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1 Introduction

Gauge symmetry sometimes appears to be a curious shell game. One starts with some

initial global symmetry algebra and makes it “local” via the introduction of new degrees

of freedom, enlarging the symmetry algebra enormously; then, states that differ by gauge

transformations are identified as the same physical state, effectively reducing the symmetry

algebra. It is typically expected that the reduced symmetry algebra relating physical

observables is the same as the initial algebra. In which case, the net effect of the gauge

procedure, is to introduce new dynamical degrees of freedom (the gauge bosons). In the

end, the advantage of the redundant description over a description involving only physical

degrees is that the physical description is nonlocal. Of course, in the context of gravity,

global symmetries lose their meaning, and we are forced to work with gauged symmetries.

It has long been known that for gravity in asymptotically flat space [1, 2] or asymptot-

ically AdS3 [3], the final physical symmetry algebra is an infinite-dimensional enhancement

of the “global part” of the gauge group. Only recently, however, has it been realized that
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the enhancement also occurs for higher dimensional gravity, Maxwell theory, Yang-Mills

theory, and string theory, and moreover, that the symmetry constrains the IR structure

via nontrivial Ward identities [4–15].

This has led to a veritable explosion in activity on the amplitude side, with work

on the leading and subleading soft limit in gravity [16–20], Yang-Mills theory [21–24],

(ambitwistor) string theory [25–32], supersymmetric theories [33, 34], and theories in higher

dimensions [28, 35, 36].

The present article provides a general path integral formalism for writing Ward iden-

tities for these “large” gauge symmetries. Our starting point is Noether’s second theorem,

which constrains the general structure of theories with local symmetry. This allows us to

relate the Ward identities to two-form charges used in the above literature. This approach

seems considerably more general and powerful than other approaches when a path integral

formulation is available, allowing one to quickly write down Ward identities for new theories

and symmetries. Moreover, the path integral approach allows one to study anomalies via

a suitable generalization of Fujikawa’s method. In this paper, we ignore possible quantum

corrections from the path integral measure, leaving this for a future investigation. Beyond

the technical advantages we exhibit, our approach requires a significantly different point of

view with a number of physical consequences, which we detail below.

The Ward identities we write down are not for “large” gauge transformations, but

rather for residual gauge transformations after imposing a gauge condition. It is worth

emphasizing that if one uses the Ward identities we write without fixing the gauge sym-

metry, one can derive a number of nonsensical conclusions. This is not surprising, since

the path integral is ill-defined until one gauge fixes. While, as we argue below, residual

gauge symmetry is necessarily large, the converse is not true. In our formalism, this ex-

plains the reduction of BMS+×BMS− to the diagonal BMS0 in [11]: one must solve

the residual diffeomorphism equation everywhere and propagate the boundary conditions

from I − to I +.

Residual gauge symmetries are symmetries of the gauge fixed action, but they may

not be symmetries of the initial and final wavefunctionals that determine the initial and

final field configuration. In the language of the path integral, when one starts and ends

in the vacuum, this effect is synonymous with spontaneous symmetry breaking. Since

gauge transformations are in general inhomogeneous shifts of the gauge field, the currents

associated with these transformations are necessarily linear in the fields. This leads to an

interpretation of the residual gauge symmetry as inserting physical states into correlators,

which we understand as Goldstone modes. This is true in the case of the Abelian gauge field

as well as in linearized theories of Yang-Mills and gravity. The soft charges of [5, 6, 8, 11, 12]

fall into this category; they insert soft states since they are defined at asymptotic infinity.

The familiar case of AdS3 is different, since AdS behaves like an IR regulator. But this

notion is broader and includes the proposal of [37] to interpret the full photon field as

encoding two Goldstone modes since residual gauge symmetries contain transformations

that give finite charges when integrated over any finite hypersurface in the bulk.

Thinking about residual gauge symmetry thus takes the focus away from the boundary

of the spacetime manifold M. Since one can consider a path integral for subregions R ⊂
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M (causal diamonds are particularly natural since they provide a unitary “sub-theory”),

one can write identities on these for subregions. We suspect this may be relevant to

recent speculations in [38]. Regardless, insofar as the soft photon theorem — or its cousin,

electromagnetic memory [39] — is relevant for terrestrial experiments, it is desirable to

have an understanding of the Ward identity that does not depend on the causal structure

of the entire universe, which is not even asymptotically flat!1

Let us note that our approach does come with a drawback: while physically it is

clear that different gauge conditions must yield equivalent results, mathematically it is

frequently unclear that this is true. We suspect that a fuller understanding of this issue

may be realized in the Batalin-Vilkovisky (BV) formalism.

The current paper is organized as follows. In section 2, we review Noether’s first and

second theorems for classical field theory. In section 3, we apply these results to the path

integral and derive Ward identities. In section 4, we demonstrate our approach with a

number of illustrative examples. We conclude in section 5.

2 Noether’s theorems

Noether’s 1918 theorem [41]2 relating infinitesimal “global” symmetries to conservation

laws, is a cherished cornerstone of modern theoretical physics; however, the second the-

orem (appearing in the same work) applicable to “local” symmetry remains somewhat

obscure [43].3 Our goal is to use Noether’s second theorem as a starting point for a general

approach to Ward identities for gauge symmetry. In particular, we are motivated by recent

new Ward identities for large gauge symmetry in gravity and QED [4–6, 8–13], and recent

discussions in [37].

It is well-known that Noether’s theorem, charge conservation, and the symplectic struc-

ture have a special character when there is “local” symmetry; and, of course, symmetries

of gauge theory correlators is an old subject. Indeed many or even most of the statements

appearing here appear in some form in the literature; however, we hope to present them in

a novel, streamlined form that is useful for recent and future developments. Of particular

note are the seminal works [44, 48, 49], which we draw heavily from. See also [50–56].

2.1 Notation and terminology

When discussing Noether’s theorems it is important to distinguish between identities that

hold only after applying the equations of motion, and identities that hold universally.

Throughout our discussion, we use = to denote equality without using equations of motion

and call this a strong or off-shell equality. We use
w
= to denote equality only after using

equations of motion and call this a weak or on-shell equality. This is the language of

Dirac [57, 58]; but note that we use
w
= instead of the more generic ≈.

1See [40] for a potentially different approach to this issue.
2See [42] for an English translation available on the arXiv.
3This assertion is based, in part, on informal discussions. An important exception is [44], which in-

troduced the authors to Noether’s second theorem. It also appears to be (somewhat) known in the BV

quantization and mathematical literature; see e.g. [45, 46] and [47], respectively.
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Following common usage, we use local symmetry to denote symmetry transformations

that are parametrized by functions of spacetime, and global symmetry to denote symme-

try transformations that are at most part of a countable set. We use gauge to indicate

transformations that do not affect physical observables. As a slight abuse, we call local

symmetry transformations with bounded support small gauge transformations and those

with support on the boundary of the theory large gauge transformations. In this language,

an important point is that small gauge transformations must be gauged, but large gauge

transformations need not be. Whether or not large gauge transformations are gauged

should be determined by physical considerations.

When discussing in generality we use φ(x) to implicitly denote the entire field content,

φa(x), where the index a could label different scalar fields as well as components of vector

or tensor fields, etc. We hope the reader can fill in implicit summations without difficulty.

We may also switch between index notation and the language of differential forms, as

expedient. All appearing forms follow the standard convention

ω(p) =
1

p!
ωµ1···ωµp

dxµ1 ∧ · · · ∧ dxµp (2.1)

and the Hodge dualizer ⋆ is taken to act only on the closest form in a wedge product

⋆ ω ∧ η = (⋆ω) ∧ η (2.2)

to minimize the amount of brackets needed.

2.2 Noether’s first

Consider a particular infinitesimal transformation δ̂φ for which the action functional is

invariant up to a possible boundary term:

S[φ+ δ̂φ] = S[φ] +

∫

ddx ∂µK
µ, (2.3)

without imposing equations of motion. Noether’s first theorem constructs a current whose

divergence is proportional to the equations of motion, and therefore is conserved on-shell.

There are two equivalent derivations.

The first begins by noting that a general transformation of the action takes the form

δS =

∫

ddx
(

− E(φ)δφ+ ∂µθ
µ(φ; δφ)

)

, (2.4)

where E(φ) are the equations of motion (ie. Euler-Lagrange derivatives),4 and θ is the

“symplectic potential current density” in [48]. If we use the symmetry transformation δ̂φ,

then we find the conservation law

∂µj
µ = E(φ)δ̂φ

w
= 0 jµ = θµ(φ; δ̂φ)−Kµ. (2.5)

This is essentially the original approach in [41].

4We find it convenient to define E with an extra minus sign from [48].
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The second is to deform the symmetry with an arbitrary function ρ(x) as

δρφ(x) = ρ(x)δ̂φ(x). (2.6)

Then, on the one hand, locality of the transformation and the fact that δρ is a symmetry

for constant ρ implies5

δρS =

∫

ddx
(

θµ∂µρ+ ρ ∂µK
µ
)

; (2.7)

while on the other hand, if ρ(x) has compact support there can be no boundary term,

and thus

δρS = −
∫

ddx ρ∂µj
µ w
= 0. (2.8)

We take this as the definition of the Noether current j, since this is what naturally enters

into the Ward identity. Finally, varying ρ(x) with compact support tells us that

∂µj
µ w
= 0. (2.9)

2.3 Noether’s second

Noether’s second theorem applies when one has a collection of infinitesimal symmetries

δλφ parametrized by one or more arbitrary functions λ(x), i.e., local symmetry. Note that

the first theorem continues to hold for local symmetry (even “small” gauge transforma-

tions). Noether’s second theorem gives us strong identities, which constrain the form of

the equations of motion and the current jµ. Again there are two approaches.

For simplicity, we focus on the case when the transformation may be written in

the form6

δλφ = f(φ)λ+ fµ(φ)∂µλ, (2.10)

but it is straightforward to consider transformations, as Noether did, involving arbitrarily

high derivatives of λ. (Although, the authors know of no physically interesting examples.)

Let us start with

δλS =

∫

ddx
(

− Eδλφ+ ∂µθ
µ(φ; δλφ)

)

(2.11)

and note that the contribution of the boundary term θ must vanish if λ has compact

support, and the left-hand side vanishes because this is a symmetry.7 Thus,
∫

ddxE(φ)δλφ = 0 (λ with compact support). (2.12)

Now, we may vary this equation with respect to λ with compact support, and we find the

strong identity, using the notation in [44]

∆(E) = 0 ∆(·) = f(φ)(·)− ∂µ
(

fµ(φ) ·
)

, (2.13)

5We assume the action only has explicit dependence on φ and its first derivative; otherwise there could

be terms with higher derivatives of ρ. (This is the case for the Einstein-Hilbert action.) Note, however,

that when we restrict to ρ with compact support, one can integrate by parts “for free” and put δρS into

this form.
6We stray from the literature in using f instead of R here.
7Potential boundary terms cannot contribute for λ with compact support, by locality.
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where ∆ is the adjoint differential operator of δλ in (2.10), in the Sturm-Liouville theory

sense. This is essentially the approach taken in [41].8 This means the equations of motion

are not all independent, and therefore the Cauchy problem is not well-posed. Since we

demand that physical observables are uniquely determined, even in the classical theory and

even without going to the Hamiltonian formulation, we see that some degrees of freedom

are gauge.

As emphasized in [44], this statement has important implications. Since the operator

∆ was defined via integration by parts, we have

Eδλφ = λ(x)∆
(

E
)

+ ∂µS
µ(E;λ) = ∂µS

µ(E;λ). (2.14)

One sees that the current Sµ (defined by integrating by parts) satisfies the same equation

that the canonical Noether current jµ satisfies, with the important difference that Sµ

vanishes on-shell. Since the whole current vanishes, any conserved charges one might

define as
∫

Σ ⋆Sλ on some spacelike surface Σ identically vanish on-shell.

On the other hand, jµ and Sµ must (assuming a trivial de Rham cohomology) differ

by the divergence of a two-form

∂µ(j
µ(λ)− Sµ(λ)) = 0 =⇒ jµ(λ) = Sµ(λ) + ∂νk

νµ(λ), kµν(λ) = −kνµ(λ). (2.15)

Thus, the charge (defined for j) must be given by a codimension-2 integral computing the

flux of k through σ = ∂Σ, and the only nonvanishing charges are those for which λ is

nonzero on σ.

Let us note that classically speaking, favoring jµ over other possible “Noether currents”

that satisfy ∂µj
µ = Eδφ might seem ad hoc; however, when considering the path integral,

the current defined by (2.8) is singled out because it appears in the Ward identity. Similarly,

when discussing the classical theory, one may worry about the ambiguities introduced

by adding boundary terms to the action that do not change the equations of motion;

however, in the path integral, boundary terms can be absorbed into initial and final states,

Ψ0,f below.

The second approach is to take ρ(x) in the previous section to be an “indicator”

function for some subregion R of the spacetime M :

ρ(x) = 1R(x) =

{

1 x ∈ R

0 x /∈ R
. (2.16)

Let R be a simply connected compact region. Then (2.7) takes the form

δRS =

∫

R

ddx ∂µ(K
µ − θµ) = −

∫

∂R

dd−1xµj
µ w
= 0. (2.17)

Now, formally break ∂R into two disjoint regions: ∂R = Σ1 ∪ Σ2. It follows that
∫

Σ1

dd−1xµj
µ(λ)

w
= −

∫

Σ2

dd−1xµj
µ(λ), (2.18)

8Note that there are two more independent Noether identities one may find (for local symmetry trans-

formations with up to one derivative); however, the content is entirely contained in the final result in (2.22):

one gives the two-form k, and the other relates the current j to S and k (for constant λ).
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for all λ. Consider a λ that vanishes on ∂Σ1 = ∂Σ2 = σ. For every such λ, we can

define λ′ such that λ′ → λ in the neighborhood of Σ1 and λ′ → 0 in the neighborhood

of Σ2. (A similar argument was used in [48] to show that the charge for any small gauge

transformation must vanish.) Thus, it follows from locality that

∫

Σ1

dd−1xµj
µ(λ) =

∫

Σ1

dd−1xµj
µ(λ′)

w
= −

∫

Σ2

dd−1xµj
µ(λ′) = 0. (2.19)

To wit, the flux of j through any codimension one surface vanishes on-shell if λ vanishes

on the boundary of the surface:

∫

Σ
dd−1xµj

µ(λ)
w
= 0 for all λ → 0 on ∂Σ. (2.20)

It follows that (at least locally)

jµ(λ)
w
= ∂νk

νµ(λ), (2.21)

and therefore

jµ(λ) = Sµ(λ) + ∂νk
νµ(λ) Sµ(λ)

w
= 0. (2.22)

For our purposes, this is the characteristic feature of local symmetry.

2.4 Two-form currents

Unlike most of the relevant literature, the focus of our discussion here is not on defining

conserved charges; however, note that the Noether charge for local symmetry is the integral

of the two-form k over a (codimension-two) sphere at infinity. The two-form k and charges

are discussed in e.g. [44, 48, 49, 52–56], and general higher-form symmetries in [37, 59].

The fact that in a gauge theory charge is given by the flux of a two-form on a codimension-

two surface at infinity sounds like Gauss’s law for electromagnetism; however, there are

two important generalizations: first, we have an arbitrary function λ on σ, and second

this argument holds for any local symmetry without discussing the form of the equations

of motion.

For our purposes, the critical property of local symmetry is the fact that the Noether

current can be written in terms of a two-form k as in (2.22). For λ constant, one recovers

the conserved current that couples to the gauge field. If one can find λ, “asymptotic

reducibility parameters” in [44], for which the jµ(λ) flux weakly vanishes on the boundary

of spacetime and which respect the boundary conditions of the theory, then one may use k

to define asymptotically conserved charges. Generally, one expects to recover the constant

λ symmetry algebra in this way, but sometimes one finds enhanced symmetry as occurs

quite famously in asymptotic AdS3 [3] and in asymptotically flat space [1, 2].

In gravity, the two-form k in (2.22) gives the ADM and Bondi mass, and black hole

entropy [49, 60]. In the literature, there is much discussion of ambiguities in the definition

of the charge. In particular, the addition of a boundary term to the action does not change

the equations of motion, but shifts θ. Moreover, if one defines the current via ∂µj
µ = Eδφ,

then the two-form is ill-defined, and one could even use Sµ. As alluded to above, these

ambiguities are not an issue for Ward identities: boundary terms play a physical role in
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the path integral and are not arbitrary, and the current that enters into the Ward identity

is unique. One could still argue that k is only defined up to the addition of the exterior

derivative of the Hodge star of a one-form; however, we always integrate k over a compact

surface, so the ambiguity never contributes in any calculation.

3 Implications for QFT

Having reviewed the classical consequences of local symmetry, let us now turn to the

consequences for correlators in quantum field theory. Symmetries of the classical theory

become Ward identities for correlators in quantum field theory. As in the classical case,

there are a couple of twists when considering local symmetry. Previous discussions of

the two-form k focus on defining charges, which with a symplectic structure, translate

into statements in an operator language for QFT. We focus on using the path integral to

directly make statements about correlators, bypassing some of the complications inherent

to the operator approach.

Let us note that the Ward identities can receive quantum corrections from the sym-

metry transformation on the path integral measure (i.e., anomalies), an effect we leave for

future investigations.

3.1 Gauge fixing

In order to correctly define the path integral, we need to eliminate the enormous overcount-

ing of gauge equivalent configurations. As should be clear from classical considerations,

small gauge transformations (for which λ → 0 on ∂M) must describe physically equiva-

lent points in phase space. Following the Fadeev-Popov procedure, one imposes a gauge

condition on φ in such a way as to (ideally) slice through all gauge orbits once.

An important point, at this time, is to define “good” gauge fixing conditions. A

good gauge fixing condition should eliminate all of the local degrees of freedom, but keep

representatives of the large gauge transformations unfixed. For example, in Lorenz gauge,

the residual gauge parameters satisfy the Laplace equation �λ = 0. The residual gauge

condition becomes a well-posed boundary value problem, such that λ in the interior of a

region is uniquely determined by its value on the boundary. This is the critical property

of a good gauge condition:

λ(x) =

∫

∂M

dd−1y G(φ;x, y)λ(y), (3.1)

with Green’s function G(φ;x, y) becoming a delta function δ(y−y0) as x ∈ M approaches a

point y0 on ∂M . (We are focusing on infinitesimal gauge transformations that are connected

to the identity.) We put in φ in the Green’s function, because for interacting non-Abelian

theories the gauge fixing condition frequently depends on the background. This means we

have a field dependent gauge transformation, and λ should be thought of as an operator

in Ward identities. In particular, it cannot pull out of the path integral, among other

restrictions.
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In addition to the above, there are additional constraints on the space of allowed large

gauge transformations from demanding that boundary conditions are preserved on ∂M .

We shall discuss these as they arise in specific applications.

Let us emphasize that the Ward identities we write down are for the residual gauge

symmetry which is a symmetry of the gauge fixed action; there are no additional contribu-

tions from the gauge fixing term or ghost sector. This is a slightly different point of view

from much of the literature. A necessary condition for a gauge symmetry to be residual is

that it be large in the usual sense, but it is not sufficient. This is how we explain the reduc-

tion from BMS+ ×BMS− to BMS0 in [11]: one must solve the residual diffeomorphism

equation everywhere and propagate the boundary conditions from I − to I +.

In situations in which one uses more than one coordinate or gauge patch (as in most

discussions of BMS, in cases of nontrival topology, magnetic monopoles, etc), then one

must carefully match the gauge fixing conditions in the overlap. Different gauge patches

will have different Green’s functions G, but one should match the value of λ on the interface

between regions. This is all consistent with the idea that these Ward identities may be

written for subregions, either by slicing the path integral open or by considering the “sub-

theory” with boundary source terms. Basically, one should imagine pasting different Ward

identities together to get the identity for the entire theory.

3.2 Ward identities

We treat the path integral with initial and final wave function(al)s, Ψ0 and Ψf , along with

local insertions, Φj :

〈Φ1(x1) · · ·Φn(xn)〉Ψf ,Ψ0
=

∫

DφΨ∗

f (φf )Ψ(φ0)Φ1(x1) · · ·Φn(xn)e
iS[φ], (3.2)

where φ0,f are the values of φ on the “initial” and “final” boundary of M . We denote

these boundaries as Σ0 and Σf , respectively. For asymptotically flat spacetimes these will

be I − ∪ i− and I + ∪ i+.9 We include Ψf and Ψ0 explicitly for two reasons: first, as we

discuss below large gauge symmetries are typically spontaneously broken so that even in

the vacuum the transformation of the boundaries contributes; and second, as we briefly

revisit in the conclusion, we would like to be able to apply our results to causal diamonds

inside a larger spacetime.

Consider some local, infinitesimal transformation of the field φ: δφ. The measure Dφ is

invariant under shifts (ignoring the possibility of anomalies, for now), and thus performing

a change of variables in the path integral yields the Schwinger-Dyson equation,

∫

Dφ
[

δ
(

Ψ∗

f (φf )Ψ(φ0)Φ1(x1) · · ·Φn(xn)
)

+iδS
(

Ψ∗

f (φf )Ψ(φ0)Φ1(x1) · · ·Φn(xn)
)]

eiS(φ)=0,

(3.3)

9One has several choices on how to treat spatial infinity, i0, none of which seem to affect the physical

conclusions for reasonable assumptions.
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or

0 = δ 〈Φ1(x1) · · ·Φn(xn)〉Ψf ,Ψ0

=
〈

δ
(

Φ1(x1) · · ·Φn(xn)
)〉

Ψf ,Ψ0
+ 〈Φ1(x1) · · ·Φn(xn)〉δΨf ,Ψ0

+ 〈Φ1(x1) · · ·Φn(xn)〉Ψf ,δΨ0

+ i
〈

δS
(

Φ1(x1) · · ·Φn(xn)
)〉

Ψf ,Ψ0
. (3.4)

One gets additional anomaly terms if the measure is not invariant. Let us use the de-

formed symmetry transformation δρ with ρ given by the indicator function (2.16) for some

subregion R. Rewriting (2.7) as

δρS =

∫

M

ddx
(

jµ∂µρ+ ∂µ(ρK
µ)
)

, (3.5)

we see with ρ the indicator function, we have

δρS =

∫

∂M∩R

dd−1xµ
(

jµ +Kµ
)

−
∫

∂R

dd−1xµj
µ. (3.6)

Noting that ∂M ∩R = ∂M ∩ ∂R, and breaking ∂R = Σ ∪B with B the boundary part of

R, we get

δρS =

∫

B

dd−1xµK
µ −

∫

Σ
dd−1xµj

µ. (3.7)

See figure 1 for a depiction of the surfaces. When R is a compact region, one gets (2.17) as a

special case. All of this applies equally well to global or to local symmetry transformations.

In the case of local symmetry, however, we know that jµ takes the form (2.22), in which case

δρS =

∫

B

dd−1xµK
µ −

∫

Σ
dd−1xµS

µ −
∫

∂Σ
dd−2xµνk

µν , (3.8)

with K, S, and k all implicitly depending on λ.

If at this point one blindly writes down Ward identities using (3.4) without gauge fix-

ing, then one comes to a number of embarrassing conclusions, including that propagators

for gauge fields must identically vanish, cf. [45]. This is an artifact of using the improper

path integral, which integrates over all gauge redundancy. The solution is of course to cor-

rectly define the path integral via Fadeev-Popov and an appropriate gauge fixing condition.

Then, we may write down Ward identities for the residual gauge symmetry. (More general

identities can also be written down related to BRST symmetry; however, we focus on the

residual gauge symmetry here.) By definition, these are also symmetries of the gauge fixing

term and the Fadeev-Popov ghosts.

Let us now consider the simplest class of Ward identities: when the region R does not

extend to the boundary of M . In this case, we find

δρS = −
∫

Σ
dd−1xµ S

µ(λ), (3.9)

which recall weakly vanishes, so we should expect a somewhat trivial identity. For no

insertions in the path integral, we find
〈
∫

Σ
dd−1xµ S

µ(λ)

〉

Ψf ,Ψ0

= 0. (3.10)
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Σ

∂M

B

Figure 1. A depiction of the indicator 1R(x) for R having support on the boundary of the spacetime

manifold M . The support of R on ∂M is denoted B = R ∩ ∂M = ∂R ∩ ∂M . The interior portion

of ∂R is denoted Σ.

Also, if x1, . . . , xn are outside of the region R:
〈

Φ1(x1) · · ·Φn(xn)

∫

Σ
dd−1xµ S

µ(λ)

〉

Ψf ,Ψ0

= 0. (3.11)

On the other hand, consider the case where we have a single insertion inside the surface

Σ = ∂R, then

i

〈

Φ1(x1)

∫

Σ
dd−1xµ S

µ(λ)

〉

Ψf ,Ψ0

= 〈δλΦ1(x1)〉Ψf ,Ψ0
; (3.12)

Φ1 transforms under the gauge transformation. Note that this identity would be rather

shocking if we had not already discussed the gauge fixing condition which determines λ

in the neighborhood of x1 in terms of its value on Σ. This identity can be derived by

using (2.14) and the standard Schwinger-Dyson equation:

i

〈

Φ1(x1)

∫

Σ
dd−1xµ S

µ(λ)

〉

Ψf ,Ψ0

= i

〈

Φ1(x1)

∫

R

ddxµE
(

φ(x)
)

δλφ(x)

〉

Ψf ,Ψ0

=〈δλΦ1(x1)〉Ψf ,Ψ0

(3.13)

The identities with more insertions inside and outside of R, follow in the obvious way.

Now, let us consider the more interesting case when R extends to the boundary of M .

In this case, the two-form may make a contribution. Note that from (3.1) it follows that λ

vanishes everywhere unless λ has some support on ∂M . Let us start with no insertions in

the path integral, then one finds
∫

B

dd−1xµ 〈Kµ〉Ψf ,Ψ0
−
∫

∂Σ
dd−2xµν 〈kµν〉Ψf ,Ψ0

= −iδR,λ 〈Ψf |Ψ0〉 , (3.14)

Since there are no insertions inside Σ, we dropped the Sµ term. For most gauge theories,

the gauge symmetry is a symmetry of the Lagrangian without an additional boundary term,
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and therefore Kµ = 0. This is not true for Chern-Simons theories, however. Basically, in

the simplest case we find that the insertion of the integral of k is equivalent to shifting the

boundary conditions on the path integral.

We see that the three pieces of the Ward identity each play distinct roles: Sµ trans-

forms the interior insertions in the usual way; kµν shifts the boundary conditions of the

path integral; and Kµ is a source/nonconservation term from the noninvariance of the

Lagrangian. Note that this last piece can be treated as an additional shift of Ψ0,f .

3.3 Global identities

It is frequently convenient to use a trick with the Ward identity, to immediately get the

“global” form of the Ward identity.

Consider the path integral with n interior insertions as above, with |Ψ0〉 = |Ψf 〉 =

|0〉 where |0〉 is some fiducial vacuum state. (We are explicitly considering the case of

spontaneously broken symmetry, cf. [61–63].) Then choose R to encompass all of the

interior insertions and the entire past boundary, as shown in the figure 2. Then, the Ward

identity reads

〈δλ(Φ1 · · ·Φn)〉0,0 + 〈Φ1 · · ·Φn〉0,δλ0 = i 〈δR,λS (Φ1 · · ·Φn)〉 . (3.15)

On the other hand, consider the Ward identity for R̃, the complement of R:

〈Φ1 · · ·Φn〉δλ0,0 = i
〈

δR̃,λS(Φ1 · · ·Φn)
〉

. (3.16)

Then note that δR̃,λS = −δR,λS because the normal is oriented in the opposite sense. Thus

one arrives at the global version of the Ward identity for spontaneously broken symmetry:

〈δλ(Φ1 · · ·Φn)〉0,0 + 〈Φ1 · · ·Φn〉0,δλ0 + 〈Φ1 · · ·Φn〉δλ0,0 = 0. (3.17)

This identity was recently discussed in this context in [15].

To see roughly what this says, note that

δλΨ0[φ0] =

∫

Σ0

dd−1x
δΨ0[φ0]

δφ0(x)
δλφ0(x). (3.18)

For instance for Maxwell theory, let the wavefunctional for |0〉 be Gaussian, as is the case

for the free vacuum. Then, formally we see

δλΨ0[A] ≃ (const.)Ψ0[A]

∫

Σ0

dd−1xν (F
µν∂µλ), (3.19)

where Σ0 is the surface on which Ψ0 is defined. We see that the effect of shifting the

boundary is to insert a photon.

Obviously it is rather awkward to be working explicitly with Ψ0 and Ψf ; when demon-

strating the connection between the Ward identity and the soft theorem below, we take

a different approach, more precise and closer to that of [4–6, 8–13]. Instead, choose R to
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R̃

R

Φ1

Φ2

Φn−1

Φn

(. . .)

Figure 2. A depiction of the region R and its complement R̃ as used to find the global Ward

identity (3.17). R encloses all interior insertions and the entire past boundary Σ0.

enclose all interior insertions and not initial and final boundaries where Ψ0 and Ψf are

defined. The Ward identity, in terms of j, reads

〈δλ(Φ1 · · ·Φn)〉0,0 = i

〈(
∫

Σ2

⋆j −
∫

Σ1

⋆j

)

Φ1 · · ·Φn

〉

0,0

. (3.20)

Now we can push Σ2 arbitrarily close to Σf and Σ1 arbitrarily close to Σ0. In the final

step, one reinterprets the integral of j on the boundary as the insertion of a (soft) particle.

See the explicit examples below.

3.4 Commutators

We can compute commutators using the Ward identity in a way that should be reminiscent

of computations in radially quantized two-dimensional CFT. Define three regions R1,2,3

such that

R1 ⊂ R2 ⊂ R3, (3.21)

and all three regions have spacelike boundary surfaces Σ±

1,2,3, as pictured in figure 3. The

details are not important, so long as the boundaries of the regions keep the same time-

ordering. We want to imagine that the three boundaries are close together, so that they

all share the same enclosed insertions.

A single application of the Ward identity tells us that

i

〈

∫

Σ+
1 −Σ−

1

⋆jλ1(. . . )

〉

= 〈δλ1(. . . )〉 , (3.22)
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Σ
+
3

Σ
+
2

Σ
+
1

Σ
−

1

Σ
−

2

Σ
−

3

(. . .)

Figure 3. A depiction of the boundaries of R1 ⊂ R2 ⊂ R3 as used to compute commutators

using the Ward identity. It is useful to consider three surfaces to show (3.26), which relates the

commutator to one symmetry transformation of the other charge.

where (. . . ) denotes some insertions inside R1. Applying the Ward identity a second time

for R2 and gauge parameter λ2, one arrives at

−
〈

∫

Σ+
2 −Σ−

2

⋆jλ2

∫

Σ+
1 −Σ−

1

⋆jλ1(. . . )

〉

= 〈δλ2δλ1(. . . )〉 . (3.23)

To get the other order, one can use R3 and R2 as

−
〈

∫

Σ+
3 −Σ−

3

⋆jλ1

∫

Σ+
2 −Σ−

2

⋆jλ2(. . . )

〉

= 〈δλ1δλ2(. . . )〉 . (3.24)

We can write this as two separate identities involving the commutator. First,

〈

∫

Σ+
2 −Σ−

2

⋆jλ2

∫

Σ+
1 −Σ−

1

⋆jλ1(. . . )

〉

−
〈

∫

Σ+
3 −Σ−

3

⋆jλ1

∫

Σ+
2 −Σ−

2

⋆jλ2(. . . )

〉

=〈[δλ1 , δλ2 ](. . . )〉 .

(3.25)

This can be used to understand the nontrivial consecutive double soft limit of Yang-Mills [6].

The second identity is

〈

∫

Σ+
2 −Σ−

2

⋆jλ2

∫

Σ+
1 −Σ−

1

⋆jλ1(. . . )

〉

−
〈

∫

Σ+
3 −Σ−

3

⋆jλ1

∫

Σ+
2 −Σ−

2

⋆jλ2(. . . )

〉

= −
〈

δλ1

(
∫

Σ+−Σ−

⋆jλ2

)

(. . . )

〉

=

〈

δλ2

(
∫

Σ+−Σ−

⋆jλ1

)

(. . . )

〉

, (3.26)

where the last line follows from our freedom to slide the surfaces up and down as long as

one does not pass over other insertions.
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3.5 Central terms

As should be familiar from Brown-Henneaux [3], the algebra of large gauge transformations

may develop central terms. These terms are not one-loop effects, but are evident at the

semiclassical level. They arise from δλ1

∫

⋆k(λ2) [44]. See [64, 65] for a path integral

derivation of the central term for asymptotically AdS3 gravity. We rephrase the argument

in our language for the general case.

The basic issue is that the bracket on the boundary does not match with the bracket

of residual gauge transformations in the interior. From (3.25) and (3.26), we have

〈[δλ1 , δλ2 ](. . . )〉 =
〈

δλ2

(
∫

Σ+−Σ−

⋆jλ1

)

(. . . )

〉

. (3.27)

One would like to rewrite the right-hand side using something like

δλ2

∫

Σ+−Σ−

⋆jλ1

?
=

∫

⋆j[λ1, λ2], (3.28)

where we define the bracket via the commutator

[δλ1 , δλ2 ]φ = δ[λ1,λ2]φ. (3.29)

In general it is not possible to write (3.28) in the path integral: for λ1 and λ2 satisfying

the residual gauge condition, the bracket [λ1, λ2] need not; however, there is a residual

gauge transformation taking the same value as [λ1, λ2] on the boundary, by using (3.1).

Let us call that residual gauge transformation [λ1, λ2]. Note that the (classical) charge is

the same for [λ1, λ2] and [λ1, λ2], since the charge only depends on the boundary value of

λ. Thus, the central charge is given by

Kλ1,λ2 = δλ2

(
∫

⋆jλ1

)

−
∫

⋆j
[λ1, λ2]

. (3.30)

4 Examples

In this section we demonstrate the puissance of Noether’s second theorem in conjunction

with the path integral formalism to derive a couple of results in gauge theory and gravity.

4.1 Abelian gauge field

Let us begin by investigating Maxwell theory. A general gauge transformation for the U(1)

vector field Aµ is given by

Aµ(x) → Aµ(x) + ∂µλ(x) (4.1)

and the action is

S1 =

∫

ddx L1 = −1

4

∫

ddx FµνF
µν . (4.2)

The equations of motion are of course Eν = ∂µF
µν = (⋆ d⋆F )ν . Now, use the statement of

Noether’s second theorem to derive a current and a two-form from the action. As explained

before, variational arguments yield

Eµ(A)δλAµ = λ(x)∂µE
µ + ∂µS

µ(Eµ, λ) (4.3)
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with ∂µE
µ = ∂µ∂νF

µν = (⋆ d2 ⋆ F ) = 0 and Sµ = λ∂νF
νµ = λEµ. By localizing the gauge

transformation using a function ρ(x) we can find a weakly conserved current for any gauge

transformation

jµ = ∂νλF
νµ = [⋆(dλ ∧ ⋆F )]µ. (4.4)

As shown in the general treatment, this current, together with the weakly vanishing current

Sµ allows us to define the two-form

kλ = λF =
1

2
kλ,µνdx

µ ∧ dxν =
1

2
λFµνdx

µ ∧ dxν (4.5)

which is the universal two-form associated with gauge transformations of the U(1)

gauge field.

Adding an arbitrary Lagrangian Lmatter = L(DµΦ
I ,ΦI) where ΦI minimally couples

to the photon in a gauge invariant way10 will not actually alter kλ since the possible

contributions cancel out when subtracting the weakly vanishing current Sµ from the weakly

conserved current jµ. This can be shown rather easily as follows. We take a general

variation of the matter Lagrangian L(DµΦ
I ,ΦI). Then

δL(DµΦ
I ,ΦI) = δAµ

δ

δAµ
L(DµΦ

I ,ΦI) + δΦJ δ

δΦJ
L(DµΦ

I ,ΦI) (4.6)

where we have variational derivatives on the right-hand side. The second term on the right

hand side encodes the equations of motion EJ of the matter fields. These take part in

Noether’s second theorem and do not contribute to the two-form kλ. The first term is part

of the equation of motion of the photon field and corresponds to the set of electric currents

in the theory JΦI . These currents appear in the weakly conserved current j and the weakly

vanishing current S with the same sign. We conclude that they cannot contribute to the

two-form kλ. The two-form therefore takes the same form as in the free Maxwell theory.

To summarize: while j and S vary, kλ is unchanged by minimally coupled matter.

As we have discussed in section 2.3, the charges for small gauge transformations must

vanish; however, it is still possible to associate a charge for large gauge transformations, if

the manifold on which the theory is formulated has a boundary, and large gauge transfor-

mations do exist. If both conditions are fulfilled we choose the indicator function ρ to take

nonzero values on the boundary. A charge is given by

Q(λ) =
1

2

∫

σ

dd−2xµνλFµν (4.7)

where σ = R∩∂M , a codimension two surface of the space time, respectively a codimension

one surface on the boundary. In the case of flat Minkowski space, we have a choice between

letting σ ⊂ i0 and σ ⊂ I . Ref. [4] have shown that for (massless) QED, there is an infinite

set of additional charges when looking at I . These charges follow from choosing σ = I
+
−

where λ can approach finite values, using Stokes’ theorem to integrate over all of I , and the

10I is an index that enumerates the set of matter fields, which can contain real and complex scalars as

well as fermions. ΦI may have arbitrary charge under the global part of the gauge symmetry.

– 16 –



J
H
E
P
0
2
(
2
0
1
6
)
0
3
1

currents of section 2.3. From the gauge invariance of the field strength F follows somewhat

unsurprisingly that the algebra of charges is Abelian

[Q(λ1), Q(λ2)] = δ1Q2 = −δ2Q1 = 0. (4.8)

This implies that the consecutive double soft limit of photons is independent of the order

in which they are taken.

In theories with matter, we still use the two-form (4.7), but using Stokes’ theorem now

requires us to restore the electric currents

Jµ =
δ

δAµ
L(DµΦ

I ,ΦI), (4.9)

to make Sµ weakly vanishing. The charge is then calculated via
∫

σ

⋆k
w
=

∫

Σ
⋆j =

∫

Σ
dd−1xµ(∂νλF

νµ + λJµ); (4.10)

compare with [8].

The soft theorem. We wish to connect the Ward identity for residual gauge symmetry to

the soft theorem, as first established in [12]. This should hopefully highlight the advantages

of the path integral approach developed here. Start with the Ward identity as written

in (3.20)
〈(

∫

Σ2

⋆j −
∫

Σ1

⋆j

)

Φ1 · · ·Φn

〉

= −i 〈δλ(Φ1 · · ·Φn)〉 , (4.11)

with initial and final states some particular vacuum and the insertions Φ1, . . . , Φn having

charges q1, . . . , qn. Let us push Σ2 up against I + and Σ1 against I −, then since the two

surfaces are after and before all insertions, they can be moved out of the time ordering to

act directly on the vacuum:
〈(

∫

Σ2

⋆j −
∫

Σ1

⋆j

)

Φ1 · · ·Φn

〉

=

(

〈0|
∫

Σ2

⋆j

)

T (Φ1 · · ·Φn) |0〉−〈0|T (Φ1 · · ·Φn)

(
∫

Σ1

⋆j |0〉
)

.

(4.12)

In general the current j takes the form

jµ = F νµ∂νλ+ λJµ, (4.13)

where Jµ is the matter current that sources Maxwell’s equation d⋆F = ⋆J . By assumption,

the vacuum does not have any charged matter, so 〈0| Jµ |0〉 = 0. Let us look at the action

of the integral insert on the vacuum. Following [4, 8], we work in coordinates

ds2 = −dv2 + 2dvdr + r2dΩ2, (4.14)

with gauge condition

Ar = 0, (4.15)

and boundary condition

Av(r → ∞) = 0. (4.16)
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The residual gauge freedom satisfying the boundary condition is given by arbitrary func-

tions on the sphere λ = λ(θ). Then,

∫

Σ1

⋆j |0〉 =
∫

∞

−∞

dv

∫

dΩ r2
(

FAr∂Aλ+ λJr
)

|0〉 . (4.17)

The vacuum has photon zero modes, but should not have matter degeneracies, thus

∫

dv Jr |0〉 = 0. (4.18)

This leaves us with the first term, matching with the heuristic argument in section 3.3.

Since there is no v dependence, this should be a soft photon. Note that asymptotically

FAr = − 1

r2
γAB(FvB + FrB) = − 1

r2
γAB

(

∂vAB +O(
1

r
)

)

. (4.19)

Then,
∫

Σ1

⋆j |0〉 = −
∫

∞

−∞

dv

∫

dΩ γAB(∂vAB)(∂Aλ) |0〉 . (4.20)

Plugging this and the corresponding result for Σ2, and using LSZ reduction for the in-

sertions Φ1, . . . , Φn reproduces equation (7.6) of [4], in which He et al. show that it is

equivalent to the soft photon theorem. In particular, one should regulate the above inte-

gral by putting in a soft Fourier mode eiωv, and then take the limit as ω goes to zero. Let us

note that the antipodal identification in [4] just results from ensuring that one is using the

same residual gauge transformation on I − and on I +. It is worth emphasizing that the

surface Σ1 necessarily cuts across past timelike infinity, where massive particles originate;

thus, our result immediately applies to both massless and massive charged matter.

Shift symmetries and large gauge symmetries. The reader may allow us a quick

digression before continuing. When studying low-energy effective Lagrangians, a very im-

portant tool for making general statements about the existence of light or massless modes

with weak low-energy interactions is Goldstone’s theorem. Whenever a global symmetry is

spontaneously broken, that is, when it is a symmetry of the action but not of the vacuum,

a gapless particle will appear. In relativistic theories, this translates to the masslessness of

the Goldstone particle. This particle is characterized by an inhomogeneous transformation

— a shift symmetry11 — of the field, e.g.,

φ → φ+ a (4.21)

in the easiest case of a Goldstone scalar. Since shift symmetries are global symmetries of

the effective action, Noether’s first theorem applies. The associated current jµ is linear

in the field at leading order. A corollary of the existence of a shift symmetry is that

the effective Lagrangian may only depend on the Goldstone particle via derivatives ∂µφ

11The name derives from their action as a translation in field space or equivalently, an infinitesimal shift

of the vacuum expectation value of the progenitor field. Note that in the case of a scalar field derived from

spontaneous symmetry breaking, the shift a is periodic with period 2π.
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of the field.12 Additionally, the field decouples entirely from the theory in the soft limit,

a statement usually known as “Adler’s zero”.13 Nonlinear corrections in the fields may

appear at higher orders in the coupling constant.

An elementary example is the massless scalar. Remember that the action

S0 =

∫

ddx L0 = −1

2

∫

ddx ∂µφ∂
µφ (4.22)

is invariant under φ(x) → φ(x) + a. The corresponding current is

jµa = a∂µφ (4.23)

which is obviously weakly conserved since

∂µj
µ
a = aEφ

w
= 0 (4.24)

in the notation used in section 2. Using canonical quantization for φ(x) we see that the

shift symmetry connects the vacuum |0〉 with a one particle state |1〉, i.e.,

〈0|jµλ |1〉 = a〈0|∂µφ(x)|1〉 = apµeip.x (4.25)

as required by Goldstone’s theorem and the matrix element vanishes in the strict soft limit.

Current conservation 〈0|∂µjµλ |1〉 = 0 holds.

It has long been known that Abelian gauge symmetry implies the masslessness of the

associated particles. Thus, the photon field is gapless and we want to interpret gauge

symmetry as a shift symmetry of the gauge field. The current which connects the vacuum

|0〉 with the one particle state is known [37, 66] to be the field strength Fµν which satisfies14

〈0|Fµν(x)|ǫ, p〉 = (pµǫν − pνǫµ)e
ip.x; (4.26)

clearly, in the limit p → 0, this matrix element vanishes. The statement of current conser-

vation is the equation of motion d ⋆ F
w
= 0 which is trivially weakly conserved and current

conservation holds also in the expectation value. Obviously, we would like to connect this

current with the two-form (4.5). In clear contrast with the massless scalar, where the shift

symmetry was a global symmetry, here the shift symmetry is part of the gauge symmetry, as

Aµ → Aµ + ∂µλ (4.27)

such that ∂µλ = (const.) More precisely, it has to be part of the residual part of gauge

symmetry. We are assuming Lorenz gauge here; however, while the constraint equation on

the residual gauge varies depending on gauge, the content of the residual gauge symmetry

should be unaffected by the choice of gauge. The residual gauge freedom are those functions

λ which satisfy �λ(x) = 0, i.e., harmonic functions. These are the only functions λ

12In light of the subsequent discussion, we may understand ∂µφ, in a loose sense, as the field strength

associated with the field φ.
13Essentially because any interaction is proportional to some power of the momentum of the particle.
14This seems distinct from the idea that photons and gravitons are Goldstone bosons of spontaneously

broken Lorentz invariance, see e.g., [67].
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which generate symmetries of the fully gauge fixed action with ghost action but aren’t

(necessarily) symmetries of the vacuum. All the asymptotic symmetries which generate

the soft theorems fall into this category. We want to emphasize again that for a complete

discussion of this topic, it is absolutely necessary to look at the full gauge fixed action with

ghost action.

The two-form kµν = λFµν as a one-form current in the language of [37] satisfies exactly

equation (4.26) when λ is removed from both sides of the equation. In the case of the

free Abelian field, this leads one to the conclusion that the photon satisfies all conditions

of Goldstone’s theorem.15 When coupling the theory to some charged matter, the two-

form survives since gauge symmetry ought to be conserved. The associated current j gets

modified by the electric currents of the charged matter. If we interpret the shift symmetry

δA = (const.) as part of the residual gauge symmetry, every gauge symmetric Lagrangian

retains the shift symmetry of the free Abelian gauge field. As a consequence, we find that

the photon continues to behave like a Goldstone mode even when coupling it to matter

and stays, importantly, massless.

4.2 Yang-Mills theory

Consider now Yang-Mills theory with gauge group G. It is an easy exercise to use Noether’s

second theorem on theories with non-Abelian gauge symmetries. One finds essentially the

same two-form current as in the Abelian case except that now we also need to sum over

adjoint indices. The derivation follows through using the gauge transformation

δλA = d∇λ (4.28)

with the gauge covariant derivative on forms

d∇ = d+A (4.29)

and the non-Abelian gauge parameter λ = λaT a. Since the Lagrangian is now

LYM
1 = −1

2
tr ⋆F ∧ F, (4.30)

where F = (d∇)2 it is easy to see that ⋆S = trλd∇ ⋆ F and ⋆j = tr(d∇λ ∧ ⋆F ) such that

the two-form k is just

k = trλF (4.31)

using partial integration and the trace rule tr(A[B,C]) = tr([A,B]C). To define nontrivial

charges for the case of residual (large) gauge transformations [6, 12] we may integrate

over a codimension two surface σ ⊂ I to define a charge for a gauge transformation with

parameter λ

Q(λ) =

∫

σ

⋆ trλF. (4.32)

15One may remark that the S-matrix of the free photon is the identity, which means that the photon

trivially “decouples”.
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Notice that, unlike in Abelian gauge theory, the YM field strength F is not gauge invariant

but transforms as

F → [λ, F ] (4.33)

under infinitesimal gauge transformations. This leads to nontrivial commutators of two

charges. We may demonstrate this in the linearized theory over some background A.

There A = A+ a, the covariant derivative d∇ = d∇+ a = d+A+ a, and δλa = d∇λ. With

these, the two-form is given by

k = tr
(

λd∇a
)

. (4.34)

Thus, the commutator of Q(λ1) and Q(λ2) — see section 3.4 — is given by

[Q(λ1), Q(λ2)] = δ1Q(λ2) = Q([λ1, λ2]) +

∫

σ

[λ1, λ2] ⋆ F (4.35)

where we recognize the last term is independent of the dynamical field a. It therefore

is a central charge Kλ1,λ2 [44] that depends on the background field configuration at I .

Under usual, physical assumptions, F should be 0 at null infinity, and we don’t expect any

nontrivial central charge.

It is possible to derive the soft theorems for gluons from the existence of large (residual)

gauge symmetries in this way. Since the calculation is essentially analogous to the one

presented above for U(1), we refrain from doing so here. We may also use this result to

relate the single soft limit to the commutator of the consecutive double soft limit, which

has been investigated in [6, 24] and shown to be nontrivial whenever two gluons of the

opposite helicity are taken to be soft in 4D. Using (3.25) with the appropriate current of

linearized YM theory, ⋆j = d∇λ ∧ d∇a, one quickly relates the commutator of the soft

limits on the left hand side to the commutator [δλ1 , δλ2 ]. Since the theory is non-Abelian

this commutator is nontrivial.

As a last comment, note that a conclusion about gluons as Goldstone modes similar to

the case of Maxwell theory is not possible in the full non-linear theory. In particular, since

F is now gauge covariant rather than gauge invariant, we cannot use it to define a two-form

current as above. In the linearized case, this interpretation become available again.

4.3 p-form fields

We may also investigate p-form fields to find the Noether charge associated with their

gauge symmetry. In d dimensions, a p-form A(p) has a (p+ 1)-form field strength

F (p+1) = dA(p). (4.36)

There exists a gauge transformation δΛA
(p) = dΛ(p−1) under which the field strength is

invariant. Notice that the gauge parameter itself has a gauge transformation δΛ(p−1) =

dΛ(p−2) and so on. Accounting for these additional redundancies, there are
(

d−1
p

)

indepen-

dent components — off-shell degrees of freedom — in a p-form field A(p). An action for

the free p-form field is given by

S = −1

2

∫

M

⋆F (p+1) ∧ F (p+1). (4.37)
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This action is obviously invariant under the gauge variation of the field A(p) and we may

use a localized transformation and Noether’s second theorem to derive

δR,ΛS = −(−1)d−p−1

∫

∂R

⋆F (p+1) ∧ dΛ(p−1) − (−1)d−pd ⋆ F (p+1) ∧ Λ(p−1) (4.38)

The statement of Noether’s second theorem is d2 ⋆ F (p+1) = 0, which is a more general

form of the statement for Maxwell theory. It easy to see that (4.38) is a total derivative

once again and thus

δR,ΛS = −
∫

∂R

d[⋆F (p+1) ∧ Λ(p−1)]. (4.39)

The two-form k is therefore given by

k = ⋆(⋆F (p+1) ∧ Λ(p−1)) =
1

2
Λµ1···µ(p−1)Fµ1···µ(p−1)ρσdx

ρ ∧ dxσ. (4.40)

As for Maxwell theory, where k a special case of (4.40), fields coupled to the p form need

to obey the Abelian gauge symmetry of A(p) if the theory is to stay consistent. The two-

form k is therefore unaffected by other additional fields, however, the associated current

j is once again altered by additional terms. Additionally, the commutator of charges is

Abelian again.

As we discussed before in section 3, there are nontrivial Ward identities whenever there

are residual gauge transformations yielding finite contributions from the variation of the

action. To the author’s knowledge, the soft behavior of p-forms has only been studied in

the form of the Kalb-Ramond field in the literature [25], where it has been shown that

there is no leading soft factor, but a type of subleading soft factor. From a purely technical

point of view, it is the antisymmetry of the Kalb-Ramond field’s polarization tensor which

excludes a leading soft factor.

Assuming a Lorenz-type gauge condition, ⋆ d ⋆B(2) = 0, the residual gauge parameter

Λ(1) satisfies the Proca equation [68]

⋆ d ⋆ (dΛ(1)) = 0 (4.41)

which clearly has nontrivial solutions. Thus one would expect that there are nontrivial

charges from a subsector of the gauge symmetry of the Kalb-Ramond field. At this stage,

we have made no attempt to investigate these residual gauge symmetries of the Kalb-

Ramond field in detail nor to connect them with the soft behavior of the Kalb-Ramond

field. In general, the existence of interesting charges for p-forms necessarily depends on

the number of dimensions d and the rank p. The two-form (4.40) can also be used to

investigate 10D supergravity where large gauge transformations of Ramond-Ramond fields

may create nontrivial Ward identities.

4.4 Gravity

Let us turn now to gravity and change the focus slightly. While many of the results found

in gauge theories hold, we would like to investigate some effects specific to gravity at this

point. The reader may have noticed that we omitted the Rarita-Schwinger field which also
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has a gauge symmetry. We shall cover supergravity and this fermionic field in particular

in a subsequent publication. We should note that the historical context of [41] was the

question of how to define energy in general relativity [43].

In this section we investigate the Noether two-form that we receive from Noether’s

second theorem when used on the diffeomorphism symmetry of a linear metric perturbation

in Einstein gravity. Interestingly, the two-form Noether charge for diffeomorphisms is well

known in the literature [44, 49, 60, 69] and has been used for a wide variety of problems.16

It is connected to the entropy of a black hole [60] and has been connected with information

theoretic measures [70]. It has been used to derive the soft graviton theorem [5, 9, 11, 13].

The fact that it can be derived with the help of Noether’s second theorem, however, has

not been sufficiently emphasized in the literature.

Starting with the Einstein-Hilbert action with Gibbons-Hawking-York boundary term

S = SEH + SGHY SEH =
1

2κ2

∫

M

ddx
√−gR SGHY =

1

κ2

∫

∂M

dd−1x
√−γK, (4.42)

where γ is the metric on ∂M , one may follow the procedure outlined in section 2 and then

write Ward identities as in 3. There is an additional complication, beyond the treatment

there, in that the action depends on two derivatives of the metric. This leads to a ∇µ∇µρ

term in (2.7). One might consider avoiding this issue by switching to a first-order for-

mulation; however, the extra term affects neither the Ward identity nor the two-form k,

assuming the boundary term is consistent with the variational principle. One finds the

two-form in [49]:

kµν =
1

2κ2
(∇µξν −∇νξµ). (4.43)

In order to avoid several complications, it is convenient to work with linearized gravity

instead of the full nonlinear theory. Indeed, we don’t know how to work with the path

integral of the nonlinear theory, in any case.

Assuming a perturbation hµν = gµν − gµν where we use gµν as a classical vacuum-like

background and gµν a metric that satisfies the nonlinear equations of motion of gravity

with some matter energy-momentum tensor Tµν

Rµν −
1

2
gµνR = κ2Tµν , (4.44)

the equations of motion for the perturbation are given by

Eµν =
(

∇µ∇νh+∇λ∇λh
µν − 2∇λ∇(µhν)λ − gµν(∇λ∇λh−∇λ∇ρh

λρ)
)

. (4.45)

More generally, a linearized equation of motion for gravity coupled to matter is given by

Eµν =
1

2κ2

(

RL
µν −

1

2
gµνR

L

)

= (Tµν + tµν) = Tµν (4.46)

where superscript L indicates linearized quantities. We also included tµν , which are the

higher order terms of the expansion of the Einstein tensor.

16See also e.g., [71, 72].
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Using Noether’s second theorem

2Eµν∇µξν = ∇µ(2E
µνξν) = ∇µS

µ(E, ξ) (4.47)

and the current jµ (which can be derived from a rather tedious calculation), we find the

two-form

kµν =
1

2κ2

(

ξρ∇σH
ρσνµ +

1

2
Hρσνµ∇ρξσ

)

(4.48)

with

Hµανβ =
1

2

(

hανgµβ + hµβgαν − hαβgµν − hµνgαβ
)

(4.49)

and hµν is the trace reversed metric. We also could have perturbed eq. (4.43) for this

expression. The same expression may be found in [44] and was obtained originally in [73].

We excluded the energy-momentum tensor Tµν from the calculation because it will not

appear in kµνξ . The quantity Hµναβ is known as the superpotential in the literature and it

enjoys the same symmetries as the Riemann tensor Rµναβ . Again, the leading order of this

two-form is linear in the field hµν , suggesting that the linear perturbation to the metric

field behaves like a Goldstone boson in the sense explained above. One could have included

a cosmological constant in the action; the two-form k would not have been changed.

Let us mention that for the case of a Killing vector of the background

∇µξ
i
ν +∇νξ

i
µ = 0 (4.50)

where i enumerates the number of Killing vector fields, one finds that kµνξ is the quantity

traditionally used to calculate conserved charges at spacial infinity i0 (let k be a tensor

density by multiplying with
√−g)

M i =

∫

σ0

ki. (4.51)

Crucially, then,

jµ = ∇νk
µν = T µνξν . (4.52)

Note that we do not need to prove that the conserved quantity associated with the Killing

vectors are codimension two surface integrals because it is manifestly the divergence of a

two-form by Noether’s second theorem.

There is a general path integral formalism available for metric perturbations of Einstein

gravity [74] which we use here to make contact with the soft theorem [11] at tree level. For

the large diffeomorphisms in asymptotically flat space, or equivalently asymptotic Killing

vectors satisfying ∇(µξν) = O(1/r) at I , the formalism developed in section 3 together

with [11] implies choosing ρ such that we are integrating the two-form over the surface σ

(a sphere) at I
+
−

Q[ξ] =

∫

σ

⋆kξ (4.53)
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this integral can then be turned into an integral over all of17 I where

Q(ξ) =

∫

I

⋆(⋆ d ⋆ kξ) (4.54)

=
1

2κ2

∫

I

dSν

(

2κ2T µρξρ +∇µ

(

Hνρσµ +
1

2
Hρσνµ

)

∇ρξσ +
1

2
Hνµρσ(∇µ∇ρξσ −R

κ
µρσξκ)

)

We used once again kξ =
√−g k. In the second line, we pulled out the current Sµ

using the linearized Einstein equations in the form (see e.g. [73])

2κ2T µν = ∇α∇βH
µναβ +

1

2
R

ν
ραβH

µραβ . (4.55)

Clearly, this result is more involved than the case when ξ is a Killing vector. In the

Killing vector case, one can use that ∇α∇βξρ = Rλ
αβρξλ to make the last term vanish. For

asymptotically flat space times, this term is still very suppressed at asymptotic infinity

since the background Riemann tensor Rµναβ behaves at least as O(r−3).

We can now use section 3 with the path integral for “quantum” gravity, insert our

result from above and retrieve Weinberg’s soft theorem in the case of an asymptotically

flat manifold. The procedure is very similar to what was presented in subsection 4.1. One

first chooses Bondi coordinates and specializes ξ to BMS supertranslations. For these, the

leading term at the boundary is ξv = T , where T is an arbitrary function of the coordinates

of the sphere at infinity.

To make contact with [11], we note that we can use section 3 with the path integral for

“quantum” gravity [74], insert our result from above and retrieve Weinberg’s soft theorem

in the case of an asymptotically flat manifold. The procedure is very similar to what was

presented in subsection 4.1. One first chooses Bondi coordinates where

gµνdx
µ ⊗ dxν = −du2 − 2dudr + 2r2γzz̄dzdz̄ (4.56)

hµνdx
µ ⊗ dxν = 2

mB

r
du2 − 2Uzdudz − 2Uz̄dudz̄ + rCzzdz

2 + rCz̄z̄dz̄
2 (4.57)

and specializes ξ to BMS supertranslations

ξµ∂µ = T∂u − 1

r
(Dz̄T∂z̄ +DzT∂z) +DzDzT∂r + o(r−1) (4.58)

where T = T (z, z̄). With these coordinates, the only component of Hµνκλ appearing in

Q(ξ) = δR,ξSEH is Hurur = −h
uu
grr = −2mB

r
. For the BMS transformations, the leading

term at the boundary is ξu = T such that we end up with

Q(ξ) =
1

κ2

∫

σ

dzdz̄ γzz̄TmB (4.59)

which we recognize as the BMS charge defined in [11]. We could also have started

from (4.54) to get to the result integrated over all of I ±. As before, we may insert

this into the path integral for a set of insertions Φi by the method described in 3. The

resulting identity takes the form of (3.20) after rewriting Q(ξ) as an integral over all of I .

We recognize the Ward identity as the leading soft graviton theorem.

17Note, that we are assuming good behavior when approaching timelike infinity along I in the spirit

of [11].
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5 Discussion

Noether’s second theorem, is an old but somewhat underappreciated tool, which acquires

new significance in light of recent developments. By combining the robustness of the path

integral formalism with the elegance of Noether’s second theorem we find that writing

down Ward identities for residual gauge symmetries becomes essentially automatic. We

have focused on gauge symmetries for fields that obey bosonic statistics, but we will treat

the case of the Rarita-Schwinger field as the gravitino in supergravity in an upcoming

publication. There a host of new and interesting effects appears. Much like in the case of

the BMS symmetry, which contains Poincaré transformations, we find that the enhanced

symmetry contains the usual supersymmetry charges of the supergravity background. The

resulting Ward identities form the soft theorem of the gravitino.

Our approach sheds some light on interesting connections that emerge from the liter-

ature. Especially important is the interpretation of some residual gauge symmetries as a

shift symmetry in the spirit of Goldstone’s theorem, as well as the connection between Stro-

minger et al’s highly influential soft graviton theorem as a consequence of BMS symmetry

and Wald’s important discovery that the Noether two-form integrated over the bifurcation

two-sphere is the entropy of the black hole.

Additionally, the current investigation opens the path to the study of anomalies for

residual gauge symmetries. By anomaly, we mean actual one-loop effects connected to the

path integral measure as opposed to classical effects like shifts of the boundary conditions

of the path integral, which lead to classical central charges. We know that the subleading

soft theorem in gravity as well as the leading and subleading soft theorem in YM theory

get corrected at the first loop level from the study of scattering amplitudes. We conclude

that some of the residual gauge symmetries cannot survive quantization. This is not a

problem, since they are not traditional gauge symmetries; by definition they are not gauge

fixed out of the path integral measure. An anomaly in these symmetries, thus, does not

signal the breakdown of the theory.

More speculatively, we alluded several times to the possibility of slicing open the path

integral and writing Ward identities for subregions of the total spacetime. It is desirable

to explore how that works in detail, and its physical consequences. One may also con-

sider transformations involving the Fadeev-Popov ghosts, which ultimately should lead to

statements in the BRST and BV formalisms.
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