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1 Introduction

The nature of diffractive excitation in hadron-hadron collisions remains a bit of a mystery.

We may motivate why it happens, e.g. based on the optical analogy that lies behind its

name, or in the related Good-Walker formalism [1]. But to explain how diffractive events

are produced, and with what properties, is a longer story. In a first step the single diffractive

cross section should be describable as a function of the diffractive mass M and the squared

momentum transfer t. In a second step the generic properties of a diffractive system

of a given mass should be explained: multiplicity distributions, rapidity and transverse

momentum spectra and other event characteristics. In a third step the existence and

character of exclusive diffractive processes and the underlying events associated therewith

should be understood.

Over the years much data has accumulated, and many models have been presented, but

so far without any model that explains all aspects of the data, and without any consensus

which models are the most relevant ones. It is beyond the scope of the current article to

review all the data and models; for a selection of relevant textbooks and reviews see [2–8].

For the path we will follow in this article, Regge theory provides the basic mathematical

framework. In it, poles in the plane of complex spin α may be viewed as the manifestations
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of hadronic resonances in the crossed channels. A linear trajectory of poles α(t) = α(0)+α′t

corresponds to a σtot ∼ sα(0)−1. Several trajectories appear to exist, but for high-energy

applications the most important is the Pomeron (P) one, which with its α(0) > 1 is deemed

responsible for the observed rise of the total cross section, and in modern terminology

would correspond to a set of glueball states. With single-Pomeron exchange as the starting

point, higher orders involve multiple Pomeron exchanges, and also interactions between

the Pomerons being exchanged, driven by a triple-Pomeron vertex. Out of this framework

the cross section for various diffractive topologies can be derived, differentially in mass and

t, given a set of numbers that must be extracted from data.

Such models do not address the structure of the diffractive system. The fireball mod-

els of older times implied isotropic decay in the rest frame of the diffractive system, or

possibly elongated along the collision axis, but without internal structure. The Ingelman-

Schlein (IS) model [9] made the bold assumption that the exchanged Pomeron could be

viewed as a hadronic state, and that therefore a diffractive system could be described as a

hadron-hadron collision at a reduced energy. This implied the existence of Parton Distri-

bution Functions (PDFs) for the Pomeron. Thereby also hard processes became available,

confirmed by the observation of jet production in diffractive systems [10]. The PomPyt

program [11] combined Pomeron fluxes and PDFs, largely determined from HERA data,

with the Pythia event generator of the time [12] to produce complete hadronic final states,

and PomWig [13] did similarly for Herwig [14].

One limitation of these models is that they are restricted to the exchange of one

Pomeron per hadron-hadron collision, not the multiple ones expected in Regge theory.

Translated into a QCD-based, more modern view of such collisions, Multiple Partonic

Interactions (MPIs) occur between the incoming hadrons [15]. That is, since hadrons are

composite objects, there is the possibility for several partons from a hadron to collide,

predominantly by semisoft 2 → 2 QCD interactions. These together create colour flows

(strings [16]) criss-crossing the event, typically filling up the whole rapidity range between

the two beam particles with hadron production. Thereby a “basic” process containing a

rapidity gap can lose that by MPIs. (MPIs and soft colour exchanges could also be sources

of gaps [17, 18], a possibility we will not study further in this article, so as to keep the

discussion focussed.)

A spectacular example is Higgs production by gauge-boson fusion, W+W− → H0 and

Z0Z0 → H0, where the naive process should result in a large central gap only populated by

the Higgs decay products, since no colour exchange is involved. Including MPIs, this gap

largely fills up [19], although a fraction of the events should contain no further MPIs [20],

a fraction denoted as the Rapidity Gap Survival Probability (RGSP). Such a picture has

been given credence by the observation of “factorization breaking” between HERA and the

Tevatron: the Pomeron flux and PDFs determined at HERA predicts about an order of

magnitude more QCD jet production than observed at the Tevatron, e.g. [21].

In this article the intention is to provide a dynamical description of such factorization

breaking, as a function of the hard process studied and its kinematics, and to predict the

resulting event structure for hard diffraction in hadronic collisions. This is done in three

steps. Firstly, given a hard process selected based on the inclusive PDFs, the fraction of
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a PDF that should be associated with diffraction is calculated, as a convolution of the

Pomeron flux and its PDFs. Secondly, the full MPI framework of Pythia, including also

the effects of initial- and final-state radiation, is applied to find the fraction of events

without any further MPIs. Those events that survive these two steps define the diffractive

event fraction, while the rest remain as regular nondiffractive events. Thirdly, diffractive

events may still have MPIs within the Pp subsystem, and therefore the full hadron-hadron

underlying-event generation machinery is repeated for this subsystem. The nondiffractive

events are kept as they are in this step.

One should not expect perfect agreement with data in this approach; there are too

many uncertainties that enter in the description. Neveretheless a qualitative description

can be helpful, not only to understand the trend of existing data, but also to pave the

way for future studies. The new framework we present here has been implemented as

an integrated part of the Pythia 8.2 event generator [22], and can be switched on for

any standard hard process. It thereby complements the already existing modelling of soft

diffraction, i.e. of diffractive events with no discernible hard process. The dividing line

between these two descriptions is not sharp, and in the future we will explore tensions

between the two.

As should be clear from this introduction, our model is “just” a combination of the

existing IS and RGSP ideas, and thus not anything fundamentally new. The devil lies in

the details, however, and to the best of our knowledge nobody has previously worked out

a complete model of this character.

The article is structured as follows. In section 2 we introduce the new model framework,

which then is validated in section 3. Some tentative comparisons with data are presented

in section 4. The article concludes with a summary and outlook in section 5.

2 The model

In this article we study hard diffraction, so this means we assume the presence of some hard

process in the events of interest. Standard examples would be jet, Z0 and W± production.

By factorization a cross section involving partons i, j from incoming beams A,B can be

written as

σ =
∑

i,j

∫∫
dx1 dx2 fi/A(x1, Q

2) fj/B(x2, Q
2) σ̂ij(ŝ = x1x2s,Q

2) , (2.1)

where σ̂ is the parton-level cross section, integrated over relevant further degrees of freedom,

like a p⊥ range for jets.

Assuming Pomerons to have some kind of existence inside the proton, in the Ingelman-

Schlein spirit, we introduce a Pomeron flux fP/p(xP, t), where xP is the P momentum

fraction and t its (spacelike) virtuality. The P has a partonic substructure, just like a

hadron, and thus we can define PDFs fi/P(x,Q2). The PDF could also depend on the t

scale, just like the photon has a PDF strongly dependent on its virtuality. For lack of a

model for such a dependence we assume the P PDF is a suitable average over the t range
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probed. As a consequence we will not need t for most of the studies, and so it can be

integrated out of the flux, fP/p(xP) =
∫
fP/p(xP, t) dt.

Given the ansatz with Pomeron flux and PDF, the PDF of a proton can be split into

one regular nondiffractive (ND) and one P-induced diffractive (D) part,

fi/p(x,Q2) = fND
i/p (x,Q2) + fDi/p(x,Q2) , (2.2)

where

fDi/p(x,Q2) =

∫ 1

0
dxP fP/p(xP)

∫ 1

0
dx′ fi/P(x′, Q2) δ(x− xPx′)

=

∫ 1

x

dxP
xP

fP/p(xP) fi/P

(
x

xP
, Q2

)
. (2.3)

The assumption that the diffractive part fDi/p(x,Q2;xP, t) of the full PDF can be decom-

posed in this way is in approximate agreement with the HERA data [23].

For two incoming protons (or antiprotons, or other hadrons) A and B, an initial

probability for diffraction PD ≈ PD
A + PD

B is obtained from the ratio of diffractive to

inclusive PDFs,

PD
A =

fDi/B(xB, Q
2)

fi/B(xB, Q2)
for AB → XB ,

PD
B =

fDi/A(xA, Q
2)

fi/A(xA, Q2)
for AB → AX , (2.4)

where PD
A/B is the probability for side A/B to be the diffractive system, thus being depen-

dent on the variables of the opposite side.

This probability is used to determine, on an event-by-event basis, the nature of the

selected hard scattering, whether diffractive or not. Currently we concentrate on single

diffraction. A natural extension would be to associate the product PD
APD

B with central

diffraction (CD), where two Pomerons collide and one parton is extracted from each P. It

would also be possible to extend the formalism such that part of the SD rate is reassigned as

double diffraction (DD), where the hard collision happens inside one of the two diffractive

systems. Neither CD nor DD are considered in this first study, however. Instead, for

the fraction PD
APD

B of events, which normally is small anyway, a random choice is made

between AB → AX and AB → XB.

The key aspect of the model is now that it contains a dynamical gap survival. This

means that we do not allow any further MPIs to occur between the two incoming hadrons,

so as to ensure that the gap survives. In practise the tentative classification as diffractive,

based on eq. (2.4), initially has no consequences: all events are handled as if they were

nondiffractive hadron-hadron collisions.

Only if no additional MPIs occur does a diffractive classification survive and only then

is the Pp subsystem set up. Specifically the xP value is selected according to the distribution

implied by eq. (2.4), and also a t value is selected for the outgoing proton. Technically, it
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is only at this stage that “pure” samples of diffractive events can be selected, should one

wish to single out such events.

Once the Pp system has been set up, it is allowed to develop a partonic structure

just like any hadron-hadron collision. Both initial-state radiation (ISR) and final-state

radiation (FSR) thereby dress the original hard process by the emission of further softer

partons. Also further MPIs inside this system are allowed, based on the fi/P(x,Q2) PDFs,

successively modified to take into account the momentum and flavours already carried away

by the MPI, ISR and FSR activity at p⊥ scales above the currently considerd one, just like

for nondiffractive systems.

The ISR/FSR/MPI description is based on the perturbative parton picture. Nonper-

turbative aspects have to be added to this. Beam remnants carry the momentum not

kicked out of the incoming P and p. For the former a fictitious “valence quark” content

of either dd or uu is chosen at random for each new event. It is essentially equivalent

to having a gluon as remnant, but is slightly more convenient. All outgoing partons are

colour-connected by colour flux lines — strings — that fragment to produce the primary

hadrons of the final state. The colour flow in an event is not unambiguously determined,

however, and data suggest that colours tend to be more correlated than naively comes out

of the perturbative picture, a phenomenon known as Colour Reconnection (CR).

We can by combining these two simple ideas give an explanation of the discrepan-

cies between Tevatron and HERA. The dynamical gap survival introduces an additional

suppression factor, reducing the number of diffractive events without any additional pa-

rameters.

2.1 Pomeron fluxes and PDFs

For numerical studies it is necessary to specify Pomeron flux and PDF parametrizations.

There are currently seven parametrizations/models for the former and five for the latter

available in Pythia.

The parametrizations for the Pomeron flux fP/p(xP, t) are

• Schuler-Sjöstrand model (SaS) [24],

• the Bruni-Ingelman model [25],

• the Streng-Berger model [26],

• the Donnachie-Landshoff model [27],

• the Minimum Bias Rockefeller model (MBR) [28] with an option to renormalize the

flux, and

• the H1 models Fit A and B [29, 30].

All have to obey an approximate form fP/p(xP) ∼ 1/xP in order to obtain an approximate

diffractive mass spectrum ∼ dM2
X/M

2
X , as required by Regge theory and by data. Just like

the rise of the total cross section requires a supercritical Pomeron α(0) = 1 + ε > 1, with

ε ≈ 0.08, several of the fluxes have adapted this steeper slope fP/p(xP) ∼ 1/x1+2ε
P (where
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the factor of 2 in front of ε comes from the optical theorem). There are also some attempts

to account for an excess in the low-mass resonance region. The t dependence is typically

parametrized as a single exponential fP/p(xP, t) ∼ exp(BSDt), but also as a sum of two

exponentials, or as a (power-like) dipole form factor. The MBR model differs from the

others, since the model renormalizes the flux to unity. This renormalization suppresses the

flux, thus making the dynamical gap survival obsolete. In order to make direct comparisons

to the other available flux-models, we have implemented the renormalization as an option

with the default being the non-renormalized flux.

The parametrizations for the Pomeron PDFs fi/P(x,Q2) are

• PomFix, a simple (toy) Q2-independent parametrization,

• the H1 Fit A and B NLO PDFs [29],

• the H1 Jets NLO PDF [31], and

• the H1 Fit B LO PDF [29],

• the ACTW B PDF with ε = 0.14 [32],

• the ACTW D PDF with ε = 0.14 [32],

• the ACTW SG PDF with ε = 0.14 [32],

• the ACTW D PDF with ε = 0.19 [32].

The first of these has a momentum sum of unity, whereas the latter are not normalized to

any specific value, the argument used being that the Pomeron is not a real particle and so

does not obey that kind of constraints [33, 34]. (Technically H1 chose to normalize the P
flux to unity at xP = 0.003, and then let the PDF normalization float. No normalisation

constraints are included in the ACTW PDFs, as this is primarily set by the normalisation

of the DL flux. Thus the momentum sum of these PDFs range from 0.5 to 2, depending

on fit.) Pragmatically it could be argued that what is measured is the convolution of the P
flux and the P PDF, so that is is feasible to shuffle any constant number between the two.

Unfortunately this makes it less trivial to mix freely, and makes it almost a necessity to

combine H1 PDFs with H1 fluxes. In Pythia 8, it is only allowed to combine the ACTW

PDFs with the DL flux, as these have been fitted together, and each of the fits uses different

ε values.

No attempts have been made to exclude or validate different flux-PDF combinations

in the light of more recent HERA data than available at the time of the fits; this woud be

a separate project. We do note, however, that a more recent ZEUS article [35] compares a

new ZEUS DPDF SJ fit with the H1 Fit B, showing disagreements on the 10–20% level. For

our purposes this is an acceptable uncertainty, and we will often use Fit B as a reference,

but keep an open mind to variations.

This is not the end of the story from an event-generator point of view, however. In

most of the available PDF parametrizations the momentum sums to approximately 0.5,
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but this does not mean that half of the P momentum in the Pp collision can just be thought

away. At the very least this other half has to be considered as an inert component that sails

through without interacting, but is present in the beam remnant. A further complication

arises when MPIs are introduced. Normally these are generated in a sequence of decreasing

p⊥, with the PDFs for an MPI adjusted to take into account the momentum and flavours

carried away by the preceding MPIs. So if 0.4 of the P momentum has already been taken,

does it mean that 0.1 or 0.6 of it remains? This is an issue that did not exist at HERA, where

MPIs are negligible outside of the photoproduction region. The choice made in Pythia

is to assume that the full P momentum is available for MPIs. Furthermore we allow the

option to rescale the PDFs by a constant factor so as to change the momentum, notably

by a factor of two to restore (approximately) the momentum sum rule. This should then

be compensated by a corresponding rescaling of the P flux in the opposite direction. That

way the P can be brought closer to an ordinary hadron, and more P flux-PDF combinations

can be used.

Another problem is that most PDF fits are NLO ones. Given the sparsity of data,

it should be clear that “NLO accuracy” does not mean the same thing as it does for the

inclusive proton PDF. Since Pythia only contains LO matrix elements (MEs) for QCD

processes there is no extra bonus for using NLO PDFs. Worse, it is well known that the

gluon PDF (of the proton) is much smaller in NLO than in LO for small x and Q2; in

principle it can even become negative. This behaviour compensates for the NLO MEs

being larger than the LO ones in this region, but the compensation is nontrivial. Therefore

an all-LO description, for all its weaknesses, is more robust in the small-p⊥ region, which

is where the MPI machinery largely operates. The default choice thus is H1 Fit B LO.

Finally also the inclusive proton PDF fi/p(x,Q2) should be chosen. Here several

options come with Pythia, and many more can be obtained via the interfaces to LHAPDF5

and LHAPDF6 [36, 37]. The current default set is the NNPDF 2.3 QCD+QED LO one

with αs(MZ) = 0.130 [38]. The argument for using LO has already been outlined above.

Since the proton PDF is much better constrained than that of the P, there is less of a

point in varying it between different options consistent with current p data. Note that, for

diffractive events, the dependence on the original choice of proton PDF is largely removed

on the P side by applying eq. (2.4). It does remain on the proton side, and in the dynamical

calculation of rapidity gap survival, however.

2.2 MPI phenomenology

The QCD 2 → 2 processes are dominated by t-channel gluon exchange, which gives a

perturbative cross section dσ̂/dp2⊥ ∼ α2
s (p

2
⊥)/p4⊥ that diverges in the p⊥ → 0 limit. Two

modifications are needed to make sense out of this divergence.

Firstly a divergent integrated QCD cross section should not necessarily be construed

as a divergent total pp cross section. Rather a µ = σtot2→2/σ
tot
pp > 1 for p⊥ > p⊥min should

be interpreted as implying an average of µ such partonic interactions per pp collision.

Overall energy-momentum conservation will reduce the naively calculated rate, but would

still kick out essentially all beam momentum if we allow p⊥min → 0, in contradiction with
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the presence of well-defined beam jets wherein a single particle can carry an appreciable

fraction of the incoming beam momentum.

Secondly, therefore, it is important to note the presence of a screening mechanism:

whereas standard perturbation theory is based on asymptotically free incoming states,

reality is that partons are confined inside colour singlet states. This introduces a nonper-

turbative scale of the size of a hadron, or rather of the average distance d between two

opposite-colour charges. In this spirit we introduce a free parameter p⊥0 ∼ 1/d that is

used to dampen the cross section

dσ

dp2⊥
∝ α2

s (p
2
⊥)

p4⊥
−→ α2

s (p
2
⊥0 + p2⊥)

(p2⊥0 + p2⊥)2
. (2.5)

Technically the dampening is implemented as an extra factor multiplying the standard

QCD 2→ 2 cross sections, but could equally well have been associated with a dampening

of the PDFs; it is only the product of these that enters in measurable quantities.

Empirically, a p⊥0 scale of 2–3 GeV is required to describe data. This scale is larger

than expected from the proton size alone, and is also in a regime where normally one

would expect perturbation theory to be valid. The p⊥0 scale appears to increase slowly

with energy, which is consistent with the growth of the number of gluons at smaller x

values, leading to a closer-packing of partons and thereby a reduced screening distance d.

A similar parametrization is chosen as for the rise of total cross section

p⊥0(ECM) = pref⊥0 ×
(
ECM

Eref
CM

)Epow
CM

, (2.6)

with Epow
CM and pref⊥0 being tunable parameters and Eref

CM a reference energy scale.

With the protons being extended objects, the amount of overlap between two incoming

ones strongly depends on the impact parameter b. A small b will allow for many parton-

parton collisions, i.e. a high level of MPI activity, and a close-to-unity probability for the

incoming protons to interact. A large b, on the other hand, gives less average activity

and a higher likelihood that the protons pass by each other unaffected. Diffractive events

predominantly occur in peripheral collisions, a concept well-known already from the optical

point of view. In our approach it comes out naturally since we only allow one interaction to

occur, namely the hard process of interest; if there is a second one this will fill the rapidity

gap and kill the diffractive nature.

The shape of the proton and the resulting overlap — the convolution of the two in-

coming proton distributions — is not known in any detail. The proton electric charge

distribution may give some hints, but measures quarks only and not gluons, and is in the

static limit. Instead a few different simple parametrizations can be chosen:

• a simple Gaussian, offering no free parameters,

• a double Gaussian, i.e. a sum of two Gaussians with different radii and proton mo-

mentum fractions, and

• an overlap of the form exp(−bp) (which does not correspond to a simple shape for

the individual proton), with p a free parameter.
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(A further option is a Gaussian with an x-dependent width, but this has not been im-

plemented in a diffractive context.) All are normalized to unit momentum sum for the

incoming partons, and an overall radius normalization factor is fixed by the total cross

section.

The more uneven the matter distribution, the broader will the charged multiplicity

distribution be. Notably the higher the overlap for central collisions, the higher the tail to

very large multiplicities. Also other measures, like forward-backward correlations, probe

the distribution. Unfortunately it is always indirectly, and closely correlated with other

model details. As an example we can mention that the earliest tunes worked with a much

lower p⊥0 than today and with double Gaussians rather far away from the single-Gaussian

behaviour. This changed when more modern PDFs started to assume a steeper rise of the

gluon PDF at small x, and when the Pythia parton showers were extended to apply to all

MPIs rather than only the hardest one, and for some other improvements over the years.

Currently best fits are not very far away from a simple Gaussian, e.g. with an overlap like

exp(−b1.85), but still on the side of more peaked than a Gaussian.

An event that contains a high-p⊥ interaction is likely to be more central than one that

does not, since the former has more MPIs and therefore more chances that the hardest of

these reaches a high p⊥. This bias effect is included in the choice of a b for an event where

the hardest interaction has been given, and is used in the subsequent generation of MPIs.

For the current study of hard diffraction this means that the hard process is initially picked

biased towards smaller b values, but afterwards the central b region is strongly suppressed

because the likelihood of several MPIs is so big there.

Starting from a hard interaction scale, and a selected b, the probability for an MPI at

a lower scale has the characteristic form

dP
dp2⊥

= O(b)
1

σref

dσQCD

dp2⊥
. (2.7)

Here O(b) is the overlap enhancement/depletion factor, dσQCD the differential cross section

for all 2→ 2 QCD processes, and σref the total cross section for the event classes affected by

the QCD processes. Historically σref has been equated with the nondiffractive cross section

in Pythia, on the assumption that diffraction only corresponds to a negligible fraction of

dσQCD. Within the current framework a reformulation to use the full inelastic cross section

would make sense, but would require further work and retuning, and is therefore left aside

for now.

Given eq. (2.7) as a starting point, MPIs can be generated in a falling p⊥ sequence,

using a Sudakov-style formalism akin to what is used in parton showers. Actually, in the

complete generation the MPI, ISR and FSR activity is interleaved into one common p⊥-

ordered chain of interactions and branchings, with one common “Sudakov form factor”,

down to the respective cutoff scales.

In the current case, the MPI formalism is used twice. Firstly, to determine whether an

event is diffractive, and if not to generate the complete nondiffractive event. Secondly, for

diffractive events, to determine the amount of MPI activity within the Pp system. Here

eq. (2.7) can be reused, but with new meaning for the components of the equation.
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• The dσQCD/dp⊥ is now evaluated using the P PDF on one side, but with the same

damping as in eq. (2.5), where ECM in eq. (2.6) is now the Pp invariant mass. If the

P is supposed to have a smaller size than the proton then this could be an argument

for a higher p⊥0 in this situation, but we have not here pursued this.

• The σref now represents the Pp total cross section, an unknown quantity that relates

to the normalizations of the P flux and P PDF. By default is is chosen to have a

fixed value of 10 mb, higher than is normally quoted in literature. This way, with

other quantities at their default settings, the charged multiplicity of a Pp collision

agrees reasonably well with that of a nondiffractive pp one at the same invariant

mass. This may not be the best of arguments, but is a reasonable first choice that is

experimentally testable, at least in principle.

• The O(b) factor may be changed, see next.

The impact parameter bPp of the Pp subcollision does not have to agree with the bpp of

the whole pp collision. It introduces the transverse matter profile of the Pomeron, even less

known than that of the proton. Generally a Pomeron is supposed to be a smaller object

in a localized part of the proton, but one should keep an open mind. For lack of better,

three possibilities have been implemented, which can be compared to gauge the impact of

this uncertainty.

• bPp = bpp. This implicitly assumes that a Pomeron is as big as a proton and centered

in the same place. Since small bpp values already have been suppressed, by the MPI

selection step, it implies that few events will have high enhancement factors.

• bPp =
√
bpp (where normalization is such that 〈b〉 = 1 for minimum-bias events). This

can crudely be motivated as follows. In the limit that the P is very tiny, such that the

proton matter profile varies slowly over the width of the P, then what matters is where

the Pomeron strikes the other proton. Thus the variation of O(b) with b is that of

one proton, not two, and so the square root of the normal variation, loosely speaking.

Technically this is messy to implement, but the current simple recipe provides the

main effect of reducing the variation, bringing all b values closer to the average.

• Pick a completely new bPp, as was done with bpp in the first place. This allows a

broad spread from central to peripheral values, and thereby also a larger and more

varying MPI activity inside the diffractive system than the other two options, and

thereby offers a useful contrast.

3 Validation

In this section we summarise some of the tests and sanity checks we have performed on the

model implementation. This provide insight into how the model operates and with what

general results, but also highlights the uncertain nature of many of the components of the

model.
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Figure 1. The seven different Pomeron fluxes included in Pythia on linear (a) and logarithmic

scale (b). Note that the MBR flux has not been renormalized (see [28]).

In the model we have two options for when an event is classified as diffractive: either

right after the event has passed the PDF selection criterion, eq. (2.4), or after passing

the further MPI criterion. Results using only the former will from now on be denoted

“PDF selected”, and with the latter in addition “MPI selected”. Our full model for hard

diffraction corresponds to the latter, but the intermediate level is helpful in separating the

effects of these two rather different physics components.

Notably, many distributions tend to be mainly determined by one of the two criteria.

Those mainly sensitive to the PDF selection include the xP and thereby the mass of the

diffractive system, and the squared momentum transfer t of the process and thereby the

scattering angle θ of the outgoing proton. In particular we will explore the dependence on

Pomeron fluxes and PDFs. Aspects that depend on the details of the MPI model include

several particle distributions, such as multiplicities, and that will also be highlighted.

The key number where both components are comparably important is the overall

diffractive rate, where each of them gives an order-of-magnitude suppression, resulting in

a ∼1% fraction of hard events being of a diffractive nature. This number thereby receives

a considerable overall uncertainty.

3.1 The Pomeron flux and PDF

We begin by studying the effects of variations of the P parametrizations. In figures 1a

and 1b the seven different Pomeron fluxes are compared. As can be seen there is a con-

siderable spread. Even in the region of medium xP values, xP ∼ 0.1, this corresponds to

more than a factor of two between the extremes. The dramatic differences at large xP are

not readily visible, since a large-xP event usually corresponds to a small rapidity gap and

therefore is difficult to discern from non-diffractive events. The limit of small xP generally

is more interesting, tying in with the intercept of the Pomeron trajectory, but plays a lesser

role for the current study of hard diffraction.
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Figure 2. The QCD charge-weighted sum, eq. (3.1), of the H1 PDFs and the toy PDF PomFix

compared to the NNPDF 2.3 proton PDF on linear (a) and logarithmic scale (b). The QCD charge-

weighted sum, eq. (3.1), of the ACTW PDFs compared to the NNPDF 2.3 proton PDF on linear

(c) and logarithmic scale (d).

Turning to the Pomeron PDFs, a detailed comparison would entail the separate quark

and gluon distributions at varying Q2 scales. To simplify we show the QCD-charge-

weighted sum

FP(x,Q2) =
4

9

∑

i=q,q

xfi/P(x,Q2) + xgP(x,Q2) (3.1)

at a single value Q2 = 100 GeV2, figures 2a to 2d. We notice that they all tend to be

significantly harder than the corresponding proton PDF, here represented by the NNPDF

2.3 QCD+QED LO one. (The PomFix option is just a toy one, shown for completeness,

but not used in the following.) For the gluon on its own, the P is significantly harder than

the p, consistent with the idealized picture of a P as a glueball state with two “valence

gluons”, figures 3a, 3b and 4a, 4b. Surprisingly, also the quark PDFs of the P (figures 3c, 3d

and 4c, 4d) are harder than proton ones, suggesting the presence of “valence quarks” in
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Figure 3. The H1 P gluon distribution on linear (a) and logarithmic (b) scale. The H1 P quark

and antiquark distributions on linear (c) and logarithmic (d) scale. Both compared to the NNPDF

2.3 proton PDF distributions. Note that for the P we have d = u = s = d = u = s(= c = c), where

the c, c are only included in H1Jets.

the P, although an order of magnitude below the gluons. Another observation is that the

P PDF sets we compare are all primarily based on H1 analyses, with largely the same data

and with correlated assumptions for the definition of diffractive events. This is especially

notable in the quark distributions, which are close to identical. Also the close affinity

of gluons at lower x values should not be overstressed. The slightly larger variations in

the ACTW PDFs are due to both the different values of the flux-parameter ε, as well as

different parametrisations of the PDFs. Finally, note that the H1 parametrizations only

apply down to x = 10−3, and are frozen below that. This is likely to underestimate the

low-x rise of PDFs, which as well could have been of the same shape as in the proton. A

small kink in the ACTW PDFs around x = 10−4 is due to regions of phase space where

the parametrization of the initial quark distribution would become negative and has been

reset to vanish.
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Figure 4. The ACTW P gluon distribution on linear (a) and logarithmic (b) scale. The ACTW

P quark and antiquark distributions on linear (c) and logarithmic (d) scale. Both compared to the

NNPDF 2.3 proton PDF distributions. Note that for the P we have d = u = s = d = u = s.

In the end, what matters is the convolution of the P flux with its PDFs, and that is

shown in figure 5. There would be too many combinations possible to show individually, so

we only indicate the range of possibilities and a few specific combinations. This may be on

the extreme side, since some fluxes and PDFs come as fixed pairs, not really intended to be

mixed freely. The key feature to note is that in this convolution the Pomeron part is now

falling steeper at large x than the proton as a whole. This has the immediate consequence

that diffractive hard subcollisions are not necessarily going to be produced more in the

forwards direction than the bulk of corresponding nondiffractive ones, but on the contrary

may be more central. The difference is not all that dramatic, however. It is also partly

compensated by a somewhat slower increase of the P towards lower x values, a feature

that for the H1 P PDF derives from the artificial freezing of below x = 10−3. Note that

the four different ACTW PDFs differ by up to an order of magnitude. The two D fits are

similar in shape and size as expected, but especially the SG fit stands out being up to a

factor 10 smaller than the D fits. Most of this discrepancy is also seen in figure 2c, 2d
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Figure 5. The convolution of Pomeron fluxes and H1 PDFs for a few cases, with the range between

the extremes marked in yellow; (a) linear and (b) logarithmic x scale. The convolution of DL flux

and ACTW PDFs on (c) linear and (d) logarithmic x scale.

but also arise from the difference in normalisation, the D and SG fits having momentum

sums of ∼ 1.8 and ∼ 0.5, respectively. The lack of major shape differences between the P
part and the rest will be visible in the more detailed studies later on. Because of the close

similarity of most of the different (but related) P PDFs at low-to-medium x, the bulk of

the differences come from the P fluxes. We have chosen to exemplify this for 2 → 2 QCD

processes with p⊥ > 20 GeV in
√
s = 8 TeV pp collisions, with the diffractive fractions for

a few combinations shown in table 1.

Note that changing the Pomeron parametrizations changes the fraction of events pass-

ing the PDF selection, but that the suppression factor introduced by the dynamical gap

survival is about ∼ 0.07 for all combinations in table 1. This reflects the fact that neither

the MPI model nor the proton PDF are influenced by the Pomeron parametrization, hence

the probability for obtaining no additional MPIs in the pp system should not change. (This

does not have to hold in general, but here we compare very similar distributions of x and p⊥
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Diffractive fractions

pp collisions at
√
s = 8 TeV

P PDF

P flux
PDF selection MPI selection

H1 Fit B LO

SaS (14.33 ± 0.11)% (0.98 ± 0.03)%

H1 Fit B LO

MBR (14.79 ± 0.11)% (0.96 ± 0.03)%

H1 Jets

SaS (13.70 ± 0.11)% (0.92 ± 0.03)%

H1 Fit A NLO

H1 Fit A (20.55 ± 0.13)% (1.35 ± 0.04)%

H1 Fit B LO

H1 Fit A (18.49 ± 0.12)% (1.32 ± 0.04)%

ACTW D14

DL (46.54 ± 0.16)% (3.18 ± 0.06)%

ACTW SG14

DL (11.82 ± 0.10)% (0.81 ± 0.03)%

ACTW D19

DL (42.09 ± 0.16)% (2.89 ± 0.05)%

Table 1. Diffractive fractions for the 2 → 2 QCD processes with p⊥ > 20 GeV obtained with

Pythia 8. The samples have been produced without any phase-space cuts.

values of the hard interaction, and then also the MPI effects are closely the same.) Note

also that some of the ACTW PDFs gives substantially larger fractions than the HERA

PDFs. This is related to the fact that the intercept of the P trajectory is larger in ACTW

fits than in the H1 ones, ε = 0.14–0.19 vs. 0.085. This gives a larger flux at high-energy

hadron colliders. A similar flux increase can of course be obtained for the H1 PDFs, with

the caveat that the flux might not be able to describe the total cross section and other

associated quantities. Additionally the gluon is only probed indirectly in DIS, and so is

poorly constrained, while it dominates for QCD jet rates.

Differential distributions of the diffractive events are also affected, since the kinematics

of the Pp system is set up using the Pomeron flux parametrizations. A subset of these

distributions is shown in figure 6, for some of the same combinations as in table 1. As

expected, P PDF variations do not have a large impact on the shapes (cf. figure 6), while

the P flux gives rise to large effects in xP, hence on the broadening of the mass spectrum

and on the tails of the t and θ distributions. In view of these observations, we do not

expect to be able to discrimate between the available Pomeron PDFs when comparing to

data. Thus we will leave out this variation from now on, and focus on variations in the

Pomeron flux.

The diffractive event fraction is not process-independent. One reason is that processes

may be dominated by different initial states, another that different x and Q2 scales are

probed. In table 2 we show the fraction of events passing either selection for various hard
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Figure 6. Some kinematics distributions obtained with variations of the Pomeron parametrizations:

(a) xP, (b) MX , (c) t and (d) θ.

processes available in Pythia 8 using the SaS flux and the H1 Fit B LO PDF. Firstly we

note that a smaller fraction of events pass the PDF selection than in table 1, owing to the

larger x needed to produce these particles, cf. figures 1, 2. This is why top, being the heav-

iest, has the smallest diffractive fraction. In addition there is a notable difference between

the gluon-dominated Higgs production and the quark-induced production of W±/γ∗/Z0,

owing to the hard gluon PDF in the P. If top production is considered separately for

qq → tt and gg → tt, the PDF survival rate is (9.74 ± 0.09)% and (10.55 ± 0.10)%,

respectively, displaying the difference between the two production channels.

In figure 7 we show the rapidity of the W-boson produced in the process qq → W±

at an 8 TeV pp collision, comparing three samples; nondiffractive, PDF selected and MPI

selected. It is observed that the diffractive W’s are slighly more central than the non-

diffractive in the CM frame, as expected from figure 5. The differences are small, however,

being on the order of (5–10)%, and might reduce when phase-space cuts are introduced.

We will study this process further in section 4.1.
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Figure 7. The rapidity of the W-boson produced in qq→W± at
√
s = 8 TeV.

Diffractive fractions

pp collisions at
√
s = 8 TeV

PDF selection MPI selection

qq→W± (11.16 ± 0.10)% (0.70 ± 0.03)%

qq→ γ∗/Z0 (10.69 ± 0.10)% (0.76 ± 0.03)%

Single top and top pair production ( 8.51 ± 0.09)% (0.62 ± 0.02)%

SM Higgs production (12.37 ± 0.10)% (0.86 ± 0.03)%

Table 2. Diffractive fractions obtained with Pythia without any phasespace cuts at
√
s = 8 TeV

for various hard processes. Pythia is run with the SaS flux and the H1 Fit B LO PDF.

3.2 The dynamical gap survival and MPI models

In the above section we studied how the parametrization of the Pomeron flux and PDF

affected the diffractive fractions and distributions, and notably by the choice of P flux. By

contrast, we saw that the survival fraction in the MPI selection step was not significantly

affected by these choices. A dependence does enter both via the x and the p⊥ distributions

of a process: larger x scales leaves less energy for MPIs and thereby gives a higher MPI

survival probability, whereas larger p⊥ values gives a longer MPI evolution range and

thereby a lower MPI survival. Such effects are not too prominent, however, and tend to be

overshadowed by the sensitivity to the parameters of the MPI model. These enter twice.

Firstly, for the MPI selection, since the dynamical gap survival is tied to the number of

MPIs in the pp system. Secondly, for the properties of the diffractive system, where the

number of MPIs affects e.g. charged multiplicities.

The probability for obtaining MPIs is given by eq. (2.7), and hence depends on both

the overlap function and the regulator pref⊥0. The related parameters are primarily tuned

to minimum bias and underlying event data, e.g. charged particle pseudorapidity dn/dη,

multiplicity P (n) and transverse momenta dn/dp⊥ and 〈p⊥〉(nch) spectra of charged par-

ticles. This means that a change of MPI parameters for the diffractive studies would spoil

agreement with nondiffractive data. Nevertheless, it is interesting to study how the survival

rate changes with these parameters for the pp collision itself.
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Diffractive fractions

pp collisions at
√
s = 8 TeV

PDF selection MPI selection

p⊥0 = 1.78 (14.50 ± 0.11)% (0.39 ± 0.02)%

p⊥0 = 2.28 (14.33 ± 0.11)% (0.98 ± 0.03)%

p⊥0 = 2.78 (14.19 ± 0.11)% (2.00 ± 0.04)%

Table 3. Diffractive fractions for the 2 → 2 QCD processes with p⊥ > 20 GeV in
√
s = 8 TeV pp

collisions. Pythia is run with the SaS flux and the H1 Fit B LO PDF.

The MPI modelling of the Pp collision can be decoupled from that of the pp one. Then

the MPI survival rate would not be affected by changes, but only the particle distributions

in the diffractive system. One inevitable free parameter is the effective Pp total cross

section. It is currently set always to be 10 mb, but could be made to depend on the mass

of the diffractive system. Also the relative normalization of P flux and PDFs can influence

the event activity. We will study the normalization dependence in the last part of this

section.

To begin with, consider the impact-parameter picture associated with hard collisions

in our model, figure 8a. The b scale is normalized such that 〈b〉 = 1 for inclusive minimum-

bias events. Events with a hard interaction tend to be more central than that, since central

events have more MPIs in general and thereby a bigger likelihood that at least one of them

is at large p⊥. The PDF selection step does not have a significant impact, but the MPI

one kills most low-b events and pushes 〈b〉 above unity. The reason is obvious: for central

events the average number of MPIs is high, and thus the likelihood of only having the

trigger hard process and no further MPIs is small, while more peripheral collisions give

fewer MPIs and thereby a higher surviving fraction. Ultimately, when 〈nMPI(b)〉 � 1,

most protons pass by each other without colliding at all. Thus the interesting region for

diffraction is where 〈nMPI(b)〉 ∼ 1.

The pref⊥0 regulator is by default 2.28 GeV. Since an increase in this parameter gives

less MPI in the pp system, we expect an increase in the diffractive fractions, and vice

versa. Table 3 confirms that this is indeed the case: variations of ±0.5 GeV around the

default pref⊥0 value gives about a factor of two in the MPI selection rate. This major pref⊥0
dependence holds also for many other nondiffractive event properties, however; keeping

everything else fixed even a variation of ±0.1 GeV would be unacceptable. In figure 9 we

show the charged multiplicity distribution, when we change the regulator pref⊥0 for both

diffractive and nondiffractive events, with minor/major effects for the former/latter. The

stability in the diffractive case is because a change in the regulator also affects the impact

parameter picture. Specifically, in this case bPp = bpp has been assumed. A lower value

of the regulator, giving rise to a larger number of MPIs in the pp system, pushes 〈bpp〉 to

larger values for those events that survive the diffractive MPI criterion, figure 8b. More

precisely, the change is to b values where the average pp MPI activity is restored to its

original level. With bPp = bpp the same then holds when MPI activity is generated in

the diffractive system, such that the effects of a smaller regulator and a larger impact

parameter almost completely cancel.
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Figure 8. Impact-parameter distribution of 2→ 2 QCD processes with p⊥ > 20 GeV in
√
s = 8 TeV

pp collisions. (a) The change during the selection steps. (b) The dependence on pref⊥0. (c) The

distribution in the Pp subcollision. (d) The dependence on impact-parameter profile.

As we have already discussed, the modelling of the P size could also affect the MPI

machinery for the Pp subcollision via the impact parameter bPp. The currently implemented

three alternatives are compared in figure 8c. The maybe less realistic last option of picking

a new bPp value at random implies a significant fraction of events with small bPp and thereby

the possibility of many MPIs. The average 〈nMPI〉 for the three options is 1.66, 2.04 and

4.09, respectively, thus giving rise to 0.66, 1.04 and 3.09 additional MPIs besides the hardest

process. This is reflected notably in the charged multiplicity distribution, figure 10a.

The MPI survival rate is highly dependent on the proton matter profile, table 4 and

figure 8d. Diffraction thrives when 〈nMPI(b)〉 ∼ 1, so this b region should be as broad as

possible for a large diffractive rate. Conversely, a sharp proton edge implies less diffraction.

The default overlap function exp(−b1.85) is close to a Gaussian, and the two have about the

same MPI selection rate. The double Gaussian and the exponential overlap are examples of
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Figure 9. Charged multiplicity distributions in the (a) Pp subsystem for diffractive events, (b) pp

system for nondiffractive events, in 2→ 2 QCD processes with p⊥ > 20 GeV as before.

Diffractive fractions

pp collisions at
√
s = 8 TeV

PDF selection MPI selection

No impact parameter dependence (14.36 ± 0.11)% (0.38 ± 0.02)%

Single gaussian matter profile (14.25 ± 0.11)% (0.93 ± 0.03)%

Double gaussian matter profile (14.24 ± 0.11)% (1.04 ± 0.03)%

Default overlap (14.33 ± 0.11)% (0.98 ± 0.03)%

Exponential overlap (14.50 ± 0.11)% (1.28 ± 0.04)%

Table 4. Diffractive fractions for the 2 → 2 QCD processes with p⊥ > 20 GeV in
√
s = 8 TeV pp

collisions. Pythia is run with the SaS flux and the H1 Fit B LO PDF.

broader distributions, thus with more diffraction, whereas the option without any b depen-

dence represents the other extreme (not shown in figure 8d), with less diffraction. Overall

the variation is not so dramatic, however, if only experimentally acceptable variations are

considered.

Finally we turn to the relative normalization of the P PDF and flux. From eq. (2.3)

we know that the PDF selection step depends on the convolution of the P flux and PDFs.

Thus it has no net effect if the flux is scaled down by a factor of two and the PDFs are

scaled up by the same amount, so as to bring the H1 PDFs to be approximately normalized

to unit momentum sum. It does have consequences for the MPI selection step, however,

since the average MPI rate comes up in the Pp system.

Compared with the (1.35 ± 0.04)% MPI selection rate in table 1 for the H1 Fit A

flux+PDF combination, such a rescaling changes the rate to (1.40 ± 0.04)%, i.e. no effects

are seen. The rescaling however, does change the multiplicity distribution, figure 10b,

as a consequence of the increased dσMPI in eq. (2.7). This could be compensated by a

corresponding increase of σref from the default 10 mb to 20 mb, thereby restoring both the

MPI selection rate and the multiplicity distribution, cf. the blue line in figure 10b.
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Figure 10. Charged multiplicity distribution distributions for the Pp diffractive subsystem, for

events with 2→ 2 QCD processes with p⊥ > 20 GeV as before. (a) For three different bPp impact-

parameter profiles. (b) With or without rescaled P flux and PDFs, see text.

3.3 Energy and scale dependence

Here we study the model dependence on the scales in the hard process and the energy of

the collision.

In figure 11 the diffractive fractions are compared at different collision energies,
√
s,

for 2→ 2 QCD processes with p⊥ > 20 GeV, and for W± production. In the PDF selection

step the diffractive rate increases with energy. The difference between the two processes

indicates that this rise can depend on the incoming flavours and the relevant ranges of x

values. Depending on the P flux and PDF, such as a freezing of the latter at small x, the

fraction might even decrease with energy.

A larger collision energies also implies a higher average number of MPIs, in addition

to the hardest collision, thus implying a reduced fraction of events passing the MPI crite-

rion, see figure 11. There is a compensatory effect of diffraction shifting to larger impact

parameters, as already discussed for the pref⊥0 variations. For the close-to-Gaussian default

overlap the relative size of the 〈nMPI〉 ≈ 1 region decreases with energy, however, result-

ing in the trend shown. By comparison an exponential overlap decreases slower than the

close-to-Gaussian, hence resulting in less suppression with increasing energy.

Finally, table 5 shows the number of events passing the PDF and MPI selections when

the mass of the produced particle is changed. In the PDF selection step heavier particles are

less likely to be produced diffractively, as they require larger x-values, where the probability

for diffraction is lower (cf. figure 5). The same trend was observed in table 2, but was there

mixed up by the use of different production channels. After the MPI selection step the

mass dependence is not as clearly visible. A partial compensation can indeed occur, since

a higher subcollision mass implies more momentum taken out of the incoming protons and

thereby less left for subsequent collisions.
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Figure 11. (a) The diffractive fractions obtained in 2 → 2 QCD processes with p⊥ > 20 GeV

(circles and solid lines) and qq → W± (squares and dashed lines) in pp collisions at different

energies. (b) The diffractive fractions obtained in qq → W± with the default overlap function

(squares and dashed lines) and the exponential overlap function (crosses and dashed-dotted lines).

Pythia is run with the SaS flux and the H1 Fit B LO PDF.

Diffractive fractions

pp collisions at
√
s = 8 TeV

PDF selection MPI selection

MW = 50 GeV (11.52 ± 0.10)% (0.72 ± 0.03)%

MW = 80.385 GeV (10.69 ± 0.10)% (0.70 ± 0.03)%

MW = 150 GeV (10.46 ± 0.10)% (0.72 ± 0.03)%

MW = 500 GeV ( 9.47 ± 0.09)% (0.65 ± 0.03)%

Table 5. Diffractive fractions for the process qq→ Z0 in
√
s = 8 TeV pp collisions. Pythia is run

with the SaS flux and the H1 Fit B LO PDF.

3.4 Comparison with soft diffraction

The new model for hard diffraction complements the existing one for soft (or rather inclu-

sive) diffraction. The latter already has a hard component arising from the MPI model,

which is used to pick the hardest process and all subsequent scatterings in the Pp system,

except for low-mass diffractive systems where no perturbative framework can be applied.

The soft diffractive model only allows for 2→ 2 QCD processes, unlike the new hard one,

but for QCD processes a comparison between the two is meaningful. To this end, the

p⊥ of the hardest process in an event will be used. This is not a physically measurable

observable, unlike e.g. the closely related p⊥ of the hardest jet in an event, but for the

relative comparison of hard and soft diffraction it is cleaner.

The MPI framework predominantly gives low-p⊥ interactions, be it for diffractive or

nondiffractive events. Thus only a small fraction of the events will have p⊥ values at

∼ 10 GeV or more, see figure 12a. Note that the p⊥ spectrum falls faster for diffractive
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Figure 12. The p⊥ of the hardest process obtained with (a) the soft (or inclusive) diffraction

framework, and (b) both the soft and hard diffraction frameworks for events with p⊥ > 10 GeV.

Cross sections

pp collisions at
√
s = 8 TeV

Soft diffraction Hard diffraction

ND sample, p⊥ > 10 GeV (mb) 3.730 4.239

ND sample, p⊥ > 20 GeV (mb) 0.348 0.353

SD sample, p⊥ > 10 GeV (mb) 0.084 0.048

SD sample, p⊥ > 20 GeV (mb) 0.0066 0.0035

Table 6. Cross sections obtained with the two diffractive frameworks. Extracted from figure 12 by

integration.

than nondiffractive events, mainly as a consequence of the former having a Pp invariant

mass spectrum peaked towards lower values.

In figure 12b the p⊥ of the hardest process for the two samples is compared. One is

obtained by generating inclusive (soft) events and keeping only those with large enough p⊥,

the other by generating only hard events above 10 GeV. Nondiffractive events are shown

as a sanity check, as for them the two approaches should give the same results. A closer

look at integrated cross sections, table 6, shows a small discrepancy for the p⊥ > 10 GeV

case, while the p⊥ > 20 GeV agree much better. This discrepancy is caused by not having

a “Sudakov factor” in the hard model. That is, in the soft model the rate at lower p⊥
scales is reduced by the requirement of not having an interaction at a higher p⊥ scale,

whereas no such reduction is implemented in the hard framework, which only uses pure

matrix elements.

The single diffractive events show differences in the normalisation, while the shape of

the p⊥ distributions agree between the two frameworks. The normalisation differences arise

from the two different ways of handling the survival rate. The soft diffractive framework

assumes an effective flux of P’s inside the proton, rescaled to get the desired total diffractive
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cross section, and thereby implicitly includes an average rapidity gap survival factor. The

hard diffractive framework has a higher initial P flux but then explicitly implements a

dynamical event-by-event survival factor. As it works out, single diffractive high-p⊥ events

are somewhat more suppressed in the latter case. This is indeed what we would expect:

there should be more MPIs in high-p⊥ (and high-mass) events than in low-p⊥ ones, and thus

more MPI survival suppression. Put another way, the soft implementation overestimates

the suppression at low p⊥ and underestimates it at high p⊥. (Assuming our new model is

the right way to view the matter.)

In the future it would be desirable to include such dynamical effects also in the soft

framework, so that the two descriptions can be made to agree in the high-p⊥ region. This

is not a trivial task, however.

4 Comparisons with data

In this section we compare the new model for hard diffraction with some available data.

While many results have been presented for soft diffractive processes, less is available on

hard ones.

At the Tevatron, both the CDF and D0 collaborations studied hard diffractive events.

We have chosen here to compare with two analyses, one in which only the diffractive

fractions are measured, the other in which also the distributions of the hard collisions are

reported.

At the LHC, diffraction has been studied both by ATLAS [39–41] and CMS [42–44].

One key observation there is that the Pythia default P flux shape does not describe the

rapidity gap distribution so well, suggesting that a new parametrization may be needed.

In other respects the model seems to do a reasonable job. For hard diffraction we will

compare to the latest ATLAS study, [41], and a similar CMS study, [43].

Unfortunately, neither of the studies at hand are implemented as Rivet [45] analyses,

so we have tried to apply the relevant experimental cuts as best as we can. This makes

comparisons with data less than reliable, and results should therefore be taken as a first

indication only. At least for LHC the intention is that the new Pythia options can be

directly tested by the experimental community, to allow more precise comparisons in the

future.

4.1 Diffractive W/Z production at the Tevatron

CDF has measured the fraction of events with a diffractively produced W/Z boson at√
s = 1.96 TeV [46]. The surviving antiproton was measured in a Roman Pot forward

spectrometer, and the boson decay products in the central detector. The observed fraction

of events with forward antiprotons was doubled, to compensate for there being no Roman

Pots on the proton side. Only the e and µ leptonic decays of the bosons were taken into

account. The cuts used in the analysis are listed in table 7, along with the number of events

that survive after each step. To this end, the internal W- and Z-finder projections available

in Rivet [45] have been used as a starting point; these have previously been validated for
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CDF cuts
W sample Z sample

ND SD SD×2
ND (%) ND SD SD×2

ND (%)

Lepton EeT (pµT ) > 25 GeV 670602 2827 0.84 667851 2466 0.74

Missing ET > 25 GeV 595236 2490 0.84 — — —

One electron in |η| < 2.8 — — — 642250 2366 0.74

One lepton in |η| < 1.1 331316 1374 0.83 366566 1397 0.76

MW
T = [40, 120] GeV 327671 1361 0.83 — — —

MZ = [66,116] GeV — — — 36814 1397 0.76

|t| < 1 GeV2 — 1348 0.82 — 1383 0.75

xP = [0.03,0.1] — 366 0.23 — 346 0.19

Table 7. Cuts used in [46]. Number of events listed in each of the samples are based on Monte

Carlo truth obtained when generating 106 inclusive events. A blank means that a specific cut was

not relevant.

other CDF analyses. In addition the diffractive properties are derived from the measured

antiproton as

t = −p2⊥ (4.1)

xRPS
P = 1− 2|pz|√

s
(4.2)

which has been compared to Monte Carlo truth, giving good agreement.

The results in table 7 are obtained with Pythia 8 using the SaS flux and the H1 Fit

B LO PDF, starting out from an inclusive MPI-selected sample. We note that a large

fraction of the diffractive events do not pass the experimental xP cut. Therefore, although

we begin with a “Monte Carlo truth” fraction of ∼ 1% diffractive W/Z, this is reduced to

∼ 0.2% by the xP cut. Results look better for other choices of P flux, see table 8, but even

at best still with a factor two discrepancy. Note that it is the fluxes that rise fastest in the

low-xP region that gives fractions closer to data.

We can compare these values to the results from [32], where no gap survival factor is

included. The authors only show results on W production and use different integration

limits on xP. A subset of the results are listed in table 9. It is worth noting that the

results using the lower integration limit are of the same order as the default settings of

Pythia 8, whereas the high integration limit (which is that of CDF) are higher than both

data and our model. This we interpret as being due to the lack of suppression factor, as

their calculations do not take MPIs into account.

The diffractive fraction can also be increased by changing the free parameters of the

MPI framework, with the caveat that nondiffractive events will then no longer describe

data as well. Table 10 shows the diffractive fractions obtained when varying some of the

MPI parameters. This variation is still not sufficient when combined with the default flux

and PDF in Pythia 8. If combined with some of the fluxes in table 8 it would be possible

to obtain fractions close to the experimentally observed values, however.
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P PDF

P flux (pp→ p′ + W) × 2 (pp→ p′ + Z) × 2

CDF (1.0±0.11)% (0.88±0.22)%

H1 Fit B LO

SaS (0.19 ± 0.03)% (0.24 ± 0.04)%

H1 Fit B LO

MBR (0.29 ± 0.04)% (0.20 ± 0.03)%

H1 Jets

SaS (0.29 ± 0.04)% (0.24 ± 0.04)%

H1 Fit A NLO

H1 Fit A (0.46 ± 0.05)% (0.35 ± 0.04)%

H1 Fit B LO

H1 Fit A (0.44 ± 0.05)% (0.29 ± 0.04)%

Table 8. Diffractive fractions for the W → lν and Z → l+l−, l = e, µ in
√
s = 1.96 TeV pp

collisions.

P PDF

P flux xP = 0.01 xP = 0.1

CDF — (1.0±0.11)%

Fit B

DL, ε = 0.14 0.14% 5.1%

Fit D

DL, ε = 0.14 0.18% 6.9%

Fit SG

DL, ε = 0.14 0.14% 4.1%

Table 9. Diffractive fractions for the W production from [32].

Parameter (pp→ p′ + W) × 2 (pp→ p′ + Z) × 2

CDF (1.0±0.11)% (0.88±0.22)%

pref⊥0 = 2.78 GeV (0.59 ± 0.06)% (0.49 ± 0.05)%

Exponential overlap (0.25 ± 0.04)% (0.24 ± 0.04)%

Table 10. Diffractive fractions for the W → lν and Z → l+l−, l = e, µ in
√
s = 1.96 TeV pp

collisions.

4.2 Diffractive dijets at the Tevatron

Another interesting measurement performed at CDF was the process pp→ p +Xp, Xp →
X+J +J , i.e. SD dijet production with a leading antiproton. CDF measured this at three

different energies,
√
s = 630, 1800 and 1960 GeV [21, 47, 48]. Here not only the diffractive

fractions were measured, but a number of differential distributions. Large discrepancies

were found between the diffractive structure functions determined from CDF data and

those extracted by the H1 Collaboration from diffractive deep inelastic scattering data at
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CDF cuts

Jet E1,2
T > 7 GeV

Jet E3
T > 5 GeV

Jet |η1,2,3| < 4.2

∆R 0.7

|t| < 1 GeV2

xRPS
P [0.035,0.095]

Table 11. Cuts used in [21].

HERA. The discrepancies are both in normalisation and shape and were interpreted as a

breakdown of factorization.

Our comparison focuses on the 1800 GeV data ([21]), since this also includes a mea-

surement of the diffractive structure function. The cuts used in the analysis are listed in

table 11. The jets are identified with the CDF cone algorithm as implemented in Rivet [45],

with a cone radius of 0.7. Jet energy scale corrections for underying-event activity are done

separately for diffractive and nondiffractive events, as outlined in the CDF article, but only

has a minor impact on relative rates. The momentum transfer of the antiproton is evaluated

using eq. (4.1) and the momentum loss of the antiproton using eq. (4.2).

We begin by evaluating the suppression factor introduced by the MPI framework.

This is evaluated by running two samples of 106 events, one with and one without the MPI

criterion, both using the cuts of table 11 and the SaS flux and the H1 Fit B LO PDF. We

obtain a suppression factor of 0.11, to be compared with the quoted discrepancies from

CDF of 0.06±0.02 (0.05±0.02) when using the H1 Fit 2 (Fit 3), respectively [21]. A similar

suppression factor as for SaS is obtained when using the H1 Fit B flux, based on the same

parametrization as the H1 Fit 2 and 3 fluxes, although with different values for the free

parameters of the model. Using this flux, however, allows for approximately two times

more events passing the experimental cuts. This is due to the fact that the H1 Fit B flux is

less restrictive in the low-xP region, where the experiment is performed. Hence we expect

better agreement with data when using the H1 Fit B flux, as compared to SaS. We are

not able to directly compare to the suppression factors obtained in [32], as these have been

calculated with different kinematical cuts (e.g. ET > 10 GeV and 0.05 < xP < 0.1), but the

numbers obtained are still interesting in their own right. Alvero et al. obtain suppression

factors of 0.061 (fit B and DL flux, ε = 0.14), 0.029 (fit D, same flux) and 0.12 (fit SG,

same flux), thus ranging from the measured suppression factor to our one.

Results on kinematical distributions using both the SaS and the H1 Fit B flux are

shown in figure 13. The SD E∗T distribution has a steeper falloff than the ND distribution,

indicating a lower center-of-mass energy in the collision. Likewise the η∗ distribution is

shifted towards positive η, the proton direction, indicating a boost of the center-of-mass

system. The final kinematical distribution here is the difference in azimuthal angle between

the two leading jets. This observable was not shown in the 1800 GeV analysis but in the

1960 GeV one. The SD events there show a tendency to be more back-to-back than the
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ND ones. This can also be attributed to the lower energy in the Pp collision than in the

full pp system, leaving less space for initial-state radiation.

The momentum fraction of the antiproton carried by the subcollision parton can be

evaluated from the jets using

x =
1√
s

3∑

i=1

EiT e
−ηi , (4.3)

where the sum is over the two leading jets, plus a third if it has ET > 5 GeV. The result

is shown in figure 14, for the two P fluxes used in figure 13. As expected the SaS flux,

figure 14a, suppress the diffractive events too much, as the suppression factor is too large

compared to experimental value from CDF. With this flux, the PDF selected samples lie

above the CDF data, but then drop by an order of magnitude by the MPI selection, to

lie well below the data, by a factor of five. There is also some discrepancy in shape.

Changing to the H1 Fit B flux, figure 14b, the PDF selected sample lies above the data as

expected, with the MPI selected sample a bit below, although only by a factor of three.

The suppression is still too large, and shapes still disagree, but not as markedly as in

figure 14a.

There are some aspects of the CDF article that we don’t understand, however. The key

figure 4 of [21] is intended to show the H1 predictions for the diffractive structure function

along with the experimentally measured one. The information provided on how the former

prediction is obtained is inconsistent with the curve shown, however, in normalization and

shape. In the end we therefore put more faith in the suppression factor between CDF

and HERA, already presented above, than in absolute numbers. Assuming we could have

reproduced the CDF curve intended to represent the predictions of the H1 PDFs, that

then is suppressed by an average multiplicative factor of 0.05–0.06 in data but 0.11 in our

model, we should have been a factor of ∼ 2 above data, which is inconsistent with the

outcome in figure 14.

4.3 CMS diffractive contribution to dijet production

CMS has studied the diffractive contribution to dijet events at
√
s = 7 TeV pp collisions [43],

The cross section is presented as a function of ξ̃, an approximation to the fractional mo-

mentum loss of the scattered proton correspinding to the xP variable. Dijets were selected

with p⊥ > 20 GeV in the |η| < 4.4 range using the anti-k⊥ algorithm with a cone size of

R = 0.5 [49]. ξ̃ was reconstructed using particles in the region |η| < 2.4 with p⊥ > 0.2 GeV

for charged particles as well as particles in the range 3.0 < |η| < 4.9 with E > 4 GeV. To

enhance the diffractive contribution additional requirements was introduced, such that the

minimum rapidity gap was of 1.9 units (no particles was allowed in the region |η| > 3).

Finally a cut on ξ̃ < 0.01 was introduced.

With these cuts, rapidity gap survival probabilities are in the range 0.08± 0.04 (NLO)

to 0.12±0.05 (LO), where the NLO gap survival probability was found using PomPyt and

PowHeg [50]+Pythia 8 and the LO gap survival probability was found using PomPyt

and PomWig.
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Figure 13. The mean ET of the leading jets in both SD and ND events using (a) the SaS and (b)

the H1 Fit B flux. The mean η of the leading jets in both SD and ND events using (c) the SaS and

(d) the H1 Fit B flux.
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Figure 14. The antiproton momentum fraction carried by the parton entering the hard collision,

for Pythia 8 compared with CDF data. Pythia is run with the H1 Fit B LO PDF and (a) the

SaS or (b) H1 Fit B flux. (c) and (d) shows the ratio SD to ND using (a) and (b).

Implementing the same cuts in Pythia 8, using the SaS flux and the H1 Fit B LO

PDF gives a rapidity gap survival probability of 0.06, compatible with the CMS results.

Changing from the SaS flux to the H1 Fit B flux gives the same suppression factor, but

allows for more events to pass the experimental cuts. We thus see the same trend as in the

CDF analysis, where the SaS flux is too restrictive at low xP.

4.4 ATLAS dijets with large rapidity gaps

Recently, the ATLAS collaboration published a study of dijets with large rapidity gaps in√
s = 7 TeV pp collisions [41]. Dijets were selected with p⊥ > 20 GeV in the |η| < 4.4 range,

and the cross section was measured in terms of ∆ηF , the size of the observed rapidity gap,

as well as in ξ̃ =
∑
pi⊥e

±ηi/
√
s, the estimate of the fractional momentum loss deduced from

charged and neutral particles in the ATLAS detector (the sign on η depends on where in

the detector the largest gap is located). Cuts used in the analysis are listed in table 12.
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Jet cuts

Jet E1,2
T > 20 GeV

Jet |η1,2| < 4.4

Anti-k⊥ ∆R 0.6

Neutral particles

|p| > 200 MeV

|η| < 4.8

Charged particles

|p| > 500 MeV or

p⊥ > 200 MeV

|η| < 4.8

Table 12. Cuts used in [41].

Experimental results were compared with the Pythia 8 soft diffractive framework,

which predicts both the ND, SD and DD contributions to the dijet production. Three

different flux models were compared: SaS, Donnachie-Landshoff and MBR. All three pre-

dict cross sections in the range of the data, without any need for additional gap survival

probability factors. The PomWig generator [13], on the other hand, needed an additional

suppression of S2 = 0.16± 0.04(stat)± 0.08(sys) in order to describe data.

In this section we use the new model for hard diffraction to study the same cross sec-

tions. The new model currently only includes the SD contribution, hence we will not be

able to describe all aspects of data, especially in the high-∆ηF and low-ξ̃-regions, where the

SD and DD contributions are comparable in size, at least according to the soft diffraction

model available in Pythia 8. We could also expect the normalisation of the SD events

obtained with the hard diffraction framework to be lower than in the soft one and thus

in data, because of the difference in normalisation between the two frameworks (cf. sec-

tion 3.4). The ND contribution should not differ from the ATLAS analysis, however, since

no changes have been implemented in this framework.

The ND distribution was normalized to data, where the normalization factor was

found using the first bin of the ∆ηF distribution. This approach has also been used in

our analysis, although when generating an inclusive sample (e.g. the purple distribution in

figures 15b and 15d) this normalization is applied to the full sample, unlike in the ATLAS

paper. In this sample, no classification of events occurs, hence the normalization cannot

be performed only on the ND sample. In the exclusive samples, the distinction between

ND and SD is performed, and we can apply the normalization to only the ND sample (cf.

the black distribution in figures 15b and 15d).

In figure 15 we show the results obtained with the model for hard diffraction. Three

samples are compared: ND, PDF-selected SD and MPI-selected SD. Note that the MPI-

selected sample lies about a factor of 10 below the PDF-selected one, as usual, and that

the suppression due to the MPI-framework is constant over both intervals. The new model
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Figure 15. The dijet cross sections as a function of the size of the rapidity gap (a), (b) and

the fractional momentum loss of the proton (c), (d). Compared to the hard diffraction model of

Pythia 8 using the SaS flux and H1 Fit B LO PDF. In (b) and (d) the ND + MPI sample is a

sum of the black and red dotted lines from (a) and (c), whereas the inclusive sample are generated

directly with Pythia 8. Only statistical errors are included in the ATLAS errorbars.

undershoots the data in the regions where the DD contribution is non-negligible (∆ηF >

1 and log10ξ̃ < −0.5). When this contribution is included in the framework, a better

agreement with data should be possible, and overall the picture should be consistent with

the soft diffractive framework.

5 Summary and outlook

In this article we have studied hard diffraction by combining two concepts, the Ingelman-

Schlein picture of a Pomeron and the Pythia model for multiparton interactions. The

Pomeron fluxes and PDFs are mainly extracted from HERA data, while the MPI pic-

ture (and several other relevant physics components) makes use of a broader spectrum of

Tevatron and LHC data. This combination allows us, in principle, to predict all phys-
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ical quantities of hard diffractive events, from rapidity gap sizes to charged multiplicity

distributions, but most importantly the fraction of diffractive events for any hard process.

Reality is not quite as simple, however. In this article we have studied the different

assumptions that go into a detailed framework, and explored the inherent uncertainties.

One part concerns the assumed Pomeron flux and PDFs, where particularly the latter is

dominated by one source only, namely the H1 analyses, making it difficult to assess to

full range of uncertainty. Another part concerns the MPI framework, which enters twice.

When used the first time, to determine the diffractive MPI survival, it involves parameters

already tuned to nondiffractive data, so narrowly constrained in principle. There could still

be leeway, e.g. if we were to use other parton showers that give less/more activity at small

p⊥ scales, the average number of MPIs would have to rise/drop to compensate. Thus our

studies focus on the sensitivity of some key parameters of the framework. When the MPIs

are used the second time, inside the diffractive subsystem itself, the level of uncertainty is

considerably higher. A key example is the impact-parameter picture of the Pp subcollision,

notably how impact parameters are related between the pp and Pp steps of an event.

Our studies puts the finger on our still limited understanding of diffraction, also when

restricted to the Pomeron framework, which is only one model class for diffraction. Fur-

ther, we provide computer code that can be used to compare with data for hard diffractive

processes at the LHC. It thus can be used as a “straw man” model, where differences

between predictions and data can help pave the way for a deeper understanding and more

accurate models. Specifically, with a generator it is possible both to emulate the experi-

mental diffractive trigger and to compare the resulting event properties, both of which are

considerably more complicated for analytical models.

Comparisons with data have shown qualitative agreements in many respects, but

maybe less so than one could have hoped for. For the Tevatron we face the problem

of trying to understand 15 years old analyses, with uncertain results. The main message

probably is that the overall Tevatron suppression factor of ∼ 10–20, relative to HERA-based

extrapolations, agrees well with what our model gives from the MPI selection step. For

the future it will therefore be more interesting to compare with LHC studies, in particular

those available in Rivet.

It is well known that the existing Pythia model for soft diffraction is not fully describ-

ing the existing LHC data; at places the difference can be up to a factor of two. Similarly

we have seen less-than-perfect agreement for the hard diffractive processes studied in this

article. There is therefore room for improvements in both areas, and also for work to bring

the two approaches in closer contact. As one simple example, the soft model currently

does not involve a MPI survival step, and therefore the Pomeron flux does not have to be

normalized in the same way in the two cases. The intention is to study such issues closer,

and to provide an improved description of diffractive cross sections, both integrated and

differential ones.
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