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1 Introduction

Conventional formulation of superstring theory is based on an on-shell formulation in which

the S-matrix of on-shell external states are expressed as correlation functions of confor-

mally invariant vertex operators on a Riemann surface integrated over the moduli space

of the Riemann surface. However this approach is not suitable for addressing many issues

even within perturbation theory — this includes the problem of mass renormalization and

vacuum shift. In the conventional approach, both these problems show up as infrared

divergences associated with separating type degenerations of the Riemann surfaces, but

there is no suggested cure for this in perturbation theory [1, 2]. In recent papers [3–9] we

proposed a possible resolution of these problems based on one particle irreducible (1PI)

effective action in which the world-sheet theory is used to first construct a gauge invariant

1PI effective string field theory, and then we use this 1PI action to address the problem

of finding the vacuum and the renormalized masses following the usual route of quantum

field theory. Since the 1PI action itself does not include contributions from separating

type degenerations of the Riemann surface, it does not suffer from any infrared divergences

associated with these degenerations. This makes this approach well-suited for addressing

the origin and resolution of these divergences in the S-matrix.

However the 1PI effective action does receive contribution from regions of the moduli

space associated with non-separating type degenerations. This makes it difficult to address

issues related to such divergences using the 1PI action since these divergences are hidden in

the building blocks of the theory — the 1PI amplitudes. For this reason it is useful to look

for a field theory of strings in which the amplitudes are built from the Feynman diagrams of

this string field theory. In this formalism the elementary vertices will be free from infrared

divergences associated with both separating and non-separating type degenerations, and
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all infrared divergences will appear when we build Feynman diagrams using these vertices.

This will make all the infrared divergences manifest in perturbation theory, making it easier

to use conventional field theory tools to analyze the effect of these infrared divergences.

Needless to say, such a formulation also has the potential of opening the path to studying

non-perturbative aspects of string theory.

For bosonic string theory, there has been successful construction of a field theory

of open strings as well as closed strings based on the Batalin-Vilkovisky (BV) formal-

ism [10–17]. There have been many attempts in the past to formulate a field theory of

closed superstrings / heterotic strings, but for various reasons, none has been completely

successful at the quantum level (see [18–34] for a partial list of references). In this paper

we generalize the approach of [7, 8] for the construction of closed bosonic string field theory

to construct heterotic and type II string field theories.

The main difficulty in constructing a field theory for heterotic and type II strings has

been in the Ramond sector since there is no natural way to write down a kinetic term

involving Ramond sector fields.1 In the context of 1PI effective action, this problem was

recently addressed in [8] using additional fields in the Ramond sector and then imposing

a constraint on the external states that removes the extra states associated with these

additional fields. The combination on which we impose the constraint satisfies free field

equations of motion, and hence once we set them to zero, they are not produced by inter-

actions. This makes the whole procedure consistent, leading to a set of off-shell amplitudes

satisfying the desired Ward identities. This was then used to address the problem of com-

puting renormalized masses, and also computing amplitudes around the shifted vacuum in

cases where the perturbative vacuum is destabilized by quantum corrections.

The main observation we make in this paper is that the same trick can be used to

construct a BV master action for heterotic and type II string field theory. At the level

of the classical theory itself, we introduce an additional set of fields. This doubles the

number of degrees of freedom. The resulting gauge invariant theory has the sector that

describes correctly the spectrum and interaction of string theory known from the first

quantized approach, but there is an additional sector containing free fields. This theory

can be quantized using BV formalism following the same procedure as in the case of closed

bosonic string field theory, but the quantum theory will also have the additional sector

containing free fields. At the end we are free to set the free fields to zero since they are

never produced in any interactions (i.e. in the scattering involving external states in the

interacting sector, the additional fields will never be produced as intermediate states).

We shall not try to make the paper self-contained. Instead we shall assume that the

reader is familiar with the construction of the BV master action in closed string field

theory [16]. Some familiarity with the construction of the 1PI action in superstring field

theory is also desirable, although we give a brief review of some of the results of [7, 8] in

section 2. In section 3 we describe the construction of the action satisfying classical master

equation. In section 4 we describe the construction of the full quantum master action and

its gauge fixing.

1A recent proposal for dealing with this problem in classical open superstring field theory can be found

in [34].
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2 Review

Since our construction will follow closely the conventions used in [7, 8], we shall not give a

detailed review of the background material, but only describe a few ingredients that will

be used in our analysis. A more detailed review can be found e.g. in [9]. This section will

contain three parts. In section 2.1 we review some of the details of the superconformal field

theory (SCFT) describing the world-sheet theory of the matter and ghost system [35]. In

section 2.2 we review the construction of certain multilinear functions of states of the SCFT

and how we use them to construct the 1PI effective action. In section 2.3 we describe the

construction of classical (tree level) string field theory from the 1PI action. This classical

action will then be used in section 3 for the construction of the classical master action,

which will then be generalized to quantum master action in section 4.

2.1 The world-sheet theory

We denote by H the full Hilbert space of matter ghost SCFT carrying arbitrary picture

and ghost numbers, and by HT a subspace of H satisfying the constraints

b−0 |s〉 = 0, L−

0 |s〉 = 0, for |s〉 ∈ HT , (2.1)

where

b±0 = b0 ± b̄0, L±

0 = L0 ± L̄0, c±0 =
1

2
(c0 ± c̄0) . (2.2)

We denote by X the picture changing operator (PCO) — for type II string theories we also

have its anti-holomorphic counterpart X̄ . X0 and X̄0 are their zero modes [25, 27, 36]:2

X0 =

∮
dz

z
X (z), X̄0 =

∮
dz̄

z̄
X̄ (z̄) (in type II) . (2.3)

In heterotic theory we divide HT into Neveu-Schwarz (NS) sector HNS and Ramond (R)

sector HR. In the type II theory the corresponding division is HNSNS , HNSR, HRNS and

HRR. The operator G in these theories is defined as

G|s〉 =

{
|s〉 if |s〉 ∈ HNS

X0 |s〉 if |s〉 ∈ HR

, (2.4)

in heterotic string theory, and

G|s〉 =





|s〉 if |s〉 ∈ HNSNS

X0 |s〉 if |s〉 ∈ HNSR

X̄0 |s〉 if |s〉 ∈ HRNS

X0X̄0 |s〉 if |s〉 ∈ HRR

, (2.5)

in type II theory. It satisfies

[QB,G] = 0, [b±0 ,G] = 0 . (2.6)

2In [34] a different operator with properties similar to X0 was used.
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The basis states in HNS are taken to be grassmann even for even ghost number and

grassmann odd for odd ghost number. In HR the situation is opposite. In type II string

theory the basis states are grassmann even for even ghost number and grassmann odd for

odd ghost number in HNSNS and HRR. In HRNS and HNSR the situation is opposite.

In heterotic string theory, we denote by ĤT the subspace of HT containing states of

picture numbers −1 and −1/2 in the NS and R sectors respectively. H̃T will denote the

subspace of states of picture numbers −1 and −3/2 in the NS and R sectors. In type II

theories ĤT will contain states of picture numbers (−1,−1), (−1,−1/2), (−1/2,−1) and

(−1/2,−1/2) in the NSNS, NSR, RNS and RR sectors while H̃T will contain states of

picture numbers (−1,−1), (−1,−3/2), (−3/2,−1) and (−3/2,−3/2) in the NSNS, NSR,

RNS and RR sectors.

2.2 The 1PI action

Generalizing the construction of [16] for closed bosonic string theory, in [6–8] we introduced,

for the heterotic string, the space P̃g,m,n whose base was the moduli space Mg,m,n of genus

g Riemann surface with m NS and n R punctures and whose fiber contains information on

local coordinates up to phases and also the locations of (2g − 2 +m + n/2) PCO’s. (The

generalization to type II strings is straightforward.) Furthermore for m external NS sector

states and n = N −m external R-sector states in ĤT , collectively called |A1〉, · · · |AN 〉, we

introduced on P̃g,m,n a p-form Ω
(g,m,n)
p (|A1〉, · · · |AN 〉) for all integer p ≥ 0 satisfying certain

desired properties. Finally for each g,m, n we introduced a specific subspace of Mg,m,n

and (generalized) section3 Rg,m,n of P̃g,m,n on these subspaces satisfying the conditions

∂Rg,m,n = −
1

2

∑

g1,g2
g1+g2=g

∑

m1,m2
m1+m2=m+2

∑

n1,n2
n1+n2=n

S[{Rg1,m1,n1
,Rg2,m2,n2

}]

−
1

2

∑

g1,g2
g1+g2=g

∑

m1,m2
m1+m2=m

∑

n1,n2
n1+n2=n+2

S[{Rg1,m1,n1
;Rg2,m2,n2

}] . (2.7)

Here ∂Rg,m,n denotes the boundary of Rg,m,n and S denotes the operation of summing

over inequivalent permutations of external NS-sector punctures and also external R-sector

punctures. {Rg1,m1,n1
,Rg2,m2,n2

} denotes the subspace of P̃g1+g2,m1+m2−2,n1+n2
obtained

by gluing the Riemann surfaces in Rg1.m1.n1
and Rg2,m2,n2

at one NS puncture from each

via the special plumbing fixture relation4

z w = eiθ, 0 ≤ θ ≤ 2π , (2.8)

where z and w denote local coordinates around the punctures that are being glued. Simi-

larly {Rg1,m1,n1
;Rg2,m2,n2

} denotes the subspace of P̃g1+g2,m1+m2,n1+n2−2 obtained by glu-

ing the Riemann surfaces in Rg1,m1,n1
and Rg2,m2,n2

at one R puncture from each via the

3Generalized sections include weighted average of sections. Furthermore they may contain ‘vertical

segments’ in which the PCO locations may jump discontinuously across codimension 1 subspaces in the

interior of Rg,m,n [6, 37].
4These correspond to s = 0 boundaries of the general plumbing fixture relations given in (2.9).
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same special plumbing fixture relation (2.8). There is one additional subtlety in the defini-

tion of { ; }. The total number of PCO’s on the two Riemann surfaces corresponding to a

point in Rg1,m1,n1
and a point in Rg2,m2,n2

is 2(g1+g2)−4+(m1+m2)+(n1+n2)/2. Using

the constraints given in the second term in (2.7), this can be written as (2g−2)+m+n/2−1,

which is one less than the required number of PCO’s on a Riemann surface associated with

a point in P̃g,m,n. Therefore in defining { ; } we need to prescribe the location of the addi-

tional PCO. A consistent prescription that we shall adopt is to insert a factor of X0 around

one of the two punctures which are being glued. Which of the two punctures we choose

is irrelevant since
∮
dz z−1X (z) =

∮
dww−1X (w) when z and w are related as in (2.8).

In fact in both heterotic and type II string theories, a universal prescription for plumbing

fixture rules in all sectors will be to insert the operator G defined in (2.4), (2.5) at one of

the two punctures which are being glued.

Rg,m,n’s can be called ‘1PI subspaces’ of P̃g,m,n since, as we shall see, they can be used

to define 1PI amplitudes. Operationally the regions Rg,m,n are constructed as follows. For

(g = 0,m + n = 3) and (g = 1,m + n = 1) we choose Rg,m,n so that its projection to

Mg,m,n is the whole moduli space Mg,m,n and the choice of the section encoding choice

of local coordinates and PCO locations are arbitrary subject to symmetry restrictions —

permutations of punctures for (g = 0,m+n = 3) and modular invariance for (g = 1,m+n =

1). For (g = 1,m + n = 1) the section must also avoid spurious poles [39–41]. Achieving

these may involve making use of generalized sections in the sense described in footnote 3.

Given these choices we now glue the Riemann surfaces corresponding to points in these

Rg,m,n’s via the plumbing fixture relations

z w = e−s+iθ, 0 ≤ s < ∞, 0 ≤ θ ≤ 2π . (2.9)

While carrying out the plumbing fixture we always choose a pair of punctures on two

different Riemann surfaces — we never use a pair of punctures on the same Riemann

surface. In the first stage these generate subspaces of P̃g,m,n for (g = 0,m + n = 4) and

(g = 1,m + n = 2) — we ignore the (g = 2,m + n = 0) sector since the associated

Riemann surface has no punctures where the vertex operators can be inserted. Typically

the projection of these subspaces to Mg,m,n do not cover the whole of Mg,m,n for these

values of (g,m, n). We choose the Rg,m,n for (g = 0,m+ n = 4) and (g = 1,m+ n = 2) so

as to ‘fill these gaps’. Only the boundary of Rg,m,n is fixed from this consideration; how

we fill the gap is arbitrary, except that we choose them in a manner consistent with the

various symmetries e.g. exchange of the NS punctures and exchange of the R punctures

and also avoiding spurious poles. The requirement that the boundaries of the new regions

Rg,m,n match the s = 0 boundaries of the regions of P̃g,m,n obtained by plumbing fixture

of Riemann surfaces associated with Rg,m,n with (g = 0,m+n = 3) and (g = 1,m+n = 1)

leads to the conditions (2.7). We now continue this process, generating new subspaces of

P̃g,m,n by plumbing fixture of the subspaces Rg′,m′,n′ that have already been determined.

We allow the Riemann surfaces associated with these subspaces to be glued multiple number

of times, but ensuring that at no stage we glue two punctures situated on the same Riemann

surface. We then define new Rg,m,n’s by filling the gap left-over from this construction.

Continuing this process we construct all the Rg,m,n’s.
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Once Rg,m,n’s have been constructed this way, we define a multilinear function

{A1 · · ·AN} of |A1〉, · · · |AN 〉 ∈ ĤT via the relation

{A1 · · ·Am+n} =
∞∑

g=0

(gs)
2g

∫

Rg,m,n

Ω
(g,m,n)
6g−6+2m+2n(|A1〉, · · · |Am+n〉) . (2.10)

Physically these represent 1PI amplitudes with external states |A1〉, · · · |AN 〉. We also

introduced another multilinear function [A2 · · ·AN ] of |A2〉, · · · |AN 〉 ∈ ĤT taking values in

H̃T defined via

〈A1|c
−

0 |[A2 · · ·AN ]〉 = {A1 · · ·AN} (2.11)

for all |A1〉 ∈ ĤT . Here 〈A|B〉 denotes the BPZ inner product between two states |A〉 and

|B〉 in the full Hilbert space H. These functions satisfy the identities

{A1A2 · · ·Ai−1Ai+1AiAi+2 · · ·AN} = (−1)γiγi+1{A1A2 · · ·AN} , (2.12)

[A1 · · ·Ai−1Ai+1AiAi+2 · · ·AN ] = (−1)γiγi+1 [A1 · · ·AN ] , (2.13)

where γi is the grassmannality of |Ai〉. They also satisfy

N∑

i=1

(−1)γ1+···γi−1{A1 · · ·Ai−1(QBAi)Ai+1 · · ·AN}

= −
1

2

∑

ℓ,k≥0

ℓ+k=N

∑

{ia;a=1,···ℓ},{jb;b=1,···k}

{ia}∪{jb}={1,···N}

σ({ia}, {jb}){Ai1 · · ·AiℓG[Aj1 · · ·Ajk ]} (2.14)

and

QB[A1 · · ·AN ] +
N∑

i=1

(−1)γ1+···γi−1 [A1 · · ·Ai−1(QBAi)Ai+1 · · ·AN ]

= −
∑

ℓ,k≥0

ℓ+k=N

∑

{ia;a=1,···ℓ},{jb;b=1,···k}

{ia}∪{jb}={1,···N}

σ({ia}, {jb}) [Ai1 · · ·AiℓG [Aj1 · · ·Ajk ]] (2.15)

where σ({ia}, {jb}) is the sign that one picks up while rearranging b−0 , A1, · · ·AN to

Ai1 , · · ·Aiℓ , b
−

0 , Aj1 , · · ·Ajk . Finally we also have a relation

{A1 · · ·AkG[Ã1 · · · Ãℓ]} = (−1)γ+γ̃+γγ̃{Ã1 · · · ÃℓG[A1 · · ·Ak]} , (2.16)

where γ and γ̃ are the total grassmannalities of A1, · · ·Ak and Ã1, · · · Ãℓ respectively.

These ingredients can be used to construct the 1PI action of the theory as follows [7, 8].

We take the string field to consist of two components |Ψ〉 and |Ψ̃〉. |Ψ〉 is taken to be an

arbitrary element of ghost number 2 in ĤT and |Ψ̃〉 is taken to be an arbitrary element of

ghost number 2 in H̃T . Both string fields are taken to be grassmann even. It follows from

the paragraph below (2.6) that in the heterotic string theory the expansion coefficients are

grassmann even for HNS and grassmann odd for HR, while in type II string theory the
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expansion coefficients are grassmann even for HNSNS and HRR and grassmann odd for

HNSR and HRNS . The 1PI action has the form

S1PI = g−2
s

[
−
1

2
〈Ψ̃|c−0 QBG|Ψ̃〉+ 〈Ψ̃|c−0 QB|Ψ〉+

∞∑

n=1

1

n!
{Ψn}

]
, (2.17)

where gs denotes string coupling and {Ψn} means {Ψ · · ·Ψ} with n insertions of |Ψ〉. It is

easy to see that the action (2.17) is invariant under the infinitesimal gauge transformation

|δΨ〉 = QB|Λ〉+
∞∑

n=0

1

n!
G[ΨnΛ] , |δΨ̃〉 = QB|Λ̃〉+

∞∑

n=0

1

n!
[ΨnΛ] , (2.18)

where |Λ〉 ∈ ĤT , |Λ̃〉 ∈ H̃T , and both carry ghost number 1.

The 1PI action given in (2.17) is not unique but depends on the choice of Rg,m,n, i.e.

choice of local coordinates at the punctures and PCO locations. Different choices lead to

different definitions of {A1 · · ·AN}. However the corresponding 1PI effective string field

theories can be shown to be related by field redefinition, and hence this ambiguity does

not affect any of the physical quantities. While we shall not make any specific assumption

about the choice of local coordinates and PCO locations, we shall assume that the local

coordinates have been scaled by a sufficiently large number so that unit radius circle around

the punctures in the local coordinates correspond to physically small disks around the

punctures,5 and that the PCO’s are inserted outside these unit disks. This will ensure

that in the 1PR amplitudes obtained by gluing the 1PI amplitudes via (2.9), the PCO’s

do not collide. This also ensures that as long as the 1PI amplitudes {A1 · · ·AN} are free

from spurious singularities, the 1PR amplitudes built from plumbing fixture of these 1PI

amplitudes are also free from spurious singularities.

2.3 Classical action

For the construction of the classical action we can restrict our attention to only the genus

zero contribution to the functions {A1 · · ·AN} and [A2 · · ·AN ], which we shall denote by

{A1 · · ·AN}0 and [A2 · · ·AN ]0 respectively. These functions vanish for N ≤ 2. The classical

action of the theory can now be written down from the 1PI effective action (2.17) using

the fact that at tree level there is no difference between the classical action and the 1PI

action. Therefore it takes the form

Scl = g−2
s

[
−
1

2
〈Ψ̃|c−0 QBG|Ψ̃〉+ 〈Ψ̃|c−0 QB|Ψ〉+

∞∑

n=3

1

n!
{Ψn}0

]
, (2.19)

with the gauge transformation taking the form

|δΨ〉 = QB|Λ〉+
∞∑

n=1

1

n!
G[ΨnΛ]0 , |δΨ̃〉 = QB|Λ̃〉+

∞∑

n=1

1

n!
[ΨnΛ]0 . (2.20)

5In string field theory literature this is often described as adding long stubs to the external lines of the

vertex.
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The equations of motion derived from (2.19) can be written as

QB(|Ψ〉 − G|Ψ̃〉) = 0 , (2.21)

QB|Ψ̃〉+
∞∑

n=3

1

(n− 1)!
[Ψn−1]0 = 0 . (2.22)

A priori this theory has too many degrees of freedom. For example at the linearized

level, the gauge inequivalent solutions to (2.21) and (2.22) are given by the elements of

BRST cohomology in the ghost number 2 sectors of ĤT and H̃T . This will double the

number of physical states.6 To circumvent this difficulty we observe that given any solution

to the equations of motion (2.21), (2.22), we can generate new solutions by adding to |Ψ̃〉

arbitrary BRST invariant states keeping |Ψ〉 fixed. This suggests the following two step

process for solving the equations of motion. First by adding G operated on the second

equation to the first equation we write the independent equations as

QB|Ψ〉+
∞∑

n=3

1

(n− 1)!
G[Ψn−1]0 = 0 , (2.23)

and

QB|Ψ̃〉+
∞∑

n=3

1

(n− 1)!
[Ψn−1]0 = 0 . (2.24)

In the first step we find general solutions of (2.23) without any reference to (2.24), and

then, for each of these solutions, pick a particular |Ψ̃〉 that solves (2.24).7 We could

implement this by imposing some specific condition like |Ψ〉 − G|Ψ̃〉 = 0, but this will not

be necessary. In the second step, for each of the solutions obtained at the first step, we

add to |Ψ̃〉 an arbitrary element of the BRST cohomology in the ghost number 2 sector

of H̃T . This generates the most general solution to the full set of equations of motion.

Since the deformation of the solution generated in the second step do not get modified by

interactions, and do not affect the solution generated in the first step, upon quantization

they will represent free particles which do not scatter with each other or with the particles

associated with the solutions to (2.23). Thus this sector decouples from the theory at tree

6The doubling trick for dealing with Ramond sector in Berkovits version of open string field theory has

been explored previously in [38]. The relationship between our approach and the approach of [38] is not

completely clear. In particular one of the key features of our approach is that the field Ψ̃ enters the action

only in quadratic terms. This features seems to be absent in [38].
7One might wonder whether given a solution to (2.23), one can always find a solution to (2.24). One class

of solutions to these equations may be obtained by starting with a seed solution to the linearized equations

of motion carrying some generic momentum, and then correcting it iteratively using the general procedure

described e.g. in [7–9]. In this case one can relate possible obstruction to finding iterative solutions to these

equations to the question of whether or not the non-linear terms in the equations of motion are BRST

trivial. Using the isomorphism between BRST cohomologies in different picture number sector for generic

momenta given in [36], one can then show that if the non-linear terms in (2.23) are BRST trivial, then

the non-linear terms in (2.24) are also BRST trivial. Therefore given a solution to (2.23) one can find a

solution to (2.24). This leaves open the possibility that there may be ‘large’ classical solutions to (2.23) for

which there is no solution to (2.24). In such cases we can simply discard these solutions without violating

anything that we know in perturbative string theory.
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level. This can also be seen from the analysis of Feynman diagrams [7–9]. It follows from

the analysis of [7–9] — restricted to tree level string theory — that the interacting part of

the theory describes correctly the spectrum and S-matrix of string theory at tree level.

The gauge inequivalent solutions to the linearized equations of motion at the first step

are characterized by the elements of the BRST cohomology in the ghost number two sector

of ĤT , whereas the gauge inequivalent solutions to the linearized equations of motion at

the second step are characterized by the elements of the BRST cohomology in the ghost

number two sector of H̃T . This shows that the physical states in the interacting part of

the theory are in the BRST cohomology in ĤT while the physical states which decouple

are in the BRST cohomology in H̃T . The two are isomorphic at non-zero momentum, but

not at zero momentum [36].

We shall see in eq. (4.4) that the interaction terms in the action in the full quantum

theory continue to be independent of |Ψ̃〉. Hence the particles associated with the modes

where we deform |Ψ̃〉 by adding a BRST invariant state keeping |Ψ〉 fixed will never appear

as intermediate states in an amplitude even in the full quantum theory. This will be

demonstrated explicitly in section 4.2 where we shall derive the Feynman rules in the full

quantum theory. In what follows we shall work with the full classical action (2.19) and

its quantum generalization (4.4) at intermediate stages, and discuss the decoupling of the

modes of |Ψ̃〉 only at the very end.

3 Classical master action

We shall now construct the classical master action corresponding to the BV quantization

of the action (2.19). We follow the procedure described in [16] for closed bosonic string

field theory. This is done in several steps.

1. First we relax the constraint on the ghost number and let |Ψ〉 and |Ψ̃〉 be arbitrary

states in ĤT and H̃T . The grassmannality of the coefficients are chosen such that

the string field is always even.

2. We divide ĤT and H̃T into two subsectors: Ĥ+ and H̃+ will contain states in ĤT

and H̃T of ghost numbers ≥ 3, while Ĥ− and H̃− will contain states in ĤT and H̃T

of ghost numbers ≤ 2. We introduce basis states |ϕ̂−
r 〉, |ϕ̃

−
r 〉, |ϕ̂

r
+〉 and |ϕ̃r

+〉 of Ĥ−,

H̃−, Ĥ+ and H̃+ satisfying orthonormality conditions

〈ϕ̂−

r |c
−

0 |ϕ̃
s
+〉 = δr

s = 〈ϕ̃s
+|c

−

0 |ϕ̂
−

r 〉, 〈ϕ̃−

r |c
−

0 |ϕ̂
s
+〉 = δr

s = 〈ϕ̂s
+|c

−

0 |ϕ̃
−

r 〉 , (3.1)

and expand the string fields |Ψ〉, |Ψ̃〉 as

|Ψ̃〉 =
∑

r

|ϕ̃−

r 〉ψ̃
r +

∑

r

(−1)g
∗
r+1|ϕ̃r

+〉ψ
∗

r ,

|Ψ〉 −
1

2
G|Ψ̃〉 =

∑

r

|ϕ̂−

r 〉ψ
r +

∑

r

(−1)g̃
∗
r+1|ϕ̂r

+〉ψ̃
∗

r .

(3.2)
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Here g∗r , gr, g̃
∗
r and g̃r label the grassmann parities of ψ∗

r , ψ
r, ψ̃∗

r and ψ̃r respectively.

They in turn can be determined from the assignment of grassmann parities to the

basis states as described below (2.6) and the fact that |Ψ〉 and |Ψ̃〉 are both even.

3. We shall identify the variables {ψr, ψ̃r} as ‘fields’ and the variables {ψ∗
r , ψ̃

∗
r} as the

conjugate ‘anti-fields’ in the BV quantization of the theory. It can be easily seen that

ψr and ψ∗
r carry opposite grassmann parities and ψ̃r and ψ̃∗

r carry opposite grassmann

parities. This is consistent with their identifications as fields and conjugate anti-fields.

4. Given two functions F and G of all the fields and anti-fields, we now define their

anti-bracket in the standard way:

{F,G} =
∂RF

∂ψr

∂LG

∂ψ∗
r

+
∂RF

∂ψ̃r

∂LG

∂ψ̃∗
r

−
∂RF

∂ψ∗
r

∂LG

∂ψr
−

∂RF

∂ψ̃∗
r

∂LG

δψ̃r
, (3.3)

where the subscripts R and L of ∂ denote left and right derivatives respectively.

5. The anti-bracket can be given the following interpretation in the world-sheet SCFT.

Given a function F (|Ψ〉, |Ψ̃〉) let us define 〈FR|, 〈F̃R|, |FL〉, |F̃L〉 such that under an

infinitesimal variation of |Ψ〉, |Ψ̃〉 we have

δF = 〈FR|c
−

0 |δΨ̃〉+ 〈F̃R|c
−

0 |δΨ〉 = 〈δΨ̃|c−0 |FL〉+ 〈δΨ|c−0 |F̃L〉 . (3.4)

Then using completeness of the basis states and using (3.1)–(3.3) one can show that

the anti-bracket between two functions F and G is given by

{F,G} = −
(
〈FR|c

−

0 |G̃L〉+ 〈F̃R|c
−

0 |GL〉+ 〈F̃R|c
−

0 G|G̃L〉
)
. (3.5)

6. The classical BV master action of string field theory is now taken to be of the same

form as (2.19) but with |Ψ〉, |Ψ̃〉 containing states of all ghost numbers:

S = g−2
s

[
−
1

2
〈Ψ̃|c−0 QBG|Ψ̃〉+ 〈Ψ̃|c−0 QB|Ψ〉+

∞∑

n=3

1

n!
{Ψn}0

]
. (3.6)

We shall now check that this action satisfies the classical master equation. Using (3.6)

and (3.4) we get

〈SR| = −〈Ψ|QB + 〈Ψ̃|QBG, 〈S̃R| = −〈Ψ̃|QB +
∞∑

n=3

1

(n− 1)!
〈[Ψn−1]0| ,

|SL〉 = QB|Ψ〉 −QBG|Ψ̃〉, |S̃L〉 = QB|Ψ̃〉+
∞∑

n=3

1

(n− 1)!
|[Ψn−1]0〉 . (3.7)

Therefore from (3.5) we have

{S, S}=−
(
〈SR|c

−

0 |S̃L〉+ 〈S̃R|c
−

0 |SL〉+ 〈S̃R|c
−

0 G|S̃L〉
)

=−2
∞∑

n=3

1

(n−1)!
〈Ψ|c−0 QB[Ψ

n−1]0〉−
∞∑

m=3

∞∑

n=3

1

(m−1)!(n−1)!
〈G[Ψm−1]0|c

−

0 |[Ψ
n−1]0〉

=−2
∞∑

n=3

1

(n− 1)!
{Ψn−1QBΨ}0 −

∞∑

m=3

∞∑

n=3

1

(m− 1)!(n− 1)!
{G[Ψm−1]0Ψ

n−1}0

= 0 , (3.8)
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where in the last step we have used (2.14). Note that the |Ψ̃〉 dependent terms cancel

in going from the first to the second line itself, and this cancelation does not require any

details of the interaction terms except that they depend only on |Ψ〉. The manipulations

leading from second to the fourth line are identical to what is done in closed bosonic string

field theory [16], except for insertion of factor of G on [· · · ]0. Eq. (3.8) shows that the

action S satisfies the classical master equation {S, S} = 0.

4 Quantum master action

Given the construction of the classical master action and the definitions of fields and anti-

fields given in section 3, the construction of the quantum master action can be given using

the same steps as in [16], with the necessary modifications for superstrings read out from

the results of [7, 8]. For this reason we shall only sketch the steps, omitting the details of

the proofs. In section 4.1 we give the construction of the master action and in section 4.2

we discuss gauge fixing and Feynman rules.

4.1 Action

The first step in the analysis will be to introduce new subspaces Rg,m,n of P̃g,m,n satisfying

relations similar to — but not quite the same — as (2.7):

∂Rg,m,n = −
1

2

∑

g1,g2
g1+g2=g

∑

m1,m2
m1+m2=m+2

∑

n1,n2
n1+n2=n

S[{Rg1,m1,n1
,Rg2,m2,n2

}]

−
1

2

∑

g1,g2
g1+g2=g

∑

m1,m2
m1+m2=m

∑

n1,n2
n1+n2=n+2

S[{Rg1,m1,n1
;Rg2,m2,n2

}]

−∆NSRg−1,m+2,n −∆RRg−1,m,n+2 , (4.1)

where ∆NS and ∆R are two new operations defined as follows. ∆NS takes a pair of NS

punctures on a Riemann surface corresponding to a point in Rg−1,m+2,n and glues them

via the special plumbing fixture relation (2.8). ∆R represents a similar operation on a pair

of R punctures, but we must also insert a factor of X0 around one of the punctures. The

generalization to type II string theory is straightforward, with the general principle that

we always insert the operator G introduced in (2.4), (2.5) at one of the punctures which is

being glued.

Operationally the construction of Rg,m,n follows a procedure similar to the one for

Rg,m,n, except that now while generating higher genus Riemann surfaces from gluing of

lower genus surfaces via the relation (2.9), we also allow gluing of a pair of punctures on the

same Riemann surface. Therefore we begin with a three punctured sphere with arbitrary

choice of local coordinates and PCO locations consistent with exchange symmetries, and in

the first step either glue two puncture on a three punctured sphere via (2.9) to generate a

family of one punctured tori, or two punctures on two three punctured spheres to generate

a family of four punctured spheres. These generate certain subspaces of P̃g,m,n with (g =

1,m+n = 1) and (g = 0,m+n = 4) whose projection to Mg,m,n generically does not cover

– 11 –
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the whole of Mg,m,n. We then fill the gap with the subspaces Rg,m,n of P̃g,m,n. Again the

choice of this subspace is arbitrary except that its boundaries are fixed and it must obey

exchange and other symmetries and avoid spurious poles. Continuing this process we can

generate all the Rg,m,n’s.

Once Rg,m,n ’s are constructed we define new multilinear functions {{A1 · · ·AN}} of

|A1〉, · · · |AN 〉 ∈ ĤT via the relation

{{A1 · · ·Am+n}} =
∞∑

g=0

(gs)
2g

∫

Rg,m,n

Ω
(g,m,n)
6g−6+2m+2n(|A1〉, · · · |Am+n〉) . (4.2)

We also introduce another multilinear function [[A2 · · ·AN ]] of |A2〉, · · · |AN 〉 ∈ ĤT taking

values in H̃T , defined via

〈A1|c
−

0 |[[A2 · · ·AN ]]〉 = {{A1 · · ·AN}} (4.3)

for all |A1〉 ∈ ĤT . These new functions satisfy relations similar to those given

in (2.12)–(2.16), except that the right hand sides of (2.14) and (2.15) contain new terms

involving contraction of a pair of states inside the same bracket. Since these relations have

form identical to those given in [16], except for the insertion of a X0 operator when we

contract a pair of R-sector states, we shall not write down these relations.

The quantum master action is given by

Sq = g−2
s

[
−
1

2
〈Ψ̃|c−0 QBG|Ψ̃〉+ 〈Ψ̃|c−0 QB|Ψ〉+

∞∑

n=1

1

n!
{{Ψn}}

]
. (4.4)

Following the analysis of [16], this can be shown to satisfy the quantum master equation

1

2
{Sq, Sq}+∆Sq = 0 , (4.5)

where, for any function F of the fields and anti-fields,

∆F ≡
∂R
∂ψs

∂LF

∂ψ∗
s

. (4.6)

The main point to note in this analysis is that on the left hand side of (4.5) the Ψ̃ dependent

terms cancel at the first step as in (3.8). After this the |Ψ〉 dependent terms have structure

identical to what appears in the closed bosonic string field theory of [16] except for insertion

of X0 factors on the R sector propagators. The resulting expression can be manipulated in

the same way as in [16].8

8There is a slightly different sign convention between [16] and [6–8]. In [16] the vacuum was normalized

to satisfy 〈0|c̄−1c−1c̄0c0c̄1c1|0〉 = 1 while in [6–8] the normalization was 〈0|c−1c̄−1c0c̄0c1c̄1e
−2φ|0〉 = 1 where

φ is the bosonized superconformal ghost. This leads to a non-standard sign convention for the moduli space

integration measure described in [9]. Alternatively one can continue to use the standard integration measure

and include an additional factor of (−1)3g−3+N in the definition of {A1 · · ·AN}. However this difference is

irrelevant for the present analysis since the identities (2.11)–(2.16) and their quantum generalizations take

the same form in [16] and [6–8].
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4.2 Gauge fixing and Feynman rules

In the BV formalism, given the master action we compute the quantum amplitudes by

carrying out the usual path integral over a Lagrangian submanifold of the full space spanned

by ψr and ψ∗
r . It is most convenient to work in the Siegel gauge

b+0 |Ψ〉 = 0, b+0 |Ψ̃〉 = 0 ⇒ b+0

(
|Ψ〉 −

1

2
G|Ψ̃〉

)
= 0 . (4.7)

To see that this describes a Lagrangian submanifold, we divide the basis states used in

the expansion (3.2) into two classes: those annihilated by b+0 and those annihilated by

c+0 . These two sets are conjugates of each other under the inner product (3.1). Now in

the expansion given in (3.2), Siegel gauge condition sets the coefficients of the basis states

annihilated by c+0 to zero. Since in this expansion the fields and their anti-fields multiply

conjugate pairs of basis states, it follows that if the Siegel gauge condition sets a field

to zero then its conjugate anti-field remains unconstrained, and if it sets an anti-field to

zero then its conjugate field remains unconstrained. Therefore this defines a Lagrangian

submanifold.

In the Siegel gauge the propagator in |Ψ̃〉, |Ψ〉 space takes the form (see [9] for the sign

conventions)

− g2s b
+
0 b−0 (L+

0 )
−1 δL0,L̄0

(
0 1

1 G

)
. (4.8)

Only the lower right corner of the matrix is important for computing amplitudes since the

interaction vertices only involve |Ψ〉 and not |Ψ̃〉. We can now use standard procedure

to express the different contributions to the amplitude as integrals over subspaces of the

moduli space of punctured Riemann surfaces, and the relation (4.1) ensures that the sum

over all Feynman diagrams cover the whole moduli space [16, 42]. Note that only states in

ĤT propagate along internal lines but they can carry arbitrary ghost number.9

Since the field |Ψ̃〉 continues to appear only in the kinetic term even in the full quantum

BV action, the additional modes we have introduced via |Ψ̃〉 decouple from the interacting

part of the theory. Indeed 1PI amplitudes computed using the master action would re-

produce the 1PI action given in (2.17), with the only difference that the Rg,m,n’s involved

9Some qualification is warranted here. The states which enter the vertex are states in ĤT annihilated by

b+0 . But the propagator itself consists of the operator −g2s b
+
0 b

−
0 (L

+
0 )

−1G sandwiched between a pair of basis

states in the conjugate sector, which are states in H carrying picture numbers (−1,−3/2) and annihilated

by c+0 and c−0 . Since there is no restriction on the ghost number, there are apparently infinite number of

states at each mass level obtained by repeated application of the zero mode β0 of β in the R sector. However

the operator X0 in the propagator annihilates all but a finite number of these states. This can be seen using

the fact that the application of β0 reduces the ghost number of the state. On the other hand the application

of X0 produces a state of picture number −1/2 for which β0 annihilates the vacuum and hence at a given

level, we can no longer have states of arbitrarily small (i.e. large negative) ghost number. Therefore a state

of picture number −3/2 must be annihilated by X0 for sufficiently small ghost number since there will be

no candidate state with the right quantum numbers. This in turn shows that only a finite number of states

propagate at each mass level. This property is manifest if instead of X0 we use the kinetic operator used

in [34], but at this stage it is not clear how to write down a fully gauge invariant closed string field theory

action based on this kinetic operator.
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in the definitions of {A1 · · ·AN} are not defined independently, but constructed from the

Rg,m,n’s used for defining {{A1 · · ·AN}} by plumbing fixture of Rg,m,n’s in all possible ways

via the relation (2.9), but keeping only the ‘1PI contributions’. In (2.17) |Ψ̃〉 appears only

in the kinetic term, showing that its equation of motion leads to free fields even in the full

quantum theory.
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