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Abstract: Some matrix models admit, on top of the usual ’t Hooft expansion, an M-
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are fixed, instead of scaling with N . These models, which we call M-theoretic matrix mod-

els, appear in the localization of Chern-Simons-matter theories, and also in two-dimensional

statistical physics. Generically, their partition function receives non-perturbative correc-

tions which are not captured by the ’t Hooft expansion. In this paper, we discuss general

aspects of these type of matrix integrals and we analyze in detail two different examples.

The first one is the matrix model computing the partition function of N = 4 supersym-

metric Yang-Mills theory in three dimensions with one adjoint hypermultiplet and Nf

fundamentals, which has a conjectured M-theory dual, and which we call the Nf matrix

model. The second one, which we call the polymer matrix model, computes form factors of

the 2d Ising model and is related to the physics of 2d polymers. In both cases we determine

their exact planar limit. In the Nf matrix model, the planar free energy reproduces the

expected behavior of the M-theory dual. We also study their M-theory expansion by using

Fermi gas techniques, and we find non-perturbative corrections to the ’t Hooft expansion.
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1 Introduction

In the last years, a new window has opened to understand the properties of M-theory and

string theory on certain backgrounds: the combination of the AdS/CFT correspondence

with supersymmetric localization in gauge theories. This combination has provided conjec-

tural, exact results for quantities in M-theory, like for example Euclidean partition functions

on certain AdS backgrounds, and it has led to new checks of the AdS/CFT correspondence.

In the case of AdS4, for example, the gauge theory computation of the Euclidean partition

function on the three-sphere of Chern-Simons-matter theories reproduces at large N the
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gravity calculation, including the N3/2 behavior of membrane theories predicted in [1].

This was first done in [2] in the case of ABJM theory [3], and it was extended to other

models in many subsequent papers. One can even test AdS/CFT beyond leading order

and match logarithmic corrections to the partition function [4].

Perhaps the most interesting lesson for M-theory has been obtained in the study of

non-perturbative corrections in ABJM theory. In this model, both worldsheet instanton

corrections and membrane instanton corrections to the partition function can be com-

puted in detail, by using the standard ’t Hooft expansion [2] and the so-called Fermi gas

approach [5], respectively. Due to a hidden (and perhaps accidental) connection to topo-

logical string theory [6–9], one can obtain exact results for the full series of instanton

corrections. A surprising aspect of this exact result is that the total contribution of world-

sheet instantons (i.e. of fundamental strings) has infinitely many poles at physical values of

the string coupling constant. These divergences are only cured if one adds membrane in-

stantons and bound states of fundamental strings and membranes [7, 10]. The cancellation

of divergences in the partition function is known as the HMO mechanism. This mechanism

shows, in a precise quantitative way, that a theory based solely on fundamental strings is

radically incomplete, and a consistent theory is only obtained when one considers M-theory

together with its solitonic objects, like membranes.

From a more formal point of view, the results obtained for ABJM theory show that

the ’t Hooft expansion does not capture the full physics of the model, since it only contains

the contribution of fundamental strings. On general grounds, it has been known for a long

time that the ’t Hooft expansion is an asymptotic expansion, and in principle it has to

be supplemented by non-perturbative contributions like large N instantons (see [11] for

a review of these issues). The study of the ABJM matrix model has shown that these

corrections are not just a luxurious commodity: they are needed for consistency.

These conclusions are probably generic for a wide class of AdS4/CFT3 duals, i.e. we

expect that the ’t Hooft expansion of the partition function of these models will miss an

important part of the physics. Since the phenomena discovered in the study of the ABJM

matrix model probe fundamental aspects of string theory (and of the large N expansion),

it is clearly important to study other examples where these aspects can be understood in

detail, and where one can find exact results for the non-perturbative corrections.

In this paper we take some steps towards an understanding of what we call “M-theoretic

matrix models”, i.e. matrix models which can be studied in both the ’t Hooft expansion and

in an M-theory expansion in which N is large, but the coupling constants are kept fixed.

The matrix models appearing in the localization of Chern-Simons-matter theories are of

this type, as required by their duality with M-theory backgrounds, and their M-theory

expansion was first considered in [12]. There are other contexts in which similar models

appear. For example, many matrix models considered in [13, 14], which describe ADE

models and their affine extensions on a random lattice, are also M-theoretic matrix models.

In all these models, the ’t Hooft expansion is likely to miss important ingredients, and it

receives non-perturbative corrections which appear naturally in the M-theory expansion.

Unfortunately, the study of M-theoretic matrix models is difficult to pursue beyond

ABJM theory, since in many cases we don’t have a good control of their ’t Hooft expansion,
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let alone of the non-perturbative corrections to it.1 As a matter of fact, even the planar limit

of generic Chern-Simons-matter matrix models is difficult to obtain explicitly. Examples

exist where this limit is more or less under control [19–22], but the resulting expressions

are often complicated and unilluminating.

In this paper we analyze two matrix models whose planar limit can be determined

exactly and is relatively simple. They might be exactly solvable in both, the ’t Hooft

expansion and the M-theory expansion, and they represent interesting laboratories to start

the exploration of M-theoretic matrix models beyond ABJM theory. The first model, which

we call the Nf matrix model, calculates the partition function of a three-dimensional N = 4

gauge theory which consists of an U(N) vector multiplet coupled to one hypermultiplet in

the adjoint representation and Nf hypermultiplets in the fundamental. This theory is dual

to M-theory on AdS4× S7/Nf , where the quotient by Nf leads to an ANf−1 singularity [5,

23, 24]. When Nf = 1, this theory is equivalent to the ABJM theory with k = 1, but for

Nf > 1 it describes a different M-theory background. In this paper we will solve the exact

planar and genus one limit of this matrix model, which turns out to be relatively simple.

This model can be also analyzed in the M-theory regime by using the Fermi gas approach.

The perturbative grand potential was determined recently in [25], and in this paper we give

some results on its non-perturbative corrections. In particular, we find non-perturbative

effects beyond the ’t Hooft expansion, which are conjecturally due to membrane instantons,

as in ABJM theory.

The second matrix model that we study, which we call the polymer matrix model, is a

particular case of the models considered in [14], and it appears in the study of 2d polymers

and in the calculation of correlation functions in the 2d Ising model. We solve exactly for

its planar limit, and we also study it from the point of view of the Fermi gas, where it

displays again non-perturbative effects which are not captured in the ’t Hooft expansion.

As an interesting bonus, we give a Fermi gas derivation of the function determining the

short-distance behavior of the spin-spin correlation functions in the 2d Ising model. Both

models, the Nf matrix model and the polymer matrix model, can be regarded as particular

cases of the O(2) matrix model [26, 27], and we use the technology developed in [28, 29] to

study their planar limit. They are also closely related to the models with adjoint multiplets

studied in [21], but they turn out to be simpler.

This paper is organized as follows: in section 2 we give a general overview of M-theoretic

matrix models and their properties. In section 3 we study in detail the Nf matrix model.

We solve for its planar and genus one limit and we study it from the point of view of the

Fermi gas. In section 4 we study the polymer matrix model using a similar approach. In

section 5 we state some conclusions and prospects for future work. Appendix A contains

some technical ingredients introduced in [28, 29] to solve the O(m) matrix model. Appendix

B formulates the matrix models studied in this paper as Gaussian models perturbed by

multi-trace potentials, and we explain a method to compute the relevant quantities at small

’t Hooft coupling which can be used to check the exact solution.

1ABJ theory [15] has been also extensively studied with similar techniques, see [2, 16–18].
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2 General aspects of M-theoretic matrix models

In [30–32], explicit expressions in terms of matrix integrals were found for the partition

functions on the three-sphere of various Chern-Simons-matter theories with N ≥ 2 super-

symmetry. The most studied example of this family of matrix models is ABJM theory [3].

This is a quiver theory with two nodes, and each node is associated to a U(N) Chern-

Simons theory, with levels k and −k, respectively. The partition function depends on N

and k and it is given by the matrix integral,

ZABJM(N, k)

=
1

N !2

∫
dNµ

(2π)N
dNν

(2π)N

∏
i<j

[
2 sinh

(
µi−µj

2

)]2 [
2 sinh

(
νi−νj

2

)]2

∏
i,j

[
2 cosh

(
µi−νj

2

)]2 exp

[
ik

4π

N∑
i=1

(µ2
i − ν2

i )

]
.

(2.1)

A natural generalization of this model is the family of necklace quivers constructed in [33,

34]. These theories are given by a

U(N)k1 × U(N)k2 × · · ·U(N)kr (2.2)

Chern-Simons quiver. Each node will be labelled with the letter a = 1, · · · , r. There are

bifundamental chiral superfields Aaa+1, Baa−1 connecting adjacent nodes, and in addition

there can be Nfa matter superfields (Qa, Q̃a) in each node, in the fundamental representa-

tion. We will write

ka = nak, (2.3)

and we will assume that
r∑

a=1

na = 0. (2.4)

The matrix model computing the S3 partition function of such a necklace quiver is given by

Z (N,na, Nfa , k) =
1

(N !)r

∫ ∏
a,i

dλa,i
2π

exp
[

inak
4π λ

2
a,i

]
(

2 cosh
λa,i

2

)Nfa r∏
a=1

∏
i<j

[
2 sinh

(
λa,i−λa,j

2

)]2

∏
i,j 2 cosh

(
λa,i−λa+1,j

2

) .

(2.5)

These matrix integrals can be studied in two different regimes: in the ’t Hooft expan-

sion, one considers the limit

N, k, Nfa →∞, (2.6)

but the ’t Hooft and Veneziano parameters

λ =
N

k
, ta =

Nfa

k
(2.7)

are fixed. In this regime, the free energy F = logZ has a 1/N expansion of the form

F (N,na, Nfa , k) =
∑
g≥0

k2−2gFg (λ, ta, na) . (2.8)
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This regime corresponds of course to the ’t Hooft expansion of the original gauge theories,

and to the genus expansion of the type IIA superstring duals. The ’t Hooft expansion

of these matrix models can be studied in principle by using standard large N expansion

techniques for matrix models.

On the other hand, there is a M-theory expansion in which N →∞ but k and Nfa are

kept fixed. This makes contact with the M-theory dual and captures the strong coupling

regime of the type IIA superstring. A study of the strict large N limit of these models

was first presented in [12]. In [5] a different framework was proposed to study these

models, based on the analogy between the matrix integrals (2.1), (2.5), and the canonical

partition function Z(N) of a one-dimensional Fermi gas. In this Fermi gas approach, all the

information about the model is encoded in the spectrum of the one-particle Hamiltonian

Ĥ of the gas, or equivalently in the spectrum of an integral operator whose kernel is the

density matrix:

ρ(x, x′) = 〈x|e−Ĥ |x′〉. (2.9)

In this approach, a crucial rôle is played by the grand canonical partition function and the

grand potential of the gas, which are defined as

Ξ(z) = 1 +

∞∑
N=1

Z (N) zN , J(z) = log Ξ(z). (2.10)

If one defines

Z` =

∫
dx1 · · · dx` ρ(x1, x2)ρ(x2, x3) · · · ρ(x`−1, x`)ρ(x`, x1), (2.11)

then the grand potential can be computed as

J(z) = −
∞∑
`=1

(−z)`

`
Z`. (2.12)

As an example of this formulation, let us quickly review the Fermi gas formulation of

ABJM theory. The interaction term in the matrix integral (2.1) can be rewritten by using

the Cauchy identity,∏
i<j

[
2 sinh

(
µi−µj

2

)] [
2 sinh

(
νi−νj

2

)]
∏
i,j 2 cosh

(
µi−νj

2

) = detij
1

2 cosh
(
µi−νj

2

)
=
∑
σ∈SN

(−1)ε(σ)
∏
i

1

2 cosh
(
µi−νσ(i)

2

) . (2.13)

In this equation, SN is the permutation group of N elements, and ε(σ) is the signature of

the permutation σ. After some manipulations, one obtains [5, 35]

ZABJM(N, k) =
1

N !

∑
σ∈SN

(−1)ε(σ)

∫
dNx

(2πk)N
1∏

i 2 cosh
(
xi
2

)
2 cosh

(
xi−xσ(i)

2k

) , (2.14)
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which can be immediately identified as the partition function of a one-dimensional ideal

Fermi gas with density matrix

ρABJM(x1, x2) =
1

2πk

1(
2 cosh x1

2

)1/2 1(
2 cosh x2

2

)1/2 1

2 cosh
(
x1−x2

2k

) . (2.15)

Notice that, by using the Cauchy identity with µi = νi, we can rewrite (2.14) as

ZABJM(N, k) =
1

N !

∫ N∏
i=1

dxi
4πk

1

2 cosh xi
2

∏
i<j

(
tanh

(
xi − xj

2k

))2

. (2.16)

The spectrum of the one-particle Hamiltonian is defined by the integral equation∫
ρABJM(x, x′)φn(x′) dx = e−Enφn(x), (2.17)

where φn(x) are normalizable functions. The information about the large N limit of the

model can be recovered from the asymptotic behavior of the spectrum at large quantum

numbers n� 1. It is easy to see from (2.15) that k plays here the rôle of Planck’s constant,

therefore this asymptotic behavior can be obtained by adapting WKB techniques [5], and

one finds [5, 9, 36]

E2
n ≈

kπ2

2
n, n� 1. (2.18)

It is easy to see that this behavior leads immediately to the N3/2 behavior of the free

energy predicted by classical supergravity [1].

A similar analysis can be made for the necklace quivers considered above. The asymp-

totic behavior of the energy levels is of the form E2
n ≈ n as in ABJM theory, but the precise

coefficient (which was calculated in [5]) depends on the details of the quiver. The behavior

of the energy levels at large n leads to the following behavior at large chemical potential,

J(µ) ≈ C

3
µ3, µ� 1, (2.19)

where C depends on the quiver. For example, for ABJM theory one finds

J(µ) ≈ 2µ3

3π2k
, µ� 1. (2.20)

The ’t Hooft expansion and the M-theory expansion have been analyzed thoroughly

only in the case of ABJM theory. The results of this analysis can be summarized as follows:

1. The free energy contains, at fixed k, a series of perturbative corrections in 1/N , and

on top of that a series of exponentially small corrections at large N , with an N -

dependence of the form exp(−
√
N). The perturbative corrections can be obtained

either from the ’t Hooft expansion [2, 37, 38] or from the M-theory expansion [5].

They correspond conjecturally to perturbative quantum gravity corrections in M-

theory [37], and the first, logarithmic correction, has been tested against a one-loop

calculation in supergravity in [4].

– 6 –
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2. There are two types of non-perturbative corrections. Worldsheet instanton correc-

tions are obtained naturally in the ’t Hooft expansion, since they depend on N

through the ’t Hooft parameter. There are however exponentially small correc-

tions at large N which are non-perturbative in the string coupling constant, and

are due to membrane instantons and bound states of membranes and fundamen-

tal strings. The pure membrane contribution can be in principle calculated in the

Fermi gas approach [5, 9, 39], while bound states remain difficult to compute in both

approaches [9, 10]. The analytic calculations have been in addition tested against de-

tailed numerical calculations [7, 36, 40]. The combination of all these approaches has

led to a precise conjectural answer for the full series of non-perturbative corrections,

which turn out to be determined by topological string theory and its refinement on

a particular local Calabi-Yau manifold [8].

The analysis of the ABJM matrix model shows that the ’t Hooft expansion is funda-

mentally incomplete, since important non-perturbative effects can not be obtained in this

framework. In fact, as noticed in [7, 10], the ’t Hooft expansion leads to unphysical singu-

larities in the free energy which need to be cured by the contribution of membranes and

bound states (this is the HMO cancellation mechanism). From this point of view, the ’t

Hooft expansion is an inconsistent truncation of the theory. One of the advantages of the

Fermi gas approach is that it gives an alternatively framework to analyze the large N limit

of these matrix models which captures some of these non-perturbative effects, and makes

it possible to go beyond the ’t Hooft expansion.

Although these results have been obtained for the ABJM model, we expect that similar

features will appear in the the matrix models describing Chern-Simons-matter theories, i.e.

we expect that the ’t Hooft expansion of these models will miss important non-perturbative

information. One reason to believe this is that these models admit an M-theory expansion

where the large N non-perturbative effects which are invisible in the ’t Hooft expansion

are no longer suppressed.

In the case of Chern-Simons-matter models, the M-theory expansion is directly related

to the existence of an M-theory dual. However, there are other matrix models which admit

in a natural way an analogue of the M-theory expansion, in the sense that one can consider

their behavior as N becomes large but the rest of the parameters are fixed (instead of

scaling with N , as in the ’t Hooft limit). We will call these models “M-theoretic matrix

models.” For example, the matrix models discussed in [13, 14], as well as the matrix model

of [41], are of this type. The examples considered in this paper are in fact particular

examples of the Â0 matrix model of [14]:

Z
Â0

(N, gs) =
1

N !

∫ N∏
i=1

dzi
2π

e
− 1
gs
V (zi)

∏
i<j

(zi − zj)2
∏
i,j

(zi + zj)
−1 , (2.21)

which is equivalent to the O(2) matrix model [26, 27]. Another class of M-theoretic models

are the matrix integrals computing Nekrasov’s partition function. This partition function

can be regarded as the grand canonical partition function of a classical gas [42], and the

number of particles is the instanton number of the underlying gauge theory. In certain

– 7 –
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limits, this grand canonical partition function can be evaluated in closed form, as shown

in [42–44].

The M-theory expansion of a matrix model can be regarded as a direct thermodynamic

limit, in which N → ∞ but the other parameters are kept fixed. From the point of view

of the ’t Hooft expansion, this means that we consider a regime in which N is large and

the ’t Hooft parameter scales with N . This regime has been also explored in [45], where it

is conjectured that, when both the ’t Hooft limit and the M-theory limit exist, one can go

from one to the other by an analytic continuation to strong coupling. In particular, [45]

argue that planar dominance holds in the M-theory limit, i.e. that the M-theory limit of

an amplitude is given by the continuation to strong ’t Hooft coupling of its planar limit.

We will see below that planar dominance holds in the examples we have studied.

It is an interesting question to determine which matrix models admit a well-defined

thermodynamic limit. We have not studied systematically this issue, but we can give some

useful criteria: if a matrix model can be formulated as a quantum, one-dimensional, ideal

Fermi gas (as proposed systematically in [5] but already pointed out in [14, 41]), and if

the resulting Hamiltonian has a discrete, infinite spectrum, then the thermodynamic limit

exists and it is determined by conventional statistical-mechanical methods. Therefore, if a

matrix model has a Fermi gas formulation, it definitely has an M-theory limit and it is an

M-theoretic matrix model, as we have defined it.

However, this criterion only applies to a restricted class of matrix models. What

about a generic matrix model? Such a model, when written as an integral over the matrix

eigenvalues, can be always regarded as a classical one-dimensional gas of N particles.

The existence of an M-theoretic thermodynamic limit will then depend crucially of the

behavior of the potential and of the interaction terms. For example, if we regard the Â0

matrix model (2.21) as the partition function of a classical gas, the interaction term decays

at infinity, as expected from a conventional gas, and therefore we would expect it to have a

good thermodynamic limit, as confirmed by the Fermi gas picture. In contrast, the standard

Hermitian matrix model has an interaction term of the form − log |x|. This does not decay

at infinity and the existence of a good thermodynamic limit is not guaranteed. M-theoretic

matrix models are excellent laboratories to understand the structure of non-perturbative

effects in the large N expansion, and also, via gauge/string dualities, non-perturbative

effects in M-theory and string theory. We will now study in detail two examples which are

relevant for AdS/CFT and for statistical physics in two dimensions, respectively.

3 The Nf matrix model

3.1 Introducing the model

The theory we are going to consider is a supersymmetric U(N), N = 4 Yang-Mills theory

in three dimensions, coupled to a single adjoint hypermultiplet and to Nf fundamental

hypermultiplets. When Nf = 1, this theory is related by mirror symmetry to N = 8 super

Yang-Mills theory, therefore to ABJM theory with k = 1 [35]. From the point of view of

– 8 –
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M-theory, this gauge theory is supposed to describe N M2 branes probing the space [23, 24],

C2 ×
(
C2/ZNf

)
, (3.1)

where ZNf acts on C2 as

e2πi/Nf · (a, b) =
(

e2πi/Nfa, e−2πi/Nf b
)
. (3.2)

The corresponding quotient is an ANf−1 singularity, which can be resolved to give a multi-

Taub-NUT space, as expected from the engineering of the theory in terms of D6 branes.

The large N dual description of this theory is in terms of M-theory on AdS4 × S7/ZNf ,

where the action of ZNf is the one inherited by the action on C2 × C2.

The standard rules for localization of Chern-Simons-matter theories [30–32] imply that

the partition function on the three-sphere S3 is given by the matrix integral

Z(N,Nf ) =
1

N !

∫ N∏
i=1

dxi
4π

1(
2 cosh xi

2

)Nf ∏
i<j

(
tanh

(
xi − xj

2

))2

. (3.3)

The tanh interaction between the eigenvalues includes both a sinh factor due to the Yang-

Mills vector multiplet, and a 1/ cosh due to the hypermultiplet in the adjoint representation.

Notice that, when Nf = 1, this model leads to the same matrix integral than ABJM theory

with k = 1, in the representation (2.16). We will solve this model in the planar and genus

one limit as an exact function of the ’t Hooft parameter

λ =
N

Nf
(3.4)

where Nf is the number of flavours. The contribution of the hypermultiplets can be re-

garded as a one-body potential of the form V (x)/gs, where

V (x) = log
(

2 cosh
x

2

)
, gs =

1

Nf
. (3.5)

By comparing to the standard form of matrix models, we see that 1/Nf plays the rôle

of string coupling constant. After making the change of variables z = ex, the matrix

integral (3.3) takes the form (2.21), with a potential

V (z) = log
(
z1/2 + z−1/2

)
. (3.6)

The model (3.3) can be regarded as a particular example of the O(2) model (2.21), which

is in turn an special case of the O(m) matrix model first introduced in [26] and further

studied in for example [27–29, 46]. The general form of the O(m) matrix model is

Z(N, gs,m) =

∫ N∏
i=1

dzi e
− 1
gs
V (zi)

∏
i<j

(zi − zj)2
∏
i,j

(zi + zj)
−m/2 . (3.7)

The solution of the O(2) model in the planar limit was worked out in [27, 28], but it turns

out that it is more efficient to consider first the solution for the general O(m) model, and

then take the limit m → 2. The reason is that there is a formalism to solve the O(m)

model for generic m [29] which incorporates in an efficient way the elliptic geometry of the

planar solution. We will now solve the planar limit of the Nf matrix model.
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3.2 The planar solution

In the approach of [28, 29], in order to solve the model (3.7), one introduces a planar

resolvent in the standard way,

ω0(p) = lim
N→∞

1

N

〈
Tr

1

p−M

〉
, (3.8)

where p is an exponentiated variable which lives in the z-plane. In terms of the density of

eigenvalues ρ(p), this reads

ω0(p) =

∫
dz

ρ(z)

p− z
. (3.9)

We will assume that our solution has one single cut in the z-plane, located at [a, b]. One

important ingredient of the solution is of course to find the relationship between the end-

points of the cut and the ’t Hooft parameter. The solution of the planar limit of the model

is encoded in an auxiliary function G(z), which was defined and used in [28] to solve the

O(n) model. It was determined explicitly in terms of theta functions in [29]. Since this

function will play an important rôle in the solution of the model, we list its most impor-

tant properties in appendix A. It depends on a parameter ν, which is in turn related to m

through the equation

m = 2 cos(πν). (3.10)

Notice that the limit m → 2 in which we are interested corresponds, in terms of this

variable, to the limit ν → 0. According to the results of [29], the endpoints of the cut are

determined by the two equations2

M0 =
1

2 cos π(1−ν)
2

∮
C

dz

2πi
V ′(z)G(1−ν)(z) = 0,

M−1 =
1

2 cos πν2

∮
C

dz

2πi
zV ′(z)G(ν)(z) =

1

2
(2−m)λ.

(3.11)

where λ = gsN is the ’t Hooft parameter of the model, and C is a contour encircling the

cut [a, b]. The indices ν, 1− ν indicate that the function G should be evaluated for these

values of the parameter. These equations generalize the standard conditions determining

the endpoints of the cut for the Hermitian one-matrix model. Once the endpoints of the

cut have been determined, one should calculate the planar free energy. Our convention for

the genus expansion of the free energy is

F (N,Nf ) =
∑
g≥0

g2g−2
s Fg(λ). (3.12)

A useful result in [29] expresses the third derivative of the planar free energy w.r.t. the ’t

Hooft parameter, in terms of the endpoints of the cut a, b:

d3F0

dλ3
=
(

1− m

2

) 1

b2 − a2

(
e2 − a2

a2

da2

dλ
− e2 − b2

b2
db2

dλ

)
. (3.13)

2On the r.h.s. of the second equation there is an overall factor of 1/2 w.r.t. the conventions in [29].
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In this equation, e is a function of a, b and ν defined in (A.10). This expression has a well-

defined limit for m → 2, which corresponds to taking ν → 0. In this limit, the prefactor

goes to zero, but e2 diverges, as shown in (A.26). Therefore, only the terms proportional

to e2 (3.13) survive, and one obtains a finite result,

d3F0

dλ3
= − π2

2(b2 − a2)k2 (K ′(k))2

(
da2

dλ
− a2

b2
db2

dλ

)
, (3.14)

where K ′(k) = K(k′) is the elliptic integral of the first kind, with k2 + (k′)2 = 1, and

k = a/b, as in equation (A.3) of the appendix A. It is possible to integrate this once w.r.t.

λ to obtain,
d2F0

dλ2
= −2π

K(k)

K ′(k)
+ constant = −2πi

τ
+ constant, (3.15)

where τ is given in (A.5).

In the matrix model corresponding to the Nf model, one has,

V ′(z) =
1

2z

z − 1

z + 1
, (3.16)

and we can calculate M0 and M−1 by residue calculus. One obtains,

1

2 cos π(1−ν)
2

(
2G(1−ν)(−1)−G(1−ν)(0)

)
= 0,

1

2 cos πν2

(
−G(ν)(−1) + cos

(πν
2

))
=

1

2
(2−m)λ.

(3.17)

These two equations have a non-trivial limit as ν → 0, which leads to the solution of the

model.

We will however analyze a slightly different set of equations which were obtained by

Suyama in a closely related context. In [21], the planar limit of supersymmetric Chern-

Simons with n adjoint multiplets was analyzed in detail, by using as well the correspondence

with the O(m) matrix model. However, the definitions of the resolvent and the map to the

O(m) model were slightly different from the ones explained above. To see how this goes,

let us first extend our original matrix integral (3.3) to the case in which there are n adjoint

multiplets,

Z(N,Nf , n) =
1

N !

∫ N∏
i=1

dxi
2π

1(
2 cosh xi

2

)Nf ∏
i<j

[
2 sinh

(
xi−xj

2

)]2

[
2 cosh

(
xi−xj

2

)]2n . (3.18)

Let us then define the function

v(z) = lim
N→∞

λ

N

〈
N∑
i=1

z + zi
z − zi

〉
. (3.19)

This function contains all the relevant information about the planar limit of the model. In

fact, it is related to the standard resolvent, defined as in (3.9), by

v(z) = −λ+ 2zλω0(z). (3.20)
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In particular, it has the expansion at large z given by

v(z) = λ+
2λ〈W 〉
z

+O(z−2), (3.21)

where

〈W 〉 = lim
N→∞

〈
N∑
i=1

zi

〉
(3.22)

is the VEV of a Wilson loop in the original gauge theory, in the fundamental representation.

It is easy to derive the saddle-point equations for this matrix model and express them

in terms of the function v(z),

z − 1

z + 1
= v(z + i0) + v(z − i0)− 2nv(−z), (3.23)

In order to use the formalism of O(m) matrix models, one has to write

n = − cos(πν). (3.24)

In this way the saddle-point equation (3.23) becomes identical to that of an O(m) matrix

model with m = −2n. In our original matrix model (3.3) we have n = 1, so we have to

consider now the limit ν → 1 of the results in [21] (this is in contrast, and should not be

confused, with the method explained above and derived directly from [28, 29], where one

takes the limit ν → 0.)

Let us then work out the planar solution of the model in detail. The first thing we

should take into account is that in the original matrix integral, both the potential and

the interaction are symmetric under x → −x. Therefore, the density of eigenvalues is a

symmetric function in the x variable, and its support is of the form [−A,A]. In the z-plane

the support is the interval [a, b], and

a = e−A, b = eA (3.25)

therefore

b = 1/a. (3.26)

The equation determining the ’t Hooft parameter λ as a function of a can be deduced from

the results in [21]. In this paper, Suyama finds the solution of the saddle-point equation

V ′ξ (z) = v(z + i0) + v(z − i0)− 2nv(−z), (3.27)

for a family of potentials of the form

V ′ξ (z) = − 2

(ξ − 1)z

z − 1

z − ξ
(3.28)

and arbitrary n. In [21], these potentials were introduced as auxiliary objects which, after

integrating w.r.t. ξ, lead to the logarithmic squared potentials typical of Chern-Simons
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matrix models [47, 48]. Our case (3.23) is recovered by simply setting ξ = −1, and one

finds from [21]

λ = − 1

n− 1

[
i

2e sin πν
2

G(−1) +
1

2

]
, (3.29)

where e is again given in (A.10) and G(−1) is the function G(z), evaluated at z = −1.

It is not obvious that the above expression has a smooth limit when n → 1, but this is

the case, and in this limit (3.29) is equivalent to the limit m → 2 of the second equation

in (3.17). To determine analytically this limit, we have to expand the function G(z) around

the point ν = 1. After some calculations, which are sketched in the appendix, one finds

the surprisingly simple equation

λ = −1

8
+

(1 + k)2

8π2
K ′(k)2, (3.30)

where the elliptic modulus is

k = a2 (3.31)

This of course is a particular case of (A.3) when b = 1/a.

The above equation determines the ’t Hooft parameter as a function of the endpoint

of the cut a. It is immediate to verify that, for a = 1, λ = 0, as it should. The free energy

now follows from (3.14) and (3.30). One finds,

d3F0

dλ3
=

4π4

(1 + a2)2 (K ′(k))3

1

E′(k)− a2K ′(k)
. (3.32)

It is instructive to compare these results with a direct calculation of the endpoint of the

cut and the free energy around λ = 0, by treating (3.3) as a multi-trace matrix model. This

perturbative method is explained in appendix B, and leads to the following expansions:

A2

4
(λ) = 4λ− 4λ2

3
+

392λ3

45
− 4808λ4

105
+O(λ5),

F0(λ) =
λ2

2

(
log λ− 3

2

)
− log(2)λ− λ3

2
+

19λ4

24
− 9λ5

4
+O(λ6),

(3.33)

where A = − log a is the endpoint of the cut in the x-plane, see (3.25). The weak-coupling

expansion, together with (3.32), determines completely F0(λ). The integration constant

in (3.15) can be fixed by the second equation in (3.33), and it turns out to be zero, therefore,

d2F0

dλ2
= −2πi

τ
= −2π

K(a2)

K(
√

1− a4)
. (3.34)

3.3 The genus one free energy

The next-to-leading term in the ’t Hooft expansion (3.12) is the genus one free energy

F1(λ). A general expression for this free energy in the O(2) matrix model has been found

in [28].3 In our case, this reads:

F1(λ) = − 1

24
log(M1J1)− 1

6
log(1/a2 − a2)− 1

4
log(K(ka)K(kb)), (3.35)

3 The expression written down in [28] seems to have some misprints: the term a2/48 should be log(a2)/48,

and for general a, b, one should have ka = (1 − a2/b2)1/2.
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where

k2
b = −1/a4 + 1, k2

a = −a4 + 1, (3.36)

and M1 and J1 are moments given by contour integrals, which can be computed explicitly

in terms of elliptic integrals of the first, second and third kinds,

M1 =

∮
[a,b]

dz

2πi

z − 1

2(z + 1)

1

(z2 − a2)3/2(z2 − a−2)1/2

=
1

2a (−1 + a2)2 (1 + a2)π

{
−
(
1 + a2

)2
E

[
−1 + a2

1 + a2

]
+

2a2

((
a2 + 2a+ 3

)
K

[
−1 + a2

1 + a2

]
− 4aΠ

[
(−1 + a)2

1 + a2
,
−1 + a2

1 + a2

])}
,

J1 =

∮
[a,b]

dz

2πi

z − 1

2(z + 1)

1

(z2 − a2)1/2(z2 − a−2)3/2

=− 1

2 (−1 + a2)2 (1 + a2)π
a3

{(
1 + a2

)2
E

[
−1 + a2

1 + a2

]
−

2

((
1 + 2a+ 3a2

)
K

[
−1 + a2

1 + a2

]
− 4aΠ

[
(−1 + a)2

1 + a2
,
−1 + a2

1 + a2

])}
.

(3.37)

The weak coupling expansion of (3.35) is given by

F1(λ) = − log(λ)

12
− 1

6
log

(
π3

2

)
+

3λ

4
− 19λ2

24
+

25λ3

12
− 271λ4

48
+O(λ5). (3.38)

This expansion matches with a direct perturbative computation in the matrix model.

3.4 Resolvent, Wilson loop and density of eigenvalues

The function v(z), which contains all the information about planar correlators, can be also

obtained from the results of [21]. It has the form,

v(z) =
1

n2 − 1
(f(z) + nf(−z)) + ω(z), (3.39)

where

f(z) = −1

2

z − 1

z + 1
, (3.40)

ω(z) = −i
(

eiπν/2ω+(z)− e−iπν/2ω+(−z)
)
, (3.41)

and

ω+(z) =
1

2(n2 − 1)e

cn(u)dn(u)

z2 − 1
G(−1)

(
z−1G+(z−1) + zG+(z)

)
. (3.42)

The variable u is related to z through (A.2). The above expressions are obtained for generic

n. We can now take the limit n→ 1. All the apparent divergences cancel, and we find the
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explicit expression

v(z) =
1

2π2z2 (−1 + z2)

{
π2z2

(
−z + 2λ

(
1 + z2

))
+ a2

(
K ′(k)

)2
+z
((
z + z3

)
A(u)(π +A(u))− acn(u)dn(u)(π + 2A(u))K ′(k)

−
(
1 + a2 + a4

)
z
(
K ′(k)

)2)}
,

(3.43)

where

A(u) =
π

2K(k)
u+K ′(k)

(
ϑ′1
ϑ1

)(
u

2K(k)

)
. (3.44)

Notice that this function is not algebraic in z, in contrast to the resolvent of ABJM the-

ory [2, 49]. By using the expansion (3.21), we can extract the exact value of the Wilson

loop vev,

2λ〈W 〉 = −1

2
+

1

4aK(k)
+
K ′(k)

2aπ
+
aK ′(k)

2π
− E(k)K ′(k)

2aK(k)π
. (3.45)

This can be expanded near λ = 0, and one finds,

〈W 〉 = 1 + 2λ+ 4λ3 +O(λ4), (3.46)

which agrees with an explicit perturbative computation.

Finally, we derive an explicit expression for the density of eigenvalues. From the

standard discontinuity equation, we have

ρ(z) = − 1

2πi

v(z)

2λz

∣∣∣∣z+i0

z−i0

=
1

2πi

v(w)

2λa sn(w)

∣∣∣∣K(k)−iw

K(k)+iw

, (3.47)

where

z = a sn(K(k) + iw). (3.48)

We find the explicit expression

ρ(z(w)) =
i

4acd(iw)2 (−1 + a2cd(iw)2)K(k)π2λ
×
(

2(1−a4)K(k)nd(iw)sd(iw)K ′(k)

+(cd(iw)+a2cd3(iw))(iπw+2(−1+a4)K(k)nd(iw)sc(iw)K ′(k)+2K(k)Z(iw)K ′(k))

−2a4cd(iw)2K(k)sn(iw)K ′(k)−2a6cd4(iw)K(k)sn(iw)K ′(k)

)
.

(3.49)

It can be checked that

ρ(a) = ρ(z(0)) = 0, ρ(1/a) = ρ(z(K ′(k))) = 0, (3.50)

as it should. The explicit form of ρ is shown in figure 1 for a = 1/2.

– 15 –



J
H
E
P
0
2
(
2
0
1
5
)
1
1
5

-0.6 -0.4 -0.2 0.2 0.4 0.6

0.2

0.4

0.6

0.8

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. The density of eigenvalue (3.49) for a = 1/2 in the x plane (left) and in the z = ex

plane (right) .

3.5 Strong coupling behavior

We will now explore the strong coupling limit of the planar and genus one solution found

above. Since all the quantities depend on λ through a-the endpoint of the cut in the

z plane– the first thing to do is to find the relation between a and λ for λ large. It is

convenient to define the new variable

λ̂ = λ+
1

8
. (3.51)

This shift is reminiscent of the shift in −1/24 which appears in the exact planar solution of

ABJM theory [3, 5], and it might be explained along the same lines, i.e. it might correspond

to a correction to the D-brane charge [50, 51]. If so, it would give a very interesting check

of the proposed dual geometry C2 ×
(
C2/ZNf

)
.

The exact relation (3.30) indicates that large λ̂ corresponds to a→ 0, and the leading

order behavior is easily found to be

a ≈ e−π
√

2λ̂, λ̂� 1. (3.52)

This means that A, the endpoint of the cut in the x-plane, grows like
√
λ for large ’t

Hooft parameter. This is similar to the behavior in ABJM theory [2, 5]. It is possible to

invert (3.30) at large λ, to all orders, and find an expansion of the form

a = 2 e−π
√

2λ̂
∞∑
k=1

k∑
`=0

ak,`e
−2kπ
√

2λ̂λ̂`/2. (3.53)

For the first few terms, we find

a = 2 e−π
√

2λ̂

{
1 + 4π

√
2λ̂e−2π

√
2λ̂ +

(
80π2λ̂− 2− 12π

√
2λ̂
)

e−4π
√

2λ̂ + · · ·
}
. (3.54)

We can use the above results, together with (3.34) and (3.35), to obtain the expansion of

the planar and genus one free energy at strong ’t Hooft coupling. We find, for λ� 1,

F0(λ) =− π
√

2

3
λ̂3/2 + c+ FWS

0 (λ),

F1(λ) =
π
√

2λ̂

4
− log(2λ̂)

4
− 1

3
2 log(2)− 5 log(π)

12
+ FWS

1 (λ),

(3.55)
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Figure 2. Comparison of the exact result for d2F0/dλ
2 given in (3.34), and plotted in a contin-

uous blue line, with the strong and weak coupling behavior. The red dashed line represents the

strong coupling behavior (3.55), while the black dashed line represents the Gaussian weak coupling

behavior (3.33).

where c is a constant of integration which is determined by matching carefully the weak-

coupling expansion (3.33) to the above asymptotic expansion. One finds numerically c ≈
0.0714.4 Moreover,

FWS
g (λ) =

∞∑
k=1

k∑
`=0

f
(g)
k,` e−2kπ

√
2λ̂λ̂`/2 (3.56)

is the contribution of non-perturbative corrections. We will refer to it as the worldsheet

instanton contribution. These corrections should be due, as in ABJM theory, to worldsheet

instantons in the type IIA superstring dual. For the first few terms, we find

FWS
0 (λ) = −e−2π

√
2λ̂

4π2

(
1 + 2π

√
2λ̂
)
− e−4π

√
2λ̂

32π2

(
7 + 28π

√
2λ̂+ 64π2λ̂

)
+ · · · ,

FWS
1 (λ) =

(
4

3
− 1

3
π
√

2λ̂

)
e−2π
√

2λ̂ +

(
29

3
π
√

2λ̂− 11

6

)
e−4π
√

2λ̂ + · · · .
(3.57)

Some comments are in order concerning these expressions. First of all, the leading term

in (3.55) has the same form as in ABJM theory, and Nf plays the rôle of k. This is in

agreement with the analysis in the strict large N limit, with Nf fixed, performed in [53],

and more recently in [25]. However, the structure of the subleading exponential terms is

different: in ABJM theory, the powers of λ̂ appearing in (3.56) are negative. It would

be interesting to understand this in terms of the expansion around the conjectural dual

worldsheet instantons in the dual type IIA theory background.

3.6 Grand potential and non-perturbative effects

The model with partition function (3.3) can be also studied in the Fermi gas approach [5].

This is a very useful formulation since one can study both the ’t Hooft expansion and

the M-theory expansion, and they lead to two different types of non-perturbative effects.

4After the first version of this paper appeared, Hatsuda and Okuyama conjectured in [52] that c =(
log(2) −

(
ζ(3)/π2

))
/8.
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Therefore, the Fermi gas approach makes it possible to go beyond the 1/N expansion of

the matrix model.

To obtain the Fermi gas picture for the matrix model with partition function (3.3), we

use the Cauchy identity (2.13) for µi = νi. We find that (3.3) can be written as

Z(N,Nf ) =
1

N !

∑
σ∈SN

(−1)ε(σ)

∫ N∏
i=1

dxi
2π

1(
2 cosh

(
xi
2

))Nf 2 cosh
(
xi−xσ(i)

2

) . (3.58)

The corresponding kernel is given by

ρNf (x1, x2) =
1

2π

1(
2 cosh x1

2

)Nf/2 1(
2 cosh x2

2

)Nf/2 1

2 cosh
(
x1−x2

2

) . (3.59)

In the Fermi gas approach, the basic quantity is the grand potential of the theory,

rather than the partition function. As noted in [41], the ’t Hooft expansion of the partition

function (3.3) leads naturally to a “genus” expansion of the grand potential, which is of

the form

J(µ,Nf ) =

∞∑
g=0

N2−2g
f Jg

(
µ

Nf

)
. (3.60)

This expansion contains exactly the same information than the ’t Hooft expansion of the

(canonical) partition function, and it is related to it by the usual thermodynamic transform.

In particular, the genus zero piece J0 is just given by the Legendre transform of the planar

free energy: we first solve for λ, the ’t Hooft parameter, in terms of µ/Nf , through the

equation
µ

Nf
= −dF0

dλ
, (3.61)

and

J0

(
µ

Nf

)
= F0(λ)− λdF0

dλ
. (3.62)

Similarly the genus one grand potential J1 is related to the genus one free energy F1 through

a one loop saddle point:

J1

(
µ

Nf

)
= F1

(
µ

Nf

)
+

1

2
log

(
N2
f ∂

2
µJ0

(
µ

Nf

))
− 1

2
log(2π). (3.63)

Equivalently, since λ is in one-to-one correspondence with the endpoint of the cut a, and

all relevant quantities are expressed in terms of a, we can express a in terms of µ/Nf .

a = 2e
− 2µ
Nf

1 +
∑
n≥1

e
− 4nµ
Nf

n∑
l=0

bn,l

(
µ

Nf

)l , (3.64)

and then plug this in the r.h.s. of (3.62). One obtains,

N2
f J0

(
µ

Nf

)
=

2µ3

3π2Nf
−
µNf

8
+N2

f

∞∑
`=1

∑̀
m=1

a
(0)
`,m

(
µ

Nf

)m
e−4`µ/Nf ,

J1

(
µ

Nf

)
=

1

2

µ

Nf
+

∞∑
`=1

∑̀
m=1

a
(1)
`,m

(
µ

Nf

)m
e−4`µ/Nf ,

(3.65)
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where

JWS
g

(
µ

Nf

)
=

∞∑
`=1

∑̀
m=0

a
(g)
`,m

(
µ

Nf

)m
e−4`µ/Nf . (3.66)

For the very first orders we find,

JWS
0

(
µ

Nf

)
= − 1

π2

(
1

4
+

µ

Nf

)
e−4µ/Nf +

1

π2

(
− 7

32
+

1

4

µ

Nf
− 4

(
µ

Nf

)2
)

e−8µ/Nf + · · · ,

JWS
1

(
µ

Nf

)
=

(
−1

6
− 2

3

µ

Nf

)
e
−4 µ

Nf +

(
11

12
− 6

µ

Nf

)
e
−8 µ

Nf + · · · .

(3.67)

The exponentially small corrections in µ in (3.67) are due to the worldsheet instanton

contributions to the planar and genus one free energy (3.57). The structure of these

corrections is quite different from what is obtained in ABJM theory. In this theory, the

rôle of Nf is played by k, and after factoring out an overall factor k2 appearing in genus

0, one finds a simpler structure for the worldsheet instantons

JWS
0

(µ
k

)
=

1

4π2

∞∑
`=1

N` e−4`µ/k, (3.68)

where the coefficients N` are related to the genus zero Gromov-Witten invariants of the

non-compact Calabi-Yau local P1 × P1 [7].

The planar limit gives us information about the behavior of the theory when Nf large

and N/Nf is fixed. In the M-theory regime of the theory, we should take N large and Nf

fixed. In this regime, based on the results of [5], we should expect new non-perturbative

effects which are not due to worldsheet instantons, but rather to membrane instantons. In

order to study the M-theory regime, one has in principle to obtain information about the

spectrum of the operator (3.59) for finite Nf . This is however a difficult problem. One

can then try to study the grand potential of the theory in some approximation scheme.

In [5, 39], various techniques were developed to understand the small k regime of the

ABJM model. Since k is essentially the Planck constant of the Fermi gas, this is a WKB

approximation However, in the model with density matrix (3.59), the Planck constant is

fixed and set to 2π, so in principle we can not use the WKB method. However, it was

shown in [5] that the perturbative part in µ of the grand potential only receives quantum

corrections up to next-to-leading order, and this was recently used in [25] to calculate it.

They obtain:

Jp(µ) =
2

3π2Nf
µ3 +

(
1

2Nf
−
Nf

8

)
µ. (3.69)

From the point of view of the ’t Hooft expansion, this expression contains information

about the genus zero and the genus one pieces of the grand potential:

N2
f J

(0)
p (µ/Nf ) =

2

3π2Nf
µ3 −

Nf

8
µ, J (1)

p (µ/Nf ) =
1

2

µ

Nf
. (3.70)

This is in agreement with the result in (3.65). Notice that, at large N (equivalently, large

µ), the leading part of the grand potential (3.69) is the cubic part coming from the planar
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limit. This means that the M-theory limit agrees with the strong coupling expansion of

the planar limit, in accord with the planar dominance conjecture of [45].

We are interested in calculating non-perturbative corrections to (3.69), i.e. corrections

which are exponentially small in µ. In the model (3.3), Nf plays the rôle of k, and one

could try to study the regime Nf → 0. To understand the physical nature of this limit,

notice that, for large energies, the Hamiltonian corresponding to (3.59) is of the form

H ≈ log
(

2 cosh
p

2

)
+Nf log

(
2 cosh

q

2

)
, (3.71)

and the limit Nf → 0 corresponds naively to a free theory. However, this limit leads to an

IR volume divergence, since particles are no longer confined by the log cosh potential. For

example, the one-particle partition function is given by

Z1 =
1

4π

∫ ∞
−∞

dq(
2 cosh q

2

)Nf =
1

4π

Γ2(Nf/2)

Γ(Nf )
=

1

πNf
−
πNf

24
+
ζ(3)

4π
N2
f + · · · , (3.72)

which diverges as O(N−1
f ) when Nf → 0. We then have to extract the leading term in

1/Nf . To do this, we rescale q = x/Nf as in [25]. In this way we have an explicit Planck

constant in the model, ~ = 2πNf , but we also introduce an explicit Nf dependence in the

Hamiltonian:

H ≈ log
(

2 cosh
p

2

)
+Nf log

(
2 cosh

x

2Nf

)
. (3.73)

This prevents us from applying the WKB method to this problem. We can still extract

though the leading contribution to J(µ) as Nf → 0, because, in this limit, quantum

corrections are suppressed. The Hamiltonian becomes

H ≈ log
(

2 cosh
p

2

)
+
|x|
2
, Nf → 0. (3.74)

The function (2.11) becomes, in the limit Nf → 0,

Z` ≈
∫

dpdx

2π~
e−`|x|/2(

2 cosh p
2

)` =
1

(2π)2Nf

Γ2(`/2)

Γ(`)

4

`
, (3.75)

and by using (2.12) we find

J(z) ≈ − 1

π2Nf

∑
`≥1

Γ2(`/2)

Γ(`)

(−z)`

`2
, Nf → 0. (3.76)

This infinite sum in the r.h.s. of (3.76) can be expressed in terms of hypergeometric func-

tions,

NfJ(z) ≈ z

π
3F2

(
1

2
,
1

2
,
1

2
;
3

2
,
3

2
;
z2

4

)
− z2

4π2 4F3

(
1, 1, 1, 1;

3

2
, 2, 2;

z2

4

)
, Nf → 0, (3.77)

and the derivative w.r.t. z has a simpler expression,

∂J

∂z
≈ 2

π2zNf
arcsin

(z
2

)(
π − arcsin

(z
2

))
, Nf → 0. (3.78)
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Although the building blocks of the functions appearing in (3.77) and (3.78) have branch

cuts in the complex z plane along the positive real axis, and starting at z = 2, the branch

cut at positive z disappears in the final answer. This is as it should be, and in accord

with previous examples in [5, 39]: for a quantum Fermi gas, there is no physical source of

non-analyticity in the grand potential at large fugacity. One can then make an expansion

at µ large to obtain,

NfJ(µ) ≈ 2µ3

3π2
+
µ

2
+
ζ(3)

π2
+ Jnp

0 (µ), Nf → 0, (3.79)

where

Jnp
0 (µ) =

∑
`≥1

(
a`µ e−2`µ + b`e

−2`µ
)

=
1

π2
(2µ+ 1) e−2µ+

1

8π2
(12µ− 1) e−4µ+ · · · . (3.80)

The perturbative part in µ of (3.79) agrees with the leading part of (3.69), at leading order

in Nf . We find, in addition, exponentially small corrections in µ. Since

µ ≈ π
√
NfN

2
≈ πNf

√
λ

2
, (3.81)

these corrections are non-perturbative from the point of view of the ’t Hooft expansion,

which is an expansion in 1/Nf at λ fixed. They are presumably due to membrane instantons

in the M-theory dual.

3.7 Fermi gas spectrum

All the information about the partition function (3.3) and the corresponding grand po-

tential is encoded in the spectrum of the density matrix (3.59). As in the case of ABJM

theory [5], this density matrix can be regarded as a positive Hilbert-Schmidt kernel and its

spectrum, defined by

∞∫
−∞

ρNf (x1, x2)φn(x2)dx2 = e−Enφn(x1), n ≥ 0, (3.82)

is discrete. We have ordered it as,

E0 < E1 < · · · . (3.83)

When Nf = 1, the spectrum of this operator is the same as the spectrum of (2.15) for

k = 1, and one can apply the results obtained in [9]. Unfortunately, for general Nf it

doesn’t seem to be possible to obtain analytic results for the eigenvalues En, or an exact

quantization condition as in [9]. The leading, large n behavior of En can be obtained by

using the techniques of [5], and it can be read immediately from (3.69). Indeed, since

we are dealing with an ideal Fermi gas, the grand potential can be computed from the

quantum volume of phase space vol(E) as

J(µ,Nf ) =
1

2πNf

∫ ∞
E0

vol(E)dE

eE−µ + 1
+ · · · , (3.84)
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where E0 is the ground state energy, and the · · · denote subleading corrections which

appear when we pass from the discrete sum over eigenvalues to the integration over the

volume of phase space. The pertubative part of µ computed in (3.69) comes from the

polynomial part of vol(E),

volp(E)

2πNf
=

2

π2Nf
E2 − 1

6Nf
−
Nf

8
, (3.85)

which follows from the general results of [5]. Using now the WKB quantization condition

vol(En) = 2πNf

(
n+

1

2

)
, n ≥ 0, (3.86)

we find the leading behavior,

E(0)
n = π

(
Nf

2

)1/2(
n+

1

2
+
Nf

8
+

1

6Nf

)1/2

. (3.87)

The non-perturbative corrections to J(µ,Nf ) correspond to non-perturbative corrections

to vol(E), as shown in detail in [9]. As in ABJM theory, we expect two types of non-

perturbative corrections, of the form

e−2`E , e−4`E/Nf , ` ≥ 1. (3.88)

The first type is due to membrane-type corrections, i.e. to the exponentially small cor-

rections appearing in (3.80), which are invisible in the ’t Hooft expansion. The second

type is due to worldsheet instantons, i.e. to the exponentially small terms appearing in for

example (3.67). Although we do not have an exact asymptotic expansion for generic Nf ,

as we have in ABJM theory, we have results at small Nf for membrane corrections, coming

from (3.79), as well as results at large Nf for worldsheet instanton corrections, coming

from (3.67).

Let us first analyze the behavior at large Nf . It is clear that, in this regime, the

leading exponentially small correction is due to the first worldsheet instanton correction.

By using (3.84) as well as the results of [9], we find that it leads to an exponentially small

correction to the quantum volume of phase space of the form,

vol(E)

2πNf
≈ volp(E)

2πNf
+

4

π2
E e−4E/Nf , Nf � 1. (3.89)

Using the WKB quantization condition, we find a correction to the spectrum of the form

En ≈ E(0)
n −Nfe−4E

(0)
n /Nf , Nf � 1. (3.90)

Let us now look at the behavior at Nf → 0. In this case, the grand potential is given

by (3.77). The leading non-perturbative correction in (3.80) leads to a correction to the

energy levels of the form,

En ≈ E(0)
n −

1

2E
(0)
n

e−2E
(0)
n , Nf � 1. (3.91)
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n E
(0)
n Enum

n

0 2.867869... 2.88181542992629...

1 4.253737... 4.2545915286...

2 5.288088... 5.28819530714...

3 6.150893... 6.1509118188...

4 6.906742... 6.906746362...

Table 1. The numerical eigenvalues Enum
n against the theoretical leading order result E

(0)
n , for

Nf = 2.

We will now check some of these analytic results against explicit, numerical calculations

of the spectrum. By using the techniques of [7], one can easily show that this integral

equation is equivalent to an eigenvalue equation for an infinite dimensional Hankel matrix

M with entries

Mnm =
1

4π2Nf

∫ ∞
−∞

dq
tanhn+m(q/2)

coshNf+2(q/2)
=

1

2π2Nf

Γ
(

1
2 + m+n

2

)
Γ
(
Nf
2 + 1

)
Γ
(

3
2 + m+n

2 +
Nf
2

) , (3.92)

when m+ n is even, m,n ≥ 0, otherwise it vanishes. The energy eigenvalues are obtained

by diagonalizing Mnm. To implement this numerically, one truncates the matrix M to an

L×L matrix. The eigenvalues of the truncated matrix, En,L, will converge to En as L→∞.

In order to improve our numerical approximation we apply Richardson extrapolation to

En,L = En +
∑
i≥1

Ein
Li
, (3.93)

as in [9]. Using this procedure, we have computed the first energy levels for various values

of Nf . We will compare these numerical results with the predictions coming from (3.67)

and (3.69). As a first check we can compare the numerical eigenvalues Enum
n to (3.87).

The results are shown in table 1 for Nf = 2, where we show only the first digits. As

expected, (3.87) becomes increasingly good as n is large.

Next we would like to test exponentially small corrections. The study of the spectrum

for small values of Nf is more difficult, since one needs very good numerical precision.

We will then focus on the study of the large Nf , where the dominant non-perturbative

correction is (3.90). This gives a nice numerical verification of the analytical result for the

planar limit. To this end we consider the following sequence:

cn = −Nf log

(
En − E(0)

n

En−1 − E(0)
n−1

)
1

E
(0)
n − E(0)

n−1

. (3.94)

According to (3.90) we should have

cn → 4, n→∞. (3.95)
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4.70

Figure 3. Left: the sequence (3.94) for Nf = 100 with its 3th and 4th Richardson transform. The

straight line is the analytic prediction. Right: the sequence (3.96) with its 3th and 4th Richardson

extrapolation, again for Nf = 100. The straight line is the analytic prediction.

This is confirmed by the numerical data, as shown in figure 3 for Nf = 100 (we have verified

it for other values of Nf as well).

As a last check of the large Nf behavior, we test the −Nf coefficient of the exponential

in (3.90). Let us consider the following sequence:

log
(∣∣∣a(Nf )

n

∣∣∣) = log
(∣∣∣En − E(0)

n

∣∣∣)+
4

Nf
E(0)
n . (3.96)

According to (3.90) we should have

a
(Nf )
n → −Nf , n→∞. (3.97)

This is confirmed by the numerical data, as shown in figure (3) for Nf = 100. Our

best numerical approximations, after applying Richardson transformations and taking n

sufficiently large, give

a(100)
n ≈ −100.3, a(50)

n ≈ −49.8, a(40)
n ≈ −39.6, n� 1, (3.98)

which compare well to the theoretical value.

4 The polymer matrix model

The polymer matrix model is defined by the partition function

Z(N, t) =
1

N !

∫ N∏
i=1

dxi
4π

e−t coshxi
∏
i<j

(
tanh

(
xi − xj

2

))2

. (4.1)

This matrix integral appears in the calculation of two-point functions of the Ising model

in two dimensions (see for example chapter 20 of [54] for an excellent survey). In this

context, the tanh interaction between the eigenvalues is a form factor of order/disorder

operators, and the coupling t is interpreted as mr, where m is the mass of the Ising

fermion (proportional to |T − Tc|) and r is the Euclidean distance between the two points.
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Let Ξ be the grand canonical partition function associated to the above matrix integral,

defined by

Ξ(z, t) = 1 +

∞∑
N=1

Z(N, t)zN = Ξ+(z, t) + Ξ−(z, t), (4.2)

and let

Ξ±(z, t) =
1

2
(Ξ(z, t)± Ξ(−z, t)) (4.3)

be its even and odd parts w.r.t. z. Then, Ξ±(2, t) compute the two-point correlation

functions 〈µ(r)µ(0)〉, 〈σ(r)σ(0)〉 of the disorder operator µ(r) and the order operator σ(r),

respectively.

The matrix integral (4.1) also plays a rôle in a different context: as shown in [55, 56],

the grand potential

J(z, t) = log Ξ(z, t), (4.4)

evaluated at z = −1, makes it possible to compute the universal scaling functions of

a two-dimensional, self-avoiding, non-contractible polymer on a cylinder. This is why

we refer to (4.1) as the polymer matrix model. It was also shown in [56, 57], based on

previous insights in [58, 59], that the dependence on the coupling constant t is encoded

in an integrable hierarchy of the KdV type, which specializes to the sinh-Gordon and the

Painlevé III equations.

In all these applications, the large N limit of the integral (4.1) does not play a crucial

rôle, since the grand potential has to be found at finite values of the fugacity (z = −1,

z = 2). However, a generalization of the matrix integral (4.1) can be used to study the

six-vertex model on a random lattice [60]. The planar limit of the model corresponds, as

usual, to a lattice of spherical topology.

As we will see, the polymer matrix model displays a behavior which is very different

from the one in the ABJM and the Nf matrix models. However, it shares a common feature

with them: it can be studied in two different regimes, namely the ’t Hooft expansion and

what we have called an M-theory expansion. The ’t Hooft expansion is the regime in which

N →∞, t→∞, λ =
N

t
fixed. (4.5)

Indeed, when regarded as an integral over eigenvalues, the polymer matrix model has a

tanh interaction between them and a potential V (x) = cosh(x). Therefore, the coupling t

plays the rôle of 1/gs, and λ is then the natural ’t Hooft parameter. On the other hand,

by using again the Cauchy identity (2.13), we can interpret the partition function (4.1) as

the canonical partition function of an ideal Fermi gas with kernel

ρ(x1, x2) =
1

2π

e−
t
2

cosh(x1)− t
2

cosh(x2)

2 cosh
(
x1−x2

2

) . (4.6)

The Hamiltonian of this gas is, in the leading semiclassical approximation,

H(x, p) ≈ log
(

2 cosh
p

2

)
+ t cosh(x). (4.7)
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The M-theory expansion of (4.1) is the regime in which

N →∞, t fixed, (4.8)

and it corresponds to the thermodynamic limit of the quantum Fermi gas, for a fixed value

of the coupling in the potential. It is also possible to interpret the matrix integral as a

classical gas with a one-body interaction given by t cosh(x), and a two-body interaction

given by tanh((x − x′)/2). This is the interpretation put forward in [39, 54, 61]. In this

interpretation, the M-theory expansion corresponds also to the usual thermodynamic limit

of the gas.

4.1 The planar solution

We will first study the ’t Hooft expansion of the polymer matrix model, and we will

determine the exact planar limit of the free energy by using similar techniques to those

used for the Nf matrix model. Indeed, the polymer matrix model is closely related to the

Nf matrix model studied in detail in the previous section, since the interaction between

eigenvalues is the same, and only the potential differs. Therefore, after the change of

variables z = ex, we can also regard it as an O(2) model with potential

V (z) =
1

2
(z + z−1), (4.9)

We can immediately obtain the equations for the endpoints of the cut, by adapting (3.11)

to our situation. We find,

1

2 cos π(1−ν)
2

∮
C

dz

2πi
V ′(z)G(1−ν)(z) = 0⇒ 1

2 cos π(1−ν)
2

(
G(1−ν)

)′
(0) = 1

1

2 cos πν2

∮
C

dz

2πi
zV ′(z)G(ν)(z) =

1

2
(2−m)λ⇒ − 1

2 cos πν2
G(ν)(0) + c1 = λ(2−m),

(4.10)

where λ is the ’t Hooft parameter defined in (4.5), and c1 is defined by the asymptotics

1

2 cos πν2
G(ν)(z) =

1

z
+
c1

z2
+ · · · (4.11)

as z →∞.

The first equation is satisfied if a = 1/b, as in the previous model. The ’t Hooft

parameter is obtained by studying the limit ν → 0 of the second equation. One finds

λ(a) =
−π +

(
2E(k) +

(
−1 + k2

)
K(k)

)
K ′(k)

4k1/2πK(k)
, (4.12)

where

k = a2. (4.13)

The planar free energy can be computed by using (3.15), and the integration constant can

be fixed against the behavior near the Gaussian point λ→ 0. One finds,

d2F0

dλ2
= −2πi

τ
. (4.14)
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By expanding around λ = 0 we get

a =1− 2
√
λ+ 2λ− λ3/2

2
− λ2 +O(λ5/2),

F0(λ) =
1

2
λ2

(
log

(
λ

4

)
− 3

2

)
− λ− λ3

4
+

5λ4

32
− 11λ5

64
+O(λ6).

(4.15)

This agrees with an explicit perturbative computation.

4.2 Strong coupling limit

We will now look at the ’t Hooft expansion the limit λ → ∞. The exact relation (4.12)

indicates that large λ correspond to a→ 0. More precisely, one finds

a(λ) ≈ 1

2πλ
W0

(
4πλ

e

)
, λ� 1, (4.16)

where W0(x) is the principal branch of the Lambert function W (x), defined by

W (x)eW (x) = x. (4.17)

By using (4.14) this leads to

F0(λ) ≈ π2λ2

8W 2
0

(
4πλ

e

) {(1− 2 log(2) + 2 log

[
1

2πλ
W0

(
4πλ

e

)]}
. (4.18)

By expanding the Lambert function at infinity one gets

F0(λ) ≈ − π2λ2

4 log(λ)

(
1 +O

(
log (log(λ))

log(λ)

))
. (4.19)

Notice that, in this case, the leading order behavior of the free energy is very different from

the one appearing in the ABJM matrix model and in the Nf matrix model. In addition, we

don’t have exponentially small corrections in λ. Of course, in the polymer matrix model

we have a very different type of potential, which grows exponentially and not linearly, and

this leads to a different structure for the free energy.

4.3 Grand potential and non-perturbative effects

Let us now analyze the polymer matrix model (4.1) from the point of view of the Fermi

gas. As we reviewed in section 3.6, the ’t Hooft expansion of the matrix model leads to a

genus expansion of the grand potential, which now has the structure

J(µ, t) =

∞∑
g=0

t2−2gJg

(µ
t

)
. (4.20)

The relation (3.61) in the strong coupling regime leads to

µ(a) =
πt

4a
+O(a3). (4.21)
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Together with (3.62) this leads to

J0(µ) =
1

2π2

(µ
t

)2
(
−3− log

(
π2

64

)
− 2 log

(
t

µ

))
+O

(
t2

µ2

)
. (4.22)

Let us now compare this with a computation in the M-theory limit. As in the other

models, working at finite t is difficult, but since t plays the rôle of Nf in this model, we

can analyze the regime in which t→ 0. As we argued before in the case of the Nf model,

in this limit we can use the semiclassical approximation. Since

2

∫ ∞
0

e−`t cosh q dq = 2K0(`t) ≈ −2 log(t), t→ 0, (4.23)

where K0(z) is a modified Bessel function of the second kind, we can calculate Z` as

Z` ≈ −
1

2π2
log(t)

Γ2(`/2)

Γ(`)
, t→ 0. (4.24)

By using (2.12), and summing the resulting infinite series, we conclude that

J(z) ≈ log(t)

π2
(arcsin(z/2)− π) arcsin(z/2), t→ 0. (4.25)

This is a well-known result [58, 61], although the above derivation seems to be simpler

than the existing ones. In particular, the quantum Fermi gas approach to (4.1) seems to

be more powerful in obtaining this result than the classical gas approach of [61, 62], where

one has to treat the interaction term by a Mayer expansion. Notice that

J(2) ≈ − log(t)

4
, t→ 0, (4.26)

and

Ξ(2, t) ≈
(

1

t

) 1
4

, t→ 0, (4.27)

which is the expected behavior for the correlator of order/disorder operators in the 2d Ising

model (see [54]).

On the other hand, the expression (4.25) behaves at large µ as

J(µ) ≈ log

(
1

t

)µ2

π2
+

1

4
+
∑
`≥1

(a`µ+ b`) e−2`µ

 . (4.28)

Again, the exponentially small terms at large µ are invisible in the ’t Hooft expansion, and

correspond to non-perturbative effects in the M-theory regime of large N , small t.

The term (4.25) is just the first term in an expansion of J(z) at small t but all orders

in z. The next terms in this expansion can be computed systematically by using the

integrable structure of the KdV type underlying the matrix integral (4.1). The next terms

in the expansion have been computed in [56]:

J(µ) =
σ(σ + 2)

4
log

(
8

t

)
+B(σ) +O

(
t2±2σ

)
, (4.29)
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where

σ = − 2

π
arcsin

(z
2

)
, B(σ) =

1

4

∫ σ

0
dx (1 + x)

[
ψ

(
1 + x

2

)
+ ψ

(
−1− x

2

)
− 2

]
.

(4.30)

By doing a large µ expansion of (4.29) one finds

J(z) = −µ2

 3

2π2
+

log(π)

π2
−

log
(

8
t

)
π2

+
log
(

1
µ

)
π2

+O
(
t2±2σ

)
+O (µ log(µ)) . (4.31)

The terms of order µ2 match the result (4.22) obtained in the ’t Hooft expansion. This

is similar to the phenomenon observed in [5] in the matrix integrals appearing in Chern-

Simons-matter theories, namely, that the leading, perturbative terms in µ are the same in

both, the ’t Hooft expansion and the M-theory expansion. This is again in agreement with

the planar dominance conjecture of [45].

5 Conclusions

In this paper we have studied matrix models which have, on top of the usual ’t Hooft

regime, an M-theoretic regime. These models arise naturally in the localization of Chern-

Simons-matter theories with M-theory duals, but also in other contexts, like for example

the statistical models considered in [13, 14]. An important property of these models is

that their ’t Hooft expansion is insufficient, and has to be complemented by considering

non-perturbative effects which appear naturally in the M-theory regime.

Our main example has been the matrix model which computes the partition function

on the sphere of an N = 4, 3d U(N) gauge theory with one adjoint and Nf fundamental hy-

permultiplets. This theory has a proposed M-theory dual and shares many properties with

ABJM theory. We have solved exactly for its planar and genus one limit and started the

study of its non-perturbative corrections beyond the ’t Hooft expansion. A similar model,

the polymer matrix model, arises in the study of statistical systems in two dimensions, and

we have performed a similar analysis.

The results presented here are just a first step in a more ambitious program which

aims at a full understanding of M-theoretic matrix models. In this program, the two

matrix models which we have studied will probably play an important rôle and might be

completely solvable, along the lines of the proposed solution of the ABJM matrix model.

However, it is clear that there are many technical obstacles to face in order to deepen our

understanding of M-theoretic matrix models. These obstacles were overcome in the study

of the ABJM matrix model by a series of happy coincidences (mostly, the connection to

topological string theory), but cannot be avoided in the more general class of models which

we would like to study.

Indeed, one serious drawback of these models is the difficulty to obtain in a realistic

way the full ’t Hooft expansion. It has been shown in [46] that the technique of topological

recursion can be in principle applied to O(m) models like the one studied in this paper, but

in practice it is not easy to apply it (indeed, even for ABJM theory, the ’t Hooft expansion
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was obtained in [2] by applying the technique of direct integration first proposed in [63],

and not the topological recursion). It is therefore important to develop further techniques

and ideas to obtain the ’t Hooft expansion.

To understand the M-theoretic regime, we also need to resum the ’t Hooft expansion.

It is likely that the road to follow here is the one open by the Fermi gas method. In order to

follow this approach, we should develop techniques to compute the semiclassical expansion

of the spectrum of the Fermi gas Hamiltonian, with exponential precision. This means

that we have to generalize the WKB method to the integral equations appearing in this

type of problems. As pointed out in [5, 9], one can obtain in this way a resummed ’t Hooft

expansion, together with membrane-like effects, but then quantum-mechanical instanton

corrections have to be included, and these are difficult to compute.

Another important open problem is to understand the membrane-like corrections from

the point of view of the ’t Hooft expansion. These are, morally speaking, large N instantons

of the matrix model (see for example [11]), but it is not clear how to make contact between

this point of view and the Fermi gas calculation of these effects. This will probably need a

better understanding of exponentially small corrections in matrix models.

Coming back to the concrete models studied in this paper, there are clearly some more

precise questions that can be addressed. First of all, one could try to determine further

terms in the ’t Hooft expansion, in both the Nf matrix model and the polymer matrix

model. In this respect, it would be interesting to see if the direct integration technique

of [63] works also for the O(m) model. The non-perturbative study of the polymer matrix

model is probably very much facilitated by the connection to classical integrable hierarchies,

although a detailed study remains to be done. For the Nf matrix model, the preliminary

results presented in this paper can be extended and deepened in many ways. One could

use the TBA approach of [56], combined with the results in [36, 40], in order to compute

the exact values of Z(N,Nf ) for fixed values of Nf and high values of N . This would lead

to a reasonable ansatz for the first terms in the large µ expansion of the grand potential

J(µ,Nf ), as in [7], and might be the starting point for a full non-perturbative study of

the model. It would be also interesting to see if subleading corrections to the Nf → 0

limit of the grand potential can be computed analytically from the TBA ansatz. Finally, it

would be very interesting to study the eigenvalue problem for the integral equation (3.82)

in terms of a difference equation, as it was done in [9] for ABJM theory. This might lead

to information about the spectrum at finite Nf . We hope to report on some on these issues

in the near future.
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A The function G(z)

A.1 General properties

The function G(z) was introduced in [28, 29] as a technical tool to solve the O(m) matrix

model for general m. It satisfies the defining equation

G(z + i0) +G(z − i0) + 2 cos (πν)G(−z) = 0, (A.1)

and it is holomorphic on the whole z-plane except for the interval [a, b], where it has a

branch cut. We will map the z-plane to the u-plane through the equation

z = a sn(u, k) = a
ϑ3

ϑ2

ϑ1

(
u

2K

)
ϑ0

(
u

2K

) , (A.2)

where

k =
a

b
, (A.3)

and K is the elliptic integral of the first kind with argument k. Here,

ϑa(v) = ϑa (v, τ) , a = 0, 1, 2, 3 (A.4)

are the elliptic theta functions with modulus

τ =
iK ′

K
. (A.5)

Our conventions for elliptic functions and theta functions are as in [64]. In the following we

use the notation G(u) and G(z) interchangeably. The relationship (A.2) can be inverted as

u =

∫ z/a

0

dx√
(1− x2)(1− k2x2)

. (A.6)

The function G(u) is obtained from the function,

G+(u) =
e
πiν
2 G(u) + e−

πiν
2 G(−u)

2 sin(πν)
, (A.7)

as

G(u) = −i
[
e
πiν
2 G+(u)− e−

πiν
2 G+(−u)

]
. (A.8)

An explicit expression for G+(u) was found in [29] in terms of theta functions. Let us

define,

H+(u) =
ϑ1

(
u−iK′

2K

)
ϑ1

(
u−ε
2K

)
ϑ1

(
u−K
2K

)
ϑ1

(
u−(K+iK′)

2K

)e−πi(1−ν) u
2K

= −i
ϑ0

(
u

2K

)
ϑ1

(
u−ε
2K

)
ϑ2

(
u

2K

)
ϑ3

(
u

2K

) e−πi(1−ν) u
2K .
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In going from the first to the second line, we have used various properties of the theta

functions. This solution differs from the one given in [29] by an overall sign, and follows

the conventions in [21]. The argument ε is given by

ε = i (1− ν)K ′, (A.9)

and we will denote

e = a sn(ε, k). (A.10)

The function G+(z) is proportional to H+(z), and satisfies the normalization condition

lim
z→∞

zG+(z) = i. (A.11)

Notice that this is the normalization condition chosen in [28], and it is different from the

one chosen in [29]. One finds,

G+(z) =
ϑ2

2

aϑ0ϑ0

(
ε

2K

)H+(z). (A.12)

This can be written in a useful form for the limit ε = 0, as follows. We have

sn(u, k) =
ϑ3(0)

ϑ2(0)

ϑ1(u/(2K))

ϑ0(u/(2K))
,

cn(u, k) =
ϑ0(0)

ϑ2(0)

ϑ2(u/(2K))

ϑ0(u/(2K))
,

dn(u, k) =
ϑ0(0)

ϑ3(0)

ϑ3(u/(2K))

ϑ0(u/(2K))
.

(A.13)

Therefore, (
ϑ0ϑ1

ϑ2ϑ3

)( u

2K

)
=

(
ϑ0

ϑ3

)2 sn(u)

cn(u)dn(u)
, (A.14)

and we can write the limit ε→ 0 of G+(u) as

− i

a

(
ϑ2

ϑ0

)2(ϑ0ϑ1

ϑ2ϑ3

)( u

2K

)
= − iz√

(z2 − a2)(z2 − b2)
, (A.15)

where we used that

cn(u, k) =
√

1− z2/a2, dn(u, k) =
√

1− k2z2/a2, (A.16)

as well as (
ϑ2

ϑ3

)2

= k =
a

b
. (A.17)

Using this result, we find

G+(z) = − iz√
(z2 − a2)(z2 − b2)

ϑ0

ϑ0

(
ε

2K

) ϑ1

(
u−ε
2K

)
ϑ1

(
u

2K

) e−πi(1−ν)u/(2K). (A.18)

Finally, we note that the function G+(z) satisfies the product formula

G+(z)G+(−z) =
z2 − e2

(z2 − a2)(z2 − b2)
. (A.19)
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A.2 Limiting behavior

In this paper we need to study the limits ν → 0, 1 of the function G(z). Let us first study

the limit ν → 1. For the function G+(u), one finds, at first order,

G+(z) = −i
z√

(z2 − a2)(z2 − b2)

{
1− i(1− ν)

(
πu

2K
+K ′

ϑ′1
ϑ1

( u

2K

))
+O

(
(1− ν)2

)}
.

(A.20)

In order to obtain an explicit expression for the ’t Hooft parameter λ in (3.29), we need to

do the expansion up to (and including) third order in (1− ν)3, and evaluate the result at

z = −1. Using that

sn

(
K +

iK ′

2

)
=

1√
k
, (A.21)

we find that, when b = 1/a (which is the case in our model), the point z = 1 corresponds to

u1 = K +
iK ′

2
, (A.22)

The point corresponding to z = −1 is therefore u−1 = −u1, since sn is an odd function. In

evaluating the coefficients of the expansion of G(z) at z = ±1, it is convenient to use the

Jacobi zeta function, which is defined as

Z(u) =
d

du
log ϑ0

( u

2K

)
. (A.23)

It satisfies the two identities,

Z(u+ v) = Z(u) + Z(v)− k2snu snv sn(u+ v),

Z(u+ iK ′) = Z(u)− iπ

2K
+ csudnu.

(A.24)

From (A.24) one deduces,(
ϑ′1
ϑ1

)(
1

2
+
τ

4

)
=

i(k − 1)

2
− iπ

4K(k)
,(

ϑ′′1
ϑ1

)(
1

2
+
τ

4

)
=1− k − E(k)

K(k)
+

((
ϑ′1
ϑ1

)(
1

2
+
τ

4

))2

,(
ϑ′′′1
ϑ1

)(
1

2
+
τ

4

)
=2ik(k − 1) + 3

(
ϑ′1
ϑ1

)(
1

2
+
τ

4

)(
ϑ′′1
ϑ1

)(
1

2
+
τ

4

)
− 2

((
ϑ′1
ϑ1

)(
1

2
+
τ

4

))3

.

(A.25)

In the limit ν → 0, the quantity e defined in (A.10) diverges. Indeed, one has that

a sn(−iνK ′ + iK ′) =
a

ksn(iνK ′)
≈ a

ikνK ′
(A.26)

where in the first step we have used an standard identity for the Jacobi sn function. To

calculate the limit of G(z) as ν → 0, we use that [28]

G(1−ν)(z) = −
(

eiνπ/2g+(z)G
(ν)
+ (z) + g+(−z)G(ν)

+ (−z)e−iνπ/2
)
, (A.27)
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where

g+(z) =

√
(z2 − a2)(z2 − b2) + z

e

√
(e2 − a2)(e2 − b2)

z2 − e2
. (A.28)

The indices ν, 1 − ν indicate that the function G should be evaluated for these values of

the parameter. It follows that

lim
ν→0

G(z) = − lim
ν→1

(
eiνπ/2g+(z)G+(z) + g+(−z)G+(−z)e−iνπ/2

)
, (A.29)

and we can then use the expansion (A.20) around ν = 1.

B The O(m) model as a multi-trace matrix model

Since the planar solution to the O(m) matrix model is relatively complicated, it is useful

to make an independent computation of various planar quantities. Of course one can do

a perturbative computation, but it is better to have a more systematic approach which

captures the planar limit directly. Such an approach is obtained if one regards the O(m)

model as a multi-trace matrix model.

B.1 Multi-trace matrix models

Let us consider a matrix model for a Hermitian N ×N matrix, M ,

Z =
1

vol(U(N))

∫
dM e−V (M)/gs , (B.1)

where the potential is of the form

V (M) =
1

2
TrM2 + t

∞∑
k=1

ak
k

TrMk + gs
∑
k,l≥1

ck,lTrMkTrM l (B.2)

and it includes double-trace operators. We have denoted

t = gsN, (B.3)

and our conventions are as in [65]. The standard method to study this type of potentials

in the planar limit is to use an analogue of the Hartree-Fock approximation [66]. In terms

of the density of eigenvalues ρ(z), the planar free energy becomes

g−2
s F [ρ] = t2

− 1

2t
ρ2 −

∑
k≥1

ak
k
ρk −

∑
k,l≥1

ck,lρkρl +

∫
dλdµρ(λ)ρ(µ) log |λ− µ|

 , (B.4)

where

ρk =

∫
dλ ρ(λ)λk. (B.5)

The saddle point equation for ρ is obtained by varying w.r.t. ρ:

1

2t
x2 +

∞∑
k=1

ak
k
xk + 2

∑
k,l

ck,lρlx
k = 2

∫
dyρ(y) log |x− y|+ ζ, (B.6)
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where ζ is a Lagrange multiplier. This equation can be written as

1

t
Veff(x) = 2

∫
dyρ(y) log |x− y|+ ζ, (B.7)

which is the standard equation appearing in Hermitian matrix model, but it involves the

“effective” potential

Veff(x) =
1

2
x2 +

∞∑
k=1

t
ak
k
xk + 2t

∑
k,l

ck,lρlx
k, (B.8)

which can be written as

Veff(x) =
1

2
x2 + t

∑
k≥1

ãk
k
xk, (B.9)

where

ãk = ak + 2k
∑
l≥1

ck,lρl. (B.10)

Therefore, we can solve for the density of eigenvalues by using this potential and then

impose self-consistency.

We will restrict ourselves to even potentials. In this case, al = 0 for l odd, and

ck,l = 0 if k + l = odd. (B.11)

This implies that the endpoints of the cut A,B where the eigenvalues condense are sym-

metric A = −B. It follows that

ρl = 0 l = odd, (B.12)

and we have to pick only even terms in the effective potential, i.e. ãl = 0 if l is odd.

We can now treat the effective, even potential with the standard techniques of or-

thogonal polynomials [67]. The basic quantity is R0(ξ, t), which can be obtained from the

equation

ξ =
1

t
R0 +

∑
k≥1

ã2k

(
2k − 1

k − 1

)
Rk0 . (B.13)

The moments ρ2l can be computed as

ρ2l =
(2l)!

l!2

∫ 1

0
dξRl0(ξ). (B.14)

In practice we will calculate ρ2l as a power series in t:

ρ2l = tl
∞∑
n=0

rl,nt
n, rl,0 =

(2l)!

l!2(l + 1)
. (B.15)

We then obtain the following consistency conditions,

∞∑
n=0

rl,nt
n =

(2l)!

l!2

∫ 1

0
dξ
(R0(ξ)

t

)l
, (B.16)
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where

ã2k = a2k + 4k
∑
l≥1

∑
n≥0

c2k,2lrl,nt
n+l. (B.17)

Since the ãk are themselves functions of the coefficients rl,n, as in (B.17), we obtain a set of

equations which determine the rl,n as functions of ak. This leads to expressions for many of

the planar quantities as power series in t. If we denote the endpoints of the cut as (−A,A),

we find

A2

4
= R0(1) = t− t2a2 + t3

(
a2

2 − 3a4 − 4c2,2

)
+ t4

(
−a3

2 + 9a2a4 − 10a6 + 12c2,2 − 8c2,4 − 24c4,2

)
+ · · ·

(B.18)

Similarly, the planar free energy can be computed by evaluating the functional F [ρ] on the

equilibrium distribution. One easily obtains

F0(t) = − t
2

∫
dxVeff(x)ρ(x)− t2

2
ζ + t2

∑
k,l

ck,lρkρl. (B.19)

Notice that the last term is a correction to the single-trace case. If we use the formalism

of orthogonal polynomials, we can rewrite the first two terms by using the function R0(ξ).

Our final expression is

F0(t)− FG
0 (t) = t2

∫ 1

0
dξ(1− ξ) log

(
R0(ξ)

tξ

)
+ t2

∑
k,l

ck,lρkρl, (B.20)

where FG
0 (t) is the planar free energy of the Gaussian matrix model. Like before, this

quantity can be computed perturbatively in t in terms of the coefficients of the potential.

One finds,

F0(t)− FG
0 (t) = −1

2
t3a2 +

1

4
t4(a2

2 − 2a4 − 4c2,2) +O(t5). (B.21)

B.2 Examples

B.2.1 Chern-Simons matrix model

The Chern-Simons matrix model describing Chern-Simons theory on S3 [47] is a particular

case of the above multi-trace matrix model [68]. In this case, the coefficients are given

explicitly by the following expressions

a2k = −2B2k

(2k)!
, c2k,2l = −

B2(k+l)

2(k + l)(2(k + l))!

(
2(k + l)

2k

)
, (B.22)

where B2k are Bernoulli numbers. Since this model is exactly solvable, we can test the

above expressions in detail. For example, (B.18) gives in this case,

A2

4
= t+

t2

6
+
t3

90
− t4

2520
− t5

12600
+O(t6), (B.23)

which are precisely the first few terms of the perturbative expansion of the exact result

A = 2 cosh−1
(

et/2
)
. (B.24)
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The perturbative result (B.21) for the planar free energy gives

F0(t)− FG
0 (t) =

t3

12
+

t4

288
− t6

86400
+O(t7), (B.25)

which is the expansion of the exact result

F0(t)− FG
0 (t) = −Li3(e−t). (B.26)

Using the above formalism we can also calculate the correlation functions

Wn(t) = gs
〈
Tr enM

〉
= gs

∑
k≥0

nk

k!
TrMk = gs

∑
l≥0

n2l

(2l)!
ρ2l, (B.27)

which correspond to Wilson loops.

B.2.2 The Nf and the polymer matrix models

The matrix models (3.3), (4.1) can be written as multi-trace matrix models. In the case of

the Nf matrix model, we have

a2k = −
4
(
1− 22k−1

)
B2k

(2k)!
+

1

t
(1− δ2,2k)

4
(
22k − 1

)
B2k

(2k)!
,

c2k,2l = −
2
(
1− 22(k+l)−1

)
B2(k+l)

(2(k + l))(2(k + l))!

(
2(k + l)

2k

)
,

(B.28)

where

t =
4N

Nf
= 4λ. (B.29)

The relative factor of 4 as compared to (3.4) is due to the fact that, in the formalism

for multi-trace matrix models developed above, the Gaussian potential has the canonical

normalization x2/2, while in the expansion of the potential in (3.3) around x = 0 we have

instead x2/8.

For the polymer matrix model, we have the same value for c2k,2l, but a2k is now,

a2k = −
4
(
1− 22k−1

)
B2k

(2k)!
+

1

t
(1− δ2,2k)

1

(2k − 1)!
. (B.30)

and t = λ, where λ is given in (4.5) (the parameter t appearing in (4.1) should not be

confused with the ’t Hooft-like parameter t used in this appendix).

One should take into account that the coefficients a2k depend now on 1/t, but it can

be easily seen that at each order in t only a finite number of terms in the above expansions

contribute. After taking these two facts into account, one obtains the results (3.33), (4.15),

in agreement with the exact solution.
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