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1 Motivation

The experimental bounds on lepton flavor violating processes will be greatly improved in
the near future [1]. For lepton flavor violating 7 decays, such as 7 — ¢ and 7 — 3¢, the ex-
pected future sensitivity is about one order of magnitude below their present limits, which
already exclude branching ratios larger than about 1078. In the p-e sector, current limits
are more stringent and the expected improvements are more significant. For 4 — 3 e a sen-
sitivity four orders of magnitude below the present bound is foreseen, while the limit on p-e
conversion in nuclei could be increased by up to six orders of magnitude. Even for u — ev,
which currently provides the strongest bound, a one order of magnitude improvement is
expected in the near future. Given that the present limits on some of these processes are
already very impressive and can restrict the parameter space of new physics models in an
important way, one can only wonder about the impact that these future experimental im-
provements might have on such models. Could they exclude some scenarios? How will they
affect their viable parameter space? In this paper, we address precisely these issues within
a specific and well-motivated extension of the Standard Model: the scotogenic model.
The scotogenic model [2] is probably the simplest TeV scale model that can simulta-
neously account for neutrino masses and dark matter. It contains three additional singlet
fermions, N; (i = 1,2,3), and another scalar doublet, 7, all assumed to be odd under a
Zo symmetry. Neutrino masses are generated via 1-loop diagrams mediated by the odd
particles, whereas the dark matter candidate is either the lightest singlet fermion or the
neutral component of the scalar doublet. In this model, lepton flavor violating processes,
such as u — ey, 7 — pvy, and u — 3e, take place at 1-loop, via diagrams analogous to
those responsible for neutrino masses. In fact, it is well-known that the current experimen-
tal bounds on these processes, particularly p — ev, already restrict its viable parameter



space [3]. The scotogenic model thus provides the perfect scenario to assess the impact of
future lepton flavor violation experiments.

Lepton flavor violation in the scotogenic model has already been studied in some detail.
Early works, including [4-7], focused almost exclusively on . — ey, due to its stringent ex-
perimental limit. Other processes, such as yu — 3 e or pu-e conversion in nuclei, were rarely
considered, and when they were so, only the photonic dipole contribution was taken into
account. This situation was recently remedied in [3], where complete analytical expressions
for the most important lepton flavor violating (LFV) processes were obtained. But a thor-
ough analysis of lepton flavor violation in this model including the constraints from the dark
matter density and the expected improvements in LFV experiments was yet to be done.

To that end, we first randomly scan the entire parameter space of this model and find a
large sample of points consistent with all current bounds, particularly neutrino masses, y —
e, and dark matter. We focus on the scenario where the dark matter particle is the singlet
fermion, N7, and distinguish two relevant cases depending on the processes that determine
its relic density in the early Universe: N;-N; annihilations, or Ni-n coannihilations. For
each case, the sample of consistent models defines the viable parameter space, which we
analyze in detail. Then, we study the predictions for different lepton flavor violating
processes within these viable regions, and examine to which extent future experiments will
be able to probe them. We will show that future LFV experiments have the potential to
rule-out the entire parameter space consistent with a relic density determined by N;-Np
annihilations, and to exclude a significant part of that determined by N;-n coannihilations.

In the next section, we describe the scotogenic model and introduce our notation.
Section 3 deals with lepton flavor violating processes. After reporting the experimental
situation, we review the expressions for the rates of different LE'V processes in the scotogenic
model . Our main results are presented in section 4, first for the case where the dark
matter density is obtained without coannihilations and then with coannihilations. In that
section, we thoroughly discuss the viable parameter space and the impact of future LFV
experiments. Finally, we summarize our findings in section 5.

2 The model

The scotogenic model [2] extends the SM particle content with three singlet fermions, N;
(1 = 1-3), and one SU(2)y, doublet, n. In addition, a Zy parity is imposed, under which the
new particles are odd and the SM ones are even. This symmetry not only prevents flavor
changing neutral currents but it also renders stable the lightest odd particle in the spectrum,
which becomes a dark matter candidate. In this model, two particles can play the role of
dark matter: the neutral scalar (an inert Higgs) or the lightest singlet fermion. Both have
been shown to give rise to interesting dark matter scenarios [4-6, 8-12]. Additionally, this
model may also generate new signals at colliders [5, 13-16], explain the baryon asymmetry
of the Universe [17, 18], induce observable rates for lepton flavor violating processes [3],
and account for the observed pattern of neutrino masses and mixing angles [2, 19].
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Figure 1. 1-loop neutrino masses in the scotogenic model.

The new Lagrangian terms involving the right-handed neutrinos can be written as

Ly = Nz&Nz — QNZ NfPRNZ + yianNiPLga + h.c., (21)

where, without loss of generality, the right-handed neutrino mass matrix has been taken
to be diagonal. The matrix of Yukawa couplings, ¥, is an arbitrary 3 x 3 complex matrix.
The scalar potential of the model is given by

V= miéTe+min'n+ % (fﬁ%)g + % (77*77)2 + A3 (¢T¢) (n*n)
+\ <¢T77> (77%) + % [(@5*77)2 + (77%)2] : (2.2)

For simplicity, we will assume that all parameters in the scalar potential are real. This,
however, can always be accomplished by making use of the rephasing invariance of the
model. In the scotogenic model, the Zy parity is assumed to be preserved after electroweak
symmetry breaking. This is guaranteed by choosing a set of parameters that leads to a
vacuum with () = 0 and forbids the ¢ — 1 mixing.

After electroweak symmetry breaking, the masses of the charged component n* and
neutral component n° = (ng + ins)/v/2 are split to

m2y = my + A3(6°)%, (2.3)
mf = mp + (A3 + As+ As) (¢°)2, (2.4)
mi = mp+ (A + A — As) (0°)7. (2.5)

The mass difference between 1z and 7; (the CP-even and CP-odd components of n°,
respectively) is m% — m? = 2X5(¢%)%.

Inspecting the new terms in Ln and V one finds that the presence of A5 # 0 breaks
lepton number in two units. Although the usual tree-level contribution to neutrino masses



is forbidden by the Zy symmetry, these are induced at the 1-loop level as shown in figure 1.
This loop is calculable and leads to the neutrino mass matrix

3 2 2 2 2
Z zayzﬁ mp log mp | my log my
P Clmk - My, UA\Mg, ) omp— Mg\ MR,
where the A matrix is defined as A = diag (A1, A2, A3), with

My, m? m? m? m?
A = i E__ ] LU L__Jog [ —L || . 2.7
1T )2 [m% — oz, ® (Mﬁ,) m?—MZC\ M2, 27)

Simplified expressions can be obtained when m% ~ m? = m (A5 < 1). In this case the

mass matrix in equation (2.6) can be written as

3
2)\5yzaylﬁ > MJ2VZ Ml%h MZQ\[Z
Z 47T 2M m2 _ M2 + 9 1Og m2 . (28)
i=1 N 0 Ni (m% - M12V1> 0

Compared to the standard seesaw formula, neutrino masses get an additional suppression
by roughly the factor ~ \5/1672. Choosing A5 < 1, one can get the correct size for neu-
trino masses, compatible with singlet fermions at the TeV scale (or below) and sizable
Yukawa couplings.

The neutrino mass matrix in equation (2.8) is diagonalized as

mi 0 0
Uppnins M Upnns =1, = | 0 ma 0 |, (2.9)
0 0 ms
where
€12€13 512€13 s13€%
UpMNs = | —s12¢23 — c12823513¢ % 12023 — 1252351360 9313 | X Unt (2.10)

—is —is
512823 — C12C23513€ 0 —C12823 — 1223513 €23C13

is the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix. Here ¢;; = cos 05, s;; = sinb;;,
§ is the Dirac phase and Uy = diag(e*#1/2, ¢*%2/2,1) is a matrix containing the Majorana
phases. In the following we will, however, neglect all the CP violating phases.

In order to determine the model parameters in terms of the quantities measured in
neutrino oscillation experiments, the Yukawa matrix y;, can be written using an adapted
Casas-Ibarra parameterization [3, 20] as

= VA R/, Ul s (2.11)

where R is an complex orthogonal matrix, RT R = 1, that can be parameterized in terms
of three angles (r1, 7, r3) in an analogous way to the neutrino mixing matrix — see



equation (2.10). For simplicity, we take these three angles to be real so that the Yukawa
couplings, y;q, are real too. The general complex case would allow for |R;;| > 1, implying
larger Yukawa couplings. However, these scenarios involve a certain level of fine-tuning, in

principle not preserved by radiative corrections [21].

The conservation of Zs leads to the existence of a stable particle: the lightest particle
charged under Zs. If neutral, it will constitute a good dark matter candidate. There are,
therefore, two dark matter candidates in the scotogenic model: the lightest singlet fermion
Nj and the lightest neutral i scalar (ng or n7). Scenarios with scalar dark matter resemble
the inert doublet model [22-24], and have been studied in [10, 12, 17]. In this paper we
will concentrate on N; dark matter [4-6, 9].

3 Lepton flavor violating processes

The field of lepton flavor violation is about to begin a golden age. Several experimental
projects will take place in the next few years, aiming at a discovery that could provide a
valuable hint on new physics beyond the SM or, at least, at pushing the current bounds to
much tighter values.

Currently, muon decay experiments provide the most stringent limits for most models.
In their search for the muon radiative decay p — evy, the MEG collaboration has been
able to set the impressive bound BR(p — ey) < 5.7 - 10713 [25]. This is expected to be
improved to about 6 - 107 after 3 years of acquisition time with the upgraded MEG II
experiment [26]. In what concerns the 3-body decay p — 3 e, the future Mu3e experiment
announces a sensitivity of ~ 10710 [27], which would imply a 4 orders of magnitude im-
provement on the current bound, BR(u — 3e) < 107!2, set long ago by the SINDRUM
experiment [28].

The LFV process where the most remarkable developments are expected is neutrinoless
p-e conversion in muonic atoms. In the near future, many competing experiments will
search for a positive signal. These include Mu2e [29, 30], DeeMe [31, 32], COMET [33, 34]
and PRISM/PRIME [35]. The expected sensitivities for the conversion rate range from
10~™ in the near future to an impressive 1078 in the longer term, in all cases improving

on previous experimental limits.

The current limits on 7 observables are less stringent, but will also get improved in the
near future by the LHCb collaboration [36], as well as by B-factories such as Belle II [37].
In addition, LFV can also be constrained by searches at high-energy colliders. The CMS
collaboration, for instance, recently reported the results of their search for h — p7 [38]. A
recent review of the status of the major experiments that will be soon searching for lepton
flavor violation in charged lepton processes can be found in [1]. For reference, in table 1
we collect current bounds and expected near-future sensitivities for the most important
low-energy LF'V observables.

We now proceed to present analytical results for the LE'V processes £, — €57, £o — 343
and p-e conversion in nuclei in the scotogenic model. For more details see [3].



LFV Process Present Bound | Future Sensitivity

ey 5.7x 10713 [25] | 6 x 10714 [26]
T — ey 3.3x 1078 [39] | ~3x 107 [40]
T — Wy 4.4x1078[39] | ~3x 1079 [40]
©— eee 1.0 x 10712 [2§] ~ 10716 [27]
T — g 2.1 x 1078 [41] ~ 1072 [40]
T e ptuT 2.7 x 1078 [41] ~ 1079 [40]
T~ = pTete” 1.8 x 1078 [41] ~ 1079 [40]
T — ece 2.7 x 1078 [41] ~ 1079 [40]

p=,Ti—e ,Ti | 4.3x10712 [42] |  ~ 10718 [35]
p,Au— e, Au | 7 x 10713 [43)

p, Al = e, Al 10715 — 10718
=, SiC — e, SiC 10714 [32]

Table 1. Current experimental bounds and future sensitivities for the most important LFV ob-
servables.

Let us first discuss radiative lepton decays. The branching fraction for £, — £gv is

given by
3(47)3em

4G3,
Here G is the Fermi constant and aen = €?/(47) is the electromagnetic fine structure
constant, with e the electromagnetic coupling. Ap is the dipole form factor, given by

BR (o — €s7y) = |Ap|”BR (Lo — LsvaT3) - (3.1)

3

. y;‘kﬂyioz 1 ‘
Ap = ; 2(47)2 m7274_ By (&), (3:2)

where the & parameters are defined as & = MJQ\Q / m727+ and the loop function Fy(z) is given
in appendix A.

We now turn to the 3-body decays £, — 3 3. The branching ratio is given by a slightly
more involved expression

— 3(47)%a? ) 5 (16 Ma 22
BR (¢, — fﬂfﬁfﬁ = - °;m |AND| + |AD| —log| — | — —
( ) 8G% 3 mg

1 1 2
+6|B’2 + (—QANDA*D + gANDB* — gADB* + h.C.):|
x BR (¢, — fgyafg) . (3.3)

Here we have kept mg < m, only in the logarithmic term, where it avoids the appearance
of an infrared divergence. The form factor Ap is generated by dipole photon penguins and
is given in equation (3.2). Regarding the other form factors, Anp, given by

3

Anp =) Dt 1, (&), (3.4)

— 6(47)2 mf7+



is generated by non-dipole photon penguins, whereas B, induced by box diagrams, is

3
e’B = (47) 2m Z |: Dy ( flagj y]ﬁy]ﬁylﬁyza + v/ &i& D2 gz?gj)yjﬁyjﬁylﬁyla . (3.5)
nt i

The loops functions Ga(z), Di(x,y) and Dy(x,y) are defined in appendix A.

We note that the Z-boson penguin contributions are negligible, since in this model they
are suppressed by charged lepton masses [3]. Similarly suppressed are the Higgs-penguin
contributions, which we have not included in our calculations.

Next, we consider p-e conversion in nuclei. This is the LF'V process with the most
remarkable experimental projects in the next few years. The conversion rate, normalized
to the the muon capture rate, can be expressed as [44, 45]

pe Ee m3 G2F ., Z;lﬁ Fz?

872 Z Ceapt

X {‘(ZJFN) (g(u)/ +g(0)) +(Z-N) (g(Ll& +g(1)>‘ +

CR(u-e, Nucleus) =

|2+ ) (o + 9%) + (2~ 3) (o + 0 f} . (36)

Here Z and N are the number of protons and neutrons in the nucleus, Z.g is the effective
atomic charge [46], F}, denotes the nuclear matrix element and I'cape represents the total
muon capture rate. The values of these parameters depend on the considered nucleus. For
the nuclei used in current or near future experiments, these values can be found in [45]
and references therein. Furthermore, p. and E. (~ m, in the numerical evaluation) are
the momentum and energy of the electron. In the above, g( ) and ggg( (with X = L, R
and K = S, V) are generally given by

0 1 , n
9&(%{ D) Z (gXK(q)G(Igp) +9XK(q)G§3 )> )
q=u,d,s
1 n
g§§}( =3 Z (gxmq)Gﬁ?’p) —QXK(q)G%’ )> . (3.7)
q=u,d,s

The numerical values of the G coefficients can be found in [44, 45, 47]. In the scotogenic
model, the effective couplings gx /() receive several contributions, and thus they can be
split as

grLv(q) ~ ng(q) )

9RV(q) = 9LV (g)

9rLs(q) = 0,
9rs(q) = 0, (3-8)

where gzv(q) is generated by photon penguins. We note that in the scotonic model there are
no box contributions to p-e conversion in nuclei (besides the negligible SM contribution) due



to the Zy symmetry, which forbids the coupling between the n* scalars and the quark sector.
Regarding the Z-boson penguins contributions, they turn out to be suppressed by charged
lepton masses, see [3] for more details. The ng(q) effective coupling can be written as

V2
gZV(q) = G—F62Qq (Anp — Ap) . (3.9)
The form factors Ayp and Ap have been already defined in egs. (3.4) and (3.2). Further-
more, ()4 is the electric charge of the corresponding quark.

4 Results

In this section, we assess the impact of future LFV experiments on the scotogenic model
by means of a random scan over its entire parameter space. That is, we first find a large
sample of models compatible with current data — in particular neutrino masses, © — ey
and dark matter — and then study what region of this viable parameter space will be
probed by future experiments.

In our random scan, we take as free parameters of the model the following:

MNiumRumn+))‘5v’rlar27r3- (41)

From them, one can reconstruct the original Lagrangian parameters, in particular the
Yukawa couplings, ., using equations (2.3) (2.4), (2.5) and (2.11). All our models are,
by construction, automatically consistent with current neutrino data (at 30) [48].

These free parameters are subject to a number of theoretical and experimental con-
straints, which we now describe. First of all, we impose a perturbativity limit on the
Yukawa and scalar couplings: |yia|, |Aj| < 3. The scalar couplings, \;, are further required
to satisfy the vacuum stability conditions and we ensure compatibility with electroweak
precision tests [22, 49].

Direct searches at colliders impose a lower bound on the masses of the scalar parti-
cles [50, 51] . For definiteness, we require all scalars to be above 100 GeV. To ensure that
the scan is sufficiently general, the upper bound on the scalar masses was set at 5TeV.
The masses of the singlet fermions, my,, are not constrained by current collider data. In
the scan, we allowed them to vary from a common minimum value of 1 GeV to a maximum
value of 3.3, 5 and 10 TeV respectively for i = 1,2, 3.

The dark matter particle in this model can be a neutral scalar (ng ) or a singlet
fermion (N7). Both possibilities have been examined in the previous literature and it is
known that they give rise to a different phenomenology. We assume in the following that
the dark matter is the singlet fermion and that its relic density is the result of a freeze-
out process in the early Universe (freeze-in [52, 53] is an alternative possibility we do not
consider), as this is the most interesting scenario from the point of view of LF'V processes.
In this case, the dark matter relic density is determined by the N7 annihilation rate, which
depends on the Yukawa couplings. Since they must be large enough to explain the observed
dark matter density, the rates of LF'V processes, which are proportional to these Yukawas,
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Figure 2. The Yukawa couplings associated with the dark matter particle, y1;, as a function of

My, .

are generally expected to be observable. We examine two different dark matter scenarios

depending on the process that sets the value of the relic density: N;-N; annihilations

or Ni-n coannihilations (N1-Na coannihilations are rarely relevant as they depend on the

same Yukawa couplings as N1-Np). For each case, we require the corresponding process to

be dominant. We have implemented the scotogenic model into micrOMEGAs [54], which

accurately computes the relic density taking into account all relevant effects, including

All our viable models are consistent with the observed

value of the dark matter density, as determined by WMAP [55] and PLANCK [56].

resonances and coannihilations.

Regarding LFV processes, we have only imposed the current bound on pu — ey, which

is usually assumed to set the strongest constraint. In this way, we can actually test this as-

sumption by comparing the rates of other LF'V processes against their current experimental

limits.

Models satisfying the above mentioned constraints are called viable models in the

following. We have generated a sample of about 10° of them for each of the two dark

matter scenarios, which we will discuss separately. Our analysis is based on this sample of

viable models.

4.1 Dark matter via IN;-IN; annihilations

To begin with, let us consider viable models where the relic density is determined by

This is the most favorable

annihilation processes only, without coannihilation effects.

case for LFV processes because the Yukawa couplings tend to be rather large. First, we

will describe the resulting parameter space and then study the prospects for a positive
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Figure 3. The allowed values of A5 as a function of My;,.

As we will show, this scenario can be entirely

observation in future LFV experiments.

probed by such experiments.

The dark matter annihilation cross section is determined by the Yukawa couplings y14.

At least one of these couplings must, therefore, be large enough to ensure that the dark

matter density is consistent with the observations. Figure 2 shows the viable models in the
plane (Mp,, |y1a|) for a = e (yellow circles), p (red crosses), and 7 (blue squares). They

feature masses between 1 GeV and 2 TeV, and dark matter Yukawa couplings between 107>
and 3 (our perturbativity limit). As a result of the u — ey bound, these couplings satisfy

the hierarchy |yie| S (Y14l S |Y1r|, With |yi-| rarely lying below 0.3 and |yie| rarely going

above that value. Thus, dark matter annihilates mainly into third-family leptons: 777~

Since the perturbativity limit on gy, is saturated at both the lowest and the

and U;v;.

highest dark matter masses, we can claim that it is not possible to find viable models

outside this mass range. Notice also that this range is quite sensitive to the exact value of

the perturbativity limit imposed. Had we used the more restrictive condition |y;o| < 1, the

lowest and highest value for the dark matter mass would have changed to about 10 GeV

and 700 GeV respectively.

The allowed values of A5 are shown in figure 3. They turn out to be restricted to the

range (10711, 4 x 1071Y), with most points lying close to 1071, A5 indeed has to be very

small in this setup. This small value of A5 and its narrow range of variation are the result

of the interplay between the perturbativity limit, neutrino masses and the dark matter

constraint. Due to neutrino masses, larger values of A5 generically imply smaller Yukawa

couplings, which would lead to a dark matter density larger than the observed one; smaller

values of A5, instead, tend to be give Yukawa couplings above the perturbativity limit. Let
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Figure 4. The parameters &;

us emphasize that A5 is naturally small in the sense of 't Hooft [57], because in the limit

A5 — 0 lepton number is restored [4]. Furthermore, we also note that the allowed values

of A5 found in our analysis depend on our assumption of a real R matrix.

As shown in the previous section, the rates for the different LFV processes depend

Figure 4 shows a scatter plot of the

2 2
Ni/ m
Since N is the lightest odd particle, & is always smaller

=m

on loop functions of the parameters §;

nt

dark matter mass versus ¢&;.

than 1, reaching values of order 1074 for My, ~ fewGeV. In principle smaller values

They

always feature, for instance, a light charged scalar (m,+ < 300 GeV) and small dark matter

of &1 are possible in our scan, but they are not realized within the viable models.

masses, My, < 10GeV. & and &3, on the other hand, can be either larger or smaller than

1. We see that &3 tends to be larger than 1, reaching values as high as 10%. Interestingly,

we have found that viable models never feature a degenerate or quasi-degenerate spectrum

for the singlet fermions (§; =~ & =~ &3). The ratio My, /My, in fact, has a minimum value
The branching ratios for the most important lepton flavor violating 7 decays are shown
in figure 5. Its left panel displays BR(7 — py) (blue squares) and BR(7 — e7y) (red crosses)

of about 3.5 in our sample — see also the right-hand side of figure 6.

versus the dark matter mass. The current experimental bounds on these decays are also

shown as solid lines, blue and red, respectively. We see that the current bounds can be

Thus, in certain regions of the parameter space, 7 — 7y

violated, particularly at low My, .

is more constraining than u — ey, even if the former has a less stringent experimental

bound. In any case, current bounds do not exclude the low My, region, as one can also

Notice that 7 — py tends to have a

find models with smaller branching ratios there.

branching ratio larger than 7 — ey, with most points featuring values above 10! for
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Figure 5. (a) The rates of 7 — pvy (blue squares) and 7 — ey (red crosses) as a function of the
dark matter mass. The current bounds for both processes are shown with solid blue and red lines,
respectively. The expected future sensitive for both processes is also displayed as a dashed black line.
(b) Similar to the figure in (a) but for the processes 7 — 3u (blue squares) and 7 — 3e (red crosses).

I I
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1 | -
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>
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Figure 6. (a) A scatter plot of |y1,| versus My, for all the models in our sample (yellow circles),
those compatible with current bounds on LFV 7 decays (red crosses), and those that are beyond
the expected sensitivity of future searches for LEV 7 decays (blue squares). (b) Similar to (a) but
for My, versus My;,.

BR(7 — py) and above 10714 for BR(7 — ev). Planned experiments are expected to reach
sensitivities of order 3 x 10~ (dashed black line) for both of these decays — see table 1.
Even though significant, such improvement would not be sufficient to exclude this scenario
or restrict the value of My;,.

The right panel of figure 5 shows instead the branching ratios for the processes 7 — 3u
(blue squares) and 7 — 3e (red crosses) versus the dark matter mass. The other conventions
are the same as in the left panel. BR(7 — 3y) varies approximately between 10~# and 10712
whereas BR(7 — 3p) varies between 10~* and 10716, The current experimental limits on
these decays can therefore be violated at low My, particularly for 7 — 3u. The expected
future sensitivity for both branching ratios is of order 1079 (the dashed black line), and can
probe a large number of models. It is not enough, however, to cover the entire parameter
space, as there are models featuring smaller branching ratios over the whole range of My, .
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Figure 7. The ratios between the different amplitudes that contribute to p-e transitions as a

function of the dark matter mass.

As we have seen, searches for LF'V 7 decays play an important role in this model.

They can already exclude a large number of points that are compatible with the u — ey

constraint, and could, in the future, probe a significant region of the parameter space. In

figure 6 we further illustrate these facts. They differentiate our entire set of viable points

(yellow circles) from those that are compatible with all current bounds on LFV 7 decays

(red crosses), and from those that lie beyond the expected sensitivity of all future searches

Specifically, these points are projected onto the planes

for LEV 7 decays (blue squares).

(Mny, Y1) in the left panel and (My,, Mn,) in the right panel. From the left panel we

learn that current bounds exclude the region of low My, and large |y;,|. In fact, no points

compatible with the current limits on LFV 7 decays are found for My, < 20GeV and

|y1.| 2 0.1. Moreover, all the points giving branching ratios below the expected sensitivity

of future LFV 7 searches are found at large values of My, or small values of |yi,|. From

the right panel we see that all points that cannot be probed by future experiments feature

My, 2 3TeV and My, 2 100GeV. That is, they are characterized by a hierarchical
spectrum of singlet fermions containing at least a very heavy particle. Thus, if the spectrum

of singlet fermions were such that they all had masses below 3 TeV, the entire parameter

space of this model could be probed by future LF'V experiments involving 7 decays only,

without any additional information from pu-e processes.

As explained in

Let us now turn our attention to LFV processes in the p-e sector.

section 3, all p-e transitions in this model are determined by just three different form

factors: the dipole (Ap), the non-dipole (Axp), and the box (B). u — ey depends on Ap,

p-e conversion on the difference Ap — Ayp, and u — 3 e on all three in a more complicated
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In most models we see in fact that Ayp > Ap and B > Ap, with their
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Figure 8 displays the rates for the LF'V processes involving p — e transitions: BR(u —
ey) (red crosses), BR(u — 3e) (orange circles), and CR(u-e, Ti) (blue squares). BR(u —

e7y) varies between its current experimental bound, which we imposed, and about 10720,

way. It is important to identify, therefore, which of these contributions dominates. Due
(red crosses).

to the strong bound on u — ey, we expect Ap to be suppressed with respect to the other
two. And that is exactly what we find, as illustrated in figure 7. It shows the ratio between
not degenerate, as expected in general, one can indeed have Ayp > Ap. In our sample
Current bounds on BR(x — 3e) and CR(p-€,Ti) were not imposed, and from the figure
we see that they can in fact be violated. Thus, u — ey alone does not guarantee compat-
ibility with the current bounds on other u-e lepton flavor violating processes. It is clear,
nevertheless, that models compatible with all current bounds can be found over the entire
range of the dark matter mass. Notice that most models feature BR(u — 3¢) > 1072 and
CR(p-e, Ti) > 10713, so they are never much below the current experimental bounds.

of viable models, not only is Axyp > Ap possible but it is also the most likely result.
Regarding the relation between Ayp and B, we see that B > Ayp in most models, B

ratios reaching values as high as 10°. As a result, most points in our results have u — 3e
with our findings is that such conclusion was reached for a scenario where the singlet
fermions are degenerate, leading to the different result. If the singlet fermion spectrum is

Figure 8. The rates of u — ey (red crosses), u — 3e (orange circles), and p-e conversion in

Titanium (blue squares) as a function of the dark matter mass.
being two orders of magnitude larger than Ay p in some cases.

non-dipole contribution never exceeds the dipole one.

dominated by non-dipole and box contributions.

the three amplitudes:
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Figure 9. (a): scatter plot of BR(u — ev) versus BR(u — 3e) including current bounds (solid
lines) and expected future sensitivities (dashed lines). (b): scatter plot of BR(u — ey) versus
CR(p-e,Ti) including current bounds (solid lines) and future sensitivities (dashed lines).

The impact that future LFV searches will have on the parameter space of this model
is illustrated in figure 9. It shows scatter plots of BR(x — e7) versus BR(u — 3e) in the
left panel and versus CR(u-e, Ti) in the right panel. In addition, their current bounds
(solid lines) and their expected future sensitivities (dashed lines) are also displayed. The
expected improvement on the u — ey bound would allow, if no signal is found, to exclude
an important region of the parameter space, but many models would remain viable. Not so
with u — 3 e and p-e conversion in nuclei. Future y — 3 e and p-e conversion experiments
will probe the entire parameter space consistent with dark matter via Ni-N; annihilations.
And they can do so even if they fall short of reaching their expected sensitivity. For u — 3e,
a branching ratio sensitivity of 10714 would be enough to effectively exclude this scenario,
two orders of magnitude larger than what is achievable at the Mu3e experiment. For u-e
conversion in Titanium, a rate sensitivity of 10~!4, four orders of magnitude larger than
the most optimistic figure, could exclude practically the entire parameter space.

Summarizing, the viable parameter space of the scotogenic model will be probed in
different ways by future LF'V experiments. Searches for LE'V 7 decays can, by themselves,
probe a significant part, including the entire region with My, < 3TeV. Future searches
for ¢ — 3e and p-e conversion in nuclei can go deeper and independently probe the
whole parameter space we considered, which extends up to My, = 10TeV. If future LFV
experiments fail to find a signal, this scenario, where N;-N; annihilations set the dark
matter relic density, can be ruled out.

4.2 Dark matter via IN7-1 coannihilations

If the dark matter relic density is obtained via IN1-n coannihilations, the Yukawa couplings
can be smaller and so are the rates for LE'V processes. As we will see, future experiments
will not be able to exclude this possibility but they can test a significant part of the
parameter space. In this section, we first present the viable parameter space and then
identify the regions that can and cannot be probed with future LF'V experiments.
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Figure 10. The Yukawa couplings associated with the dark matter particle, yi1,, as a function of
My, . In this case, the dark matter relic density is determined by N1-n coannihilations.

The free parameters for the random scan are the same as before, with the condition
that the mass splitting between the dark matter particle and the scalars, which in this case
we take to be degenerate, must be small. On these parameters, we apply the constraints
mentioned in the previous section, further requiring that the relic density be determined
by Ni-n coannihilations only. We obtained in this way a sample of 2 x 10* viable models,
on which our following analysis is based.

To begin with, we project, in figure 10, the viable models into the plane (My;,, y14) for
i = e, u, 7. Since Ni-n coannihilations determine the relic density, the mass splitting be-
tween N7 and the scalars is necessarily small, and the lower bound on M}, is now set by the
collider bound on the mass of the scalars, ~ 100 GeV. At the other end, we see that we can
find viable models up to the highest dark matter masses explored in the scan, ~ 3 TeV. The
dark matter Yukawa couplings are indeed smaller now, never reaching our perturbativity
limit. For My, ~ 100 GeV, the largest value of |y14/| is about 0.3, and it increases with My,
until it reaches 1-2 for masses of order 1 — 3 TeV. Notice that at low dark matter masses,
Mp, < 300GeV, |y;-| tends to be large, lying on a narrow band between 0.1 and 0.4. But
at higher masses, it can be much smaller, reaching values below 1073 in some cases. In fact,
there is no clear hierarchy among the different couplings. One can easily find models where
|Y1u] > |y1-| or where |yie| > |y1,]. It is true, though, that |yi.| is very rarely the largest one
among the three couplings. Thus, the coannihilation processes will feature one lepton from
the second or third generation as a final state — e.g. Nynt — WT, or Nyn® — WHpu—.

The allowed values of & (i = 1,2,3) are shown in figure 11. As a consequence of the
coannihilation condition, &; is seen to be constrained to a narrow range just below 1. & and
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Figure 11. The parameters &;

&3, on the other hand, tend to be much larger than 1 and span the whole range explored

in the scan.

Regarding LFV 7 decays, we found that in this case they are all too suppressed to probe

the model. Their current bounds do not constrain the viable parameter space at all, and

only a handful of points feature branching ratios above their expected future sensitivities.

For this reason, we will only examine the u-e transitions in the following.

The predicted rates for the different p-e violating processes are shown in figure 12.

By construction, all these points are consistent with the current bound on u — evy. Even

though the bounds on © — 3e and p-e conversion in nuclei could be violated, we observe

that only few points do so. In this case, then, it is true that u — ey provides the most

stringent bound on LFV processes; once it is satisfied, the other bounds are automatically

fulfilled too. Notice that all three processes can be very suppressed. u — ey and yu — 3e
can both reach branching ratios as low as 10~2° whereas the y-e conversion rate in Titanium

It is clear, therefore, that this scenario cannot be

extends down to values below 1024,

entirely probed by future LFV experiments.

, which shows scatter plots of BR(u — ev)

This point is further illustrated in figure 13

versus BR(u — 3e), in the left panel, and versus CR(u-e, Ti) in the right panel. In these
figures, the current bounds and the future expected sensitivities are also displayed as solid

and dashed lines respectively. Notice from the left panel that all points lie above a line in

this plane determined by the so-called dipole dominance condition (Ap > Anxp, B), which

implies BR(y — ey) ~ 200 BR(p — 3¢e). Comparing the sensitivity of future experiments,

it is clear that the searches for p — 3 e will probe a larger region of the parameter space
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Figure 13. (a): scatter plot of BR(y¢ — evy) versus BR(p — 3e) including current bounds (solid

lines) and expected future sensitivities (dashed lines).

scatter plot of BR(u — ey) versus

(b):

CR(p-e,Ti) including current bounds (solid lines) and future sensitivities (dashed lines).

than the searches for u — ey. That is, all points with BR(z — ey) > 6 x 107!* feature

but not the other way around. Less conclusive is the result of the

9

> 10716
comparison between p — ey and p

)

BR(p — 3e

e conversion — see the right panel. In this case there is

no clear winner: future ;1 — ey experiments will probe regions that cannot be probed with

many viable points will be beyond

)

, and viceversa. In any case

[-e conversion experiments

the expected sensitivity of all future LF'V experiments. In the following, we characterize

such points and identify the regions of the parameter space that will be probed by future

experiments.
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Figure 14. The values of the Yukawa couplings that are compatible with present bounds (red
crosses) and those that are beyond the expected sensitivity of planned LFV experiments (blue
squares). Each panel shows the corresponding element of the Yukawa matrix. The top-left panel,
for example, shows the element (1,1) while the bottom-right panel shows the element (3,3).

Because all lepton flavor violating processes in this model are determined by the neu-
trino Yukawa couplings, future experiments have the potential to test the regions featuring
the largest values of y;,. Figure 14 illustrates the currently viable region (red crosses)
and the regions that lie beyond the expected sensitivity of future LFV experiments (blue
squares) for each element of |y;|. The position of the panel in the array corresponds to the
respective matrix element. Thus, the top-left panel shows y1. while the bottom right shows
y3-. The z-axis corresponds instead to the dark matter mass. As expected, the points that
lie beyond the expected sensitivity of future LF'V experiments feature a heavy spectrum
(Mpy, Z 600GeV) and small values of the neutrino Yukawa couplings. The e-column of
the Yukawa matrix (the first one) is already the most strongly constrained, and future
experiments can exclude the region |yio| 2 0.1 over the entire range of My, .

The mass of the charged scalar (m,+) can affect the rates of L'V processes directly
and indirectly. On the one hand, n* always appear in the LFV loops, with the result that
all form factors are proportional to 1 /771727Jr If this were the only relevant effect, future
experiments could not probe the region where m,+ is sufficiently large. But Ni-n coanni-
hilations imply that m,+ /My, can never be much larger than one. Moreover, as m,+ is
increased, the coannihilation effect becomes suppressed and larger Yukawa couplings are re-
quired to satisfy the dark matter constraint. This indirect effect then points in the opposite
direction, with future experiments unable to probe the low m,+ region. Figure 15 shows
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Figure 15. The regions in the plane (My,, m,+/My,) that are compatible with present bounds
(red crosses) and those that are beyond the expected sensitivity of planned LFV experiments (blue

squares).

a scatter plot of m,+ /My, versus Mpy;, comparing the viable regions (red crosses) with

those that lie beyond the sensitivity of future LE'V experiments. As expected, m,+ /My,

is always small, never going above 1.25. This ratio varies approximately between 1.1 and

1.15 at small masses, and between 1 and 1.25 at large masses. Future experiments have the

potential to exclude the region where m,+ /My, is large, indicating that the indirect effect

The regions m,+ /My, 2, 1.10 and m,+ /My, 2 1.15, for

example, could practically be excluded respectively for My, < 1TeV and My, < 3TeV.

mentioned above dominates.

As observed before, the region of low dark matter mass, My, < 600 GeV, can be effectively

excluded by future experiments for arbitrary values of m,+ /My, .

Figure 16 shows a scatter plot of our models in the plane (My,, A5), again differen-

tiating between all the viable points (red crosses) and those that lie below the expected

sensitivity of future experiments (blue squares). A5 is found to vary in this case between

10~ and 10~7. Larger values of A5 would imply, via the neutrino mass constraint, smaller

Yukawas, which are not consistent with the requirement of a dark matter density driven

by Ni-n coannihilations. As shown in the figure, future LF'V experiments can exclude all

models with A5 < 107 and practically all models with A5 < 1078 and My, < 600GeV.
Because the rates for LE'V processes do not depend explicitly on A5, this constraint is in-

direct, via the Yukawa couplings and the neutrino mass scale. In this setup, if future LFV

experiments fail to find a signal, A5 should lie within one order of magnitude of 1075,
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Figure 16. The regions in the plane (My,, As) that are compatible with present bounds (red

crosses) and those that are beyond the expected sensitivity of planned LFV experiments (blue
significant impact on the scotogenic model. Throughout this work, we assumed the dark

We demonstrated that future searches for lepton flavor violating processes will have a

5 Conclusions

squares).

parameter space of this model to obtain a large sample of viable points, on which our
analysis was based. We found that the prospects to observe a LF'V signal strongly depends

matter particle to be the lightest singlet fermion, N;, and considered two cases depending
on how its relic density in the early Universe is determined: via self-annihilations or via

on the mechanism that sets the dark matter density in the early Universe.

coannihilations with the odd scalars.

When the dark matter density is obtained via N;-N; annihilations, the Yukawa cou-

plings tend to be large, which in turn translates into significant rates for lepton flavor

First, we analyzed the resulting parameter space in some detail by

violating processes.

projecting the viable points onto different planes. We showed that current bounds on LEV
observables strongly constrain the parameter space of the model, although valid regions are
still found. Then we examined the potential of future LFV experiments. We demonstrated
searches for y — ey will not have a dramatic impact on the parameter space of the model

that searches for 7 decays can probe an important part of the parameter space. Specif-
ically all models featuring My, < 3TeV could be excluded if no signal is found. Future

In fact, future searches for y — 3e and p-e conversion in nuclei will

because this decay can be very suppressed. BR(u — 3e¢) and CR(u-e,Ti), on the other
hand, typically lie within few orders of magnitude of their present bounds and offer much

better prospects.



independently and thoroughly probe this region. If no signal of either process were found,
the entire parameter space could be excluded.

When the dark matter density is obtained via Nj-n coannihilations, the Yukawa cou-
plings need not be so large and consequently the rates for lepton flavor violating processes
are smaller. As a result, LFV 7 decays play no role and only u-e processes can test this
scenario. We showed that it is possible to find viable points where the rates of all these
processes are below the expected sensitivity of future experiments. That is, a fraction of the
viable models cannot be probed with future experiments. We characterized such models:
they feature My, 2, 600 GeV, small Yukawa couplings, m,+ /My, < 1.15, and A5 2 1079.
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A Loop functions

We present in this appendix the loop functions relevant for the computation of the LFV
observables. These are

_ 1 — 6z + 322 4 223 — 622 log x

FQ(.’L‘) = 6(1 — .73)4 y (Al)
— 9z z? — 1123 + 623 log x
Golz) = 2—-9x + 186(1 _1;)4 + 627 log ’ (A.2)
_ 1 _ z?log x _ y?logy
O (= R (o B e U M
Da(z,y) = — 1 B zlogx B ylogy (A4)

A-2)1-y) (-2P@-y) OQ-y?y-2z)

In the limit z,y — 1 and y — z, the functions become

R =1 G)=j  Dh=-3  Dl)=g (A5
Di(w,7) = -1 +(1;12__x2)§ logx’ (A.6)
Di(2.1) = Di(1,2) = -1+ 4x2—(13i2x4)—32:z2 loga:7 (A7)
Dy(s,2) = —2+23:(1—_(1x;m)loga:7 (A.8)
Doz, 1) = Dy(1,2) = * _;;(2:_25);% v (A.9)
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