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1 Motivation

The experimental bounds on lepton flavor violating processes will be greatly improved in

the near future [1]. For lepton flavor violating τ decays, such as τ → `γ and τ → 3 `, the ex-

pected future sensitivity is about one order of magnitude below their present limits, which

already exclude branching ratios larger than about 10−8. In the µ-e sector, current limits

are more stringent and the expected improvements are more significant. For µ→ 3 e a sen-

sitivity four orders of magnitude below the present bound is foreseen, while the limit on µ-e

conversion in nuclei could be increased by up to six orders of magnitude. Even for µ→ eγ,

which currently provides the strongest bound, a one order of magnitude improvement is

expected in the near future. Given that the present limits on some of these processes are

already very impressive and can restrict the parameter space of new physics models in an

important way, one can only wonder about the impact that these future experimental im-

provements might have on such models. Could they exclude some scenarios? How will they

affect their viable parameter space? In this paper, we address precisely these issues within

a specific and well-motivated extension of the Standard Model: the scotogenic model.

The scotogenic model [2] is probably the simplest TeV scale model that can simulta-

neously account for neutrino masses and dark matter. It contains three additional singlet

fermions, Ni (i = 1, 2, 3), and another scalar doublet, η, all assumed to be odd under a

Z2 symmetry. Neutrino masses are generated via 1-loop diagrams mediated by the odd

particles, whereas the dark matter candidate is either the lightest singlet fermion or the

neutral component of the scalar doublet. In this model, lepton flavor violating processes,

such as µ → eγ, τ → µγ, and µ → 3 e, take place at 1-loop, via diagrams analogous to

those responsible for neutrino masses. In fact, it is well-known that the current experimen-

tal bounds on these processes, particularly µ → eγ, already restrict its viable parameter
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space [3]. The scotogenic model thus provides the perfect scenario to assess the impact of

future lepton flavor violation experiments.

Lepton flavor violation in the scotogenic model has already been studied in some detail.

Early works, including [4–7], focused almost exclusively on µ→ eγ, due to its stringent ex-

perimental limit. Other processes, such as µ→ 3 e or µ-e conversion in nuclei, were rarely

considered, and when they were so, only the photonic dipole contribution was taken into

account. This situation was recently remedied in [3], where complete analytical expressions

for the most important lepton flavor violating (LFV) processes were obtained. But a thor-

ough analysis of lepton flavor violation in this model including the constraints from the dark

matter density and the expected improvements in LFV experiments was yet to be done.

To that end, we first randomly scan the entire parameter space of this model and find a

large sample of points consistent with all current bounds, particularly neutrino masses, µ→
eγ, and dark matter. We focus on the scenario where the dark matter particle is the singlet

fermion, N1, and distinguish two relevant cases depending on the processes that determine

its relic density in the early Universe: N1-N1 annihilations, or N1-η coannihilations. For

each case, the sample of consistent models defines the viable parameter space, which we

analyze in detail. Then, we study the predictions for different lepton flavor violating

processes within these viable regions, and examine to which extent future experiments will

be able to probe them. We will show that future LFV experiments have the potential to

rule-out the entire parameter space consistent with a relic density determined by N1-N1

annihilations, and to exclude a significant part of that determined by N1-η coannihilations.

In the next section, we describe the scotogenic model and introduce our notation.

Section 3 deals with lepton flavor violating processes. After reporting the experimental

situation, we review the expressions for the rates of different LFV processes in the scotogenic

model . Our main results are presented in section 4, first for the case where the dark

matter density is obtained without coannihilations and then with coannihilations. In that

section, we thoroughly discuss the viable parameter space and the impact of future LFV

experiments. Finally, we summarize our findings in section 5.

2 The model

The scotogenic model [2] extends the SM particle content with three singlet fermions, Ni

(i = 1-3), and one SU(2)L doublet, η. In addition, a Z2 parity is imposed, under which the

new particles are odd and the SM ones are even. This symmetry not only prevents flavor

changing neutral currents but it also renders stable the lightest odd particle in the spectrum,

which becomes a dark matter candidate. In this model, two particles can play the role of

dark matter: the neutral scalar (an inert Higgs) or the lightest singlet fermion. Both have

been shown to give rise to interesting dark matter scenarios [4–6, 8–12]. Additionally, this

model may also generate new signals at colliders [5, 13–16], explain the baryon asymmetry

of the Universe [17, 18], induce observable rates for lepton flavor violating processes [3],

and account for the observed pattern of neutrino masses and mixing angles [2, 19].
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Figure 1. 1-loop neutrino masses in the scotogenic model.

The new Lagrangian terms involving the right-handed neutrinos can be written as

LN = Ni/∂Ni −
MNi

2
N c
i PRNi + yiαηNiPL`α + h.c. , (2.1)

where, without loss of generality, the right-handed neutrino mass matrix has been taken

to be diagonal. The matrix of Yukawa couplings, y, is an arbitrary 3× 3 complex matrix.

The scalar potential of the model is given by

V = m2
φφ
†φ+m2

ηη
†η +

λ1

2

(
φ†φ
)2

+
λ2

2

(
η†η
)2

+ λ3

(
φ†φ
)(

η†η
)

+λ4

(
φ†η
)(

η†φ
)

+
λ5

2

[(
φ†η
)2

+
(
η†φ
)2
]
. (2.2)

For simplicity, we will assume that all parameters in the scalar potential are real. This,

however, can always be accomplished by making use of the rephasing invariance of the

model. In the scotogenic model, the Z2 parity is assumed to be preserved after electroweak

symmetry breaking. This is guaranteed by choosing a set of parameters that leads to a

vacuum with 〈η〉 = 0 and forbids the φ− η mixing.

After electroweak symmetry breaking, the masses of the charged component η+ and

neutral component η0 = (ηR + iηI)/
√

2 are split to

m2
η+ = m2

η + λ3〈φ0〉2 , (2.3)

m2
R = m2

η + (λ3 + λ4 + λ5) 〈φ0〉2 , (2.4)

m2
I = m2

η + (λ3 + λ4 − λ5) 〈φ0〉2 . (2.5)

The mass difference between ηR and ηI (the CP-even and CP-odd components of η0,

respectively) is m2
R −m2

I = 2λ5〈φ0〉2.

Inspecting the new terms in LN and V one finds that the presence of λ5 6= 0 breaks

lepton number in two units. Although the usual tree-level contribution to neutrino masses
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is forbidden by the Z2 symmetry, these are induced at the 1-loop level as shown in figure 1.

This loop is calculable and leads to the neutrino mass matrix

(mν)αβ =

3∑
i=1

yiαyiβ
(4π)2

MNi

[
m2
R

m2
R −M2

Ni

log

(
m2
R

M2
Ni

)
−

m2
I

m2
I −M2

Ni

log

(
m2
I

M2
Ni

)]
≡
(
yTΛy

)
αβ
, (2.6)

where the Λ matrix is defined as Λ = diag (Λ1,Λ2,Λ3), with

Λi =
MNi

(4π)2

[
m2
R

m2
R −M2

Ni

log

(
m2
R

M2
Ni

)
−

m2
I

m2
I −M2

Ni

log

(
m2
I

M2
Ni

)]
. (2.7)

Simplified expressions can be obtained when m2
R ≈ m2

I ≡ m2
0 (λ5 � 1). In this case the

mass matrix in equation (2.6) can be written as

(mν)αβ ≈
3∑
i=1

2λ5yiαyiβ〈φ0〉2

(4π)2MNi

 M2
Ni

m2
0 −M2

Ni

+
M4
Ni(

m2
0 −M2

Ni

)2 log

(
M2
Ni

m2
0

) . (2.8)

Compared to the standard seesaw formula, neutrino masses get an additional suppression

by roughly the factor ∼ λ5/16π2. Choosing λ5 � 1, one can get the correct size for neu-

trino masses, compatible with singlet fermions at the TeV scale (or below) and sizable

Yukawa couplings.

The neutrino mass matrix in equation (2.8) is diagonalized as

UTPMNSmν UPMNS = m̂ν ≡


m1 0 0

0 m2 0

0 0 m3

 , (2.9)

where

UPMNS =


c12c13 s12c13 s13e

iδ

−s12c23 − c12s23s13e
−iδ c12c23 − s12s23s13e

−iδ s23c13

s12s23 − c12c23s13e
−iδ −c12s23 − s12c23s13e

−iδ c23c13

× UM (2.10)

is the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix. Here cij = cos θij , sij = sin θij ,

δ is the Dirac phase and UM = diag(eiϕ1/2, eiϕ2/2, 1) is a matrix containing the Majorana

phases. In the following we will, however, neglect all the CP violating phases.

In order to determine the model parameters in terms of the quantities measured in

neutrino oscillation experiments, the Yukawa matrix yiα can be written using an adapted

Casas-Ibarra parameterization [3, 20] as

y =
√

Λ
−1
R
√
m̂ν U

†
PMNS , (2.11)

where R is an complex orthogonal matrix, RTR = 1, that can be parameterized in terms

of three angles (r1, r2, r3) in an analogous way to the neutrino mixing matrix — see
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equation (2.10). For simplicity, we take these three angles to be real so that the Yukawa

couplings, yiα, are real too. The general complex case would allow for |Rij | > 1, implying

larger Yukawa couplings. However, these scenarios involve a certain level of fine-tuning, in

principle not preserved by radiative corrections [21].

The conservation of Z2 leads to the existence of a stable particle: the lightest particle

charged under Z2. If neutral, it will constitute a good dark matter candidate. There are,

therefore, two dark matter candidates in the scotogenic model: the lightest singlet fermion

N1 and the lightest neutral η scalar (ηR or ηI). Scenarios with scalar dark matter resemble

the inert doublet model [22–24], and have been studied in [10, 12, 17]. In this paper we

will concentrate on N1 dark matter [4–6, 9].

3 Lepton flavor violating processes

The field of lepton flavor violation is about to begin a golden age. Several experimental

projects will take place in the next few years, aiming at a discovery that could provide a

valuable hint on new physics beyond the SM or, at least, at pushing the current bounds to

much tighter values.

Currently, muon decay experiments provide the most stringent limits for most models.

In their search for the muon radiative decay µ → eγ, the MEG collaboration has been

able to set the impressive bound BR(µ → eγ) < 5.7 · 10−13 [25]. This is expected to be

improved to about 6 · 10−14 after 3 years of acquisition time with the upgraded MEG II

experiment [26]. In what concerns the 3-body decay µ→ 3 e, the future Mu3e experiment

announces a sensitivity of ∼ 10−16 [27], which would imply a 4 orders of magnitude im-

provement on the current bound, BR(µ → 3 e) < 10−12, set long ago by the SINDRUM

experiment [28].

The LFV process where the most remarkable developments are expected is neutrinoless

µ-e conversion in muonic atoms. In the near future, many competing experiments will

search for a positive signal. These include Mu2e [29, 30], DeeMe [31, 32], COMET [33, 34]

and PRISM/PRIME [35]. The expected sensitivities for the conversion rate range from

10−14 in the near future to an impressive 10−18 in the longer term, in all cases improving

on previous experimental limits.

The current limits on τ observables are less stringent, but will also get improved in the

near future by the LHCb collaboration [36], as well as by B-factories such as Belle II [37].

In addition, LFV can also be constrained by searches at high-energy colliders. The CMS

collaboration, for instance, recently reported the results of their search for h→ µτ [38]. A

recent review of the status of the major experiments that will be soon searching for lepton

flavor violation in charged lepton processes can be found in [1]. For reference, in table 1

we collect current bounds and expected near-future sensitivities for the most important

low-energy LFV observables.

We now proceed to present analytical results for the LFV processes `α → `βγ, `α → 3 `β
and µ-e conversion in nuclei in the scotogenic model. For more details see [3].
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LFV Process Present Bound Future Sensitivity

µ→ eγ 5.7× 10−13 [25] 6× 10−14 [26]

τ → eγ 3.3× 10−8 [39] ∼ 3× 10−9 [40]

τ → µγ 4.4× 10−8 [39] ∼ 3× 10−9 [40]

µ→ eee 1.0× 10−12 [28] ∼ 10−16 [27]

τ → µµµ 2.1× 10−8 [41] ∼ 10−9 [40]

τ− → e−µ+µ− 2.7× 10−8 [41] ∼ 10−9 [40]

τ− → µ−e+e− 1.8× 10−8 [41] ∼ 10−9 [40]

τ → eee 2.7× 10−8 [41] ∼ 10−9 [40]

µ−,Ti→ e−,Ti 4.3× 10−12 [42] ∼ 10−18 [35]

µ−,Au→ e−,Au 7× 10−13 [43]

µ−,Al→ e−,Al 10−15 − 10−18

µ−,SiC→ e−,SiC 10−14 [32]

Table 1. Current experimental bounds and future sensitivities for the most important LFV ob-

servables.

Let us first discuss radiative lepton decays. The branching fraction for `α → `βγ is

given by

BR (`α → `βγ) =
3(4π)3αem

4G2
F

|AD|2BR (`α → `βνανβ) . (3.1)

Here GF is the Fermi constant and αem = e2/(4π) is the electromagnetic fine structure

constant, with e the electromagnetic coupling. AD is the dipole form factor, given by

AD =
3∑
i=1

y∗iβyiα

2(4π)2

1

m2
η+
F2 (ξi) , (3.2)

where the ξi parameters are defined as ξi ≡M2
Ni
/m2

η+ and the loop function F2(x) is given

in appendix A.

We now turn to the 3-body decays `α → 3 `β. The branching ratio is given by a slightly

more involved expression

BR
(
`α → `β`β`β

)
=

3(4π)2α2
em

8G2
F

[
|AND|2 + |AD|2

(
16

3
log

(
mα

mβ

)
− 22

3

)
+

1

6
|B|2 +

(
−2ANDA

∗
D +

1

3
ANDB

∗ − 2

3
ADB

∗ + h.c.

)]
×BR (`α → `βνανβ) . (3.3)

Here we have kept mβ � mα only in the logarithmic term, where it avoids the appearance

of an infrared divergence. The form factor AD is generated by dipole photon penguins and

is given in equation (3.2). Regarding the other form factors, AND, given by

AND =

3∑
i=1

y∗iβyiα

6(4π)2

1

m2
η+
G2 (ξi) , (3.4)
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is generated by non-dipole photon penguins, whereas B, induced by box diagrams, is

e2B =
1

(4π)2m2
η+

3∑
i, j=1

[
1

2
D1(ξi, ξj)y

∗
jβyjβy

∗
iβyiα +

√
ξiξjD2(ξi, ξj)y

∗
jβy
∗
jβyiβyiα

]
. (3.5)

The loops functions G2(x), D1(x, y) and D2(x, y) are defined in appendix A.

We note that the Z-boson penguin contributions are negligible, since in this model they

are suppressed by charged lepton masses [3]. Similarly suppressed are the Higgs-penguin

contributions, which we have not included in our calculations.

Next, we consider µ-e conversion in nuclei. This is the LFV process with the most

remarkable experimental projects in the next few years. The conversion rate, normalized

to the the muon capture rate, can be expressed as [44, 45]

CR(µ-e,Nucleus) =
peEem

3
µG

2
F α

3
em Z

4
eff F

2
p

8π2 Z Γcapt

×
{∣∣∣(Z +N)

(
g

(0)
LV + g

(0)
LS

)
+ (Z −N)

(
g

(1)
LV + g

(1)
LS

)∣∣∣2 +

+
∣∣∣(Z +N)

(
g

(0)
RV + g

(0)
RS

)
+ (Z −N)

(
g

(1)
RV + g

(1)
RS

)∣∣∣2} . (3.6)

Here Z and N are the number of protons and neutrons in the nucleus, Zeff is the effective

atomic charge [46], Fp denotes the nuclear matrix element and Γcapt represents the total

muon capture rate. The values of these parameters depend on the considered nucleus. For

the nuclei used in current or near future experiments, these values can be found in [45]

and references therein. Furthermore, pe and Ee (' mµ in the numerical evaluation) are

the momentum and energy of the electron. In the above, g
(0)
XK and g

(1)
XK (with X = L,R

and K = S, V ) are generally given by

g
(0)
XK =

1

2

∑
q=u,d,s

(
gXK(q)G

(q,p)
K + gXK(q)G

(q,n)
K

)
,

g
(1)
XK =

1

2

∑
q=u,d,s

(
gXK(q)G

(q,p)
K − gXK(q)G

(q,n)
K

)
. (3.7)

The numerical values of the GK coefficients can be found in [44, 45, 47]. In the scotogenic

model, the effective couplings gXK(q) receive several contributions, and thus they can be

split as

gLV (q) ≈ gγLV (q) ,

gRV (q) = gLV (q)

∣∣
L↔R ,

gLS(q) ≈ 0 ,

gRS(q) ≈ 0 , (3.8)

where gγLV (q) is generated by photon penguins. We note that in the scotonic model there are

no box contributions to µ-e conversion in nuclei (besides the negligible SM contribution) due
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to the Z2 symmetry, which forbids the coupling between the η± scalars and the quark sector.

Regarding the Z-boson penguins contributions, they turn out to be suppressed by charged

lepton masses, see [3] for more details. The gγLV (q) effective coupling can be written as

gγLV (q) =

√
2

GF
e2Qq (AND −AD) . (3.9)

The form factors AND and AD have been already defined in eqs. (3.4) and (3.2). Further-

more, Qq is the electric charge of the corresponding quark.

4 Results

In this section, we assess the impact of future LFV experiments on the scotogenic model

by means of a random scan over its entire parameter space. That is, we first find a large

sample of models compatible with current data — in particular neutrino masses, µ → eγ

and dark matter — and then study what region of this viable parameter space will be

probed by future experiments.

In our random scan, we take as free parameters of the model the following:

MNi ,mR,mη+ , λ5, r1, r2, r3. (4.1)

From them, one can reconstruct the original Lagrangian parameters, in particular the

Yukawa couplings, yiα, using equations (2.3) (2.4), (2.5) and (2.11). All our models are,

by construction, automatically consistent with current neutrino data (at 3σ) [48].

These free parameters are subject to a number of theoretical and experimental con-

straints, which we now describe. First of all, we impose a perturbativity limit on the

Yukawa and scalar couplings: |yiα|, |λj | < 3. The scalar couplings, λj , are further required

to satisfy the vacuum stability conditions and we ensure compatibility with electroweak

precision tests [22, 49].

Direct searches at colliders impose a lower bound on the masses of the scalar parti-

cles [50, 51] . For definiteness, we require all scalars to be above 100 GeV. To ensure that

the scan is sufficiently general, the upper bound on the scalar masses was set at 5 TeV.

The masses of the singlet fermions, mNi , are not constrained by current collider data. In

the scan, we allowed them to vary from a common minimum value of 1 GeV to a maximum

value of 3.3, 5 and 10 TeV respectively for i = 1, 2, 3.

The dark matter particle in this model can be a neutral scalar (ηR,I) or a singlet

fermion (N1). Both possibilities have been examined in the previous literature and it is

known that they give rise to a different phenomenology. We assume in the following that

the dark matter is the singlet fermion and that its relic density is the result of a freeze-

out process in the early Universe (freeze-in [52, 53] is an alternative possibility we do not

consider), as this is the most interesting scenario from the point of view of LFV processes.

In this case, the dark matter relic density is determined by the N1 annihilation rate, which

depends on the Yukawa couplings. Since they must be large enough to explain the observed

dark matter density, the rates of LFV processes, which are proportional to these Yukawas,

– 8 –
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Figure 2. The Yukawa couplings associated with the dark matter particle, y1i, as a function of

MN1
.

are generally expected to be observable. We examine two different dark matter scenarios

depending on the process that sets the value of the relic density: N1-N1 annihilations

or N1-η coannihilations (N1-N2 coannihilations are rarely relevant as they depend on the

same Yukawa couplings as N1-N1). For each case, we require the corresponding process to

be dominant. We have implemented the scotogenic model into micrOMEGAs [54], which

accurately computes the relic density taking into account all relevant effects, including

resonances and coannihilations. All our viable models are consistent with the observed

value of the dark matter density, as determined by WMAP [55] and PLANCK [56].

Regarding LFV processes, we have only imposed the current bound on µ→ eγ, which

is usually assumed to set the strongest constraint. In this way, we can actually test this as-

sumption by comparing the rates of other LFV processes against their current experimental

limits.

Models satisfying the above mentioned constraints are called viable models in the

following. We have generated a sample of about 105 of them for each of the two dark

matter scenarios, which we will discuss separately. Our analysis is based on this sample of

viable models.

4.1 Dark matter via N1-N1 annihilations

To begin with, let us consider viable models where the relic density is determined by

annihilation processes only, without coannihilation effects. This is the most favorable

case for LFV processes because the Yukawa couplings tend to be rather large. First, we

will describe the resulting parameter space and then study the prospects for a positive
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Figure 3. The allowed values of λ5 as a function of MN1
.

observation in future LFV experiments. As we will show, this scenario can be entirely

probed by such experiments.

The dark matter annihilation cross section is determined by the Yukawa couplings y1α.

At least one of these couplings must, therefore, be large enough to ensure that the dark

matter density is consistent with the observations. Figure 2 shows the viable models in the

plane (MN1 , |y1α|) for α = e (yellow circles), µ (red crosses), and τ (blue squares). They

feature masses between 1 GeV and 2 TeV, and dark matter Yukawa couplings between 10−5

and 3 (our perturbativity limit). As a result of the µ→ eγ bound, these couplings satisfy

the hierarchy |y1e| . |y1µ| . |y1τ |, with |y1τ | rarely lying below 0.3 and |y1e| rarely going

above that value. Thus, dark matter annihilates mainly into third-family leptons: τ+τ−

and ν̄τντ . Since the perturbativity limit on y1τ is saturated at both the lowest and the

highest dark matter masses, we can claim that it is not possible to find viable models

outside this mass range. Notice also that this range is quite sensitive to the exact value of

the perturbativity limit imposed. Had we used the more restrictive condition |yiα| < 1, the

lowest and highest value for the dark matter mass would have changed to about 10 GeV

and 700 GeV respectively.

The allowed values of λ5 are shown in figure 3. They turn out to be restricted to the

range (10−11, 4× 10−10), with most points lying close to 10−10. λ5 indeed has to be very

small in this setup. This small value of λ5 and its narrow range of variation are the result

of the interplay between the perturbativity limit, neutrino masses and the dark matter

constraint. Due to neutrino masses, larger values of λ5 generically imply smaller Yukawa

couplings, which would lead to a dark matter density larger than the observed one; smaller

values of λ5, instead, tend to be give Yukawa couplings above the perturbativity limit. Let
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Figure 4. The parameters ξi = (MNi
/mη+)2 as a function of MN1

.

us emphasize that λ5 is naturally small in the sense of ’t Hooft [57], because in the limit

λ5 → 0 lepton number is restored [4]. Furthermore, we also note that the allowed values

of λ5 found in our analysis depend on our assumption of a real R matrix.

As shown in the previous section, the rates for the different LFV processes depend

on loop functions of the parameters ξi = m2
Ni
/m2

η+ . Figure 4 shows a scatter plot of the

dark matter mass versus ξi. Since N1 is the lightest odd particle, ξ1 is always smaller

than 1, reaching values of order 10−4 for MN1 ∼ few GeV. In principle smaller values

of ξ1 are possible in our scan, but they are not realized within the viable models. They

always feature, for instance, a light charged scalar (mη+ . 300 GeV) and small dark matter

masses, MN1 . 10 GeV. ξ2 and ξ3, on the other hand, can be either larger or smaller than

1. We see that ξ3 tends to be larger than 1, reaching values as high as 104. Interestingly,

we have found that viable models never feature a degenerate or quasi-degenerate spectrum

for the singlet fermions (ξ1 ≈ ξ2 ≈ ξ3). The ratio MN3/MN1 , in fact, has a minimum value

of about 3.5 in our sample — see also the right-hand side of figure 6.

The branching ratios for the most important lepton flavor violating τ decays are shown

in figure 5. Its left panel displays BR(τ → µγ) (blue squares) and BR(τ → eγ) (red crosses)

versus the dark matter mass. The current experimental bounds on these decays are also

shown as solid lines, blue and red, respectively. We see that the current bounds can be

violated, particularly at low MN1 . Thus, in certain regions of the parameter space, τ → µγ

is more constraining than µ → eγ, even if the former has a less stringent experimental

bound. In any case, current bounds do not exclude the low MN1 region, as one can also

find models with smaller branching ratios there. Notice that τ → µγ tends to have a

branching ratio larger than τ → eγ, with most points featuring values above 10−11 for
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Figure 5. (a) The rates of τ → µγ (blue squares) and τ → eγ (red crosses) as a function of the

dark matter mass. The current bounds for both processes are shown with solid blue and red lines,

respectively. The expected future sensitive for both processes is also displayed as a dashed black line.

(b) Similar to the figure in (a) but for the processes τ → 3µ (blue squares) and τ → 3e (red crosses).
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Figure 6. (a) A scatter plot of |y1µ| versus MN1
for all the models in our sample (yellow circles),

those compatible with current bounds on LFV τ decays (red crosses), and those that are beyond

the expected sensitivity of future searches for LFV τ decays (blue squares). (b) Similar to (a) but

for MN3 versus MN1 .

BR(τ → µγ) and above 10−14 for BR(τ → eγ). Planned experiments are expected to reach

sensitivities of order 3 × 10−9 (dashed black line) for both of these decays — see table 1.

Even though significant, such improvement would not be sufficient to exclude this scenario

or restrict the value of MN1 .

The right panel of figure 5 shows instead the branching ratios for the processes τ → 3µ

(blue squares) and τ → 3e (red crosses) versus the dark matter mass. The other conventions

are the same as in the left panel. BR(τ → 3µ) varies approximately between 10−4 and 10−12

whereas BR(τ → 3µ) varies between 10−4 and 10−16. The current experimental limits on

these decays can therefore be violated at low MN1 , particularly for τ → 3µ. The expected

future sensitivity for both branching ratios is of order 10−9 (the dashed black line), and can

probe a large number of models. It is not enough, however, to cover the entire parameter

space, as there are models featuring smaller branching ratios over the whole range of MN1 .
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As we have seen, searches for LFV τ decays play an important role in this model.

They can already exclude a large number of points that are compatible with the µ → eγ

constraint, and could, in the future, probe a significant region of the parameter space. In

figure 6 we further illustrate these facts. They differentiate our entire set of viable points

(yellow circles) from those that are compatible with all current bounds on LFV τ decays

(red crosses), and from those that lie beyond the expected sensitivity of all future searches

for LFV τ decays (blue squares). Specifically, these points are projected onto the planes

(MN1 , |y1µ|) in the left panel and (MN1 ,MN3) in the right panel. From the left panel we

learn that current bounds exclude the region of low MN1 and large |y1µ|. In fact, no points

compatible with the current limits on LFV τ decays are found for MN1 . 20 GeV and

|y1µ| & 0.1. Moreover, all the points giving branching ratios below the expected sensitivity

of future LFV τ searches are found at large values of MN1 or small values of |y1µ|. From

the right panel we see that all points that cannot be probed by future experiments feature

MN3 & 3 TeV and MN1 & 100 GeV. That is, they are characterized by a hierarchical

spectrum of singlet fermions containing at least a very heavy particle. Thus, if the spectrum

of singlet fermions were such that they all had masses below 3 TeV, the entire parameter

space of this model could be probed by future LFV experiments involving τ decays only,

without any additional information from µ-e processes.

Let us now turn our attention to LFV processes in the µ-e sector. As explained in

section 3, all µ-e transitions in this model are determined by just three different form

factors: the dipole (AD), the non-dipole (AND), and the box (B). µ→ eγ depends on AD,

µ-e conversion on the difference AD−AND, and µ→ 3 e on all three in a more complicated
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Figure 8. The rates of µ → eγ (red crosses), µ → 3 e (orange circles), and µ-e conversion in

Titanium (blue squares) as a function of the dark matter mass.

way. It is important to identify, therefore, which of these contributions dominates. Due

to the strong bound on µ→ eγ, we expect AD to be suppressed with respect to the other

two. And that is exactly what we find, as illustrated in figure 7. It shows the ratio between

the three amplitudes: |AND/AD| (blue squares), |B/AD| (orange circles) and |B/AND|
(red crosses). In most models we see in fact that AND > AD and B > AD, with their

ratios reaching values as high as 106. As a result, most points in our results have µ→ 3 e

dominated by non-dipole and box contributions. In [3], it was stated instead that the

non-dipole contribution never exceeds the dipole one. The reason for this discrepancy

with our findings is that such conclusion was reached for a scenario where the singlet

fermions are degenerate, leading to the different result. If the singlet fermion spectrum is

not degenerate, as expected in general, one can indeed have AND > AD. In our sample

of viable models, not only is AND � AD possible but it is also the most likely result.

Regarding the relation between AND and B, we see that B > AND in most models, B

being two orders of magnitude larger than AND in some cases.

Figure 8 displays the rates for the LFV processes involving µ− e transitions: BR(µ→
eγ) (red crosses), BR(µ→ 3 e) (orange circles), and CR(µ-e, Ti) (blue squares). BR(µ→
eγ) varies between its current experimental bound, which we imposed, and about 10−20.

Current bounds on BR(µ → 3 e) and CR(µ-e,Ti) were not imposed, and from the figure

we see that they can in fact be violated. Thus, µ→ eγ alone does not guarantee compat-

ibility with the current bounds on other µ-e lepton flavor violating processes. It is clear,

nevertheless, that models compatible with all current bounds can be found over the entire

range of the dark matter mass. Notice that most models feature BR(µ→ 3 e) > 10−12 and

CR(µ-e,Ti) > 10−13, so they are never much below the current experimental bounds.
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Figure 9. (a): scatter plot of BR(µ → eγ) versus BR(µ → 3 e) including current bounds (solid

lines) and expected future sensitivities (dashed lines). (b): scatter plot of BR(µ → eγ) versus

CR(µ-e,Ti) including current bounds (solid lines) and future sensitivities (dashed lines).

The impact that future LFV searches will have on the parameter space of this model

is illustrated in figure 9. It shows scatter plots of BR(µ → eγ) versus BR(µ → 3 e) in the

left panel and versus CR(µ-e, Ti) in the right panel. In addition, their current bounds

(solid lines) and their expected future sensitivities (dashed lines) are also displayed. The

expected improvement on the µ→ eγ bound would allow, if no signal is found, to exclude

an important region of the parameter space, but many models would remain viable. Not so

with µ→ 3 e and µ-e conversion in nuclei. Future µ→ 3 e and µ-e conversion experiments

will probe the entire parameter space consistent with dark matter via N1-N1 annihilations.

And they can do so even if they fall short of reaching their expected sensitivity. For µ→ 3 e,

a branching ratio sensitivity of 10−14 would be enough to effectively exclude this scenario,

two orders of magnitude larger than what is achievable at the Mu3e experiment. For µ-e

conversion in Titanium, a rate sensitivity of 10−14, four orders of magnitude larger than

the most optimistic figure, could exclude practically the entire parameter space.

Summarizing, the viable parameter space of the scotogenic model will be probed in

different ways by future LFV experiments. Searches for LFV τ decays can, by themselves,

probe a significant part, including the entire region with MN3 < 3 TeV. Future searches

for µ → 3 e and µ-e conversion in nuclei can go deeper and independently probe the

whole parameter space we considered, which extends up to MN3 = 10 TeV. If future LFV

experiments fail to find a signal, this scenario, where N1-N1 annihilations set the dark

matter relic density, can be ruled out.

4.2 Dark matter via N1-η coannihilations

If the dark matter relic density is obtained via N1-η coannihilations, the Yukawa couplings

can be smaller and so are the rates for LFV processes. As we will see, future experiments

will not be able to exclude this possibility but they can test a significant part of the

parameter space. In this section, we first present the viable parameter space and then

identify the regions that can and cannot be probed with future LFV experiments.
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Figure 10. The Yukawa couplings associated with the dark matter particle, y1α, as a function of

MN1
. In this case, the dark matter relic density is determined by N1-η coannihilations.

The free parameters for the random scan are the same as before, with the condition

that the mass splitting between the dark matter particle and the scalars, which in this case

we take to be degenerate, must be small. On these parameters, we apply the constraints

mentioned in the previous section, further requiring that the relic density be determined

by N1-η coannihilations only. We obtained in this way a sample of 2× 104 viable models,

on which our following analysis is based.

To begin with, we project, in figure 10, the viable models into the plane (MN1 , y1α) for

i = e, µ, τ . Since N1-η coannihilations determine the relic density, the mass splitting be-

tween N1 and the scalars is necessarily small, and the lower bound on MN1 is now set by the

collider bound on the mass of the scalars, ∼ 100 GeV. At the other end, we see that we can

find viable models up to the highest dark matter masses explored in the scan, ∼ 3 TeV. The

dark matter Yukawa couplings are indeed smaller now, never reaching our perturbativity

limit. For MN1 ∼ 100 GeV, the largest value of |y1α| is about 0.3, and it increases with MN1

until it reaches 1-2 for masses of order 1− 3 TeV. Notice that at low dark matter masses,

MN1 < 300 GeV, |y1τ | tends to be large, lying on a narrow band between 0.1 and 0.4. But

at higher masses, it can be much smaller, reaching values below 10−3 in some cases. In fact,

there is no clear hierarchy among the different couplings. One can easily find models where

|y1µ| > |y1τ | or where |y1e| > |y1µ|. It is true, though, that |y1e| is very rarely the largest one

among the three couplings. Thus, the coannihilation processes will feature one lepton from

the second or third generation as a final state — e.g. N1η
+ →W+ν̄τ or N1η

0 →W+µ−.

The allowed values of ξi (i = 1, 2, 3) are shown in figure 11. As a consequence of the

coannihilation condition, ξ1 is seen to be constrained to a narrow range just below 1. ξ2 and
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Figure 11. The parameters ξi = (MNi
/mη+)2 as a function of MN1

. In this case, the dark matter

relic density is determined by N1-η coannihilations.

ξ3, on the other hand, tend to be much larger than 1 and span the whole range explored

in the scan.

Regarding LFV τ decays, we found that in this case they are all too suppressed to probe

the model. Their current bounds do not constrain the viable parameter space at all, and

only a handful of points feature branching ratios above their expected future sensitivities.

For this reason, we will only examine the µ-e transitions in the following.

The predicted rates for the different µ-e violating processes are shown in figure 12.

By construction, all these points are consistent with the current bound on µ → eγ. Even

though the bounds on µ → 3 e and µ-e conversion in nuclei could be violated, we observe

that only few points do so. In this case, then, it is true that µ → eγ provides the most

stringent bound on LFV processes; once it is satisfied, the other bounds are automatically

fulfilled too. Notice that all three processes can be very suppressed. µ → eγ and µ → 3 e

can both reach branching ratios as low as 10−20 whereas the µ-e conversion rate in Titanium

extends down to values below 10−24. It is clear, therefore, that this scenario cannot be

entirely probed by future LFV experiments.

This point is further illustrated in figure 13, which shows scatter plots of BR(µ→ eγ)

versus BR(µ→ 3 e), in the left panel, and versus CR(µ-e, Ti) in the right panel. In these

figures, the current bounds and the future expected sensitivities are also displayed as solid

and dashed lines respectively. Notice from the left panel that all points lie above a line in

this plane determined by the so-called dipole dominance condition (AD � AND, B), which

implies BR(µ→ eγ) ∼ 200 BR(µ→ 3 e). Comparing the sensitivity of future experiments,

it is clear that the searches for µ → 3 e will probe a larger region of the parameter space
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Figure 13. (a): scatter plot of BR(µ → eγ) versus BR(µ → 3 e) including current bounds (solid

lines) and expected future sensitivities (dashed lines). (b): scatter plot of BR(µ → eγ) versus

CR(µ-e,Ti) including current bounds (solid lines) and future sensitivities (dashed lines).

than the searches for µ → eγ. That is, all points with BR(µ → eγ) > 6 × 10−14 feature

BR(µ → 3 e) > 10−16, but not the other way around. Less conclusive is the result of the

comparison between µ→ eγ and µ-e conversion — see the right panel. In this case there is

no clear winner: future µ→ eγ experiments will probe regions that cannot be probed with

µ-e conversion experiments, and viceversa. In any case, many viable points will be beyond

the expected sensitivity of all future LFV experiments. In the following, we characterize

such points and identify the regions of the parameter space that will be probed by future

experiments.
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crosses) and those that are beyond the expected sensitivity of planned LFV experiments (blue

squares). Each panel shows the corresponding element of the Yukawa matrix. The top-left panel,

for example, shows the element (1,1) while the bottom-right panel shows the element (3,3).

Because all lepton flavor violating processes in this model are determined by the neu-

trino Yukawa couplings, future experiments have the potential to test the regions featuring

the largest values of yiα. Figure 14 illustrates the currently viable region (red crosses)

and the regions that lie beyond the expected sensitivity of future LFV experiments (blue

squares) for each element of |yiα|. The position of the panel in the array corresponds to the

respective matrix element. Thus, the top-left panel shows y1e while the bottom right shows

y3τ . The x-axis corresponds instead to the dark matter mass. As expected, the points that

lie beyond the expected sensitivity of future LFV experiments feature a heavy spectrum

(MN1 & 600 GeV) and small values of the neutrino Yukawa couplings. The e-column of

the Yukawa matrix (the first one) is already the most strongly constrained, and future

experiments can exclude the region |yiα| & 0.1 over the entire range of MN1 .

The mass of the charged scalar (mη+) can affect the rates of LFV processes directly

and indirectly. On the one hand, η+ always appear in the LFV loops, with the result that

all form factors are proportional to 1/m2
η+ . If this were the only relevant effect, future

experiments could not probe the region where mη+ is sufficiently large. But N1-η coanni-

hilations imply that mη+/MN1 can never be much larger than one. Moreover, as mη+ is

increased, the coannihilation effect becomes suppressed and larger Yukawa couplings are re-

quired to satisfy the dark matter constraint. This indirect effect then points in the opposite

direction, with future experiments unable to probe the low mη+ region. Figure 15 shows
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squares).

a scatter plot of mη+/MN1 versus MN1 , comparing the viable regions (red crosses) with

those that lie beyond the sensitivity of future LFV experiments. As expected, mη+/MN1

is always small, never going above 1.25. This ratio varies approximately between 1.1 and

1.15 at small masses, and between 1 and 1.25 at large masses. Future experiments have the

potential to exclude the region where mη+/MN1 is large, indicating that the indirect effect

mentioned above dominates. The regions mη+/MN1 & 1.10 and mη+/MN1 & 1.15, for

example, could practically be excluded respectively for MN1 . 1 TeV and MN1 . 3 TeV.

As observed before, the region of low dark matter mass, MN1 . 600 GeV, can be effectively

excluded by future experiments for arbitrary values of mη+/MN1 .

Figure 16 shows a scatter plot of our models in the plane (MN1 , λ5), again differen-

tiating between all the viable points (red crosses) and those that lie below the expected

sensitivity of future experiments (blue squares). λ5 is found to vary in this case between

10−11 and 10−7. Larger values of λ5 would imply, via the neutrino mass constraint, smaller

Yukawas, which are not consistent with the requirement of a dark matter density driven

by N1-η coannihilations. As shown in the figure, future LFV experiments can exclude all

models with λ5 . 10−9 and practically all models with λ5 < 10−8 and MN1 . 600 GeV.

Because the rates for LFV processes do not depend explicitly on λ5, this constraint is in-

direct, via the Yukawa couplings and the neutrino mass scale. In this setup, if future LFV

experiments fail to find a signal, λ5 should lie within one order of magnitude of 10−8.
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5 Conclusions

We demonstrated that future searches for lepton flavor violating processes will have a

significant impact on the scotogenic model. Throughout this work, we assumed the dark

matter particle to be the lightest singlet fermion, N1, and considered two cases depending

on how its relic density in the early Universe is determined: via self-annihilations or via

coannihilations with the odd scalars. For each case we used a random scan over the entire

parameter space of this model to obtain a large sample of viable points, on which our

analysis was based. We found that the prospects to observe a LFV signal strongly depends

on the mechanism that sets the dark matter density in the early Universe.

When the dark matter density is obtained via N1-N1 annihilations, the Yukawa cou-

plings tend to be large, which in turn translates into significant rates for lepton flavor

violating processes. First, we analyzed the resulting parameter space in some detail by

projecting the viable points onto different planes. We showed that current bounds on LFV

observables strongly constrain the parameter space of the model, although valid regions are

still found. Then we examined the potential of future LFV experiments. We demonstrated

that searches for τ decays can probe an important part of the parameter space. Specif-

ically all models featuring MN3 . 3 TeV could be excluded if no signal is found. Future

searches for µ→ eγ will not have a dramatic impact on the parameter space of the model

because this decay can be very suppressed. BR(µ → 3 e) and CR(µ-e,Ti), on the other

hand, typically lie within few orders of magnitude of their present bounds and offer much

better prospects. In fact, future searches for µ → 3 e and µ-e conversion in nuclei will
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independently and thoroughly probe this region. If no signal of either process were found,

the entire parameter space could be excluded.

When the dark matter density is obtained via N1-η coannihilations, the Yukawa cou-

plings need not be so large and consequently the rates for lepton flavor violating processes

are smaller. As a result, LFV τ decays play no role and only µ-e processes can test this

scenario. We showed that it is possible to find viable points where the rates of all these

processes are below the expected sensitivity of future experiments. That is, a fraction of the

viable models cannot be probed with future experiments. We characterized such models:

they feature MN1 & 600 GeV, small Yukawa couplings, mη+/MN1 . 1.15, and λ5 & 10−9.
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A Loop functions

We present in this appendix the loop functions relevant for the computation of the LFV

observables. These are

F2(x) =
1− 6x+ 3x2 + 2x3 − 6x2 log x

6(1− x)4
, (A.1)

G2(x) =
2− 9x+ 18x2 − 11x3 + 6x3 log x

6(1− x)4
, (A.2)

D1(x, y) = − 1

(1− x)(1− y)
− x2 log x

(1− x)2(x− y)
− y2 log y

(1− y)2(y − x)
, (A.3)

D2(x, y) = − 1

(1− x)(1− y)
− x log x

(1− x)2(x− y)
− y log y

(1− y)2(y − x)
. (A.4)

In the limit x, y → 1 and y → x, the functions become

F2(1) =
1

12
, G2(1) =

1

4
, D1(1, 1) = −1

3
, D2(1, 1) =

1

6
, (A.5)

D1(x, x) =
−1 + x2 − 2x log x

(1− x)3
, (A.6)

D1(x, 1) = D1(1, x) =
−1 + 4x− 3x2 + 2x2 log x

2(1− x)3
, (A.7)

D2(x, x) =
−2 + 2x− (1 + x) log x

(1− x)3
, (A.8)

D2(x, 1) = D2(1, x) =
1− x2 + 2x log x

2(1− x)3
. (A.9)
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