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1 Introduction

Jet vetoes find frequent application at the LHC, e.g. in Higgs property measurements as

well as in searches for physics beyond the Standard Model. They are used to cut away

backgrounds, and more generally to classify the data into exclusive categories, or ‘jet bins’,

based on the number of jets in the final state, in order to increase the signal sensitivity.

When a generic jet veto observable T is constrained to be much smaller than the hard

scale of the process Q, large logarithms of T /Q appear in the perturbative expansion of

the jet-vetoed cross section, and should be resummed to obtain precise predictions.

– 1 –



J
H
E
P
0
2
(
2
0
1
7
)
0
2
6

The default jet variable by which jets are currently classified and vetoed is the trans-

verse momentum pTj of a jet. However, there are some drawbacks to using this variable. In

harsh pile-up conditions, it can be difficult to identify (and veto) low-pT jets in the forward

region (beyond |η| & 2.5) when a large part or all of the jet lies in a detector region where

no tracking information is available. One way to get around this problem is by introducing

a hard cut on the jet (pseudo)rapidity and only consider jets at |ηj | < ηcut. However, such

a cut also changes the logarithmic structure [1], and none of the extant resummations of

pTj take account of such a rapidity cut. Another way one might try to avoid the problem

is to raise the cut on pTj , but then one loses the potential benefits of a tight jet veto (such

as its utility to identify the initial state of heavy resonances [2]).

An alternative approach is to consider a generalized jet-veto variable [3]

Tfj = pTjf(yj) (1.1)

that is smoothly dependent on the jet rapidity yj , where the function f(y) is decreasing

for increasing |y| such that limiting Tfj to small values tightly constrains central jets, but

only loosely constrains the forward ones. In addition to the above practical considerations,

given the importance of jet binning it is highly desirable to have several different options

for performing jet vetoes, both experimentally and theoretically. This avoids having to rely

exclusively on pTj , and provides important complementary information on the pattern of

additional jets produced, for example in Higgs production [4].

In this paper, we consider the two representative jet observables1

TBj = |~pTj |e−|yj | = min{p+
j , p

−
j } , TCj =

|~pTj |
2 cosh yj

=
p+
j p
−
j

p+
j + p−j

. (1.2)

We have introduced light-cone coordinates, where an arbitrary four-vector qµ is decomposed

as qµ = q−nµ/2+q+n̄µ/2+qµ⊥ with nµ and n̄µ being light-like vectors (n2 = n̄2 = 0, n·n̄ = 2)

along the beam directions. TBj gives the plus (minus) momentum of the jet j if the jet

lies in the right (left) hemisphere with p
−(+)
j > p

+(−)
j . That is, it has the same rapidity

weighting as the global beam thrust hadronic event shape [5]. TCj has the same rapidity

weighting as the C-parameter event-shape for e+e− → dijet processes. It becomes equal

to TBj at forward rapidities and approaches pTj/2 at central rapidities. The TCj spectrum

has been measured in Higgs production by ATLAS [4].

In refs. [1, 3], the factorization of the color-singlet production cross sections with a TBj
or TCj veto, involving jet-dependent beam and soft functions, was formulated within soft

collinear effective theory (SCET) [6–11], and the resummation of the two observables was

performed to the NLL′+NLO order [3].

1In ref. [3], these definitions were denoted with an additional subscript “cm” to distinguish them from

the corresponding boost-invariant versions, for which yj is replaced by yj − Y , where Y is some reference

rapidity (e.g. that of the color singlet in color-singlet production). For our purpose of calculating the relevant

soft and beam functions this distinction is irrelevant as the factorization theorems for the corresponding

jet-vetoed cross sections only differ by the arguments of the beam functions. We will therefore drop the cm

subscript for simplicity of notation in this paper.
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The resummation for the corresponding global beam thrust in color-singlet production

is currently known to NNLL′ [5, 12] (with the results of refs. [13, 14]). The resummation

for a jet-algorithm dependent veto using pTj is known up to NNLL′ [1, 15–19] and has been

applied to a number of color-singlet processes [2, 20–27].

The purpose of the present paper is to provide the full two-loop corrections to the

TBj-dependent and TCj-dependent beam and soft functions that are required to bring the

resummation for TBj and TCj to the NNLL′ level. These corrections also provide the

necessary fixed-order boundary conditions for the N3LL resummation, with the remaining

missing ingredients being the three-loop clustering correction to the noncusp and the four-

loop correction to the cusp anomalous dimensions.

We compute, partly analytically and partly numerically, the beam and dijet soft func-

tions for both rapidity-dependent jet veto observables in eq. (1.2), for all possible color and

parton channels. To be precise, for the beam functions we compute the two-loop perturba-

tive matching coefficients between the beam functions and the standard parton distribution

functions (PDFs). This is the first explicit calculation of the full set of two-loop singular

matching corrections for a jet-algorithm dependent jet veto. This includes the complete

set of corrections arising from the clustering of two independent emissions. (In ref. [19],

the full two-loop soft function for pTj was calculated, while the two-loop beam functions

required for the NNLL′ resummation was extracted numerically from fixed-order codes.)

Our results for the two-loop beam functions can also be used in computations of N -jet

cross sections with a veto on further jets being imposed via TBj or TCj .
This paper is structured as follows: in section 2, we define precisely the soft and beam

functions for TBj and TCj vetoes, and give an outline of their calculation at two loops.

Additional technical details are relegated to the appendices. In section 3, we give the

obtained results for the two-loop beam and soft functions, and we conclude in section 4.

2 Calculation

The measurement function for a jet veto using a generic variable Tfj is given by

Mjet
f (T cut) =

∏
j∈J(R)

θ(Tfj < T cut) . (2.1)

This constraints all jets to have Tfj < T cut and thus vetoes any jets with Tfj > T cut. The

jets J(R) in eq. (2.2) are identified with a specific jet algorithm with jet radius R. At

NNLO, we can have at most two emissions, and the precise form of the jet algorithm is

irrelevant. Our results are valid for any jet algorithm that clusters the emissions together

if they are closer in ∆R2 = ∆φ2 +∆y2 than R2, where ∆y is the separation in rapidity, ∆φ

is the separation in azimuthal angle and R is the jet radius. In experimental analyses at

the LHC typically R = 0.4 or 0.5. For two real emissions in the final state with momenta

k1 and k2, eq. (2.1) reduces to

Mjet
f (T cut) = θ(∆R < R) θ(Tfj < T cut) + θ(∆R > R) θ(Tf1 < T cut) θ(Tf2 < T cut) . (2.2)

– 3 –
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That is, for ∆R < R the two emissions are clustered into a jet and Tfj is computed from

the sum pj = k1 + k2. For ∆R > R, each emissions forms its own jet and Tf1 and Tf2 are

computed with pj = k1 and pj = k2, respectively.

The measurement functionMjet
f (T cut) is inserted into the usual SCET operator matrix

elements defining the beam and soft functions. In this case, the jets J(R) are obtained

purely from the collinear or soft radiation within each sector. For details we refer to

refs. [1, 3]. The practical implementation of such a measurement in beam and soft function

calculations is discussed below.

The factorization of the cross section with a TBj or TCj veto in refs. [1, 3] is strictly

speaking valid only to lowest order in an expansion in R. The possibility of clustering inde-

pendent soft and collinear emissions into the same jet breaks the soft-collinear factorization

of the measurement function with the corresponding corrections starting at O(R2) [1]. Since

this only affects the measurement itself but not the soft-collinear factorization of the ampli-

tudes and SCET Lagrangian, these soft-collinear clustering corrections can be computed in

the effective theory and are included in our results. We separate out the corresponding con-

tributions in the two-loop beam and soft functions that are associated with the clustering

of independent emissions. They are denoted with the subscript ‘indep’ and together with

the corrections from soft-collinear clustering reproduce the two-loop clustering behaviour

of independent emissions in full QCD (in the singular limit). In section 3, we give two

prescriptions as to how this collection of terms can be treated in the NNLL′ resummation.

In addition, at O(R2) (potentially) factorization breaking effects due to Glauber inter-

actions can play a role [28]. At the perturbative level, they first appear in a nonlogarithmic

O(α4
s) diagram, implying that the factorization breaking effects first appear at the N4LL

order [29, 30]. They will not be discussed further here.

Our calculation of the beam and soft functions is organized in an expansion in R as well.

We will give terms in this expansion up to orders high enough for all practical purposes.

This expansion only involves even powers of R (up to few exceptional terms at lower orders).

We find the R2 expansion to converge very quickly, suggesting that the relevant expansion

parameter is (R/R0)2 with R0 ' 2. (Similar observations have been made recently also in

other contexts involving small-R expansions, see e.g. [31, 32].) As pointed out in ref. [1], in

the small-R limit one should also consider resumming the corresponding logarithms lnR

appearing in the jet-vetoed cross section. The dominant contribution beyond O(α2
s) was

obtained in ref. [33]. Their resummation at the LL was obtained in refs. [26, 34], and very

recently methods have been developed [35, 36] that could allow one to systematically carry

out their resummation to higher orders.

To perform the computation of the jet-algorithm dependent soft and beam functions we

follow the same strategy used in refs. [1, 15, 19] by computing the difference to a reference

soft or beam function defined with a global (jet-algorithm independent) measurement, with

the reference functions having been computed elsewhere in the literature. A key property of

the global reference measurements we use is that they coincide with the jet-dependent mea-

surements for the case of one real emission. Then when we compute the differences, we only

need to consider the double-real emission amplitudes. Since the measurement functions are

different for TBj and TCj , we must perform a separate computation of the soft function for
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the two observables. Since TCj is equal to TBj at forward rapidities, the beam function is

in fact the same for both observables and there is only computation to be performed.

2.1 Soft function

We discuss explicitly the calculation of the quark soft function, i.e., where the two partons

initiating the hard process are quarks. The results for the two-loop gluon soft function are

obtained in the usual way by replacing CF → CA due to Casimir scaling. Following ref. [1],

the calculation is done in a different way for the ‘uncorrelated’ C2
F and the ‘correlated’

CFCA and CFTFnf color channels. The notion of correlated and uncorrelated soft emis-

sions is closely connected to the notion of webs in the context of non-Abelian exponentiation

of eikonal matrix elements [37, 38]. Without the potentially exponentiation breaking mea-

surement operator the soft amplitude factorizes into sums of products of webs. For example

in our two-loop calculation the C2
F part of the double-real soft emission amplitude can be

written as the product of two identical one-loop amplitudes (webs) proportional to CF .

We therefore regard the two emissions in the C2
F channel as independent or uncorrelated.

In contrast, the CFCA and CFTFnf parts of the total soft amplitude are nonfactorizable

two-loop webs, and we refer to the corresponding emissions as correlated. The method of

calculation for the correlated and uncorrelated channels is described in the following.

2.1.1 C2
F piece

For the uncorrelated C2
F part of the bare soft function, we conveniently compute the two-

loop correction relative to the expectation from non-Abelian exponentiation for the unclus-

tered case, i.e. half of the one-loop soft function squared. This difference is directly the two-

loop clustering correction for independent emissions, so we denote it by ∆S
bare(2)
f,indep(T cut, R).

The total C2
F contribution to the bare soft function is then

S
bare(2,C2

F )

f (T cut, R) =
1

2

[
S

bare(1)
f (T cut)

]2
+ ∆S

bare(2)
f,indep(T cut, R) . (2.3)

The clustering correction ∆Sf,indep starts at order R2, as discussed earlier, i.e., non-Abelian

exponentiation for the jet-veto soft function works up to terms of order R2.

The first term in eq. (2.3) corresponds to using a reference measurement θ(Tf1 <

T cut) θ(Tf2 < T cut), which separately restricts each emissions irrespective of their sepa-

ration. The difference to eq. (2.2) then gives the measurement function ∆Mf,indep that

corresponds to ∆S
(2)
f,indep,

∆Mf,indep = θ(∆R < R)
[
θ(Tfj < T cut)− θ(Tf1 < T cut) θ(Tf2 < T cut)

]
, (2.4)

where TBi = min{k+
i , k

−
i } and TCi = k+

i k
−
i /(k

+
i + k−i ) for the single parton i = 1, 2.

– 5 –
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For the TBj veto, we split the measurement eq. (2.4) into two pieces:

∆MB,indep = ∆MB,indep,1 + ∆MB,indep,2 , (2.5)

∆MB,indep,1 = θ(∆R<R)
[
θ(k+

1 +k+
2 <T

cut)−θ(k+
1 <T

cut)θ(k+
2 <T

cut)
]
2 θ(yt>0) , (2.6)

∆MB,indep,2 = θ(∆R < R)
{[
θ(k+

1 + k+
2 < T cut)− θ(k+

1 < T cut)θ(k+
2 < T cut)

]
× 2
[
θ(y1 > 0) θ(y2 > 0)− θ(yt > 0)

]
,

+
[
θ(k+

1 + k+
2 < T cut)− θ(k+

1 < T cut)θ(k−2 < T cut)
]

× 4θ(y1 > 0) θ(y2 < 0) θ(yj > 0)
}
. (2.7)

The jet and total rapidities are defined by

yj =
1

2
ln
k−1 + k−2
k+

1 + k+
2

and yt =
1

2
(y1 + y2) =

1

4

(
ln
k−1
k+

1

+ ln
k−2
k+

2

)
. (2.8)

For the TCj veto, we split eq. (2.4) as follows:

∆MC,indep = ∆MC,indep,1 + ∆MC,indep,2 , (2.9)

∆MC,indep,1 = θ(∆R < R)
[
θ(TC1 + TC2 < T cut)− θ(TC1 < T cut)θ(TC2 < T cut)

]
, (2.10)

∆MC,indep,2 = θ(∆R < R)
[
θ(TCj < T cut)− θ(TC1 + TC2 < T cut)

]
. (2.11)

In both cases, the contribution to ∆S associated with the first part of the measurement,

∆Mf,indep,1, starts to contribute at order R2 and contains a 1/ε divergent piece (using

dimensional regularization with d = 4− 2ε), and thus produces a single logarithm of T cut

at O(R2). The second part is found to start at order R4 and is finite in four dimensions.2

Both contributions can be obtained analytically order by order in the R2 expansion. This

calculation is performed in appendix A, and we give the results up to O(R8) in section 3.2.

The jet veto soft function is renormalized multiplicatively [1, 3]. To convert the bare

results of the above computation to the renormalized S(2), we expand the relation Sbare =

Z × S to second order,

Sbare(2) = Z(2) + Z(1)S(1) + S(2) . (2.12)

For the case of the uncorrelated soft function contribution we can directly use eq. (2.3)

together with the one-loop relation Sbare(1) = Z(1) + S(1) and find

1

2

(
Z(1) + S(1)

)2
+ ∆S

bare(2)
indep = Z(2,C2

F ) + Z(1)S(1) + S(2,C2
F ) . (2.13)

Hence, we have

∆S
(2)
indep = ∆S

bare(2)
indep +

1

2

(
Z(1)

)2 − Z(2,C2
F ) ,

S
(2,C2

F )

f =
1

2
(S

(1)
f )2 + ∆S

(2)
f,indep . (2.14)

2For this reason it could be neglected in ref. [1]. Naive geometrical considerations suggest that these

contributions might already start at O(R3), at least for TB . Indeed we find that each of the two terms in

eq. (2.7) produce contributions of O(R3), which however cancel in the total result.

– 6 –
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This shows that the renormalized S(2) for the C2
F channel is equal to the expectation

from non-Abelian exponentiation for the unclustered jet veto, 1
2(S(1))2, plus the finite part

∆S
(2)
indep of the clustering correction.

2.1.2 CFCA and CFTFnf pieces

The correlated CFCA and CFTFnf contributions to the soft function are split into three

pieces,

S
(2)
f (T cut, R) = S

(2)
G,f (T cut) + ∆S

(2)
base(T

cut, R) + ∆S
(2)
rest,f (T cut, R) . (2.15)

Here, SG,f is defined for a (known) global reference measurement. For TBj , SG,B(T cut) is

given by the cumulant of the single-differential thrust soft function. It has been computed

in refs. [39–41], and the explicit TB-differential expression can be found e.g. in ref. [42].

SG,C is the cumulant of the C-parameter soft function, which is defined e.g. in eq. (28) of

ref. [43] and has been obtained numerically in refs. [43, 44]. Since the reference measure-

ments are chosen to coincide with the jet measurements for a single real emission, S
(2)
G,f

already contains the correct real-virtual contributions. The measurement function ∆Mf

corresponding to the total difference ∆S
(2)
f = S

(2)
f − S

(2)
G,f is thus given by

∆Mf = θ(∆R < R) θ(Tfj < T cut) + θ(∆R > R) θ(Tf1 < T cut) θ(Tf2 < T cut)

− θ(Tf1 + Tf2 < T cut) , (2.16)

where the first line is the full jet measurement for two emissions in eq. (2.2) and the second

line subtracts the reference measurement MG,f = θ(Tf1 + Tf2 < T cut).

The divergences of Sf and SG,f differ by a 1/ε term and are the same for TBj and TCj .
The second quantity ∆S

(2)
base in eq. (2.15) is designed to capture this divergence and is the

same for both TBj and TCj . The remaining piece ∆S
(2)
rest,f is then a finite correction. The

measurement function for ∆S
(2)
base is defined as

∆Mbase = 2θ(yt > 0) θ(∆R > R)
[
θ(k+

1 < T
cut) θ(k+

2 < T
cut)−θ(k+

1 +k+
2 < T

cut)
]
. (2.17)

The global reference measurement essentially amounts to always clustering the emissions,

and ∆Mbase corrects this to a constraint on the individual emissions when they are further

apart than R. The reference measurement thus already captures most of the singularities.

The remaining 1/ε divergence of ∆S
(2)
f is associated with the limit of large jet rapidity

|yj | → ∞. The correlated amplitude has support only in a finite range of ∆y = y1 − y2

around zero. The limits |yj | → ∞, |yt| → ∞ and y1, y2 → ±∞ simultaneously are therefore

effectively equivalent. In particular, in the latter limit ∆Mf in eq. (2.16) becomes equal

to ∆Mbase in eq. (2.17). Thus the divergence of ∆S
(2)
f is equal to the one of ∆S

(2)
base.

As we will see below, the 1/ε divergence in ∆S
(2)
base can be isolated analytically, which

makes ∆S
(2)
base much easier to compute than the full difference ∆S

(2)
f . In this sense, ∆S

(2)
base

performs a very similar role as a subtraction term in a conventional fixed-order calculation.

In particular, the remainder ∆S
(2)
rest,f = ∆S

(2)
f −∆S

(2)
base can be computed numerically setting

d = 4 from the start.

– 7 –
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The soft function S
(2)
f contains terms proportional to lnR and ln2R. These logarithms

are entirely contained in ∆S
(2)
base, such that ∆S

(2)
rest,f is finite as R→ 0, see appendix B. We

compute these logarithms analytically as detailed below, while all remaining contributions

are computed numerically. Some details regarding the setup for the numerical calculations

are given in appendix B.

In the remainder of this section we describe explicitly the computation of ∆S
(2)
base. We

first write it in terms of the momenta k1 and k2 of the two emitted gluons,

∆S
(2)
base = µ̃4ε

∫
ddk1

(2π)d
ddk2

(2π)d
A(2)

corr(k1, k2) ∆Mbase(k1, k2)C(k1)C(k2) . (2.18)

Here C(ki) = 2πδ(k2
i )θ(k

0
i ) denotes a cut propagator, A(2)

corr(k1, k2) is the amplitude ob-

tained by adding all CFCA and CFTFnf terms of the double-real diagrams as given explic-

itly in appendix B of ref. [41], ∆Mbase is the measurement function in eq. (2.17), and we

have included the usual MS factor with µ̃ = µ exp{1
2 [γE − ln(4π)]}.

We can rewrite the phase-space integral in terms of light-cone components in d = 4−2ε

dimensions and arrive at

∆S
(2)
base =

4−4−ε eγE2εµ4ε

π5 Γ(1− 2ε)

∫ ∞
0

dk+
1 dk

+
2 dk

−
1 dk

−
2 (k+

1 k
−
1 k

+
2 k
−
2 )−ε

×
∫ π

0
d∆φ (sin ∆φ)−2εA(2)

corr(k1, k2) ∆Mbase(k1, k2) . (2.19)

To incorporate the constraint on ∆R we write k±1 and k±2 in terms of the variables ∆y, yt,

∆φ, TT , and z, as in appendix C of ref. [1],

y1 =
1

2
ln
k−1
k+

1

, y2 =
1

2
ln
k−2
k+

2

, yt =
1

2
(y1 + y2) , ∆y = y1 − y2 ,

z =
k+

1

k+
1 + k+

2

, TT = k+
1 + k+

2 , k+
1 = zTT , k+

2 = (1− z)TT ,

cos ∆φ =
k⊥1 ·k⊥2
|k⊥1 ||k⊥2 |

=
1
2(k+

1 k
−
2 + k+

2 k
−
1 )− k1 ·k2√

k+
1 k
−
1 k

+
2 k
−
2

. (2.20)

The measurement function in eq. (2.17) can be expressed in these variables as

∆Mbase = θ(yt > 0) θ(∆R > R) θ

[
T cut < TT <

T cut

max(z, 1− z)

]
. (2.21)

As mentioned previously, the integration of A(2)
corr with ∆Mbase gives terms proportional

to lnnR. We calculate these terms analytically by expanding the full integrand of the

∆y,∆φ, z, TT integration (including the amplitude and phase space factors) for small ∆R ∼
∆y ∼ ∆φ, keeping only the lowest order terms of order ∆R−2. The integral may then be

– 8 –



J
H
E
P
0
2
(
2
0
1
7
)
0
2
6

performed analytically by using the relations∫ ∞
−∞

d∆y

∫ π

0
d∆φ

∆φ−2ε

∆φ2 + ∆y2
θ(∆φ2 + ∆y2 > R2)

= −π ln
R

2π
+ ε π

(
π2

12
+ ln2 R

2
− ln2 π

)
+O(ε2) , (2.22)∫ ∞

−∞
d∆y

∫ π

0
d∆φ

2∆y2∆φ−2ε

(∆φ2 + ∆y2)2
θ(∆φ2 + ∆y2 > R2)

=
π

2
− π ln

R

2π
+ ε π

(
1

2
+
π2

12
+ ln2 R

2
− ln

R

2
− ln2 π

)
+O(ε2) . (2.23)

To compute the remainder of ∆S
(2)
base, we subtract the expanded integrand from the full

one and integrate the result. The integrand has a sufficiently simple dependence on yt and

TT that we can perform the integrations over these variables first analytically. The integral

over yt simply gives a 1/(4ε) factor. The result can then be expanded in ε up to order ε0

and integrated numerically over the remaining variables ∆y, ∆φ, z order-by-order in ε.

The lnR and ln2R terms in the soft and beam functions all arise from eqs. (2.22)

and (2.23). They are remainders of the collinear divergence between particles 1 and 2,

which is regulated by R. For a pTj veto there is only a single lnR. The ln2R terms we find

for the Tfj veto are related to the different treatment of rapidity divergences compared to

the pTj case. In the latter an additional rapidity regulator is required, whereas in our Tfj
veto calculation rapidity-type divergences are effectively regulated (along with the usual

IR and UV divergences) by dimensional regularization. The ln2R terms only arise from

the O(ε) terms in eqs. (2.22) and (2.23) and therefore cannot appear in the anomalous

dimensions. For the same reason, their coefficient in the fixed-order terms is the same as

the coefficient of the lnR terms in the anomalous dimensions. Consequently, they cancel

between the beam and soft functions at fixed order due to RG consistency. To convert the

bare result into a renormalized one, we again use eq. (2.12). For the correlated channels,

the cross term Z(1)S(1) however vanishes, implying that S(2) is just the finite part of Sbare(2)

here. In particular, we can obtain the CFCA and CFTFnf contributions to the renormalized

jet-dependent S
(2)
f exactly as shown in eq. (2.15), namely by adding to the corresponding

reference S
(2)
G,f the finite part of ∆S

(2)
base as well as ∆S

(2)
rest,f .

2.2 Beam function

For the beam function, the calculation is done in the same way for all color and partonic

channels. The jet-veto beam functions Bi can be computed as a convolution of perturbative

matching coefficients Iij with the standard parton distribution functions (PDFs) fj as [5,

45, 46]

Bi(t
cut, x,R, µ) =

∑
j

∫ 1

x

dz

z
Iij(tcut, z, R, µ)fj

(
x

z
, µ

)[
1 +O

(
Λ2

QCD

tcut

)]
. (2.24)

To obtain the matching coefficients at two loops, we compute the two-loop partonic beam

functions Bij , see refs. [5, 13, 14, 46] for details and related definitions in terms of SCET

operator matrix elements.
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The partonic jet-dependent Bij are calculated via the difference ∆Bij between them

and the reference beam functions as

Bij(t
cut, x,R) = BG,ij(t

cut, x) + ∆Bij(t
cut, x,R) , (2.25)

where tcut ≡ xp−T cut with p− being the large light-cone momentum of the incoming parton.

The reference functions BG,ij(t
cut, x) are defined using the global reference measurement

θ(T < T cut), where T is the total plus momentum of all real emissions. They are given by

the cumulant of the virtuality-dependent beam functions calculated in refs. [13, 14],

BG,ij(t
cut, x) =

∫ tcut

0
dtBij(t, x) . (2.26)

The measurement function corresponding to ∆Bij is given by the difference of eq. (2.2)

and the global reference measurement,

∆Mjet(T cut) = θ(∆R < R) θ(Tj < T cut) + θ(∆R > R) θ(T1 < T cut) θ(T2 < T cut)

− θ(T1 + T2 < T cut)

= θ(∆R > R)
[
θ(k+

1 < T cut)θ(k+
2 < T cut)− θ(k+

1 + k+
2 < T cut)

]
. (2.27)

In the second step we used that in the collinear sector we always have Ti = k+
i and

Tj = k+
1 + k+

2 for both TBj and TCj . In addition, we have the usual measurement δ-

function that fixes the large light-cone momentum fraction of the parton that enters the

hard process to x.

Although collinear matrix elements, like the beam functions, do not exponentiate, we

nevertheless introduce a notion of ‘correlated’ and ‘uncorrelated’ emissions also for their

calculation. We note, however, that this distinction is purely technical and there is no

one-to-one correspondence to the different color factors. It is inspired by the behavior of

the amplitude in the limit where (at least) one emission becomes soft.

We start by taking the double-real emission amplitudes A for the partonic beam func-

tion for each parton and color channel, previously calculated in refs. [13, 14]. These ampli-

tudes are gauge invariant and have been calculated in both Feynman and axial (light-cone)

gauge as a cross check. We again denote the momenta of the emitted partons as k1 and k2,

and (without loss of generality) we have symmetrized the amplitudes such that they are

symmetric under interchanging k1 ↔ k2. For each color channel we separate A into two

pieces,

A(k1, k2, x) = AA(k1, k2, x) +AB(k1, k2, x) , (2.28)

where AA is defined by

AA(k1, k2, x) ≡
limk−1 →0

[
k−1 k

−
2 · A(k1, k2, x)|k−2 =(1−x)p−−k−1

]
k−1 k

−
2

, (2.29)

and AB = A−AA is the remainder. Labeling the parton entering the hard process with i

and the incoming parton with j, the term AA always has the form

AA,ij =
1

2
AB(1)
ij (k2, x)AS(1)

i (k1) , (2.30)
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with

AB(1)
ij (k2, x) =

2g2P̂
(0)
ij (x)(1− x)p−

k+
2 k
−
2

, AS(1)
i (k1) =

4g2Ci

k+
1 k
−
1

. (2.31)

The color factors are defined as

Ci =

{
CF for i = q

CA for i = g
, (2.32)

and the P̂
(0)
ij (x) are the unregularized one-loop splitting functions

P̂ (0)
qiqj (x) = CF θ(x) δijP̂qq(x), , (2.33)

P̂ (0)
gg (x) = CA θ(x) P̂gg(x) , (2.34)

P̂ (0)
qig (x) = P̂

(0)
q̄ig (x) = TF θ(x) P̂qg(x) , (2.35)

P̂ (0)
gqi (x) = P̂

(0)
gq̄i (x) = CF θ(x) P̂gq(x) , (2.36)

where

P̂qq(x) =
1 + x2

1− x
, (2.37)

P̂gg(x) = 2

[
x

1− x
+

1− x
x

+ x(1− x)

]
, (2.38)

P̂qg(x) = x2 + (1− x)2 , (2.39)

P̂gq(x) =
1 + (1− x)2

x
. (2.40)

Note that AA is nonzero only for certain parton and color channels.

As can be seen from eq. (2.29), AA is essentially obtained by taking the soft limit for

one of the partons. In this limit the amplitude, since it contains a sum over all diagrams,

falls apart into a product of a one-loop soft amplitude AS(1)
i and a one-loop collinear

amplitude AB(1)
ij by Ward identity arguments. As should be clear from its structure, the

term AA corresponds to the uncorrelated emission part of the amplitude. This term is the

part of the amplitude that when expressed in terms of the ∆y,∆φ, z, TT , yt variables in

eq. (2.20), and when multiplied by the appropriate Jacobian becomes flat in ∆y, ∆φ as

well as in yt in four dimensions. It is also the only part of the amplitude that remains in

the zero-bin subtraction terms (see below).

The integration of the term AB yields only a 1/ε divergence, and is essentially iden-

tical in character to the integral of the soft correlated amplitude. In particular there are

no divergences associated with the z,∆y,∆φ or TT integrations, so the same integration

variables and techniques as for the correlated soft contributions can be used to integrate

this piece. Integrating the AA piece yields a much deeper divergence structure, but this

piece can be integrated in a straightforward way analytically.
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2.2.1 ‘Correlated’ piece

To integrate AB, the yt integration can be performed using the δ-function for the large

minus momentum, δ[k−1 + k−2 = (1 − x)p−], after which the expressions for k±1 and k±2 in

terms of the remaining integration variables z,∆y,∆φ, TT are

k−1 =
e2∆yp−(1− x)z

(e2∆y − 1)z + 1
, k−2 =

p−(1− x)(1− z)

(e2∆y − 1)z + 1
, (2.41)

k+
1 = zTT , k+

2 = (1− z)TT .

The integrand contains an explicit factor of (1−x)−1−2ε which we pull out and expand

in terms of distributions:

(1− x)−1−2ε = − 1

2ε
δ(1− x) + L0(1− x) + · · · , (2.42)

where L0(1− x) ≡ 1/(1− x)+ is the standard plus distribution. The remaining part of the

integrand is then simply expanded in ε and integrated over the remaining variables. There

are no additional divergences associated with these integrals, and they yield a function

that is finite in the limit x → 1. Note that for the channels with i 6= j, this function in

fact vanishes for x→ 1, such that for these channels we can replace the right hand side of

eq. (2.42) by 1/(1 − x). This means that there is only a 1/ε piece for the i = j channels

proportional to δ(1−x), as one may anticipate from the fact that the anomalous dimension

for the beam function is diagonal in flavour.

The integration of AB gives terms proportional to lnR and ln2R for some color struc-

tures. We note in passing that in axial gauge the lnnR terms arise from only one diagram

topology, namely the ‘bubble insertion’ graph shown in figure 2f) and 2o) of ref. [13] for

the quark beam function and in figure 1i) and 1o) of ref. [14] for the gluon beam function.

This topology is also sketched on the left-hand side of figure 1. As for the soft function, we

calculate the lnnR terms analytically by expanding the integrand for small ∆R, and per-

forming the integration using eqs. (2.22) and (2.23). Compact expressions for the required

small ∆R limits of the beam function amplitudes are given in appendix D.

The remaining contributions from AB can then be obtained by subtracting the ex-

panded integrand from the full integrand and integrating this numerically, as was done

for the correlated soft function contributions. However, here this must be done for various

points in both the x and R directions, requiring to generate a 2D grid of points. We did com-

pute such a grid — however, since such results are not so straightforward to use or present,

we also follow an alternative approach, the results of which are given in section 3 below.

In this alternative approach we explicitly compute the leading R-dependent terms propor-

tional to R2 of the non-δ(1−x) parts of the beam function analytically. The R0 terms in the

non-δ(1−x) piece are computed numerically, along with the full R dependence of the δ(1−x)

piece. For these pieces we can then give simple one-dimensional functions (in either x or R)

obtained by interpolating the numerically generated points. The results from this approach

are sufficiently accurate for smaller R values. More quantitative statements and a compar-

ison of these approximated results to the exact numerical results are given in section 3.
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To compute the terms proportional to R2, we expand the integrand up to order ∆R0.

We then take the θ(∆R > R) in the measurement eq. (2.27) and divide it into two pieces,

θ(∆R > R) = 1− θ(∆R < R) , (2.43)

which yields the integral∫
dΦ
[
I−2 + I0 +O(∆R2)

]
×
[
1− θ(∆R < R)

]
. (2.44)

Here
∫

dΦ denotes the phase-space integration over all of the relevant integration variables,

in particular over ∆φ and ∆y. The I−2 term denotes the part of the integrand of order

∆R−2, whilst I0 is the part of O(∆R0). It is clear that the integrations involving the

‘1-term’ in the right factor will give a R-independent result, which we can drop if we are

only interested in the R2 terms. The integration of the remaining O(∆R2) terms with

θ(∆R < R) gives contributions of O(R4), so we can drop these too. The integration of the

I−2 with the θ(∆R < R) generates the above mentioned lnnR plus some O(R0) terms.

The R2 contributions we want to isolate thus exclusively come from the integral3

−
∫

dΦ I0 θ(∆R < R) . (2.45)

We performed this integral analytically for the non-δ(1− x) parts of each beam function.4

The non-δ(1 − x) piece ∝ R0 we obtained by numerically computing the integral in

eq. (2.44) at R = 0.2, and then extrapolating to R = 0 using the leading R-dependence

just obtained, which works very well for the small R values between 0 and 0.2. We do not

directly compute the integral at R = 0 to avoid numerical instabilities.

2.2.2 ‘Uncorrelated’ piece

Next, to integrate the uncorrelated AA part of the amplitude, our method is as follows. We

first write again θ(∆R > R) = 1− θ(∆R < R) as in eq. (2.43). The integration of AA with

the ‘1-term’ can be straightforwardly done analytically without a change of variables. This

yields terms constant in R that can be as divergent as 1/ε2. Note that the ‘1-term’ here

corrects the reference measurement to the fully unclustered case. The θ(∆R < R) term then

is the analogue to the clustering correction for the soft uncorrelated emissions in eq. (2.4).

The integration of AA with θ(∆R < R) can be done analytically order-by-order in R

after changing variables to ∆y, ∆φ, z, TT , and like in the soft case yields terms starting

at O(R2). For the qq C2
F and gg C2

A channels only, this piece yields a divergent R2/ε term

that is exactly the one anticipated in eq. (50) of ref. [1], but with the opposite sign.

For this piece, the zero-bin subtractions are nonvanishing. Any of the zero-bin limits,

k1 soft, k2 soft, or both soft, picks out only the term AA from the full amplitude A. The

3This technique can easily be extended to obtain the R2n corrections for arbitrary n, and we have indeed

obtained R4 expressions for the diagonal channels as discussed below.
4Of course the analogous analytical calculation can be done for the O(R2) pieces in the δ(1− x) terms.

For these we can however perform a 1-parameter fit for the full R dependence with x = 1, which is accurate

enough that analytical results of the R2 contributions are not needed.
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zero-bin computation yields terms of O(R2). For the qq C2
F and gg C2

A channels the total

zero bin contribution gives a divergent R2/ε term, which is exactly twice the naive result

from the θ(∆R < R)×AA term above. The full R2/ε contribution, given by subtracting the

zero-bin contribution from the naive result, then exactly reproduces and confirms eq. (50)

of ref. [1]. Note that the zero-bin contribution for the ‘1-term’ is scaleless and vanishes,

i.e., the zero-bin for the fully unclustered contribution is scaleless just like in the inclusive

case. We discuss the full computation of the θ(∆R < R)×AA term and the corresponding

zero-bin terms in more detail in appendix C.

2.2.3 Renormalization

The result of the above calculation yields the difference between the bare jet-veto and

reference beam functions, ∆Bbare. To convert this to a difference between renormalized

beam functions, we must expand the relation Bbare = Z⊗B for the two beam functions to

two loops. Even though Z(1) and B(1) are the same for both (B
(1)
G = B(1)), the two beam

functions renormalize differently, i.e., the nature of the convolution between the counter

terms Z and the renormalized beam functions B is different. In particular, for the jet-veto

beam function this convolution is just the simple product. Taking the difference between

the renormalized beam functions according to eq. (2.25) we thus obtain

∆B
(2)
ik (tcut) = ∆B

bare(2)
ik (tcut)−∆Z

(2)
i (tcut)δik

−
[
Z

(1)
i (tcut)B

(1)
ik (tcut)−

(
Z

(1)
i ⊗B

(1)
ik

)
(tcut)

]
, (2.46)

where we define

(A⊗B) (tcut) =

∫ tcut

0
dt

∫ t

0
dt′A(t− t′)B(t′) . (2.47)

The second term in square brackets in eq. (2.46) accounts for the different renormalization

of the global reference beam function.

The result for ∆Z
(2)
i can be converted to the corresponding clustering correction for

the two-loop anomalous dimensions, ∆γ
(2)
Bi . The relation needed to achieve this can be

obtained by expanding Z ⊗ γB = −dZ/d lnµ to two-loop order for the two beam functions

and taking the difference,

∆γ
(2)
B (tcut) = −Z(1)(tcut)× γ(1)

B (tcut) +
(
Z(1) ⊗ γ(1)

B

)
(tcut)−

[
d∆Z(tcut)

d lnµ

](2)

. (2.48)

The result we find for ∆γ
(2)
B is precisely as was predicted in ref. [1]. Namely, it is (−1/2)

times that of the soft function, plus an additional term related to soft-collinear mixing as

required by RG consistency. This is an important check of our calculation.

Finally, the difference in two-loop renormalized partonic beam functions ∆B
(2)
ij can be

converted into a difference in two-loop matching coefficients ∆I(2)
ij by expanding eq. (2.24)

for a partonic incoming state to two loops for the jet-veto and reference beam functions,

and taking the difference. Since ∆I(0)
ij and ∆I(1)

ij are both zero, this immediately yields

∆I(2)
ij (tcut, x,R, µ) = ∆B

(2)
ij (tcut, x,R, µ) . (2.49)
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The contributions to ∆I(2)
ij from the integration of AA with the unclustered ‘1 term’, as

well as the terms in square brackets in eq. (2.46), are of O(R0). As mentioned above, their

purpose is to correct the running of the beam function to be multiplicative rather than

involving convolutions. We therefore present these pieces together with the integration

of the correlated amplitude AB below. On the other hand, the integration of AA with

θ(∆R < R), together with corresponding the zero-bin terms, are of O(R2). They are in

fact the clustering corrections for independent emissions (analogous to ∆S
(2)
indep), and so we

separate these pieces off, and denote them using the subscript ‘indep’ in the results below.

3 Results

Here we present the two-loop results for the Tfj-dependent beam and soft functions, to-

gether with the finite part of the two-loop soft-collinear mixing terms discussed in ref. [1].

For completeness, we also present the corresponding anomalous dimensions of these func-

tions. In certain places in the results we give functions of R obtained by fitting numeri-

cally generated points. These points were generated using the GlobalAdaptive NIntegrate

routine from Mathematica, and have a numerical uncertainty at the sub-per-mille level.

We checked this by using the Suave routine from the Cuba library [47] to perform the

same integrations and confirmed that the results agreed at the sub-per-mille level with the

GlobalAdaptive method once a sufficiently large number of integration points were used.

The number of data points we used for the fits was 30 in each case, spanning the range

R = 0.05−1.5. We checked that the fit functions reproduce each point at the sub-per-mille

level, and that there are no visible interpolation artifacts (such as ‘polynomial wiggle’) in

these fits. In section 3.1.2 we give functions of x that have also been fitted. The points

for these fits have also been generated using Mathematica NIntegrate with sub-per-mille

precision (and checked using Suave). The fitting procedure for these functions is slightly

more involved and described at the end of section 3.1.2.

Our final results for the renormalized two-loop beam and soft functions to be used in

the NNLL′ resummation are given by5

Sf (T cut, R, µ) = 1 +
αs(µ)

4π
S

(1)
f (T cut, µ) +

α2
s(µ)

(4π)2
S

(2)
f (T cut, R, µ) ,

I(2)
ij (tcut, x,R, µ) = δijδ(1− x) +

αs(µ)

4π
I(1)
ij (tcut, x, µ) +

α2
s(µ)

(4π)2
I(2)
ij (tcut, x,R, µ) , (3.1)

where the one-loop coefficients do not yet depend on R and are simply given by the cumu-

lants of the corresponding differential functions. The two-loop contributions are written as

S
(2)
f (T cut, R, µ) = S

(2,CiCA)
G,f (T cut, µ) + S

(2,CiTFnf )
G,f (T cut, µ) +

1

2

[
S

(1)
f (T cut, µ)

]2
(3.2)

+ ∆S
(2)
f (T cut, R, µ) + ∆S(2)

f (T cut, R, µ) ,

I(2)
ij (tcut, x,R, µ) = I(2)

G,ij(t
cut, x, µ) + ∆I(2)

ij (tcut, x,R, µ) + ∆I(2)
ij (tcut, x,R, µ) . (3.3)

5To simplify the results, we explicitly extract the overall factors of αs(µ) here, while they are always

included in the bare two-loop expressions.
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Here, I(2)
G,ij is the cumulant of the virtuality-dependent beam function matching coefficients,

which can straight-forwardly be obtained from the results of refs. [13, 14]. For f = B the

function SG,f is the cumulant of the renormalized thrust soft function and for f = C it is

the cumulant of the renormalized C-parameter soft function.

The results for the corrections due to the jet clustering are split into two parts. The cor-

rections ∆S
(2)
f and ∆I(2)

ij are not associated with the clustering of independent emissions.

For simplicity we call them ‘correlated’ pieces. They are given in section 3.1. Finally, the

∆S(2)
f,indep and ∆I(2)

ij are the corrections from the clustering of independent emissions, which

start at O(R2). They are given in section 3.2, together with the associated two-loop soft-

collinear mixing terms. There, we also give two alternative prescriptions for incorporating

these terms in the resummation at NNLL′.

3.1 ‘Correlated’ pieces

3.1.1 Soft function

We find

∆S
(2)
f (T cut, R, µ) = ∆γiS 1(R) ln

µ

T cut
+ ∆si2f (R) , (3.4)

with the anomalous dimension correction

∆γiS 1(R) = 4CiCA

[(
1− 8π2

3

)
lnR− 13

2
+ 6 ln 2 + 4FCA(R) + 11FTF (R)

]
+ 4Ci β0

[(
23

3
− 8 ln 2

)
lnR+

13

6
− 2 ln 2− 3FTF (R)

]
, (3.5)

and

∆si2f (R) = 16Ci

{
CA

[
131− 12π2 − 132 ln 2

72
ln2R+

395− 33π2 − 216ζ3

54
lnR+ fCA

f (R)

]
+ TFnf

[
23− 24 ln 2

36
ln2R+

−245 + 24π2 − 36 ln 2

108
lnR+ fTFf (R)

]}
, (3.6)

where Ci = CF for the quark soft function and Ci = CA for the gluon soft function.

The functions F are fitted from numerically generated points using the form

F(R) = a1 + a2R
2 + a3R

4 , (3.7)

and the fitted coefficients ai are given in table 1. The functions f are different for TBj and

TCj . They are fitted from numerically generated points using the form

f(R) = c1 + c2R
2 + c3R

4 + c4R
2 lnR+ c5R

4 lnR , (3.8)

and the fitted coefficients ci are given in table 2.
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Channel a1 a2 a3

CA −1.0670 0.65238 −0.010291

TF 1.0076 0.019958 −1.0523 · 10−3

Table 1. Fit function coefficients ai for the anomalous dimension fitting functions F(R) = a1 +

a2R
2 + a3R

4.

Channel c1 c2 c3 c4 c5

TBj : CA −3.5352 0.077171 0.015511 −0.34184 0.023850

TBj : TF −0.50302 −0.032704 −7.2734 · 10−4 −0.010864 1.0880 · 10−3

TCj : CA −0.75296 −0.19674 0.067391 −0.33153 −0.0038577

TCj : TF 0.38286 −0.062270 2.9134 · 10−3 −0.010353 −6.9651 · 10−4

Table 2. Fit function coefficients ci for the correlated soft function f(R) = c1 + c2R
2 + c3R

4 +

c4R
2 lnR+ c5R

4 lnR.

3.1.2 Beam function

We decompose the two-loop matching coefficient corrections ∆I(2)
ij as follows

∆I(2)
ij (tcut, x,R, µ) = δij

∆γiS 1(R)

4

[
δ(1− x) ln

tcut

µ2
+ L0(1− x)

]
+ ∆I(2)

ij,run(tcut, x, µ)

+ 4∆I
(2)
ij (x,R) , (3.9)

where ∆γS 1(R) is given in eq. (3.5). The functions ∆I(2)
ij,run(x) are R0 terms and contain

the µ dependent terms that are required to convert the running of the beam function to

be multiplicative (see section 2.2.3),

∆I(2)
ij,run(tcut, x, µ) = 16Ci

{
Ciδij δ(1− x)

(
π2

12
ln2 t

cut

µ2
− ζ3 ln

tcut

µ2
− π4

80

)
+

[
2CiδijL0(1− x) + P̂

(0)
ij (x)− 2Ciδij

1− x

](
π2

12
ln
tcut

µ2
− π2

12
lnx− ζ3

2

)
+ Ci δij

π2

6
L1(1− x) +

π2

12
ln(1− x)

[
P̂

(0)
ij (x)− 2Ciδij

1− x

]}
. (3.10)

The functions P̂
(0)
ij (x) and P̂ij(x) are as defined in eq. (2.33), and the Ci are as defined in

eq. (2.32).

The remaining tcut independent corrections come from the integration of the AB part

of the amplitude in eq. (2.28). We decompose them as in refs. [13, 14] as

∆I
(2)
q̄iq̄j (x,R) = ∆I(2)

qiqj (x,R) = CF θ(x)
[
δij∆I

(2)
qqV (x,R) + ∆I

(2)
qqS(x,R)

]
,

∆I
(2)
q̄iqj (x,R) = ∆I

(2)
qiq̄j (x,R) = CF θ(x)

[
δij∆I

(2)
qq̄V (x,R) + ∆I

(2)
qqS(x,R)

]
,

∆I
(2)
q̄ig(x,R) = ∆I(2)

qig(x,R) = TF θ(x) ∆I(2)
qg (x,R) ,
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∆I(2)
gg (x,R) = θ(x)

[
CA ∆I

(2)
ggA(x,R) + TFnf ∆I

(2)
ggF (x,R)

]
,

∆I(2)
gqi (x,R) = ∆I

(2)
gq̄i (x,R) = CF θ(x) ∆I(2)

gq (x,R) . (3.11)

The results are

∆I
(2)
qqV (x,R) = δ(1− x)G(R) (3.12)

+ CA

{(
1

8
− π2

3

)(
P̂qq(x)− 2

1− x

)
ln
R

2π
+

13

8
− 3 ln 2

2

+ 2π2
4hCFCA

qq (x) + 11hCFTF
qq (x)

1− x
+

0.22 −R2

4

[
π2

6
(1 + x)

− 2611

2400
− 10919x

7200
+

3377x2

1200
+

(
6

5
+

43x

30
− 14x2

5

)
ln 2

]
+O(R4)

}
+ β0

{(
23

24
− ln 2

)(
P̂qq(x)− 2

1− x

)
ln
R

2π
− 13

24
+

ln 2

2
− 6π2

hCFTF
qq (x)

1− x

+
0.22−R2

4

[
−3389

7200
+

391x

2400
− 253x2

400
+

(
13

30
−x

5
+

3x2

5

)
ln 2

]
+O(R4)

}
+ CF 8π2h

C2
F

qq (x) + (CA − 2CF )

{
0.22 −R2

4

[
−xP̂qq(x)[L1(x)− 2L2(x)]

− 2x2L1(x)+
115

36
+

31x

9
+

11x2

12
−
(

10

3
+

10x

3
+x2

)
ln 2

]
+O(R4)

}
.

∆I
(2)
qq̄V (x,R) = 2(2CF − CA)

{
2π2hqq̄V (x) +

0.22 −R2

4
(1− x)

[
x

1 + x
L1(x)− (1− ln 2)

]
+O(R4)

}
, (3.13)

∆I
(2)
qqS(x,R) = TF

{
8π2hqqS(x) +

0.22 −R2

4

[
−4x

[
(1− x)2L2(x) + L1(x)

]
+

95 + 49x

18
− 8

3
(2 + x) ln 2

]
+O(R4)

}
, (3.14)

∆I(2)
qg (x,R) = CF

{
Pqg(x)

(
3−π

2

3
−3 ln 2

)
ln
R

2π
+8π2hCFTF

qg (x)+
0.22−R2

4

[
−π

2

2
Pqg(x)

+
23

4
− 161x

18
+

427x2

36
−
(

11

2
− 25x

3
+

34x2

3

)
ln 2

]
+O(R4)

}
+ CA

{
8π2hCATF

qg (x) +
0.22 −R2

4

[
π2

3
Pqg(x)− 2x(3− 6x+ 4x2)L2(x)

− x(1−2x+6x2)L1(x)− 41

6
+

233x

18
− 19x2

9
+

(
7− 40x

3
+

7x2

3

)
ln 2

]
+O(R4)

}
, (3.15)

∆I
(2)
ggA(x,R) = δ(1− x)G(R)

+ CA

{(
1

8
− π2

3

)(
P̂gg(x)− 2

1− x

)
ln
R

2π
+

13

8
− 3 ln 2

2
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+ 2π2
4h

C2
A

gg (x) + 11hCATF
gg (x)

1− x
+

0.22 −R2

4

[
xP̂gg(x)[L1(x)− 2L2(x)]

+ 4x(1− x)2[L2(x)− L1(x)]− 4(1− 3x− 3x4)

1 + x
L1(x)

− π2

3

(
1

x
− 2 + x− x2

)
− 4997

360x
+

40933

3600
− 42521x

2400
− 36853x2

7200

+

(
44

3x
− 397

30
+

96x

5
+

131x2

30

)
ln 2

]
+O(R4)

}
+ β0

{(
23

24
− ln 2

)(
P̂gg(x)− 2

1− x

)
ln
R

2π
− 13

24
+

ln 2

2
− 6π2

hCATF
gg (x)

1− x

+
0.22 −R2

4

[
133

120x
− 5911

3600
+

3307x

2400
− 2683x2

2400

−
(

1

x
− 49

30
+

7x

5
− 11x2

10

)
ln 2

]
+O(R4)

}
, (3.16)

∆I
(2)
ggF (x,R) = CF

{
8π2hCFTF

gg (x) +
0.22 −R2

4

(1− x)(2− 2x+ x2)

9x
(23− 24 ln 2)

+O(R4)

}
, (3.17)

∆I(2)
gq (x,R) = CF

{
Pgq(x)

(
3− π2

3
− 3 ln 2

)
ln
R

2π
+ 8π2h

C2
F

gq (x) +
0.22 −R2

4

[
π2

6
Pgq(x)

− 53

3x
+

247

18
+

11x

18
− 4x2 +

(
19

x
− 47

3
+
x

6
+ 4x2

)
ln 2

]
+O(R4)

}
+ CA

{
8π2hCFCA

gq (x) +
0.22 −R2

4

[
−2(2− 4x+ 5x2 − 2x3)L2(x)

− (2− 10x+ x2)L1(x)− π2

3
Pgq(x) +

29

3x
− 199

18
− 119x

18
+ 4x2

−
(

10

x
− 35

3
− 19x

3
+ 4x2

)
ln 2

]
+O(R4)

}
. (3.18)

In the results above, we have defined

G(R) = CA

[(
1

8
− π2

3

)
ln2R+

(
−49

36
+

7

12
ln 2 + 9ζ3

)
lnR+ 4gCA(R) + 11gTF (R)

]
+ β0

[(
23

24
−ln 2

)
ln2R+

(
−17

3
+
π2

3
+

23

12
ln 2+ln2 2

)
lnR−3gTF (R)

]
, (3.19)

and the functions L1(x) and L2(x) are defined as

L1(x) =
1

1− x

[
π2

6
− Li2(x2)− 2 ln(1− x) lnx

]
= 2(1− ln 2) + (1− ln 2)(1− x) + · · · ,

L2(x) =
L1(x)+2 ln(1+x)

1− x
+2

x lnx

(1−x)2
=1−ln 2+

(
13

18
− 2

3
ln 2

)
(1−x)+ · · · , (3.20)

and as shown are regular for x→ 1.
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Channel g1 g2 g3 g4 g5

CA 0.12595 −0.13881 −2.0197 · 10−2 0.16527 2.5289 · 10−3

TF −0.27276 8.3507 · 10−3 −9.4394 · 10−4 5.0721 · 10−3 6.7609 · 10−4

Table 3. Fit function coefficients gi for the correlated soft function g(R) = g1 + g2R
2 + g3R

4 +

g4R
2 lnR+ g5R

4 lnR.

The functions g(R) and h(x) are fitted using numerically generated data points as

explained in the beginning of this section. The functions g(R) give the nonlogarithmic

R-dependence of the δ(1− x) terms in ∆Igg and ∆IqqV . They are fitted using the form in

eq. (3.8), and the fitted coefficients are given in table 3.

The function h(x) gives the x-dependence of the ε0 non-δ(1 − x) piece in ∆I at the

point R = 0.2. Where appropriate we subtracted out the analytically-calculated small-R

result and/or the endpoint x = 1 behaviour. For this function, a more complicated form

is used. In fact, it is fitted separately in two regions: 0.0009 < x < 0.6 and 0.6 < x < 1,

where x = 0.0009 is the smallest x value for which we generate data. In the high-x region

0.6 < x < 1, we use a form that is equal to the first few terms of a Taylor expansion around

x = 1. In the low-x region 0.0009 < x < 0.6, we use a form equal to the first few terms

of a Taylor expansion around x = 0, plus terms with powers of ln x up to the third power.

For the gg and gq channels only, a final term proportional to 1/x is also included. It can

be shown that only these channels have a piece in h(x) proportional to 1/x by expanding

the respective integrands for small x. Summarizing, we use the following form to fit h(x):

h(x) =

{∑
n=−1,6 dnx

n + d7 lnx+ d8 ln2 x+ d9 ln3 x 0.0009 < x < 0.6 ,∑
n=0,7 d̃n(1− x)n 0.6 < x < 1 .

(3.21)

This functional form is satisfactory for every h(x) function in eqs. (3.16)–(3.12). The only

exception is hqqS , which falls to zero so steeply near x = 1 that it cannot be described

well by the above high-x fit function. For this function only we therefore use a high-x fit

function given by
∑

n=3,9 d̃n(1− x)n. Including these higher powers of (1− x) ameliorated

the fit, and in this case including the lower powers of (1−x) up to the second power is not

necessary for a good fit.

We have performed the fits for the coefficients dn and d̃n separately for each h(x), each

using 30 data points in the relevant x range. We checked that the resulting fit reproduces

all the data points at the sub-per-mille level, and confirmed by eye that it does not contain

interpolation artifacts. We also checked by eye that the low-x fit transitions smoothly onto

the high-x fit. The fit coefficients for all h(x) functions are presented in appendix E.

As mentioned in section 2.2 and indicated above, our results for ∆Iij only contain

terms up to O(R2) for the non-δ(1 − x) pieces. For the reader interested in the more

precise behaviour in R of these pieces, we have also obtained full 2D grids by numerically

integrating the beam function amplitude minus its small ∆R expansion, spanning 0.0009 <

x < 1 and 0.2 < R < 1.2. These results can be provided upon request.
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For most parton and color channels, the level of error of the O(R2)-accurate expressions

above compared to the full numerical results is a few permille for R values up to around

0.6− 0.8, and a few percent at the largest R values ∼ 1.0− 1.2. The exceptions to this are

the qqV C2
F and gg C2

A channels, where the errors hit the percent level already for R = 0.6,

and are much bigger for larger R values.6 For these two channels we have also computed

the R4 corrections, and their inclusion improves the agreement with the full numerical

result to a similar level as the other channels. The expressions for these R4 terms may also

be provided upon request.

3.2 Independent emission pieces

The corrections to the two-loop soft and beam functions associated with the clustering of

independent emissions, together with the soft-collinear mixing term, are given by

∆S
(2)
f,indep(T cut, R, µ) = 16C2

i R
2

[
π2

3
ln
T cut

µ
− 2ζ3 +

π2

6
F(R) + Uf (R)

]
, (3.22)

∆I(2)
ij,indep(tcut, x,R, µ) = 4Ci P̂

(0)
ij (x)(1− x) (3.23)

×R2

[
π2

6
L0(1− x) + δ(1− x)

(
π2

6
ln
tcut

µ2
+
ζ3

4
+
π2

6
F(R)

)]
,

SC
(2)
ij (tcut, z, R, µ) = −8Ci P̂

(0)
ij (x)(1− x) (3.24)

×R2

[
π2

6
L0(1− x) + δ(1− x)

(
π2

6
ln
tcut

µ2
− ζ3 +

π2

6
F(R)

)]
,

where

F(R) = −1

2
+ lnR− 1

6

(
R

2

)2

− 1

90

(
R

2

)4

− 1

567

(
R

2

)6

+O(R8) (3.25)

UB(R) = −
(
R

2

)2

− 64

45π

(
R

2

)3

− 1

9

(
R

2

)4

+
1

135

(
R

2

)6

− 1

945

(
R

2

)8

+O(R10) , (3.26)

UC(R) = −2

(
R

2

)2

− 2

9

(
R

2

)4

+
2

135

(
R

2

)6

− 2

945

(
R

2

)8

+O(R10) . (3.27)

UB(R) and UC(R) are the terms associated with the measurements ∆MB,indep,2 and

∆MC,indep,2 in eqs. (2.7) and (2.11), respectively, cf. appendix A. Further terms in the

R expansion may be easily computed, but have a negligible impact for R < 1.5. From the

above expansions it seems clear that the expansion parameter is R/2 or even smaller.

As mentioned already, the factorization of the jet-veto measurement, does not hold

at O(R2) due to the soft-collinear mixing contributions. As a result, the scale depen-

dence from the independent emission terms only cancels, when all three contributions in

eqs. (3.22), (3.23), and (3.24) are correctly combined in the cross section, see eq. (3.32).

(Equivalently, the 1/ε divergences in the corresponding bare contributions only cancel be-

tween all three contributions.) They therefore have to be included together in a consistent

way.

6We also see a similar situation for the qq̄V piece at large x values, but since its overall contribution to

the beam function is so tiny that the error should be irrelevant.
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There are two possibilities as to how one can treat these O(R2) terms at NNLL′. These

different treatments are formally equivalent at NNLL but not necessarily beyond. In the

first, we note that at the two-loop order we work here, the soft-collinear term has the same

type of logarithms as the beam function. This allows us, at this order at least, to absorb the

soft-collinear mixing terms into the beam functions, such that in eqs. (3.2) and (3.3) we have

∆I(2)
ij (tcut, x, µ) = ∆I

(2)
ij,indep(tcut, x,R, µ) + SC

(2)
ij (tcut, x,R, µ) ,

∆S(2)
f (T cut, R, µ) = ∆S

(2)
f,indep(T cut, R, µ) , (3.28)

and the µ-dependence cancels between ∆I(2)
ij and ∆S(2)

f . In practice, this scheme is effec-

tively equivalent to the one employed in ref. [18] for a pTj veto.

Let us define the anomalous dimensions of the beam and soft functions (for either TBj
or TCj) as

γS(T cut, µ,R) = γG,S(T cut, µ) + ∆γS [αs(µ), R] ,

γB(tcut, µ) = γG,B(tcut, µ) + ∆γB[αs(µ), R] , (3.29)

where γG,S is the cumulant of the anomalous dimension for thrust (and C-parameter),

and γG,B is the cumulant of the anomalous dimension for the virtuality-dependent beam

function. Then in the scheme defined by eq. (3.28), the jet clustering corrections to the

(noncusp) anomalous dimensions are given by

∆γiS(αs, R) = −2∆γiB(αs, R) =

(
αs
4π

)2[
∆γiS 1(R)− C2

i

16π2

3
R2

]
, (3.30)

where the last C2
i R

2 term is from the independent emission contributions.

Alternatively, we can simply exclude eqs. (3.22), (3.23), and (3.24) from the factorized

cross section, in which case we have in eqs. (3.2) and (3.3)

∆I(2)
ij (tcut, x) = 0 , ∆S(2)

f (T cut) = 0 , (3.31)

and in addition the last C2
i R

2 term is removed from eq. (3.30). Instead, we combine all

terms into a common independent emissions contribution and add the following correction

term to the 0-jet cross section:

∆σRsub
0 =

α2
s

(4π)2
H(0)

[
δ(1− x)δij∆S

(2)
f,indep + 2∆I(2)

ij,indep(x) + 2SC
(2)
ij (x)

]
⊗ fi(x) fj(x) .

(3.32)

This equation is somewhat schematic — the ⊗ symbols represent the Mellin convolution

in light-cone momentum fractions along with the appropriate flavour sums, and all pieces

are evaluated at a common scale µ. In the resummed cross section this term can then be

multiplied with the overall evolution factor of the O(R0) cross section. This corresponds

to what is done in refs. [17, 19] in the context of a pTj veto.
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4 Conclusion

In this paper, we have computed the two-loop beam and dijet soft functions for the rapidity-

dependent jet-veto observables TBj and TCj . Each function is computed as the difference

from the known results for the corresponding global jet-independent observable. The beam

and soft functions have been computed for the complete set of color and parton channels.

The dominant parts of the functions in the small-R limit are computed fully analytically

— e.g. the lnnR terms and the R2 terms in the non-δ(1 − x) part of the beam functions.

The remaining parts are determined in terms of finite numerical integrals, for which we

provide simple interpolation functions.

Our results enable the resummation of color-singlet production cross sections with

TBj or TCj jet vetoes at full NNLL′ order, and are a necessary ingredient for the N3LL

resummation (with the missing ingredient being the corrections to the three-loop anomalous

dimension). Our computed beam functions can also be used in the resummation of N -jet

cross sections for which a central jet veto is imposed using TBj or TCj . Such measurements

will provide important information on the production pattern of additional jets in hard

processes at the LHC.
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A Soft function correction: independent emission clustering part

A.1 TBj veto measurement

We first compute the contribution to the soft function corresponding to ∆MB,indep,1 in

eq. (2.6). We have

∆S
(2)
B,indep,1 =g4

(
µ2eγE

4π

)2ε∫ ddk1

(2π)d
ddk2

(2π)d
(2π)δ+(k2

1)(2π)δ+(k2
2)Aindep(k1, k2) θ(∆R<R)

× 2θ(yt > 0)
[
θ(k+

1 + k+
2 < T cut)− θ(k+

1 < T cut)θ(k+
2 < T cut)

]
(A.1)

where

Aindep(k1, k2) =
8C2

F

k+
1 k

+
2 k
−
1 k
−
2

. (A.2)

We express this integral in terms of light-cone momentum components, perform the trans-

verse integrals using the delta functions, and change variables from k+
1 , k

+
2 , k

−
1 , k

−
2 to
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k+
1 , k

+
2 , yt,∆y, with yt and ∆y defined in eq. (2.20). This gives

∆S
(2)
B,indep,1 =

16g4

(2π)2(d−1)

(
µ2eγE

4π

)2ε π1−ε

Γ[1− ε]
π

1
2−ε

Γ[1
2 − ε]

C2
F

×
∫

d∆y dk+
1 dk+

2 d∆φ dyt θ(yt > 0) e−4ytε (k+
1 k

+
2 )−1−ε sin−2ε(∆φ)θ(∆R<R)

×
[
θ(k+

1 + k+
2 < T cut)− θ(k+

1 < T cut)θ(k+
2 < T cut)

]
=

(
αs
π

)2

C2
FR

2

(
µ

T cut

)4επ2

6

[
− 1

2ε
− 12ζ3

π2
+ F(R)

]
. (A.3)

For the calculation of ∆SB,indep,2 we use the variables in eq. (2.20) and express the

measurement as

∆MB,indep,2 = 2θ(∆R < R) θ

(
0 < yt <

∣∣∣∣∆y2
∣∣∣∣) θ[T cut < TT <

T cut

max(z, 1− z)

]
− 4θ(∆R < R) θ(∆y > 0) θ

(
2yt −∆y + ln

[
1 +

(
e2∆y − 1

)
z
])

× θ
(
−∆y

2
< yt <

∆y

2

)
θ

[
T cut < TT < T cut min

(
1

z
,
e∆y−2yt

1− z

)]
. (A.4)

After performing the TT , ∆φ, yt integrations we expand in small ∆y ∼ R and finally

integrate over z and ∆y. The result is given in section 3.2.

A.2 TCj veto measurement

For TC , the starting expression is identical to eq. (A.1), albeit without the 2θ(yt > 0) piece,

and with k+
1 and k+

2 replaced by TC1 and TC2 in the theta functions of the second line. We

change variables in this case from k+
1 , k

+
2 , k

−
1 , k

−
2 to TC1, TC2, yt,∆y, with

TCi =
k+
i k
−
i

k+
i + k−i

, (A.5)

yielding

∆S
(2)
C,indep,1 =

8g4

(2π)2d−2

(
µ2eγE

4π

)2ε π1−ε

Γ[1− ε]
π

1
2−ε

Γ[1
2 − ε]

C2
F

∫ ∞
−∞

dyt
[
2 + 2 cosh(2yt)

]−2ε

×
∫

d∆y dTC1 dTC2 d∆φ (TC1TC2)−1−ε sin−2ε(∆φ) θ(∆R < R)

×
[
θ(TC1 + TC2 < T cut)− θ(TC1 < T cut)θ(TC1 < T cut)

]
= ∆SB,indep,1 +O(ε) . (A.6)

The measurement function for ∆SC,indep,2 in eq. (2.11) can be written as (0 < X < 1)

∆MC,indep,2 = −θ(∆R < R) θ
(
XT cut < T ′T < T cut

)
, (A.7)

with

X =
T ′T
TCj

= 2e2(∆y+yt) (2z′ − 1) sinh(∆y) sinh(2yt) + cosh(∆y) cosh(2yt) + 1(
e∆y+2yt + e2∆y(1− z′) + z′

)(
e2yt

[
(e2∆y − 1)z′ + 1

]
+ e∆y

) ,
(A.8)
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and

T ′T = TC1 + TC2 , z′ =
TC1

T ′T
. (A.9)

We can now directly carry out the intergrations over T ′T and ∆φ. After expanding in small

∆y ∼ R we then integrate over yt, z
′, and ∆y to arrive at the result given in section 3.2.

B Soft function correction: ∆Srest

For completeness we document in this appendix how we organize the numerical computa-

tion of ∆S
(2)
rest,f in eq. (2.15). In particular we show the split of the corresponding measure-

ment function ∆Mrest,f , we have chosen in order to conveniently divide the calculation

into separate parts. We note however that other decompositions (or no split at all) might

work just as well in practice.

For the TBj veto we write

∆Mrest,B = ∆Mrest,B1 + ∆Mrest,B2 + ∆Mrest,B3 , (B.1)

where

∆Mrest,B1 = 4θ(∆R < R) θ(yj > 0) θ(y1 > 0) θ(y2 < 0)

×
[
θ(k+

1 + k+
2 < T cut)− θ(k+

1 < T cut) θ(k−2 < T cut)
]
,

∆Mrest,B2 = 2θ(∆R > R)
[
θ(y1 > 0) θ(y2 > 0)− θ(yt > 0)

]
×
[
θ(k+

1 < T cut) θ(k+
2 < T cut)− θ(k+

1 + k+
2 < T cut)

]
, (B.2)

∆Mrest,B3 = 2θ(y1 > 0) θ(y2 < 0)
[
θ(k+

1 + k−2 < T cut)− θ(k+
1 < T cut) θ(k−2 < T cut)

]
.

The numbers (4 or 2) in front of the θ functions indicate that we have exploited phase-space

symmetries and summed over equivalent contributions from different regions. We note

that ∆Mrest,B3 amounts to the difference between the (inclusive) cumulant beam thrust

and cumulant double-hemisphere soft function measurements. Correspondingly, ∆S
(2)
rest,B3

is a finite R-independent constant. A simple dimensional analysis also shows that it is

independent of T cut. The piece ∆S
(2)
rest,B1 is of O(R) and ∆S

(2)
rest,B2 contains O(R0) terms.

For the TCj veto we write

∆Mrest,C = ∆Mrest,C1 + ∆Mrest,C2 , (B.3)

where

∆Mrest,C1 = θ(∆R > R)
[
θ(TC1 < T cut) θ(TC2 < T cut)− θ(TC1 + TC2 < T cut)

]
−∆Mbase

= θ(∆R > R) 2θ(yt > 0)

{
θ

[
T cut < T ′T <

T cut

max(z′, 1− z′)

]
− θ
[
T cut

A+B
< T ′T <

T cut

max(A,B)

]}
, (B.4)

∆Mrest,C2 = ∆MC,indep,2 . (B.5)
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Here we have defined A = k+
1 /T ′T = z′(1+e−∆y−2yt) and B = k+

2 /T ′T = (1−z′)(1+e∆y−2yt).

The corresponding part ∆S
(2)
rest,C2 turns out to be of O(R2), whereas ∆S

(2)
rest,C1 is of O(R0).

The form of the different parts of the measurements in ∆Mrest,f already explains why

∆S
(2)
rest,f does not contain terms proportional to lnnR. For the measurements ∆Mrest,B1

and ∆Mrest,C2 this is obvious, because they are proportional to θ(∆R < R). A term in the

integrand proportional to 1/∆R2, which could potentially generate such a logarithm, must

be absent, because otherwise it would cause a divergence for ∆R→ 0. The measurements

∆Mrest,B2 and ∆Mrest,C1 on the other hand effectively vanish linearly in the small ∆y ∼
∆R limit. To see this for the latter measurement one has to take into account that in four

dimensions the associated integrand is proportional to 1/T ′T . We are therefore free to rescale

T ′T → T ′T /(A+B) in the second term of eq. (B.4). As the two-loop soft function integrands

contain at most 1/∆R2 poles, these measurements thus prohibit logarithmic terms in R.

The integrations for ∆S
(2)
rest,f are carried out in the respective variables, see eqs. (2.20)

and (A.9). In fact we performed the T (′)
T and ∆φ integrations analytically and the remaining

three-dimensional integral numerically.

C Beam function correction: independent emission clustering part

We first calculate the O(R2) contributions associated with the θ(∆R < R) × AA term in

eq. (2.43). We have

− g4

(
µ2eγE

4π

)2ε ∫
ddk1

(2π)d
ddk2

(2π)d
(2π)δ+(k2

1) (2π)δ+(k2
2)AA(k1, k2) (C.1)

× δ[k−1 + k−2 = (1− x)p−] θ

[
T cut < TT <

T cut

max(z, 1− z)

]
θ(∆R < R)

= − g4

(2π)2(d−1)

(
µ2eγE

4π

)2ε
π1−ε

Γ[1− ε]
π

1
2−ε

Γ[1
2 − ε]

Ci P̂
(0)
ij (x) (1− x)p−

×
∫

dk+
1 dk−1 dk+

2 dk−2 d∆φ (k+
1 k

+
2 k
−
1 k
−
2 )−1−ε sin−2ε(∆φ) θ(∆R < R)

× δ[k−1 + k−2 = (1− x)p−] θ

[
T cut < TT <

T cut

max(z, 1− z)

]
(C.2)

= − g4

(2π)2(d−1)

(
eγE

4π

)2ε π1−ε

Γ[1− ε]
π

1
2−ε

Γ[1
2 − ε]

CiP̂
(0)
ij (x) (1− x)

(
µ2

T cutp−

)2ε

×
∫

d∆y d∆φ dz sin−2ε(∆φ) θ(∆R < R) 2e−2∆yε
[
(e2∆y − 1)z + 1

]2ε
×
[
(1− x)(1− z)z

]−1−2ε 1−min(z, 1− z)2ε

2ε
. (C.3)

Let us first consider the evaluation of the 1/ε piece of this expression. For this purpose

many of the terms in eq. (C.3) can be set to 1, and we obtain

1

ε

(
µ2

tcut

)2ε

lim
x→1

[P̂
(0)
ij (x) (1− x)]Ci δ(1− x)

π2

48

(
αs
π

)2

R2 , (C.4)
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where again tcut ≡ xp−T cut. Plugging in the values for Ci and P̂
(0)
ij (x) from eqs. (2.32)

and (2.33), one observes that the divergent part is zero when i 6= j, and for the case of

i = j corresponds to half of eq. (50) in ref. [1], but with the opposite sign, as stated in the

main text.

Now let us move to consider the zero-bin subtractions [49]. There are several zero bins

one must consider: k1 alone soft, k2 alone soft, and both k1 and k2 soft simultaneously.

The first two we must subtract, and the final one we add. Our procedure for computing

the zero bins coincides with that of refs. [1, 50]. Namely, we take the appropriate soft limit

of the full amplitude A, and also the appropriate soft limit of the rest of the integrand.

This limit affects the minus momentum delta function but leaves the measurement function

eq. (2.27) unchanged. As mentioned in the main text, taking the soft limit of the amplitude

A in fact picks out only the term AA for any of the zero bins.

We now make the decomposition in eq. (2.43). However, for any of the zero bins, the

‘1-term’ contains scaleless integrals and is therefore zero. For example, the ‘1-term’ for the

k1 soft zero bin is proportional to∫
dk−1 dk

−
2 (k−1 k

−
2 )−1−ε δ[k−2 = (1− x)p−] = 0 . (C.5)

Next we consider the θ(∆R < R) term. For the k1 soft zero bin it equals

− g4

(2π)2(d−1)

(
µ2eγE

4π

)2ε
π1−ε

Γ[1− ε]
π

1
2−ε

Γ[1
2 − ε]

CiP̂
(0)
ij (x) (1− x)p−

×
∫

dk+
1 dk−1 dk+

2 dk−2 d∆φ (k+
1 k

+
2 k
−
1 k
−
2 )−1−ε sin−2ε(∆φ) θ(∆R < R)

× δ[k−2 = (1− x)p−] θ

[
T cut < TT <

T cut

max(z, 1− z)

]

= − g4

(2π)2(d−1)

(
eγE

4π

)2ε π1−ε

Γ[1− ε]
π

1
2−ε

Γ[1
2 − ε]

CiP̂
(0)
ij (x) (1− x)

(
µ2

T cutp−

)2ε

(C.6)

×
∫

d∆y d∆φ dz sin−2ε(∆φ) θ(∆R < R) 2e−2∆yε [(1− x)z]−1−2ε (1− z)−1

× 1−min(z, 1− z)2ε

2ε
. (C.7)

It is clear to see that the 1/ε piece of this is identical to eq. (C.4). The k−2 soft gives

an identical contribution. There remains the contribution in which both k−1 and k−2 go soft

simultaneously. Here the minus delta function just becomes δ[(1 − x)p−] and factors out

of the expression, and the remainder looks very similar to a soft function calculation, so

we can use the same variables (∆y,∆φ, yt, z) as we use in that case. The integration for yt
then looks like7 ∫ ∞

−∞
dyt e

−4ytε = 0 . (C.8)

7Note that in the computation of ∆S
(2)
base and ∆S

(2)
B,indep,1, see e.g. eq. (A.3), we obtain the same integral,

except accompanied by an explicit theta function constraining yt > 0. Thus in the latter case we obtain

1/(4ε) rather than zero.
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Figure 1. The sole graph topology that, in light-cone gauge, corresponds to a divergent amplitude

at small ∆R. For small ∆R, this decomposes into two splitting processes, as shown on the right

hand side of the figure.

Thus, the net effect of the zero bin in the 1/ε terms is to invert the sign of eq. (C.4), to

the sign predicted in ref. [1].

We can also compute the full expression for the integral of the θ(∆R < R)×AA and

zero-bin terms, including the finite pieces. Here we give the analytic expressions for the

θ(∆R < R)×AA term:(
µ2

tcut

)2ε(αs
π

)2

π2Ci
[
P̂

(0)
ij (x)(1− x)

]
(1− x)−1−2ε (C.9)

×R2

[
− 1

24
− ε
(

1

24
+

9ζ3

8π2
− lnR

12
+
R2

288
+

R4

17280
+

R6

435456

)]
+O(R10, ε) ,

and the sum of the three zero bin terms,(
µ2

tcut

)2ε(αs
π

)2

π2Ci
[
P̂

(0)
ij (x)(1− x)

]
(1− x)−1−2ε (C.10)

×R2

[
− 1

12
− ε
(

1

12
+
ζ3

π2
− lnR

6
+
R2

144
+

R4

8640
+

R6

217728

)]
+O(R10, ε) ,

which must be subtracted from the result of the naive beam function computation.

D Beam function amplitudes in the small-R limit

It is possible to write compact formulae for the small-R limit of the beam function am-

plitudes A in terms of one-loop splitting functions. This is expected since at small R the

amplitude factorizes into two splitting processes. The first is a splitting i→ j+m, where i

is the initial state parton in A, and j is the physical parton that goes into the operator with

momentum fraction x. The second is the splitting m→ k+ l, where k and l are the partons

that go into the final state and generate the ∆R. m is an intermediate parton whose nature

can be determined by quark number conservation from the other partons. As discussed in

the main text, there is only one diagram that contributes in the small-R limit — namely, the

one in figure 1 that already has the topology of a diagonal i→ j+(m→ k+l) process. Fig-

ure 1 also illustrates the two splitting processes that this graph decomposes into at small R.

There are two distinct cases, corresponding to whether the intermediate parton m is a

gluon or a quark. We must treat the two cases differently because if one has a quark in the
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initial state, the plane of the splitting is not correlated to whether the quark has positive

or negative helicity. However, when one has a gluon, there is a well-known correlation

between the plane of splitting and the gluon polarization.

The formula for the case when m = q (or q̄) is

AR = P̂
(0)
i→jq(x, ε)P̂

(0)
q→kl(z, ε)

2g4

∆R2(p−TT )2(1− x)z(1− z)
, (D.1)

where P̂
(0)
i→jq(x, ε) originates from the first graph on the right hand side of figure 1, whilst

P̂
(0)
q→kl(z, ε) originates in the second graph. The final factor in eq. (D.1) arises from convert-

ing the transverse momentum denominators (etc.) in the splitting amplitudes relative to

the initial-state parton direction (for the first amplitude on the right hand side of figure 1),

or relative to the parton m (for the second amplitude), to our variables. In this formula

one must always sum over all possibilities for (k, l) — i.e. (q, g) and (g, q). To get the

full expression for AR in d dimensions, one must use the d-dimensional splitting functions

given, e.g. in ref. [51]

P̂ (0)
q→gq(x, ε) = CF

[
1 + (1− x)2

x
− εx

]
, (D.2)

P̂
(0)
g→qq̄(x, ε) = TF

[
1− 2x(1− x)

1− ε

]
. (D.3)

The result when m is an intermediate gluon is a little more complex and given by

AR =
{
P̂

(0)
i→jg(in)(x, ε)

[
(P̂

(0)
g(in)→kl(z)∆y2 + P̂

(0)
g(out)→kl(z)∆φ2

]
+ P̂

(0)
i→jg(out)(x, ε)

[
(P̂

(0)
g(out)→kl(z)∆y2 + P̂

(0)
g(in)→kl(z)∆φ2

]
(D.4)

− 2εP̂
(0)
i→jg(out)(x, ε)

[
(P̂

(0)
g(out)→kl(z)(∆y2 + ∆φ2)

]} 2g4

∆R4(p−TT )2(1− x)z(1− z)
.

The splitting functions P̂
(0)
i→jg(in/out)(x, ε) are splitting functions depending on whether the

final state gluon is polarized in or out of the splitting plane. These functions may be

computed from results in ref. [52]. The two nonzero cases are given by

P̂
(0)
q→qg(in)(x, ε) =

1

2
CF

(1 + x)2

1− x
,

P̂
(0)
q→qg(out)(x, ε) =

1

2
CF (1− x) ,

P̂
(0)
g→gg(in)(x, ε) =

2CA
2− 2ε

[
(2− 2ε)

x

1− x
+

1− x
x

+ x(1− x)

]
,

P̂
(0)
g→gg(out)(x, ε) =

2CA
2− 2ε

[
x(1− x) +

1− x
x

]
. (D.5)

Here, the second outgoing parton is polarized, while the remaining spin/polarization indices

are summed over or averaged as appropriate, and x is the momentum fraction of the first

outgoing parton relative to the incoming quark.
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Similarly P̂
(0)
g(in/out)→jk(x, ε) are splitting functions depending on the polarization of the

initial state gluon with respect to the splitting plane. These are given by

P̂
(0)
g(in)→qq̄(x, ε) = nfTF (1− 2x)2 ,

P̂
(0)
g(out)→qq̄(x, ε) = nfTF ,

P̂
(0)
g(in)→gg(x, ε) = 2CA

[
1− x
x

+
x

1− x
+ (2− 2ε)x(1− x)

]
,

P̂
(0)
g(out)→gg(x, ε) = 2CA

[
1− x
x

+
x

1− x

]
, (D.6)

where x is again the momentum fraction of the first outgoing parton relative to the incoming

gluon. In the case where the intermediate gluon decays into quarks one must remember to

sum over the possibilities (j, k) = (q, q̄) and (j, k) = (q̄, q).

Say, without loss of generality, that the initial parton travels along the z direction, and

gluon m is emitted somewhere in the x− z plane. Then the first term corresponds to the

case in which the gluon polarization lies in the x−z plane (call this plane P1). If the gluon

splits in plane P1, resulting in jk having a separation in ∆y, then the gluon polarization

and splitting planes are coincident, so we should weight the ∆y2 factor with the g(in)→ kl

splitting function. On the other hand, if the gluon splitting is in the plane which contains

the m direction and the y direction (call this plane P2), the gluon polarization and splitting

planes are perpendicular. Here, partons jk gain a separation in ∆φ, so we weight the ∆φ2

factor with the g(out)→ kl splitting function. The second term in eq. (D.4) corresponds to

the case where gluon m has polarization in the plane P2. Here we must swap the weighting

factors multiplied by ∆φ and ∆y around, for obvious reasons. The final term is actually

where the gluon polarization lies in one of the ‘extra’ −2ε dimensions. Here, the gluon

polarization is outside both splitting planes. So both splitting function weightings are for

the ‘out’ polarization.

E Fit function coefficients for beam function

In these tables, the notation used for the numbers is such that a−b means a× 10−b — e.g.

4.197602−3 means 4.197602× 10−3. The functional form for the fit is given in eq. (3.21).
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