ4

l + χ4
s) + 3v3χ

2
l χs

]}
,

1We set this factor to make sure the coefficients of kinetic terms of χu, χd, χs are 1
2
.
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with v3 = 2
√

2
3 γ, v4 = λ

4 and L the AdS radius, which will not affect the final results and

will be taken to be 1 later.

As in [5, 65], we will neglect the back-reaction of χl, χs to the background metric, and

take the simple AdS-Schwarzchild(AdS-SW) black hole solutions

dS2 = e2As(z)

(
−f(z)dt2 +

1

f(z)
dz2 + dxidx

i

)
, (2.7)

As(z) = − log(z), (2.8)

f(z) = 1− z4

z4
h

, (2.9)

where zh is the black hole horizon defined at f(zh) = 0 and could be related to the

temperature T by the following relation

T =

∣∣∣∣f ′
(zh)

4π

∣∣∣∣ =
1

πzh
. (2.10)

Under this ansatz, the equations of motion for χl, χs could be derived as the following form

χ
′′
l +

(
3A

′
s − Φ

′
+
f

′

f

)
χ

′
l +

e2As

f
(3χl − 3v3χlχs − 4v4χ

3
l ) = 0, (2.11)

χ
′′
s +

(
3A

′
s − Φ

′
+
f

′

f

)
χ

′
s +

e2As

f
(3χs − 3v3χ

2
l − 4v4χ

3
s) = 0. (2.12)

Please notice that in the SU(3) case with equal quark mass ml(≡ mu = md) = ms, we

can have χl = χs ≡ χ, and the above two equations will be reduced to the same one

χ
′′

+

(
3A

′
s − Φ

′
+
f

′

f

)
χ

′
+
e2As

f
(3χ− 3v3χ

2 − 4v4χ
3) = 0, (2.13)

which is exactly the same as the one in [5, 65]. In [5, 65], we have taken v3 = −3, v4 = 8

to show the qualitative behavior of chiral phase transition in this model. Therefore, in this

work we will continue to use this group of parameters.

The dilaton profile eq. (2.3) has been shown to give well description of both chiral

symmetry breaking and linear confinement. Thus in this work we will stick to this profile

and extend the model to ml 6= ms case. The parameters µ0, µ1, µ2 in the dilaton profile

eq. (2.3) will be taken as the same value

µ0 = 0.43GeV, µ1 = 0.83GeV, µ2 = 0.176GeV (2.14)

as in [5, 65]. Here, the value of µ0 is fixed by the slope of the radial excitations of mesons

m2
n ∝ 4µ2

0n and the values of µ1 and µ2 are selected to make the phase transition tem-

perature to be around 150MeV while the value of chiral condensate at zero temperature

is around (327MeV)3 for two flavor case(For more details, please refer to [5]). In the next

section, we will show how to solve the order parameter of chiral phase transition from this

model.
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2.2 Boundary condition and numerical solutions

Under the background eqs. (2.3), (2.7), (2.8), (2.9), the equations of motion for χl, χs could

be solved numerically. Before that, we should specify the boundary condition.

Firstly, near the Ultraviolet (UV) boundary z = 0, one can extract the perturbative

expansion solution of χl, χs as

χl = clz − 3clcsv3z
2 −

(
µ2

1 − 2c2
l v4 +

9

2
c2
sv

2
3 +

9

2
c2
l v

2
3

)
clz

3 log(z) + dlz
3 + . . . , (2.15)

χs = csz − 3c2
l v3z

2 − (µ2
1 − 2c2

sv4 − 9c2
l v

2
3)csz

3 log(z) + dsz
3 + . . . , (2.16)

with cl, dl, cs, ds four integral constants of the two coupled second order ordinary derivative

equations eqs. (2.11), (2.12), which could be related to the current quark masses ml,ms

and chiral condensates σl ≡ 〈ūu〉 = 〈d̄d〉, σs ≡ 〈s̄s〉 by the following equations [11, 81]

cl = mlζ, (2.17)

dl =
σl
ζ
, (2.18)

cs = msζ, (2.19)

ds =
σs
ζ
, (2.20)

and ζ =
√

3
2π , which is determined by comparing the results of 〈q̄q(p2)q̄q(0)〉 from the soft-

wall model and that from 4D QCD calculation for large Euclidean momentum p2(for details,

see [81]). As mentioned above, in this work we will try to study chiral phase transition

under different values of ml,ms, so we will tune ml,ms in the later calculation. At a first

sight, the other two integral constants σl, σs could be chosen independently on ml,ms.

However, if one checks the two equations of motion eqs. (2.11), (2.12), there are terms like

f
′
χ

′
l + e2As(3χl − v3χlχs − v4χ

3
l )

f(z)
, (2.21)

f
′
χ

′
s + e2As(3χs − v3χ

2
l − v4χ

3
s)

f(z)
, (2.22)

with f(z) in the denominator. At the horizon z = zh, we have f(zh) = 0. Thus, zh is

an apparent singularity of eqs. (2.11), (2.12), where χl, χs might be divergent. To avoid

this divergence, physical solutions of χl, χs should also satisfy the infrared (IR) boundary

conditions

Ql(zh) ≡ f ′
χ

′
l + e2As(3χl − v3χlχs − v4χ

3
l )|z=zh = 0, (2.23)

Qs(zh) ≡ f ′
χ

′
s + e2As(3χs − v3χ

2
l − v4χ

3
s)|z=zh = 0, (2.24)

to cancel the singularity at the horizon where f(zh) = 0. It is easy to understand that

with these two additional conditions from the requirement of the regularity of χl, χs, the

other two UV coefficients σl, σs cannot be considered as free integral constants with given

ml,ms. Instead, they should be solved from the equations of motion.

– 6 –
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Figure 2. Solutions of χl and χs as functions of z when ml = 100MeV,ms = 0. Panel(a) shows

the low temperature solutions with T = 50MeV and Panel(b) shows the behavior for T = 190MeV.

At low temperature, χl and χs are almost the same while at higher temperature they would be

separated.

Therefore, to find a physical solution with given ml,ms, one has to solve the boundary

value problem

lim
ε→0

χl(ε)

ε
= mlζ, lim

ε→0

χs(ε)

ε
= msζ,

Ql(zh) = 0, Qs(zh) = 0. (2.25)

One can use the “Shooting Method” to solve this boundary value problem. After it

was solved, one can extract the chiral condensates σl and σs. As an example, we take

ml = 100MeV,ms = 0 , T = 50MeV, zh = 1
πT ≈ 6.37GeV−1 and T = 190MeV, zh =

1
πT ≈ 1.67GeV−1. For T = 50MeV, zh = 1

πT ' 6.37GeV−1, we get σl = 0.10GeV3 ≈
(470MeV)3, σs = 0.12GeV3 ≈ (495MeV)3 using “Shooting Method” and plot the cor-

responding regular χl, χs solutions in figure 2(a). The non-vanishing values of σl, σs at

low temperature are signal of chiral symmetry breaking of the vacuum. From the fig-

ure, we could see that, at small z, χl, χs are slightly separated from each other, since

the leading terms in this region are mlζz and msζz, which are different when ml 6= ms.

In the IR region when z is large, χl, χs is almost overlap and approach a constant value

χhl ≡ χl(zh) ≈ χhs ≡ χs(zh) ≈ 0.47. Like in ml = ms case, the UV region of the solutions

are governed by the trivial vacuum χl = χs = 0 while the IR region are governed by the

non-trivial vacuum χl 6= 0, χs 6= 0.

Then at temperature up to T = 190MeV, we get σl = 0.06GeV3 ≈ (389MeV)3, σs =

0.07GeV3 ≈ (412MeV)3, which are smaller than the corresponding values at T = 50MeV,

showing that chiral condensate are partly destroyed by temperature. In figure 2(b) we plot

the solutions of χl, χs at temperature T = 190MeV. From the figure, we could see that at

– 7 –
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Figure 3. Chiral condensates σl, σs as functions of temperature T . In Panel.(a), σl, σs for ml =

5MeV,ms = 0 are given. Below T = 163MeV and above T = 178MeV, both σl and σs decrease

monotonically with temperature T , while between T = 163MeV and T = 178MeV they are triple-

value functions of T , showing a kind of characteristic behavior of first order phase transition. In

Panel.(b), the behavior of σl,s for ml = 100MeV,ms = 0 are given. A kind of monotonically

decreasing in the whole temperature region are shown, which shows a characteristic behavior of

crossover transition.

high temperature, χl, χs are still interpolation of the trivial vacuum and non-zero horizon

values χhl , χ
h
s . The separation of χl, χs become larger than that at low temperature.

As a short summary, we have shown that the regular condition of χl, χs would require

the condensates σl, σs as functions of quark masses ml,ms and temperature T . Since

chiral condensates are the order parameters of chiral phase transition, we will work out

the quark mass and temperature dependence of σl, σs to extract the information of chiral

phase transition in next section.

3 Chiral condensate and phase diagram in mass plane

As mentioned in the introduction, it is also interesting to consider the property of chiral

phase transition when ml 6= ms. In section 2.2 we have shown that in the extended

Nf = 2 + 1 model one can solve chiral condensates σl, σs from the equations of motion

eqs. (2.11), (2.12) with given quark masses ml,ms and the temperature T . Hence, in

this section we will try to extract the quark masses and temperature dependence of chiral

condensates, which contains the information of chiral phase transition.

Firstly, we take ms = 0 and ml = 5MeV. Using “Shooting Method”, we solve σl, σs
from eqs. (2.11), (2.12). The results are shown in figure 3(a). From the figure, we could see

that since ml = 5MeV ' ms = 0, the differences of σl and σs are not very large. At low

temperature, below 100MeV, both σl and σs are almost constants 0.1GeV3, showing the

breaking of chiral symmetry in the vacuum. At high temperature, above 185MeV, σl and σs

– 8 –
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Figure 4. The near horizon boundary value χhl , χ
h
s as functions of temperature T . Panel.(a) and

Panel.(b) give the result for ml = 5MeV,ms = 0 and ml = 100MeV,ms = 0 respectively. At low

temperature, χl and χs are almost the same while above transition point they are separated.

decrease to number smaller than 0.001GeV3. As we showed in [5], the non-zero value of the

high temperature tail comes from the non-zero quark masses other than spontaneous chiral

symmetry breaking, since in the chiral limit, this tail will tend to be zero. Therefore, in fact

the high temperature tail stands for the symmetry restoration phase. So from the numerical

results in figure 3(a), we see a low temperature symmetry breaking phase and a high

temperature symmetry restoration phase, which indicates a phase transition. Then, we look

into the intermediate temperature region and found that within 163MeV < T < 178MeV

there are three branches of solutions at the same temperature. As discussed in [5], this kind

of behavior is a characteristic signal of first order phase transition. The exact transition

temperature would located inside the temperature region 163MeV < T < 178MeV and

can be worked out from the free energy. However, here we will focus on the order of

the transition other than the critical temperature, so we would not try to extract the

exact transition temperature for the first order transition. Furthermore, we also plot the

temperature dependence of the horizon value χhl ≡ χs(zh), χhs ≡ χs(zh) in figure 4(a).

There, we can see the same behavior as figure 3(a). At small temperature, χl, χs are

dominant by the non-trivial vacuum of scalar potential, while at high temperature they

are dominant by the trivial χl = 0, χs = 0 vacuum.

Then, we increase ml to ml = 100MeV while keeping ms = 0. After solving the equa-

tions of motion, the results of chiral condensates σl, σs and χhl , χ
h
s are given in figure 3(b)

and 4(b), respectively. There we could see that at low temperature, both σl and σs in-

crease with the increasing of ml. Below T = 120MeV, σl and σs are almost constants

σl ≈ 0.11GeV3, σs ≈ 0.12GeV3. It is also easy to see that σs increase faster than σl. As a

result, the separation of σl and σs becomes larger than that at ml = 5MeV,ms = 0. At

high temperature, again we could see that σl, σs decrease to a very small value, showing

– 9 –
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Figure 5. Panel.(a) shows the behavior of σl as a function of temperature T for different ml when

ms = 0. Panel.(b) shows the behavior of σs as a function of temperature T for different ml when

ms = 0. From Panel.(a,b), one can expect that when ms = 0 at small ml region the phase transition

is of first order kind, while at sufficient high T it turns to be a crossover one. The critical case

happens when ml ≈ 59MeV, where dσ
dT would diverge at around T = 189.3MeV for both σl and σs,

showing a kind of second order phase transition.

the restoration of the spontaneous breaking symmetry(though explicit breaking is always

there due to the non-zero quark masses). However, different from ml = 5MeV case, in this

case σl and σs decrease monotonically from the vacuum expectation values to zero with-

out the triple branches region. Furthermore, at around T = 200MeV, σl and σs decrease

very fast from the value at symmetry breaking phase to the value at symmetry restora-

tion phase. This kind of behavior shows a characteristic crossover phase transition. As

for χhl , χ
h
s , we see that they also decrease monotonically from a larger value to zero. But

differently, at low temperature, χhl , χ
h
s do not change much with the increasing of ml. The

low temperature value of these two quantities are still around 0.47. At high temperature,

they monotonically decrease to zero at different rate. From the figure, we could see that

χhl decreases faster than χhs .

From the above discussion, it seems that when ms = 0, at small ml the system

undergoes first order phase transition while at large ml the phase transition turns to

be crossover. To be more rigorous, we fix ms = 0 and scan ml. From figure 5, we

find that when ml is smaller than 59MeV, both σl, σs are non-monotonic, indicating a

first order phase transition. Then the non-monotonic region shrinks as the increasing

of ml. At the critical value ml = 59MeV, the triple branches region disappears. At

this value, we found that both the derivatives of σl(T ), σs(T ) with respective to temper-

ature T diverge at the same temperature T = 189.3MeV, which reveals a second order

phase transition. Then, above ml = 59MeV, we find that σl and σs decreases mono-

tonically from nonzero value to zero, showing a crossover phase transition. Furthermore,

from figure 5, we find that mlσl increases with ml when ms is fixed. This is reason-
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( a ) ( b )

Figure 6. Panel.(a) shows the behavior of σl as a function of temperature T for different ml when

ms = 200MeV. Panel.(b) shows the behavior of σs as a function of temperature T for different ml

when ms = 200MeV. From Panel.(a,b), one can expect that when ms = 200MeV at small ml region

the phase transition is of first order kind, while at sufficient high T it turns to be a crossover one.

The critical case happens when ml ≈ 1.9MeV, where dσ
dT would diverge at around T = 196.9MeV

for both σl and σs, showing a kind of second order phase transition.

able. Because, the pion mass mπ should be zero in the chiral limit while at finite quark

mass it is finite. Thus, from Gell-Mann-Okaes-Renner(GOR) relation, 2mlσl = m2
πf

2
π > 0

would grow with ml, at least in the vicinity of ml = 0. We also notice that if we take

ml = 1MeV,ms = 100MeV, of the same order as the physical quark masses , we can solve

σl(T = 0) ≈ 0.11GeV3 and 2mlσl ≈ 0.00022GeV3, roughly agreeing with experiment which

gives mπ ≈ 140MeV, fπ ≈ 92.4MeV, 2mlσl = m2
πf

2
π ≈ 0.00017GeV3.

Then we increase ms to ms = 200MeV and scan ml. We plot the results of σl, σs in

figure 6. We see that qualitatively the results are similar to those when ms = 0. When

temperature increases, condensates would decrease from nonzero value to zero. When ml =

0.01MeV, there is a short region where σl, σs have triple branches. But the triple solutions

region becomes very short(from T ≈ 195.3MeV to T ≈ 196.1MeV) comparing to ms = 0

case. Then at larger ml the behavior becomes crossover. The critical value of ml is around

1.9MeV and from figure 6(b) the second order transition temperature becomes 196.9MeV.

Furthermore, we tune ms from 0 to 200MeV. We find that for each value of ms, there is

a critical ml, at which chiral phase transition becomes second order. Here we note that both

at large ms and small ms, the triple solutions region of σl, σs disappears at the same critical

mass mc
l and dσ

dT diverges at the same critical temperature for both σl and σs. Below this

critical mc
l , the transition is of first order while above it the phase transition is crossover. We

plot the critical line in figure 7(a). From the figure, we see that the critical line divides the

whole plane into two parts: the bottom left part is first order phase transition region while

the upper right part is crossover transition region. Qualitatively, this result is in agreement

with the “Columbia Plot” in figure 1(a), which is summarized from lattice simulations

– 11 –
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Figure 7. The phase diagram for chiral phase transition in ml −ms plane. The blue solid line in

Panel.(a) shows the critical line(second order line) between the first order region(the bottom left

corner) and the crossover region(the upper right corner). In Panel.(b), the temperature for the

critical line in Panel.(a) are given. The blue dot in Panel.(a)(b) are ms = ml = 0.037GeV, the

critical masses when ml = ms, which is the same as the one we extracted in SU(3) case in [5]. In

Panel.(b), in the left branch to the blue dot, the transition temperature of the critical line decreases

with the increasing of ms, while in the right branch it increases, indicating that the two branches

might be governed by different universality classes.

and other effective methods. Moreover, from the critical line, one can extract the exact

transition temperature, where dσ
dT diverges for both σl and σs. The results are given in

Panel.(b). There one can read that the transition temperature of the second order phase

transition decreases when it approaches ml = ms ≈ 0.037GeV from left, while it increases

when from right. This might indicate that the two branches of the critical line separated

by the ml = ms point might be governed by different universality classes, though the exact

correspondence is out of the scope of this work. In a very rough sense, this shows the

possibility to give a consistent description on the mass diagram with figure 1(a), where the

upper and lower part of the critical line are governed by different universality classes as well.

4 Conclusion and discussion

To study QCD phase transitions in different situations are of great importance and it

is interesting to consider chiral phase transition at different quark masses. In [5, 65], we

proposed a modified soft-wall AdS/QCD model and study chiral phase transition in Nf = 2

and Nf = 3 case. After extracting temperature dependent chiral condensate, it is found

that chiral phase transition is of second order in two flavor chiral limit and turns to be

crossover at any finite quark masses, while in three flavor chiral limit it becomes first order

and turns to crossover only at sufficient large quark masses. Then, in [67], we have shown

that this model can describe inverse magnetic catalysis after considering the Einstein-

– 12 –
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Maxwell sector. Therefore, in this work, we try to extend these studies to Nf = 2 + 1 case

when mu = md 6= ms.

The extension of previous study is quite natural and simple. The main different is

that the expectation value of the scalar field X in soft-wall model should be taken as

3× 3 diagonal matrix diag{χl, χl, χs} other than 2 × 2 diag{χ, χ}. If ml 6= ms, then it is

expected that χl 6= χs and one has to deal with the two coupled second order derivative

equations. The UV boundary condition of χl, χs can be related to quark masses ml,ms and

chiral condensates σl, σs. The black hole horizon would come up with another boundary

condition, which will require condensates as functions of temperature and quark masses,

i.e. of the form σl(ml,ms, T ), σs(ml,ms, T ).

Fixing ms and solving the equations of motion, it is found that at both small ml and

large ml, chiral condensate would decrease from finite value at low temperature to zero at

high temperature, indicating a phase transition between symmetry breaking phase at low

temperature and symmetry restoration phase at high temperature. Moreover, it is found

that at small ml, σl, σs are triple valued in certain temperature range, giving the signal of

first order phase transition. The triple valued temperature range would decrease with the

increasing of ml, and at certain critical value it disappears and the phase transition become

a second order one. If one continues to increase ml, then σl, σs will decrease monotonically

and the phase transition becomes crossover. Varying ms, the qualitative behavior is similar.

Thus, the whole ml−ms plane is divided into two regions: first order region and crossover

region as shown in figure 7(a). The boundary of these two regions is the second order line,

which could be extracted by solving critical values of ml at different ms. The second order

line are divided by the ml = ms line into two parts, and it is shown that the ms dependence

of the transition temperature in these two parts are totally contrast, which might indicate

that the two parts are governed by different universality classes. Qualitatively, these model

results for chiral phase transition in figure 7 is in agreement with the “Columbia Plot” in

figure 1(a) summarized from lattice simulations and other non-perturbative analysis. It

confirms that the soft-wall AdS/QCD framework can provide good holographic description

on chiral dynamics.
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