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ABSTRACT: We develop a new off-shell formulation for five-dimensional (5D) conformal
supergravity obtained by gauging the 5D superconformal algebra in superspace. An im-
portant property of the conformal superspace introduced is that it reduces to the super-
conformal tensor calculus (formulated in the early 2000’s) upon gauging away a number
of superfluous fields. On the other hand, a different gauge fixing reduces our formula-
tion to the SU(2) superspace of arXiv:0802.3953, which is suitable to describe the most
general off-shell supergravity-matter couplings. Using the conformal superspace approach,
we show how to reproduce practically all off-shell constructions derived so far, including
the supersymmetric extensions of R? terms, thus demonstrating the power of our formu-
lation. Furthermore, we construct for the first time a supersymmetric completion of the
Ricci tensor squared term using the standard Weyl multiplet coupled to an off-shell vec-
tor multiplet. In addition, we present several procedures to generate higher-order off-shell
invariants in supergravity, including higher-derivative ones. The covariant projective mul-
tiplets proposed in arXiv:0802.3953 are lifted to conformal superspace, and a manifestly
superconformal action principle is given. We also introduce unconstrained prepotentials for
the vector multiplet, the O(2) multiplet (i.e., the linear multiplet without central charge)
and O(4+n) multiplets, with n = 0,1, ... Superform formulations are given for the BF ac-
tion and the non-abelian Chern-Simons action. Finally, we describe locally supersymmetric
theories with gauged central charge in conformal superspace.
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1 Introduction

Minimal supergravity in five spacetime dimensions! (5D) was introduced more than three
decades ago by Cremmer [4] and independently by Chamseddine and Nicolai [5]. A year
later, an off-shell formulation for this theory was sketched by Howe [6] (building on the
supercurrent multiplet constructed by him and Lindstréom [7]), who used superspace tech-
niques and provided a 5D extension of the so-called N’ = 2 minimal supergravity multiplet
in four dimensions [8, 9]. Since then, 5D minimal supergravity and its matter couplings have
extensively been studied at the component level, both in on-shell [10-13] and off-shell [14-
23] settings. The superspace approach to general off-shell 5D N = 1 supergravity-matter
systems has been developed in [24-26].2

Off-shell formulations for supergravity make the supersymmetry transformation laws
of fields model-independent and, in principle, offer a tensor calculus to generate arbitrary
supergravity-matter couplings. A non-conformal tensor calculus for 5D A/ = 1 supergravity
was developed by Zucker [14, 15] (see also [16] for a review and applications). By making use
of Howe’s minimal supergravity multiplet [6] and the supercurrent multiplet [7] (both care-
fully reduced to components), he extended to five dimensions various off-shell techniques
developed for 4D N = 2 matter-coupled supergravity (see, e.g., [28] for a review). A more
complete approach is the 5D superconformal tensor calculus developed independently by
two groups: Fujita, Kugo, and Ohashi® [17-20] and Bergshoeff et al. [21-23]. Among the
most interesting off-shell constructions obtained by applying the 5D superconformal cal-
culus are (i) the non-abelian Chern-Simons action coupled to conformal supergravity [18],
(ii) the massive tensor multiplet models [20], and (iii) the supersymmetric completions of
R? terms [29-32].

MHistorically, different authors use different notations, N' =1 or N = 2, for 5D supersymmetric theories
with eight supercharges. We choose to use A' =1 following, e.g., [1-3].

*Refs. [24, 25] made use of Howe’s minimal supergravity multiplet [6]. Ref. [26] developed a superspace
formulation for conformal supergravity, which in this paper will be referred to as SU(2) superspace. In five
dimensions, there is only one superconformal algebra, F? (4) [27], and it corresponds to the choice N' = 1.
This is why one can simply speak of 5D conformal supergravity.

3 Actually refs. [17, 18] presented the 5D tensor calculus in which some of the superconformal symmetries
(S and K) are gauge fixed.



Within the component approaches of [14-23], hypermultiplets are either on-shell or
involve a gauged central charge. As is well known, such hypermultiplet realizations cannot
be used to provide an off-shell formulation for the most general locally supersymmetric
sigma model. It is also known that such a sigma model formulation, if it exists, requires the
use of off-shell hypermultiplets possessing an infinite number of auxiliary fields. The latter
feature of the off-shell hypermultiplets makes them extremely difficult to work with at the
component level. This problem was solved within the superspace approach to 5D N =1
supergravity-matter systems [24-26] by putting forward the novel concept of covariant
projective multiplets. These supermultiplets are a curved-superspace extension of the 4D
N =2 and 5D N = 1 superconformal projective multiplets [33, 34]. The latter reduce
to the off-shell projective multiplets pioneered by Lindstrém and Roc¢ek [35-37] in the 4D
N = 2 super-Poincaré case and generalized to the cases of 5D N = 1 Poincaré and anti-de
Sitter supersymmetries in [2] and [3], respectively. Among the most interesting covariant
projective multiplets are polar ones that have infinitely many auxiliary fields and indeed
are suitable to realize the most general locally supersymmetric sigma model. These have
never appeared within the component settings of [14-23].

This paper is devoted to new applications of the superspace approach to 5D A/ = 1
matter-coupled supergravity [24-26]. In order to make a better transition to the super-
conformal calculus of [17-23], we present an extension of the superspace formulation for
5D conformal supergravity given in [26]. Such an extension is based on the concept of
conformal superspace [38-40].

Conformal superspace is an off-shell formulation for conformal supergravity based on
gauging the superconformal algebra in superspace. It was originally developed for N' =1
and N/ = 2 supergravity theories in four dimensions [38, 39] and more recently for N-
extended conformal supergravity in three dimensions [40].* For example, one may think of
the 4D N/ = 1 or N' = 2 conformal superspace as a superspace analogue of the corresponding
superconformal multiplet calculus developed many years earlier in the component setting,
see e.g. [28] for a pedagogical review, since both approaches are gauge theories of the super-
conformal group. From a technical point of view, conformal superspace is a more general
setting, since the gauge superfields contain more component fields and the gauge group is
much larger than in the superconformal calculus. However, it turns out that the former
formulation reduces to the latter upon gauging away a number of superfluous component
fields. On the other hand, a different gauge fixing allows one to reduce conformal superspace
to more traditional superspace settings. For instance, in the 4D N = 2 case a certain gauge
fixing reduces the conformal superspace of [39] to the so-called U(2) superspace [46], which
has been used to construct the most general off-shell supergravity-matter couplings [47].
Thus conformal superspace provides a bridge between the component superconformal cal-

culus and more traditional superspace formulations for conformal supergravity.

“In the physics literature, the name “conformal space” has been used since the 1930s. Tt was Dirac [41]
who, following Veblen [42], introduced it for the conformal compactification of 4D Minkowski space, on
which the conformal group acts transitively. Since the 1980s, the name “conformal superspace” has also
been used for supersymmetric extensions of this construction [43, 44] (see also [33, 45] for more recent
presentations). We hope no confusion may occur in our usage.



Recent applications of the conformal superspace approach have involved construct-
ing (i) the N-extended conformal supergravity actions in three dimensions for 3 < N <
6 [48, 49], and (ii) new higher-derivative invariants in 4D AN = 2 supergravity, including
the Gauss-Bonnet term [50]. This paper is the first to explore applications of conformal
superspace in five dimensions. In particular, we will demonstrate that the formalism of con-
formal superspace provides new tools to construct various composite primary multiplets
that can be used to generate higher-order off-shell invariants in supergravity, including
higher-derivative ones.

This paper is organized as follows. Section 2 describes the geometry of conformal
superspace in five dimensions. In particular, we present the procedure in which the su-
perconformal algebra is gauged in superspace and show how to constrain the resulting
geometry to describe conformal supergravity, thus deriving a new off-shell formulation.
We also describe the Yang-Mills multiplet in conformal superspace. In section 3 we show
how the superspace formulation for conformal supergravity proposed in [26] may be viewed
as a gauge-fixed version of conformal superspace. Section 4 is devoted to uncovering the
component structure of conformal superspace and comparing it to the existing superconfor-
mal tensor calculus [19-23]. In section 5 we lift the covariant projective multiplets of [24-26]
to conformal superspace. A general procedure to generate such multiplets is given. We
also present a universal locally supersymmetric action principle. Section 6 presents pre-
potential formulations for the vector multiplet in conformal superspace. In section 7 we
develop a prepotential formulation for the O(2) multiplet and discuss its universal role
in generating actions. We also provide a prepotential formulation for O(4 4+ n) multi-
plets. Sections 8, 9 and 10 are devoted to superform formulations of the BF, abelian and
non-abelian Chern-Simons actions, respectively. In section 11 we describe multiplets with
gauged central charge in conformal superspace by giving their superform formulations. In
particular, the linear multiplet with central charge, two-form multiplet and large tensor
multiplet are discussed. Section 13 is devoted to a description of the dilaton Weyl multiplet
and its variants with the use of superforms. In section 14 we present several procedures to
generate higher-order off-shell invariants in supergravity, including higher derivative ones.
Concluding comments are given in section 15.

We have included a number of technical appendices. In appendix A we include a
summary of our notation and conventions. In appendix B we derive the superconformal
algebra from the algebra of conformal Killing supervector fields of 5D A" = 1 Minkowski
superspace. In appendix C we give an alternative covariant derivative algebra based on
a new vector covariant derivative with a deformed S-supersymmetry transformation. Ap-
pendix D describes how our component field conventions relate to those of superconformal
tensor calculus. In appendix E we give the O(2) multiplet prepotential formulation in har-
monic superspace. Appendix F discusses the gauge freedom for the @(2) multiplet. Finally,
in appendix G we derive prepotentials for the O(4 +n) multiplets in harmonic superspace.



2 Conformal superspace in five dimensions

Conformal superspace in four [38, 39] and three [40] dimensions possesses the following
key properties: (i) it gauges the entire superconformal algebra; (ii) the curvature and
torsion tensors may be expressed in terms of a single primary superfield; and (iii) the
algebra obeys the same basic constraints as those of super Yang-Mills theory. In this
section we will show how these properties may be used to develop conformal superspace in
five dimensions. We will present the superconformal algebra and the geometric setup for
conformal superspace based on gauging the entire algebra. We then show how to constrain
the geometry to describe superconformal gravity by constraining its covariant derivative
algebra to be expressed in terms of a single primary superfield, the super Weyl tensor. We
conclude the section by discussing an application and turning on a Yang-Mills multiplet in
the conformal superspace setting.

2.1 The superconformal algebra

The bosonic generators of the 5D superconformal algebra F2(4) [27] include the translation
(Pa), Lorentz (M,;), special conformal (K3), dilatation (D) and SU(2) generators (.J;;),

a

where a,b =0,1,2,3,5 and 7,7 = 1,2. Their algebra is

(Mg Mgl = 2neja Mg — 204 M (2.1a)
(M35, Pe] = 2n¢1a By D, Pa] = Pa, (2.1b)
(Mg Kol = 200K D, Ka] = — K, (2.1¢)

[Ka, Py = 20, + 2M.; , (2.1d)
[T, Jk] = kG gl 4 G ik (2.1e)

with all other commutators vanishing. The superconformal algebra is obtained by extend-
ing the translation generator to P; = (Pd,Qg) and the special conformal generator to
K ; = (Ka, Sa;), where Qg and Sé are an imaginary and a real pseudo-Majorana spinor,
respectively (see appendix A).5 The fermionic generator Qg obeys the algebra

% i Y E al AN o % 1 ) _1 %
{Q&aQ]B}—_Ql’S](F )dBPC [ vaa]_Oa [D7Q&]_2 Qo (21f)

(M50 Q) = £3(aQ5) 79, Q) = Q2 (2.1¢)

while the generator Sé obeys the algebra

o o 1
{54, Sé} = —2ie(I)5Ke,  [Sai, Ka] =0, D, Sai] = —55%i (2.1h)
(M5, 851 = £5aS3, [, Sk] = Mg (2.1i)

®Our convention for S} is chosen to match the 4D convention [39] upon dimensional reduction. This
means, for example, that contractions between K ; and the corresponding gauge parameters, connections,
and curvatures must be interpreted with care: for example, MK 4 should be understood as % Sai + AL K,
with A4 = (%, A%), while ¢4 P, = 62 QL + £ Ps with &4 = (¢, 6%).



Finally, the (anti-)commutators of K ; with P; are

K4, Qa] = i(Ta)a” S}, [Sais Pal = 1(Ta)a” Qg » (2.1j)
{Sai. Qg} = 2,307 — 467 M, 5 + 62 5] . (2.1K)

One may explicitly check that the (anti-)commutation relations (2.1) are consistent with
the Jacobi identities and thus define a superalgebra. A shorter way to convince oneself
of the algebraic structure required is to notice that the (anti-)commutation relations (2.1)
follow from the algebra of conformal Killing supervector fields of 5D N = 1 Minkowski
superspace [33], see appendix B for the technical details.

2.2 Gauging the superconformal algebra

To perform our gauging procedure, we begin with a curved 5D A = 1 superspace M?I8
parametrized by local bosonic (z) and fermionic coordinates (6;):

M= (™, Qf), (2.2)

where m = 0,1,2,3,5, i = 1,--- ;4 and ¢+ = 1,2. In order to describe supergravity it is
necessary to introduce a vielbein and appropriate connections. However the gauging of the
superconformal algebra is made non-trivial due to the fact that the graded commutator of
K ; with P, contains generators other than P;. This requires some of the connections to
transform under K ; into the vielbein. To perform the gauging we will follow closely the
approach given in [38-40].

We denote by X, the closed subset of generators that do not contain the PP; generators.
The superconformal algebra takes the form of a semidirect product algebra

[XQ, XQ} = —fQQXQ, (2.3&)
[Xa, Pg} = —fo5°Xe — 15 Per (2.3b)
[P, Pgy = —fip"Pe, (2.3¢)

where f ABé contains only the constant torsion tensor fé“ = ﬂéfj;é = 2ie¥ (Fé)dﬁm The
gauge group associated with the superalgebra generated by X, will be denoted H. Now
we associate with each generator X, = (M_;, Jij, D, Sai, Kz) a connection one-form w® =

(b, &% B, 3% §) = dzMw 2 and with P; the vielbein BA = (E& E%) = d2ME A,
Their H-gauge transformations are postulated to be

SuEN = EBACf A (2.4a)
Spw® = dAS + EBAngBg + wagfgbg’ (2.4b)

with A% the gauge parameters.
A superfield @ is said to be covariant if it transforms under H with no derivatives on
the parameter A%
oy® = AP := A*X,P. (2.5)



A superfield ® is said to be primary if it is annihilated by the special conformal gener-
ators, K ;& = 0. From the algebra (2.1), we see that if a superfield is annihilated by
S-supersymimetry, then it is necessarily primary.

Given a covariant superfield @, it is obvious that d,,® is not itself covariant. We are
led to introduce the covariant derivative

V=d-wX,, V=F£v,. (2.6)
Its transformation is found to be
53 (V 1) = (—1)°A%ALY X — Abf, OV — ALf, X, P, (2.7)

with no derivatives on the gauge parameter A®. Rewriting this as d3(V ;@) = ALX,V A2,
we immediately derive the operator relation

(X0, V 4} = —£,4 Ve — faXe. (2:8)
The torsion and curvature tensors appear in the commutator of two covariant derivatives,
V4, Vet =T33V — Z55°Xe, (2.9)

where the torsion and curvature tensors are defined, respectively, by

~ 1 ~ ~ ~ ~ ~ ~
T4 = FECA EB T30t =dBEY — B9 NP fia?, (2.10a)
L ¢ B c b 1 b
A = iE NE %BCA’Q: dw® — FE /\w*fbcﬂg— iwg/\w,f@g‘ (2.10b)

Using the definition of curvature and torsion (2.10) together with the vielbein and connec-
tion transformation rules (2.4), we find

5Hf7A _ gCAQfQOA —_EY A EBAQfQBifiC‘A’ (2.11a)
Sy R = ﬁgAQf@Q—F yéAbfbéﬂ_ ol AEéAbeCiffﬁﬂ7 (2.11b)

indicating that the torsion and curvature superfields are covariant. Writing the transfor-
mation rules as 65 74 = A2X, T4, 5% = NeX, %" and 5y B4 = ALX, E4 leads to the
action of X, on the torsion and curvature:
D aleptes Ey D E D D
Xo T = —(-1) o) Tpo P fp P = 28155 Ty — 2 yphiger” . (2120)
d aleptegs Eyr d d E d
XoRpet = —(—1)aree) (%é foa~ %Bégf@> —2fu" A piey”
d
= 2f 5% F een?- (2.12b)

One can show that the above results are the necessary conditions for the Jacobi identity
involving two V’s

0= [Xa, [V, Vil + (graded cyclic permutations) (2.13)



to be identically satisfied. The Bianchi identities
0=1[V4[Vg, Vet + (graded cyclic permutations) (2.14)

can also be shown to be satisfied identically. Therefore, we have a consistent algebraic

structure
[(Xa, Xp} = — fapXe, (2.15a)
[(Xo, Vgt = *fggévc — fup“Xe, (2.15b)
Vi Vig} = T35V — BapXe, (2.15¢)

which satisfies all the Jacobi identities. In the flat space limit the curvature vanishes and
the torsion becomes the usual constant torsion, so that the algebra (2.15) exactly matches
the superconformal algebra that we started with, in which P; is replaced with V ;. The
curved case involves a so-called soft algebra, where some of the structure constants have
been replaced by structure functions, corresponding to the introduction of torsion and
curvature. The superconformal algebra is then said to be “gauged” in this sense.

The full set of operators (V 4, X,) generates the conformal supergravity gauge group
G. The form of the covariant derivative suggests that we should extend the usual diffeo-
morphisms dge into covariant diffeomorphisms

Seget (€1) 1= et (EAE M) — 63 (7w 39, (2.16)
where gt (§M ) acts on scalars under diffeomorphisms as
Saet® = M0 B (2.17)
The full conformal supergravity gauge group G is then generated by
K =€V, + ASX,. (2.18)

If a superfield ® is a scalar under diffeomorphisms and covariant under the group H, then
its transformation under the full supergravity gauge group G is

5g® = K& = OV + A2X, P . (2.19)

It is a straightforward exercise to show that the vielbein and connection one-forms trans-
form as

SgEA = de? + EPAC ngA + wle€ f@A + EB¢C T 54, (2.20a)

Sgw = dAS + WPACf 42 + WPEC fo @ + EBACS 0+ BEBCCR, 12 (2.20D)
From this definition, one can check that the covariant derivative transforms as

59VA = [K, VA} (2.21)



provided we interpret
V8 = B8 +wiel 1y P (2.22a)
VAAQ = EAAQ + wAggﬁfﬁgb =+ wAQAdf@Q . (222]3)

We can summarize the superspace geometry of conformal supergravity as follows. The
covariant derivatives have the form

1 L7 .
_ b _ b kl B
VA—EA—WA*XQ—EA—EQAGMal;—q)A Jkl—BAD—SA KB' (2.23)

The action of the generators on the covariant derivatives, eq. (2.15b), resembles that for
the P; generators given in (2.1). The supergravity gauge group is generated by local
transformations of the form (2.21) where

N 1 . A
K=EVe+ gAM g+ A + oD + A (2.24)

and the gauge parameters satisfy natural reality conditions. The covariant derivatives
satisfy the (anti-)commutation relations

N 1 éA
V4Vl = =745V — 52(M) 35" My = Z(J) 45" T
— (D) ;5D — Z(S) 157" Ssr — Z(K) ;5 Ke, (2.25)

where the torsion and curvature tensors are given by

T4 = dE* + E' A Q% + E* A B, (2.26a)

T¢ = dB} +2E] N5 + %Ea AB—EY N —iE°AFI(Te),%,  (2.26b)
Z(D) = dB +2E* N§s — 2E N§, . (2.26¢)
A(M)® = 40 1 Q8¢ A Qb — AB0 NG — 4B AFH(SP), (2.26d)
R(J) = dd — F A D)y 4 6B AT (2.26¢)
A(K)* = 3%+ 3 A — 3 AB —iF% A 5,17, (2.26f)
A(S)¥ = dFY + 257 A Q0 — %ga AB— 39 Ad; BT NG (2.268)

2.3 Conformal supergravity

In the conformal superspace approach to supergravity in four [38, 39] and three [40] dimen-
sions, the entire covariant derivative algebra may be expressed in terms of a single primary
superfield: the super Weyl tensor for D = 4 and the super Cotton tensor for D = 3. We
will seek a similar solution in D = 5 in terms of a single primary superfield, the super Weyl
tensor W5 = W, [26].

In the three- and four-dimensional cases the second ingredient to describe conformal
supergravity was to realize that the right constraints for the covariant derivative were such
that their algebra obeyed the same constraints as super Yang-Mills theory. Guided by



the structure of 5D A = 1 super Yang-Mills theory [2, 7, 51], we impose the constraint
{Vg, V/jé)} = 0, which is equivalent to the spinor derivative anti-commutation relation

{VL, VJBL} = —2ie(I) 15V — 2ice ;W (2.27a)

where 7 is some operator taking values in the superconformal algebra. The Bianchi
identities give the other commutators

Va, V3] = (Ta)5" V2, 71, (2.27b)

Vo Vi] = 7, = i(zd,;)&ﬁ{v Vo 71} (2.27¢)

and the additional constraint

i i 1 i o
(Ve V5. 71} = Jeap V0 V9, 77} (2.28)

In analogy to conformal superspace in four dimensions [38, 39], we constrain the form
of the operator # to be

W = WM, + W(S)¥Sa; + W(K)K;, (2.29)

where W is a symmetric dimension-1 primary superfield. One can show that the Bianchi
identity (2 28) is identically satisfied for

iy 1 . A 1 N N
_ ap = i afyg.. = a N b
W =W M, 10(VBW )Sai 4(V W) K7, (2.30)
provided W satisfies

k 5k
VEW,5= VW + 2 67( VW5 (2.31)

It is convenient to introduce higher dimension descendant superfields constructed from
spinor derivatives of W : At dimension-3/2, we introduce

9
kE._ vk i Aobity.
apy V(&W X = 5V W,Béw (2.32a)

By)° o
and at dimension-2, we choose

X .=l xd) — _lvﬁ(ivz)WA A

vk T
Y :=iVi* Xy, (2.32¢)

One can check that only these superfields and their vector derivatives appear upon taking
successive spinor derivatives of W, 4 Specific relations we will need later are given below:

k k

vgxé - ngij + geiﬂ' (5dBY—|—45dbéde( )as VWi — AT VoW, ), (2:33D)

(2.33a)



i j L 31 _ahede
VEW s = —5J<WA 5+ 31V Wags) — 7%, 5(01)55) Ve Wde>

B56 9 apy B A0) T g
—g&d(ﬁXﬁ@)ij : (2.33¢)
ViWasss = —4iV46 Wi — 12164 (V5 Wi + WXl — 2057 Wy, 1), (2.334)
ViX s = &0 (205 Wy 4+ 21V W, D) — iV, 3 XE) — e, 5750 X))
6 5 X5 — 120 W 9 (2.33¢)
VLY =8V41XL. (2.33f)
These descendant superfields transform under S-supersymmetry as
SaiWpss! = 6675 5Wes) S@iXé =461 W5,
SaiWiyss = 24645Wss50i SaiY = 8iXai,
SaiX g " = —4870 W, 5.0 + 45§jsd(BX§§ . (2.34)

In terms of these superfields, we can now construct the algebra of covariant derivatives

for 5D conformal supergravity:
{Vid, VJB} = —Zieij(l“é)&gvé — 216Z‘j€dBWR/8M§S — %gjedéXﬁ/kSa,k
545 (VW K,
A . o1 S .
N = (TA) A7 WO L ZxI CINh L 2 xR g
[VG,VB] = (Fa)ﬁ (Wwv + 2X@D+VV%/3 M°P + 2X7Jk
1, 35 i
—jV@X,ﬁ)S};
¢ 0 1 @
[Va, Vil = =T,;Ve — T3 VE - 5%( )ab dM = Z(J) 3" Jij
—(S) " sk — B (K) ;Ko

where
é L zde
Tab = 5% Wi
) - i aBA i Aa
Tobh = _ivzWai) - _§(Ea1})afw i~ i(EAA)mXﬁM
ed i ap (yred\3d ok ) ¢ sd
A 3" = =7 (Z5p) /3(2 )V A W5+ OV'Y VAW, 500,00
i & & 1 & od éd 1
B _Z(Zab) S W, s + Y 0l = Wag W™ + S VarWy e
1 1
_edexy f edef B vi2 f[c d]
+46 4 W Jr46 [GV]W QV w abef’
3i Y 3i 4 ]
RN = = (S) X 51 = 2 (5, PV,

,10,

&y 6 b L oiwe b
+ 1 (0)5° (VPW3,)S] = £ (V3V WéB)Kb) :

~ Z(D),

A/B/A/é dA]
a'b'e| 615

(2.35a)

(2.35Db)

ablD

(2.35¢)

(2.36a)

(2.36b)

b]
(2.36¢)

(2.36d)



i Y
AD)y, = _Z(Eaé)aﬂvdXﬁk = T gCabe
A
16
L 4 56 5 k 5 k 5k k
= () <2vd WigsE + 6V W55 + 256V 5 XE + 3V 5 X

. 1 .
) k k k
— 12 W05 + W g Xy ) = TWipX7F, (2.36f)

dévéwdé , (2.36¢e)

R(S) " = — 2= (Tap) ™ (VA 3, X7 4 20(1) 3 VAVEW, — 4iw, ;X 7F)

R(K) ;= 116(2&5)@5 (Va5 VW% — iW, ;v ;W)
= %6(2@8)&5 <Vdvé€dv/3)
— (TP WIVE W + (D)aPWVEY 5 W

+28W, VW —i(58) s W AVIW,, + 3i(5%)  ,WeIV I W5,

de | 1 _cefoh
kW +§E fa (Eéf)dBYWgﬁ

< rsef gé eVyo yk &y, 6 vk
- 61(2 f)dBWg v[éng] - 3(P )'y X‘deﬁASk’ - 3(F )d X7 WB’ySk
&\8p Yk ey pris. A0k . dé
- 2(F ) pWS(&’Y WB)ﬁﬁyk - Q(F )deB'Y W’yg,ﬁk — 41W&BVCZW > . (2.36g)

Despite possessing a larger structure group, the covariant derivative algebra is more com-
pact than that of SU(2) superspace [26]. This provides a significant advantage in performing
superspace calculations.

2.4 Full superspace actions

Given the geometry we have described, it is immediately apparent that one may construct
an action principle involving a full superspace integral

S[z]z/d”zEﬁ, Bz = Pz d®0,  E:=Ber(Ey"), (2.37)

where L is a primary superspace Lagrangian of dimension +1.
For later applications, it will be important to know the rule for integrating by parts in
full superspace. It is given by

/d5|8zE (—1)Fav VA = /d58,zE { — (1) (3A’3K,;VA + SABkSBkVA>
+ i%kékvd(ra)gﬁ} ; (2.38)

where VA transforms as a Lorentz and SU(2) tensor with DV% =0 and DV2 = %VZO‘
In the special case where V4 corresponds to an S-invariant vector field V = VAE ; =
VAE AM 0y which requires

SV = —i8;V%(Ta)3*, SéVé =0, (2.39)
we have the simple integration rule
/d5|8zE (~1)7av,vi =o0. (2.40)

— 11 —



2.5 Gravitational composite O(2) multiplet

As an application of the formalism introduced, we will construct a composite superfield
that may be used to generate a supersymmetric completion of an R? term. This composite
superfield is constructed in terms of the super Weyl tensor as follows:

3T A 31 3
T+ SWX Y — T XYX = B (2.41)

H\ii{]eyl = _iwdﬁﬁiWA 4

2 B4

where we have used the definitions (2.32). This superfield is real in the sense that Hgfeyl =

SikeﬂH\%eyl’ One can check that H\%eyl is primary and obeys the constraint
(i ppik)  _
Ve Hiyey = 0. (2.42)

It corresponds exactly to the composite multiplet L/[W?] constructed by Hanaki, Ohashi,
and Tachikawa [29)].

This is an example of a covariant real O(2) multiplet, which will be introduced in
section 5. The structure of (2.41) is completely analogous to that of the composite O(2)
multiplet associated with the Yang-Mills multiplet given in [2], see the next subsection. The
supersymmetric R2-invariant of [29] may be constructed straightforwardly in superspace
using (2.41) and the BF action.

2.6 Turning on the Yang-Mills multiplet

Let us conclude this subsection by presenting a Yang-Mills multiplet in conformal super-
space. To describe such a non-abelian vector multiplet, the covariant derivative V = E4V i
has to be replaced with a gauge covariant one,

V=EV;, V;=V;-iV;. (2.43)

Here the gauge connection one-form V = EAV 4 takes its values in the Lie algebra of
the Yang-Mills gauge group, Gyy, with its (Hermitian) generators commuting with all the
generators of the superconformal algebra. The gauge covariant derivative algebra is

1

[V Vit = =735 Ve — 52M) 45 My — H(]) 35" T — #(D) 45D

~R(S) a5 " Sk — R(K) 35°K: — iF 45, (2.44)

where the torsion and curvatures are those of conformal superspace but with F ;5 corre-
sponding to the gauge covariant field strength two-form F = %EB AN EAF ip- The field
strength F ;5 satisfies the Bianchi identity

D
VF =0 <+— V[AFBC’}+‘7[AB F\f)\é} =0. (2.45)

The Yang-Mills gauge transformation acts on the gauge covariant derivatives V ; and a
matter superfield U (transforming in some representation of the gauge group) as

Vi — eiTVAe_iT, U - U =¢TU, =, (2.46)

— 12 —



where the Hermitian gauge parameter 7(z) takes its values in the Lie algebra of Gyy. This
implies that the gauge one-form and the field strength transform as follows:

V = ¢TVe T 4ieTde T, F — TFe™'T, (2.47)

As in the flat case [7] (see also [2, 51]), some components of the field strength have to
be constrained in order to describe an irreducible multiplet. In conformal superspace the
right constraint is
ap
which fixes the remaining components of the field strengths to be

Fg% = 2ieVe W, (2.484)

F&é = —(Ta); ' VIW, (2.48b)
i
1% Bk
where the superfield W is Hermitian, W = W, and obeys the Bianchi identity

F.. = —

ab i) (V(aV p— AW )W, (2.48c¢)

vl VJ)W i aﬁV”/(ZV])W (2.49)

Moreover, W is a conformal primary of dimension 1, S{W =0 and DW = W.
Now let T be the Hermitian generators of the gauge group Gyy. The gauge connection
V ; and the field strengths F' ;5 and W can be decomposed as V ; = VAITI, F;, =
F; BI Ty and W = WI!T;. For asingle abelian vector multiplet, we will use Vi, Fipand W.
It is helpful to introduce the following descendant superfields constructed from spinor
derivatives of W:
1

Ny = —iVEW, XY= SVOOVIW = o vsin]), (2.50)

The above superfields together with
F.;= V(avﬂ)kW WisW = V(a)‘B)k - Wiz W (2.51)

satisfy the following useful identities:
VX, = —269(F o+ W, W) —,5X7 — 7V W, (2.52a)

VaF s = —1Va@hs) ~ s
3

Vi X7k = 21’0 <Vﬁ>\’f> + WA — Ly
& g T Ve 2

V) AL W L — W5 W — e,

R XLW ., (252b)

a(8
W —iW, ,\f;)]) . (2.52¢)

(03
The S-supersymmetry generator acts on these descendants as

SgA% = —2le, 4¢

sE W, SiFs = AL SEXIR = —2eUNY (2.53)

a(ﬁ o

Now consider a primary composite superfield H QM that is quadratic in the generators
of the gauge group and is defined by

Hi\ = (VW) VIW + - {W veliviw

= {W, X} —ixd0xD) (2.54)

,13,



Its important property is

viEH —o. (2.55)
In the rigid superspace limit, H %?M reduces to the compqsite superfield introduced in [2].
Associated with I({ Yy is the gauge singlet Hyy, := tr HY,,, which is a primary superfield

constrained by V Hi{@[ = 0. This is an example of a covariant O(2) multiplet defined in

section 5.

3 From conformal to SU(2) superspace

The superspace structure we have presented in the previous section involves, as in four
and three dimensions [38-40], the gauging of the entire superconformal algebra in order
to describe conformal supergravity. Traditionally, however, conformal supergravity has
been described in superspace in a different manner: local component scale and special
conformal transformations were encoded in super Weyl transformations. This was exactly
the approach taken previously in [26] where 5D conformal supergravity was described by
gauging SO(4,1) x SU(2), corresponding to the Lorentz and R-symmetry groups, with
additional super Weyl transformations realized non-linearly. As in the introduction, we
refer to the latter formulation of conformal supergravity as SU(2) superspace.

The relation between these two approaches mirrors the simpler non-supersymmetric
situation. Conformal gravity may be described as the gauge theory of the conformal al-
gebra, with a vielbein, Lorentz, dilatation, and special conformal connection. Certain
constraints are usually imposed so that the only independent fields are the vielbein and
dilatation connection. A special conformal transformation can be made to eliminate the
dilatation connection; upon making such a choice, one keeps the vielbein and Lorentz con-
nections in the covariant derivative, while discarding the special conformal connection —
this is often called “degauging” the special conformal symmetry. The dilatation symmetry
survives as the usual Weyl symmetry of the vielbein, and one recovers a formulation of
conformal gravity with a vielbein alone.

As alluded to in the introduction, it is possible to “degauge” conformal superspace to
recover SU(2) superspace in a similar way. This is the goal of this section. The procedure
follows exactly the path laid out in the four and three dimensional cases [38-40]. In
particular, we will show explicitly how to recover the connections and curvatures of SU(2)
superspace and derive the form of the super Weyl transformations. The material in this
section provides the necessary ingredients to relate results in conformal superspace to those
of SU(2) superspace.

3.1 Degauging to SU(2) superspace

Let us recall that SU(2) superspace is described by a superspace vielbein, Lorentz con-
nection, and SU(2)r connection. Conformal superspace possesses in addition dilatation
and special conformal connections; these must be dealt with in a particular way. The first
step is to eliminate the dilatation connection. Because the one-form B = E®B; + EZO‘B&

transforms as

O (A)B = —2E%\; — 2ESAL (3.1)

— 14 —



under special conformal transformations, it is straightforward to impose the gauge choice
B; =0, (3.2)

eliminating the dilatation connection entirely. The special conformal connection SA re-
mains, but its corresponding gauge symmetry has been fixed, so we will extract it from the
covariant derivative. The resulting degauged covariant derivatives are given by

A 1 ' ..
Di=V;+35;"Ky=E;— 5914’301\456 —® 7T, (3.3)

and possess an SO(4, 1) x SU(2) structure group. They satisfy (anti-)commutation relations
of the form®

1 ~ .5 ~

Because the vielbein, Lorentz, and SU(2) connections are exactly those of conformal su-

D4 P} =~735"Des —

perspace, it is easy to give expressions for the new torsion and curvature tensors in terms
of the conformal ones using (2.26). For example, one finds for the torsion tensor,
Fh=7% T¥=T0+iE NF (10" (3.5)

The special conformal connections § AB provide new contributions to the superfield torsion
and similarly to the other curvatures.

It turns out there is actually a subtlety in this degauging procedure. A careful ex-
amination of (3.5) shows that one recovers almost all the same constraints on the torsion
tensor as in SU(2) superspace, except that

Tas 0 70, Tyt 0. (3.6)

In SU(2) superspace, both of these combinations are required to vanish. The solution to
this is that there is some freedom to redefine the vector components of the Lorentz and
SU(2) connections when we degauge, corresponding to a redefinition of the vector covariant
derivative of SU(2) superspace. This in turn modifies the torsion and curvature tensors. A
particular choice sets to zero the combinations (3.6) and exactly reproduces the torsion and
curvature tensors of SU(2) superspace. To elaborate further, we must analyze explicitly
the additional superfields introduced by the special conformal connections § AB.

3.2 The degauged special conformal connection

In the gauge (3.2) the dilatation curvature is given by’
AD) 15 =23 15(—1)°8 — 2§ 5 4(—1)atea%s (3.7)

The vanishing of the dilatation curvature at dimension-1 constrains the special conformal

connection as8 . .
_ _ Y gii Yo g i
= 2%58 4Cd6 +ievY,

(3.8)

iJ i .
a3 = “Vpa 8

SWe distinguish the degauged versions of the torsion and curvatures with a tilde.
7 . . é ] 57
We have lowered the index on the K-connection as § 4; = 1;,5 4 and SA]B = EBQVSAW.

8The reason for introducing these superfields via these coefficients will be clear later.
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where the superfields S¥, C, Bij , Y, ) satisfy the symmetry properties
S = 87" Caé” = (I’a)dBC@” = C’déﬂ, Yo = YB&' (3.9)

From here it is possible to derive the degauged covariant derivative algebra by computing
[D;,Dg}. An efficient way to do this is to consider a primary superfield ® transforming as
a tensor in some representation of the remainder of the superconformal algebra (compare
with [39]). For example, to determine the anti-commutator of spinor derivatives we consider

(D%, D’ e = {V, Vé}@ + 50K,V e+ sﬂ K, V5. (3.10)
Making use of the form of § and of the superconformal algebra we find
{D:, Dé} - 215”7)’ + Bie, 5e 7 SM Ty — 16V C gM Ty — 120Y 5T

—ie 56 (WO 4 YO M, + -ee(Ty) 2 (2%, — Wi,

4 bé

—gs@béde( ab)apCe My, + 4157 M5 (3.11)

)Méé

where we have defined the vector covariant derivative

1

Lk bé 3 rdé
D(/i =D + ZC& Jp — 3 N M. (3.12)
The remaining algebra of covariant derivatives can be similarly computed directly from
degauging. It can be seen that the algebra of D;i = (D}, D) exactly matches the one of
SU(2) superspace [26] once we identify the dimension-1 torsion components X ; and N,;
used in [26] as

X.; = WAIAJ +Y.;

ab =~ "a abr Nap =2V — W (3.13)

The superfields S¥ and C;%, which we introduced in (3.8), are equivalent to the ones used
n [26]. In particular, it turns out that the covariant derivative algebra for Djfx does not
possess the torsion components (3.6).

The curvature superfields can be shown to satisfy the dimension-3/2 identities:

DEW,5 = Wy + (S55)5°XE, (3.14a)
DiY; = Q(F[a)jyg]gk + (S0, (3.14b)
DEC, = —%( 5551k — §<c 6_Lop {cg)ej)’f, (3.14c)
DESH — _ZC ik 4 (X(i + gy’+ 12c$> Dk (3.14d)
where
T W50 =0, T937V,57 =0, TafC, =0, ca*=c, . (3.15)

Note that the dimension-3/2 torsion is

i 2 i 2
Tk = D’;W 2@’;Yab g(r[)écb]5+ (Z45)5°C - (3.16)
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To degauge results in conformal superspace it is useful to also have the remaining
special conformal connection components §,”7 and S, They are constrained by the
dilatation curvature as follows:?

1 Y . A
—5(Fa)[§7D W = —2%% - 23335“ (3.17a)

— 5k DW= 4T (3.17b)

The explicit expressions for &L]ﬁ and §,; may be found by analyzing the special con-

formal curvatures

Z(S) 15" = 2D 135" + Tis 8™ +10475 55 (Te)5 (—1)°8

o iSBSk‘SAé(Fé)S’S/(_1)6B€A+€A : (318&)
A(K) 15" = 2D 85y + Tap"8p" + 18 10557 (0%)45(—1)%
- i%z&gk(Fé)@g(—l)%af‘*aﬁ , (3.18b)

which appear in the algebra of the conformal covariant derivatives V ;. The component
special conformal connections are given by:

1 N
1*8(2@5)37

1 b J 1 07 6]
— 55 DI+ 2P Ca¥* + 55 (Ta) " DIW, 5

1. 1 1 1 L
=5 — 3Ca — 15 La)s ;¢ — g(La)s" V5, (3.19a)

. . 1 . 1 .
§a = —Sas + 75(Ta)s DW= = —8a), + 1 (Ta)5" X7, (3.19D)

. 1 .
Dﬁykcb‘jk - . (Zde) ’yID]’Ayybc

P . i
ap — _7(F&)B%D’A7k5] - 24 abede

5710
(DY, DI]S;; +

& pho g _ 3 Brpi pilc.
28877‘1" 576 1ai[DF D51Css 128( @ P D3l Gy

1[P48 D5 ]Yaﬁ—ﬁ(zcv)aﬁ[p’f DY + 570 [Dd,DBk]WafB

Sap =
96 lab 240 Nab
1
—*nabS’“SkHr C’ Oy — 2=n,C ™ Car
1 1
+5YaY;

The above results provide us with the ingredients needed to degauge conformal super-

YCdY DWW (3.19¢)

e 8 ed 8 Eabede

space to SU(2) superspace. For example, one finds the commutator

. 1 1 S ST
[IDZMD%] = _5 |:(Y&I; + WdB)( ) 75 +7 4 abcde( Yde B Wde)(EbC)BV(Si

—(Ta)7 5%, — (Eag)gﬁci’jk] DY

1 svredk | sl Lad - d) j j j
+2[(r@)fgw kgl <3c § -2y J+2(P )57 (€2 + 201 + 2x7)

9Here we raise and lower the indices on the special conformal connection using £/, & ap and 7,5 in the

usual way.
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. 1 5.7 L .
+ (2 )5 (234” = J> + 22 (3,5)50 (L +200) | M,

8
ki Lo (b)) se bt _ AL py 50tk

[3% el — 2Caye! +8( a)p' G’ = 51 (Ta)y"Cy e
3 .
=3 o+ 2x e m] T (3.20)

which agrees with [26] up to field redefinitions. One can also derive the [D}, D;}] commuta-
tor, which we will not need for this paper.

3.3 The conformal origin of the super Weyl transformations

We have just shown that SU(2) superspace is a degauged version of conformal superspace,
in which the dilatation connection is gauged away. Although the dilatations and special
conformal transformations are not manifestly realized, the dilatation symmetry has not
been fixed. The symmetry remains as additional nonlinear transformations, known as
super Weyl transformations. Their presence in SU(2) superspace ensures that it describes
conformal supergravity. Below we show how to recover the super Weyl transformations
from the degauging of conformal superspace.

Suppose we have gauge fixed the dilatation connection to vanish by using the special
conformal symmetry. If we now perform a dilatation with parameter o, we must accompany
it with an additional K ; transformation with o-dependent parameters AA(O') to maintain
the gauge B ; = 0, which requires

(6x(A(0)) + dp(0)) B4 =0. (3.21)
Using the transformation rule (2.21), we find

A (o) = %D%, A% () = —%Dé‘ia. (3.22)
Note that all primary superfields ® transform homogeneously
Ik (A(0))® + dp(0)® = dp(0)® = wod, (3.23)
where w is the dimension of @, D® = w®. For example, the super Weyl tensor transforms as

0 Wap=0W,5. (3.24)

The super Weyl transformations of the degauged covariant derivatives D; and the
special conformal connection can be read from

0oV 3 = 0,D 4 — 0, 15Ky = 01 (A(0)V 4 + 0p(0)V 5 . (3.25)
implying that the super Weyl transformations of D ; are
. 1 . .. .
6, D = 701)% +2(DV0) My — 3(Daro) J*, (3.26a)

5,Dy = oDy + (r )¥(DEo)D;, — (DPo) M,

ab’

(3.26b)
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while the super Weyl transformation of, for example, Sgﬁj is
0,555 = oFLP — 5@3@% + %EUDdﬁa = o — e DY) (3.27)

Equation (3.27) implies

5,81 = oS + iD@(iDQJ, (3.282)

6O_Cdij — O—Cdij + % (]_"d)’ygDEyZD(J;)O.’ (328b)
i s

05 Yy = 0¥z = (Zap) DDy (3.28¢)

4 The Weyl multiplet

The 5D Weyl multiplet, constructed independently by two groups [19, 20] and [21, 22],
consists of the following matter content: four fundamental one-forms — the vielbein e,;,?,
the gravitini ¢;,%, an SU(2) gauge field VY, and a dilatation gauge field by,; and three
covariant auxiliary fields — a real antisymmetric tensor w,;, a fermion Xg, and a real
auxiliary scalar D. In addition, there are three composite one-forms — the spin connection
wi, @ the S-supersymmetry connection gbmg, and the special conformal connection f;% —
which are algebraically determined in terms of the other fields by imposing constraints on
some of the curvature tensors.

In a standard component analysis, one begins by interpreting the seven one-forms ap-
pearing above as connections for the 5D superconformal algebra F2(4). Associated with
each connection is a two-form field strength, constructed in the usual manner from the
superalgebra F2(4). One wishes to algebraically constrain the spin, S-supersymmetry,
and special conformal connections in terms of the other quantities: this can be accom-

plished by constraining respectively the vielbein curvature R(P);;%, the gravitino curva-
ture R(Q)mak, and the conformal Lorentz curvature R(M )fnﬁdi). However, the remaining
one-forms cannot furnish an off-shell representation of a conformal supersymmetry algebra
as the bosonic and fermionic degrees of freedom do not match, so one is led to introduce
the additional covariant fields w,; (denoted T; in [21, 22] and v,; in [19, 20]), x4', and
D. At this stage, one must determine how the presence of the auxiliary fields deforms the
supersymmetry algebra, the curvatures, and the constraints imposed on the curvatures in
a self-consistent way. In general, there is no unique solution, and indeed, the two original
groups, as well as the recent work [52], each use different definitions for supersymmetry
and for the curvatures.

In contrast, the technical advantage of a superspace approach is that once the super-
geometry is completely specified and the Bianchi identities solved, one must only specify
definitions for the component fields — their supersymmetry transformations and the cor-
responding curvatures are then completely determined. Our goal in this section is to

demonstrate precisely how this occurs for the 5D Weyl multiplet.
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4.1 Component fields and curvatures from superspace

We begin by identifying the various component fields of the Weyl multiplet. Let us start
with the vielbein and gravitino. These appear as the coefficients of dz" of the superviel-
bein EA = (B4 EY) = dM EMA. It is convenient to introduce the so-called double bar
projection [53, 54], denoted by EA||, that restricts to 8 = df = 0, corresponding to the
bosonic part T*M?® of the cotangent bundle T* M5/® where M? is the bosonic body of the
curved superspace MP!®. Then we can define!”

e’ =daen" == EY,  h =da™y) = 2E}

all -

(4.1)

This is equivalent to defining e;% = Ey;,%| and 1/’m£ = 2Em’a

where the single vertical bar
denotes the usual component projection to 8 = 0, i.e. V(2)| := V(z)|gp=o for any superfield
V(2). In like fashion the remaining fundamental and composite one-forms are found by
taking the projections of the corresponding superforms,

Vi =Y, b:=B|, w®:=0%, ¢ =2F] *:=3. (4.2)

The additional auxiliary fields are contained within the curvature superfield W, 4

3
128

) Xé = 372X2y

I, D= Yl. (4.3)

The normalizations we have chosen for % and D coincide with the normalizations of [21, 22]

and [52]. The other independent components of the curvature superfield are given by W&Bdi
and by X ;" |, and will turn out to be given by some of the component curvatures.

It should be mentioned that one can impose a Wess-Zumino gauge to fix the 6 expan-
sions of the super one-forms, so that they are completely determined by the above fields.
This ensures that the entire physical content of the superspace geometry is accounted for.
In practice, it is usually unnecessary to do this explicitly.

Now we may determine the so-called supercovariant curvatures. In terms of the connec-
tion one-forms, the covariant derivative V;| is defined by taking the double bar projection
of equation (2.6), leading to

- 1 L 1 2 - 1 N .
e Val = O — 5vmi Val = §wmabMd1; = baD = ViU Jij — S 6m™ Sai — FaKa,  (44)

such that for

where we have defined the lowest component of the superspace operator Vfi
an arbitrary tensor superfield U

(ValU)l = (V&U)| - (4.5)

We interpret V| as the generator of supersymmetry. In what follows we will drop the bar

projection from V;| when it is clear from context to which we are referring.

OWe define the gravitino with a lowered spinor index and a raised SU(2) index. We follow similar
conventions when defining other component fields.
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It will be convenient to also introduce the spin, dilatation, and SU(2) covariant deriva-

tive
1 4 iy
'Dm = (9m — §meCMI;é — me — Vm” Jij 5 (4.6&)
N N 1 5. ..
Dd = e&mDm = eamam - §W@bcMéé - b@D - V&” Jij s (4.6b)
where ) )
Wabé = €@meb6, b@ = €ambm s Vaij = edimij . (47)

The supercovariant curvature tensors are given by

& a7t 1 ed ij
[Va, Vil = =R(P)3°Ve = R(Q)g4¢ Val = 5 RIM) 3™ Myg — R(J) 33

— R(D);D — R(S).; "S5k — R(K),;°K: (4.8)

and are found by taking the component projections of the curvature tensors in (2.35¢). We
have introduced the expressions

i =7 B@Qa = Tial, (4.9)

a

for the lowest components of the superspace torsion tensors to match the usual component
nomenclature.

At this stage there are two distinct expressions we can give for each of the curvature

é

tensors. Let us demonstrate with R(P).;°. We can write two equivalent expressions for

the double-bar projection of the torsion two-form 7°¢,
T = §dx" AN da™ Tl = da" A da™ Dpgeq (4.10)

and

. 1 A A N
rgc” — 5(_1)€AEBEA /\EBgABcH

o wm a b o, Baoieg L. a4 B oije
= 5dz" Adz <6m en” Tl + e bay Taptl — Jvmi ¥ag Jap’]
1. . . L . 1 P
= idxn Adz™ <€ma6ﬁb R(P)&BC + ;wmjrclbfﬂ) . (4.11)

Equating the two expressions provides a definition for the supercovariant curvature

R(P)dl;é. Proceeding in this way for the other curvature two-forms, we find the follow-

ing definitions:

R(P),;¢ = 2ei"e;" Dy eq)” — iwajfé%j (4.12a)

1 o ,
R(Q)gp6 = ea™ ¢ Dnthana + 1(Tjady ) + 5 weg (C“Tiattya (4.12b)
R(M) " = R(w)y;™ + 8 [Cfb]d]—w zc%b] — 2i(1e, Ty R(Q)™)

BB oy )+ g, (4.120)
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R(J)y37 = R(OV) 3 =3 (7)) — 161 (4 Tyx?) | (4.12d)
L . 161
R(D) s = 2ea" € Oba) + 4§55 + (Vpaidy’) + ?(¢[akrg]xk) , (4.12¢)

where we have introduced

%5 = 6am¢m§, ¢a? r= €am¢m§}, fa’ = e’ (4.13)
and the curvatures
R(w)dééd = 2€ameéﬁ(a[mWﬁ]éd - 2w[mééwméd) , (4.14)
ij . i K (iy57)
R(V) 1= 2ea™e;™ (0 Vi + Vi Vilk ) (4.15)

The supercovariant forms of R(S),;% and R(K), ;¢ are a good deal more complicated, so

we do not give them here.

4.2 Analysis of the curvature constraints

We have not yet employed the constraints imposed by superspace on the curvatures. They

are
e . L ade
R(P)sp° =~z = — 555" Wge » (4.16a)
a i 32 %
(R(Q)z)a = —5 (Tixa (4.16b)
" 2 A
R(M) ;" = —%5017 w, dw — v PR (4.16¢)

and respectively determine the spin connection, the S-supersymmetry connection, and the

K-connection. In contrast to previous conventions employed in the literature, these are ac-

tually S-invariant constraints. The reason for this is that the superspace operators Vfi and

V,; have the same algebra with Ss; as one finds in the superconformal algebra F2(4). The

price one pays for this simplicity is that the composite connections will turn out to depend

rather more significantly on the auxiliary fields w_;, x% and D than one might have wished.
The first constraint (4.16a) determines the spin connection to be

i 1 i
Wabe = w(€)ape + Z(%kfé%k +valsa" — vy Late™) + 2bmaa fdgédewgé , (417)

where w(e) 5, = —5(Cy5,+Cosi—Cizg) is the usual spin connection of general relativity, given

abe
in terms of the anholonomy coefficient Cppi® 1= 20365 Note that the spin connection

w,;» Possesses torsion: in addition to the usual contribution from the gravitino bilinears,
there is additional bosonic torsion from the auxiliary field w;.

From the second constraint (4.16b), we find the S-supersymmetry connection

i 8 i, 1 b oG 1 pG i ab i
iom' =T’ + 3 (F[P(Sgl + 4szpq> (' +w ;ST 50041 (4.18)
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where we have suppressed spinor indices for legibility and introduced the gravitino field
strength U,,5% = QD[deﬁ}id. Reinserting this back into the original expression for R(Q),
we find that

16

R(Q),;' = H i (Vo' — w0 — i) = T8 (4.19)
where the spinor projection operator
ed . gle d] ep. d ed Gy ed _ 2 _
;" = 656 3% blrl—gz O T =0, I =11, (4.20)

projects onto the I'-traceless part of a spinor-valued two-form. It is convenient to introduce
a separate symbol R(Q),;% for the first term of (4.19),

R(Q)y' = ;H Cd(‘I’ = weloe’ — abw"), (4.21)

corresponding to its I-traceless part. Using (2.36b), we find that one of the remaining
components of the superspace curvature is determined,

Q| _ i yhab > i i bi - 5 i

W@B’AY | = 1(2 )&B R<Q)dl§’y = I\Ij(fyﬁd) + 1ww5¢&)5 — 1w3(&1/1 ’AYB) . (4.22)
From the third constraint (4.16¢), one can show that
; 1 - 1. 3 1.3
N :—*6(1 —wae be 5b cd W — = C~aab—* &b 75b
fo” 3% 6ww+48“ éd 6vw g (W) + gglaRlw)
—4%QR@W%+fwwv%y> Maw@v%d>
b i\, éd

2(¢aﬂpc ) %5a(¢aj¢gj)w ) (4'23)

where Rdi’(w) Rae (w) and R(w) = Rz%(w). In principle, one can reinsert this ex-
pression into R(M).; Cd. The result is quite complicated; we remark only that it can be
written

4

- de _ ,ve~ R

R(M)y;* = C(w)y;™ = B

a

+ 5[a[05b] d| <6 fwéf - 3D> + (explicit gravitino terms), (4.24)
where C(w)&ga‘i = R(w)&i)é‘j - %5[@[6R(w)g]‘ﬂ + éé[@[é%‘ﬂR(w) is the traceless part of the
tensor R(w)&if‘i. This is not quite the usual Weyl tensor because of the presence of bosonic
torsion in the spin connection. The superspace expression for Z(M ). bé‘i in principle deter-
mines W, a4 ;|; however, we will find a more useful form of this expression using a different
method shortly.

For the remaining dimension-2 curvatures, we find

) 3
R(J)y" = =5 X5 (4.25)

The first equation is automatically satisfied upon substituting into R(ID) the expression for

R(D).; = -V

ab éab

f»2. The second equation serves as a definition for the remaining undetermined component
Xdl;ij | of the Weyl superfield.
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4.3 Supersymmetry transformations of the fundamental fields

Here we present the complete ), S, and K transformations for the fundamental fields of
the Weyl multiplet. The transformations of the one-forms follow from eq. (2.21), while
those of the covariant fields can be read off from (2.33):

Jen” = 1T ), (4.26a)
Sty = 2Dl + w, (ST 5,6 + 2T )a (4.26b)
Vi = 360057 + 1616 Tan?) — 30| (4.26¢)

16i i
Sby, = —Eptpm” — ? &l X" — mebn” — 2 e Arca, (4.26d)
Swyy = 2&ER(Q) 5" (4.26¢)
i Ly i béa giy axbé ¢iy
0 = 566D + 1o (Vawy) (3T s + (17276
_i i dl;jA_E (yab, iy
16R(J)ab ](E 5 )a 16w&b(2 n )a ) (4-26f)
0D = 2i (§Yx) +2 () - (4.26g)

One can also derive the transformations of the composite one-forms from (2.21). For
example, the transformations for the spin connection and the S-supersymmetry connection
are

wn™ = =1 & w™ + 24T R(Q)™ + fﬁjrmzabxj + 26 5% ¢
— 2 X0y T+ deg AL (4.27)
. s : 16 o .
dbmg = —2ifmn" (Tal')a — g(fﬂbm])xé - g(rmﬁz)a D
1 béa axbe Gei 1 ij (yab ,
— g(vawgé)(z I'“T'y, + 3I% Fm)@ 5,8 + gR(‘])dé (E mej)d
+ 2Dl + iM% (T a (4.28)

where A?( parametrizes the special conformal transformations. We do not give here the
transformation rule for §;,% as it is quite complicated.

4.4 A new choice for component constraints

As already alluded to, the component constraints (4.16) we have found from superspace
are quite interesting from a technical standpoint: they are S-invariant. This is reflected
in the fact that the S-supersymmetry transformations of the various one-forms are ex-
actly those derived from the algebra F?(4). However, this comes with a price: we must
introduce bosonic torsion involving the field w,; into the spin connection. Similarly, the
S-supersymmetry and special conformal connections (4.18) and (4.23) include additional
contributions from the auxiliary fields. The last case is particularly inconvenient — it
reflects the fact that R(M),;.; is not just a minimally covariantized version of the Weyl
tensor, but depends additionally on the auxiliary fields D, x4°, and w,;- From a compo-
nent point of view, it would be more convenient to extract these dependences so that the
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component fields and curvatures are as simply defined as possible. This will turn out to
lead to a formulation that more closely resembles those of [19-23].

Let us begin by introducing new definitions for the composite spin, S-supersymmetry,
and K-connections:

Wabe = Wahe + 5 Wae (4.29a)
N 8 ,
igm' =i¢p" — grmxz, (4.29b)
cbh._oby 2sbhp L bdy doen b3 ad, s 499
fa = Ta +§& +Zw&dw +Z Wea™ = cq W Wegoa - (4.29¢)
These definitions actually correspond to a redefinition of the superspace vector covariant
derivative,
S 1= be | 1ypi & 1 bé
Vao=Vs— ZWGLB&M + gX (F&)B Sai + a(y + 3W W(}é) K,
1, .~ 5 1 P
= 5 (VWaa" ) K = S W WK (4.30)

We discuss further this superspace interpretation in appendix C.
The new curvatures given by the algebra [@&, @B] are

R(P)y¢ = 2ea™e; " Dypreq)” — %%J‘Fé%j : (4.31a)
R(Q)s36 = €a™ e Dyl +1(Tjady )
1 éd B edy B i
+ gwed<3(2 Iia)a” — T )1/}3]37 (4.31b)

R(M)ai,éd = R(d))ai,éd +8 5[&[%1}](1/] -2 @b[djzéd?gg]j

161 & 1N . A édi 5 )i
+ ?5[&[ Uy DX = g (FB}R(Q) “ 4+ 2rlR(Q); " >

i jpid 1 i\ éde
+ 5%%%]10“1 — 7 WaTevy’)w “, (4.31c)
R(J) ;7 =RV = 30 {Ldy" — Sivi Ty, (4.31d)
) o . ] .
R(D)&Z) =2 edmel;na[mbﬁ] + 4f[&2)] + Qj)[&]QSB]J + g 11}[&]]‘_‘6])(] , (4318)

where we have introduced

~ ~

N 1 P .. N
D@ = €dmam — idjdbcM[}é — b@]D) — V@U Jij s Dm = emade . (4.32)

We postpone for the moment a discussion of R(S) ;% and IA%(K)&I;é.

a
The curvatures turn out to obey the constraints

R(P), =0, ([ RQ)y5 =0,  ROM) ;" =0, (4.33)

These coincide with the constraints usually imposed in the component formulations and
are not S-invariant. This is a consequence of the redefinition of the auxiliary connections,
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which deforms their S-supersymmetry transformations. Equivalently, [Sg;, @a] is no longer
given in superspace simply by i(I'4)s”V bi
The constraints are solved by

Wape = wW(€)gho + i(lﬁakfé%k + YarTyba”™ — vy Tavve™) + 20 B70ela (4.34a)
igm' = g(r[ﬁé,ﬂ + irmzﬁﬁ) (TDW@Z‘ + %wé (3T g — q@%ﬁ)) . (4.34b)
i =~ GR@)a + i R — (TP RQUY - FvaTah(@)
+ %w[&jzi)%gﬂj - *5&6(%3‘2“[%]) - g(%jfbxj)
- %wamejw”c + 57 (Ve )i
+ 155 (2(%]'%]) - (W Teypy )w )NCde) : (4.34¢)

One may confirm that these are equivalent to (4.29).

This redefinition dramatically simplifies many of the component curvatures. As we
have already seen, R(P)&gé vanishes. The curvature R(Q)di)g turns out to coincide with
the identically named quantity introduced in (4.21). Using the redefined spin connection,
one has

> 7 1 éd K] 3 é 3 i

The curvature R(D)ai) now vanishes while R(.J )43 is unchanged,

R(D),; =0,  R(J),;” = R(J),;" = —iX 5] (4.36)

a
The Lorentz curvature tensor R(M )&B&Z turns out to be simplified the most and is given,
up to terms of the form ¥Dv and ¢?w, as

R(M )agéd =C(w) di)éd + (explicit gravitino bilinears), (4.37)

where C ((i))agécZ is the Weyl tensor. Remarkably, from eq. (C.7e), one finds the rather
simple expression

R(M) % = — (8, (2908 (300,551 + B (4.38)

ab 4 05 75))

defining the remaining undetermined component W&B*ﬁ’ in terms of the new curvature
R(M )di)éd. In practice, this is the most convenient definition of W, 5. 5l-

In principle, one can construct expressions for R(S )aég and R(K )aéé explicitly in terms
of (;Aﬁmla and ]Gmd in analogy with (4.31). In practice, such expressions are not terribly useful

since these connections are composite quantities. Instead, we can follow the component
technique of analyzing the component Bianchi identities, which in our case is equivalent to
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projecting the corresponding superspace curvatures, R(S )ik = A(S (S)

aba | and R( ) =
,Q?(K)abc\ This results in

abé

iR(S)ai,i = WR(Q)&(}i + @é(r[dﬁ(Q)B}@i) + lwacizédf%(@)aéi - lwédzai,é(Q)@CZi

8 8
3 . . .
- 7@ (4.39)
- 1o - 4i .
R(K) g5 = VaR(M) 5 = SRQ),T"% + L R(Q) g Ty Q)
- %R(Q)&ngéR(Q)g‘jj- (4.40)

It is useful to note the subsidiary relations
- . 1 s N
iTPR(S) = —5 VI R(Q)z — gw" Ty R(Q)as’ + 4wbcr R(Q);"
iT'TPR(S),, =0,  R(K),;"=0. (4.41)

The @, S, and K transformations of the independent component fields are unchanged
from (4.26), up to the redefinitions occurring above. These lead to

Sem® =1(&T 7)), (4.42a)
1 A
Sty = 2Dl — Ju, (O = 3(59005)57 )€ + 21 (Ta)a (4.42b)
Vit = 36105 + 81€(mej =30, (4.42¢)
. 8i R
b = —Eed" — gkoka — et — 2en"Ag (4.42d)
o . 32 ;
(5w&5 =2i &R(Q)diy — 7{,‘2&3)( s (4.426)
5X = 564D — <L R(T) s (0o + > (Vo) (3T )5 + (o5 )
« 2 16 ab J T 128 be
3 abede i 31 ab, i
+ %wdl;wédf ( ef ) (E ) (442f)
6D = 2&V ' + iwyy (65%X) + 2n X’ (4.42g)

We emphasize that the supersymmetry transformations are equivalent to (4.26) and
only the definition of the composite connections have been altered.

We have already noted the resemblance between the constraints (4.33) and those found
in the existing literature. The supersymmetry transformations given above turn out to co-
incide very closely with those of [52], up to a field-dependent K-transformation. The
differences with the other groups are more involved. For reference, we provide a trans-
lation table in appendix D between our conventions, employing the redefined composite
connections, and those of the other groups.

5 The covariant projective multiplets in conformal superspace

Within the superspace approach to NV = 1 supergravity in five dimensions [24-26], gen-
eral supergravity-matter systems are described in terms of covariant projective multiplets.
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These are curved-superspace generalizations of the 5D superconformal projective multi-
plets [33]. In this section, the concept of covariant projective multiplets is reformulated
in conformal superspace, a general procedure to generate such multiplets is given, and a
universal locally supersymmetric action principle is presented.

5.1 Covariant projective multiplets

Let v* € C2\ {0} denote inhomogeneous coordinates for CP'. A covariant projective multi-
plet of weight n, Q(”)(z, v), is defined to be a conformal primary Lorentz-scalar superfield,!!

SEQ™ =0, (5.1)

that lives on the curved superspace M°®® is holomorphic with respect to the isospinor v*
on an open domain of C2\ {0}, and is characterized by the following properties:

e it obeys the covariant analyticity constraint

V(})Q(”) =0, V(Al) = Uivg ; (5.2)

e it is a homogeneous function of v of degree n, that is,
Q" (cv) = ¢"QM(v),  ceC\{0}; (5.3)
e the supergravity gauge transformation (2.21) acts on Q"™ as follows:
5gQM = (5(3‘ Ve + A9 + O‘D)Q(n) , (5.4a)
A# g QM) = —(A@)a(*?) - nA(O))Q(”) . (5.4b)

Here we have introduced the differential operator

1 ;0

9% = L 5.5
(v,u)u ovt’ (5:5)

and also defined the parameters
AP = A vV, AO = %AU, (v,u) == viu; . (5.6)

The expressions in (5.5) and (5.6) involve a second isospinor u’ which is subject to the
condition (v,u) # 0, but otherwise it is completely arbitrary. The isospinors v’ and u!
are defined to be inert under the action of the supergravity gauge group. For later use, in
addition to (5.5), we also introduce the operators

0® = (v,u)vi%, 00 = i@ii - ui%, (5.7)
such that
00, 8F)] = 42032 - [9?) 9(=2)] = 5O (5.8)

1 As a rule, we will not indicate the z-dependence of Q™ (z,v).
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By construction, the superfield Q™ is independent of u, i.e. 9Q™ /Ou’ = 0. It is not
difficult to check that the variation dgQ("™) defined by (5.4) is characterized by the same
property, d(6gQ™)/0u’ = 0, due to (5.3).

Since the spinor covariant derivatives satisfy

Vivii=0  —  (vP v o, (5.9)

the analyticity constraint (5.2) is clearly consistent with the algebra of covariant deriva-
tives. However, we still need to check whether the conformal primary constraint on Q™
SQQ(”) = 0, and the analyticity constraint, VS)Q(") = 0, are mutually consistent. In
complete analogy with the 4D N = 2 supergravity analysis of [55, 56], the constraints
SQQ(") =0 and VS)Q(”) = 0 lead to the integrability condition

% 1 n i iJ n % n
0= {S&,V% )}Q( ) = ’Uj(QEdBé‘ D+ GE&BJJ)Q( ) = L (2D — Sn)Q( ), (5.10)
which uniquely fixes the dimension of Q™ to be [26]
DQW — 37”@01) _ (5.11)

The above definition of the covariant projective multiplets may be generalized by
removing the constraint SéQ(") = 0.2 For instance, given a non-primary scalar ®, the
superfield ¥ := A®® is non-primary and analytic, VS)\P@) = 0, with the operator A(*)
defined by (5.21c).

The analyticity constraint (5.2) and the homogeneity condition (5.3) are consistent
with the interpretation that the isospinor v’ € C? \ {0} is defined modulo the equivalence
relation v’ ~ cv’, with ¢ € C\ {0}, hence it parametrizes CP!. Therefore, the projective
multiplets live in M?I8 x CP!, a curved five-dimensional analog of the 4D A = 2 projective
superspace R*® x CP! [35-37].13

There exists a real structure on the space of projective multiplets. Given a weight-n
projective multiplet Q™ (v?), its smile conjugate QM (v?) is defined by

QM (v") — QM (v) — QM (v — —uvi) = QM(v), (5.12)
with Q™ (7;) := Q™ (v?) the complex conjugate of Q™ (v*), and 7; the complex conjugate
of v'. One can show that Q(”) (v) is a weight-n projective multiplet. In particular, Q(")(U)
obeys the analyticity constraint VS) Q™ = 0, unlike the complex conjugate of Q™ (v).
One can also check that 5

Q" (v) = (-1)"Q"™(v). (5.13)
Therefore, if n is even, one can define real projective multiplets, which are constrained
by Q(Q") = Q2" Note that geometrically, the smile-conjugation is complex conjugation
composed with the antipodal map on the projective space CP?.

2Non-primary projective multiplets, which possess inhomogeneous super Weyl transformation laws, nat-
urally occur within the SU(2) superspace approach [26].

13The superspace R*® x CP! was introduced for the first time by Rosly [57]. The same superspace is at
the heart of the harmonic [58, 59] and projective [35-37] superspace approaches.

— 929 —



We now list some projective multiplets that can be used to describe superfield dynam-
ical variables.'* A complex O(m) multiplet, with m = 1,2, ..., is described by a weight-m
projective superfield H™ (v) of the form:

H™ (v) = H oy vy (5.14)
The analyticity constraint (5.2) is equivalent to
Vit izimin) — (5.15)

If m is even, m = 2n, we can define a real O(2n) multiplet obeying the reality condition
HEM = 1) or equivalently

Hivizn = Hi1~~i2n = &1 - 'Ei2nj2nHJ1mJ2n . (5'16)

For n > 1, the real O(2n) multiplet can be used to describe an off-shell (neutral) hyper-
multiplet.

The O(m) multiplets, H (m) (v), are well defined on the entire projective space CP!.
There also exist important projective multiplets that are defined only on an open domain
of CP!. Before introducing them, let us give a few definitions. We define the north chart
of CP! to consist of those points for which the first component of v’ = (v}, v2) is non-zero,
v # 0. The north chart may be parametrized by the complex inhomogeneous coordinate
¢ = v2/vt € C. The only point of CP! outside the north chart is characterized by vl =
(0,92) and describes an infinitely separated point. Thus we may think of the projective
space CP! as CP! = CU{co}. The south chart of CP! is defined to consist of those points
for which the second component of v* = (vl v2) is non-zero, v% # 0. The south chart is
naturally parametrized by 1/¢. The intersection of the north and south charts is C\ {0}.

An off-shell (charged) hypermultiplet can be described in terms of the so-called arctic

weight-n multiplet Y™ (v) which is defined to be holomorphic in the north chart CP?:
T () = (hr 1), i) =Y it (5.17)
k=0

Its smile-conjugate antarctic multiplet ™) (v), has the explicit form

o0
' v ' ' (D
TOE) = ()" IO = H)" T, T =Y Te (5.18)
k=0
and is holomorphic in the south chart of CP!. The arctic multiplet can be coupled to a
Yang-Mills multiplet in a complex representation of the group Gyn. The pair consisting
of T (¢) and T[n](( ) constitutes the so-called polar weight-n multiplet.
Our last example is a real tropical multiplet ¢/(2") (v) of weight 2n defined by

UM (v) = (i0'0?) U (Q) = (1) (1¢) UL (),

"1n 4D NV = 2 Poincaré supersymmetry, the modern terminology for projective multiplets was introduced
in [60].
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[ee]
Uy = 3" Ut = (DU (5.19)
k=—00
This multiplet is holomorphic in the intersection of the north and south charts of the
projective space CP!.

5.2 Analytic projection operator

In this subsection we show how to engineer covariant projective multiplets by making use
of an analytic projection operator.

Let us start with a simple observation. Due to (5.9), the spinor covariant derivatives
satisfy

(igi kol oP) _ vl i gkolg?) _ O vIOR VIO VIR vIC N
V&VBV&VSVPA —V[&VBV&VSVM =0 <= V,'V.'V; VS V' =0. (5.20)

@
2
A

Hence, if we define the operators

ij L apséolivi ! [y ij
AT = e Wvgv%v,’;vg = g5 VIV = AW, (5.21a)
Vi = vevi vy .= yeyl) (5.21b)
y 1
AW = v AT = —ﬁ(v@))?, (5.21c¢)

it clearly holds that
ViAW = AWy — 0, (5.22)

One may prove that A”* satisfies the relations
y 4 . . » 4 . .
VP AR — gapﬁv@qNW, ARG — 5sp<lAfk’>quq. (5.23)

The operator A® is called the analytic projection operator. Given any superfield U, the
superfield Q = AMWU satisfies the analyticity condition (5.2). On the other hand, in
order for @ to be a covariant projective superfield, U has to be constrained. In [26] it was
proven in SU(2) superspace that the right prepotential for a covariant weight-n projective
superfield is an isotwistor superfield of weight (n — 4).15

By definition, a weight-n isotwistor superfield U (n) ig a primary tensor superfield (with
suppressed Lorentz indices) that lives on MP®I8_is holomorphic with respect to the isospinor
variables v’ on an open domain of C? \ {0}, is a homogeneous function of v* of degree n,

UM (cv) = UM (), ceC\{0}, (5.24a)
and is characterized by the supergravity gauge transformation
n > 1 ab ij n
5gU™ = <§Cvé +3A M+ AV T+ J]D)> U

_ n n

5The concept of isotwistor superfields was introduced in the context of 4D N = 2 supergravity [61].
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It is clear that any weight-n projective multiplet is an isotwistor superfield, but not vice
versa. The main property in the definition of isotwistor superfields is their transformation
rules under SU(2). In principle, the definition could be extended to consider non-primary
superfields.

Let UM% be a Lorentz-scalar isotwistor such that

1
DU = 5 (30— HUn=1 (5.25)
Then the weight-n isotwistor superfield
QM = AWyn—4) (5.26)

satisfies all the properties of a covariant projective multiplet. Note that Q™ is clearly
analytic with DQ("™) = %"Q(”). It is an instructive exercise to check that Q" is primary.
We define the operators

S im st s = (ku 5% (5.27)
which satisfy
{88,V = 6,507 STV VY =25, D —4M g+ 62,500, (5.28)
where
J@ = ;9 7 v =o, JOUM =0, (5.29a)
JO = %J] 7@, vy = —%vg}) . JOpm = —%U(”) . (5.29D)
After some algebra, it can be proven that
1 +sn
57, A0] = —Zaaﬂ%mv;)vg”vg C (5.300)

1 e 1 1 1
S50, a@) = 24 g ITIVID e (8 - 2D — 6JO) +4Ma] . (5.300)

Using these results, it immediately follows that SglA(‘l)U (n) = 0.

Let us conclude this subsection by giving the expression for A®) in SU(2) superspace.
This can be computed by simply using the degauging procedure developed in section 3.
The result is

AWy - _ Lpepeye- | L pe) @ gt g pe-a)
g a

32 32
1. e
— pa)(2B1g(-1) g 2)177(n—4)

+ 55 DMV (IS VoY)

+ 312 ei{gC, vV, (5.31)

with

DS) _ %Dz D2 . D(l)é‘DS) ’ g((;ﬁ) — Uﬂ}jg (5.32)

OLB'
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Computing the (anti-)commutators involving S 1 i (5.31) produces new terms involving

V., which have to be degauged. Finally, making use of the identities
1

P ._ _%gamsDS)Dg)ngg), (5.332)
DA — _9176 3p@p@ 4 24(7)54(1)322)733(1) + 4(7)64(1)3(2)%)1)((;)
+ 2432{25213&(1%3(1) + 458 BD@)} U= (5.33b)
DS)S%) _ ngg(ﬁ%, (5.33¢)
pWs@ = %Dml)q{fg, S@ =y, 87, P = v, CY (5.33d)
we obtain

5i i s P .
@Wyn—1 _ | p@ _ 2L g@p@ _ Lnab@pWp _ L pa)@yph)
AWy = |DW - 555¥D® — coVADIDY — (DY CEND

i

% ci@ | yn—a) (5.34)

(Dd(l)DB(l)C((;B)) +3(5®)% 4
This relation determines the analytic projection operator in SU(2) superspace, which is

a new result. In [26], this operator was computed only in a super Weyl gauge in which
C = 0.
a

5.3 The action principle

We turn to re-formulating the supersymmetric action principle given in [26] in conformal
superspace.

Consider a Lagrangian £2) chosen to be a real weight-2 projective multiplet. Associ-
ated with £2) is the action'®

T o

S ! f{ (v, dv) / Pz ECEY LR (5.35)
v

Here the superfield C(—% is required to be a Lorentz-scalar primary isotwistor superfield
of weight —4 such that the following two conditions hold:

AWCEY =1 Dot = 20 (5.36)

These conditions prove to guarantee that the action (5.35) is invariant under the full super-
gravity gauge group G. The invariance of S [L'(Q)] under the Lorentz and special conformal
transformations is obvious, since all the superfields in the action are Lorentz-scalar primary
superfields. Invariance under the general coordinate transformations is also trivial, while
invariance under the SU(2) transformations can be shown in complete analogy with the

5Tn parallel with the construction in four dimensions [56], it is possible to integrate out half of the
Grassmann coordinates thus representing the action as an integral of £ over an analytic subspace. (This
is analogous to the chiral integral in 4D N = 1 supergravity, see [62-64] for reviews.) We find it more
convenient to employ the superfield C™% to always deal with full superspace integrals.
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proof given in [25, 26]. It remains to prove that the action is invariant under dilatations.
This simply follows from the observation that the measure, F, has dimension —1.

All information about a dynamical system is encoded in its Lagrangian £(2). The
important point is that the action (5.35) does not depend on C=Y if the Lagrangian
£3) is independent of C(—%. To prove this statement, let us represent the Lagrangian as
L2 = AWY(=2)_ for some isotwistor superfield U(~2) of weight —2. We note that for any
pair of Lorentz-scalar isotwistor superfields ®=4) and ¥(-"=2) such that

D= = %(371 — 4 puln2 = %(2 — 3n) w2 (5.37)
we can use integration by parts to prove the following relation
f (v, dv) / PBLE {cﬁ(”*“)A(“)\IJ(*”*Q) - \P(*"*Z)A“)(I)(”*‘*)} ~0. (5.38)
.
If we use this result and eq. (5.36), we can rewrite the action in the form
= % 7(v,dv)/clf’lSzEz/N?). (5.39)

This representation makes manifest the fact that the action does not depend on C(—4).
Upon degauging to SU(2) superspace, the action (5.39) coincides with the one given in [26].

A natural choice for C(=% is available if the theory under consideration possesses an
abelian vector multiplet such that its field strength W is nowhere vanishing. Given W, we
can construct a composite O(2) projective multiplet as

2 1 o 1 j

Hygy = S WYOW 4+ (VEOW) VW = vy iy (5.40)
where H\ifM coincides with eq. (2.54) for a single abelian vector multiplet. By using the
Bianchi identity (2.49), which implies

Do _ L @ DWW _
Ve Vi W =125, VOW, Ve 'V VW =0, (5.41)

it is a simple exercise to show that H\(,Ql\)/[ is an analytic superfield, VS)H\(,Q) = 0. By
using (5.28), it also simple to show that SS)H\(,zl\)/[ = Sé_l)H\(,Ql\)/[ = 0 and then H\(,Ql\)/[ is

primary, Sé[H\(,ZI\)/I = 0. We can then introduce

4 4
o = % (5.42)
3(Hyy)?
which consistently defines a weight —4 isotwistor superfield that, due to
3. (2
AW = Z(HG)?, (5.43)
satisfies AWC(=4) = 1. The resulting action principle takes the form
2 @4
S[e®) = = f (v, dv) / ot p £V (5.44)
37 (H(Q) )2
VM
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Upon degauging to SU(2) superspace, this action reduces to the one proposed in [26].
We conclude this section by mentioning that the action (5.35) is characterized by the
following important property:
S [G@)(A + X)} ~0, (5.452)

with G®) a real O(2) multiplet and A an arctic weight-zero multiplet. Since \ is arbitrary,
the above relation is equivalent to

S[GPA] =o0. (5.45b)

A proof of (5.45) will be given in section 7.4.

6 Prepotentials for the vector multiplet

In this section we develop a prepotential formulation for the Yang-Mills multiplet intro-
duced in section 2.6. Our presentation is very similar to that given in [65] in the case of 3D
N = 4 conformal supergravity. The latter was inspired by the pioneer works of Lindstrom
and Rocek [37] and Zupnik [66] devoted to the 4D N = 2 super Yang-Mills theory.

6.1 Tropical prepotential

The Yang-Mills multiplet in conformal superspace has been described in section 2.6. The
field strength W appears in the anti-commutator of two spinor covariant derivatives as

{Vg,Vé} = "'+2€aB5ijW7 (6.1)

where the ellipsis stands for the purely supergravity part. Let us introduce the gauge
covariant operators
vl =,V (6.2)

It may be seen that they strictly anti-commute with each other,

1 1)
{vngg }=0. (6.3)

This means that V(l)

& Mmay be represented in the form:

v = ey ; (6.4)
where €24 denotes a Lie-algebra-valued bridge superfield of the form

Ug

Q) =2, =) A", (=7 (6.5)
n=0

vl

The bridge is a covariant weight-0 isotwistor superfield. Another representation for VS)
follows by applying the smile-conjugation to (6.4). The result is

oo

vl =e vl o == (1a} Cln . (6.6)
n=0

— 35 —



We now introduce a Lie algebra-valued superfield V'(¢) defined by
V=t v =V = Y Vut, V=)V, (6.7)

It may be seen from (6.4) and (6.6) that V' is a covariant weight-0 projective multiplet,

vV =o. (6.8)

In accordance with (6.4), the gauge transformation law of Q is

SO = T 4O =iAQ) (6.9)

where the new gauge parameter A((¢) is a covariant weight-zero arctic multiplet
[ee]
via=0, A= > Al (6.10)
n=0

The gauge transformation law of the tropical prepotential is

V' = dAVeriA (6.11)

Hence V' transforms under the A-group only.

6.2 Polar hypermultiplets

Supersymmetric matter in arbitrary representations of the gauge group Gyy may be de-
scribed in terms of gauge covariantly arctic multiplets and their smile-conjugate antarctic
multiplets.

A gauge covariantly arctic multiplet of weight n, Y™ (v), is defined by

viirm —o,  x®(y) = (L) > ok (6.12)
k=0

It can be represented in the form
T (p) = S+ @ ™) ()| (6.13)

where Y™ (v) is an ordinary covariant arctic multiplet of weight n as already introduced
in eq. (5.17).

Computing the smile conjugate of (™) (v) gives a gauge covariantly antarctic multiplet
of weight n, Y (v), with the properties

— o0
v (n v (n n 1
YO vil—0, YO ()= (2 Z(—nkrgg . (6.14)
k=0
It can be represented in the form
T (v) = T (9)e$2-) (6.15)
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where T (v) is an ordinary antarctic multiplet as in eq. (5.18).
The arctic multiplet of weight n, Y (v), and its smile-conjugate, 'vf(”)(v), constitute
the polar multiplet of weight n. The gauge transformation laws of ¥ (v) and Y (v) are

YT (y) = ™Y (v) YO () = YO ()T (6.16)

The gauge transformation laws of T (v) and T (v) are

YO () = AT () TO(y) = TO) (y)e iAW) (6.17)

In the n = 1 case, a gauge invariant hypermultiplet Lagrangian can be constructed and is
given by
£ i rOy®) — 30V (6.18)

6.3 Arctic and antarctic representations

Here we demonstrate that the Yang-Mills gauge connection V 4, eq. (2.43), may be ex-
pressed in terms of the tropical prepotential V' (¢), modulo the 7-gauge freedom.
Let us introduce the operator

_ 1 ,
It can be seen that
(v, Vg”} =2 W (6.20)

Here the ellipsis denotes purely supergravity terms. Note that the operators 92, 9(=2)
and 8(©) are invariant under the 7-group transformations and obey

[8(2)>VS)] _ [a(_Q)vVé_l)] —0, (6.21a)
0@, v =v, 2, vl = v (6.21b)

P© vl = vl (6.21c)

When dealing with polar hypermultiplets, it is useful to introduce an arctic represen-
tation defined by the transformation

O— 04 = e SO S0 , U—=U; = L (6.22)

applied to any gauge covariant operator O and matter superfield U.17 In the arctic repre-
sentation, any gauge covariantly arctic multiplet ) (v) becomes the ordinary arctic one,

T (v),

TP (R) 5 TMWw), YO () = T (@)eV©, (6.23)
and the gauge covariant derivatives VS) turn into the standard ones,
vl vl (6.24)

Tt is assumed that the gauge transformation law of Ois O = O =eTOe™'T, while U transforms as
in (2.46).
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The important point is that the projective derivative 9(~2) is replaced by the operator
0D 877 = 92 4 ol (9Dl (6.25)

which transforms as a covariant derivative under the A-group. It is also important to
mention that 9 remains short in the arctic representation, 85_2) = 9@, Making use of
the arctic-representation version of (6.20) as well as the relation

v =0 v = v - vl (e g 2682 (6.26)

(e}

we read off 1
W, = (e—9+8<—2>e9+) . (6.27)

Since 9@ W, = 0, W is independent of u’. The field strength W also satisfies the

property
oW, =0, (6.28)

since in the original representation W is independent of v*. The field strength can be seen
to obey the Bianchi identity

(i v Ww. — Lo viliyd)
VIV W= e VIV W, (6.29)

In the case of a U(1) gauge group, W = WT, with T" the U(1) generator, we have
W =W, and eq. (6.27) turns into

1
W= gv@)a(*?)m . (6.30)
Since Q4 (v) = Q4(¢), in the north chart of CP! we can represent

0210, (1) = ~53094(0). (6.31)

Taking into account the fact that W is independent of (, it is simple to show that
L o2 Lo

In complete analogy with the arctic representation, eq. (6.22), we can introduce the
antarctic representation defined by

O=0_ =200, UvoU =81, (6.33)
In this representation, the super Yang-Mills field strength takes the form

W_ = %v@) (e9—8<*2>e*9—) . (6.34)

Comparing the above with (6.27) gives

W_=cVW. e V. (6.35)
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6.4 Abelian field strength: contour integral representation

In the previous subsection, in the case of an abelian vector multiplet, we have derived the
result (6.32). This expresses the field strength in terms of the bridge components. It is
useful to find yet another representation given in terms of the real weight-zero tropical
prepotential
V=0,+0_. (6.36)
It turns out that the expression
i

- (-2) (-2) ._
w or (v,dv)V\ "2V \Y :

1 .
wiu; VY, 6.37
(U, u)z [} ( )
is equivalent to (6.32). It is instructive to prove this statement.
First of all, the expression for W in (6.37) can be shown to be independent of u;. To
see this, consider a shift

u; — U; + ouy (6'38)
and represent it as
du; = (v, u)v;al™? + 480 a7 = - u' oy B8O = v'du; (6.39)
7 bl 7 (2 9 (’[}7 u)2 Y (’U7 u) . .
Then one can compute
5%/:-—ﬂ%f (v, dv) (Ve vy — (6.40)
T
which is identically zero since
{Vgﬁvg”}:mvw+amwﬂq — (Vo vy — iy (6.41)
and #V = 0. In the north chart of CP! we have
V)=V = > Vi, Vi=(DVy. (6.42)
k=—o00
Then choosing u; = (0,1) we can represent W as follows
i Q) - L o9
= ¢ VRV (0) = —ZV2Y, = _ V22, . 6.43

The last expression is clearly equivalent to (6.32). Note that, due to the analysis of the
previous subsection, this equivalence also guarantees that W defined by (6.37) is a pri-
mary superfield, SéW = 0, satisfies the Bianchi identity Vél)Vg)W = %saﬁv(Q)W, and is

invariant under the A-group transformations
SV =A+A. (6.44)

All these properties can actually be directly proven by using the integral representa-
tion (6.37).
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6.5 Mezincescu’s prepotential

According to the analysis of section 5.2, we can solve the analyticity constraint on the
projective prepotential V'(v) in terms of a primary real isotwistor superfield V(=4 (v) of
weight (—4) as

V =AWy pyEh = oy giy D — (6.45)

The vector multiplet field strength (6.37) then takes the form

i

~ o P dv)VEDADY D () (6.46)

W =
Making use of the identity
3 g
VEDAW = 5vivjvklw’d, (6.47)

which follows from (5.23), we can perform the contour integral and obtain the following
alternative expression for the field strength

3i [ (v,dv) el (— 3i g
—_ AT Z.'A” ( 4) —_ i.A”kl . 4
W 5 f 16 VRV Vi V (v) 4OV j Vi (6.48)

Here we have defined the superfield V;; as

d
Vi = 7{ (v ”)Uz-vjv<—4>(v). (6.49)
27
By construction Vj; is a real primary superfield of dimension —2, DV;; = —2V;;. It is also

possible to prove that, due to (5.4b) and the definition (6.49), Vj; correctly transforms as
an isovector under SU(2) transformations. Note that V;; is the analogue of Mezincescu’s
prepotential [67] (see also [68] and [69]) for the 4D N = 2 abelian vector multiplet. To
conclude, we note that V;; is defined up to gauge transformations of the form

Vi = VEA 1y, A% = A%y » (6.50)

with the gauge parameter being Adijk a primary superfield,

S 5 4
SEAP =0, DAﬂjkl:—iAﬁjkl. (6.51)

The gauge invariance follows from the fact that ViinjlegA&klp = 0, as can be proven
using (5.23).

6.6 Composite O(2) multiplet

Consider a locally supersymmetric theory that involves an abelian vector multiplet as one
of the dynamical multiplets. Let S[V(v)] = S[Vj;] be the corresponding gauge invariant
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action. A variation of the action with respect to the vector multiplet may be represented

in two different forms,

55 = 2i (v, dv) / &2 B IO 5y (6.522)
T
= / B2 EHY 6V, (6.52b)

for some real weight-2 tropical multiplet H(? (v),
vE® =0, (6.53)

and some real isovector H¥ = HJ?, which are primary superfields of dimension +3. The
theory under consideration may also involve hypermultiplets charged under the U(1) gauge
group. We assume that these hypermultiplets obey the corresponding equations of motion.
Then the above variation vanishes when 6V or §V¥ is a gauge transformation. This
property has two different, but equivalent, manifestations. Firstly, the variation (6.52a) is
equal to zero for the gauge transformation (6.44), hence

Jz[(v,dv) /d5|8zEC’(4)]HI(2))\ =0, (6.54)

for an arbitrary weight-0 arctic multiplet A(v). This implies that H®)(v) is an O(2) mul-
tiplet,

H® (v) = HY ;. (6.55)
Secondly, the variation (6.52b) is equal to zero for the gauge transformation (6.50). This
means

/d5|8zEA§;kngj’f =0, (6.56)
and hence '
viE® =0, (6.57)

The superfields H® (v) and H” defined by egs. (6.52a) and (6.52b), respectively, are related
to each other according to (6.55), as follows from (6.49).

In summary, any gauge theory of the abelian vector multiplet possesses a composite
O(2) multiplet, HY. The equation of motion for the vector multiplet is H¥ = 0.

7 The O(2) multiplet in conformal superspace

In the previous section we gave the prepotential description of the Yang-Mills multiplet.
Here we develop a prepotential formulation for the O(2) multiplet, a dual version of the
hypermultiplet. In the 4D A = 2 case, it is known that the O(2) multiplet constraints

vigH =0, vieh =0, (7.1)

may be solved in conformal superspace in terms of a complex primary scalar U of dimension
—1, DU = —U, as
y 1 o
¢ = 5 (v”vklvklU n V”V“VklU> : (7.2)
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see, e.g., [69] for a detailed discussion. As will be demonstrated below, an analogous
six-derivative representation for the O(2) multiplet exists in five dimensions, but the cor-
responding prepotential is a real dimensionless scalar.

7.1 Prepotential formulation for the O(2) multiplet

In five dimensions, the O(2) multiplet G = G’* is characterized by the properties
vigh =0, Sia* =0, DG =3a7k. (7.3)

We always assume G to be real, Gii = Gij = 5ik6lekl. It turns out that the con-
straints (7.3) may be solved in terms of a primary real dimensionless scalar €2,

SiQ=0, DQ=0, (7.4)
and the solution is 3;
GY = — LAV (7.5a)
or, equivalently, )
GO = ’UinGij = —%A“)v(*%. (7.5b)

Note that representation (7.5a) follows from (7.5b) by applying (5.23).

In appendix E we prove that the decomposition (7.5) is the most general solution
to (7.3) in the flat case by making use of the harmonic superspace techniques [58, 59].
Here we demonstrate that (7.5) defines a primary O(2) superfield in conformal superspace.

It follows from (7.5b) that G is analytic, VS)G@) = 0. Tt is also obvious that G
has the right dimension, DG® = 3, since Q is dimensionless. It is slightly more involved
to check that SZ;YG(Z) = 0, which is equivalent to proving the two conditions Sél)G(Q) =0
and SSVG@ — o,

Let us first consider

sV a@ — i

{ g (S AWTEA0 - AW Y w210 (7.6)

« 8

It is straightforward to check that the second term on the right is identically zero:

[S(fl),v(”)]Q = ({S(({l)?vﬁ(*l)}v(éfl) _ VB(*l){Séfl)yv(jl)})Q

& g
= 6(/ VY VI )a =0, *:n
as a consequence of
B 1 ..
TV =0, T (78)

It remains to show that [Sg;l), AWV(=2)Q = 0. Using (5.30b) we obtain

— 1 A::-
(S5, A0 = e s vIIVIVID (8 b - 670) VP =0, (1.9)

B
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Since @G = 0, we also find Sél)G@) = G(Z)S’é_l)G(z) = (0. Thus we have shown that
the superfield G defined by (7.5) is primary.

A crucial property of the superfield G2 defined by (7.5) is that it is invariant under
gauge transformations of 2 of the form

602 = 3 (D) ViV, Bayy (7.10)
where the gauge parameter is assumed to have the properties
B;¥ = By, SiBi* =0, DB =-B"Y (7.11)

and is otherwise arbitrary. It is an instructive exercise to show that the variation 62 defined
by (7.10) and (7.11) is a primary dimensionless superfield. Appendix F is devoted to the
proof that the transformation (7.10) leaves invariant the field strength G(?) defined by (7.5).

7.2 Composite vector multiplet

Consider a dynamical system involving an O(2) multiplet G¥ as one of the dynamical
multiplets. The action may be viewed as a functional of the field strength, S[G¥], or
as a gauge invariant functional, S[Q], of the prepotential Q. Giving the prepotential an
infinitesimal displacement changes the action as follows:

65 = / d°F2 EWeQ, (7.12)

for some real scalar W, which is a primary superfield of dimension +1. The variation
must vanish if §€2 is a gauge transformation of the form (7.10). This holds if W obeys the
equation

oy — L. oiligd)
VaVEW = 1645 VIIVIW, (7.13)

which is the Bianchi identity for the field strength of an abelian vector multiplet, see
eq. (2.49).

In summary, any dynamical system involving an O(2) multiplet G% possesses a com-
posite vector multiplet, W. The equation of motion for the O(2) multiplet is W = 0.

7.3 BF coupling
Consider the following Lagrangian
Ly =va® (7.14)

that describes a BF coupling of a vector multiplet and an O(2) multiplet. The action
principle (5.35) with Eg% = VG® will be referred to as the BF action.

The BF action involves the tropical prepotential of the vector multiplet, V' (v*), and the
field strength of the @(2) multiplet, G). It can be rewritten in a different form involving
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the field strength of the vector multiplet, W, and the prepotential of the O(2) multiplet, .
This is achieved by expressing G?) in terms of Q and then integrating by parts to obtain

d
SIL = j’{ (1)1675) / P82 By AT

= /d5|8zEQW. (7.15)

By using (7.5) and (6.48) together with integration by parts, the action may be rewritten in
another equivalent form that involves Mezincescu’s prepotential V;; and the field strength
G%. One obtains

Sic)) = / Pz EQW = / B2 EGIV; . (7.16)

One may prove that the functionals [ d°82 EQW and i d°82 E G Vi are invariant under
the gauge transformations (7.10) and (6.50), respectively.

7.4 Gauge invariance

The results of the previous subsection allow us to prove the important relation (5.45a).
For this we choose V = A+ A in the BF Lagrangian (7.14), where A(v) is a weight-0 arctic
multiplet. Since the tropical prepotential is pure gauge, the field strength vanishes, W = 0.
Then eq. (7.16) leads to S[(A+ A)G®)] = 0, which is the required result (5.45a). Since X is
complex, we can replace A(v) — iA\(v) and obtain S[i(A — A)G®)] = 0. These two relations
lead to (5.45b), and thus

f(v,dfu) /d5|8zEC(4)G(2))\ =0, (7.17)

where G (v) is an O(2) multiplet and A(v) is a weight-0 arctic multiplet.

7.5 Universality of the BF action

The goal of this subsection is to demonstrate that the supersymmetric action (5.35) can
be rewritten as a BF action under the assumption that a special vector multiplet exists.
Consider the action (5.35) written as (5.39) with ¢(=2) a prepotential for the La-
grangian £2). Now let W be the field strength of a compensating vector multiplet. We
insert the unity 1 = W/W in the right hand side of (5.39) and represent W in the nu-
merator according to (6.37). After that we change the order of the contour integrals and
integrate V(=2 by parts. Finally, we insert the unity 1 = A®C(% and integrate by parts.

The final result is 1

= — ¢ (v,dv) / P ECEY VG (7.18)
2w y

where V' is the tropical prepotential for the vector multiplet and the composite superfield
G® is defined by

G® _ _%va(%, (7.19a)
1
Q= (=2) 1
S yg(v,dv)lxl (7.19Db)
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According to (7.5), the superfield G(?) is an ©(2) multiplet. Note that it is possible to give
some alternative expressions for Q in (7.19b). Consider a weight —4 isotwistor superfield
C% such that AWC4 = 1. This does not necessarily have to be equal to C=%. Given
C9_ the superfield

U G ) (7.20)
is a prepotential for the projective Lagrangian £ Hence we have the equivalent expres-
sion 1

— ~(=4) p(2)
0 STV }é(v, dv) CVH L) (7.21)

Note that in the presence of the vector multiplet compensator a natural choice for C'(=%)
is given by (5.42). Then we find

3 (2)
02 Ly £ 2)
3T Jy (HRp)?

7.6 Full superspace invariants

Consider an invariant that can be represented as an integral over the full superspace MO8,
S[L] = /d5|8zE£, (7.23)

where L is a conformal primary superfield of dimension +1, DL = £. This invariant may
be represented in the form (5.35), in which £ reads

2
- G@

Here A™ is the covariant analytic projection operator (5.22) and G(2) = v;v;GY is an O(2)

£® = AW (Gr). (7.24)

multiplet such that
1 ..

G? = 5G7Gy) (7.25)
is nowhere vanishing, G # 0. The Lagrangian (7.24) is an example of a covariant rational
projective multiplet'® in the sense that it has the structure H®/G®) for some O(4)
multiplet H® (v).

7.7 Prepotentials for O(4 + n) multiplets
Let H® (v) be an O(4) multiplet. It may be shown that

HY@w)=AWa,  Sid=0, D=4, (7.26)
for some primary scalar prepotential ®, see appendix G. The O(4) multiplet in (7.24),
AW (G.C), is a special case of this result.

More generally, let H(*+m) (v) be an O(4 + n) multiplet, with n = 0,1,... It may be
represented in the form

H*D () = ADS | o)) = o1ty (7-27)

for some primary superfield ®'-‘» of dimension (4 + %n), see appendix G.

8In the 4D A = 2 super Poincaré case, rational projective multiplets were first introduced by Lindstrém
and Rocek [36].
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8 Superform formulation for the BF action

In section 7 we demonstrated the universality of the BF action

Spr = % ﬂ/(v,dv) / PrzEctOLE LB —ve®, (8.1)
The component structure of Spr is of primary importance for applications. For the anal-
ogous action in 4D N = 2 supergravity, two procedures have been developed to reduce
the action to components. One of them [55] directly carries out the integration over the
Grassmann variables in the action. The other approach [70] provides a superform con-
struction for the action' which immediately leads to the component action. The latter
has turned out to be fruitful for various generalizations, such as the A-extended conformal
supergravity actions [48, 49, 75] and the Chern-Simons actions [76] in three dimensions and
the non-abelian Chern-Simons action in 5D N = 1 Minkowski superspace [77]. Here we
apply the ideas put forward in [70] to derive a superform formulation for the action Spp.

8.1 Superform geometry of the O(2) multiplet
The O(2) multiplet can be described by a three-form gauge potential B = %Eé AEB A

EAB ip¢ Possessing the gauge transformation
B =dp, (8.2)

where p is a 2-form gauge parameter. The corresponding field strength is

Lop, O B, A

‘I):dB:@E ANEY“NEZNE (I)ABC’ﬁ’ (8.3)
where A
E

®ipen = AVaBsepy + 6748 Bigeny - (8.4)

The field strength must satisfy the Bianchi identity
E
Via®seniy + 2945 Ppcney =0 (8.5)

In order to describe the O(2) multiplet we need to impose some covariant constraints
on the field strength ®. We choose the constraints

L _ ikl _ j
Cagis = Pagas =0, Py

5 : = 8i(3;5)45G7 (8.6a)

(S

where G = GJ% is a dimension-3 primary superfield. The constraints allow one to solve
for the remaining components of ® in terms of G¥. The solution is

Dyhea = _g’fal}adé(zde)dﬂvéjGﬂ - _2%56&6(2@)&&%7 (8.6b)
Pibed = Egaéadé(re)aﬁvéng@j = €416de 2 (8.6¢)

19This approach makes use of the superform formalism to construct supersymmetric invariants [71-74].
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where G satisfies the constraint for the O(2) multiplet
vigit =g (8.7)

and we have introduced the superfields

, 1 g
o = 3 Va6, (8.8a)
F i év%vgc:ij - _iv%(p%. (8.8b)

The Bianchi identities also imply the differential condition on ®4
Vi, + 51X sy, = Vi, = 0. (8.9)

8.2 Superform action for the O(2) multiplet

The superform formulation in the previous subsection gives a geometric description for the
O(2) multiplet. As we will see, it is a useful ingredient in the construction of the BF action
principle. Below we describe the general setup, the construction of the superform action
and its corresponding component action.

8.2.1 General setup

The superform approach to constructing supersymmetric invariants [71-74] is based on the
use of a closed superform. In five-dimensional spacetime M?, which is the body of the
N =1 curved superspace M®®, the formalism requires the use of a closed five-form

1 ~ ~ ~ ~ -
3:§EE/\ED/\EC/\EB/\EAJ AAAAA Ay =0. (8.10)

Given such a superform, one can construct the supersymmetric invariant

S= [ 7, (8.11)
M5

where i : M® — M58 is the inclusion map. Invariance under arbitrary general coordinate
transformations of the superspace follows from the transformation of J,

(553 = ﬁf?j = i£d3 + difﬁ = digﬁ . (8.12)
The closed form J is required to transform as an exact form under all gauge symmetries,
dy =do, (8.13)

which ensures eq. (8.11) is a suitable candidate for an action. In conformal supergrav-
ity, suitable actions must be invariant under the standard superconformal transformations.
This requires that J transforms by an exact form under the standard superconformal trans-
formations,

Ind =dO(A%), A=A%X,. (8.14)
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Locally superconformal matter actions are usually associated with closed five-forms
that are invariant,

oxJ=0. (8.15)
This is equivalent to the condition
~ Pa
XaJ4ydy = ~Safdy, DDlAgdyy - (8.16)

The S-invariance, Sg;J = 0, is non-trivial and we will call a superform that is S-invariant
a primary superform.?? In general, a primary p-form ¥ satisfies

Sai¥ 4. 4, = ip(Fa)&ﬁEBi[A2...Ap5%1}7 (8.17)
which implies the condition
SgiSarinay ann = UT01) 3 Bhgan-anley " d - (8.18)

8.2.2 Superform action for the O(2) multiplet

In order to construct a closed form for the action we will first consider the superform
equation

AS=FA®, (8.19)

where X is some five-form and F is the field strength for an abelian vector multiplet with
gauge one-form V' and field strength W (see section 2.6).
It turns out there exist two solutions to eq. (8.19) that do not differ by an exact form.
The first solution is
YSy=VAD. (8.20)

The second solution is the result of the constraints that have been imposed on the com-
ponents of /' and ®. If we assume that this solution is primary then we may write the
Bianchi identity in terms of the covariant derivatives as follows:

& 5
Via¥pepiry T 5 'ZAB Giepeky = 5Fap®eniny - (8:21)

Making use of the components of I’ and ®, one finds the solution:

Eaécaﬁ = 41€abcde(2de) [;WGZ] ’ (8223,)
Saicda = 2€apede(T) ”ﬁ(W‘P% +1irg,G7), (8.22b)
Sabede = ~Cabede WF + X7 Gij + 20 051) (8.22¢)

with the remaining components vanishing. Here we have made use of the following useful
identities:

Vi Gk = 2610 M) (8.23a)

Vi’ /3’ = —56”6 2 F + 25”@ 5+iVy G” (8.23b)

20 S_invariance automatically implies K-invariance.
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VLF = —2Valol — 6W, 507 — 9X,,GY, (8.23¢)

Vi®a = 4(,)a" V0 — 4(r&),£wx

5507 — 6(Ta)a’ X 5,G . (8.23d)

The second solution is expressed entirely in terms of G and its covariant derivatives and
we will denote it by Y. Making use of the following identities

Sggo]é = —6e,3G7 (8.24a)
SLF = 6} , (8.24b)
8L, = —8i([y)a’ (8.24¢)

one can check that X is primary, i.e. it satisfies eq. (8.18). Similarly one can show ® is
primary and hence Xy is primary also.

It is now straightforward to construct a closed invariant five-form. One may simply
take the difference between Xy and ¢,

F=Sy-Sa=VAD-Yg. (8.25)

8.2.3 Component BF action

Having derived J we can now make use of the action principle (8.10) to construct the
corresponding component action. The Lagrangian is given by?!

1 . 1 enin
e—l *3 — 5'5mnpqrdmnpqr _ Igmnpqrvmq)ﬁﬁ(jf _ gEmnquEmﬁﬁQf ’ (826)

where

7€mnpqrzmﬁﬁqf| — 7€mnpqrEAEEADEAC’EABEA AE AAAAA

5! 5! ro=q Sp Fn Emo ZABCDE
L abede 5 .
- an “ <2a13@dé + *wdiazi,@déﬁ %Zawazcdeaﬁ

5 . . iy
— USRSl e R
+7¢”@¢AB¢A’ywA6¢ pzl]klp| (8 27)
39 74t Tbj Tk dl ¥ep agyepl ) :
The action is then
S = / d°re < MUy bapar — WE — XG5 — 20F gy,
+ Yl "W+ 1 TN GV — 14 STy WG )
=— / dre (v%@ +WF 4 XG5+ 2)\ ¢y

— Yail P W — T\ G + it Sy WG ) (8.28)

*1The Levi-Civita tensor with world indices is defined as e™"P1" ;= ¢de¢;Me Mg Pe e, "
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where all superfields appearing in the action are understood as their corresponding space-
time projections and we have defined

Vg = €amvm = edim| s gba = —I€fa€mnpqr¢mﬁﬁq7 (8.29a)
= 48[mbmﬁp] s bmﬁﬁ = Bmﬁﬁ’ . (8.29b)

mipg ‘= Privipg

The Chern-Simons coupling between the one-form V' and the four-form ® can equivalently

be written
S = / &z (1125@56@ g — WF — XG5 — 2\
+ a2 W + e TN GY — it S0y WG ) , (8.30)
where
fap =€ fio s Fii = Fawal = 20,057, bage = €a" ;"€ brinip - (8.31)

It should be mentioned that the normalization of the action (8.28) has been chosen
to correspond to the projective superspace action principle (5.35) with £? = vGa®.
Furthermore, the action (8.28) corresponds to the BF action without central charge. We
will give a generalization in the presence of a gauged central charge in section 11.

9 Abelian Chern-Simons theory

In conformal superspace, the dynamics of an abelian vector multiplet coupled to conformal

supergravity is described by the Chern-Simons action??

1 1
vy

where H\(,Ql\)/[ denotes the composite O(2) multiplet defined by (5.40). Varying the tropical

prepotential gives
1
s =~ .y [ @z ECCVav Y, (92

see section 12 for the derivation.
A component counterpart of the action (9.1) may be constructed using H\(,Ql\)/[ and the
BF action (8.1). This amounts to plugging

G = Hi\ = 2W X" —pa0)) (9.3)

into the component BF action (8.28) and computing the component fields of the composite
O(2) multiplet. This produces the component V' A F' A F' coupling by treating the closed

221n the 5D N = 1 super-Poincaré case, the off-shell abelian Chern-Simons action was constructed for
the first time by Zupnik in harmonic superspace [51]. The action (9.1) is a curved-superspace extension of
the one given in [2].
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gauge-invariant four-form F'A F as the field strength derived from the O(2) multiplet (9.3).
A major disadvantage of this approach is that the non-abelian Chern-Simons theory cannot
be constructed in the same way. In this section we will discuss an alternative superform
construction that can be generalized and show how to derive it explicitly from the BF
action principle.

Recall that the BF action involved constructing a closed five-form J given by

Ju=VAD-—%y, (9.4)

where ® is the four-form field strength associated with the composite G¥ and X, con-
structed in section 8.1, is a covariant four-form which solves the equation

Ay =FA®. (9.5)
If one now substitutes the relations
Pl = X" \gj — 20F, 5N+ XEW? — AWV 5N — iV, ;WA (9.6a)
F = XXy — FOOF.. 4 AWV, W + 2(VW)Va W + 2i(vd3Ag)Ag
— 6WF W — 5 W2 + YIW? + 6X Y0, W, (9.6b)

1 be e ; 3 be [ ode | Byrrde
o = —Eapege P F T + AV <WFZ;& - 2W5&W2> + €500 W (Fde - 2WdeW) w

= 6(Ta) P XEAG W + 2i(3) VP (NEAs) + S anaie

&’ Bk & AAWbé(Zdé)dﬁAg)‘ﬁk ) (96C)

into the egs. (8.6) defining the superform ® and (8.22) for ¥, one arrives at the abelian CS
action. However, as is evident from considering the expression for ®; above, the expression
involves several derivatives which must be integrated by parts to arrive at the conventional
form of the action.

We seek instead a different closed superform J, which will be given by

J=3%cs — Xgr, (9.7)
where both Ycg and X are solutions to the equation
dX=FAFAF. (9.8)
The first is the Chern-Simons form,
Yes=VAFANF, (9.9)

while the second, Y, we will refer to as the curvature induced form. Here the curvature
induced form is required to be a gauge-invariant primary superform constructed directly
out of W and its covariant derivatives. The Chern-Simons and curvature induced forms
represent ingredients in a general procedure to construct Chern-Simons actions in three
and five dimensions, see [48, 49, 75, 76]. Gauge invariance of the corresponding action
(8.11) is guaranteed by the fact that X i is gauge invariant by construction, while Xcg
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transforms via an exact form. The advantage of this construction over the use of the BF
action is that it can be straightforwardly generalized to the non-abelian case.

Now it turns out that Jz and 23 describe the same component action, with 2J differing
from J by a total derivative (i.e. by an exact form) alluded to above. In other words,

dmzzs—sH:V/\(zF/\F—@)—22R+2H, (9.10)
for some four-form Y. It is evident we can choose
V=VAC, (9.11)
for some three-form C satisfying
dC =2FANF - . (9.12)

Provided there exists a gauge-invariant primary three-form C' that solves this equation,
then the curvature induced form is given immediately as

ER:%(EH—FF/\C). (9.13)

The construction of such a three-form C' is straightforward. From dimensional con-
siderations, it is evident that C%% ﬁ must vanish, while Ca%,g must be proportional to W?2.
The full solution is straightforward to derive:

Calh = —4i(Ta) g W2, (9.14a)
Cll = 8i(,5)5 MW (9.14b)
Cabe = Cabede (2F&éW +iAETAR 4 3W‘iéW2) : (9.14c)

The construction of g is now immediate. As required, it is given purely in terms of W

and its covariant derivatives, with the nonzero components given below:??
Eaéjﬁ% = 4(5ij€kl((1ﬂa)&3%3 +(Ta)ssea3) + e (Taaseps + (Ta)pseas)
+5“ejk((F@)d35% + (F@)B,}Edg))wis, (9.15a)
Saalk = —12(5jk53A(2&5)&5Agw2 e, 5(Sa)5  NaW? 4 ehesa(S,) sz)
8 (Tap)ag W2 4 €(3,4) 53 MW + €9 ()5aA5W2) , (9.15b)

R - ij
abeag 26 604,3 abede

(59) 5 (4AW2XT — 5 XN

(29) ¥ (4 F, Ls + BIWARN;, + 6W W)

abcde
+6(2[&6)d3(r@])’¥%§u§)w+3aiﬂ'(r[&)& (Se) O NN, W
—6ic" (T'5)

&BFIA)(A:]W (915C)

ZWe drop the subscript R when referring to the components of X to avoid awkward notation.
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, 1 Y o Iy (i)
Yabeda = _ggaéédé(Fe)@B (121WFB&)‘W — BIW XY g, — 4>‘W}"Y gy

_ovipys STI7. T2\
2XLW 4 6iIV; WA
6\54 (iy9) : 2 i
_'_E&Bé(ié(re)ﬁVtr()\B )\;Y /\dj + 31W@BW )&Y)
—i€ 500 W AGVW — 2ie ;5 W2VENL
~ 26,5040 (BD)a" WXLV ;W — die 5. (5)a P W2V pAL (9.15d)
3 Kl 56 kLS 46 \k
Sabede = ~ 5 abode <WX X = 2WFF 5 —iX AN — 20F°ARN

2 : 4 ; .
+ §W(VfW)VfW + §W2VfoW + 20 (Vs A7)0

1 4_ - o5 10, 5
+ gYW3 — ngka? — 6WE WP — 3W75W&5W3> . (9.15e)

The abelian Chern-Simons action is then given by

1
Scs = —/ iy, (9.16)
6 Jus

where we have adjusted the normalization to match (9.1). As we will show in the next
section, it is straightforward to generalize the result for J to a non-abelian vector multiplet.
We will give the explicit component action in the next section for the non-abelian case.

10 Non-abelian Chern-Simons theory

In the non-abelian case, a closed-form expression for the Chern-Simons action as a super-
space integral is not yet known. However, the corresponding action may be defined by

postulating its variation®?

6Scs = _781 7{ (v, dv) /d5|8zEC(_4)tr(AV - e—Q+H<Y2§4eQ+) : (10.1a)
s
v

where we have defined
AV :=eVsev, H%z/[ = vivngM, (10.1b)

with the composite superfield H gM given by (2.54). Here AV is the covariantized variation
of the tropical prepotential. In the abelian case, the variation (10.1) reduces to (9.2). In
this paper, we will not elaborate on the above definition, and instead present a superform
realization of the action.

In the previous section we derived the closed five-form describing the abelian Chern-
Simons theory and introduced two key ingredients: the Chern-Simons and curvature in-
duced forms. In this section we will show how to generalize our approach to the non-abelian

24This definition is inspired by the earlier works [51, 65, 78].
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Chern-Simons theory based on a Yang-Mills multiplet and derive the corresponding compo-
nent action. Our approach is analogous to the one adopted in [77] in Minkowski superspace.
We remind the reader that the Yang-Mills multiplet is described in section 2.6.

The appropriate closed five-form J to describe the non-abelian Chern-Simons action
may be found by generalizing the Chern-Simons form and the curvature induced form.
These five-forms now correspond to two solutions of the superform equation

dY = (F3) := tr(F/\F/\F), (10.2)

which is a straightforward generalization of (9.8). The Chern-Simons form cg is again
directly constructed out of V', while the curvature induced form is constructed out of W
and its covariant derivatives. If they transform by an exact form under the gauge group
then their difference

J=3cs — Xr (10.3)

will yield an appropriate closed five-form that describes the action. The Chern-Simons and
curvature induced five-forms are discussed in more detail below.

10.1 The Chern-Simons five-form

The Chern-Simons form is

i 1
Ecsztr(V/\F/\F—;V/\V/\V/\F—mV/\V/\V/\V/\V). (10.4)

One can verify that it satisfies the superform equation (10.2) by using
V=d-iV, F=dV+iVAV, VF=0—= dF=iVAF—-iFAV. (10.5)

Since Y.cg has been constructed by extracting a total derivative from the gauge invari-
ant superform (F3) it must transform by a closed form under the gauge group. In fact,
one can show it transforms by an exact form,

ZCS—>ECS+dtr<d7/\<V/\F—;V/\V/\V>>. (10.6)

Note that since the gauge field V is primary, Ycg is also a primary superform.

10.2 The curvature-induced five-form

To construct the curvature-induced five-form we look for a gauge-invariant solution to
s :tr<F/\F/\F). (10.7)
The condition that ¥ is invariant allows one to express eq. (10.7) as

G
2V i Xpepiiy T 5748 Siaicpery = S0(F apFepF ppy) - (10.8)

ViZpeper = Vaitpeper - (10.9)

2 Keeping this in mind, we will use gauge covariant derivatives everywhere in this section.
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The curvature induced form is defined to be a primary solution of eq. (10.7) that can
be expressed covariantly in terms of the vector multiplet field strength W. Invariance of
the curvature induced form is then guaranteed. On dimensional grounds, it is natural to
impose the constraint

Jklp _
Saihis=0. (10.10)

Then analyzing the superform equation (10.7) by increasing dimension, enforcing the pri-
mary condition (8.18) and using the identities (2.52) yields all the remaining components
of the curvature induced five-form:

E@Za;ﬁis = 4(5”5“((&)5[35% + (F@)&Sgdﬁ) + Eik€jl((rd)@ry835 + (F&)ngd’?)

+ 1eT* (Ta) 525 + (Ta) gnca ))tr(WS) (10.11a)
zabg/ﬁﬁ = —12tr (sjkséﬁ(E&E)dgA?WQ + 5”5AB(E~)¢5)\]§W2 + ¢ 5W( i) JAJW2>

+ 8tr(5jk( a)ag A W2 €M (8 s MW + eif'(zai))wxgw2) ., (10.11Db)
E&Bég% = ée s aicde (ST (AWRF 5 + 5IW NN, + 6W, ;W)

i€ 350 (599) 4 5t (AW XY — 5 XT0AD)
+6(35)45(Te )Wtr(x“x’)vv) + 367 (Da) 45 (T tr(AEA;, W)
— 61" (T y) g tr (Fy W), (10.11c)

. 1
E&i)étfgé = 2 abcde(

_ANYEND ) . o YIiTAZS 4 aiTU. T2\
INONDN; —2XIW +61WMW>\)

bt
)4 tr(61W{F NI} - BW{XY A )

+ Eabcde(l—‘e)ﬁﬂytr ()‘g)‘]ﬁ) Adj + 31W&BW2)\%)
i € i évyi
= 5abeae T {W, VEWING) = 2ie4,tr(WHVEAG)

i€ 500 (SD)a (W, W, WINL) — die 0. (575 Pt (W2 W ML) - (10.114)
i B

_ kl 56 s xrklyd <6y k
abede = _5%13&&@“ <WX X —2WEF”Y FﬁS —1X AkASl — 21F7 A’y)‘gk

2 ; 4 ; k3 A
- §W(VfW)VfW - §W2VfoW HIW[V AT AL] — 2W2NTF A,

1 4 s -8 10, .
- §YW3 - §X7k>\%W2 —6WPF W — ??W”*‘SW&SW:g) : (10.11e)

It is worth elucidating the relation of the above curvature induced form to the one
constructed in [76] in the rigid supersymmetric case. Switching off the Weyl multiplet
(Wd 5= 0) and replacing the covariant derivatives with their corresponding flat ones,

Vi, — D;=D;—iV,, (10.12)
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gives
Ea’a]ﬁ% = 4<Eij€kl((ra)d36€{g + (Fd)ﬁ%f;) + €ik€jl((rd)d3535 + (F&)BS%@)

e (o) asegs + (Ta)gyas) (W), (10.13a)

Zabjljﬁ’li = —12tr (gjkEBA (Eai))d(g)\éwz + €ij€AB(

8tr (7(335) (g AL W2 + £5(3) gy W2 + €9 (5,)5aXEW2) , (10.13b)

Er)aSA]gWQ +e' Eva(zab)é’g)‘ng)

i 1 deyas 2 R
Zaéél&ﬁ N 55 ]gaﬁ abede () tr(AWEF 55 T OIWAIAG)

(59), 5tr (AW XY — 5 XA

abcde
+6(2[m)&B(FA})%tr(A(fM)W) + 357 (Ta) 45 (T tr AEA;, W)
—6ic" (Ca) 4 5tr(F, ]WQ) (10.13c)
i 1 éy. B : yi : ij 3(i \J)
Saeds = —5abde Tt (6IW{F 0, N7} = 3IW{XY, X5} —axA2A )
+5abcde(Fe)Bytr(AgA?Adj)
i é ) eyl
=5 Caede T {W, DEWING) — 2ieg:te (WD)
—ie 5,55 (2° N Prr({w, D; W})\Z) 4lsabcde(zef) Btr(WQ’Df)\iB), (10.13d)
3 ki 58 . N
Edl;édé = _25abcde <WX Xkl — ZVVIT'7 F'?S —iX )‘k)‘& — 21F’y )\;y)\sk
L2wDIwD W+ Awrpip.w 4 iw D, AT, ]
3 f 3 f 7 0k
—2W2>ﬁ’“>\%> : (10.13e)
where

(10.14)

) y - 1, aing) 1
AL = —iDLW, XY .= —EDQ(’)\ZY . Fa5=1DlA;

The above curvature induced form agrees with the one found in [76] up to the addition of
an exact five-form

Yiexact = dN7 (10.15)
with
Kl _ ik _ Kl _
NiEEL =0, Nalk =0, Nkl =0, (10.16a)
L dey A 241
Nates = ~1450a:(37)5 1 (WA (10.16b)
Nipeg = 0- (10.16¢)

Ignoring boundary terms, the exact form does not change the corresponding action.

It is worth noting that although we can add a total derivative constructed out of W
and its covariant derivatives, the curvature induced form is uniquely fixed in conformal su-
pergravity. In particular, a primary generalization of (10.15) in supergravity does not exist.
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10.3 The non-abelian Chern-Simons action

Making use of the superform ¥ one can construct a closed five-form in 5D from which one
can derive a supersymmetric action. We now make use of the closed form,

3:=Ycs — Og (10.17)

and the action principle (9.16) together with the formula (8.27). We find the action®®

1 siade 1 sicde
S — /d5I etr{ abcde a-fbcfde _ ﬂi?adeeU&v[,Uéfgé _ @gabcde,Uab,l)i),l)é,l](i,vé

1 a 1 a . 7
— WFF b 4 1 WX IX 5+ 4F C(AFRAby ) — 1 X )
32

+ iW(AkV)\k) + EW(V“W)V&W + §W2VdV@W _ 5DW3

321 4 2 3. ab 2 O b 3 Lok
— X ANWE = —WPF. . W* — —WPW..W?° — —W-*A"\
+ 9 XAk 4VV ab 12W Wi 5 k

- é(zp&irdzééxi) (1Fse W+ W25, ) — i%r&rf’x{w, v, W}

— (Yl *A)) (;{X”‘ Wi+ éx“x") S e W?

= ST AW = (aid ) NTEA) + (0 SN WA,

+ i(%k%k) (2W2F% — 3IAFSION W 4 3WHW?)

n égaéagé(%krwékﬂ;déwg n %(%izaé%j) (2W2X — 3iWAGN))
+ 5 WS INY W, N} e () ey B N W

1 abede i
+ e (e 5 ) (I N YW 2 -

s E&Béczé(w&kFgwék)(wdj¢éj)W3} , (10.18)
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where we have defined
[V ATk A8 = M?A fA’“VAk - %(w\’f)xk (10.19)
and introduced the bar-projected field strength and one-form:
Fap =2ea"e;™ (Omvn) — Wvs)) s va=e"Vm, Vmi= Vil (10.20)

The vector covariant derivatives of the component fields may be expressed in terms of
the D, derivatives and hatted component fields introduced in section 4. For completeness
we include the following component results:

VW =D, W — wam’f (10.21a)

vViv,Ww = D"V, W—fwaﬁv X, + wﬁvﬁw A% ——% ew

26Here we understand the superfield W and the superfields constructed from its covariant derivatives as
their corresponding component fields. It should be clear from context which we are referring to.
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1 23 \j S a 1~ 555
+ 505 N W= 20t W 5057

+ %x‘”kai + 23—0DW + %W@W%W, (10.21b)
VaXh = DaXl, — o (F gy + W5, W) — % aa; X — %wdﬁiV%W
— ik W + %deé(EBé)@BAg - g(r&)déxgw, (10.21c)
where
D, =D, —iV,. (10.22)

Note that the covariant field strength may be expressed in terms of the bar-projected
field strength. Performing the component projection of the identity

Fyp = Ea BB F 5(—1)74°5 (10.23)

we find

F.

. 5 4 i 5
abl = Fap T I(F[&)dﬂ%}gAE + 5%0[&%%}2“’- (10.24)

It should be mentioned that the abelian Chern-Simons action can straightforwardly be
read off of the action presented in this section.

11 Supermultiplets with gauged central charge

In the presence of a gauged central charge different off-shell multiplets in conformal su-
pergravity become possible. For example, in 4D A = 2 conformal supergravity there exist
so-called vector-tensor multiplets, which may be viewed as dual versions of the abelian vec-
tor multiplet and possess gauge two-forms.?” The situation in 5D conformal supergravity
is similar. There also exists a dual version of the abelian vector multiplet, which we refer
to as the two-form multiplet. The off-shell multiplet was first constructed in [20] within the
component approach and was shown that it may be generalized to a so-called large tensor
multiplet that may be given a mass. Recently, two of us have shown how to describe both
the two-form and large tensor multiplets in Minkowski superspace by making convenient
use of superform formulations [77].

In this section we generalize the results of [77] to conformal superspace. Firstly, we
discuss how to gauge the central charge in conformal superspace. We then give the su-
perform formulation for the linear multiplet with central charge and immediately derive
its corresponding action principle. The action provides an important ingredient in con-
structing actions for multiplets with gauged central charge. Finally, we give the superform
formulations for the gauge two-form and large tensor multiplets.

2TSee [79, 80] for a superspace description of all known off-shell vector-tensor multiplets in 4D N = 2
conformal supergravity.
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11.1 Gauging a central charge in conformal superspace

We can introduce a central charge A in conformal superspace and gauge it using an abelian
vector multiplet associated with a gauge connection V. Doing so requires that we follow a
similar procedure as the one used in section 2.6. We can obtain the resulting structure by
simply replacing the gauge connection V' and field strength I’ with those associated with
the central charge A as follows:

iV - VA, iF — FA. (11.1)
The central charge is required to commute with the covariant derivatives
A,V ;] =0 (11.2)

and annihilate both V and F
AV =0, AF=0. (11.3)

The central charge gauge transformations of the covariant derivatives are
5VA:[AA,VA] — 5VAZVAA, (11.4)

where the gauge parameter A is inert under the central charge, AA = 0.
We constrain the field strength F formally the same way as F' but with W replaced
by W. The components of F are given by the following:

Fay = 2eesqWV, (11.5a)
i (P A
Fay = —(La)g VAW, (11.5b)
i &b ok .
Fap = —7Ca)(VaV, — W50, (11.5¢)

with W constrained by the Bianchi identity
viviw = Lo gitgdy (11.6)
VW = 1%V VAW |
The above results will be used in the remainder of this section.

11.2 The linear multiplet with central charge

In this subsection we construct a superform formulation for the 5D linear multiplet with
gauged central charge in conformal superspace, generalizing the one given in [77]. Our
approach is similar to the one adopted for the 4D A = 2 linear multiplet in conformal
supergravity [70]. We will show that the superform formulation naturally leads to the
action principle based on a linear multiplet.
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11.2.1 Superform formulation for the linear multiplet

In [70] a superform formulation for the 4D A = 2 linear multiplet was found by extending
the vielbein to include the one-form gauging the central charge. This leads to a system of
superforms describing the linear multiplet. As in [77] we instead start with a system of
superforms that generalizes the one that appeared in [70].

We introduce two primary superforms: a five-form ¥ and a four-form ®. We require
that they satisfy the superform equations

VE=FAd, Vd=-AY% (11.7)
and transform as scalars under the gauge transformations (11.4)
0¥ = AAY, 60 =AAD. (11.8)

The superforms ¥ and ® can now be related to the linear multiplet with central charge by
imposing certain constraints. However, it will prove useful to first introduce some notation
to deal with the component form of (11.7).

We introduce indices that range over not just A but an additional bosonic coordinate,
A = (A,6). Then we may rewrite eq. (11.7) in components as

ViiZgepery T 5 9[ Yigiepéry =0, (11.9)
where we have made the identifications
Tip = Fap, Top' =Tt =0, Ve=2 (11.10)
and

3 1 D C B A
Y= 'E ANEZNEYNEZANE EABC'ﬁE’

5
o= EEﬁAECAEBAEAEGABCﬁ. (11.11)
We constrain the lowest dimension components by
Jklp _ v iJkl _ aJk _ JklL _ Jkl _
23375,0 Eag&g@é - Z&bldgﬁ - 26104/375 26‘1575 0,
Seapey = 8i(Sa5)asl” (11.12)

and analyze eq. (11.9). The remaining components are completely determined as follows:

Eaz}ca@ 418abcde(2dé)dAW[’ij , (11.13a)

6abca = _g abcde(zde) BVBjﬁji = —26abcd6(2de) goﬁ, (11.13D)
Satods = 26abcde( al Wil + i, £7) (11.13c)
Ygabed = 1o abcde(re)aﬁvl V Lij = €455 (11.13d)
Siiede = €anede WF + XY Lij + 227 0ar), (11.13e)
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where £9 satisfies the constraint for the linear multiplet
(i pjk) _
VL =0
and we have introduced the superfields
i 1 ij
Pa = 7VOA¢]‘C J )
3
1 ais i
::vavg@:—ZVW%h
The above superfields together with
i

(07 1 i (e}
¢, = 12( a) BV VJ‘C’U = *Z( a) 6Vks05k

satisfy the following useful identities:

ViLF = 260" ")

V@%:-Bﬁ% F+2é@ 5 H1V L7 +ie, WALY
VQF:—QVd¢%—2MMA£1 —6W,; —9X4,; LY,

VD = 4(3,,)s" VPieh - 20(Ta)a Ay Ayw—m 2)a" WA
—4(F&)dBLV§&¢ﬁi——6(Fd)@ X5,L7.
Using the additional identities
i d L
SdSOB = GE&BE 5
SLF = 6igl; ,

Séc = _81(F ) (1067

one can check that 3 and ® are primary.

The superform equations imply the differential condition on ®;

Vi, = AWF + XYL + 207 p4) — 51X sy,

(11.14)

(11.15a)

(11.15D)

(11.16)

(11.17a)
(11.17b)

(11.17¢)

(11.17d)

(11.18a)
(11.18D)
(11.18¢)

(11.19)

It should be mentioned that in the above the central charge transformation of £¥ is

arbitrary. If we instead require £¥ to be inert under the central charge, ALY = 0, we have

de =0

and LY becomes an O(2) multiplet already described in previous sections.
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11.2.2 Action principle

five-form. It is
J=S+VAD. (11.21)

One can check that it is closed,
AdJ=dE+VAdP+dVAP=VE+VAAL+VAVE+FADP=0, (11.22)
and it transforms by an exact form under the central charge transformations,

ONT = 0AL — ANV AND -V AJpD
=AAY —dAAND -V A (AAD) = —d(A(D) . (11.23)

The corresponding action is found using eq. (8.11) to be
S = —/d5xe (vdqba +WF + Xijﬁz’j + 22k,
— oD W — ithgDON L1 + iwaizdﬁ%wﬁﬂ) , (11.24)
where all superfields appearing in the action are understood as their component projections
and we have defined

N . 1 . s
Vg = eame‘ 5 ¢a = _Iefagmnpqrq)mﬁﬁﬂ . (1125)

For completeness we also give the component field projection of ®4:
5 i ab 31 ciais
(I)a| _ ¢a o wajkzabspk + ggab6d6¢gk2@j¢élﬁkl| ) (1126)

11.3 Gauge two-form multiplet

In superspace, the two-form multiplet is described by a constrained real superfield L that
is coupled to the vector multiplet gauging the central charge [33, 77], similar to the 4D
N = 2 vector-tensor multiplets. Here we show how a geometric formulation of the multiplet
naturally leads to the constraints on L in conformal supergravity. Our presentation is
similar to the one given in [77] in Minkowski superspace.

In this subsection we wish to describe couplings of the two-form multiplet to additional
Yang-Mills multiplets W. Therefore in what follows we make use of covariant derivatives
which contain both the gauge connection gauging the central charge and the Yang-Mills
gauge connection:

V=d-VA-iV, V,;=V,-V;A-iV;. (11.27)

We introduce a gauge two-form, £ = %EBEA%’AB and define its three-form field
strength 7 by

jf:zV%’—tr(V/\F—éV/\V/\V), (11.28)
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where V' and F are the Yang-Mills connection and field strength corresponding to the
superfield W.2% Here 4 is a gauge singlet but is not assumed to be annihilated by the
central charge. The (infinitesimal) transformation law for the system of superforms is

0V =dA, AN =0,
oV =dr —i[V, 7], AT =0,
0B = AAFB — tr(t ANdV) + d=, A=ZE =0, (11.29)

where A, 7 and Z generate the gauge transformations of V, V' and £, respectively. The
field strength 7 transforms covariantly under the central charge transformations

0 = NAK (11.30)
and satisfies the Bianchi identity
VH =—-FNAB —tr(FAF). (11.31)

Again we can make use of the notation that was introduced in section 11.2.1. We
extend the Bianchi identity by introducing an additional bosonic index, A= (A, 6). This
can be done because we also have the additional superform equation

AK =V (AB). (11.32)

Combining the above equation with the Bianchi identity (11.31) gives

3 é 3
Viatgeny + 5748 Hgiery T 5 (FasFepy) =0, (11.33)
where we have defined
Heip = DBsp. Foi=F;;=0, (11.34a)
Tis8 = Fap TP = T8 =0, Dg = A. (11.34b)

Constraining the lowest components of ;5 by

ik i e
I 0, ,%%gﬁ = —2igY¢

Ak = iL (11.35)

B

fixes the remaining components of 5. Analyzing eq. (11.33) by increasing dimension
and subject to the constraints (11.35) (and the identifications (11.34)) leads to the remain-

ing components:

0 J k
il

%&é _ (F&)B%V%L’ (11.36b)

—2ie’*(Ta) g, (WL — tr(W?)) (11.36a)

28The special case of n abelian vector multiplets may be obtained by taking tr(VAF) — nrsVIFY,
where 7 is a symmetric, nr; = 1,7, coupling constant and V' and FT are the gauge connections and field
strengths of the abelian vector multiplets.

— 063 —



Ak = 2S43)5 VEOVEL — tr(W), (11.36c)
i af .
Hab = 7 Zab) HVEV 3y — 4W, )L, (11.36d)
i

e = _g%éadé(zdé)dﬂ <(V§V5k + 4in[§) (WL - tr(W2))

+2(VEW)V ;L 2tr((V§W)VBkW)> , (11.36¢)
where L satisfies the constraints
o7 — 1 oiligd)
VdVBL— 4554[3V7 V,AyL, (11.37a)
VIV (WL - tx(W?)) = -2(VIW) VI L+ 260 (VW) VW) . (11.37b)
To describe the action for the two-form multiplet one can use the composite linear
multiplet?? . .
L= %(2(Vd(iL)VQL +LVAiwI L) = 6LLVZ'J'(L3) . (11.38)

Note that it is also possible to construct another linear multiplet

.. 1 . . . . . .
£ =7 WV L+ wvetwI L+ Lveiviw) (11.39)
which couples the two-form multiplet to a vector multiplet W. The corresponding compo-
nent actions can be found in [20, 23].
11.4 Large tensor multiplet

In [20] it was discovered that there also exists the large tensor multiplet, which consists
of 16 + 16 degrees of freedom. In superspace the large tensor multiplet may be viewed
as a generalization of the gauge two-form multiplet in which the constraints (11.37) are
weakened. To show this let £ be a superfield constrained in the same way as eq. (11.37a),

(ig)yp— L ity
VaViL= 1,5V VI, (11.40)

Requiring only the above constraint, it is possible to show that consistency requires us to
have [33]

0= A{vwvg’)(wc) + 2(Vﬁ<iw)vg>c}
_ wilied) 3 (i )
= Vv (WAL) + 2V W) viAL, (11.41)

which is automatically satisfied for the gauge two-form multiplet. Here we will take
eq. (11.41) as a second constraint on £. The constraints (11.40) and (11.41) allow us
to construct a superform framework describing the large tensor multiplet.

We begin by introducing a two-form3° B, transforming as

§B=AAB+d=, AE=0, (11.42)

29This superfield Lagrangian first appeared in [33] in Minkowski superspace.
30Tn this subsection B will be used for the two-form. It is unrelated to the three-form B used for the O(2)
multiplet.
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and an associated three form H

Imposing the constraints

Hans =0, Healy = —2cVe ;AL (11.44)

and solving the Bianchi identities yields the components of H:

Hayh = =2 (La)y, WAL, (11.45a)
Heay = (Da) 5 VIAL, (11.45b)
Hopk = 2(5,)  VEOWAL) (11.45¢)
e ‘
Hah = 7 (ap) 7 (VAV 51, — W) AL, (11.45d)
i deyaf k : k
Hage = — gEaiode(E™) ﬁ((vavﬁk +4iW, 5) (WAL) + 2(VdW)VBkA,c) . (11.45¢)

where £ is constrained by egs. (11.40) and (11.41) and H 35 = AB ;5. There are still too
many component fields and to eliminate them we impose the constraint

BQB = —2ie¥e 4L, (11.46)
which fixes the remaining components via eq. (11.43) as

i

I (TN -
By = (Ta) VL, By=-

(S) % (VEV 5, —4iW, )L (11.47)

At the highest dimension eq. (11.43) gives

iz i deyap k .
3( /[dséé] - ‘7[&131 Bc}s) = _ggdl;édé(z ) ﬁA((VdVBk + 41Wd3)(WL’)
n 2(V§W)Vﬁk£) , (11.48)
where ) ) )
Vi=Va- ggaééJéWbCMde- (11.49)

The conditions (11.41) and (11.48) are similar to the ones imposed in [20] from requiring
closure of the supersymmetry transformations. In contrast with the gauge two-form mul-
tiplet, which was based on the stronger constraints (11.37), the component fields of the
large tensor multiplet

AVIL|, AL (11.50)

are no longer composite.

We should remark that the above constraints can be naturally generalized to include
couplings to the Yang-Mills multiplet. Furthermore, since B possesses the gauge transfor-
mation law

SB=d=, A= =0, (11.51)
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one can always shift £ by an abelian vector multiplet
L—=L+cW, (11.52)

where ¢ is an arbitrary real coefficient. One can check that the constraints (11.40)
and (11.41) are invariant under such transformations.

We can construct an action for an even number of large tensor multiplets £!. To do
so we make use of the superfield Lagrangian

LU= L7+ LY (11.53)

where
Liass = %mu (2926wl e? + hvstivileT), mry=myr,  (11.54a)
£ = iku (2(v@<id)‘2v§£" n UTV@(Z’VQLJ) . kiy—=—ky.  (11.54b)

The constant matrices my; and kry are assumed to be nonsingular. The Lagrangian £
may be seen to be a linear multiplet. The component action in supergravity is given in [20].

12 Off-shell (gauged) supergravity

We now turn to an off-shell formulation for 5D minimal supergravity obtained by coupling
the Weyl multiplet to the following compensators: (i) the vector multiplet; and (ii) the O(2)
multiplet. This is the 5D analogue of the off-shell formulation for 4D N = 2 supergravity
proposed by de Wit, Philippe and Van Proeyen [81].3! We will first describe the construc-
tion within superspace and then briefly give the bosonic part of the component action.

12.1 Superspace formulation

The superfield Lagrangian for 5D (gauged) supergravity is analogous to the one for 4D
N = 2 supergravity [83] and reads

+rVGP =P £+ L) (12.1)

In the first term, H\(,Ql\z denotes the composite O(2) multiplet (5.40). The superspace
action generated by Eg) then leads to the abelian Chern-Simons action, but normalized
with the wrong sign (as usual for a compensator action) and with an additional factor of
3 for later convenience (compare with eq. (9.1)).

Modulo a similar overall sign, the second term in (12.1) denoted by EE) describes the
dynamics of the O(2) multiplet or, equivalently, linear multiplet without central charge.
The superfield Y (v) is a covariant weight-one arctic multiplet, and TM)(v) its smile-

conjugated antarctic superfield. The action proves to be independent of TM and YO [83].

31The 4D N = 2 supergravity formulation of [81] makes use of the N/ = 2 improved tensor multiplet
constructed in terms of AV = 1 superfields in Minkowski superspace [82] and then in terms of component
fields in the locally supersymmetric case [81].
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The BF term in (12.1) denoted by E%)J describes a supersymmetric cosmological term.
For k = 0 the Lagrangian (12.1) describes pure Poincaré supergravity, while the case k # 0
corresponds to gauged or anti-de Sitter supergravity.

(2)

Making use of (7.16), the action generated by Ly’ may be rewritten as an integral

over the full superspace,

1 .
S|l = %7{ v, dv) /d5|8zEC( V@ = /d5|8zEVin\’,JM, (12.2)
with V;; being Mezincescu’s prepotential. Applying (7.16) once more gives another repre-
sentation

S| = 4/d58zEQVMW (12.3)

where we have introduced the primary superfield
Quu = i(WV”VU — 2V VLW - 2V, VW) (12.4)

which is a prepotential for H\(,Ql\)/I in the sense of (7.5b). The representations (12.2) and (12.3)
(2)]

allow us to compute the variation of S[Ly;’] induced by an arbitrary variation of the vector

multiplet prepotential, either Mezincescu’s or the tropical one,

ss1e) = / &8 B 5V HY, (12.50)
= 8% (v,dv)/d5|8zEC’(4)5VH\(,21\)4. (12.5b)

Making use of (12.5b), we readily find the equation of motion for the vector multiplet in
the supergravity theory (12.1) to be

HE + G( ) = (12.6)

2)

We next consider the action generated by Ei . It may be rewritten as an integral over

the full superspace

Sic?) = /d5|8zEQW, (12.7)
where ‘ @
b (-2)] G 12
W : 6m (v,dv)V og TOFD (12.8)

is a composite vector multiplet field strength obeying the Bianchi identity (7.13). The
direct evaluation of W will be given in section 14.2. The result is

G;
W = —GVO”VJ (G2> (12.9)
It may be seen that varying the prepotential {2 leads to the following variation of the action:

5S[LP] = /d5|ng<SQW. (12.10)
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Finally, we note that the action generated by Egg may also be rewritten as an integral
over the full superspace

s = /i/d5|82EVZ‘jGU = n/d582EQW. (12.11)

As a result, the complete (gauged) supergravity action becomes
Ssg = /d582 E {iij@jM + QW + /-;VZ-jGZ’J} (12.12a)
— /d58z E {iVin@jM +OW + RQW} . (12.12D)

Now, from the relations (12.10) and (12.12b) we deduce the supergravity equation of motion
for the O(2) compensator:
W+ kW = 0. (12.13)

The equation of motion for the Weyl multiplet is
G-W3=0. (12.14)

It may be shown that, modulo gauge freedom, the Weyl multiplet is described by a single
unconstrained real prepotential .32 The equation (12.14) is obtained by varying the
supergravity action with respect to {l. The meaning of (12.14) is that the supercurrent of
pure supergravity is equal to zero.

In general, given a dynamical system involving (matter) superfields ¢° coupled to
the Weyl multiplet, the supercurrent of this theory is a dimension-3 primary real scalar

superfield defined by
A

T = FUS[W] , (12.15)
where A/AYl denotes a covariantized variational derivative with respect to 4. The
variation ALl is a primary superfield with dimension —2. The supercurrent turns out to
satisfy the conservation equation

VAT =0 (12.16)

provided the dynamical superfields obey their equations of motion, 6S[¢]/d¢’ = 0. This
follows from the fact that ALl is defined modulo gauge transformations

ASL — AU+ VIQy;, (12.17)

where gauge parameter €);; is a primary real isovector superfield with dimension —3.
It is an instructive exercise to prove that the left-hand side of (12.14) obeys the con-
straint

Vi (G - W3) ~0 (12.18)
provided the equations (12.6) and (12.13) hold.

The supergravity equations of motion (12.6), (12.13) and (12.14) appeared in [85].
They are analogous to the superfield equations for 4D N = 2 (gauged) supergravity [69, 86].

32This can be done in complete analogy with the case of 4D A = 2 supergravity [84].
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12.2 Component formulation

To complement the superspace discussion, we now present briefly the bosonic part of the
component action for gauged supergravity. The three superspace actions given in (12.1)
can be analyzed in components easily using results given elsewhere in this paper. The first

(2)

term Ly’ leads to the wrong sign abelian Chern-Simons Lagrangian

1 o 3 3 9 .
EV — geadeev&fBéfCZé + EWfdgfab . ZWXUXij 4+ ZwabdeVVQ

. . 1 - 5
+ ;W(D“W)D&W - gRW3 +4DW*? + %wabwdgw?’ : (12.19)

where D, is defined by eq. (4.32). The second term ££2) leads to the O(2) multiplet
Lagrangian

£y = iG (DaGIYDH Gy — fG Lot
. 1 . ) g . y
+ 33 ‘“’Cdebé i <2G‘3(DdGik)(Dl;ij)G” + G_IR(J)éi)”Gij>
- @FQ - fRG 4DG — 33210&%&5(;. (12.20)

This Lagrangian is analogous to the 4D improved tensor multiplet Lagrangian [81] and
shares similar features. In particular, the second line of (12.20) involves a BF coupling
between the three-form b,;, and a composite two-form constructed from the tensor multiplet
scalars and the SU(2) gauge fields. As discussed in [81], this two-form is closed but not
exact: it has no SU(2)-invariant one-form potential. The third superspace Lagrangian E%Z
leads to the simple expression

Lyr, = —kWF — kX9Gyj — 2kv;9° . (12.21)

We now combine all three Lagrangians and eliminate the auxiliary fields using their
equations of motion. The equation of motion for D is

W3 -G =0 (12.22)

and corresponds to the lowest component of the superfield equation of motion (12.14).
Similarly, the equations of motion for the vector multiplet auxiliary X% and the O(2)
multiplet auxiliary F' lead, respectively, to

gWXij + KJGZ‘J’ =0, (12.23)
ép b RW =0, (12.24)

which correspond to the bosonic parts of the lowest components of (12.6) and (12.13),
respectively. Finally, we must impose the equation of motion for w,;, which leads to

wy W+ fo5 = 0. (12.25)
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This is actually the bosonic part of a higher component of the Weyl superfield equation
of motion; it can be extracted by applying v’gdvg)k to (12.14) and taking the lowest
component.

After imposing each of these equations, we finally choose the Weyl gauge W = 1. This
leads to the component Lagrangian

L 1 abede 3, gab 8 2

Lsa = —gR+ ge™vafiefe — gfapf™ + 38
1 . 1 . R
+ Z(D&G”)DGGU - 5(]5“(;5& — 2K050"

1 abede 1 A A ij D ij
+ EE bed bédé (Q(Ddsz)(Di,ij)G 7+ R(J)ai; ]Gij> . (12.26)

The terms in the second and third lines turn out to lead to auxiliary fields. The easiest
way to see this is to adopt the SU(2) gauge

Gp=i, Gu=Gp=0, (12.27)
which breaks the R-symmetry group to U(1). Using
D,GHL =2Vt D,G2=-2V,2, D,G2=0, (12.28)

the supergravity Lagrangian can be rewritten as

L 1 abede 3 ab_ 8 2
Lsa = —5R+ e valfplge — gl + 3t
o1 )
+ 20V — D60 — 2(kvs +1Vat?)¢" (12.29)

Now one introduces a Lagrange multiplier term gi)&ﬁ&A to enforce the constraint on ¢%; the
field \ is eaten by V;12, which fixes the remaining R-symmetry up to a compensating -
dependent transformation to counter the graviphoton’s gauge transformation. Integrating
out ¢4 then gives

3 8 4

v fiofie — g™ + 38"+ Va1 Gva)’ (12.30)

L

1.
Log = —=R
S5a 5 T3

where we have written the auxiliary one-forms in a way which holds for any choice of
constant G%. The equation of motion for this auxiliary then fixes V;¥ = —xkG% vy, which
is ultimately responsible for the x-dependent minimal coupling between the gravitino and
the graviphoton. Note that the cosmological constant is given in these conventions by

A= —gﬁ <0. (12.31)

13 Dilaton Weyl multiplets and superforms

It is possible to construct variant formulations for conformal supergravity by coupling the
standard Weyl multiplet, which is described in sections 2 and 4, to an on-shell abelian
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vector multiplet with nowhere vanishing field strength, W # 0. The field strength W of
such a vector multiplet satisfies the Bianchi identity (2.49) as well as the equation of motion

HY =0 (13.1)

derived from a gauge invariant action S[W], see section 6.6.

In this section, we consider a special case of the equation of motion (13.1) that orig-
inates in 5D minimal supergravity with cosmological term realized as conformal super-
gravity coupled to two compensators: (i) the vector multiplet; and (ii) the O(2) multi-
plet. In this case HY = HgM, where H{/QM denotes the composite Yang-Mills O(2) multi-
plet (2.54). In the superspace setting, the supergravity equations of motion [85] are given
by egs. (12.6), (12.13) and (12.14). In what follows, we will only use eq. (12.6).

13.1 The dilaton Weyl multiplet

The dilaton Weyl multiplet®3 [19, 21] is equivalently described as the standard Weyl mul-
tiplet coupled to a vector multiplet compensator obeying the equation of motion

H\y=0. (13.2)

The formulation of this multiplet in SU(2) superspace was given in [3]. Eq. (13.2) in SU(2)
superspace is equivalent to

54 = 21W2{(D5‘UW)DQW + ;WDUW} . (13.3)

Equation (13.2) tells us that the matter fields of the super Weyl tensor W; satisfy
certain constraints that allow one to solve W; in terms of a gauge two-form. To see this
we make use of the equivalence between vector and two-form multiplets on the mass shell.
We recall that the two-form multiplet was described in section 11.3 and here we will use
its superform realization.

Ignoring the Chern-Simons couplings to Yang-Mills multiplets, a two-form multiplet
possesses a gauge two-form % with corresponding field strength

H=dB -V NAB. (13.4)

Imposing the on-shell condition for a two-form multiplet, AL = 0, allows one to identify L
with a vector multiplet. In fact, we identify both the vector multiplet gauging the central
charge and the two-form multiplet with the same vector multiplet. To do this we make the
replacements

L—-W, W—-W, (13.5)

which requires
AB=F, F=F, V=V. (13.6)

33The dilaton Weyl multiplet corresponds to the Nishino-Rajpoot version [87] of 5D N = 1 Poincaré
supergravity.
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Note that the gauge transformations become
oV =dA, A =AF+d=. (13.7)
The field strength 7 = d% — V A F satisfies the Bianchi identity
d## =—-FAF, (13.8)

or, equivalently,

3 £ 3
Viapepy + 5748 Heeny + 5 FlasFeny =0- (13.9)

The solution to the above Bianchi identity may be read off of eq. (11.36):

Ak =0, (13.10a)

Hih = 2’ (Ta) g, W72, (13.10b)

Hiogh = =2S3), " VEW?, (13.10¢)
i leyap .

Hibe = égdéédé(zd ) (ngﬁkWQ + AW, W2+ Q(VQW)VBICI/V) : (13.10d)

The Bianchi identities are satisfied since we have the on-shell condition (13.2), which is
equivalent to

oD T2 — _oroii J)
VIV = 2(V W)V& W (13.11a)
From the component ;. one finds the expression for the super Weyl tensor
W= (Lo e _owr iz @i 13.12
ab = 32 \ g abede - ab — 1(Za) " AaAge | - (13.12)

Due to the above relation we see that we may instead choose the gauge two-form %_; as
a fundamental component field. This means that the matter fields in the standard Weyl
multiplet become composite. They may be derived directly from the above superspace
expression for W;.
Using the above relations we can replace the matter fields in the standard Weyl mul-
tiplet:
(W5, X5, Y) = (W, Ns, Vi, B - (13.13)

s A&
This leads to the dilaton Weyl multiplet, which only differs from the standard Weyl mul-
tiplet in the matter field content. One can check that both Weyl multiplets contain 3232
degrees of freedom.

The construction of actions involving the dilaton Weyl multiplet may be readily ob-
tained from those involving the standard Weyl multiplet upon making the replacements
in this subsection. One can further construct actions by replacing any vector multiplet W
with the components of the dilaton Weyl multiplet as follows:

(W, AL, T, 1) <W, NV, Z;Vw) | (13.14)
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13.2 The deformed dilaton Weyl multiplet

The deformed Weyl multiplet [88] is equivalently described as the standard Weyl multiplet
coupled to a vector multiplet compensator obeying the equation of motion

y Ak ..
HY = —?HG” , (13.15)
which implies
X = iy _ 2R i (13.16)
oW 3W

Here the O(2) compensator G is considered as a background field.
Just like in the previous case we can give the constrained system a geometric descrip-
tion. We now modify the superform equation to

4
A = —FNF - ?ﬁ@, (13.17)
where
4k

Here B is the gauge three-form for the O(2) multiplet. From the above we see that we
must modify the gauge transformation of % to be

5B = AF + d= + %p (13.19)
since
SB=dp. (13.20)
The solution is

%g;ﬁ =0, (13.21a)
%@;’; = 2ie7* (Ta) 5, W72, (13.21D)
Ak = —23,3)5 VEW?, (13.21c)
e = %E&Eécié(zdé)dé (VEV W2 4 40, ;W2 + 2(VEW)V, W) . (13.21d)

From the component ;. one finds the expression
A (15AAAAA%6‘Z€ AW, —i(3,;) NN > . (13.22)

ab — gyy2 \ g abede ab ab) ek

Again the matter components of the Weyl multiplet may be replaced using the above
expression. The above expression for W; looks formally the same as eq. (13.12). However,
it should be kept in mind that W now satisfies the different on-shell constraint

161

VIOTIW? = —2(VIOW)VIW + ZrGY (13.23)
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13.3 The deformed dilaton Weyl multiplet with Chern-Simons couplings

It was mentioned in [26] that one can generalize the construction of the dilaton Weyl
multiplet to include a system of abelian vector multiplets. Using a similar idea we generalize
the deformed dilaton Weyl multiplet of the previous subsection in the presence of Yang-
Mills couplings.

We now modify the superform equation to

4
d# = —FANF —tr(F A F) — ?"“@, (13.24)
where . 4
%_d%—VAF—tr<VAF—;VAVAV>—;B. (13.25)
From the above we see that we must modify the gauge transformation of 4 to be
_ 4k
0B = AF + tr(TdV) + d= + 3P (13.26)
since
B=dp, o0V =dr—-i]V,T]. (13.27)

The superform equation (13.24) is solved by

A% =0, (13.28a)
,%”’ 8 =21 (Ta) 4 (W? + tr(W?)) (13.28b)
ff;bii ~2(8,)s’ VE(W? + tr(W?)) (13.28¢)
Hipe = ; abcde(zde)aﬁ (Vkvﬁk (W2 + tr(WQ)) + 4inBW2

+2r((VEW)V 5, W) + 2(v§W)kaW) : (13.28d)
where W satisfies the Bianchi identity

s . . . . 1
VIO (W2 + t2(W?)) = 2(VIIW)VIW — 2t (VIOW) V)W) + % G| (13.29)

which implies
2K

X4 = ﬁ(mﬂ +r(AN)) = et (WXY) — 2 GY (13.30)

From the component ;. one finds the expression
1 cae
3(W? + te(W2)W,; = <6 eoroie X —2WF,, — 20(WF,;)
—i(%, )aﬁA’;ABk i(, )aﬁtr(A’;ABk)> (13.31)

If (W2 + tr(WQ)) does not vanish then we can again replace the matter fields of the Weyl
multiplet with those of W.
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The supersymmetry transformations of the gauge fields may be obtained from eq. (4.42)
upon using (13.31). We list the supersymmetry transformations of the matter fields below:

SW = ig AP, (13.32a)
i _oebi(p, A REPSINGY) () — L
0Ag = 267 (Fay + W5 W) + QWQXJ (AEX) + tr(AEN))) Wga]tr(WX 7)
2K . A .
AV e g BT )
3W§QJG T = IV W A 2ins W (13.32b)
Vi = iG T AP + i€, W, (13.32¢)
(5,@,:,”1 = 2i§kF[mz/zﬁ]k(W2 + tr(WQ)) — 4i§k2mﬁ)\kW
— 4G T aatr(NW) — 2V7,,6V5) — 2t (V(,0V 5) - (13.32d)
The superconformal field strengths are given by
" f : koloq k&
Fdf) = 2e; €, 8[,:,LV;L] — lw[dkrg])\ + Ew[@ZQ/)BHW, (13.33a)
" f : : kool Ak
Fdl; = 26(1 € (8[mv7ﬂ - IV[mVﬁ]) - 1¢[&kFB]A + §’¢[&g’¢}l}];yw, (1333b)

L 4
%Eé = e&mei)ne@p <38[m$ﬁﬁ] = 3Vim Frp) — tr(SV[mFﬁﬁ] + QiV[mVﬁVﬁ]) — ;Bmﬁﬁ)

3
+ §¢[akrg¢a}k (W? + tr(W?))
— G T A — 61 tr (W S ) - (13.33c)

The supersymmetry transformations for the previous two cases (the dilaton Weyl and
deformed dilaton Weyl multiplets) may be straightforwardly obtained from the above gen-
eral results.

14 Higher derivative couplings

The superspace formalism developed in this paper offers more general tools to construct
composite primary multiplets (that may be used, e.g., to generate higher derivative invari-
ants) than those which have so far been employed within the component approaches [14-23].
This will be demonstrated below.

14.1 Composite primary multiplets and invariants

In section 6 we derived two gauge prepotentials for the abelian vector multiplet: (i) the
tropical prepotential V' (v); and (ii) Mezincescu’s prepotential Vj;. These constructions lead
to two different procedures to generate composite vector multiplet field strengths.

Associated with a composite weight-0 tropical multiplet V(v) is the following primary
real scalar

Wtropical = W[V] = (’U, dv)V(_2)V(v) . (141)

i
167
It obeys the Bianchi identity (7.13). Thus we may think of Wi.opical as the field strength
of a composite vector multiplet. An example is provided by

(2n)
v 2 n=12,.., (14.2)
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for an arbitrary real O(2n) multiplet H?™ (v) and an O(2) multiplet G?) (v) such that the
scalar GG defined by (7.25) is nowhere vanishing. The existence of the latter is assumed in
this section.

Associated with a composite real isovector superfield V;; with dimension —2 is the
following primary real scalar

3i

WhMezincescu = W[VU] = _E

Vi ARy (14.3)

It obeys the Bianchi identity (7.13). As an example, we consider

Vij = Gij (14.4)

TGh/3

In section 7 we derived the unconstrained prepotential 2 for the O(2) multiplet. This
construction leads to a procedure to generate composite O(2) multiplets. Associated with
a composite primary dimensionless scalar N is the O(2) multiplet

G®? = vw;GY = GP|N] = —%A@)v(—?)N — GY= —%Mklva. (14.5)

By construction, G¥ obeys the constraint (6.57). An example is provided by

WP, 5\ "

for a positive integer n. Here W, 4 is the super Weyl tensor.

It is also possible to generate composite O(4 + n) multiplets by making use of the
prepotential construction (7.27), for any non-negative integer n. As an example, consider
the case of an even integer n = 2m. Given a composite O(4 + 2m) multiplet, we can
introduce a composite tropical multiplet of the form (14.2) and then make use of the latter
to generate the composite vector multiplet field strength (14.1).

As concerns the component approaches [14-23], there is essentially only one regular
procedure (the vector-tensor embedding) to generate composite primary multiplets. It
is defined as follows: given a composite vector multiplet field strength W constrained
by (7.13), the following superfield

HY,, = HY, [W] = i(VoOW) VW + %Wvd“vg}w (14.7)
is a composite O(2) multiplet.

In addition, there exists the composite O(2) multiplet constructed by Hanaki, Ohashi
and Tachikawa [29] and associated with the Weyl multiplet.?* In superspace, it is given in
terms of the super Weyl tensor as in eq. (2.41).

We are in a position to generate supersymmetric invariants given primary composite
multiplets. If the theory under consideration involves a dynamical vector multiplet, which

34This O(2) multiplet was denoted L”[W?] in [29].
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is described by a tropical prepotential V' (v), and also possesses a composite O(2) multiplet
G®, a supersymmetric BF invariant is generated by the Lagrangian

P =ve®. (14.8)

If the theory involves a dynamical O(2) multiplet, which is described by a prepotential €,
and possesses a composite vector multiplet field strength W, then we are able to construct
a supersymmetric invariant of the type (7.23) with the Lagrangian

Ly = QW . (14.9)

More generally, the action principles (5.35) and (7.23) provide universal procedures to
generate supersymmetric invariants. For instance, supersymmetric R**2" terms may be
realized as full superspace invariants (7.23) with

E:

n=0,1,..., (14.10)

(WWes? (W' Hi
G G/ )’ GO

where WV] is defined by (14.1).

14.2 Composite vector multiplets

In this subsection we consider several examples of applying the rule (14.1) to generate
composite vector multiplets. Our results are inspired by the four-dimensional analysis
in [69]. Below we denote Wi;gpical simply as W.

V=1 7(;(2) 14.11
_°g<n~(1>?<1>>’ (14.11)

where Y is a weight-one arctic multiplet. The corresponding composite vector mul-

Our first example is

tiplet (14.1) has already appeared in (12.8). It constitutes the equation of motion for
the theory of a single O(2) multiplet coupled to conformal supergravity. Evaluating the
covariant derivatives gives

i v(=2G®) (V(_l)&G(Q))Vé;UG(Q)
The contour integral can be explicitly evaluated. To do so we make use of the identities
vilE® =201 = 2pi, (14.13a)
vE2GR) = _4iF | (14.13Db)

where we have introduced the descendant superfields (8.8). Then applying the integration
identities of [69], we obtain

B 1 F .90(1)d(pél) . 1 i & J
W= c(”’d”><a<2> “iTow ) Tagt  see¥ vali
i N i i .
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From the S-supersymmetry transformations of gpfi and F,
Say = —6e,5G7,  SuF =6ipg (14.15)

it is straightforward to explicitly check that W is primary.
It is an instructive exercise to show that the composite vector multiplet (14.14) can
also be rewritten in the following compact form

i G
W=—GVUVi( 7). 14.16
This expression resembles the one in four dimensions [69]. The vector multiplet (14.16) is
actually well known. At the component level it was first derived by Zucker [89], using a
brute force approach, as an extension of the construction for the improved N’ = 2 tensor
multiplet in four dimensions [81].
As another example, we consider a composite tropical prepotential of the form
H(2n)

Vnzm, TL:172,..., (1417)

where H(?") is an arbitrary O(2n) multiplet. The corresponding composite vector multiplet

W dv)v(=2) Ha 14.18
n—fm C(U’ U) <(G(2))n) ( : )

can be computed in complete analogy with the 4D A = 2 analysis in [69]. Evaluating the
covariant derivatives gives

; o — 1 h(2n—2) 2 p@2n—=1) (1) F
W, = B (v,dv) n _ o LA & (L0 I
167 Jc 2+ 1 (GO 2n+1 (G@)nil (G@ynr1
(D 1)
(2n) ¥
+4n(n+ 1)H (G@))nH), (14.19)
where we made use of the identities (14.13) and
2n _
SHe = gyl 14.2
Va m+1 o (14.20)
2n —1
(e = = pn—2 14.20b
v 2n+1 ' (14.20b)
with
D g HR ey, (14.21)
h(Qn_Q) = VleklilmiQ"_Q’Uz'l © Vig,_o - (14.22)

Making use of the integration results of [69] gives

W i(2n)! ( n hilmi%_QG(hiz T Gizn—3i2n—2)
n 2(

T 22 2(pl)2\ 2(2n + 1) G2n—1
B 02 \1;i1-'~i2n71¢i2nG(ili2 . Gi2n71i2n)
2n + 1 G2n+1

— 78 —



) Fhil"'iZ"G(

.G
217
—+1n 12

G2n+1
11920 Al2n+1  pl2n4+2(Y,. . ... (7. .
h mpEnT G(zm G22n+122n+2)>

i27b7 1 Z‘2'n)

+n(2n +1) (14.23)

Gn+3

It turns out the above complex expression may be cast in the following simpler form

i(2n)! y
W,, = 523+ 1)1 = 1)!Gvij7€n I (14.24a)
where
. . 1 .. Hklil".iQ”_QGi i Gz 2
R, = (5,@5{ 5o G”le> (Gl'(;n) 2n-sizn-2) (14.24b)

The composite vector multiplets (14.24) are new for n > 1. The choice n = 1 is a
special case in the family of composite tropical prepotentials of the form

Vv=FHY), A=1,...,m, (14.25)
where F(z4) is a homogeneous function of degree zero, F(Az4) = F(z4), and H,(42) are O(2)
multiplets, A = 1,...,m. The composite vector multiplet associated with (14.25) can be

computed in complete analogy with the 4D N = 2 analysis in [69] (the latter analysis was
inspired by [90]).

14.3 Ricci squared O(2) multiplet

As discussed above, associated with the super Weyl tensor is the O(2) multiplet (2.41).
In this subsection we discover one more O(2) multiplet associated with the supergravity
dynamical variables. Our analysis is inspired by the construction of chiral invariants in 4D
N = 2 supergravity presented in [50].

In section 7.1 we constructed the prepotential formulation for the O(2) multiplet such
that the prepotential is a primary dimensionless real scalar €. It turns out that this
construction can be generalized by replacing 2 with log ® defined in terms of a primary
nowhere vanishing real scalar ® of dimension g:

Silog® =0, Dlog®=gq. (14.26)
Let us consider the superfield

GP[log @] = _§A<4>v<—2> log & = _%vivaklvkl log @ . (14.27)

It follows that G®[log ®] is analytic, VS)G(Q) [log ®] = 0, and of dimension 3. As demon-
strated in section 7.1, the superfield G := G(?)[Q] defined by (7.5) is primary S5 G?) = 0.
We observe that exactly the same derivation holds for G®)[log ®]. Indeed, in the case of
G we used the fact that DQ = 0. In computing SgG(Q) [log @], there may be extra terms
due to the fact that Dlog® = g # 0. But it can be checked that all these terms are

— 79 —



actually annihilated by some operator acting on the constant ¢. Since SfiG(Q) [log ®] = 0,
we conclude that G®)[log ®] is also an O?) multiplet.

The reason why G®[log®] is of interest can be made clear once we consider the
degauged versions of (7.5) and (14.27). It is a straightforward, although tedious, exercise
to apply the degauging procedure of section 3 in order to express (7.5) and (14.27) in SU(2)
superspace. Let us denote by G = D((f)Q = viijéjQ the degauged version of (7.5).
Here the sixth-order differential operator Déj = Déi is constructed only in terms of Dy,
M, J% and the torsion tensors of SU(2) superspace. It can be obtained by iteratively
degauging the six V-derivatives while moving to the right the S, K3 and ID operators to use
SéQ = K;Q =DQ = 0. For the scope of this paper we do not need the explicit expression
for Déj . Since G® is an O(2) multiplet, it holds by construction that DS)D(?)Q =0.

The result of degauging G®[log ®], which we denote G?[log ®], is more interesting.
A straightforward but somewhat lengthy calculation leads to the following relation

G log @] = O log ® — ¢ HL. . (14.28)

The superfield Hf(ﬁi encodes all the contributions that arise from using Dlog ® = ¢ and is

given by
i A - -
HE, =~ {DPDOFE24, — 12D (504,509) 4 12D) (504550))
+12(3(PWFPIN 1 i(rg) 500 (DPFY —i(1);5)

alp A6 ba_By\ (1 1)m(0) . b 1

_ 12(33(0) [BA0] 4 %(0) 567)@(&)(@2 )S;S) _ l(pb)%gf(%))
+8p®@ (3(2)54&3(—2)%) + 4pa (3(2)&5Dg)3(—2)% _ 61({\&)5@3&2322)
+ 165(2)&B< _ 23{223(—2)@% + 63’@3(0)% _ 33-((3?)?8:@

ap ap By

+3507:3Y +1250,75))
“04p T
a 3 ~(-2)4 3 (0 3 ~(0)5
+ 16394, <2S(2)533( 29 + 33(0)573% _ 33(0)%3(0)7&)} ‘ (14.29)
Here we have introduced the following superfields:

2 Vil Ui 5

@) ._ i ©) ._ i j (-2) ._ i
3@3 = Uz’U]S'aBa %’@B : (U, U)Saﬁ ’ S&/B : (U, u)2%’aﬁ, (1430&)
Fos = DLEL) i) (14.30b)

What is remarkable about (14.28) is that by construction Hf(fl)c is a composite O(2) mul-
tiplet3® constructed only in terms of the curvature tensors of SU(2) superspace; it is com-
pletely independent of log ®. As will be discussed in the next two subsections, G(2) [log @]
gives rise to a supersymmetric extension of the Ricci squared action.

35Tt should be pointed out that ngii is a non-primary O(2) multiplet, since its super Weyl transformation
law is inhomogeneous.
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By construction, H F(il

viijgiC. From (14.29) we deduce

is independent of u; and can be represented in the form Hgl =

ij __L § (i ykl) méx _% (ij (mik Bl 274 (ij (elikl) o
Hg;. = 128{5D DV 5D j(g ok ﬁl)+ 5D '( dskﬁl)
36 (ij (ki fad i [ 2 g Bl A i B gk
+ 2000 ({500 5) + 60 2540551 - ) B )
aling By 48] ( Amkl) k) b
+ 27(D ( S‘ék‘ )6’Y ]<5DBS’?(§Z - 133 B(F )'?8>

n 9<33a(126575} " Sa(zggﬁw> <1D3 gg)i)(rb)% - =D} D% 3l>
: 39 b (16 2k 3 5(iaP5)b
+9i(T3) 75 D%S@)gk — 12(Ta) 57 (Ty) .53

AR oo . i ) ) .
+ g%a(lﬁj (63§5k3/yl)&1 - 23’;2 WAL~ 332232&1 + 33%5%3251 + 123@23%;)

A8 i A1) A Ar 2 A .
+ 50 (257500 + 35715 )0 — 357 Bkm%)} : (14.31)
On the other hand, the condition that the expression (14.29) is independent of u; gives the
constraints
0= D(l]Dle&pq) o 4D(Z] (g&klAgﬂquA)) + 12D(’L] (Srdkﬁlglz‘{))
(i (=d Bkl 29 a(ind 1Bk A8yl 2 a)
44DH (gJaﬁ Dégwpg) + 36(D SJ&[B )e ]Déggg
_ a(i[Bi A0] 4 0165 By pkpl zP )
12(3§°0170£30) 4. 3023 57) plplgee
+16(7§A0AIFhLE Y - §o gAY 10500 Rgh gD ) (14.32)
and
_ 5D(ijpkl ép) QOD(ij &kl ~pp) Dl (zakBlzp)
0—§ S op (TS Bp)+20 (3 S&Bp)

44D (ggéﬁk‘plégﬁp)ﬁp _ 6i(Fd)mS£a822>

+6(DYFE ) (5DLF, — 6i5);(I7) ;) + 30(DY0FE )P Dty

+2(3501I70 4 §02IH) (6D (7). 5 — 5DADLFY;, )

10 (33’5“(1'][;,36%} + Sé(z‘gg@&) Dépgggg) i 12i(F@)B§S‘§(i@Dég’;?

+%3d<"53‘ (BEL37)5p + 335,318 — 95715 5p + 3357875, )

%3@% (3&“”8?% - SB’“’BS’AYP)%) , (14.32b)
which have to be satisfied identically.

14.4 Supersymmetric R? invariants

Supersymmetric extensions of the R? terms may be realized using the BF action princi-
ple (8.1), in which the tropical prepotential corresponds to the vector multiplet compen-
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sator. There are three invariants associated with the Lagrangians

LEy = VHG (14.33a)
£y = —VG@log W1, (14.33D)
(B -va@m,  w-evivl(S). aao

The supersymmetric invariants associated with (14.33a) and (14.33c) are known in the
literature [29-32]. At the component level, they generate the Weyl tensor squared and
scalar curvature squared terms, respectively. The invariant associated with (14.33b) is
new. At the component level, it turns out to generate the Ricci tensor squared term. In
order to achieve a better understanding of this invariant, it is useful to consider a special
case when the vector multiplet compensator W obeys the equation (13.2). As discussed in
section 13.1, this case corresponds to the dilaton Weyl multiplet.

14.5 The supersymmetric Ricci squared term and the dilaton Weyl multiplet

When dealing with the vector multiplet compensator, it is often convenient to impose the
gauge condition (3.2) which fixes the local special conformal symmetry and eliminates the
dilatation connection entirely, thus leading us to SU(2) superspace. In addition, the local
dilatation symmetry can also be fixed by making the gauge choice

W=1. (14.34)
We recall that the Bianchi identity for the vector multiplet (2.49) takes the following
form in SU(2) superspace [26]

(iy3) _} (i) _i ij
DaDBW 45&6D D@W—QC@B Ww. (14.35)

Then choosing the gauge condition (14.34) gives
Ci7 =0. (14.36a)

We also recall that the equation of motion for the vector multiplet (13.2) turns into (13.3)
in SU(2) superspace. Then imposing the gauge condition (14.34) gives

S =0. (14.36b)

Under the conditions (14.36), the algebra of covariant derivatives in SU(2) superspace
simplifies drastically. In particular, the anti-commutator of two spinor covariant derivatives
becomes

{Di Dy} = —2ieV Dy — e (W + YN M, 4 20D, Y My,
—12iY, 5%, (14.37)
where W_; and Y,; satisfy the Bianchi identities

5 N
k k S~k
DiWy, = Waify - i(zai,)% ye, (14.38a)
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DEY,; = 2(Tpa)s Vys® + (255)4° Y5 - (14.38b)

Using the Bianchi identities, at dimension 2 we find the relations

g 5 i 5 é ed\8pmy(inyi

DUD)We = 5eaa(Ca) " DIVY = Ceuiode 0)55(E)¥DIY) . (14.309)
D > i 5 é ed\38 (i

DéD]B)Y&B = 15&3(2 )752),()/ y]) —+ 8€abcd6(r )CAMﬁA(Z d)“/(;D’% yg) . (1439b)

Furthermore, at dimension 5/2 we derive

(iryik _ (iryik —
DyDMY,; =0, DYDMW,;=0. (14.40)

It can also be seen that the bivector Xaz; = Yaé + W&B satisfies

1
D“D”X DX (14.41)
~1%ab
This relation is reminiscent of the Bianchi identity for the vector multiplet, eq. (2.49). In
the remainder of this section, we will refer to the superspace geometry described as dilaton
SU(2) superspace.
In the dilaton SU(2) superspace, the expressions (14.28) and (14.29) for the O(2)
multiplet on the right of (14.33b) proves to simplify drastically and takes the form:
2
- gPlog W] = H) =

151 [ ap 2., (1)aa L ma
15 {Ya,apényél) - Zymaayth _ 2y<1>ay§>} O (1442)

It is now easy to check that the constraints (14.32) are identically satisfied. Now we are

going to show that Hf({zll

can be represented as a linear combination of two different O(2)
multiplets.
First of all, let us consider the Weyl squared O(2) multiplet (2.41). In the dilaton
SU(2) superspace it may be rewritten as
2) aB.pyM) (Wabayy (1), Oyy(1)aqy,0)
HY) = {W Sy + 15W Wl + Yyl (14.43)
For the dilaton Weyl multiplet, the BF Lagrangian (14.33a) generates a supersymmetric
extension of the (C;,;)? + $ R* Lagrangian of [29, 31, 32].
A remarkable feature of the dilaton SU(2) superspace is that the relations (14.40)
and (14.41) imply the existence of one more O(2) multiplet. It is

2 [ ab & yraby (1
a? = Z{X D) x . 4 2(DWa x4yl )Xﬁ}, (14.44a)
151

=3 {X”D y5 + W( )awa(l) y(l)&&yé}i)+iy(l)&yél)}‘ (14.44D)

One may check that D(I)nghlm = 0. The structure of HP({ lm resembles the composite
O(2) multiplet built from a vector multiplet, eq. (14.7). It turns out that the O(2) multi-

plet (14.44) generates the supersymmetric extension of the Riemann squared term, (R;, 8)27
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constructed in [30]. The construction of [30] was based on a map between the dilaton Weyl
multiplet and the vector multiplet applied to the non-abelian Chern-Simons action.
From the relations (14.42) — (14.44) we deduce

1 1
~GPog W] = JHG, + { Hijur, (14.45)
The important point is that the construction of [30] and related works [31, 32] is defined only
for the dilaton Weyl multiplet. Our Ricci squared O(2) multiplet —G®)[log W], eq. (14.27),
and the corresponding supersymmetric invariant generated by (14.33b) makes use of the

standard Weyl multiplet coupled to the off-shell vector multiplet compensator. Eq. (14.45)
)

allows us to define ngizie

., for the standard Weyl multiplet coupled to the off-shell vector
multiplet compensator:

H®

Riem

1
=4 <G<2> llog W] + 2H53gyl> . (14.46)

15 Concluding remarks

The conformal superspace formalism in five dimensions presented in this work combines
the powerful features of the SU(2) superspace approach [26] and the superconformal tensor
calculus [19-22]. Using this formalism we have reproduced practically all off-shell construc-
tions derived so far. Most importantly, since the superspace setting offers more general
off-shell multiplets than those employed in [19-22], we have developed novel tools to con-
struct composite primary multiplets and, as a consequence, to generate new higher-order
off-shell invariants in supergravity. In addition to full superspace integrals, we have in-
troduced general techniques to build composite O(2) and vector multiplets, which in turn
can be used in the universal BF action. One particular example is the Ricci squared O(2)
multiplet constructed in section 14.3.36

Prior to this paper, the superconformal tensor calculus was used to construct super-
symmetric completions of R? terms. Hanaki, Ohashi and Tachikawa [29] constructed the
supersymmetric Weyl tensor squared term, while Ozkan and Pang [32] constructed the
supersymmetric scalar curvature squared term. These invariants are generated by the La-
grangians (14.33a) and (14.33c) respectively. An important feature of these invariants is
that they make use of the standard Weyl multiplet coupled to one or two conformal com-
pensators, one of which is always the vector multiplet. Choosing the vector multiplet to
be on-shell leads one to a formulation in the dilaton Weyl multiplet. As concerns a su-
persymmetric completion of the Riemann squared term, it was constructed by Bergshoeff,
Rosseel and Sezgin [30] only in the dilaton Weyl multiplet realization. However, a descrip-
tion of the supersymmetric Riemann squared action in the standard Weyl multiplet was
completely unknown. Our paper has solved this problem with the use of the O(2) mul-
tiplet G [log W1, eq. (14.27), which describes a supersymmetric Ricci squared invariant

36The construction of the Ricci squared O(2) multiplet is analogous to that of the nonlinear kinetic
multiplet presented in [50].
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using the Lagrangian (14.33b). This invariant completes the description of the supersym-
metric R? invariants within the standard Weyl multiplet. In particular, the analogue of
the supersymmetric Riemann squared action constructed in [30] is generated by (14.46).
We hope to elaborate further the component structure of the action generated by the
Lagrangian (14.33b) in another publication.

The main virtue of the SU(2) superspace approach [26] and its extension given in our
paper is that it offers off-shell descriptions for the most general supergravity-matter sys-
tems. Here we briefly comment on such off-shell descriptions. In section 12, we discussed
the two-derivative supergravity action, corresponding to an O(2) multiplet and an abelian
vector multiplet compensator. It is easy to generalize this to include off-shell hypermul-
tiplets. One takes the same approach as in four dimensions [83] and adds to the pure

7

supergravity Lagrangian (12.1) a sigma model term3” resulting in

2
el @) 1

£® ivﬂg& +Gn- +SGUK(TT),  (151)

linear IT(l)T
where K(7T, T) depends on n weight-zero arctic multiplets YZ and their smile-conjugate
antarctic multiplets TZ. Here K (%, @%) is chosen to be a real analytic function of n
ordinary complex variables ¢ and their conjugates. The action generated by the La-
grangian (15.1) proves to be invariant under the Kéahler transformations

K — K+ A(Y) +A(T) (15.2)

in accordance with eq. (7.17). This permits the identification of K as the Kéhler potential
of a 2n-dimensional Kéhler manifold M?™.

The Lagrangian (15.1) is reminiscent of the general 4D AN = 1 new minimal
supergravity-matter Lagrangian, which similarly involves a linear multiplet compensator
coupled to a matter sector described by a Kahler potential, see [64] for a review. As in
that situation, it is possible here to perform a duality transformation exchanging G2 for
a weight-one arctic multiplet T®) and its smile-conjugate antarctic YD, The analogous
consideration in the case of 4D N = 2 supergravity was given in [83]. Following [83], the
Lagrangian dual to (15.1) is

@

| — (1) —RV— LK (T, T
boper = 7V Hyg — 2T eV 2K, (15.3)

Here the compensator T() is charged under the U(1) gauge group and transforms under
the Kéhler transformations (15.2) as Y1) — eA/27(1),

This supergravity-matter system may equivalently be described in terms of (n + 1)
weight-one arctic multiplets T/ and their conjugates YT defined by YW = 1) x
(1,Y%) for I =0,--- ,n. The corresponding Lagrangian is

hyper

J EVH% —2ie V(Y™ Ty (15.4a)

37The normalization of (15.1) is chosen so that in the super Weyl gauge G = 1, it reproduces a canonically
normalized sigma model.
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Here (T, T(l)) obeys the homogeneity conditions

0 oy 0
WI_ Y 4 _ WI_ Y 4 _
T 8T(1)I’C K, T 8T(1)flc K. (15.4b)
In addition, IC(cpI , @j ) is required to be real as a function of (n+ 1) ordinary complex vari-
ables gol and their conjugates. Moreover, the action generated by the Lagrangian (15.4a)
is invariant under the gauge transformations

SV=Xx+X, oTWOI = o M (15.5)

with the gauge parameter A being an arbitrary weight-zero arctic multiplet.

The Lagrangian (15.1) and each of its dual versions, (15.3) and (15.4), actually de-
scribes a large class of 4n-dimensional quaternion-Kéahler sigma models that admit a maxi-
mal 2n-dimensional Kéhler submanifold with Kéhler potential K [91]. These sigma models
also automatically possess a quaternionic U(1) isometry. To see this latter feature, one ob-
serves that the Lagrangian (15.1) describes a superconformal sigma model coupling the
linear multiplet G to the n weight-zero polar multiplets. When the three-form in the
linear multiplet is dualized, the resulting scalar manifold is a hyperkéahler cone with a tri-
holomorphic U(1) isometry. When G(?) is gauge-fixed, the (4n-+4)-dimensional hyperkihler
cone becomes a 4n-dimensional quaternion-Kéahler space, and the triholomorphic isometry
descends to a quaternionic one.?®

The most general 4n-dimensional quaternion-Kéhler sigma model is described by a
very similar supergravity-matter Lagrangian (for simplicity we switch off the cosmological
constant)

£®

1 2 v
boper = 7V Hyag — 2F(1, T0), (15.6)

where F(TM, 'Vf(l)) obeys the homogeneity condition

(Tﬂﬂafw + T<1>18T8(1)I_>f =2F. (15.7)
The dynamical system defined by egs. (15.4a) and (15.4b) with x = 0 is a special case
of the system under consideration. In the flat superspace limit, the Lagrangian £(2) =
F (T(l), T(l)) describes the most general superconformal sigma model, with its target space
being an arbitrary hyperkahler cone. If the stronger homogeneity conditions (15.4b) hold,
then the corresponding hyperkéhler cone possesses a triholomorphic isometry, which is
associated with the rigid U(1) symmetry of the superfield Lagrangian Y/ — ele (D!
with ¢ € R. Similar issues have been discussed in the case of the (3,0) supersymmetric
sigma models in AdSs3 [94].

The Lagrangian (15.6) can be generalized to include additional abelian vector multi-
plets in a straightforward way,

£® = i o VAP o7 (p() 1)

38The link between triholomorphic isometries on the hyperkéhler cone (or Swann bundle) and quaternionic
isometries on the quaternion-Kéahler space is known from the mathematics literature [92]. It was discussed
in a physics context in [93].
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&

H®ab . — i (vWagya) yWypb %W‘avmdvg) wh, (15.8)

for real constants Capc = Clanc), as is well-known from the component literature. The
numerical factors chosen in front of the two terms in (15.8) ensure that the Weyl multiplet
equation of motion and the canonical Weyl gauge are respectively given by

C(W) := CapWWPWe =K, CW)=1, (15.9)

where K is the hyperkihler potential constructed from F.3° The component reduction of
the vector multiplet Lagrangian in (15.8) can be derived from the general result for the non-
abelian vector multiplet action given in section 10. The component reduction of the hyper-
multiplet sigma model can be carried out similarly to the 4D N = 2 case worked out in [95].

The SU(2) superspace approach to 5D conformal supergravity coupled to general mat-
ter systems [26] has been extended to locally supersymmetric theories in diverse dimensions:
4D N = 2 supergravity [47], 2D N = (4,4) supergravity [96, 97], 3D ' = 3 and N = 4
supergravity theories [98], and 6D N = (1,0) supergravity [99]. In four dimensions, N' = 2
conformal superspace was formulated in [39], see also [55]. In three dimensions, N -extended
conformal superspace was described in [40]. Interesting open problems are to develop con-
formal superspace settings in other cases such as the 2D N = (4,4) and 6D N = (1,0) ones.
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A Notation and conventions

Throughout the paper we follow the 5D notation and conventions in [2]. We summarize
them here and include a number of useful identities.
The 5D gamma-matrices I'y; = (I, I'5), with a = 0,1, 2, 3, are defined by

{Ta, T3} = —2n,;1, (Ta)f =Tolalo, (A1)
where the Minkowski metric is

. = diag(—1,1,1,1,1). (A.2)

390ur conventions for relating the hyperkihler potential to the Lagrangian F are the same as in [95].
There the potential was denoted K.
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We may choose a representation in which the gamma-matrices take the form [62, 64]

5 0 (0a)ag b —i2 0
e ((5—[1)‘“3 0 ) (Fs)a 0 69 (4-3)

and T'gI'I'sI'sT's = 1. The charge conjugation matrix, C' = (5&3), and its inverse, C~1 =

Ch = (e45) are defined by

_ d" Saﬁ O Ea 0
CT,C L= ()%, &% = ( o ) Eap = 0/3 v (A.4)
af

where £48 and €ap ATE antisymmetric tensors which are used to raise and lower the four-
component spinor indices.

A Dirac spinor, ¥ = (¥4), and its Dirac conjugate, ¥ = (¥%) = ¥y, decompose into
two-component spinors as follows

Vs = <§z> , Ws = (éf)a, @Z_Ja> : (A.5)

One can combine ¥% = (¢, 1) and U9 = sé‘B\IIB = (¢*, —p4) into a SU(2) doublet,

UY = (U, —Vg), (V) =0% =1,

Do

: (A.6)

with U{ = ¢* and ¥§ = ¢®. It is understood that the SU(2) indices are raised and
lowerediby €% and Eij : el2 = €21 = 1, in the standard fashion: Yol = gij \Il?‘ The Dirac
spinor W = (\Iffl) satisfies the pseudo-Majorana reality condition ¥;T = CW;. This can be
concisely written as

(V5)" = v (A7)
In defining products of spinors, we occasionally suppress spinor indices. In such cases, the
spinor indices should be understood as contracted from top left to bottom right; that is,
given x4 and Wy, we define

XU =X, XD = (1)

5 XD = IS s, (A)

and so forth.

With the definition ¥ _; = —%;, = —%[Fmrg], the matrices {1,';,%;} form a basis
in the space of 4 x 4 matrices. The matrices £,5 and (I'a), 5 are antisymmetric (with
adB(F@)dB = 0), while the matrices (X;;),5 are symmetric.

It is useful to write explicitly the 4D reduction of these matrices

—\0Oa 0/3 ieq
(Fa)dB = ((O‘ao)/gd ( 0) ) s (F5)&B = ( OB 1€Zﬁ> ’ (Ag)
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(Bab)ag = (wab)aﬁ ~0 > v (Zas)ap = (i v ;(U“)“B> , (A.11)

0 —(O’ab)aﬁ E(G'a)ﬁa 0
Where (O'(lb)aﬁ = —i(aaéb — O'bﬁ'a)aﬂ and (5'ab)dﬁ' = —%(5@0'(, _A&baa)dﬁ' .
A 5-vector V% and an antisymmetric tensor F%® = —F% can be equivalently rep-

resented as the bi-spinors V = Vo', and F = %F &BE&B respectively with the following
symmetry properties

V=V,

e €V =0, Fop=Fg,. (A.12)

The equivalent descriptions of V; and F; by V and F are explicitly related as follows:

a 1

Vag =V La)ag Va=—7(0)" V5, (A.13a)
1 B

Fip=5F" (S Fy= (345)% Fp. (A.13b)

This means that we may decompose an arbitrary tensor with two spinor indices, T, 4o s
follows

1

T = 5 (5455, P Ty — 1 (0 55T 4 2T (A.14)

These results may be checked using the identities

502[?'}8 = 5@65&3 + €64€55 + 5&5863}

1. 1
= S(0)45(Ta)ss + 545555 (A.15)

where €, 36 is the completely antisymmetric fourth-rank tensor.
The conjugation rules give

(8&3)* - _8&/;77 (V@B)* - V&Ba (F&B)* - Fdév (A16)
provided V@ and F ab are real.
One can derive a number of identities involving the contraction of vector indices. These

are listed below:

(I‘&)dA(I‘a)% = €45645 250‘7565 + 250«5567’ (A.17a)

(Eab)a/j(]‘_‘i])'y& = %((F&)&ng — (Ta)aseps + (Ta)ggeas — (Ta)pscas) »  (A1TD)

(5%)35(Zab) 35 = €635 + 2455 (A.17c)
abcdé(ré)aﬁ(xdé)’ys = 2€a,8(2ab)'y5 + 2e5a(X55) 55 + 253(&(2&5)34/

287,6’(2&13)046 2555(2 5)ad s (A.17d)

Eaiode(Z)aa (5.5 = (Ta)asegs + Ta)ase s + (Ta) gs€as + (Ta) g5 (A17¢)

where the Levi-Civita tensor €_; . 5. is defined to be completely antisymmetric with normal-
ization
Eorass = —eP = 1. (A.18)
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The Levi-Civita tensor also satisfies the useful identity

S ey vy = TN T)IOL g (A.19)
Some other useful relations are given by
(T1) 45T 05 = €aa(5%) 35 + 55 () a3 — €45(E™) g5 — £35(5%)as» (A-20a)
. - 1 i "’ 5 5
(2% 45(Be™)15 = —1(6@(2“1’)55 +245(57) 55 + €55 (E) 05 +€55(5)as) , (A.20D)
and
(Tt = <r&>ﬂ<rf’>ﬁ = 57 —2(),, (A.21a)
(FanFC) ,8 ( 77 77 + 77canbd nbcnad) (FCZ)&B + Eadee(Ede) ﬁ , (A.21b)
(Faerch) B _ (na 77 nacnbd + nadan) . &Bé&é(r Da B
+2n&b(20d)&A (Ebd)a +92 bC(E(ld) ﬁ
+2n%(580) 55 — 2pP(£%),8 4 2nda(£h),5 (A.21c)
(Fdrbl—\érdré)db’ _ &bédé(sﬁ ( ) ﬂ(nbcnde nbdnce + ncdnbe>
—i—(Fb) ( ncdnea + ncenda ndenca)
+(F0)a6( de ab ndaneb 4+ neandb)
+(Fd)a[3( neanbc + nebnac nabnec) B A
+(Fe)aﬁ(nabncd ncanbd +77bcnad) + 2€&bédm(2mé)&6
+(Emn)o¢6< - nabé_cdemn + 77C(JL&.I)demn - néég&d}%ﬁ’m
- ncia heerni 4 ndb pacemn _ ncié Edi)émﬁ) . (A.21d)

B The conformal Killing supervector fields of R>®

The 5D superconformal algebra F2(4) [27] can be identified with the algebra of conformal
Killing supervector fields of 5D N = 1 Minkowski superspace [33]. In this appendix we
spell out this construction.

Simple Minkowski superspace in five dimensions, R®/®, is parametrized by coordinates
A= (z%,60%). The flat covariant derivatives D ; = (0;, D%)

9 . 9 . ..
4 = ~——= DZA = — — 1 Fb N Aeﬁl 7 Bl
0= pga- &= gz~ as?"0 (B-1)

satisfy the algebra:
{D4, D} = —2i(T%) 500, [0a, D3] =0,  [0,0;) = 0. (B.2)
The spinor covariant derivatives satisfy the reality condition (D4F)* = —(—1)=(F )D?F

with F' an arbitrary superfield of Grassmann parity e(F).
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According to [33], the conformal Killing supervector fields

€ =E€=¢%2)0 + & (2) D (B.3)
are defined to satisfy )
(6, Di) = —(Dg) DY, (B.4)
which implies the fundamental equation
Diéa = Qi(ra)a’%};- (B.5)
From eq. (B.5) one finds
£7(Ta)a50°€" = (rb)d:yDég’“ +(T%) 5, D&M (B.6)
which gives us the usual equation for a conformal Killing vector field
1 é
Oy = =Map? e - (B.7)
The conformal Killing vector acts on the spinor covariant derivatives as
A . 3 1 .
(€, D§] = ~wa” D + A9 Ds; — 57 D4 (B.8)
where the parameters w, p o and AY are given by the following expressions:
w. e Lok £ = 1(26&3) 2Dals (B.9a)
dﬁ'_Q (dﬁ)k_2 apvasSp > .
1 _4 1.4
o= -Dieh = 9%, (B.9b)
4 5
D
A = ZDg’gm . (B.9c)
As a consequence of eq. (B.7) we find the parameters satisfy the identities
8@&)6& = _277&[?)66]0-’ (B.lOa)
8&88.55 = —T]éi)a@U + 277@(@613)0 . (B.lOb)
Furthermore, as a consequence of eq. (B.5) we also find
Dw,s = —2gﬁ(dDg)a, (B.11a)
DLA* =360 DYy (B.11b)
where o obeys
DgD%a = —ig" (F“)@Bﬁda, (B.12)
and
8aDJBa =0. (B.13)
The above results tell us that we can parametrize superconformal Killing vectors as
follows

5 = €<A(P)a’ A(Q)@ A(M)ai):A(D)vA(K)d?A(S)&i) )

7 9
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where we have defined

A(P)" = —€%=0=0 AQ) = —&a=0=0 (B.15a)

A(M) 5 = wyjle=0=0, A(D) = ofz=0=0, (B.15b)
1 . 1 ..

A(K)a = —50a0]a=0=0, A(8)* = =5 D% 0lu=p=0. (B.15¢)

The commutator of two superconformal Killing vectors,
£ = E(MP)*, MQ)F s A(M) 3, A(D), A(K)%, A(S)™) (B.16)

and

g = f(j\(P)&, ]\(Q)z&a A(M)dz;v A(D)a A(K)da A(S)dz) ) (B17)
is another superconformal Killing vector given by
(€,6] = (€%02€" — £%0,6" + €2 DLEY — E2 D" + 215%“@13)@3)65
+ (6%0u8]) — E%0u¢] + €0 DiE] — E0DLe)) DY
= E(AY(P), AF(Q), A(M) 5, A(D), A(K)", A(S)di) : (B.18)
where
R%(P) = A(P)P A% + A(P)*A(D) — 2iA(Q)FA(Q)% (1), 5
— A(P)’A;* — A(P)*A(D), (B.19a)
AH(Q) += ~i(TW)PAPYR(S) 5, + AQIFAM) 3 + A@FAD) + A@SAGTY:
FiT)VR(P)AS) 5~ MQFAM) 5~ SAQUFAD) ~AQFAY:,
(B.19b)
A(M) 4 = 20(M)*aA (M), — 4A(P)aA(K)y + 4A(P)aA (K (B.19c¢)

ble
A(D) = 2A(P)*A(K)a — 28(P)*A(K), + 2A(S)¥A(Q)ai — 2A(S)¥A(Q)as, (B.19d)

A(K)® = A(M)PA(K); + AD)A(K )“—211\(5)%[\(5)3’“@&)@3
— [X(M)“bA(K)B — A(D)A(K)?, (B.19e¢)
A(S)% = 1(r&)@BA(K)@]\(Q)g +A(S)PA(M

)5 = SAS)TAD) + A(S)FA()”

N = o] =

() AT AQ), ~ A(S) T AM) 545 A(S) M A(D) ~ A(S)FA(IY

(B.19f)

Associating with the superconformal Killing vector £ the transformation
de = A(P)"P; + AMQ)7 Q4 + §A(M)abMaB + AD)D+ A(K)*Ks + A(S)¥Sa: (B.20)

and comparing to the above gives us the superconformal algebra (2.1).
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C Modified superspace algebra

In section 4, we introduced a modified definition of the composite vector connections. It
is actually possible to introduce this redefinition directly within the context of superspace.
The modified superspace vector derivative is

. 1~ be 1 ogi A 1 bé
Va = Va = g WaiaM" 4 cXP(Ta) 5550 + o (Y + 3WHW; ) K,

L evr b 1 bd
- Z(V Weal) K — ZWMW K;. (C.1)

The new vector derivative possesses a deformed S-supersymmetry transformation, but it
retains the original K-transformation,

1 i N i

S5 Va] = i(Ta) 5 Viai — §Wab(F5)gd5ai + g(Fan)BWX&'Kg - ZW&ggiKb» (C2)
[KB’ @&] = 277ng + QM&I; . (03)
The spinor derivative remains unchanged, @L = VL.
The new curvature tensors, given in their general form as
. A 1 . r .
C d
ViVl = =Tap Vo = 5#(M) 55 My = #(D) 35D

—~B(T) 359 Tij — R (S) 4 5% Sai — Z(K) 15Kz (C.4)

can be found by direct computation. For the algebra of two spinor derivatives, we find

yaﬂﬁ = 2ie"(T)5, (C.5a)
ﬂa;’g =0, (C.5b)
@(M)gé@‘f = 2ic¥e W 4 il () s W, (C.5¢)
AD)zy =0, (C.5d)
@(J)Za/jgkl =0, (C.5e)
,%?(S)%”k = %ﬁjsz% + isijéngg] , (C.5f)

RN = — SV gTOWE 4 ST 90,8 — et (1) v
+ %aiﬂ‘gwwﬁw&é + %gif(r@)&é (Wa awed — %WMWE C@f) . (C5g)

The spinor-vector commutators lead to

szac =0, (C.6a)
Tl = 104 (3P Wy — Wal(r,) 7). (C.6)
AD)s = XL, (C6e)
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R(J)5F = _%(Flg)a%“jxﬁ :
L e d\ Ay
+359 I)a" X5,

. s NPy 1
R(M)y5 ™ = —(Ty)a W — 155 CdefWefa
1

TR (50D, —or; ) 3

3 e edy 4 1 gje de 5
—gs]V[AWm}(Z )A”’—gsJVJW (Zd;)oﬂ

R(S8)ps " =

VI 61 — fsij VW AT ) s

i cdée 0 3i i é
ST, (S 5)aY — ¢ TR UL
3i

745” WCdWéJ(FB)OAﬂ s

E

+ i&‘ij WMW@J(Pé)Q —
. oL

ié & d XA

+ g(ré) VXL + —Wdé(?)nz 4eT¢ = B3 LiT)a" X

1
B 48 Wbde

1 e le é i
+ 12( i9a ﬁwdeﬂwd ——Wd (zdé)&ﬁwg ;
13

11
dcz de dec
V|7 |/]/ M/ — (T |/]/
48 48 dec 96( ) deﬁ

(Fc) ﬁWdez + (SCWdeW i

dec

The vector-vector commutator is given by

T =0,

j;b? - %Wa5?7
#(D),; =0,

B (M) = _i(zab)aﬂ(zm)ms (Wi + 3 W)
RS i = —5 Ve Wags' — 3 () W
1W By ” i 116(E e WCdchﬁ ch[aW}cai’
B ¢ = TR M) 5 — LW (TP X — LW (1) P
Wil () W5

D Conventions for 5D conformal supergravity

1 5 A 5 L. 1~ 5 L. 1
. Bed Ci “o.B e cdef K
T VW L4 VW T

(C.6d)

(C.6e)

(C.6f)

efOé

For the convenience of the reader, we provide in table 1 a brief translation scheme between

our conventions and the other groups’. A similar table may be found in [32].
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Our conventions  de Wit and Katmadas Bergshoeff et al. Fujita et al.
nib 7 nb —pb
re —iy iy ¥
yab %,yab %,Vab 7%,Yab
cabede _jgabede _ gabede cabede
wmi wui 7/’ui 2 wui
Vin'j —3 Vs V' V'
@maﬁ w#ab _wuab _w“ab
idm’ u’ —6u' + 5Tary" %" 26u" — Fvay™"
fn —fu® + 5uirX’ —fu® + 30" —fu® + apu'y xi
wi® _gab %Tab %,Uab
X' X' X' =X
D D D (D — 30"%vq)
R(Q)s3' SRQar’ FR@Q)ar’ R(Q)a’
R(M) 5™ R(M)o™ —R(M) o™ — (M)
R(J)45'5 —3R(V)av;’ —R(V)ab'; R(U)ab';
iR(S), LR(S)a’ —1R(S)ar + ETear* R(Qar’  R(S)ar' = 30eav* R(Q) s’
R(K),;® —R(K)ab“+ 2 R(Q)abiv X' —R(K)abc-F%R(Q)abi’ycXi —R(K)abc-FiR(Q)abi’YCXi

Table 1. Conventions for Weyl multiplet.

de Wit and Katmadas Bergshoeff et al. Fujita et al.

gl =g gl =9 gy

0 = 2in’ W' = =2 + Ty ' =i’ + Fuay €’
A= =M + 367X AR =A%+ 389" AR =A% + 56"

Table 2. Conventions for 6g + ds + 0x.

We must be careful to note that the definitions of supersymmetry are different between
the various groups, with the differences amounting not only to normalizations but also to
additional field-dependent S and K transformations in the definition of dg. In other words,
given a transformation dg + dg + dx in our conventions with respective parameters 52{, né
and A%, we will find a transformation g + 0 + 0 with new parameters g, /" and A%
given in table 2.

It should be emphasized that each group uses the same vector derivative D,, corre-
sponding to our Vs, modulo differing overall normalizations of the superconformal gen-
erators. The additional gravitino-dependent terms in the S-supersymmetry and special
conformal connections in table 1 cancel against additional terms found within dg, so that

the vector derivative is unchanged.
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Our conventions de Wit and Katmadas Bergshoeff et al. Fujita et al.

w o -0 M
)\i Qi wz _291'
X 2y 2y 2y

Table 3. Conventions for vector multiplet.

For completeness, we also give in table 3 the relation between our conventions for the
vector multiplet and the other groups.

E The O(2) multiplet prepotential from harmonic superspace

In this appendix we use the harmonic superspace techniques [59] extended to the 5D N =1
super-Poincaré case (see [2, 51] for the technical details regarding the A/ = 1 harmonic
superspace in five dimensions) to derive a prepotential formulation for the O(2) multiplet.
In appendix G, the same techniques will be used to derive unconstrained prepotentials for
the O(4 + n) multiplets, n = 0,1,..., in 5D A/ = 1 Minkowski superspace.*’

We consider an O(2) multiplet G¥(z) in 5D N = 1 Minkowski superspace and associate
with it the analytic superfield GTF(z,ut) = G¥ (z)ufu;r The latter is constrained by

DIG*t =0, DTGt =0, (E.1)

where D™+ := v *9/0u~". As in the 4D N = 2 super-Poincaré case [101], the analytic
projector on the space of O(2) multiplets*! is

4 1 55|8(21 — 2’2)

(2,2) DA DA
(G 6) = =D D) 5= Fore (E2)
where )
(ﬁ+)4=—33(ﬁ+)2(b+)2, (D)? = D*DY, (E.3)

and ¢ denotes the coordinates of the analytic subspace. The properties of HSFQ ’2)(C1, (2) are:

DN (¢ ¢) = D*“H“Mc () =0, (E.4a)
D++H(2’2)(C17C2) D++H (C (2) =0, (E.4b)
/ A 12D (61, ) I (G5, ) = TP (¢, o), (E.4c)
(H(TZQ)(Q,CQ))T = HSFQJ)(CQ,Q)‘ (E.4d)

40The harmonic and projective superspace descriptions of the O(n) multiplets are completely equiva-
lent [100].

4IThis projector plays an important role in computing the one-loop effective action for N' = 4 SYM in
four dimensions [102].
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For any O(2) multiplet GT* we have

G () = GG = [ 4GP (G, GG (). (E5)

Introduce a superfield 2=~ (z,u) such that (D7)*2~~ = GT*. Then we can rewrite (E.5)
as follows

GTH(G) = /d5|822 dup 12 (1, )= (22, u2) - (E.6)

In the expression (E.2) we represent

(D)% (1 = 22) = — 5 (DFP*(DF)'0™ (1 = =)
_ —%(f);)zu”u;jl?zzﬁ 1821 — 29)
- ‘%(Di)%; “uy? D1j6°" (21 = 22)
— —%u;lu?m i (DF)?6°8 (21 — 29) (E.7)

We plug this expression in (E.2) and make use of the identity

U = (ufud) U] — (uyug) U7, Ut = Wit (E.8)

in conjunction with D+ (D )* = (D)D" = 0. This gives

2 2 ~ A2 A2 L
(61,G) = 5 (DD (DT A(DF P 267 (e — =), (E.9)
As a result, relation (E.6) becomes equivalent to

G (z,ut) = (DHHD)2Q(2). (E.10)

F Gauge freedom for the O(2) multiplet

Let us show that the gauge transformation of the O(2) multiplet prepotential 2, eq. (7.10),
leaves invariant the superfield G(?) defined by (7.5). We need to prove that the superfield
i A
QB) = fgvgv%Baﬂkl . By = (M5B (F.1)
is annihilated by the operator iA“*Y,,. Tt is useful to employ the equivalent expression
for Q(B) given by

_ o) (o) pad(-2) (—1) paB(0)
QB) = ~5 9§ (VB B v p )
—%v&_l)v/(é_l)Baﬂ(Q)_’_v Ba,B(O) (F 2&)
BY? .= vu,B BY .= M pii - p=Y .- U pij F.2
a UZU] a > a ('U, U) a > a (7)7 U)2 a ( b)
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By using
_ “1) (-1 1 _ _
vyl )V(B ):—Ee&év( SAvA (F.3)

and A4 )V( ) — 0, we obtain

1 A _ S
L AW ro) o(-2) 1) paB(=2) _ oo (=1) nas(o)
2A V..V ](VB B 2VB B )

HAWYDy,  BadO) (F.4)

iA(4)V(—2)Q(B) = _

By making use of

Vaz V3] = 0)45(Ta) 57, VY], V45 V%) = —5[#, V4], (F.5)

it can be seen that

V), VO] = —ai (VDY + 9w — 2, 9. (F.6)

o

Note that in performing this calculation we will keep implicit as long as possible the
expression (2.30) for the operator # in the covariant derivative algebra (2.27). Plugging
eq. (F.6) into (F.4), after some algebra one can obtain

iADTED0(B) =A@ {afr i) (4iv,a v, B - ()7 v v v B )

1 L. R _
Lt wact ([W ij’] B2 _ 2[W,ij 1>]B£0>>
1 s . R . o N
— ST TP DI (1) V7Y ([W, VOB — o[y, v7<—1>]3§0)>
— 4, VB — vy Bl Y+ ov Vi, v B

—4Vg_1)vé_1)7/3d3(0) 4{V(1) [v 1)’W]}B&B(_2)

(-
B
+4v v B O — s,V

(-

vy oL (F.7)

Some terms in the previous expression are identically zero. First of all note that due
o (A.21b) we have
tr[F&Fl‘)Fé] =0. (F.8)

Then the first two lines in (F.7) are zero. Moreover, the Bianchi identity (2.28) implies
() {7, Vg vy =0, (F.9)
which removes the last term in (F.7). Once we use
tr[FdF‘;FéFJ] _ 4(,,7&1317 nacnbd + nadnbc) tr[l“dl“él“al“é] _ _127713@’ (F.10)
which follow from (A.21c), (F.7) can be brought to the following form:
IAWYE2Q(B) = iA(4){ 4, vaﬁ] ((Xﬁ ) 81V0‘5WB( 2)

(A 1)’ 7/]}3‘3‘3(_2)

+8vg‘”[%vg)]3aﬁ< 2 gyvl ,[vﬁ
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=8V, v B0 aw TSy O pa)

As a next step, we can simplify the second term in the second line. In fact, the Bianchi
identity (2.28) implies

W 1y, (F.12)

() (VL VSV ]} = =) (v Y, IV

B

which together with the super-Jacobi identity, can be used to derive the following result

)V VY ) = P (V0,9 = )P ) ()

If we use this expression in (F.11), we arrive at the simple result
iAOTEA0(B) = ia@{sv Vv B —sv U, vl pedo)
+ 4V IV D _aw OGSy gt
@ B o B

IAWY20(B) = ?;“ui;a A(4){2v(1[7/ V5 BABIk +vngkWBd51>k}. (F.14)

Now we use the explicit expression of 7 and obtain
w BoPI = qwla, gAY (F.15a)
W,V 5| B = —W sV BYIF — 55, BOE — W BYE . (F.15b)

Equation (F.14) then becomes

_ Biuiuy A(4)vlv W( Bﬁ)ﬁjk
(v,u)?

IADYEDQ(B) = 8iAl >v§}§v() Dy, BMI(=2) = (F.16)

IAWYEDOB) =

This completes the proof that the operator AV (=2) annihilates the superfield (F.1).

G Prepotentials for O(4 + n) multiplets, n = 0,1,..., from harmonic
superspace

Here we consider an O(4) multiplet G (z,u) = G"jkl(z)ufu;ru:u;r realized in 5D N =1
harmonic superspace,

DrGW =0, DHGW =o. (G.1)
It may be represented as
GW(u) = (D)W (u), (G.2)
where -
n=1
obeys the equation
DtV = DTty = Dot (G.4)
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for some spinor superfield X} (u). We note that V(u) is defined modulo abelian gauge
transformations of the form:

Vo V=V+0:=V+D\, (G.5)
where A, (u) is arbitrary. We now consider the following harmonic equation
DTTA\; =-%7, (G.6)

with Eg given. This equation proves to have a unique solution A; (u). Upon applying the
above gauge transformation, we obtain

DMV =0 = V=V,. (G.7)
As a result, the O(4) multiplet can always be represented in the form
GO () = (DH)'V, (G-8)
with the prepotential V' being harmonic independent.
Given a non-negative integer n = 1,2, ..., consider an O(4 + n) multiplet
44n it + +
G (2, u) = Gl (2)u, vy, (G.9)
realized in 5D N = 1 harmonic superspace,
DrgWt —o,  DFrGU =g, (G.10)
The superfield Gt may be represented as
G () = (DY) (), (G.11)
where
V(n) (u) = V()“Znu;t o u:;l + Z V(i1~..in+2m)u;; o .u;:+mu7:1+m+1 o 'ui_n+2m
m=1
= V" (u) + B (u) (G.12)
obeys the equation
DTy — pttygn) — D+d2€n+1)’ (G.13)

for some harmonic superfield Zfin“)(u). By construction, the prepotential V() is defined
modulo gauge transformations

v o v = g g5 = ) 4 prayinTl) (G.14)

(n—1)

for an arbitrary harmonic superfield A, /(). It is possible to choose the gauge parameter

)\gb_l)(u) to be a solution of the harmonic equation

DAY =yt (G.15)

& &
Such a solution always exists and is not unique for n > 0. Upon applying such a finite gauge
transformation, we observe that the transformed prepotential V(") (u) is characterized by

Dy — ¢, (G.16)
We conclude that the O(4 + n) multiplet can be represented in the form:
G () = (DHWV (W), V() = Vit ut (G.17)

i1 in
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