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1 Introduction

Minimal supergravity in five spacetime dimensions1 (5D) was introduced more than three

decades ago by Cremmer [4] and independently by Chamseddine and Nicolai [5]. A year

later, an off-shell formulation for this theory was sketched by Howe [6] (building on the

supercurrent multiplet constructed by him and Lindström [7]), who used superspace tech-

niques and provided a 5D extension of the so-called N = 2 minimal supergravity multiplet

in four dimensions [8, 9]. Since then, 5D minimal supergravity and its matter couplings have

extensively been studied at the component level, both in on-shell [10–13] and off-shell [14–

23] settings. The superspace approach to general off-shell 5D N = 1 supergravity-matter

systems has been developed in [24–26].2

Off-shell formulations for supergravity make the supersymmetry transformation laws

of fields model-independent and, in principle, offer a tensor calculus to generate arbitrary

supergravity-matter couplings. A non-conformal tensor calculus for 5D N = 1 supergravity

was developed by Zucker [14, 15] (see also [16] for a review and applications). By making use

of Howe’s minimal supergravity multiplet [6] and the supercurrent multiplet [7] (both care-

fully reduced to components), he extended to five dimensions various off-shell techniques

developed for 4D N = 2 matter-coupled supergravity (see, e.g., [28] for a review). A more

complete approach is the 5D superconformal tensor calculus developed independently by

two groups: Fujita, Kugo, and Ohashi3 [17–20] and Bergshoeff et al. [21–23]. Among the

most interesting off-shell constructions obtained by applying the 5D superconformal cal-

culus are (i) the non-abelian Chern-Simons action coupled to conformal supergravity [18],

(ii) the massive tensor multiplet models [20], and (iii) the supersymmetric completions of

R2 terms [29–32].

1Historically, different authors use different notations, N = 1 or N = 2, for 5D supersymmetric theories

with eight supercharges. We choose to use N = 1 following, e.g., [1–3].
2Refs. [24, 25] made use of Howe’s minimal supergravity multiplet [6]. Ref. [26] developed a superspace

formulation for conformal supergravity, which in this paper will be referred to as SU(2) superspace. In five

dimensions, there is only one superconformal algebra, F2(4) [27], and it corresponds to the choice N = 1.

This is why one can simply speak of 5D conformal supergravity.
3Actually refs. [17, 18] presented the 5D tensor calculus in which some of the superconformal symmetries

(S and K) are gauge fixed.
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Within the component approaches of [14–23], hypermultiplets are either on-shell or

involve a gauged central charge. As is well known, such hypermultiplet realizations cannot

be used to provide an off-shell formulation for the most general locally supersymmetric

sigma model. It is also known that such a sigma model formulation, if it exists, requires the

use of off-shell hypermultiplets possessing an infinite number of auxiliary fields. The latter

feature of the off-shell hypermultiplets makes them extremely difficult to work with at the

component level. This problem was solved within the superspace approach to 5D N = 1

supergravity-matter systems [24–26] by putting forward the novel concept of covariant

projective multiplets. These supermultiplets are a curved-superspace extension of the 4D

N = 2 and 5D N = 1 superconformal projective multiplets [33, 34]. The latter reduce

to the off-shell projective multiplets pioneered by Lindström and Roček [35–37] in the 4D

N = 2 super-Poincaré case and generalized to the cases of 5D N = 1 Poincaré and anti-de

Sitter supersymmetries in [2] and [3], respectively. Among the most interesting covariant

projective multiplets are polar ones that have infinitely many auxiliary fields and indeed

are suitable to realize the most general locally supersymmetric sigma model. These have

never appeared within the component settings of [14–23].

This paper is devoted to new applications of the superspace approach to 5D N = 1

matter-coupled supergravity [24–26]. In order to make a better transition to the super-

conformal calculus of [17–23], we present an extension of the superspace formulation for

5D conformal supergravity given in [26]. Such an extension is based on the concept of

conformal superspace [38–40].

Conformal superspace is an off-shell formulation for conformal supergravity based on

gauging the superconformal algebra in superspace. It was originally developed for N = 1

and N = 2 supergravity theories in four dimensions [38, 39] and more recently for N -

extended conformal supergravity in three dimensions [40].4 For example, one may think of

the 4DN = 1 orN = 2 conformal superspace as a superspace analogue of the corresponding

superconformal multiplet calculus developed many years earlier in the component setting,

see e.g. [28] for a pedagogical review, since both approaches are gauge theories of the super-

conformal group. From a technical point of view, conformal superspace is a more general

setting, since the gauge superfields contain more component fields and the gauge group is

much larger than in the superconformal calculus. However, it turns out that the former

formulation reduces to the latter upon gauging away a number of superfluous component

fields. On the other hand, a different gauge fixing allows one to reduce conformal superspace

to more traditional superspace settings. For instance, in the 4D N = 2 case a certain gauge

fixing reduces the conformal superspace of [39] to the so-called U(2) superspace [46], which

has been used to construct the most general off-shell supergravity-matter couplings [47].

Thus conformal superspace provides a bridge between the component superconformal cal-

culus and more traditional superspace formulations for conformal supergravity.

4In the physics literature, the name “conformal space” has been used since the 1930s. It was Dirac [41]

who, following Veblen [42], introduced it for the conformal compactification of 4D Minkowski space, on

which the conformal group acts transitively. Since the 1980s, the name “conformal superspace” has also

been used for supersymmetric extensions of this construction [43, 44] (see also [33, 45] for more recent

presentations). We hope no confusion may occur in our usage.
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Recent applications of the conformal superspace approach have involved construct-

ing (i) the N -extended conformal supergravity actions in three dimensions for 3 ≤ N ≤

6 [48, 49], and (ii) new higher-derivative invariants in 4D N = 2 supergravity, including

the Gauss-Bonnet term [50]. This paper is the first to explore applications of conformal

superspace in five dimensions. In particular, we will demonstrate that the formalism of con-

formal superspace provides new tools to construct various composite primary multiplets

that can be used to generate higher-order off-shell invariants in supergravity, including

higher-derivative ones.

This paper is organized as follows. Section 2 describes the geometry of conformal

superspace in five dimensions. In particular, we present the procedure in which the su-

perconformal algebra is gauged in superspace and show how to constrain the resulting

geometry to describe conformal supergravity, thus deriving a new off-shell formulation.

We also describe the Yang-Mills multiplet in conformal superspace. In section 3 we show

how the superspace formulation for conformal supergravity proposed in [26] may be viewed

as a gauge-fixed version of conformal superspace. Section 4 is devoted to uncovering the

component structure of conformal superspace and comparing it to the existing superconfor-

mal tensor calculus [19–23]. In section 5 we lift the covariant projective multiplets of [24–26]

to conformal superspace. A general procedure to generate such multiplets is given. We

also present a universal locally supersymmetric action principle. Section 6 presents pre-

potential formulations for the vector multiplet in conformal superspace. In section 7 we

develop a prepotential formulation for the O(2) multiplet and discuss its universal role

in generating actions. We also provide a prepotential formulation for O(4 + n) multi-

plets. Sections 8, 9 and 10 are devoted to superform formulations of the BF, abelian and

non-abelian Chern-Simons actions, respectively. In section 11 we describe multiplets with

gauged central charge in conformal superspace by giving their superform formulations. In

particular, the linear multiplet with central charge, two-form multiplet and large tensor

multiplet are discussed. Section 13 is devoted to a description of the dilaton Weyl multiplet

and its variants with the use of superforms. In section 14 we present several procedures to

generate higher-order off-shell invariants in supergravity, including higher derivative ones.

Concluding comments are given in section 15.

We have included a number of technical appendices. In appendix A we include a

summary of our notation and conventions. In appendix B we derive the superconformal

algebra from the algebra of conformal Killing supervector fields of 5D N = 1 Minkowski

superspace. In appendix C we give an alternative covariant derivative algebra based on

a new vector covariant derivative with a deformed S-supersymmetry transformation. Ap-

pendix D describes how our component field conventions relate to those of superconformal

tensor calculus. In appendix E we give the O(2) multiplet prepotential formulation in har-

monic superspace. Appendix F discusses the gauge freedom for the O(2) multiplet. Finally,

in appendix G we derive prepotentials for the O(4+n) multiplets in harmonic superspace.
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2 Conformal superspace in five dimensions

Conformal superspace in four [38, 39] and three [40] dimensions possesses the following

key properties: (i) it gauges the entire superconformal algebra; (ii) the curvature and

torsion tensors may be expressed in terms of a single primary superfield; and (iii) the

algebra obeys the same basic constraints as those of super Yang-Mills theory. In this

section we will show how these properties may be used to develop conformal superspace in

five dimensions. We will present the superconformal algebra and the geometric setup for

conformal superspace based on gauging the entire algebra. We then show how to constrain

the geometry to describe superconformal gravity by constraining its covariant derivative

algebra to be expressed in terms of a single primary superfield, the super Weyl tensor. We

conclude the section by discussing an application and turning on a Yang-Mills multiplet in

the conformal superspace setting.

2.1 The superconformal algebra

The bosonic generators of the 5D superconformal algebra F2(4) [27] include the translation

(Pâ), Lorentz (Mâb̂), special conformal (Kâ), dilatation (D) and SU(2) generators (Jij),

where â, b̂ = 0, 1, 2, 3, 5 and i, j = 1, 2. Their algebra is

[Mâb̂,Mĉd̂] = 2ηĉ[âMb̂]d̂ − 2ηd̂[âMb̂]ĉ , (2.1a)

[Mâb̂, Pĉ] = 2ηĉ[âPb̂] , [D, Pâ] = Pâ , (2.1b)

[Mâb̂,Kĉ] = 2ηĉ[âKb̂] , [D,Kâ] = −Kâ , (2.1c)

[Kâ, Pb̂] = 2ηâb̂D+ 2Mâb̂ , (2.1d)

[J ij , Jkl] = εk(iJ j)l + εl(iJ j)k , (2.1e)

with all other commutators vanishing. The superconformal algebra is obtained by extend-

ing the translation generator to PÂ = (Pâ, Q
i
α̂) and the special conformal generator to

KÂ = (Kâ, Sα̂i), where Qi
α̂ and Si

α̂ are an imaginary and a real pseudo-Majorana spinor,

respectively (see appendix A).5 The fermionic generator Qi
α̂ obeys the algebra

{Qi
α̂, Q

j

β̂
} = −2i εij(Γĉ)α̂β̂Pĉ , [Qi

α̂, Pâ] = 0 , [D, Qi
α̂] =

1

2
Qi

α̂ , (2.1f)

[Mα̂β̂, Q
i
γ̂ ] = εγ̂(α̂Q

i
β̂)
, [J ij , Qk

α̂] = εk(iQ
j)
α̂ , (2.1g)

while the generator Si
α̂ obeys the algebra

{Si
α̂, S

j

β̂
} = −2i εij(Γĉ)α̂β̂Kĉ , [Sα̂i,Kâ] = 0 , [D, Sα̂i] = −

1

2
Sα̂i , (2.1h)

[Mα̂β̂ , S
i
γ̂ ] = εγ̂(α̂S

i
β̂)
, [J ij , Sk

α̂] = εk(iS
j)
α̂ . (2.1i)

5Our convention for Si
α̂ is chosen to match the 4D convention [39] upon dimensional reduction. This

means, for example, that contractions between KÂ and the corresponding gauge parameters, connections,

and curvatures must be interpreted with care: for example, ΛÂKÂ should be understood as ηα̂iSα̂i+Λâ
KKâ

with ΛÂ = (ηα̂i,Λâ
K), while ξÂPÂ = ξα̂i Q

i
α̂ + ξâPâ with ξÂ = (ξα̂i , ξ

â).
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Finally, the (anti-)commutators of KÂ with PÂ are

[Kâ, Q
i
α̂] = i(Γâ)α̂

β̂Si
β̂
, [Sα̂i, Pâ] = i(Γâ)α̂

β̂Qβ̂i , (2.1j)

{Sα̂i, Q
j

β̂
} = 2εα̂β̂δ

j
iD− 4δjiMα̂β̂ + 6εα̂β̂Ji

j . (2.1k)

One may explicitly check that the (anti-)commutation relations (2.1) are consistent with

the Jacobi identities and thus define a superalgebra. A shorter way to convince oneself

of the algebraic structure required is to notice that the (anti-)commutation relations (2.1)

follow from the algebra of conformal Killing supervector fields of 5D N = 1 Minkowski

superspace [33], see appendix B for the technical details.

2.2 Gauging the superconformal algebra

To perform our gauging procedure, we begin with a curved 5D N = 1 superspace M5|8

parametrized by local bosonic (x) and fermionic coordinates (θi):

zM̂ = (xm̂, θµ̂i ) , (2.2)

where m̂ = 0, 1, 2, 3, 5, µ̂ = 1, · · · , 4 and i = 1, 2. In order to describe supergravity it is

necessary to introduce a vielbein and appropriate connections. However the gauging of the

superconformal algebra is made non-trivial due to the fact that the graded commutator of

KÂ with PÂ contains generators other than PÂ. This requires some of the connections to

transform under KÂ into the vielbein. To perform the gauging we will follow closely the

approach given in [38–40].

We denote by Xa the closed subset of generators that do not contain the PÂ generators.

The superconformal algebra takes the form of a semidirect product algebra

[Xa, Xb} = −fab
cXc , (2.3a)

[Xa, PB̂} = −faB̂
cXc − faB̂

ĈPĈ , (2.3b)

[PÂ, PB̂} = −fÂB̂
ĈPĈ , (2.3c)

where fÂB̂
Ĉ contains only the constant torsion tensor f i

α̂
j

β̂
ĉ = T i

α̂
j

β̂
ĉ = 2i εij(Γĉ)α̂β̂ . The

gauge group associated with the superalgebra generated by Xa will be denoted H. Now

we associate with each generator Xa = (Mâb̂, Jij ,D, Sα̂i,Kâ) a connection one-form ωa =

(Ωâb̂,Φij , B,Fα̂i,Fâ) = dzM̂ωM̂
a and with PÂ the vielbein EÂ = (Eα̂

i , E
â) = dzM̂EM̂

Â.

Their H-gauge transformations are postulated to be

δHE
Â = EB̂ΛcfcB̂

Â , (2.4a)

δHω
a = dΛa + EB̂ΛcfcB̂

a + ωbΛcfcb
a , (2.4b)

with Λa the gauge parameters.

A superfield Φ is said to be covariant if it transforms under H with no derivatives on

the parameter Λa

δHΦ = ΛΦ := ΛaXaΦ . (2.5)

– 5 –
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A superfield Φ is said to be primary if it is annihilated by the special conformal gener-

ators, KÂΦ = 0. From the algebra (2.1), we see that if a superfield is annihilated by

S-supersymmetry, then it is necessarily primary.

Given a covariant superfield Φ, it is obvious that ∂M̂Φ is not itself covariant. We are

led to introduce the covariant derivative

∇ = d− ωaXa , ∇ = EÂ∇Â . (2.6)

Its transformation is found to be

δH(∇ÂΦ) = (−1)εÂεbΛb∇ÂXbΦ− ΛbfbÂ
Ĉ∇ĈΦ− ΛbfbÂ

cXcΦ , (2.7)

with no derivatives on the gauge parameter Λa. Rewriting this as δH(∇ÂΦ) = ΛbXb∇ÂΦ,

we immediately derive the operator relation

[Xb,∇Â} = −fbÂ
Ĉ∇Ĉ − fbÂ

cXc . (2.8)

The torsion and curvature tensors appear in the commutator of two covariant derivatives,

[∇Â,∇B̂} = −TÂB̂
Ĉ∇Ĉ −RÂB̂

cXc , (2.9)

where the torsion and curvature tensors are defined, respectively, by

T
Â :=

1

2
EĈ ∧ EB̂

TB̂Ĉ
Â = dEÂ − EĈ ∧ ωb fbĈ

Â , (2.10a)

R
a :=

1

2
EĈ ∧ EB̂

RB̂Ĉ
a = dωa − EĈ ∧ ωb fbĈ

a −
1

2
ωc ∧ ωb fbc

a . (2.10b)

Using the definition of curvature and torsion (2.10) together with the vielbein and connec-

tion transformation rules (2.4), we find

δHT
Â = T

ĈΛbfbĈ
Â − EĈ ∧ EB̂ΛafaB̂

fffĈ
Â , (2.11a)

δHR
a = R

cΛbfbc
a + T

ĈΛbfbĈ
a − ED̂ ∧ EĈΛbfbĈ

fffD̂
a , (2.11b)

indicating that the torsion and curvature superfields are covariant. Writing the transfor-

mation rules as δHT Â = ΛaXaT
Â, δHRÂ = ΛaXaR

Â and δHE
Â = ΛbXbE

Â leads to the

action of Xa on the torsion and curvature:

XaTB̂Ĉ
D̂ = −(−1)εa(εB̂+ε

Ĉ
)
TB̂Ĉ

ÊfÊa
D̂ − 2fa[B̂

Ê
T|Ê|Ĉ}

D̂ − 2fa[B̂
ef|e|Ĉ}

D̂ , (2.12a)

XaRB̂Ĉ
d = −(−1)εa(εB̂+ε

Ĉ
)
(
TB̂Ĉ

ÊfÊa
d + RB̂Ĉ

efea
d
)
− 2fa[B̂

Ê
R|Ê|Ĉ}

d

− 2fa[B̂
ef|e|Ĉ}

d . (2.12b)

One can show that the above results are the necessary conditions for the Jacobi identity

involving two ∇’s

0 = [Xa, [∇B̂,∇Ĉ}}+ (graded cyclic permutations) (2.13)

– 6 –
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to be identically satisfied. The Bianchi identities

0 = [∇Â, [∇B̂,∇Ĉ}}+ (graded cyclic permutations) (2.14)

can also be shown to be satisfied identically. Therefore, we have a consistent algebraic

structure

[Xa, Xb} = −fab
cXc , (2.15a)

[Xa,∇B̂} = −faB̂
Ĉ∇Ĉ − faB̂

cXc , (2.15b)

[∇Â,∇B̂} = −TÂB̂
Ĉ∇Ĉ −RÂB̂

cXc , (2.15c)

which satisfies all the Jacobi identities. In the flat space limit the curvature vanishes and

the torsion becomes the usual constant torsion, so that the algebra (2.15) exactly matches

the superconformal algebra that we started with, in which PÂ is replaced with ∇Â. The

curved case involves a so-called soft algebra, where some of the structure constants have

been replaced by structure functions, corresponding to the introduction of torsion and

curvature. The superconformal algebra is then said to be “gauged” in this sense.

The full set of operators (∇Â, Xa) generates the conformal supergravity gauge group

G. The form of the covariant derivative suggests that we should extend the usual diffeo-

morphisms δgct into covariant diffeomorphisms

δcgct(ξ
Â) := δgct(ξ

ÂEÂ
M̂ )− δH(ξ

ÂωÂ
a) , (2.16)

where δgct(ξ
M̂ ) acts on scalars under diffeomorphisms as

δgctΦ = ξM̂∂M̂Φ . (2.17)

The full conformal supergravity gauge group G is then generated by

K = ξĈ∇Ĉ + ΛaXa . (2.18)

If a superfield Φ is a scalar under diffeomorphisms and covariant under the group H, then

its transformation under the full supergravity gauge group G is

δGΦ = KΦ = ξĈ∇ĈΦ+ ΛaXaΦ . (2.19)

It is a straightforward exercise to show that the vielbein and connection one-forms trans-

form as

δGE
Â = dξÂ + EB̂ΛcfcB̂

Â + ωbξĈfĈb
Â + EB̂ξĈTĈB̂

Â , (2.20a)

δGω
a = dΛa + ωbΛcfcb

a + ωbξĈfĈb
a + EB̂ΛcfcB̂

a + EB̂ξĈRĈB̂
a . (2.20b)

From this definition, one can check that the covariant derivative transforms as

δG∇Â = [K,∇Â] (2.21)
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provided we interpret

∇Âξ
B̂ := EÂξ

B̂ + ωÂ
cξD̂fD̂c

B̂ , (2.22a)

∇ÂΛ
b := EÂΛ

b + ωÂ
cξD̂fD̂c

b + ωÂ
cΛdfdc

b . (2.22b)

We can summarize the superspace geometry of conformal supergravity as follows. The

covariant derivatives have the form

∇Â = EÂ − ωÂ
bXb = EÂ −

1

2
ΩÂ

âb̂Mâb̂ − ΦÂ
klJkl −BÂD− FÂ

B̂KB̂ . (2.23)

The action of the generators on the covariant derivatives, eq. (2.15b), resembles that for

the PÂ generators given in (2.1). The supergravity gauge group is generated by local

transformations of the form (2.21) where

K = ξĈ∇Ĉ +
1

2
Λĉd̂Mĉd̂ + ΛklJkl + σD+ ΛÂKÂ (2.24)

and the gauge parameters satisfy natural reality conditions. The covariant derivatives

satisfy the (anti-)commutation relations

[∇Â,∇B̂} = −TÂB̂
Ĉ∇Ĉ −

1

2
R(M)ÂB̂

ĉd̂Mĉd̂ −R(J)ÂB̂
klJkl

−R(D)ÂB̂D−R(S)ÂB̂
γ̂kSγ̂k −R(K)ÂB̂

ĉKĉ , (2.25)

where the torsion and curvature tensors are given by

T
â = dEâ + E b̂ ∧ Ωb̂

â + Eâ ∧B , (2.26a)

T
α̂
i = dEα̂

i + 2Eβ̂
i ∧ Ωβ̂

α̂ +
1

2
Eα̂

i ∧B − Eα̂j ∧ Φji − iE ĉ ∧ F
β̂
i (Γĉ)β̂

α̂ , (2.26b)

R(D) = dB + 2Eâ ∧ Fâ − 2Eα̂
i ∧ Fi

α̂ , (2.26c)

R(M)âb̂ = dΩâb̂ +Ωâĉ ∧ Ωĉ
b̂ − 4E[â ∧ Fb̂] − 4Eα̂

j ∧ Fβ̂j(Σâb̂)α̂β̂ , (2.26d)

R(J)ij = dΦij − Φk(i ∧ Φj)
k + 6Eα̂(i ∧ F

j)
α̂ , (2.26e)

R(K)â = dFâ + Fb̂ ∧ Ωb̂
â − Fâ ∧B − iFα̂k ∧ Fβ̂k(Γ

â)α̂
β̂ , (2.26f)

R(S)α̂i = dFα̂i + 2Fβ̂i ∧ Ωβ̂
α̂ −

1

2
Fα̂i ∧B − Fα̂j ∧ Φj

i − iEβ̂i ∧ Fĉ(Γĉ)β̂
α̂ . (2.26g)

2.3 Conformal supergravity

In the conformal superspace approach to supergravity in four [38, 39] and three [40] dimen-

sions, the entire covariant derivative algebra may be expressed in terms of a single primary

superfield: the super Weyl tensor for D = 4 and the super Cotton tensor for D = 3. We

will seek a similar solution in D = 5 in terms of a single primary superfield, the super Weyl

tensor Wα̂β̂ = Wβ̂α̂ [26].

In the three- and four-dimensional cases the second ingredient to describe conformal

supergravity was to realize that the right constraints for the covariant derivative were such

that their algebra obeyed the same constraints as super Yang-Mills theory. Guided by
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the structure of 5D N = 1 super Yang-Mills theory [2, 7, 51], we impose the constraint

{∇
(i
α̂ ,∇

j)

β̂
} = 0, which is equivalent to the spinor derivative anti-commutation relation

{∇i
α̂,∇

j

β̂
} = −2iεij(Γĉ)α̂β̂∇ĉ − 2iεijεα̂β̂W , (2.27a)

where W is some operator taking values in the superconformal algebra. The Bianchi

identities give the other commutators

[∇â,∇
j

β̂
] = (Γâ)β̂

γ̂ [∇j
γ̂ ,W ] , (2.27b)

[∇â,∇b̂] = −Fâb̂ =
i

4
(Σâb̂)

α̂β̂{∇k
α̂, [∇β̂k,W ]} (2.27c)

and the additional constraint

{∇
(i
α̂ , [∇

j)

β̂
,W ]} =

1

4
εα̂β̂{∇

γ(i, [∇j)
γ ,W ]} . (2.28)

In analogy to conformal superspace in four dimensions [38, 39], we constrain the form

of the operator W to be

W = W α̂β̂Mα̂β̂ +W (S)α̂iSα̂i +W (K)b̂Kb̂ , (2.29)

where Wα̂β̂ is a symmetric dimension-1 primary superfield. One can show that the Bianchi

identity (2.28) is identically satisfied for

W = W α̂β̂Mα̂β̂ −
1

10
(∇i

β̂
W α̂β̂)Sα̂i −

1

4
(∇âWâb̂)K

b̂ , (2.30)

provided Wα̂β̂ satisfies

∇k
γ̂Wα̂β̂ = ∇k

(α̂Wβ̂γ̂) +
2

5
εγ̂(α̂∇

δ̂kWβ̂)δ̂ . (2.31)

It is convenient to introduce higher dimension descendant superfields constructed from

spinor derivatives of Wα̂β̂ . At dimension-3/2, we introduce

Wα̂β̂γ̂
k := ∇k

(α̂Wβ̂γ̂) , Xi
α̂ :=

2

5
∇β̂iWβ̂α̂ , (2.32a)

and at dimension-2, we choose

Wα̂β̂γ̂δ̂ := ∇
k
(α̂Wβ̂γ̂δ̂)k , Xα̂β̂

ij := ∇
(i
(α̂X

j)

β̂)
= −

1

4
∇γ̂(i∇

j)
γ̂ Wα̂β̂ , (2.32b)

Y := i∇γ̂kXγ̂k . (2.32c)

One can check that only these superfields and their vector derivatives appear upon taking

successive spinor derivatives of Wα̂β̂ . Specific relations we will need later are given below:

∇k
γ̂Wα̂β̂ = Wα̂β̂γ̂

k + εγ̂(α̂X
k
β̂)
, (2.33a)

∇i
α̂X

j

β̂
= Xα̂β̂

ij +
i

8
εij
(
εα̂β̂Y + 4εâb̂ĉd̂ê(Σâb̂)α̂β̂∇ĉWd̂ê − 4(Γb̂)α̂β̂∇

âWâb̂

)
, (2.33b)
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∇i
α̂Wβ̂γ̂δ̂

j = −
1

2
εij
(
Wα̂β̂γ̂δ̂ + 3i∇α̂(β̂Wγ̂δ̂) −

3i

4
εâb̂ĉd̂êεα̂(β̂(Σâb̂)γ̂δ̂)∇ĉWd̂ê

)

−
3

2
εα̂(β̂Xγ̂δ̂)

ij , (2.33c)

∇i
α̂Wβ̂γ̂δ̂ρ̂ = −4i∇α̂(β̂Wγ̂δ̂ρ̂)

i − 12iεα̂(β̂

(
∇γ̂

τ̂Wδ̂ρ̂)τ̂
i +Wγ̂δ̂X

i
ρ̂) − 2Wγ̂

τ̂Wδ̂ρ̂)τ̂
i
)
, (2.33d)

∇i
α̂Xβ̂γ̂

jk = εi(j
(
2i∇α̂

δ̂Wβ̂γ̂δ̂
k) + 2i∇(β̂

δ̂Wγ̂)α̂δ̂
k) − i∇α̂(β̂X

k)
γ̂) − iεα̂(β̂∇γ̂)

δ̂X
k)

δ̂

+ 6iW(α̂β̂X
k)
γ̂) − 12iW(α̂

δ̂Wβ̂γ̂)δ̂
k)
)
, (2.33e)

∇i
α̂Y = 8∇α̂

γ̂Xi
γ̂ . (2.33f)

These descendant superfields transform under S-supersymmetry as

Sα̂iWβ̂γ̂δ̂
j = 6δji εα̂(β̂Wγ̂δ̂) , Sα̂iX

j

β̂
= 4δjiWα̂β̂ ,

Sα̂iWβ̂γ̂δ̂ρ̂ = 24εα̂(β̂Wγ̂δ̂ρ̂)i , Sα̂iY = 8iXα̂i ,

Sα̂iXβ̂γ̂
jk = −4δ

(j
i Wα̂β̂γ̂

k) + 4δ
(j
i εα̂(β̂X

k)
γ̂) . (2.34)

In terms of these superfields, we can now construct the algebra of covariant derivatives

for 5D conformal supergravity:

{∇i
α̂,∇

j

β̂
} = −2iεij(Γĉ)α̂β̂∇ĉ − 2iεijεα̂β̂W

γ̂δ̂Mγ̂δ̂ −
i

2
εijεα̂β̂X

γ̂kSγ̂k

+
i

2
εijεα̂β̂(∇

âWâb̂)K
b̂ , (2.35a)

[∇â,∇
j

β̂
] = (Γâ)β̂

γ̂

(
Wγ̂δ̂∇

δ̂j +
1

2
Xj

γ̂D+Wγ̂δ̂ρ̂
jM δ̂ρ̂ +

3

2
Xk

γ̂Jk
j

−
1

4
(∇j

γ̂X
δ̂
k)S

k
δ̂
+

i

4
(Γĉ)γ̂

δ̂(∇b̂Wb̂ĉ)S
j

δ̂
−

1

4
(∇j

γ̂∇
ĉWĉb̂)K

b̂

)
, (2.35b)

[∇â,∇b̂] = −Tâb̂
ĉ∇ĉ −Tâb̂

γ̂
k∇

k
γ̂ −

1

2
R(M)âb̂

ĉd̂Mĉd̂ −R(J)âb̂
ijJij −R(D)âb̂D

−R(S)âb̂
γ̂kSγ̂k −R(K)âb̂

ĉKĉ , (2.35c)

where

Tâb̂
ĉ = −

1

2
εâb̂

ĉd̂êWd̂ê , (2.36a)

Tâb̂
γ̂
k = −

i

2
∇γ̂

kWâb̂ = −
i

2
(Σâb̂)α̂β̂W

α̂β̂γ̂
k −

i

2
(Σâb̂)

β̂γ̂Xβ̂k , (2.36b)

R(M)âb̂
ĉd̂ = −

i

4
(Σâb̂)

α̂β̂(Σĉd̂)γ̂δ̂∇k
α̂∇β̂kWγ̂δ̂ +

i

10
∇γ̂k∇δ̂

kWγ̂δ̂δ
ĉ
[âδ

d̂
b̂]

+ 2∇â′Wb̂′ĉ′ε
â′b̂′ĉ′[ĉ

[âδ
d̂]

b̂]
−Wâb̂W

ĉd̂

= −
i

4
(Σâb̂)

α̂β̂(Σĉd̂)γ̂δ̂Wα̂β̂γ̂δ̂ +
1

8
Y δĉ[âδ

d̂
b̂]
−Wâb̂W

ĉd̂ +
1

2
∇â′Wb̂′ĉ′ε

â′b̂′ĉ′[ĉ
[âδ

d̂]

b̂]

+
1

4
εâb̂

ĉd̂ê∇f̂Wf̂ ê +
1

4
εĉd̂êf̂ [â∇b̂]Wêf̂ −

1

2
∇êW f̂ [ĉεd̂]âb̂êf̂ , (2.36c)

R(J)âb̂
kl = −

3i

4
(Σâb̂)

α̂β̂Xα̂β̂
kl =

3i

16
(Σâb̂)

α̂β̂∇γ̂(k∇
l)
γ̂Wα̂β̂ , (2.36d)
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R(D)âb̂ = −
i

4
(Σâb̂)

α̂β̂∇k
α̂Xβ̂k = −

1

2
εâb̂ĉd̂ê∇

ĉW d̂ê , (2.36e)

R(S)âb̂
γ̂k = −

i

16
(Σâb̂)

α̂β̂
(
∇j

α̂∇β̂jX
γ̂k + 2i(Γĉ)α̂

γ̂∇d̂∇k
β̂
Wd̂ĉ − 4iWα̂β̂X

γ̂k
)

= −
1

16
εγ̂ρ̂(Σâb̂)

α̂β̂
(
2∇α̂

δ̂Wβ̂δ̂ρ̂
k + 6∇ρ̂

δ̂Wα̂β̂δ̂
k + ερ̂α̂∇β̂

δ̂Xk
δ̂
+ 3∇ρ̂α̂X

k
β̂

− 12W(ρ̂
δ̂Wα̂β̂)δ̂

k + 6W(α̂β̂X
k
ρ̂)

)
−

1

4
Wâb̂X

γ̂k , (2.36f)

R(K)âb̂
ĉ =

i

16
(Σâb̂)

α̂β̂(∇k
(α̂∇β̂)k∇d̂W

d̂ĉ − 4iWα̂β̂∇d̂W
d̂ĉ)

=
i

16
(Σâb̂)

α̂β̂

(
∇d̂∇

k
(α̂∇β̂)kW

d̂ĉ +
i

8
εĉêf̂ ĝĥ(Σêf̂ )α̂β̂YWĝĥ

− (Γĉ)δ̂
ρ̂W γ̂δ̂∇k

γ̂∇α̂kWβ̂ρ̂ + (Γĉ)α̂
ρ̂W γ̂δ̂∇k

γ̂∇β̂kWδ̂ρ̂

+ 2iWα̂β̂∇êW
êĉ − i(Σêf̂ )α̂β̂Wf̂

ĉ∇ĝWĝê + 3i(Σĉê)α̂β̂Wê
ĝ∇f̂Wf̂ ĝ

− 6i(Σêf̂ )α̂β̂W
ĝĉ∇[êWf̂ ĝ] − 3(Γĉ)γ̂δ̂Xk

γ̂Wα̂β̂δ̂k − 3(Γĉ)α̂
δ̂X γ̂kWβ̂γ̂δ̂k

− 2(Γĉ)δ̂ρ̂Wδ̂(α̂
γ̂kWβ̂)ρ̂γ̂k − 2(Γĉ)α̂

ρ̂Wβ̂
γ̂δ̂kWγ̂δ̂ρ̂k − 4iWα̂β̂∇d̂W

d̂ĉ

)
. (2.36g)

Despite possessing a larger structure group, the covariant derivative algebra is more com-

pact than that of SU(2) superspace [26]. This provides a significant advantage in performing

superspace calculations.

2.4 Full superspace actions

Given the geometry we have described, it is immediately apparent that one may construct

an action principle involving a full superspace integral

S[L] =

∫
d5|8z E L , d5|8z := d5x d8θ , E := Ber(EM̂

Â) , (2.37)

where L is a primary superspace Lagrangian of dimension +1.

For later applications, it will be important to know the rule for integrating by parts in

full superspace. It is given by
∫

d5|8z E (−1)εÂ∇ÂV
Â =

∫
d5|8z E

{
− (−1)εÂ

(
FÂ

b̂Kb̂V
Â + FÂ

β̂kSβ̂kV
Â
)

+ iFγ̂k
β̂kV â(Γâ)β̂

γ̂
}
, (2.38)

where V Â transforms as a Lorentz and SU(2) tensor with DV â = 0 and DV α̂
i = 1

2V
α̂
i .

In the special case where V Â corresponds to an S-invariant vector field V = V ÂEÂ =

V ÂEÂ
M∂M̂ , which requires

Si
β̂
V α̂
j = −iδijV

â(Γâ)β̂
α̂ , Sj

β̂
V â = 0 , (2.39)

we have the simple integration rule
∫

d5|8z E (−1)εÂ∇ÂV
Â = 0 . (2.40)
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2.5 Gravitational composite O(2) multiplet

As an application of the formalism introduced, we will construct a composite superfield

that may be used to generate a supersymmetric completion of an R2 term. This composite

superfield is constructed in terms of the super Weyl tensor as follows:

H ij
Weyl := −

i

2
W α̂β̂γ̂ iWα̂β̂γ̂

j +
3i

2
W α̂β̂Xα̂β̂

ij −
3i

4
X α̂iXj

α̂ = Hji
Weyl , (2.41)

where we have used the definitions (2.32). This superfield is real in the sense that H ij
Weyl =

εikεjlH
kl
Weyl. One can check that H ij

Weyl is primary and obeys the constraint

∇
(i
α̂H

jk)
Weyl = 0 . (2.42)

It corresponds exactly to the composite multiplet Lij [W2] constructed by Hanaki, Ohashi,

and Tachikawa [29].

This is an example of a covariant real O(2) multiplet, which will be introduced in

section 5. The structure of (2.41) is completely analogous to that of the composite O(2)

multiplet associated with the Yang-Mills multiplet given in [2], see the next subsection. The

supersymmetric R2-invariant of [29] may be constructed straightforwardly in superspace

using (2.41) and the BF action.

2.6 Turning on the Yang-Mills multiplet

Let us conclude this subsection by presenting a Yang-Mills multiplet in conformal super-

space. To describe such a non-abelian vector multiplet, the covariant derivative∇ = EÂ∇Â

has to be replaced with a gauge covariant one,

∇ = EÂ
∇Â , ∇Â := ∇Â − iV Â . (2.43)

Here the gauge connection one-form V = EÂV Â takes its values in the Lie algebra of

the Yang-Mills gauge group, GYM, with its (Hermitian) generators commuting with all the

generators of the superconformal algebra. The gauge covariant derivative algebra is

[∇Â,∇B̂} = −TÂB̂
Ĉ
∇Ĉ −

1

2
R(M)ÂB̂

ĉd̂Mĉd̂ −R(J)ÂB̂
klJkl −R(D)ÂB̂D

−R(S)ÂB̂
γ̂kSγ̂k −R(K)ÂB̂

ĉKĉ − iF ÂB̂ , (2.44)

where the torsion and curvatures are those of conformal superspace but with F ÂB̂ corre-

sponding to the gauge covariant field strength two-form F = 1
2E

B̂ ∧ EÂF ÂB̂. The field

strength F ÂB̂ satisfies the Bianchi identity

∇F = 0 ⇐⇒ ∇[ÂF B̂Ĉ} + T[ÂB̂
D̂F |D̂|Ĉ} = 0 . (2.45)

The Yang-Mills gauge transformation acts on the gauge covariant derivatives ∇Â and a

matter superfield U (transforming in some representation of the gauge group) as

∇Â → eiτ∇Âe
−iτ , U → U ′ = eiτU , τ † = τ , (2.46)
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where the Hermitian gauge parameter τ (z) takes its values in the Lie algebra of GYM. This

implies that the gauge one-form and the field strength transform as follows:

V → eiτ V e−iτ + i eiτ d e−iτ , F → eiτ F e−iτ . (2.47)

As in the flat case [7] (see also [2, 51]), some components of the field strength have to

be constrained in order to describe an irreducible multiplet. In conformal superspace the

right constraint is

F i
α̂
j

β̂
= 2iεijεα̂β̂W , (2.48a)

which fixes the remaining components of the field strengths to be

F â
j

β̂
= −(Γâ)β̂

γ̂
∇

j
γ̂W , (2.48b)

F âb̂ = −
i

4
(Σâb̂)

α̂β̂
(
∇

k
(α̂∇β̂)k − 4iWα̂β̂

)
W , (2.48c)

where the superfield W is Hermitian, W † = W , and obeys the Bianchi identity

∇
(i
α̂∇

j)

β̂
W =

1

4
εα̂β̂∇

γ̂(i
∇

j)
γ̂ W . (2.49)

Moreover, W is a conformal primary of dimension 1, Si
α̂W = 0 and DW = W .

Now let TI be the Hermitian generators of the gauge group GYM. The gauge connection

V Â and the field strengths F ÂB̂ and W can be decomposed as V Â = VÂ
ITI , F ÂB̂ =

FÂB̂
ITI and W = W ITI . For a single abelian vector multiplet, we will use VÂ, FÂB̂ and W .

It is helpful to introduce the following descendant superfields constructed from spinor

derivatives of W :

λi
α̂ := −i∇i

α̂W , Xij :=
i

4
∇

α̂(i
∇

j)
α̂W = −

1

4
∇

α̂(iλ
j)
α̂ . (2.50)

The above superfields together with

F α̂β̂ = −
i

4
∇

k
(α̂∇β̂)kW −Wα̂β̂W =

1

4
∇

k
(α̂λβ̂)k −Wα̂β̂W (2.51)

satisfy the following useful identities:

∇
i
α̂λ

j

β̂
= −2εij

(
F α̂β̂ +Wα̂β̂W

)
− εα̂β̂X

ij − εij∇α̂β̂W , (2.52a)

∇
i
α̂F β̂γ̂ = −i∇α̂(β̂λ

i
γ̂) − iεα̂(β̂∇γ̂)

δ̂λi
δ̂
− iWβ̂γ̂λ

i
α̂ −Wα̂β̂γ̂

iW − εα̂(β̂X
i
γ̂)W , (2.52b)

∇
i
α̂X

jk = 2iεi(j
(
∇α̂

β̂λ
k)

β̂
+Wα̂β̂λ

β̂k) −
i

2
X

k)
α̂ W − i[W ,λ

k)
α̂ ]

)
. (2.52c)

The S-supersymmetry generator acts on these descendants as

Si
α̂λ

j

β̂
= −2iεα̂β̂ε

ijW , Si
α̂F β̂γ̂ = 4εα̂(β̂λ

i
γ̂) , Si

α̂X
jk = −2εi(jλ

k)
α̂ . (2.53)

Now consider a primary composite superfield H
ij
YM that is quadratic in the generators

of the gauge group and is defined by

H
ij
YM = i(∇α̂(iW )∇

j)
α̂W +

i

4

{
W ,∇α̂(i

∇
j)
α̂W

}

= {W ,Xij} − iλα̂(iλ
j)
α̂ . (2.54)
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Its important property is

∇
(i
α̂H

jk)
YM = 0 . (2.55)

In the rigid superspace limit, H ij
YM reduces to the composite superfield introduced in [2].

Associated with H
ij
YM is the gauge singlet H ij

YM := trH ij
YM, which is a primary superfield

constrained by ∇
(i
α̂H

jk)
YM = 0. This is an example of a covariant O(2) multiplet defined in

section 5.

3 From conformal to SU(2) superspace

The superspace structure we have presented in the previous section involves, as in four

and three dimensions [38–40], the gauging of the entire superconformal algebra in order

to describe conformal supergravity. Traditionally, however, conformal supergravity has

been described in superspace in a different manner: local component scale and special

conformal transformations were encoded in super Weyl transformations. This was exactly

the approach taken previously in [26] where 5D conformal supergravity was described by

gauging SO(4, 1) × SU(2), corresponding to the Lorentz and R-symmetry groups, with

additional super Weyl transformations realized non-linearly. As in the introduction, we

refer to the latter formulation of conformal supergravity as SU(2) superspace.

The relation between these two approaches mirrors the simpler non-supersymmetric

situation. Conformal gravity may be described as the gauge theory of the conformal al-

gebra, with a vielbein, Lorentz, dilatation, and special conformal connection. Certain

constraints are usually imposed so that the only independent fields are the vielbein and

dilatation connection. A special conformal transformation can be made to eliminate the

dilatation connection; upon making such a choice, one keeps the vielbein and Lorentz con-

nections in the covariant derivative, while discarding the special conformal connection —

this is often called “degauging” the special conformal symmetry. The dilatation symmetry

survives as the usual Weyl symmetry of the vielbein, and one recovers a formulation of

conformal gravity with a vielbein alone.

As alluded to in the introduction, it is possible to “degauge” conformal superspace to

recover SU(2) superspace in a similar way. This is the goal of this section. The procedure

follows exactly the path laid out in the four and three dimensional cases [38–40]. In

particular, we will show explicitly how to recover the connections and curvatures of SU(2)

superspace and derive the form of the super Weyl transformations. The material in this

section provides the necessary ingredients to relate results in conformal superspace to those

of SU(2) superspace.

3.1 Degauging to SU(2) superspace

Let us recall that SU(2) superspace is described by a superspace vielbein, Lorentz con-

nection, and SU(2)R connection. Conformal superspace possesses in addition dilatation

and special conformal connections; these must be dealt with in a particular way. The first

step is to eliminate the dilatation connection. Because the one-form B = EâBâ + Eα̂
i B

i
α̂

transforms as

δK(Λ)B = −2EâΛâ − 2Eα̂
i Λ

i
α̂ , (3.1)
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under special conformal transformations, it is straightforward to impose the gauge choice

BÂ = 0 , (3.2)

eliminating the dilatation connection entirely. The special conformal connection FÂ re-

mains, but its corresponding gauge symmetry has been fixed, so we will extract it from the

covariant derivative. The resulting degauged covariant derivatives are given by

DÂ := ∇Â + FÂ
B̂KB̂ = EÂ −

1

2
ΩÂ

b̂ĉMb̂ĉ − ΦÂ
ijJij , (3.3)

and possess an SO(4, 1)×SU(2) structure group. They satisfy (anti-)commutation relations

of the form6

[DÂ,DB̂} = −T̃ÂB̂
ĈDĈ −

1

2
R̃ÂB̂

ĉd̂Mĉd̂ − R̃ÂB̂
klJkl . (3.4)

Because the vielbein, Lorentz, and SU(2) connections are exactly those of conformal su-

perspace, it is easy to give expressions for the new torsion and curvature tensors in terms

of the conformal ones using (2.26). For example, one finds for the torsion tensor,

T̃
â = T

â , T̃
α̂
i = T

α̂
i + iE ĉ ∧ F

β̂
i (Γĉ)β̂

α̂ . (3.5)

The special conformal connections FÂ
B̂ provide new contributions to the superfield torsion

and similarly to the other curvatures.

It turns out there is actually a subtlety in this degauging procedure. A careful ex-

amination of (3.5) shows that one recovers almost all the same constraints on the torsion

tensor as in SU(2) superspace, except that

T̃âβ̂(j
β̂
k) 6= 0 , T̃âb̂

ĉ 6= 0 . (3.6)

In SU(2) superspace, both of these combinations are required to vanish. The solution to

this is that there is some freedom to redefine the vector components of the Lorentz and

SU(2) connections when we degauge, corresponding to a redefinition of the vector covariant

derivative of SU(2) superspace. This in turn modifies the torsion and curvature tensors. A

particular choice sets to zero the combinations (3.6) and exactly reproduces the torsion and

curvature tensors of SU(2) superspace. To elaborate further, we must analyze explicitly

the additional superfields introduced by the special conformal connections FÂ
B̂.

3.2 The degauged special conformal connection

In the gauge (3.2) the dilatation curvature is given by7

R(D)ÂB̂ = 2FÂB̂(−1)
ε
B̂ − 2FB̂Â(−1)

ε
Â
+ε

Â
ε
B̂ . (3.7)

The vanishing of the dilatation curvature at dimension-1 constrains the special conformal

connection as8

Fi
α̂
j

β̂
= −Fj

β̂

i
α̂ =

i

2
εα̂β̂S

ij −
i

4
Cα̂β̂

ij + iεijYα̂β̂ , (3.8)

6We distinguish the degauged versions of the torsion and curvatures with a tilde.
7We have lowered the index on the K-connection as FÂb̂ = ηb̂ĉFÂ

ĉ and FÂ
j

β̂
= εβ̂γ̂FÂ

γ̂j .
8The reason for introducing these superfields via these coefficients will be clear later.
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where the superfields Sij , Cα̂β̂
ij , Yα̂β̂ satisfy the symmetry properties

Sij = Sji , Cα̂β̂
ij = (Γâ)α̂β̂Câ

ij = Cα̂β̂
ji , Yα̂β̂ = Yβ̂α̂ . (3.9)

From here it is possible to derive the degauged covariant derivative algebra by computing

[DÂ,DB̂}. An efficient way to do this is to consider a primary superfield Φ transforming as

a tensor in some representation of the remainder of the superconformal algebra (compare

with [39]). For example, to determine the anti-commutator of spinor derivatives we consider

{Di
α̂,D

j

β̂
}Φ = {∇i

α̂,∇
j

β̂
}Φ+ Fi

α̂
Ĉ [KĈ ,∇

j

β̂
}Φ+ F

j

β̂

Ĉ [KĈ ,∇
i
α̂}Φ . (3.10)

Making use of the form of F and of the superconformal algebra we find

{Di
α̂,D

j

β̂
} = −2iεijD′

α̂β̂
+ 3iεα̂β̂ε

ijSklJkl − iεijCα̂β̂
klJkl − 12iYα̂β̂J

ij

−iεα̂β̂ε
ij
(
W ĉd̂ + Y ĉd̂

)
Mĉd̂ +

i

4
εijεâb̂ĉd̂ê(Γâ)α̂β̂

(
2Yb̂ĉ −Wb̂ĉ

)
Md̂ê

−
i

2
εâb̂ĉd̂ê(Σâb̂)α̂β̂Cĉ

ijMd̂ê + 4iSijMα̂β̂ , (3.11)

where we have defined the vector covariant derivative

D′â := Dâ +
1

4
Câ

klJkl −
1

8
εâb̂ĉd̂êW

b̂ĉM d̂ê . (3.12)

The remaining algebra of covariant derivatives can be similarly computed directly from

degauging. It can be seen that the algebra of D′
Â
= (D′â,D

i
α̂) exactly matches the one of

SU(2) superspace [26] once we identify the dimension-1 torsion components Xâb̂ and Nâb̂

used in [26] as

Xâb̂ := Wâb̂ + Yâb̂ , Nâb̂ := 2Yâb̂ −Wâb̂ . (3.13)

The superfields Sij and Câ
ij , which we introduced in (3.8), are equivalent to the ones used

in [26]. In particular, it turns out that the covariant derivative algebra for D′
Â

does not

possess the torsion components (3.6).

The curvature superfields can be shown to satisfy the dimension-3/2 identities:

Dk
γ̂Wâb̂ = Wâb̂γ̂

k + (Σâb̂)γ̂
δ̂Xk

δ̂
, (3.14a)

Dk
γ̂Yâb̂ = 2(Γ[â)γ̂

δ̂Yb̂]δ̂
k + (Σâb̂)γ̂

δ̂Yk
δ̂
, (3.14b)

Dk
γ̂Câ

ij = −
1

2
(Γâ)γ̂

δ̂Cδ̂
ijk −

2

3

(
Câ

(i
γ̂ −

1

2
(Γâ)γ̂

δ̂C
(i

δ̂

)
εj)k , (3.14c)

Dk
γ̂S

ij = −
1

4
Cγ̂

ijk +

(
X

(i
γ̂ +

5

2
Y

(i
γ̂ +

5

12
C
(i
γ̂

)
εj)k , (3.14d)

where

(Γâ)α̂
β̂Wâb̂β̂

i = 0 , (Γâ)α̂
β̂Yâβ̂

i = 0 , (Γâ)α̂
β̂Câβ̂

i = 0 , Cα̂
ijk = Cα̂

(ijk) . (3.15)

Note that the dimension-3/2 torsion is

T̃âb̂
k
γ̂ =

i

2
Dk

γ̂Wâb̂ +
i

2
Dk

γ̂Yâb̂ −
i

6
(Γ[â)γ̂

δ̂Cb̂]
k
δ̂
+

i

4
(Σâb̂)γ̂

δ̂Ck
δ̂
. (3.16)

– 16 –



J
H
E
P
0
2
(
2
0
1
5
)
1
1
1

To degauge results in conformal superspace it is useful to also have the remaining

special conformal connection components Fâ
β̂j and Fâb̂. They are constrained by the

dilatation curvature as follows:9

−
1

5
(Γâ)β̂

γ̂Dδ̂jWγ̂δ̂ = −2Fâ
j

β̂
− 2Fj

β̂ â
, (3.17a)

−
1

2
εâb̂ĉd̂êD

ĉW d̂ê = 4F[âb̂] . (3.17b)

The explicit expressions for Fâ
j

β̂
and Fâb̂ may be found by analyzing the special con-

formal curvatures

R(S)ÂB̂
γ̂k = 2D[ÂFB̂}

γ̂k + T̃ÂB̂
D̂FD̂

γ̂k + iδÂ
δ̂kFB̂

ĉ(Γĉ)δ̂
γ̂(−1)εB̂

− iδ̂B̂
δ̂kFÂ

ĉ(Γĉ)δ̂
γ̂(−1)εB̂ε

Â
+ε

Â , (3.18a)

R(K)ÂB̂
ĉ = 2D[ÂFB̂}

ĉ + T̃ÂB̂
D̂FD̂

ĉ + iFÂ
γ̂
kFB̂

δ̂k(Γĉ)γ̂δ̂(−1)
ε
B̂

− iFB̂
γ̂
kFÂ

δ̂k(Γĉ)γ̂δ̂(−1)
ε
B̂
ε
Â
+ε

Â , (3.18b)

which appear in the algebra of the conformal covariant derivatives ∇Â. The component

special conformal connections are given by:

Fâ
j

β̂
= −

1

10
(Γâ)β̂

γ̂Dγ̂kS
jk −

1

18
(Σâb̂)β̂

γ̂Dγ̂kC
b̂jk −

1

24
εâb̂ĉd̂ê(Σ

d̂ê)β̂
γ̂Dj

γ̂Y
b̂ĉ

−
1

12
(Γb̂)β̂

γ̂Dj
γ̂Yâb̂ +

1

18
Dβ̂kCâ

jk +
1

30
(Γâ)β̂

γ̂Dδ̂jWγ̂δ̂

=
1

2
Yâ

j

β̂
−

1

12
Câ

j

β̂
−

1

16
(Γâ)β̂

γ̂Cjγ̂ −
1

8
(Γâ)β̂

γ̂Yj
γ̂ , (3.19a)

F
j

β̂ â
= −Fâ

j

β̂
+

1

10
(Γâ)β̂

γ̂Dδ̂jWγ̂δ̂ = −Fâ
j

β̂
+

1

4
(Γâ)β̂

γ̂Xj
γ̂ , (3.19b)

Fâb̂ =
i

288
ηâb̂[D

α̂i,Dj
α̂]Sij +

i

576
ηâb̂[D

α̂
i ,D

β̂
j ]Cα̂β̂

ij −
i

128
(Γ(â)

α̂β̂ [Di
α̂,D

j

β̂
]Cb̂)ij

−
i

96
ηâb̂[D

k
α̂,Dβ̂k]Y

α̂β̂ −
i

48
(Σĉ

(â)
α̂β̂ [Dk

α̂,Dβ̂k]Yb̂)ĉ +
i

240
ηâb̂[D

k
α̂,Dβ̂k]W

α̂β̂

−
1

8
ηâb̂S

klSkl +
1

16
Câ

klCb̂kl −
1

32
ηâb̂C

ĉklCĉkl

+
1

2
Y(â

ĉYb̂)ĉ −
1

8
ηâb̂Y

ĉd̂Yĉd̂ −
1

8
εâb̂ĉd̂êD

ĉW d̂ê . (3.19c)

The above results provide us with the ingredients needed to degauge conformal super-

space to SU(2) superspace. For example, one finds the commutator

[D′â,D
j

β̂
] = −

1

2

[
(Yâb̂ +Wâb̂)(Γ

b̂)β̂
γ̂δjk +

1

4
εâb̂ĉd̂ê(2Y

d̂ê −W d̂ê)(Σb̂ĉ)β̂
γ̂δjk

− (Γâ)β̂
γ̂Sj

k − (Σâb̂)β̂
γ̂C b̂j

k

]
Dk

γ̂

+
1

2

[
(Γâ)β̂

γ̂W ĉd̂k
γ̂ + δ

[ĉ
â

(
1

3
Cd̂]β̂

j − 2Y d̂]
β̂
j +

1

2
(Γd̂])β̂

γ̂
(
Cjγ̂ + 2Yj

γ̂ + 2Xj
γ̂

))

9Here we raise and lower the indices on the special conformal connection using εij , εα̂β̂ and ηâb̂ in the

usual way.
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+ (Σĉd̂)β̂
γ̂

(
2Yâγ̂

j −
1

3
Câγ̂

j

)
+

1

8
εâ

ĉd̂êf̂ (Σêf̂ )β̂
γ̂(Cjγ̂ + 2Yj

γ̂)

]
Mĉd̂

+

[
3Yâ

(k

β̂
εl)j −

1

3
Câ

(k

β̂
εl)j +

1

8
(Γâ)β̂

γ̂Cγ̂
jkl −

11

24
(Γâ)β̂

γ̂C
(k
γ̂ εl)j

−
3

4
(Γâ)β̂

γ̂(Y
(k
γ̂ + 2X

(k
γ̂ )εl)j

]
Jkl , (3.20)

which agrees with [26] up to field redefinitions. One can also derive the [D′â,D
′
b̂
] commuta-

tor, which we will not need for this paper.

3.3 The conformal origin of the super Weyl transformations

We have just shown that SU(2) superspace is a degauged version of conformal superspace,

in which the dilatation connection is gauged away. Although the dilatations and special

conformal transformations are not manifestly realized, the dilatation symmetry has not

been fixed. The symmetry remains as additional nonlinear transformations, known as

super Weyl transformations. Their presence in SU(2) superspace ensures that it describes

conformal supergravity. Below we show how to recover the super Weyl transformations

from the degauging of conformal superspace.

Suppose we have gauge fixed the dilatation connection to vanish by using the special

conformal symmetry. If we now perform a dilatation with parameter σ, we must accompany

it with an additional KÂ transformation with σ-dependent parameters ΛÂ(σ) to maintain

the gauge BÂ = 0, which requires

(
δK(Λ(σ)) + δD(σ)

)
BÂ = 0 . (3.21)

Using the transformation rule (2.21), we find

Λâ(σ) =
1

2
Dâσ , Λα̂i(σ) = −

1

2
Dα̂iσ . (3.22)

Note that all primary superfields Φ transform homogeneously

δK(Λ(σ))Φ + δD(σ)Φ = δD(σ)Φ = wσΦ , (3.23)

where w is the dimension of Φ, DΦ = wΦ. For example, the super Weyl tensor transforms as

δσWα̂β̂ = σWα̂β̂ . (3.24)

The super Weyl transformations of the degauged covariant derivatives DÂ and the

special conformal connection can be read from

δσ∇Â = δσDÂ − δσFÂ
B̂KB̂ = δK(Λ(σ))∇Â + δD(σ)∇Â , (3.25)

implying that the super Weyl transformations of DÂ are

δσD
i
α̂ =

1

2
σDi

α̂ + 2(Dγ̂iσ)Mγ̂α̂ − 3(Dα̂kσ)J
ki , (3.26a)

δσDâ = σDâ +
i

2
(Γâ)

γ̂δ̂(Dk
γ̂σ)Dδ̂k − (Db̂σ)Mâb̂ , (3.26b)
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while the super Weyl transformation of, for example, Fi
α̂
β̂j is

δσF
i
α̂
β̂j = σFi

α̂
β̂j −

1

2
Di

α̂D
β̂jσ +

i

2
εijDα̂

β̂σ = σFi
α̂
β̂j −

1

4
[Di

α̂,D
β̂j ]σ . (3.27)

Equation (3.27) implies

δσS
ij = σSij +

i

4
Dα̂(iD

j)
α̂ σ , (3.28a)

δσCâ
ij = σCâ

ij +
i

2
(Γâ)

γ̂δ̂D
(i
γ̂ D

j)

δ̂
σ , (3.28b)

δσYâb̂ = σYâb̂ −
i

4
(Σâb̂)

α̂β̂Dk
α̂Dβ̂kσ . (3.28c)

4 The Weyl multiplet

The 5D Weyl multiplet, constructed independently by two groups [19, 20] and [21, 22],

consists of the following matter content: four fundamental one-forms — the vielbein em̂
â,

the gravitini ψm̂
i
α̂, an SU(2) gauge field Vm̂

ij , and a dilatation gauge field bm̂; and three

covariant auxiliary fields — a real antisymmetric tensor wâb̂, a fermion χi
α̂, and a real

auxiliary scalar D. In addition, there are three composite one-forms — the spin connection

ωm̂
âb̂, the S-supersymmetry connection φm̂

i
α̂, and the special conformal connection fm̂

â —

which are algebraically determined in terms of the other fields by imposing constraints on

some of the curvature tensors.

In a standard component analysis, one begins by interpreting the seven one-forms ap-

pearing above as connections for the 5D superconformal algebra F2(4). Associated with

each connection is a two-form field strength, constructed in the usual manner from the

superalgebra F2(4). One wishes to algebraically constrain the spin, S-supersymmetry,

and special conformal connections in terms of the other quantities: this can be accom-

plished by constraining respectively the vielbein curvature R(P )m̂n̂
â, the gravitino curva-

ture R(Q)m̂n̂
i
α̂, and the conformal Lorentz curvature R(M)m̂n̂

âb̂. However, the remaining

one-forms cannot furnish an off-shell representation of a conformal supersymmetry algebra

as the bosonic and fermionic degrees of freedom do not match, so one is led to introduce

the additional covariant fields wâb̂ (denoted Tâb̂ in [21, 22] and vâb̂ in [19, 20]), χα̂
i, and

D. At this stage, one must determine how the presence of the auxiliary fields deforms the

supersymmetry algebra, the curvatures, and the constraints imposed on the curvatures in

a self-consistent way. In general, there is no unique solution, and indeed, the two original

groups, as well as the recent work [52], each use different definitions for supersymmetry

and for the curvatures.

In contrast, the technical advantage of a superspace approach is that once the super-

geometry is completely specified and the Bianchi identities solved, one must only specify

definitions for the component fields — their supersymmetry transformations and the cor-

responding curvatures are then completely determined. Our goal in this section is to

demonstrate precisely how this occurs for the 5D Weyl multiplet.
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4.1 Component fields and curvatures from superspace

We begin by identifying the various component fields of the Weyl multiplet. Let us start

with the vielbein and gravitino. These appear as the coefficients of dxm̂ of the superviel-

bein EÂ = (Eâ, Eα̂
i ) = dzM̂ EM̂

Â. It is convenient to introduce the so-called double bar

projection [53, 54], denoted by EÂ||, that restricts to θ = dθ = 0, corresponding to the

bosonic part T ∗M5 of the cotangent bundle T ∗M5|8, whereM5 is the bosonic body of the

curved superspaceM5|8. Then we can define10

eâ = dxm̂em̂
â := Eâ|| , ψi

α̂ = dxm̂ψm̂
i
α̂ := 2Ei

α̂|| . (4.1)

This is equivalent to defining em̂
â = Em̂

â| and ψm̂
i
α̂ = 2Em̂

i
α̂| where the single vertical bar

denotes the usual component projection to θ = 0, i.e. V (z)| := V (z)|θ=0 for any superfield

V (z). In like fashion the remaining fundamental and composite one-forms are found by

taking the projections of the corresponding superforms,

V ij := Φij || , b := B|| , ωâb̂ := Ωâb̂|| , φi
α̂ := 2Fi

α̂|| , fâ := Fâ|| . (4.2)

The additional auxiliary fields are contained within the curvature superfield Wα̂β̂ ,

wα̂β̂ := Wα̂β̂ | , χi
α̂ :=

3i

32
Xi

α̂| , D := −
3

128
Y | . (4.3)

The normalizations we have chosen for χi
α̂ andD coincide with the normalizations of [21, 22]

and [52]. The other independent components of the curvature superfield are given byWâb̂α̂
i|

and by Xâb̂
ij |, and will turn out to be given by some of the component curvatures.

It should be mentioned that one can impose a Wess-Zumino gauge to fix the θ expan-

sions of the super one-forms, so that they are completely determined by the above fields.

This ensures that the entire physical content of the superspace geometry is accounted for.

In practice, it is usually unnecessary to do this explicitly.

Now we may determine the so-called supercovariant curvatures. In terms of the connec-

tion one-forms, the covariant derivative ∇â| is defined by taking the double bar projection

of equation (2.6), leading to

em̂
â∇â| = ∂m̂ −

1

2
ψm̂

α̂
i ∇

i
α̂| −

1

2
ωm̂

âb̂Mâb̂ − bm̂D− Vm̂
ijJij −

1

2
φm̂

α̂iSα̂i − fm̂
âKâ , (4.4)

where we have defined the lowest component of the superspace operator ∇i
α̂| such that for

an arbitrary tensor superfield U

(∇i
α̂|U)| = (∇i

α̂U)| . (4.5)

We interpret ∇i
α̂| as the generator of supersymmetry. In what follows we will drop the bar

projection from ∇â| when it is clear from context to which we are referring.

10We define the gravitino with a lowered spinor index and a raised SU(2) index. We follow similar

conventions when defining other component fields.

– 20 –



J
H
E
P
0
2
(
2
0
1
5
)
1
1
1

It will be convenient to also introduce the spin, dilatation, and SU(2) covariant deriva-

tive

Dm̂ := ∂m̂ −
1

2
ωm̂

b̂ĉMb̂ĉ − bm̂D− Vm̂
ijJij , (4.6a)

Dâ := eâ
m̂Dm̂ = eâ

m̂∂m̂ −
1

2
ωâ

b̂ĉMb̂ĉ − bâD− Vâ
ijJij , (4.6b)

where

ωâ
b̂ĉ := eâ

m̂ωm̂
b̂ĉ , bâ := eâ

m̂bm̂ , Vâ
ij := eâ

m̂Vm̂
ij . (4.7)

The supercovariant curvature tensors are given by

[∇â,∇b̂] = −R(P )âb̂
ĉ∇ĉ −R(Q)âb̂

α̂
i ∇

i
α̂| −

1

2
R(M)âb̂

ĉd̂Mĉd̂ −R(J)âb̂
ijJij

−R(D)âb̂D−R(S)âb̂
γ̂kSγ̂k −R(K)âb̂

ĉKĉ (4.8)

and are found by taking the component projections of the curvature tensors in (2.35c). We

have introduced the expressions

R(P )âb̂
ĉ = Tâb̂

ĉ| , R(Q)âb̂
i
α̂ = Tâb̂

i
α̂| , (4.9)

for the lowest components of the superspace torsion tensors to match the usual component

nomenclature.

At this stage there are two distinct expressions we can give for each of the curvature

tensors. Let us demonstrate with R(P )âb̂
ĉ. We can write two equivalent expressions for

the double-bar projection of the torsion two-form T ĉ,

T
ĉ|| =

1

2
dxn̂ ∧ dxm̂ Tm̂n̂

ĉ| = dxn̂ ∧ dxm̂D[m̂en̂]
ĉ (4.10)

and

T
ĉ|| =

1

2
(−1)εÂε

B̂EÂ ∧ EB̂
TÂB̂

ĉ||

=
1

2
dxn̂ ∧ dxm̂

(
em̂

âen̂
b̂
Tâb̂

ĉ|+ e[m̂
â ψn̂]

β̂
j Tâ

j

β̂

ĉ| −
1

4
ψm̂

α̂
i ψn̂

β̂
j T

i
α̂
j

β̂

ĉ|

)

=
1

2
dxn̂ ∧ dxm̂

(
em̂

âen̂
b̂R(P )âb̂

ĉ +
i

2
ψm̂jΓ

ĉψn̂
j

)
. (4.11)

Equating the two expressions provides a definition for the supercovariant curvature

R(P )âb̂
ĉ. Proceeding in this way for the other curvature two-forms, we find the follow-

ing definitions:

R(P )âb̂
ĉ := 2 eâ

m̂eb̂
n̂D[m̂en̂]

ĉ −
i

2
ψâjΓ

ĉψb̂
j (4.12a)

R(Q)âb̂
i
α̂ := eâ

m̂eb̂
n̂D[m̂ψn̂]

i
α̂ + i(Γ[âφb̂]

i)α̂ +
1

2
wĉd̂ (Σ

ĉd̂Γ[âψb̂]
i)α̂ , (4.12b)

R(M)âb̂
ĉd̂ := R(ω)âb̂

ĉd̂ + 8 δ[â
[cfb̂]

d] − 2ψ[âjΣ
ĉd̂φb̂]

j − 2i(ψ[âjΓb̂]R(Q)ĉd̂j)

−
32i

3
(ψ[âjΓb̂]Σ

ĉd̂χj) +
i

2
ψâjψb̂

jwĉd̂ , (4.12c)
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R(J)âb̂
ij := R(V)âb̂

ij − 3 (ψ[â
(iφb̂]

j))− 16i (ψ[â
(iΓb̂]χ

j)) , (4.12d)

R(D)âb̂ := 2 eâ
m̂eb̂

n̂∂[m̂bn̂] + 4 f[âb̂] + (ψ[âjφb̂]
j) +

16i

3
(ψ[âkΓb̂]χ

k) , (4.12e)

where we have introduced

ψâ
β̂
j := eâ

m̂ψm̂
β̂
j , φâ

β̂
j := eâ

m̂φm̂
β̂
j , fâ

b̂ = eâ
m̂fm̂

b̂ (4.13)

and the curvatures

R(ω)âb̂
ĉd̂ := 2eâ

m̂eb̂
n̂(∂[m̂ωn̂]

ĉd̂ − 2ω[m̂
ĉêωn̂]ê

d̂) , (4.14)

R(V)âb̂
ij := 2 eâ

m̂eb̂
n̂
(
∂[m̂V

ij
n̂] + V

k(i
[m̂ V

j)
n̂]k

)
. (4.15)

The supercovariant forms of R(S)âb̂
i
α̂ and R(K)âb̂

ĉ are a good deal more complicated, so

we do not give them here.

4.2 Analysis of the curvature constraints

We have not yet employed the constraints imposed by superspace on the curvatures. They

are

R(P )âb̂
ĉ = −w̃âb̂

ĉ ≡ −
1

2
εâb̂

ĉd̂êwd̂ê , (4.16a)

(ΓâR(Q)âb̂
i)α̂ = −

32

3
(Γb̂χ

i)α̂ , (4.16b)

R(M)âb̂
ĉb̂ = −

32

3
δĉâD − wâd̂w

ĉd̂ −∇d̂w̃d̂â
ĉ , (4.16c)

and respectively determine the spin connection, the S-supersymmetry connection, and the

K-connection. In contrast to previous conventions employed in the literature, these are ac-

tually S-invariant constraints. The reason for this is that the superspace operators ∇i
α̂ and

∇â have the same algebra with Sα̂i as one finds in the superconformal algebra F2(4). The

price one pays for this simplicity is that the composite connections will turn out to depend

rather more significantly on the auxiliary fields wâb̂, χ
i
α̂ and D than one might have wished.

The first constraint (4.16a) determines the spin connection to be

ωâb̂ĉ = ω(e)âb̂ĉ +
i

4
(ψâkΓĉψb̂

k + ψĉkΓb̂ψâ
k − ψb̂kΓâψĉ

k) + 2b[b̂ηĉ]â −
1

4
εâb̂ĉ

d̂êwd̂ê , (4.17)

where ω(e)âb̂ĉ = −
1
2(Câb̂ĉ+Cĉâb̂−Cb̂ĉâ) is the usual spin connection of general relativity, given

in terms of the anholonomy coefficient Cm̂n̂
â := 2 ∂[m̂en̂]

â. Note that the spin connection

ωâb̂ĉ possesses torsion: in addition to the usual contribution from the gravitino bilinears,

there is additional bosonic torsion from the auxiliary field wâb̂.

From the second constraint (4.16b), we find the S-supersymmetry connection

iφm̂
i =

8

3
Γm̂χi +

1

3

(
Γ[p̂δ

q̂]
m̂ +

1

4
Γm̂Σp̂q̂

)
(Ψp̂q̂

i + wâb̂Σ
âb̂Γ[p̂ψq̂]

i) , (4.18)
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where we have suppressed spinor indices for legibility and introduced the gravitino field

strength Ψm̂n̂
i
α̂ := 2D[m̂ψn̂]

i
α̂. Reinserting this back into the original expression for R(Q),

we find that

R(Q)âb̂
i =

1

2
Πâb̂

ĉd̂
(
Ψĉd̂

i − wĉd̂Γ
eψe

i − w̃âb̂
ĉψc

i
)
−

16

3
Σâb̂χ

i , (4.19)

where the spinor projection operator

Πâb̂
ĉd̂ := δ

[ĉ
â δ

d̂]

b̂
+

2

3
δ
[ĉ
[âΓb̂]Γ

d̂] −
1

3
Σâb̂Σ

ĉd̂ , ΓâΠâb̂
ĉd̂ = 0 , Π2 = Π , (4.20)

projects onto the Γ-traceless part of a spinor-valued two-form. It is convenient to introduce

a separate symbol R̂(Q)âb̂
i
α̂ for the first term of (4.19),

R̂(Q)âb̂
i =

1

2
Πâb̂

ĉd̂
(
Ψĉd̂

i − wĉd̂Γ
êψê

i − w̃âb̂
ĉψĉ

i
)
, (4.21)

corresponding to its Γ-traceless part. Using (2.36b), we find that one of the remaining

components of the superspace curvature is determined,

Wα̂β̂γ̂
i| = i(Σâb̂)α̂β̂ R̂(Q)âb̂

i
γ̂ = iΨ(γ̂β̂α̂)

i + iw(γ̂β̂ψα̂)δ̂
δ̂i − iwδ̂(α̂ψ

δ̂
γ̂β̂)

i . (4.22)

From the third constraint (4.16c), one can show that

fâ
b̂ = −

2

3
δâ
b̂
D −

1

6
wâĉw

b̂ĉ +
1

48
δb̂âw

ĉd̂wĉd̂ −
1

6
∇ĉw̃ĉâ

b̂ −
1

6
Râ

b̂(ω) +
1

48
δb̂âR(ω)

−
i

6
(ψd̂ΓâR̂(Q)b̂d̂j) +

1

3
(ψ[âjΣ

b̂ĉφĉ]
j)−

1

24
δb̂â(ψĉjΣ

ĉd̂φd̂
j)

−
i

12
(ψâjψĉ

j)wb̂ĉ +
i

96
δb̂â(ψĉjψd̂

j)wĉd̂ , (4.23)

where Râ
b̂(ω) = Râĉ

b̂ĉ(ω) and R(ω) = Râ
â(ω). In principle, one can reinsert this ex-

pression into R(M)âb̂
ĉd̂. The result is quite complicated; we remark only that it can be

written

R(M)âb̂
ĉd̂ = C(ω)âb̂

ĉd̂ −
4

3
δ[â

[ĉwb̂]êw
d̂]ê −

4

3
∇êw̃ê[â

[ĉδb̂]
d̂]

+ δ[â
[ĉδb̂]

d̂]

(
1

6
wêf̂wêf̂ −

16

3
D

)
+ (explicit gravitino terms) , (4.24)

where C(ω)âb̂
ĉd̂ = R(ω)âb̂

ĉd̂ − 4
3δ[â

[ĉR(ω)b̂]
d̂] + 1

6δ[â
[ĉδb̂]

d̂]R(ω) is the traceless part of the

tensor R(ω)âb̂
ĉd̂. This is not quite the usual Weyl tensor because of the presence of bosonic

torsion in the spin connection. The superspace expression for R(M)âb̂
ĉd̂ in principle deter-

mines Wα̂β̂γ̂δ̂|; however, we will find a more useful form of this expression using a different

method shortly.

For the remaining dimension-2 curvatures, we find

R(D)âb̂ = −∇
ĉw̃ĉâb̂ , R(J)âb̂

ij = −
3i

4
Xâb̂

ij | . (4.25)

The first equation is automatically satisfied upon substituting into R(D) the expression for

fm̂
â. The second equation serves as a definition for the remaining undetermined component

Xâb̂
ij | of the Weyl superfield.

– 23 –



J
H
E
P
0
2
(
2
0
1
5
)
1
1
1

4.3 Supersymmetry transformations of the fundamental fields

Here we present the complete Q, S, and K transformations for the fundamental fields of

the Weyl multiplet. The transformations of the one-forms follow from eq. (2.21), while

those of the covariant fields can be read off from (2.33):

δem̂
â = i(ξjΓ

âψm̂
j) , (4.26a)

δψm̂
i
α̂ = 2Dm̂ξiα̂ + wĉd̂(Σ

ĉd̂Γm̂ξi)α̂ + 2i(Γm̂ηi)α̂ , (4.26b)

δVm̂
ij = 3ξ(iφm̂

j) + 16i ξ(iΓm̂χj) − 3η(iψm̂
j) , (4.26c)

δbm̂ = −ξkφm̂
k −

16i

3
ξkΓm̂χk − ηkψm̂

k − 2 em̂
âΛKâ , (4.26d)

δwâb̂ = 2i ξiR(Q)âb̂
i , (4.26e)

δχi
α̂ =

1

2
ξiα̂D +

3

128
(∇âwb̂ĉ)

(
3(Σb̂ĉΓâξi)α̂ + (ΓâΣb̂ĉξi)α̂

)

−
1

16
R(J)âb̂

i
j(Σ

âb̂ξj)α̂ −
3i

16
wâb̂(Σ

âb̂ηi)α̂ , (4.26f)

δD = 2i (ξj /∇χ
j) + 2 (ηjχ

j) . (4.26g)

One can also derive the transformations of the composite one-forms from (2.21). For

example, the transformations for the spin connection and the S-supersymmetry connection

are

δωm̂
âb̂ = −i ξjψm̂

jwâb̂ + 2i ξjΓm̂R(Q)âb̂j +
32i

3
ξjΓm̂Σâb̂χj + 2ξkΣ

âb̂φm̂
k

− 2ηjΣ
âb̂ψm̂

j + 4em̂
[âΛ

b̂]
K , (4.27)

δφm̂
i
α̂ = −2i fm̂

â(Γâξ
i)α̂ −

16

3
(ξjψm̂

j)χi
α̂ −

8i

3
(Γm̂ξi)α̂D

−
i

8
(∇âwb̂ĉ)(Σ

b̂ĉΓâΓm̂ + 3ΓâΣb̂ĉΓm̂)α̂
β̂ξi

β̂
+

i

3
R(J)âb̂

ij (Σâb̂Γm̂ξj)α̂

+ 2Dm̂ηiα̂ + iΛb̂
K(Γb̂ψm̂

i)α̂ , (4.28)

where Λâ
K parametrizes the special conformal transformations. We do not give here the

transformation rule for fm̂
â as it is quite complicated.

4.4 A new choice for component constraints

As already alluded to, the component constraints (4.16) we have found from superspace

are quite interesting from a technical standpoint: they are S-invariant. This is reflected

in the fact that the S-supersymmetry transformations of the various one-forms are ex-

actly those derived from the algebra F 2(4). However, this comes with a price: we must

introduce bosonic torsion involving the field wâb̂ into the spin connection. Similarly, the

S-supersymmetry and special conformal connections (4.18) and (4.23) include additional

contributions from the auxiliary fields. The last case is particularly inconvenient — it

reflects the fact that R(M)âb̂ĉd̂ is not just a minimally covariantized version of the Weyl

tensor, but depends additionally on the auxiliary fields D, χα̂
i, and wâb̂. From a compo-

nent point of view, it would be more convenient to extract these dependences so that the

– 24 –



J
H
E
P
0
2
(
2
0
1
5
)
1
1
1

component fields and curvatures are as simply defined as possible. This will turn out to

lead to a formulation that more closely resembles those of [19–23].

Let us begin by introducing new definitions for the composite spin, S-supersymmetry,

and K-connections:

ω̂âb̂ĉ := ωâb̂ĉ +
1

2
w̃âb̂ĉ , (4.29a)

i φ̂m̂
i := iφm̂

i −
8

3
Γm̂χi , (4.29b)

f̂â
b̂ := fâ

b̂ +
2

3
δâ

b̂D +
1

4
wâd̂w

b̂d̂ +
1

4
∇ĉw̃ĉâ

b̂ −
3

64
wĉd̂wĉd̂δâ

b̂ . (4.29c)

These definitions actually correspond to a redefinition of the superspace vector covariant

derivative,

∇̂â = ∇â −
1

4
W̃âb̂ĉM

b̂ĉ +
1

8
X β̂i(Γâ)β̂

α̂Sα̂i +
1

64

(
Y + 3W b̂ĉWb̂ĉ

)
Kâ

−
1

4
(∇ĉW̃ĉâ

b̂)Kb̂ −
1

4
Wâd̂W

b̂d̂Kb̂ . (4.30)

We discuss further this superspace interpretation in appendix C.

The new curvatures given by the algebra [∇̂â, ∇̂b̂] are

R̂(P )âb̂
ĉ = 2 eâ

m̂eb̂
n̂D̂[m̂en̂]

ĉ −
i

2
ψâjΓ

ĉψb̂
j , (4.31a)

R̂(Q)âb̂
i
α̂ = eâ

m̂eb̂
n̂D̂[m̂ψn̂]

i
α̂ + i(Γ[âφ̂b̂]

i)α̂

+
1

8
wĉd̂

(
3(Σĉd̂Γ[â)α̂

β̂ − (Γ[âΣ
ĉd̂)α̂

β̂
)
ψb̂]

i
β̂
, (4.31b)

R̂(M)âb̂
ĉd̂ = R(ω̂)âb̂

ĉd̂ + 8 δ[â
[ĉf̂b̂]

d̂] − 2ψ[âjΣ
ĉd̂φ̂b̂]

j

+
16i

3
δ[â

[ĉψb̂]iΓ
d̂]χi − iψ[âi

(
Γb̂]R̂(Q)ĉd̂i + 2Γ[ĉR̂(Q)b̂]

d̂]i
)

+
i

2
ψâjψb̂

jwĉd̂ −
i

4
(ψâjΓêψb

j)w̃ĉd̂ê , (4.31c)

R̂(J)âb̂
ij = R(V)âb̂

ij − 3ψ
(i
[âφ̂b̂]

j) − 8iψ
(i
[âΓb̂]χ

j) , (4.31d)

R̂(D)âb̂ = 2 eâ
m̂eb̂

n̂∂[m̂bn̂] + 4 f̂[âb̂] + ψ[âjφ̂b̂]
j +

8i

3
ψ[âjΓb̂]χ

j , (4.31e)

where we have introduced

D̂â = eâ
m̂∂m̂ −

1

2
ω̂â

b̂ĉMb̂ĉ − bâD− Vâ
ijJij , Dm̂ = em̂

âD̂â . (4.32)

We postpone for the moment a discussion of R̂(S)âb̂
α̂i and R̂(K)âb̂

ĉ.

The curvatures turn out to obey the constraints

R̂(P )âb̂
ĉ = 0 , (Γâ)α̂

β̂R̂(Q)âb̂
i
β̂
= 0 , R̂(M)âb̂

ĉb̂ = 0 . (4.33)

These coincide with the constraints usually imposed in the component formulations and

are not S-invariant. This is a consequence of the redefinition of the auxiliary connections,
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which deforms their S-supersymmetry transformations. Equivalently, [Sα̂i, ∇̂â] is no longer

given in superspace simply by i(Γα̂)α̂
β̂∇β̂i.

The constraints are solved by

ω̂âb̂ĉ = ω(e)âb̂ĉ +
i

4
(ψâkΓĉψb̂

k + ψĉkΓb̂ψâ
k − ψb̂kΓâψĉ

k) + 2b[b̂ηĉ]â , (4.34a)

i φ̂m̂
i =

2

3
(Γ[p̂δm̂

q̂] +
1

4
Γm̂Σp̂q̂)

(
D̂[p̂ψq̂]

i +
1

8
wĉd̂

(
3Σĉd̂Γ[p̂ψq̂]

i − Γ[p̂Σ
ĉd̂ψq̂]

i
))

, (4.34b)

f̂â
b̂ = −

1

6
R(ω̂)âĉ

b̂ĉ +
1

48
δâ

b̂R(ω̂)ĉd̂
ĉd̂ −

i

6
ψĉjΓ

[b̂R̂(Q)â
ĉ]j −

i

12
ψĉjΓâR̂(Q)b̂ĉj

+
1

3
ψ[âjΣ

b̂d̂φ̂d̂]
j −

1

24
δâ

b̂(ψĉjΣ
ĉd̂φ̂d̂

j)−
2i

3
(ψâjΓ

b̂χj)

−
i

12
ψâjψĉ

jwb̂ĉ +
i

24
(ψâjΓêψd̂

j)w̃b̂d̂ê

+
i

192
δâ

b̂
(
2(ψĉjψd̂

j)wĉd̂ − (ψĉjΓêψd̂
j)w̃ĉd̂ê

)
. (4.34c)

One may confirm that these are equivalent to (4.29).

This redefinition dramatically simplifies many of the component curvatures. As we

have already seen, R̂(P )âb̂
ĉ vanishes. The curvature R̂(Q)âb̂

i
α̂ turns out to coincide with

the identically named quantity introduced in (4.21). Using the redefined spin connection,

one has

R̂(Q)âb̂
i =

1

2
Πâb̂

ĉd̂

(
Ψ̂ĉd̂

i −
3

4
wĉd̂Γ

êψê
i −

3

4
w̃âb̂

ĉψĉ
i

)
. (4.35)

The curvature R̂(D)âb̂ now vanishes while R̂(J)âb̂
ij is unchanged,

R̂(D)âb̂ = 0 , R̂(J)âb̂
ij = R(J)âb̂

ij = −
3i

4
Xâb̂

ij | . (4.36)

The Lorentz curvature tensor R̂(M)âb̂
ĉd̂ turns out to be simplified the most and is given,

up to terms of the form ψDψ and ψ2w, as

R̂(M)âb̂
ĉd̂ = C(ω̂)âb̂

ĉd̂ + (explicit gravitino bilinears) , (4.37)

where C(ω̂)âb̂
ĉd̂ is the Weyl tensor. Remarkably, from eq. (C.7e), one finds the rather

simple expression

R̂(M)âb̂
ĉd̂ = −

1

4
(Σâb̂)

α̂β̂(Σĉd̂)γ̂δ̂
(
iWα̂β̂γ̂δ̂|+ 3w(α̂β̂wγ̂δ̂)

)
(4.38)

defining the remaining undetermined component Wα̂β̂γ̂δ̂| in terms of the new curvature

R̂(M)âb̂
ĉd̂. In practice, this is the most convenient definition of Wα̂β̂γ̂δ̂|.

In principle, one can construct expressions for R̂(S)âb̂
i
α̂ and R̂(K)âb̂

ĉ explicitly in terms

of φ̂m̂
i
α̂ and f̂m̂

â in analogy with (4.31). In practice, such expressions are not terribly useful

since these connections are composite quantities. Instead, we can follow the component

technique of analyzing the component Bianchi identities, which in our case is equivalent to
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projecting the corresponding superspace curvatures, R̂(S)âb̂
i
α̂ = R̂(S)âb̂

i
α̂| and R̂(K)âb̂

ĉ =

R̂(K)âb̂
ĉ|. This results in

iR̂(S)âb̂
i = /̂∇R̂(Q)âb̂

i + ∇̂ĉ(Γ[âR̂(Q)b̂]ĉ
i) +

1

8
wĉd̂Σ

ĉd̂R̂(Q)âb̂
i −

1

8
wĉd̂Σâb̂R̂(Q)ĉd̂

i

−
3

4
wĉ

[âR̂(Q)b̂]ĉ
i , (4.39)

R̂(K)âb̂
ĉ =

1

4
∇̂d̂R̂(M)âb̂

ĉd̂ −
4i

3
R̂(Q)âb̂jΓ

ĉχj +
i

2
R̂(Q)d̂[âjΓb̂]R̂(Q)ĉd̂j

−
i

2
R̂(Q)âd̂jΓ

ĉR̂(Q)b̂
d̂j . (4.40)

It is useful to note the subsidiary relations

i Γb̂R̂(S)âb̂
i = −

1

2
∇̂b̂R̂(Q)âb̂

i −
5

8
wb̂ĉΓb̂R̂(Q)âĉ

i +
1

4
wb̂ĉΓâR̂(Q)b̂ĉ

i ,

i ΓâΓb̂R̂(S)âb̂
i = 0 , R̂(K)âb̂

b̂ = 0 . (4.41)

The Q, S, and K transformations of the independent component fields are unchanged

from (4.26), up to the redefinitions occurring above. These lead to

δem̂
â = i(ξjΓ

âψm̂
j) , (4.42a)

δψm̂
i
α̂ = 2D̂m̂ξiα̂ −

1

4
wĉd̂

(
(Γm̂Σĉd̂)α̂

β̂ − 3(Σĉd̂Γm̂)α̂
β̂
)
ξi
β̂
+ 2i (Γm̂ηi)α̂ , (4.42b)

δVm̂
ij = 3ξ(iφ̂m̂

j) + 8i ξ(iΓm̂χj) − 3 η(iψm̂
j) , (4.42c)

δbm̂ = −ξkφ̂m̂
k −

8i

3
ξkΓm̂χk − ηkψm̂

k − 2 em̂
âΛâ , (4.42d)

δwâb̂ = 2i ξiR̂(Q)âb̂
i −

32i

3
ξiΣâb̂χ

i , (4.42e)

δχi
α̂ =

1

2
ξiα̂D −

1

16
R̂(J)âb̂

i
j(Σ

âb̂ξj)α̂ +
3

128
(∇̂âwb̂ĉ)

(
3(Σb̂ĉΓâξi)α̂ + (ΓâΣb̂ĉξi)α̂

)

+
3

256
wâb̂wĉd̂ε

âb̂ĉd̂ê(Γêξ
i)α̂ −

3i

16
wâb̂(Σ

âb̂ηi)α̂ , (4.42f)

δD = 2i ξi /̂∇χ
i + iwâb̂(ξiΣ

âb̂χi) + 2 ηjχ
j . (4.42g)

We emphasize that the supersymmetry transformations are equivalent to (4.26) and

only the definition of the composite connections have been altered.

We have already noted the resemblance between the constraints (4.33) and those found

in the existing literature. The supersymmetry transformations given above turn out to co-

incide very closely with those of [52], up to a field-dependent K-transformation. The

differences with the other groups are more involved. For reference, we provide a trans-

lation table in appendix D between our conventions, employing the redefined composite

connections, and those of the other groups.

5 The covariant projective multiplets in conformal superspace

Within the superspace approach to N = 1 supergravity in five dimensions [24–26], gen-

eral supergravity-matter systems are described in terms of covariant projective multiplets.
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These are curved-superspace generalizations of the 5D superconformal projective multi-

plets [33]. In this section, the concept of covariant projective multiplets is reformulated

in conformal superspace, a general procedure to generate such multiplets is given, and a

universal locally supersymmetric action principle is presented.

5.1 Covariant projective multiplets

Let vi ∈ C
2 \{0} denote inhomogeneous coordinates for CP 1. A covariant projective multi-

plet of weight n, Q(n)(z, v), is defined to be a conformal primary Lorentz-scalar superfield,11

Si
α̂Q

(n) = 0 , (5.1)

that lives on the curved superspaceM5|8, is holomorphic with respect to the isospinor vi

on an open domain of C2 \ {0}, and is characterized by the following properties:

• it obeys the covariant analyticity constraint

∇
(1)
α̂ Q(n) = 0 , ∇

(1)
α̂ := vi∇

i
α̂ ; (5.2)

• it is a homogeneous function of v of degree n, that is,

Q(n)(c v) = cnQ(n)(v) , c ∈ C \ {0} ; (5.3)

• the supergravity gauge transformation (2.21) acts on Q(n) as follows:

δGQ
(n) =

(
ξĈ∇Ĉ + ΛijJij + σD

)
Q(n) , (5.4a)

ΛijJijQ
(n) = −

(
Λ(2)∂(−2) − nΛ(0)

)
Q(n) . (5.4b)

Here we have introduced the differential operator

∂(−2) :=
1

(v, u)
ui

∂

∂vi
, (5.5)

and also defined the parameters

Λ(2) := Λij vivj , Λ(0) :=
viuj
(v, u)

Λij , (v, u) := viui . (5.6)

The expressions in (5.5) and (5.6) involve a second isospinor ui which is subject to the

condition (v, u) 6= 0, but otherwise it is completely arbitrary. The isospinors vi and ui

are defined to be inert under the action of the supergravity gauge group. For later use, in

addition to (5.5), we also introduce the operators

∂(2) := (v, u)vi
∂

∂ui
, ∂(0) := vi

∂

∂vi
− ui

∂

∂ui
, (5.7)

such that

[∂(0), ∂(±2)] = ±2∂(±2) , [∂(2), ∂(−2)] = ∂(0) . (5.8)

11As a rule, we will not indicate the z-dependence of Q(n)(z, v).
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By construction, the superfield Q(n) is independent of u, i.e. ∂Q(n)/∂ui = 0. It is not

difficult to check that the variation δGQ
(n) defined by (5.4) is characterized by the same

property, ∂(δGQ
(n))/∂ui = 0, due to (5.3).

Since the spinor covariant derivatives satisfy

{∇
(i
α̂ ,∇

j)

β̂
} = 0 ⇐⇒ {∇

(1)
α̂ ,∇

(1)

β̂
} = 0 , (5.9)

the analyticity constraint (5.2) is clearly consistent with the algebra of covariant deriva-

tives. However, we still need to check whether the conformal primary constraint on Q(n),

Si
α̂Q

(n) = 0, and the analyticity constraint, ∇
(1)
α̂ Q(n) = 0, are mutually consistent. In

complete analogy with the 4D N = 2 supergravity analysis of [55, 56], the constraints

Si
α̂Q

(n) = 0 and ∇
(1)
α̂ Q(n) = 0 lead to the integrability condition

0 = {Si
α̂,∇

(1)

β̂
}Q(n) = vj

(
2εα̂β̂ε

ij
D+ 6εα̂β̂J

ij
)
Q(n) = εα̂β̂v

i
(
2D− 3n

)
Q(n) , (5.10)

which uniquely fixes the dimension of Q(n) to be [26]

DQ(n) =
3n

2
Q(n) . (5.11)

The above definition of the covariant projective multiplets may be generalized by

removing the constraint Si
α̂Q

(n) = 0.12 For instance, given a non-primary scalar Φ, the

superfield Ψ(4) := ∆(4)Φ is non-primary and analytic, ∇
(1)
α̂ Ψ(4) = 0, with the operator ∆(4)

defined by (5.21c).

The analyticity constraint (5.2) and the homogeneity condition (5.3) are consistent

with the interpretation that the isospinor vi ∈ C
2 \ {0} is defined modulo the equivalence

relation vi ∼ c vi, with c ∈ C \ {0}, hence it parametrizes CP 1. Therefore, the projective

multiplets live inM5|8×CP 1, a curved five-dimensional analog of the 4D N = 2 projective

superspace R
4|8 × CP 1 [35–37].13

There exists a real structure on the space of projective multiplets. Given a weight-n

projective multiplet Q(n)(vi), its smile conjugate Q̆(n)(vi) is defined by

Q(n)(vi) −→ Q̄(n)(v̄i) −→ Q̄(n)
(
v̄i → −vi

)
=: Q̆(n)(vi) , (5.12)

with Q̄(n)(v̄i) := Q(n)(vi) the complex conjugate of Q(n)(vi), and v̄i the complex conjugate

of vi. One can show that Q̆(n)(v) is a weight-n projective multiplet. In particular, Q̆(n)(v)

obeys the analyticity constraint ∇
(1)
α̂ Q̆(n) = 0, unlike the complex conjugate of Q(n)(v).

One can also check that
˘̆
Q(n)(v) = (−1)nQ(n)(v) . (5.13)

Therefore, if n is even, one can define real projective multiplets, which are constrained

by Q̆(2n) = Q(2n). Note that geometrically, the smile-conjugation is complex conjugation

composed with the antipodal map on the projective space CP 1.

12Non-primary projective multiplets, which possess inhomogeneous super Weyl transformation laws, nat-

urally occur within the SU(2) superspace approach [26].
13The superspace R

4|8 ×CP 1 was introduced for the first time by Rosly [57]. The same superspace is at

the heart of the harmonic [58, 59] and projective [35–37] superspace approaches.
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We now list some projective multiplets that can be used to describe superfield dynam-

ical variables.14 A complex O(m) multiplet, with m = 1, 2, . . . , is described by a weight-m

projective superfield H(m)(v) of the form:

H(m)(v) = H i1...imvi1 . . . vim . (5.14)

The analyticity constraint (5.2) is equivalent to

∇
(i1
α̂ H i2...im+1) = 0 . (5.15)

If m is even, m = 2n, we can define a real O(2n) multiplet obeying the reality condition

H̆(2n) = H(2n), or equivalently

H i1...i2n = Hi1...i2n = εi1j1 · · · εi2nj2nH
j1...j2n . (5.16)

For n > 1, the real O(2n) multiplet can be used to describe an off-shell (neutral) hyper-

multiplet.

The O(m) multiplets, H(m)(v), are well defined on the entire projective space CP 1.

There also exist important projective multiplets that are defined only on an open domain

of CP 1. Before introducing them, let us give a few definitions. We define the north chart

of CP 1 to consist of those points for which the first component of vi = (v1, v2) is non-zero,

v1 6= 0. The north chart may be parametrized by the complex inhomogeneous coordinate

ζ = v2/v1 ∈ C. The only point of CP 1 outside the north chart is characterized by vi∞ =

(0, v2) and describes an infinitely separated point. Thus we may think of the projective

space CP 1 as CP 1 = C∪{∞}. The south chart of CP 1 is defined to consist of those points

for which the second component of vi = (v1, v2) is non-zero, v2 6= 0. The south chart is

naturally parametrized by 1/ζ. The intersection of the north and south charts is C \ {0}.

An off-shell (charged) hypermultiplet can be described in terms of the so-called arctic

weight-n multiplet Υ(n)(v) which is defined to be holomorphic in the north chart CP 1:

Υ(n)(v) = (v1)nΥ[n](ζ) , Υ[n](ζ) =
∞∑

k=0

Υkζ
k . (5.17)

Its smile-conjugate antarctic multiplet Ῠ(n)(v), has the explicit form

Ῠ(n)(v) = (v2
)n

Ῠ[n](ζ) = (v1 ζ
)n

Ῠ[n](ζ) , Ῠ[n](ζ) =
∞∑

k=0

Ῡk
(−1)k

ζk
(5.18)

and is holomorphic in the south chart of CP 1. The arctic multiplet can be coupled to a

Yang-Mills multiplet in a complex representation of the group GYM. The pair consisting

of Υ[n](ζ) and Ῠ[n](ζ) constitutes the so-called polar weight-n multiplet.

Our last example is a real tropical multiplet U (2n)(v) of weight 2n defined by

U (2n)(v) =
(
i v1v2

)n
U [2n](ζ) =

(
v1
)2n(

i ζ
)n
U [2n](ζ) ,

14In 4D N = 2 Poincaré supersymmetry, the modern terminology for projective multiplets was introduced

in [60].
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U [2n](ζ) =

∞∑

k=−∞

Ukζ
k , Ūk = (−1)kU−k . (5.19)

This multiplet is holomorphic in the intersection of the north and south charts of the

projective space CP 1.

5.2 Analytic projection operator

In this subsection we show how to engineer covariant projective multiplets by making use

of an analytic projection operator.

Let us start with a simple observation. Due to (5.9), the spinor covariant derivatives

satisfy

∇
(i
α̂∇

j

β̂
∇k

γ̂∇
l
δ̂
∇

p)
ρ̂ = ∇

(i
[α̂∇

j

β̂
∇k

γ̂∇
l
δ̂
∇

p)
ρ̂] = 0 ⇐⇒ ∇

(1)
α̂ ∇

(1)

β̂
∇

(1)
γ̂ ∇

(1)

δ̂
∇

(1)
ρ̂ = 0 . (5.20)

Hence, if we define the operators

∆ijkl := −
1

96
εα̂β̂γ̂δ̂∇

(i
α̂∇

j

β̂
∇k

γ̂∇
l)

δ̂
= −

1

32
∇(ij∇kl) = ∆(ijkl) , (5.21a)

∇ij := ∇α̂i∇j
α̂ = ∇(ij) , ∇(2) := ∇α̂(1)∇

(1)
α̂ , (5.21b)

∆(4) := vivjvkvl∆
ijkl = −

1

32
(∇(2))2 , (5.21c)

it clearly holds that

∇
(1)
α̂ ∆(4) = ∆(4)∇

(1)
α̂ = 0 . (5.22)

One may prove that ∆ijkl satisfies the relations

∇p
α̂∆

ijkl =
4

5
εp(i∇α̂q∆

jkl)q , ∆ijkl∇p
α̂ =

4

5
εp(i∆jkl)q∇α̂q . (5.23)

The operator ∆(4) is called the analytic projection operator. Given any superfield U , the

superfield Q := ∆(4)U satisfies the analyticity condition (5.2). On the other hand, in

order for Q to be a covariant projective superfield, U has to be constrained. In [26] it was

proven in SU(2) superspace that the right prepotential for a covariant weight-n projective

superfield is an isotwistor superfield of weight (n− 4).15

By definition, a weight-n isotwistor superfield U (n) is a primary tensor superfield (with

suppressed Lorentz indices) that lives onM5|8, is holomorphic with respect to the isospinor

variables vi on an open domain of C2 \ {0}, is a homogeneous function of vi of degree n,

U (n)(c v) = cn U (n)(v) , c ∈ C \ {0} , (5.24a)

and is characterized by the supergravity gauge transformation

δGU
(n) =

(
ξĈ∇Ĉ +

1

2
Λâb̂Mâb̂ + ΛijJij + σD

)
U (n) ,

JijU
(n) = −

(
v(ivj)∂

(−2) −
n

(v, u)
v(iuj)

)
U (n) . (5.24b)

15The concept of isotwistor superfields was introduced in the context of 4D N = 2 supergravity [61].
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It is clear that any weight-n projective multiplet is an isotwistor superfield, but not vice

versa. The main property in the definition of isotwistor superfields is their transformation

rules under SU(2). In principle, the definition could be extended to consider non-primary

superfields.

Let U (n−4) be a Lorentz-scalar isotwistor such that

DU (n−4) =
1

2
(3n− 4)U (n−4) . (5.25)

Then the weight-n isotwistor superfield

Q(n) := ∆(4)U (n−4) (5.26)

satisfies all the properties of a covariant projective multiplet. Note that Q(n) is clearly

analytic with DQ(n) = 3n
2 Q(n). It is an instructive exercise to check that Q(n) is primary.

We define the operators

S
(1)
α̂ := viS

i
α̂ , S

(−1)
α̂ :=

ui
(v, u)

Si
α̂ , (5.27)

which satisfy

{S
(1)
α̂ ,∇

(1)

β̂
} = 6εα̂β̂J

(2) , {S
(−1)
α̂ ,∇

(1)

β̂
} = 2εα̂β̂D− 4Mα̂β̂ + 6εα̂β̂J

(0) , (5.28)

where

J (2) := vivjJ
ij , [J (2),∇

(1)
α̂ ] = 0 , J (2)U (n) = 0 , (5.29a)

J (0) :=
viuj
(v, u)

J ij , [J (0),∇
(1)
α̂ ] = −

1

2
∇

(1)
α̂ , J (0)U (n) = −

n

2
U (n) . (5.29b)

After some algebra, it can be proven that

[S
(1)
ρ̂ ,∆(4)] = −

1

4
εα̂β̂γ̂δ̂ερ̂α̂∇

(1)

β̂
∇

(1)
γ̂ ∇

(1)

δ̂
J (2) , (5.30a)

[S
(−1)
ρ̂ ,∆(4)] =

1

24
εα̂β̂γ̂δ̂∇

(1)

β̂
∇

(1)
γ̂ ∇

(1)

δ̂

[
ερ̂α̂
(
8− 2D− 6J (0)

)
+ 4Mρ̂α̂

]
. (5.30b)

Using these results, it immediately follows that Si
α̂∆

(4)U (n) = 0.

Let us conclude this subsection by giving the expression for ∆(4) in SU(2) superspace.

This can be computed by simply using the degauging procedure developed in section 3.

The result is

∆(4)U (n−4) = −
1

32
D(2)D(2)U (n−4) +

1

32
D(2)

(
F(2)α̂β̂{S

(−1)

β̂
,∇

(1)
α̂ }U

(n−4)
)

+
1

32
Dα̂(1)

(
F
(2)
α̂

β̂ [S
(−1)

β̂
,∇(2)]U (n−4)

)

+
1

32
F(2)α̂β̂{S

(−1)

β̂
,∇

(1)
α̂ ∇

(2)}U (n−4) , (5.31)

with

D
(1)
α̂ := viD

i
α̂ , D(2) := D(1)α̂D

(1)
α̂ , F

(2)

α̂β̂
:= vivjF

i
α̂
j

β̂
. (5.32)
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Computing the (anti-)commutators involving S
(−1)

β̂
in (5.31) produces new terms involving

∇, which have to be degauged. Finally, making use of the identities

D(4) := −
1

96
εα̂β̂γ̂δ̂D

(1)
α̂ D

(1)

β̂
D

(1)
γ̂ D

(1)

δ̂
, (5.33a)

D(4) = −
1

96

[
3D(2)D(2) + 24(Dα̂(1)F

(2)

α̂β̂
)Dβ̂(1) + 4(Dα̂(1)F(2)β̂

β̂)D
(1)
α̂

+ 24F
(2)

α̂β̂
Dα̂(1)Dβ̂(1) + 4F(2)β̂

β̂D
(2)
]
U (n−4) , (5.33b)

D
(1)
α̂ F

(2)

β̂γ̂
= D

(1)
[α̂ F

(2)

β̂γ̂]
, (5.33c)

D
(1)
α̂ S(2) =

1

10
Dβ̂(1)C

(2)

α̂β̂
, S(2) := vivjS

ij , C
(2)
â := vivjC

ij
â , (5.33d)

we obtain

∆(4)U (n−4) =

[
D(4) −

5i

12
S(2)D(2) −

i

8
Cα̂β̂(2)D

(1)
α̂ D

(1)

β̂
−

i

6
(Dα̂(1)C

(2)

α̂β̂
)Dβ̂(1)

−
i

20
(Dα̂(1)Dβ̂(1)C

(2)

α̂β̂
) + 3(S(2))2 +

1

4
C â(2)C

(2)
â

]
U (n−4) . (5.34)

This relation determines the analytic projection operator in SU(2) superspace, which is

a new result. In [26], this operator was computed only in a super Weyl gauge in which

Cij
â = 0.

5.3 The action principle

We turn to re-formulating the supersymmetric action principle given in [26] in conformal

superspace.

Consider a Lagrangian L(2) chosen to be a real weight-2 projective multiplet. Associ-

ated with L(2) is the action16

S[L(2)] =
1

2π

∮

γ
(v, dv)

∫
d5|8z E C(−4)L(2) . (5.35)

Here the superfield C(−4) is required to be a Lorentz-scalar primary isotwistor superfield

of weight −4 such that the following two conditions hold:

∆(4)C(−4) = 1 , DC(−4) = −2C(−4) . (5.36)

These conditions prove to guarantee that the action (5.35) is invariant under the full super-

gravity gauge group G. The invariance of S[L(2)] under the Lorentz and special conformal

transformations is obvious, since all the superfields in the action are Lorentz-scalar primary

superfields. Invariance under the general coordinate transformations is also trivial, while

invariance under the SU(2) transformations can be shown in complete analogy with the

16In parallel with the construction in four dimensions [56], it is possible to integrate out half of the

Grassmann coordinates thus representing the action as an integral of L(2) over an analytic subspace. (This

is analogous to the chiral integral in 4D N = 1 supergravity, see [62–64] for reviews.) We find it more

convenient to employ the superfield C(−4) to always deal with full superspace integrals.
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proof given in [25, 26]. It remains to prove that the action is invariant under dilatations.

This simply follows from the observation that the measure, E, has dimension −1.

All information about a dynamical system is encoded in its Lagrangian L(2). The

important point is that the action (5.35) does not depend on C(−4) if the Lagrangian

L(2) is independent of C(−4). To prove this statement, let us represent the Lagrangian as

L(2) = ∆(4)U (−2), for some isotwistor superfield U (−2) of weight −2. We note that for any

pair of Lorentz-scalar isotwistor superfields Φ(n−4) and Ψ(−n−2) such that

DΦ(n−4) =
1

2
(3n− 4)Φ(n−4) , DΨ(−n−2) =

1

2
(2− 3n)Ψ(−n−2) , (5.37)

we can use integration by parts to prove the following relation
∮

γ
(v, dv)

∫
d5|8z E

{
Φ(n−4)∆(4)Ψ(−n−2) −Ψ(−n−2)∆(4)Φ(n−4)

}
= 0 . (5.38)

If we use this result and eq. (5.36), we can rewrite the action in the form

S =
1

2π

∮

γ
(v, dv)

∫
d5|8z E U (−2) . (5.39)

This representation makes manifest the fact that the action does not depend on C(−4).

Upon degauging to SU(2) superspace, the action (5.39) coincides with the one given in [26].

A natural choice for C(−4) is available if the theory under consideration possesses an

abelian vector multiplet such that its field strength W is nowhere vanishing. Given W , we

can construct a composite O(2) projective multiplet as

H
(2)
VM =

i

2
W∇(2)W + i(∇α̂(1)W )∇

(1)
α̂ W = vivjH

ij
VM , (5.40)

where H ij
VM coincides with eq. (2.54) for a single abelian vector multiplet. By using the

Bianchi identity (2.49), which implies

∇
(1)
α̂ ∇

(1)

β̂
W =

1

4
εα̂β̂∇

(2)W , ∇
(1)
α̂ ∇

(1)

β̂
∇

(1)
γ̂ W = 0 , (5.41)

it is a simple exercise to show that H
(2)
VM is an analytic superfield, ∇

(1)
α̂ H

(2)
VM = 0. By

using (5.28), it also simple to show that S
(1)
α̂ H

(2)
VM = S

(−1)
α̂ H

(2)
VM = 0 and then H

(2)
VM is

primary, Si
α̂H

(2)
VM = 0. We can then introduce

C(−4) =
4W 4

3(H
(2)
VM)2

, (5.42)

which consistently defines a weight −4 isotwistor superfield that, due to

∆(4)W 4 =
3

4
(H

(2)
VM)2 , (5.43)

satisfies ∆(4)C(−4) = 1. The resulting action principle takes the form

S[L(2)] =
2

3π

∮
(v, dv)

∫
d5|8z E

L(2)W 4

(H
(2)
VM)2

. (5.44)
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Upon degauging to SU(2) superspace, this action reduces to the one proposed in [26].

We conclude this section by mentioning that the action (5.35) is characterized by the

following important property:

S
[
G(2)(λ+ λ̆)

]
= 0 , (5.45a)

with G(2) a real O(2) multiplet and λ an arctic weight-zero multiplet. Since λ is arbitrary,

the above relation is equivalent to

S
[
G(2)λ

]
= 0 . (5.45b)

A proof of (5.45) will be given in section 7.4.

6 Prepotentials for the vector multiplet

In this section we develop a prepotential formulation for the Yang-Mills multiplet intro-

duced in section 2.6. Our presentation is very similar to that given in [65] in the case of 3D

N = 4 conformal supergravity. The latter was inspired by the pioneer works of Lindström

and Roček [37] and Zupnik [66] devoted to the 4D N = 2 super Yang-Mills theory.

6.1 Tropical prepotential

The Yang-Mills multiplet in conformal superspace has been described in section 2.6. The

field strength W appears in the anti-commutator of two spinor covariant derivatives as

{∇i
α̂,∇

j

β̂
} = · · ·+ 2εα̂β̂ε

ijW , (6.1)

where the ellipsis stands for the purely supergravity part. Let us introduce the gauge

covariant operators

∇
(1)
α̂ := vi∇

i
α̂ . (6.2)

It may be seen that they strictly anti-commute with each other,

{∇
(1)
α̂ ,∇

(1)

β̂
} = 0 . (6.3)

This means that ∇
(1)
α̂ may be represented in the form:

∇
(1)
α̂ = eΩ+∇

(1)
α̂ e−Ω+ , (6.4)

where Ω+ denotes a Lie-algebra-valued bridge superfield of the form

Ω+(v) = Ω+(ζ) =
∞∑

n=0

Ωnζ
n , ζ :=

v2

v1
. (6.5)

The bridge is a covariant weight-0 isotwistor superfield. Another representation for ∇
(1)
α̂

follows by applying the smile-conjugation to (6.4). The result is

∇
(1)
α̂ = e−Ω−∇

(1)
α̂ eΩ− , Ω−(v) = Ω−(ζ) =

∞∑

n=0

(−1)nΩ†n
1

ζn
. (6.6)
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We now introduce a Lie algebra-valued superfield V (ζ) defined by

eV := eΩ−eΩ+ , V (v) = V (ζ) =

∞∑

n=−∞

V nζ
n , V †n = (−1)nV −n . (6.7)

It may be seen from (6.4) and (6.6) that V is a covariant weight-0 projective multiplet,

∇
(1)
α̂ V = 0 . (6.8)

In accordance with (6.4), the gauge transformation law of Ω+ is

eΩ
′
+(ζ) = eiτ eΩ+(ζ)e−iλ(ζ) , (6.9)

where the new gauge parameter λ(ζ) is a covariant weight-zero arctic multiplet

∇
(1)
α̂ λ = 0 , λ(ζ) =

∞∑

n=0

λnζ
n . (6.10)

The gauge transformation law of the tropical prepotential is

eV
′

= ei
˘λeV e−iλ . (6.11)

Hence V transforms under the λ-group only.

6.2 Polar hypermultiplets

Supersymmetric matter in arbitrary representations of the gauge group GYM may be de-

scribed in terms of gauge covariantly arctic multiplets and their smile-conjugate antarctic

multiplets.

A gauge covariantly arctic multiplet of weight n, Υ(n)(v), is defined by

∇
(1)
α̂ Υ(n) = 0 , Υ(n)(v) = (v1)n

∞∑

k=0

Υkζ
k . (6.12)

It can be represented in the form

Υ(n)(v) = eΩ+(v)Υ(n)(v) , (6.13)

where Υ(n)(v) is an ordinary covariant arctic multiplet of weight n as already introduced

in eq. (5.17).

Computing the smile conjugate of Υ(n)(v) gives a gauge covariantly antarctic multiplet

of weight n, Ῠ(n)(v), with the properties

Ῠ(n)
←−

∇
(1)
α̂ = 0 , Ῠ(n)(v) = (v2)n

∞∑

k=0

(−1)kΥ†k
1

ζk
. (6.14)

It can be represented in the form

Ῠ(n)(v) = Ῠ(n)(v)eΩ−(v) , (6.15)
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where Ῠ(n)(v) is an ordinary antarctic multiplet as in eq. (5.18).

The arctic multiplet of weight n, Υ(n)(v), and its smile-conjugate, Ῠ(n)(v), constitute

the polar multiplet of weight n. The gauge transformation laws of Υ(n)(v) and Ῠ(n)(v) are

Υ(n)′(v) = eiτΥ(n)(v) , Ῠ(n)′(v) = Ῠ(n)(v)e−iτ . (6.16)

The gauge transformation laws of Υ(n)(v) and Ῠ(n)(v) are

Υ(n)′(v) = eiλ(v)Υ(n)(v) , Ῠ(n)′(v) = Ῠ(n)(v)e−i
˘λ(v) . (6.17)

In the n = 1 case, a gauge invariant hypermultiplet Lagrangian can be constructed and is

given by

L(2) = iῨ(1)Υ(1) = iῨ(1)eV Υ(1) . (6.18)

6.3 Arctic and antarctic representations

Here we demonstrate that the Yang-Mills gauge connection V Â, eq. (2.43), may be ex-

pressed in terms of the tropical prepotential V (ζ), modulo the τ -gauge freedom.

Let us introduce the operator

∇
(−1)
α̂ :=

1

(v, u)
ui∇

i
α̂ . (6.19)

It can be seen that

{∇
(1)
α̂ ,∇

(−1)

β̂
} = · · · − 2εα̂β̂W . (6.20)

Here the ellipsis denotes purely supergravity terms. Note that the operators ∂(2), ∂(−2)

and ∂(0) are invariant under the τ -group transformations and obey

[∂(2),∇
(1)
α̂ ] = [∂(−2),∇

(−1)
α̂ ] = 0 , (6.21a)

[∂(2),∇
(−1)
α̂ ] = ∇

(1)
α̂ , [∂(−2),∇

(1)
α̂ ] = ∇

(−1)
α̂ , (6.21b)

[∂(0),∇
(1)
α̂ ] = ∇

(1)
α̂ , [∂(0),∇

(−1)
α̂ ] = −∇

(−1)
α̂ . (6.21c)

When dealing with polar hypermultiplets, it is useful to introduce an arctic represen-

tation defined by the transformation

Ô → Ô+ := e−Ω+Ô eΩ+ , U → U+ := e−Ω+U (6.22)

applied to any gauge covariant operator Ô and matter superfield U .17 In the arctic repre-

sentation, any gauge covariantly arctic multiplet Υ(n)(v) becomes the ordinary arctic one,

Υ(n)(v),

Υ(n)(v)→ Υ(n)(v) , Ῠ(n)(v)→ Ῠ(n)(v)eV (ζ) , (6.23)

and the gauge covariant derivatives ∇
(1)
α̂ turn into the standard ones,

∇
(1)
α̂ → ∇

(1)
α̂ . (6.24)

17It is assumed that the gauge transformation law of Ô is Ô → Ô′ = eiτ Ôe−iτ , while U transforms as

in (2.46).
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The important point is that the projective derivative ∂(−2) is replaced by the operator

∂(−2) → ∂
(−2)
+ := ∂(−2) + e−Ω+(∂(−2)eΩ+) , (6.25)

which transforms as a covariant derivative under the λ-group. It is also important to

mention that ∂(2) remains short in the arctic representation, ∂
(2)
+ = ∂(2). Making use of

the arctic-representation version of (6.20) as well as the relation

∇
(−1)
+α̂ = [∂

(−2)
+ ,∇

(1)
α̂ ] = ∇

(−1)
α̂ −∇

(1)
α̂

(
e−Ω+∂(−2)eΩ+

)
, (6.26)

we read off

W+ =
1

8
∇(2)

(
e−Ω+∂(−2)eΩ+

)
. (6.27)

Since ∂(2)W+ = 0, W+ is independent of ui. The field strength W+ also satisfies the

property

∂
(−2)
+ W+ = 0 , (6.28)

since in the original representation W is independent of vi. The field strength can be seen

to obey the Bianchi identity

∇
(i
+α̂∇

j)

+β̂
W+ =

1

4
εα̂β̂∇

γ̂(i
+ ∇

j)
+γ̂W+ . (6.29)

In the case of a U(1) gauge group, W = WT , with T the U(1) generator, we have

W = W+ and eq. (6.27) turns into

W =
1

8
∇(2)∂(−2)Ω+ . (6.30)

Since Ω+(v) = Ω+(ζ), in the north chart of CP 1 we can represent

∂(−2)Ω+(v) = −
1

(v1)2
∂ζΩ+(ζ) . (6.31)

Taking into account the fact that W is independent of ζ, it is simple to show that

W = −
1

8
∇22Ω1 =

1

8
∇11Ω−1 . (6.32)

In complete analogy with the arctic representation, eq. (6.22), we can introduce the

antarctic representation defined by

Ô → Ô− := eΩ−Ô e−Ω− , U → U− := eΩ−U . (6.33)

In this representation, the super Yang-Mills field strength takes the form

W− =
1

8
∇(2)

(
eΩ−∂(−2)e−Ω−

)
. (6.34)

Comparing the above with (6.27) gives

W− = eV W+e
−V . (6.35)
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6.4 Abelian field strength: contour integral representation

In the previous subsection, in the case of an abelian vector multiplet, we have derived the

result (6.32). This expresses the field strength in terms of the bridge components. It is

useful to find yet another representation given in terms of the real weight-zero tropical

prepotential

V = Ω+ +Ω− . (6.36)

It turns out that the expression

W = −
i

16π

∮
(v, dv)∇(−2)V , ∇(−2) :=

1

(v, u)2
uiuj∇

ij , (6.37)

is equivalent to (6.32). It is instructive to prove this statement.

First of all, the expression for W in (6.37) can be shown to be independent of ui. To

see this, consider a shift

ui → ui + δui (6.38)

and represent it as

δui = (v, u)viα
(−2) + uiβ

(0) , α(−2) = −
uiδui
(v, u)2

, β(0) =
viδui
(v, u)

. (6.39)

Then one can compute

δW = −
i

16π

∮
(v, dv)α(−2){∇α̂(1),∇

(−1)
α̂ }V = 0 , (6.40)

which is identically zero since

{∇
(1)
α̂ ,∇

(−1)

β̂
} = 2i∇α̂β̂ + 2iεα̂β̂W , =⇒ {∇α̂(1),∇

(−1)
α̂ } = 8iW , (6.41)

and W V ≡ 0. In the north chart of CP 1 we have

V (v) = V (ζ) =

∞∑

k=−∞

ζkVk , Vk = (−1)kV̄−k . (6.42)

Then choosing ui = (0, 1) we can represent W as follows

W =
i

16π

∮
dζ

ζ2
∇22V (ζ) = −

1

8
∇22V1 = −

1

8
∇22Ω1 . (6.43)

The last expression is clearly equivalent to (6.32). Note that, due to the analysis of the

previous subsection, this equivalence also guarantees that W defined by (6.37) is a pri-

mary superfield, Si
α̂W = 0, satisfies the Bianchi identity ∇

(1)
α̂ ∇

(1)

β̂
W = 1

4εα̂β̂∇
(2)W , and is

invariant under the λ-group transformations

δV = λ+ λ̆ . (6.44)

All these properties can actually be directly proven by using the integral representa-

tion (6.37).
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6.5 Mezincescu’s prepotential

According to the analysis of section 5.2, we can solve the analyticity constraint on the

projective prepotential V (v) in terms of a primary real isotwistor superfield V (−4)(v) of

weight (−4) as

V = ∆(4)V (−4) , DV (−4) = −2V (−4) , Si
α̂V

(−4) = 0 . (6.45)

The vector multiplet field strength (6.37) then takes the form

W = −
i

16π

∮
(v, dv)∇(−2)∆(4)V (−4)(v) . (6.46)

Making use of the identity

∇(−2)∆(4) =
3

5
vivj∇kl∆

ijkl , (6.47)

which follows from (5.23), we can perform the contour integral and obtain the following

alternative expression for the field strength

W = −
3i

5

∮
(v, dv)

16π
vkvl∇ij∆

ijklV (−4)(v) = −
3i

40
∇ij∆

ijklVkl . (6.48)

Here we have defined the superfield Vij as

Vij :=

∮
(v, dv)

2π
vivjV

(−4)(v) . (6.49)

By construction Vij is a real primary superfield of dimension −2, DVij = −2Vij . It is also

possible to prove that, due to (5.4b) and the definition (6.49), Vij correctly transforms as

an isovector under SU(2) transformations. Note that Vij is the analogue of Mezincescu’s

prepotential [67] (see also [68] and [69]) for the 4D N = 2 abelian vector multiplet. To

conclude, we note that Vij is defined up to gauge transformations of the form

δVkl = ∇
p
α̂Λ

α̂
klp , Λα̂

klp = Λα̂
(klp) , (6.50)

with the gauge parameter being Λα̂
ijk a primary superfield,

Si
α̂Λ

β̂
jkl = 0 , DΛβ̂

jkl = −
5

2
Λβ̂

jkl . (6.51)

The gauge invariance follows from the fact that ∇ij∆
ijkl∇p

α̂Λ
α̂
klp = 0, as can be proven

using (5.23).

6.6 Composite O(2) multiplet

Consider a locally supersymmetric theory that involves an abelian vector multiplet as one

of the dynamical multiplets. Let S[V (v)] = S[Vij ] be the corresponding gauge invariant
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action. A variation of the action with respect to the vector multiplet may be represented

in two different forms,

δS =
1

2π

∮
(v, dv)

∫
d5|8z E C(−4)

H
(2)δV (6.52a)

=

∫
d5|8z EH

ijδVij , (6.52b)

for some real weight-2 tropical multiplet H(2)(v),

∇
(1)
α̂ H

(2) = 0 , (6.53)

and some real isovector H
ij = H

ji, which are primary superfields of dimension +3. The

theory under consideration may also involve hypermultiplets charged under the U(1) gauge

group. We assume that these hypermultiplets obey the corresponding equations of motion.

Then the above variation vanishes when δV or δV ij is a gauge transformation. This

property has two different, but equivalent, manifestations. Firstly, the variation (6.52a) is

equal to zero for the gauge transformation (6.44), hence
∮

(v, dv)

∫
d5|8z E C(−4)

H
(2)λ = 0 , (6.54)

for an arbitrary weight-0 arctic multiplet λ(v). This implies that H(2)(v) is an O(2) mul-

tiplet,

H
(2)(v) = H

ijvivj . (6.55)

Secondly, the variation (6.52b) is equal to zero for the gauge transformation (6.50). This

means ∫
d5|8z E Λα̂

ijk∇
i
α̂H

jk = 0 , (6.56)

and hence

∇
(i
α̂H

jk) = 0 . (6.57)

The superfields H(2)(v) and H
ij defined by eqs. (6.52a) and (6.52b), respectively, are related

to each other according to (6.55), as follows from (6.49).

In summary, any gauge theory of the abelian vector multiplet possesses a composite

O(2) multiplet, Hij . The equation of motion for the vector multiplet is Hij = 0.

7 The O(2) multiplet in conformal superspace

In the previous section we gave the prepotential description of the Yang-Mills multiplet.

Here we develop a prepotential formulation for the O(2) multiplet, a dual version of the

hypermultiplet. In the 4D N = 2 case, it is known that the O(2) multiplet constraints

∇(i
αG

jk) = 0 , ∇̄
(i
α̇G

jk) = 0 , (7.1)

may be solved in conformal superspace in terms of a complex primary scalar U of dimension

−1, DU = −U , as

Gij =
1

192

(
∇ij∇̄kl∇̄klŪ + ∇̄ij∇kl∇klU

)
, (7.2)
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see, e.g., [69] for a detailed discussion. As will be demonstrated below, an analogous

six-derivative representation for the O(2) multiplet exists in five dimensions, but the cor-

responding prepotential is a real dimensionless scalar.

7.1 Prepotential formulation for the O(2) multiplet

In five dimensions, the O(2) multiplet Gij = Gji is characterized by the properties

∇
(i
α̂G

jk) = 0 , Si
α̂G

jk = 0 , DGjk = 3Gjk . (7.3)

We always assume Gij to be real, Gij = Gij = εikεjlG
kl. It turns out that the con-

straints (7.3) may be solved in terms of a primary real dimensionless scalar Ω,

Si
α̂Ω = 0 , DΩ = 0 , (7.4)

and the solution is

Gij = −
3i

40
∆ijkl∇klΩ (7.5a)

or, equivalently,

G(2) = vivjG
ij = −

i

8
∆(4)∇(−2)Ω . (7.5b)

Note that representation (7.5a) follows from (7.5b) by applying (5.23).

In appendix E we prove that the decomposition (7.5) is the most general solution

to (7.3) in the flat case by making use of the harmonic superspace techniques [58, 59].

Here we demonstrate that (7.5) defines a primary O(2) superfield in conformal superspace.

It follows from (7.5b) that G(2) is analytic, ∇
(1)
α̂ G(2) = 0. It is also obvious that G(2)

has the right dimension, DG(2) = 3, since Ω is dimensionless. It is slightly more involved

to check that Si
α̂G

(2) = 0, which is equivalent to proving the two conditions S
(1)
α̂ G(2) = 0

and S
(−1)
α̂ G(2) = 0.

Let us first consider

S
(−1)
α̂ G(2) = −

i

8
[S

(−1)
α̂ ,∆(4)]∇(−2)Ω−

i

8
∆(4)[S

(−1)
α̂ ,∇(−2)]Ω . (7.6)

It is straightforward to check that the second term on the right is identically zero:

[S
(−1)
α̂ ,∇(−2)]Ω =

(
{S

(−1)
α̂ ,∇β̂(−1)}∇

(−1)

β̂
−∇β̂(−1){S

(−1)
α̂ ,∇

(−1)

β̂
}
)
Ω

= 6
(
J (−2)∇

(−1)
α̂ +∇

(−1)
α̂ J (−2)

)
Ω = 0 , (7.7)

as a consequence of

[J (−2),∇
(−1)
α̂ ] = 0 , J (−2) :=

1

(v, u)2
uiujJ

ij . (7.8)

It remains to show that [S
(−1)
α̂ ,∆(4)]∇(−2)Ω = 0. Using (5.30b) we obtain

[S
(−1)
α̂ ,∆(4)]∇(−2)Ω =

1

24
εβ̂γ̂δ̂ρ̂εα̂β̂∇

(1)
γ̂ ∇

(1)

δ̂
∇

(1)
ρ̂

(
8− 2D− 6J (0)

)
∇(−2)Ω ≡ 0 . (7.9)
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Since ∂(2)G(2) = 0, we also find S
(1)
α̂ G(2) = ∂(2)S

(−1)
α̂ G(2) = 0. Thus we have shown that

the superfield G(2) defined by (7.5) is primary.

A crucial property of the superfield G(2) defined by (7.5) is that it is invariant under

gauge transformations of Ω of the form

δΩ = −
i

2
(Γâ)α̂β̂∇i

α̂∇
j

β̂
Bâij , (7.10)

where the gauge parameter is assumed to have the properties

Bâ
ij = Bâ

ji , Si
α̂Bâ

jk = 0 , DBâ
ij = −Bâ

ij (7.11)

and is otherwise arbitrary. It is an instructive exercise to show that the variation δΩ defined

by (7.10) and (7.11) is a primary dimensionless superfield. Appendix F is devoted to the

proof that the transformation (7.10) leaves invariant the field strength G(2) defined by (7.5).

7.2 Composite vector multiplet

Consider a dynamical system involving an O(2) multiplet Gij as one of the dynamical

multiplets. The action may be viewed as a functional of the field strength, S[Gij ], or

as a gauge invariant functional, S[Ω], of the prepotential Ω. Giving the prepotential an

infinitesimal displacement changes the action as follows:

δS =

∫
d5|8z EWδΩ , (7.12)

for some real scalar W, which is a primary superfield of dimension +1. The variation

must vanish if δΩ is a gauge transformation of the form (7.10). This holds if W obeys the

equation

∇
(i
α̂∇

j)

β̂
W =

1

4
εα̂β̂∇

γ̂(i∇
j)
γ̂ W , (7.13)

which is the Bianchi identity for the field strength of an abelian vector multiplet, see

eq. (2.49).

In summary, any dynamical system involving an O(2) multiplet Gij possesses a com-

posite vector multiplet, W. The equation of motion for the O(2) multiplet is W = 0.

7.3 BF coupling

Consider the following Lagrangian

L
(2)
BF = V G(2) (7.14)

that describes a BF coupling of a vector multiplet and an O(2) multiplet. The action

principle (5.35) with L
(2)
BF = V G(2) will be referred to as the BF action.

The BF action involves the tropical prepotential of the vector multiplet, V (vi), and the

field strength of the O(2) multiplet, G(2). It can be rewritten in a different form involving
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the field strength of the vector multiplet, W , and the prepotential of the O(2) multiplet, Ω.

This is achieved by expressing G(2) in terms of Ω and then integrating by parts to obtain

S[L
(2)
BF] =

∮
(v, dv)

16πi

∫
d5|8z E C(−4)V ∆(+4)∇(−2)Ω

=

∫
d5|8z E ΩW . (7.15)

By using (7.5) and (6.48) together with integration by parts, the action may be rewritten in

another equivalent form that involves Mezincescu’s prepotential Vij and the field strength

Gij . One obtains

S[L
(2)
BF] =

∫
d5|8z E ΩW =

∫
d5|8z E GijVij . (7.16)

One may prove that the functionals
∫
d5|8z E ΩW and

∫
d5|8z E GijVij are invariant under

the gauge transformations (7.10) and (6.50), respectively.

7.4 Gauge invariance

The results of the previous subsection allow us to prove the important relation (5.45a).

For this we choose V = λ+ λ̆ in the BF Lagrangian (7.14), where λ(v) is a weight-0 arctic

multiplet. Since the tropical prepotential is pure gauge, the field strength vanishes, W = 0.

Then eq. (7.16) leads to S[(λ+ λ̆)G(2)] = 0, which is the required result (5.45a). Since λ is

complex, we can replace λ(v)→ iλ(v) and obtain S[i(λ− λ̆)G(2)] = 0. These two relations

lead to (5.45b), and thus
∮
(v, dv)

∫
d5|8z E C(−4)G(2)λ = 0 , (7.17)

where G(2)(v) is an O(2) multiplet and λ(v) is a weight-0 arctic multiplet.

7.5 Universality of the BF action

The goal of this subsection is to demonstrate that the supersymmetric action (5.35) can

be rewritten as a BF action under the assumption that a special vector multiplet exists.

Consider the action (5.35) written as (5.39) with U (−2) a prepotential for the La-

grangian L(2). Now let W be the field strength of a compensating vector multiplet. We

insert the unity 1 = W/W in the right hand side of (5.39) and represent W in the nu-

merator according to (6.37). After that we change the order of the contour integrals and

integrate ∇(−2) by parts. Finally, we insert the unity 1 = ∆(4)C(−4) and integrate by parts.

The final result is

S =
1

2π

∮

γ
(v, dv)

∫
d5|8z E C(−4) VG

(2) , (7.18)

where V is the tropical prepotential for the vector multiplet and the composite superfield

G
(2) is defined by

G
(2) = −

i

8
∆(4)∇(−2)Ω , (7.19a)

Ω :=
1

2πW

∮

γ
(v, dv)U (−2) . (7.19b)
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According to (7.5), the superfield G
(2) is an O(2) multiplet. Note that it is possible to give

some alternative expressions for Ω in (7.19b). Consider a weight −4 isotwistor superfield

C̃(−4) such that ∆(4)C̃(−4) = 1. This does not necessarily have to be equal to C(−4). Given

C̃(−4), the superfield

U (−2) := C̃(−4)L(2) , (7.20)

is a prepotential for the projective Lagrangian L(2). Hence we have the equivalent expres-

sion

Ω :=
1

2πW

∮

γ
(v, dv) C̃(−4)L(2) . (7.21)

Note that in the presence of the vector multiplet compensator a natural choice for C̃(−4)

is given by (5.42). Then we find

Ω :=
2W 3

3π

∮

γ
(v, dv)

L(2)

(H
(2)
VM)2

. (7.22)

7.6 Full superspace invariants

Consider an invariant that can be represented as an integral over the full superspaceM5|8,

S[L] =

∫
d5|8z E L , (7.23)

where L is a conformal primary superfield of dimension +1, DL = L. This invariant may

be represented in the form (5.35), in which L(2) reads

L(2) = −
2

G(2)
∆(4)

(
GL
)
. (7.24)

Here ∆(4) is the covariant analytic projection operator (5.22) and G(2) = vivjG
ij is an O(2)

multiplet such that

G2 :=
1

2
GijGij (7.25)

is nowhere vanishing, G 6= 0. The Lagrangian (7.24) is an example of a covariant rational

projective multiplet18 in the sense that it has the structure H(4)/G(2), for some O(4)

multiplet H(4)(v).

7.7 Prepotentials for O(4 + n) multiplets

Let H(4)(v) be an O(4) multiplet. It may be shown that

H(4)(v) = ∆(4)Φ , Si
α̂Φ = 0 , DΦ = 4Φ , (7.26)

for some primary scalar prepotential Φ, see appendix G. The O(4) multiplet in (7.24),

∆(4)
(
GL
)
, is a special case of this result.

More generally, let H(4+n)(v) be an O(4 + n) multiplet, with n = 0, 1, . . . It may be

represented in the form

H(4+n)(v) = ∆(4)Φ(n) , Φ(n)(v) = Φi1...invi1 . . . vin , (7.27)

for some primary superfield Φi1...in of dimension
(
4 + 3

2n
)
, see appendix G.

18In the 4D N = 2 super Poincaré case, rational projective multiplets were first introduced by Lindström

and Roček [36].
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8 Superform formulation for the BF action

In section 7 we demonstrated the universality of the BF action

SBF =
1

2π

∮

γ
(v, dv)

∫
d5|8z E C(−4)L

(2)
BF , L

(2)
BF = V G(2) . (8.1)

The component structure of SBF is of primary importance for applications. For the anal-

ogous action in 4D N = 2 supergravity, two procedures have been developed to reduce

the action to components. One of them [55] directly carries out the integration over the

Grassmann variables in the action. The other approach [70] provides a superform con-

struction for the action19 which immediately leads to the component action. The latter

has turned out to be fruitful for various generalizations, such as the N -extended conformal

supergravity actions [48, 49, 75] and the Chern-Simons actions [76] in three dimensions and

the non-abelian Chern-Simons action in 5D N = 1 Minkowski superspace [77]. Here we

apply the ideas put forward in [70] to derive a superform formulation for the action SBF.

8.1 Superform geometry of the O(2) multiplet

The O(2) multiplet can be described by a three-form gauge potential B = 1
3!E

Ĉ ∧ EB̂ ∧

EÂBÂB̂Ĉ possessing the gauge transformation

δB = dρ , (8.2)

where ρ is a 2-form gauge parameter. The corresponding field strength is

Φ = dB =
1

4!
ED̂ ∧ EĈ ∧ EB̂ ∧ EÂΦÂB̂ĈD̂ , (8.3)

where

ΦÂB̂ĈD̂ = 4∇[ÂBB̂ĈD̂} + 6T[ÂB̂
ÊB|Ê|ĈD̂} . (8.4)

The field strength must satisfy the Bianchi identity

∇[ÂΦB̂ĈD̂Ê} + 2T[ÂB̂
F̂Φ|F̂ |ĈD̂Ê} = 0 . (8.5)

In order to describe the O(2) multiplet we need to impose some covariant constraints

on the field strength Φ. We choose the constraints

Φi
α̂
j

β̂

k
γ̂
l
δ̂
= Φâ

j

β̂

k
γ̂
l
δ̂
= 0 , Φâb̂

i
α̂
j

β̂
= 8i(Σâb̂)α̂β̂G

ij , (8.6a)

where Gij = Gji is a dimension-3 primary superfield. The constraints allow one to solve

for the remaining components of Φ in terms of Gij . The solution is

Φâb̂ĉ
i
α̂ = −

2

3
εâb̂ĉd̂ê(Σ

d̂ê)α̂
β̂∇β̂jG

ji = −2εâb̂ĉd̂ê(Σ
d̂ê)α̂

β̂ϕi
β̂
, (8.6b)

Φâb̂ĉd̂ =
i

12
εâb̂ĉd̂ê(Γ

ê)α̂β̂∇i
α̂∇

j

β̂
Gij ≡ εâb̂ĉd̂êΦ

ê , (8.6c)

19This approach makes use of the superform formalism to construct supersymmetric invariants [71–74].
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where Gij satisfies the constraint for the O(2) multiplet

∇
(i
α̂G

jk) = 0 (8.7)

and we have introduced the superfields

ϕi
α̂ :=

1

3
∇α̂jG

ij , (8.8a)

F :=
i

12
∇γ̂i∇j

γ̂Gij = −
i

4
∇γ̂kϕγ̂k . (8.8b)

The Bianchi identities also imply the differential condition on Φâ

∇âΦâ + 5iX γ̂kϕγ̂k = ∇̂âΦâ = 0 . (8.9)

8.2 Superform action for the O(2) multiplet

The superform formulation in the previous subsection gives a geometric description for the

O(2) multiplet. As we will see, it is a useful ingredient in the construction of the BF action

principle. Below we describe the general setup, the construction of the superform action

and its corresponding component action.

8.2.1 General setup

The superform approach to constructing supersymmetric invariants [71–74] is based on the

use of a closed superform. In five-dimensional spacetime M5, which is the body of the

N = 1 curved superspaceM5|8, the formalism requires the use of a closed five-form

J =
1

5!
EÊ ∧ ED̂ ∧ EĈ ∧ EB̂ ∧ EÂ JÂB̂ĈD̂Ê , dJ = 0 . (8.10)

Given such a superform, one can construct the supersymmetric invariant

S =

∫

M5

i∗J , (8.11)

where i :M5 →M5|8 is the inclusion map. Invariance under arbitrary general coordinate

transformations of the superspace follows from the transformation of J,

δξJ = LξJ ≡ iξdJ+ diξJ = diξJ . (8.12)

The closed form J is required to transform as an exact form under all gauge symmetries,

dJ = dΘ , (8.13)

which ensures eq. (8.11) is a suitable candidate for an action. In conformal supergrav-

ity, suitable actions must be invariant under the standard superconformal transformations.

This requires that J transforms by an exact form under the standard superconformal trans-

formations,

δHJ = dΘ(Λa) , Λ = ΛaXa . (8.14)
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Locally superconformal matter actions are usually associated with closed five-forms

that are invariant,

δHJ = 0 . (8.15)

This is equivalent to the condition

XaJÂ1···Âp
= −fa[Â1

D̂J|D̂|Â2···Âp}
. (8.16)

The S-invariance, Sα̂iJ = 0, is non-trivial and we will call a superform that is S-invariant

a primary superform.20 In general, a primary p-form Σ satisfies

Sα̂iΣÂ1···Âp
= ip(Γâ)α̂

β̂Σβ̂i[Â2···Âp
δâ
Â1}

, (8.17)

which implies the condition

Sβ̂jΣâ1···ân
i1
α̂1
· · ·

ip−n

α̂p−n
= in(Γ[â1)β̂

γ̂Σγ̂jâ2···ân]
i1
α̂1
· · ·

ip−n

α̂p−n
. (8.18)

8.2.2 Superform action for the O(2) multiplet

In order to construct a closed form for the action we will first consider the superform

equation

dΣ = F ∧ Φ , (8.19)

where Σ is some five-form and F is the field strength for an abelian vector multiplet with

gauge one-form V and field strength W (see section 2.6).

It turns out there exist two solutions to eq. (8.19) that do not differ by an exact form.

The first solution is

ΣV = V ∧ Φ . (8.20)

The second solution is the result of the constraints that have been imposed on the com-

ponents of F and Φ. If we assume that this solution is primary then we may write the

Bianchi identity in terms of the covariant derivatives as follows:

∇[ÂΣB̂ĈD̂ÊF̂} +
5

2
T[ÂB̂

ĜΣ|Ĝ|ĈD̂ÊF̂} =
5

2
F[ÂB̂ΦĈD̂ÊF̂} . (8.21)

Making use of the components of F and Φ, one finds the solution:

Σâb̂ĉ
i
α̂
j

β̂
= −4iεâb̂ĉd̂ê(Σ

d̂ê)α̂β̂WGij , (8.22a)

Σâb̂ĉd̂
i
α̂ = 2εâb̂ĉd̂ê(Γ

ê)α̂
β̂(Wϕi

β̂
+ iλβ̂jG

ji) , (8.22b)

Σâb̂ĉd̂ê = −εâb̂ĉd̂ê(WF +XijGij + 2λγ̂kϕγ̂k) (8.22c)

with the remaining components vanishing. Here we have made use of the following useful

identities:

∇i
α̂G

jk = 2εi(jϕ
k)
α̂ , (8.23a)

∇i
α̂ϕ

j

β̂
= −

i

2
εijεα̂β̂F +

i

2
εijΦα̂β̂ + i∇α̂β̂G

ij , (8.23b)

20S-invariance automatically implies K-invariance.
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∇i
α̂F = −2∇α̂

β̂ϕi
β̂
− 6Wα̂β̂ϕ

β̂i − 9Xα̂jG
ij , (8.23c)

∇i
α̂Φâ = 4(Σâb̂)α̂

β̂∇b̂ϕi
β̂
− 4(Γâ)α̂

β̂Wβ̂γ̂ϕ
γ̂i − 6(Γâ)α̂

β̂Xβ̂jG
ij . (8.23d)

The second solution is expressed entirely in terms of Gij and its covariant derivatives and

we will denote it by ΣG. Making use of the following identities

Si
α̂ϕ

j

β̂
= −6εα̂β̂G

ij , (8.24a)

Si
α̂F = 6iϕi

α̂ , (8.24b)

Si
α̂Φb̂ = −8i(Γb̂)α̂

β̂ϕi
β̂
, (8.24c)

one can check that ΣG is primary, i.e. it satisfies eq. (8.18). Similarly one can show Φ is

primary and hence ΣV is primary also.

It is now straightforward to construct a closed invariant five-form. One may simply

take the difference between ΣV and ΣG,

J = ΣV − ΣG = V ∧ Φ− ΣG . (8.25)

8.2.3 Component BF action

Having derived J we can now make use of the action principle (8.10) to construct the

corresponding component action. The Lagrangian is given by21

e−1 ∗J =
1

5!
εm̂n̂p̂q̂r̂Jm̂n̂p̂q̂r̂ =

1

4!
εm̂n̂p̂q̂r̂Vm̂Φn̂p̂q̂r̂ −

1

5!
εm̂n̂p̂q̂r̂Σm̂n̂p̂q̂r̂ , (8.26)

where

1

5!
εm̂n̂p̂q̂r̂Σm̂n̂p̂q̂r̂| =

1

5!
εm̂n̂p̂q̂r̂Er̂

ÊEq̂
D̂Ep̂

ĈEn̂
B̂Em̂

ÂΣÂB̂ĈD̂Ê |

=
1

5!
εâb̂ĉd̂ê

(
Σâb̂ĉd̂ê|+

5

2
ψâ

α̂
i Σb̂ĉd̂ê

i
α̂| −

5

2
ψâ

α̂
i ψb̂

β̂
jΣĉd̂ê

i
α̂
j

β̂
|

−
5

4
ψâ

α̂
i ψb̂

β̂
j ψĉ

γ̂
kΣd̂ê

i
α̂
j

β̂

k
γ̂ |+

5

16
ψâ

α̂
i ψb̂

β̂
j ψĉ

γ̂
kψd̂

δ̂
lΣê

i
α̂
j

β̂

k
γ̂
l
δ̂
|

+
1

32
ψâ

α̂
i ψb̂

β̂
j ψĉ

γ̂
kψd̂

δ̂
lψê

ρ̂
pΣ

i
α̂
j

β̂

k
γ̂
l
δ̂

p
ρ̂|

)
. (8.27)

The action is then

S =

∫
d5x e

(
1

4!
εm̂n̂p̂q̂r̂vm̂φn̂p̂q̂r̂ −WF −XijGij − 2λkϕk

+ ψm̂iΓ
m̂ϕiW + iψm̂iΓ

m̂λjG
ij − iψm̂iΣ

m̂n̂ψn̂jWGij

)

= −

∫
d5x e

(
vâφâ +WF +XijGij + 2λkϕk

− ψâiΓ
âϕiW − iψâiΓ

âλjG
ij + iψâiΣ

âb̂ψb̂jWGij
)
, (8.28)

21The Levi-Civita tensor with world indices is defined as εm̂n̂p̂q̂r̂ := εâb̂ĉd̂êeâ
m̂eb̂

n̂eĉ
p̂ed̂

q̂eê
r̂.
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where all superfields appearing in the action are understood as their corresponding space-

time projections and we have defined

vâ := eâ
m̂vm̂ = eâ

m̂Vm̂| , φâ := −
1

4!
er̂

âεm̂n̂p̂q̂r̂φm̂n̂p̂q̂ , (8.29a)

φm̂n̂p̂q̂ := Φm̂n̂p̂q̂| = 4∂[m̂bm̂n̂p̂] , bm̂n̂p̂ = Bm̂n̂p̂| . (8.29b)

The Chern-Simons coupling between the one-form V and the four-form Φ can equivalently

be written

S =

∫
d5x e

(
1

12
εâb̂ĉd̂êfâb̂bĉd̂ê −WF −XijGij − 2λkϕk

+ ψâiΓ
âϕiW + iψâiΓ

âλjG
ij − iψâiΣ

âb̂ψb̂jWGij

)
, (8.30)

where

fâb̂ := eâ
m̂eb̂

n̂fm̂n̂ , fm̂n̂ := Fm̂n̂| = 2∂[m̂vn̂] , bâb̂ĉ := eâ
m̂eb̂

n̂eĉ
p̂bm̂n̂p̂ . (8.31)

It should be mentioned that the normalization of the action (8.28) has been chosen

to correspond to the projective superspace action principle (5.35) with L(2) = V G(2).

Furthermore, the action (8.28) corresponds to the BF action without central charge. We

will give a generalization in the presence of a gauged central charge in section 11.

9 Abelian Chern-Simons theory

In conformal superspace, the dynamics of an abelian vector multiplet coupled to conformal

supergravity is described by the Chern-Simons action22

SCS =
1

2π

∮

γ
(v, dv)

∫
d5|8z E C(−4)L

(2)
CS , L

(2)
CS = −

1

12
V H

(2)
VM , (9.1)

where H
(2)
VM denotes the composite O(2) multiplet defined by (5.40). Varying the tropical

prepotential gives

δSCS = −
1

8π

∮
(v, dv)

∫
d5|8z E C(−4)δV H

(2)
VM , (9.2)

see section 12 for the derivation.

A component counterpart of the action (9.1) may be constructed using H
(2)
VM and the

BF action (8.1). This amounts to plugging

Gij = H ij
VM = 2WXij − iλα̂(iλ

j)
α̂ (9.3)

into the component BF action (8.28) and computing the component fields of the composite

O(2) multiplet. This produces the component V ∧ F ∧ F coupling by treating the closed

22In the 5D N = 1 super-Poincaré case, the off-shell abelian Chern-Simons action was constructed for

the first time by Zupnik in harmonic superspace [51]. The action (9.1) is a curved-superspace extension of

the one given in [2].
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gauge-invariant four-form F ∧F as the field strength derived from the O(2) multiplet (9.3).

A major disadvantage of this approach is that the non-abelian Chern-Simons theory cannot

be constructed in the same way. In this section we will discuss an alternative superform

construction that can be generalized and show how to derive it explicitly from the BF

action principle.

Recall that the BF action involved constructing a closed five-form J given by

JH = V ∧ Φ− ΣH , (9.4)

where Φ is the four-form field strength associated with the composite Gij and ΣH , con-

structed in section 8.1, is a covariant four-form which solves the equation

dΣH = F ∧ Φ . (9.5)

If one now substitutes the relations

ϕi
α̂ = iXijλα̂j − 2iFα̂β̂λ

β̂i +Xi
α̂W

2 − 2iW∇α̂β̂λ
β̂i − i∇α̂β̂Wλβ̂i , (9.6a)

F = XijXij − F âb̂Fâb̂ + 4W∇â∇âW + 2(∇âW )∇âW + 2i(∇α̂
β̂λk

β̂
)λα̂

k

− 6W âb̂Fâb̂W − 5W âb̂Wâb̂W
2 + YW 2 + 6X α̂iλα̂iW , (9.6b)

Φâ = −
1

2
εâb̂ĉd̂êF

b̂ĉF d̂ê + 4∇b̂

(
WFb̂â +

3

2
Wb̂âW

2

)
+ εâb̂ĉd̂êW

b̂ĉ

(
F d̂ê +

3

2
W d̂êW

)
W

− 6(Γâ)
α̂β̂Xk

α̂λβ̂kW + 2i(Σb̂â)
α̂β̂∇b̂(λk

α̂λβ̂k) +
i

2
εâb̂ĉd̂êW

b̂ĉ(Σd̂ê)α̂β̂λk
α̂λβ̂k , (9.6c)

into the eqs. (8.6) defining the superform Φ and (8.22) for ΣH , one arrives at the abelian CS

action. However, as is evident from considering the expression for Φâ above, the expression

involves several derivatives which must be integrated by parts to arrive at the conventional

form of the action.

We seek instead a different closed superform J, which will be given by

J = ΣCS − ΣR , (9.7)

where both ΣCS and ΣR are solutions to the equation

dΣ = F ∧ F ∧ F . (9.8)

The first is the Chern-Simons form,

ΣCS = V ∧ F ∧ F , (9.9)

while the second, ΣR, we will refer to as the curvature induced form. Here the curvature

induced form is required to be a gauge-invariant primary superform constructed directly

out of W and its covariant derivatives. The Chern-Simons and curvature induced forms

represent ingredients in a general procedure to construct Chern-Simons actions in three

and five dimensions, see [48, 49, 75, 76]. Gauge invariance of the corresponding action

(8.11) is guaranteed by the fact that ΣR is gauge invariant by construction, while ΣCS
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transforms via an exact form. The advantage of this construction over the use of the BF

action is that it can be straightforwardly generalized to the non-abelian case.

Now it turns out that JH and 2J describe the same component action, with 2J differing

from J by a total derivative (i.e. by an exact form) alluded to above. In other words,

dV = 2J− JH = V ∧
(
2F ∧ F − Φ

)
− 2ΣR +ΣH , (9.10)

for some four-form V. It is evident we can choose

V = V ∧ C , (9.11)

for some three-form C satisfying

dC = 2F ∧ F − Φ . (9.12)

Provided there exists a gauge-invariant primary three-form C that solves this equation,

then the curvature induced form is given immediately as

ΣR =
1

2

(
ΣH + F ∧ C

)
. (9.13)

The construction of such a three-form C is straightforward. From dimensional con-

siderations, it is evident that Ci
α̂
j

β̂
k
γ̂ must vanish, while Câ

j

β̂
k
γ̂ must be proportional to W 2.

The full solution is straightforward to derive:

Câ
j

β̂

k
γ̂ = −4i(Γâ)β̂γ̂ε

jkW 2 , (9.14a)

Câb̂
k
γ̂ = 8i(Σâb̂)γ̂

δ̂λk
δ̂
W , (9.14b)

Câb̂ĉ = εâb̂ĉd̂ê

(
2F d̂êW + iλkΣ

d̂êλk + 3W d̂êW 2
)
. (9.14c)

The construction of ΣR is now immediate. As required, it is given purely in terms of W

and its covariant derivatives, with the nonzero components given below:23

Σâ
i
α̂
j

β̂

k
γ̂
l
δ̂
= 4

(
εijεkl

(
(Γâ)α̂β̂εγ̂δ̂ + (Γâ)γ̂δ̂εα̂β̂

)
+ εikεjl

(
(Γâ)α̂γ̂εβ̂δ̂ + (Γâ)β̂δ̂εα̂γ̂

)

+ εilεjk
(
(Γâ)α̂δ̂εβ̂γ̂ + (Γâ)β̂γ̂εα̂δ̂

))
W 3 , (9.15a)

Σâb̂
i
α̂
j

β̂

k
γ̂ = −12

(
εjkεβ̂γ̂(Σâb̂)α̂

δ̂λi
δ̂
W 2 + εijεα̂β̂(Σâb̂)γ̂

δ̂λk
δ̂
W 2 + εikεγ̂α̂(Σâb̂)β̂

δ̂λj

δ̂
W 2
)

+8
(
εjk(Σâb̂)α̂β̂λ

i
γ̂W

2 + εki(Σâb̂)β̂γ̂λ
j
α̂W

2 + εij(Σâb̂)γ̂α̂λ
k
β̂
W 2
)
, (9.15b)

Σâb̂ĉ
i
α̂
j

β̂
=

i

2
εijεα̂β̂εâb̂ĉd̂ê(Σ

d̂ê)γ̂δ̂(4W 2Fγ̂δ̂ + 5iWλk
γ̂λδ̂k + 6Wγ̂δ̂W

3)

−iεâb̂ĉd̂ê(Σ
d̂ê)α̂β̂(4W

2Xij − 5iWλγ̂(iλ
j)
γ̂ )

+6(Σ[âb̂)α̂β̂(Γĉ])
γ̂δ̂λ

(i
γ̂ λ

j)

δ̂
W + 3εij(Γ[â)α̂β̂(Σb̂ĉ])

γ̂δ̂λk
γ̂λδ̂kW

−6iεij(Γ[â)α̂β̂Fb̂ĉ]W
2 , (9.15c)

23We drop the subscript R when referring to the components of ΣR to avoid awkward notation.
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Σâb̂ĉd̂
i
α̂ = −

1

2
εâb̂ĉd̂ê(Γ

ê)α̂
β̂
(
12iWFβ̂γ̂λ

γ̂i − 6iWXijλβ̂j − 4λγ̂(iλ
j)
γ̂ λβ̂j

− 2Xi
β̂
W 3 + 6iWβ̂γ̂W

2λγ̂i
)

+εâb̂ĉd̂ê(Γ
ê)β̂γ̂tr

(
λ
(i

β̂
λ
j)
γ̂ λα̂j + 3iWα̂β̂W

2λi
γ̂

)

−iεâb̂ĉd̂êWλi
α̂∇

êW − 2iεâb̂ĉd̂êW
2∇êλi

α̂

−2iεâb̂ĉd̂ê(Σ
êf̂ )α̂

β̂Wλi
β̂
∇f̂W − 4iεâb̂ĉd̂ê(Σ

êf̂ )α̂
β̂W 2∇f̂λ

i
β̂
, (9.15d)

Σâb̂ĉd̂ê = −
3

2
εâb̂ĉd̂ê

(
WXklXkl − 2WF γ̂δ̂Fγ̂δ̂ − iXklλδ̂

kλδ̂l − 2iF γ̂δ̂λk
γ̂λδ̂k

+
2

3
W (∇f̂W )∇f̂W +

4

3
W 2∇f̂∇f̂W + 2iW (∇γ̂δ̂λ

γ̂k)λδ̂
k

+
1

3
YW 3 −

4

3
X γ̂kλγ̂kW

2 − 6W γ̂δ̂Fγ̂δ̂W
2 −

10

3
W γ̂δ̂Wγ̂δ̂W

3

)
. (9.15e)

The abelian Chern-Simons action is then given by

SCS = −
1

6

∫

M5

i∗J , (9.16)

where we have adjusted the normalization to match (9.1). As we will show in the next

section, it is straightforward to generalize the result for J to a non-abelian vector multiplet.

We will give the explicit component action in the next section for the non-abelian case.

10 Non-abelian Chern-Simons theory

In the non-abelian case, a closed-form expression for the Chern-Simons action as a super-

space integral is not yet known. However, the corresponding action may be defined by

postulating its variation24

δSCS = −
1

8π

∮

γ
(v, dv)

∫
d5|8z E C(−4)tr

(
∆V · e−Ω+H

(2)
YMeΩ+

)
, (10.1a)

where we have defined

∆V := e−V δeV , H
(2)
YM = viviH

ij
YM , (10.1b)

with the composite superfield H
ij
YM given by (2.54). Here ∆V is the covariantized variation

of the tropical prepotential. In the abelian case, the variation (10.1) reduces to (9.2). In

this paper, we will not elaborate on the above definition, and instead present a superform

realization of the action.

In the previous section we derived the closed five-form describing the abelian Chern-

Simons theory and introduced two key ingredients: the Chern-Simons and curvature in-

duced forms. In this section we will show how to generalize our approach to the non-abelian

24This definition is inspired by the earlier works [51, 65, 78].
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Chern-Simons theory based on a Yang-Mills multiplet and derive the corresponding compo-

nent action. Our approach is analogous to the one adopted in [77] in Minkowski superspace.

We remind the reader that the Yang-Mills multiplet is described in section 2.6.

The appropriate closed five-form J to describe the non-abelian Chern-Simons action

may be found by generalizing the Chern-Simons form and the curvature induced form.

These five-forms now correspond to two solutions of the superform equation

dΣ = 〈F 3〉 := tr
(
F ∧ F ∧ F

)
, (10.2)

which is a straightforward generalization of (9.8). The Chern-Simons form ΣCS is again

directly constructed out of V , while the curvature induced form is constructed out of W

and its covariant derivatives. If they transform by an exact form under the gauge group

then their difference

J = ΣCS − ΣR (10.3)

will yield an appropriate closed five-form that describes the action. The Chern-Simons and

curvature induced five-forms are discussed in more detail below.

10.1 The Chern-Simons five-form

The Chern-Simons form is

ΣCS = tr

(
V ∧ F ∧ F −

i

2
V ∧ V ∧ V ∧ F −

1

10
V ∧ V ∧ V ∧ V ∧ V

)
. (10.4)

One can verify that it satisfies the superform equation (10.2) by using

∇ = d− iV , F = dV + iV ∧ V , ∇F = 0 =⇒ dF = iV ∧ F − iF ∧ V . (10.5)

Since ΣCS has been constructed by extracting a total derivative from the gauge invari-

ant superform 〈F 3〉 it must transform by a closed form under the gauge group. In fact,

one can show it transforms by an exact form,

ΣCS → ΣCS + d tr

(
dτ ∧

(
V ∧ F −

i

2
V ∧ V ∧ V

))
. (10.6)

Note that since the gauge field V is primary, ΣCS is also a primary superform.

10.2 The curvature-induced five-form

To construct the curvature-induced five-form we look for a gauge-invariant solution to

dΣ = tr
(
F ∧ F ∧ F

)
. (10.7)

The condition that Σ is invariant allows one to express eq. (10.7) as

2∇[ÂΣB̂ĈD̂ÊF̂} + 5T[ÂB̂
ĜΣ|Ĝ|ĈD̂ÊF̂} = 30tr(F [ÂB̂F ĈD̂F ÊF̂}) . (10.8)

Here we have used the fact that Σ is a gauge singlet25

∇ÂΣB̂ĈD̂ÊF̂ = ∇ÂΣB̂ĈD̂ÊF̂ . (10.9)

25Keeping this in mind, we will use gauge covariant derivatives everywhere in this section.
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The curvature induced form is defined to be a primary solution of eq. (10.7) that can

be expressed covariantly in terms of the vector multiplet field strength W . Invariance of

the curvature induced form is then guaranteed. On dimensional grounds, it is natural to

impose the constraint

Σi
α̂
j

β̂

k
γ̂
l
δ̂

p
ρ̂ = 0 . (10.10)

Then analyzing the superform equation (10.7) by increasing dimension, enforcing the pri-

mary condition (8.18) and using the identities (2.52) yields all the remaining components

of the curvature induced five-form:

Σâ
i
α̂
j

β̂

k
γ̂
l
δ̂
= 4

(
εijεkl

(
(Γâ)α̂β̂εγ̂δ̂ + (Γâ)γ̂δ̂εα̂β̂

)
+ εikεjl

(
(Γâ)α̂γ̂εβ̂δ̂ + (Γâ)β̂δ̂εα̂γ̂

)

+ εilεjk
(
(Γâ)α̂δ̂εβ̂γ̂ + (Γâ)β̂γ̂εα̂δ̂

))
tr(W 3) , (10.11a)

Σâb̂
i
α̂
j

β̂

k
γ̂ = −12tr

(
εjkεβ̂γ̂(Σâb̂)α̂

δ̂λi
δ̂
W 2 + εijεα̂β̂(Σâb̂)γ̂

δ̂λk
δ̂
W 2 + εikεγ̂α̂(Σâb̂)β̂

δ̂λ
j

δ̂
W 2

)

+ 8tr
(
εjk(Σâb̂)α̂β̂λ

i
γ̂W

2 + εki(Σâb̂)β̂γ̂λ
j
α̂W

2 + εij(Σâb̂)γ̂α̂λ
k
β̂
W 2

)
, (10.11b)

Σâb̂ĉ
i
α̂
j

β̂
=

i

2
εijεα̂β̂εâb̂ĉd̂ê(Σ

d̂ê)γ̂δ̂tr(4W 2F γ̂δ̂ + 5iWλk
γ̂λδ̂k + 6Wγ̂δ̂W

3)

− iεâb̂ĉd̂ê(Σ
d̂ê)α̂β̂tr(4W

2Xij − 5iWλγ̂(iλ
j)
γ̂ )

+ 6(Σ[âb̂)α̂β̂(Γĉ])
γ̂δ̂tr(λ

(i
γ̂ λ

j)

δ̂
W ) + 3εij(Γ[â)α̂β̂(Σb̂ĉ])

γ̂δ̂tr(λk
γ̂λδ̂kW )

− 6iεij(Γ[â)α̂β̂tr(F b̂ĉ]W
2) , (10.11c)

Σâb̂ĉd̂
i
α̂ = −

1

2
εâb̂ĉd̂ê(Γ

ê)α̂
β̂tr
(
6iW {F β̂γ̂ ,λ

γ̂i} − 3iW {Xij ,λβ̂j}

− 4λγ̂(iλ
j)
γ̂ λβ̂j − 2Xi

β̂
W 3 + 6iWβ̂γ̂W

2λγ̂i
)

+ εâb̂ĉd̂ê(Γ
ê)β̂γ̂tr

(
λ
(i

β̂
λ
j)
γ̂ λα̂j + 3iWα̂β̂W

2λi
γ̂

)

−
i

2
εâb̂ĉd̂êtr({W ,∇êW }λi

α̂)− 2iεâb̂ĉd̂êtr(W
2
∇

êλi
α̂)

− iεâb̂ĉd̂ê(Σ
êf̂ )α̂

β̂tr({W ,∇f̂W }λ
i
β̂
)− 4iεâb̂ĉd̂ê(Σ

êf̂ )α̂
β̂tr(W 2

∇f̂λ
i
β̂
) , (10.11d)

Σâb̂ĉd̂ê = −
3

2
εâb̂ĉd̂êtr

(
WXklXkl − 2WF γ̂δ̂F γ̂δ̂ − iXklλδ̂

kλδ̂l − 2iF γ̂δ̂λk
γ̂λδ̂k

+
2

3
W (∇f̂W )∇f̂W +

4

3
W 2

∇
f̂
∇f̂W + iW [∇γ̂δ̂λ

γ̂k,λδ̂
k]− 2W 2λγ̂kλγ̂k

+
1

3
YW 3 −

4

3
X γ̂kλγ̂kW

2 − 6W γ̂δ̂F γ̂δ̂W
2 −

10

3
W γ̂δ̂Wγ̂δ̂W

3

)
. (10.11e)

It is worth elucidating the relation of the above curvature induced form to the one

constructed in [76] in the rigid supersymmetric case. Switching off the Weyl multiplet

(Wα̂β̂ = 0) and replacing the covariant derivatives with their corresponding flat ones,

∇Â → DÂ = DÂ − iV Â , (10.12)
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gives

Σâ
i
α̂
j

β̂

k
γ̂
l
δ̂
= 4

(
εijεkl

(
(Γâ)α̂β̂εγ̂δ̂ + (Γâ)γ̂δ̂εα̂β̂

)
+ εikεjl

(
(Γâ)α̂γ̂εβ̂δ̂ + (Γâ)β̂δ̂εα̂γ̂

)

+εilεjk
(
(Γâ)α̂δ̂εβ̂γ̂ + (Γâ)β̂γ̂εα̂δ̂

))
tr(W 3) , (10.13a)

Σâb̂
i
α̂
j

β̂

k
γ̂ = −12tr

(
εjkεβ̂γ̂(Σâb̂)α̂

δ̂λi
δ̂
W 2 + εijεα̂β̂(Σâb̂)γ̂

δ̂λk
δ̂
W 2 + εikεγ̂α̂(Σâb̂)β̂

δ̂λ
j

δ̂
W 2

)

+8tr
(
εjk(Σâb̂)α̂β̂λ

i
γ̂W

2 + εki(Σâb̂)β̂γ̂λ
j
α̂W

2 + εij(Σâb̂)γ̂α̂λ
k
β̂
W 2

)
, (10.13b)

Σâb̂ĉ
i
α̂
j

β̂
=

i

2
εijεα̂β̂εâb̂ĉd̂ê(Σ

d̂ê)γ̂δ̂tr(4W 2F γ̂δ̂ + 5iWλk
γ̂λδ̂k)

−iεâb̂ĉd̂ê(Σ
d̂ê)α̂β̂tr(4W

2Xij − 5iWλγ̂(iλ
j)
γ̂ )

+6(Σ[âb̂)α̂β̂(Γĉ])
γ̂δ̂tr(λ

(i
γ̂ λ

j)

δ̂
W ) + 3εij(Γ[â)α̂β̂(Σb̂ĉ])

γ̂δ̂tr(λk
γ̂λδ̂kW )

−6iεij(Γ[â)α̂β̂tr(F b̂ĉ]W
2) , (10.13c)

Σâb̂ĉd̂
i
α̂ = −

1

2
εâb̂ĉd̂ê(Γ

ê)α̂
β̂tr
(
6iW{F β̂γ̂ ,λ

γ̂i} − 3iW {Xij ,λβ̂j} − 4λγ̂(iλ
j)
γ̂ λβ̂j

)

+εâb̂ĉd̂ê(Γ
ê)β̂γ̂tr

(
λ
(i

β̂
λ
j)
γ̂ λα̂j

)

−
i

2
εâb̂ĉd̂êtr({W ,DêW }λi

α̂)− 2iεâb̂ĉd̂êtr(W
2
D

êλi
α̂)

−iεâb̂ĉd̂ê(Σ
êf̂ )α̂

β̂tr({W ,Df̂W }λ
i
β̂
)− 4iεâb̂ĉd̂ê(Σ

êf̂ )α̂
β̂tr(W 2

Df̂λ
i
β̂
) , (10.13d)

Σâb̂ĉd̂ê = −
3

2
εâb̂ĉd̂êtr

(
WXklXkl − 2WF γ̂δ̂F γ̂δ̂ − iXklλδ̂

kλδ̂l − 2iF γ̂δ̂λk
γ̂λδ̂k

+
2

3
W (Df̂W )Df̂W +

4

3
W 2

D
f̂
Df̂W + iW [Dγ̂δ̂λ

γ̂k,λδ̂
k]

−2W 2λγ̂kλγ̂k

)
, (10.13e)

where

λi
α̂ := −iDi

α̂W , Xij := −
1

4
D

α̂(iλ
j)
α̂ , F α̂β̂ =

1

4
D

k
(α̂λβ̂)k . (10.14)

The above curvature induced form agrees with the one found in [76] up to the addition of

an exact five-form

Σexact = dN , (10.15)

with

N i
α̂
j

β̂

k
γ̂
l
δ̂
= 0 , Nâ

j

β̂

k
γ̂ = 0 , Nâb̂

k
γ̂
l
δ̂
= 0 , (10.16a)

Nâb̂ĉ
l
δ̂
= −iεâb̂ĉd̂ê(Σ

d̂ê)δ̂
γ̂tr
(
W 2λl

γ̂

)
, (10.16b)

Nâb̂ĉd̂ = 0 . (10.16c)

Ignoring boundary terms, the exact form does not change the corresponding action.

It is worth noting that although we can add a total derivative constructed out of W

and its covariant derivatives, the curvature induced form is uniquely fixed in conformal su-

pergravity. In particular, a primary generalization of (10.15) in supergravity does not exist.

– 56 –



J
H
E
P
0
2
(
2
0
1
5
)
1
1
1

10.3 The non-abelian Chern-Simons action

Making use of the superform Σ one can construct a closed five-form in 5D from which one

can derive a supersymmetric action. We now make use of the closed form,

J := ΣCS − ΣR (10.17)

and the action principle (9.16) together with the formula (8.27). We find the action26

S =

∫
d5x e tr

{
−

1

24
εâb̂ĉd̂êvâf b̂ĉf d̂ê −

i

24
εâb̂ĉd̂êvâvb̂vĉf d̂ê −

1

60
εâb̂ĉd̂êvâvb̂vĉvd̂vê

−
1

4
WF âb̂F

âb̂ +
1

4
WXijXij +

i

4
F âb̂(λ

kΣâb̂λk)−
i

4
Xij(λ

iλj)

+
i

4
W (λk←→6∇ λk) +

1

6
W (∇âW )∇âW +

1

3
W 2

∇
â
∇âW −

32

9
DW 3

+
32i

9
χkλkW

2 −
3

4
W âb̂F âb̂W

2 −
5

12
W âb̂Wâb̂W

3 −
1

2
W 2λkλk

−
i

8
(ψâiΓ

âΣb̂ĉλi)
(
{F b̂ĉ,W }+W 2Wb̂ĉ

)
−

i

24
ψâiΓ

âΓb̂λi{W ,∇b̂W }

− (ψâiΓ
âλj)

(
i

8
{Xij ,W }+

1

6
λ(iλj)

)
+

8i

9
(ψâiΓ

âχi)W 3

−
i

6
ψâiΓ

â /∇λiW 2 −
1

12
(ψâiλj)(λ

(iΓâλj)) +
i

8
(ψĉiΣ

âb̂Γĉλi)W 2Wâb̂

+
i

24
(ψâkψb̂

k)
(
2W 2F âb̂ − 3iλkΣâb̂λkW + 3W âb̂W 3

)

+
i

48
εâb̂ĉd̂ê(ψâkΓb̂ψĉ

k)F d̂êW
2 +

i

12
(ψâiΣ

âb̂ψb̂j)
(
2W 2Xij − 3iWλ(iλj)

)

+
1

12
(ψâiΣ

âb̂λi){W , ψb̂jλ
j}+

1

16
εâb̂ĉd̂ê(ψâkψb̂

k)(ψĉjΣd̂êλ
j)W 2

+
1

24
εâb̂ĉd̂ê(ψâjΣb̂ĉψd̂k)(ψê

jλk)W 2 +
1

96
εâb̂ĉd̂ê(ψâkΓb̂ψĉ

k)(ψd̂jψê
j)W 3

}
, (10.18)

where we have defined

i

2
[∇γ̂δ̂λ

γ̂k,λδ̂
k] =

i

2
λk←→6∇λk :=

i

2
λk 6∇λk −

i

2
(6∇λk)λk (10.19)

and introduced the bar-projected field strength and one-form:

f âb̂ = 2eâ
m̂eb̂

n̂
(
∂[m̂vn̂] − iv[m̂vn̂]

)
, vâ := eâ

m̂vm̂ , vm̂ := V m̂| . (10.20)

The vector covariant derivatives of the component fields may be expressed in terms of

the D̂â derivatives and hatted component fields introduced in section 4. For completeness

we include the following component results:

∇âW = D̂âW −
i

2
ψâ

γ̂
kλ

k
γ̂ , (10.21a)

∇
â
∇âW = D̂

â
∇âW −

i

2
ψâβ̂

j∇âλ
j

β̂
+

i

2
ψβ̂

γ̂ β̂
jWγ̂δ̂λ

δ̂j −
8i

3
ψβ̂

γ̂ β̂
j χ

j
γ̂W

26Here we understand the superfield W and the superfields constructed from its covariant derivatives as

their corresponding component fields. It should be clear from context which we are referring to.
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+
i

2
ψβ̂

γ̂ β̂
j [λ

j
γ̂ ,W ]− 2̂fâ

âW +
1

2
φ̂β̂

γ̂ β̂jλγ̂j

+
20i

3
χα̂iλα̂i +

20

3
DW +

1

32
W âb̂Wâb̂W , (10.21b)

∇âλ
i
α̂ = D̂âλ

i
α̂ − ψâ

β̂i(F β̂α̂ +Wβ̂α̂W )−
1

2
ψâα̂jX

ij −
1

2
ψâ

β̂i
∇β̂α̂W

− iφ̂â
i
α̂W +

1

4
W̃âb̂ĉ(Σ

b̂ĉ)α̂
β̂λi

β̂
−

8

3
(Γâ)α̂

β̂χi
β̂
W , (10.21c)

where

D̂â = D̂â − iV â . (10.22)

Note that the covariant field strength may be expressed in terms of the bar-projected

field strength. Performing the component projection of the identity

F m̂n̂ = Em̂
ÂEn̂

B̂F ÂB̂(−1)
ε
Â
ε
B̂ , (10.23)

we find

F âb̂| = f âb̂ + i(Γ[â)α̂
β̂ψb̂]

α̂
kλ

k
β̂
+

i

2
ψ[â

γ̂
kψb̂]

k
γ̂W . (10.24)

It should be mentioned that the abelian Chern-Simons action can straightforwardly be

read off of the action presented in this section.

11 Supermultiplets with gauged central charge

In the presence of a gauged central charge different off-shell multiplets in conformal su-

pergravity become possible. For example, in 4D N = 2 conformal supergravity there exist

so-called vector-tensor multiplets, which may be viewed as dual versions of the abelian vec-

tor multiplet and possess gauge two-forms.27 The situation in 5D conformal supergravity

is similar. There also exists a dual version of the abelian vector multiplet, which we refer

to as the two-form multiplet. The off-shell multiplet was first constructed in [20] within the

component approach and was shown that it may be generalized to a so-called large tensor

multiplet that may be given a mass. Recently, two of us have shown how to describe both

the two-form and large tensor multiplets in Minkowski superspace by making convenient

use of superform formulations [77].

In this section we generalize the results of [77] to conformal superspace. Firstly, we

discuss how to gauge the central charge in conformal superspace. We then give the su-

perform formulation for the linear multiplet with central charge and immediately derive

its corresponding action principle. The action provides an important ingredient in con-

structing actions for multiplets with gauged central charge. Finally, we give the superform

formulations for the gauge two-form and large tensor multiplets.

27See [79, 80] for a superspace description of all known off-shell vector-tensor multiplets in 4D N = 2

conformal supergravity.
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11.1 Gauging a central charge in conformal superspace

We can introduce a central charge ∆ in conformal superspace and gauge it using an abelian

vector multiplet associated with a gauge connection V . Doing so requires that we follow a

similar procedure as the one used in section 2.6. We can obtain the resulting structure by

simply replacing the gauge connection V and field strength F with those associated with

the central charge ∆ as follows:

iV → V∆ , iF → F∆ . (11.1)

The central charge is required to commute with the covariant derivatives

[∆,∇Â] = 0 (11.2)

and annihilate both V and F

∆V = 0 , ∆F = 0 . (11.3)

The central charge gauge transformations of the covariant derivatives are

δ∇Â = [Λ∆,∇Â] =⇒ δVÂ = ∇ÂΛ , (11.4)

where the gauge parameter Λ is inert under the central charge, ∆Λ = 0.

We constrain the field strength F formally the same way as F but with W replaced

by W. The components of F are given by the following:

F i
α̂
j

β̂
= 2iεijεα̂β̂W , (11.5a)

Fâ
j

β̂
= −(Γâ)β̂

γ̂∇j
γ̂W , (11.5b)

Fâb̂ = −
i

4
(Σâb̂)

α̂β̂(∇k
α̂∇β̂k − 4iWα̂β̂)W , (11.5c)

with W constrained by the Bianchi identity

∇
(i
α̂∇

j)

β̂
W =

1

4
εα̂β̂∇

γ̂(i∇
j)
γ̂ W . (11.6)

The above results will be used in the remainder of this section.

11.2 The linear multiplet with central charge

In this subsection we construct a superform formulation for the 5D linear multiplet with

gauged central charge in conformal superspace, generalizing the one given in [77]. Our

approach is similar to the one adopted for the 4D N = 2 linear multiplet in conformal

supergravity [70]. We will show that the superform formulation naturally leads to the

action principle based on a linear multiplet.
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11.2.1 Superform formulation for the linear multiplet

In [70] a superform formulation for the 4D N = 2 linear multiplet was found by extending

the vielbein to include the one-form gauging the central charge. This leads to a system of

superforms describing the linear multiplet. As in [77] we instead start with a system of

superforms that generalizes the one that appeared in [70].

We introduce two primary superforms: a five-form Σ̃ and a four-form Φ. We require

that they satisfy the superform equations

∇Σ̃ = F ∧ Φ , ∇Φ = −∆Σ̃ (11.7)

and transform as scalars under the gauge transformations (11.4)

δΣ̃ = Λ∆Σ̃ , δΦ = Λ∆Φ . (11.8)

The superforms Σ̃ and Φ can now be related to the linear multiplet with central charge by

imposing certain constraints. However, it will prove useful to first introduce some notation

to deal with the component form of (11.7).

We introduce indices that range over not just Â but an additional bosonic coordinate,

Â = (Â, 6). Then we may rewrite eq. (11.7) in components as

∇[ÂΣB̂ĈD̂ÊF̂} +
5

2
T[ÂB̂

ĜΣ|Ĝ|ĈD̂ÊF̂} = 0 , (11.9)

where we have made the identifications

TÂB̂
6 = FÂB̂ , T6B̂

Â = TB̂6
Â = 0 , ∇6 = ∆ (11.10)

and

Σ̃ =
1

5!
EÊ ∧ ED̂ ∧ EĈ ∧ EB̂ ∧ EÂΣÂB̂ĈD̂Ê ,

Φ =
1

4!
ED̂ ∧ EĈ ∧ EB̂ ∧ EÂΣ6ÂB̂ĈD̂ . (11.11)

We constrain the lowest dimension components by

Σi
α̂
j

β̂

k
γ̂
l
δ̂

p
ρ̂ = Σâ

i
α̂
j

β̂

k
γ̂
l
δ̂
= Σâb̂

i
α̂
j

β̂

k
γ̂ = Σ6

i
α̂
j

β̂

k
γ̂
l
δ̂
= Σ6â

j

β̂

k
γ̂
l
δ̂
= 0 ,

Σ6âb̂
i
α̂
j

β̂
= 8i(Σâb̂)α̂β̂L

ij , (11.12)

and analyze eq. (11.9). The remaining components are completely determined as follows:

Σâb̂ĉ
i
α̂
j

β̂
= 4iεâb̂ĉd̂ê(Σ

d̂ê)α̂β̂WL
ij , (11.13a)

Σ6âb̂ĉ
i
α̂ = −

2

3
εâb̂ĉd̂ê(Σ

d̂ê)α̂
β̂
∇β̂jL

ji = −2εâb̂ĉd̂ê(Σ
d̂ê)α̂

β̂ϕi
β̂
, (11.13b)

Σâb̂ĉd̂
i
α̂ = −2εâb̂ĉd̂ê(Γ

ê)α̂
β̂(Wϕi

β̂
+ iλβ̂jL

ji) , (11.13c)

Σ6âb̂ĉd̂ =
i

12
εâb̂ĉd̂ê(Γ

ê)α̂β̂∇i
α̂∇

j

β̂
Lij ≡ εâb̂ĉd̂êΦ

ê , (11.13d)

Σâb̂ĉd̂ê = εâb̂ĉd̂ê(WF +XijLij + 2λγ̂kϕγ̂k) , (11.13e)
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where Lij satisfies the constraint for the linear multiplet

∇
(i
α̂L

jk) = 0 (11.14)

and we have introduced the superfields

ϕi
α̂ :=

1

3
∇α̂jL

ij , (11.15a)

F :=
i

12
∇

γ̂i
∇

j
γ̂Lij = −

i

4
∇

γ̂kϕγ̂k . (11.15b)

The above superfields together with

Φâ =
i

12
(Γâ)

α̂β̂
∇

i
α̂∇

j

β̂
Lij = −

i

4
(Γâ)

α̂β̂
∇

k
α̂ϕβ̂k (11.16)

satisfy the following useful identities:

∇
i
α̂L

jk = 2εi(jϕ
k)
α̂ , (11.17a)

∇
i
α̂ϕ

j

β̂
= −

i

2
εijεα̂β̂F +

i

2
εijΦα̂β̂ + i∇α̂β̂L

ij + iεα̂β̂W∆Lij , (11.17b)

∇
i
α̂F = −2∇α̂

β̂ϕi
β̂
− 2iλα̂j∆L

ij − 6Wα̂β̂ϕ
β̂i − 9Xα̂jL

ij , (11.17c)

∇
i
α̂Φâ = 4(Σâb̂)α̂

β̂
∇

b̂ϕi
β̂
− 2i(Γâ)α̂

β̂λβ̂j∆L
ij − 2(Γâ)α̂

β̂W∆ϕi
β̂

−4(Γâ)α̂
β̂Wβ̂γ̂ϕ

γ̂i − 6(Γâ)α̂
β̂Xβ̂jL

ij . (11.17d)

Using the additional identities

Si
α̂ϕ

j

β̂
= −6εα̂β̂L

ij , (11.18a)

Si
α̂F = 6iϕi

α̂ , (11.18b)

Si
α̂Φb̂ = −8i(Γb̂)α̂

β̂ϕi
β̂
, (11.18c)

one can check that Σ̃ and Φ are primary.

The superform equations imply the differential condition on Φâ

∇
âΦâ = ∆(WF +XijLij + 2Λγ̂kϕγ̂k)− 5iX γ̂kϕγ̂k . (11.19)

It should be mentioned that in the above the central charge transformation of Lij is

arbitrary. If we instead require Lij to be inert under the central charge, ∆Lij = 0, we have

dΦ = 0 (11.20)

and Lij becomes an O(2) multiplet already described in previous sections.
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11.2.2 Action principle

Having derived the components of ΣÂB̂ĈD̂Ê , it is straightforward to construct a closed

five-form. It is

J = Σ̃ + V ∧ Φ . (11.21)

One can check that it is closed,

dJ = dΣ̃ + V ∧ dΦ + dV ∧ Φ = ∇Σ̃ + V ∧∆Σ̃ + V ∧∇Φ+ F ∧ Φ = 0 , (11.22)

and it transforms by an exact form under the central charge transformations,

δΛJ = δΛΣ− δΛV ∧ Φ− V ∧ δΛΦ

= Λ∆Σ− dΛ ∧ Φ− V ∧ (Λ∆Φ) = −d(ΛΦ) . (11.23)

The corresponding action is found using eq. (8.11) to be

S = −

∫
d5x e

(
vâφâ +WF +XijLij + 2λkϕk

− ψâiΓ
âϕiW − iψâiΓ

âλjL
ij + iψâiΣ

âb̂ψb̂jWL
ij
)
, (11.24)

where all superfields appearing in the action are understood as their component projections

and we have defined

vâ := eâ
m̂Vm̂| , φâ := −

1

4!
er̂

âεm̂n̂p̂q̂r̂Φm̂n̂p̂q̂| . (11.25)

For completeness we also give the component field projection of Φâ:

Φâ| = φâ − 2ψb̂kΣ
âb̂ϕk +

3i

8
εâb̂ĉd̂êψb̂kΣĉd̂ψêlL

kl| . (11.26)

11.3 Gauge two-form multiplet

In superspace, the two-form multiplet is described by a constrained real superfield L that

is coupled to the vector multiplet gauging the central charge [33, 77], similar to the 4D

N = 2 vector-tensor multiplets. Here we show how a geometric formulation of the multiplet

naturally leads to the constraints on L in conformal supergravity. Our presentation is

similar to the one given in [77] in Minkowski superspace.

In this subsection we wish to describe couplings of the two-form multiplet to additional

Yang-Mills multiplets W . Therefore in what follows we make use of covariant derivatives

which contain both the gauge connection gauging the central charge and the Yang-Mills

gauge connection:

∇ = d− V∆− iV , ∇Â = ∇Â − VÂ∆− iV Â . (11.27)

We introduce a gauge two-form, B = 1
2E

BEABAB and define its three-form field

strength H by

H := ∇B − tr

(
V ∧ F −

i

3
V ∧ V ∧ V

)
, (11.28)
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where V and F are the Yang-Mills connection and field strength corresponding to the

superfield W .28 Here B is a gauge singlet but is not assumed to be annihilated by the

central charge. The (infinitesimal) transformation law for the system of superforms is

δV = dΛ , ∆Λ = 0 ,

δV = dτ − i[V , τ ] , ∆τ = 0 ,

δB = Λ∆B − tr(τ ∧ dV ) + dΞ , ∆Ξ = 0 , (11.29)

where Λ, τ and Ξ generate the gauge transformations of V , V and B, respectively. The

field strength H transforms covariantly under the central charge transformations

δH = Λ∆H (11.30)

and satisfies the Bianchi identity

∇H = −F ∧∆B − tr(F ∧ F ) . (11.31)

Again we can make use of the notation that was introduced in section 11.2.1. We

extend the Bianchi identity by introducing an additional bosonic index, Â = (Â, 6). This

can be done because we also have the additional superform equation

∆H = ∇(∆B) . (11.32)

Combining the above equation with the Bianchi identity (11.31) gives

∇[ÂHB̂ĈD̂} +
3

2
T[ÂB̂

Ê
H|Ê|ĈD̂} +

3

2
tr(F [ÂB̂F ĈD̂}) = 0 , (11.33)

where we have defined

H6ÂB̂ := ∆BÂB̂ , F 6Â = F Â6 = 0 , (11.34a)

TÂB̂
6 := FÂB̂ , TÂ6

B̂ = T6Â
B̂ = 0 , D6 := ∆ . (11.34b)

Constraining the lowest components of HÂB̂Ĉ by

H
i
α̂
j

β̂

k
γ̂ = 0 , H6

i
α̂
j

β̂
= −2iεijεα̂β̂L (11.35)

fixes the remaining components of HÂB̂Ĉ . Analyzing eq. (11.33) by increasing dimension

and subject to the constraints (11.35) (and the identifications (11.34)) leads to the remain-

ing components:

Hâ
j

β̂

k
γ̂ = −2iεjk

(
Γâ)β̂γ̂(WL− tr(W 2)

)
, (11.36a)

H6â
j

β̂
= (Γâ)β̂

γ̂
∇

j
γ̂L , (11.36b)

28The special case of n abelian vector multiplets may be obtained by taking tr(V ∧ F ) → ηIJV
IF J ,

where η is a symmetric, ηIJ = ηJI , coupling constant and V I and F I are the gauge connections and field

strengths of the abelian vector multiplets.
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Hâb̂
k
γ̂ = 2(Σâb̂)γ̂

δ̂
∇

k
δ̂
(WL− tr(W 2)) , (11.36c)

H6âb̂ =
i

4
(Σâb̂)

α̂β̂(∇k
α̂∇β̂k − 4iWα̂β̂)L , (11.36d)

Hâb̂ĉ = −
i

8
εâb̂ĉd̂ê(Σ

d̂ê)α̂β̂
(
(∇k

α̂∇β̂k + 4iWα̂β̂)
(
WL− tr(W 2)

)

+2(∇k
α̂W)∇β̂kL− 2tr

(
(∇k

α̂W )∇β̂kW
))

, (11.36e)

where L satisfies the constraints

∇
(i
α̂∇

j)

β̂
L =

1

4
εα̂β̂∇

γ̂(i
∇

j)
γ̂ L , (11.37a)

∇
γ̂(i

∇
j)
γ̂

(
WL− tr(W 2)

)
= −2(∇γ̂(iW)∇

j)
γ̂ L+ 2tr

(
(∇γ̂(iW )∇

j)
γ̂ W

)
. (11.37b)

To describe the action for the two-form multiplet one can use the composite linear

multiplet29

Lij =
i

2

(
2(∇α̂(iL)∇

j)
α̂ L+ L∇α̂(i

∇
j)
α̂ L
)
=

i

6L
∇

ij(L3) . (11.38)

Note that it is also possible to construct another linear multiplet

Lij =
i

4

(
4(∇α̂(iW )∇

j)
α̂ L+W∇

α̂(i
∇

j)
α̂ L+ L∇α̂(i

∇
j)
α̂W

)
, (11.39)

which couples the two-form multiplet to a vector multiplet W . The corresponding compo-

nent actions can be found in [20, 23].

11.4 Large tensor multiplet

In [20] it was discovered that there also exists the large tensor multiplet, which consists

of 16 + 16 degrees of freedom. In superspace the large tensor multiplet may be viewed

as a generalization of the gauge two-form multiplet in which the constraints (11.37) are

weakened. To show this let L be a superfield constrained in the same way as eq. (11.37a),

∇
(i
α̂∇

j)

β̂
L =

1

4
εα̂β̂∇

γ̂(i
∇

j)
γ̂ L . (11.40)

Requiring only the above constraint, it is possible to show that consistency requires us to

have [33]

0 = ∆
{
∇

γ̂(i
∇

j)
γ̂ (WL) + 2(∇γ̂(iW)∇

j)
γ̂ L
}

= ∇
γ̂(i

∇
j)
γ̂ (W∆L) + 2(∇γ̂(iW)∇

j)
γ̂ ∆L , (11.41)

which is automatically satisfied for the gauge two-form multiplet. Here we will take

eq. (11.41) as a second constraint on L. The constraints (11.40) and (11.41) allow us

to construct a superform framework describing the large tensor multiplet.

We begin by introducing a two-form30 B, transforming as

δB = Λ∆B + dΞ , ∆Ξ = 0 , (11.42)

29This superfield Lagrangian first appeared in [33] in Minkowski superspace.
30In this subsection B will be used for the two-form. It is unrelated to the three-form B used for the O(2)

multiplet.
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and an associated three form H

H = ∇B . (11.43)

Imposing the constraints

Hi
α̂
j

β̂

k
γ̂ = 0 , H6

i
α̂
j

β̂
= −2iεijεα̂β̂∆L (11.44)

and solving the Bianchi identities yields the components of H:

Hâ
j

β̂

k
γ̂ = −2iεjk

(
Γâ)β̂γ̂W∆L , (11.45a)

H6â
j

β̂
= (Γâ)β̂

γ̂
∇

j
γ̂∆L , (11.45b)

Hâb̂
k
γ̂ = 2(Σâb̂)γ̂

δ̂
∇

k
δ̂
(W∆L) , (11.45c)

H6âb̂ =
i

4
(Σâb̂)

α̂β̂(∇k
α̂∇β̂k − 4iWα̂β̂)∆L , (11.45d)

Hâb̂ĉ = −
i

8
εâb̂ĉd̂ê(Σ

d̂ê)α̂β̂
(
(∇k

α̂∇β̂k + 4iWα̂β̂)
(
W∆L

)
+ 2(∇k

α̂W)∇β̂k∆L
)
, (11.45e)

where L is constrained by eqs. (11.40) and (11.41) and H6ÂB̂ = ∆BÂB̂. There are still too

many component fields and to eliminate them we impose the constraint

Biα̂
j

β̂
= −2iεijεα̂β̂L , (11.46)

which fixes the remaining components via eq. (11.43) as

Bâ
j

β̂
= (Γâ)β̂

γ̂
∇

j
γ̂L , Bâb̂ =

i

4
(Σâb̂)

α̂β̂(∇k
α̂∇β̂k − 4iWα̂β̂)L . (11.47)

At the highest dimension eq. (11.43) gives

3(∇′[âBb̂ĉ] −T[âb̂
δ̂
lBc]

l
δ̂
) = −

i

8
εâb̂ĉd̂ê(Σ

d̂ê)α̂β̂∆
(
(∇k

α̂∇β̂k + 4iWα̂β̂)
(
WL

)

+ 2(∇k
α̂W)∇β̂kL

)
, (11.48)

where

∇
′
â = ∇â −

1

8
εâb̂ĉd̂êW

b̂ĉM d̂ê . (11.49)

The conditions (11.41) and (11.48) are similar to the ones imposed in [20] from requiring

closure of the supersymmetry transformations. In contrast with the gauge two-form mul-

tiplet, which was based on the stronger constraints (11.37), the component fields of the

large tensor multiplet

∆∇
i
αL| , ∆2L| (11.50)

are no longer composite.

We should remark that the above constraints can be naturally generalized to include

couplings to the Yang-Mills multiplet. Furthermore, since B possesses the gauge transfor-

mation law

δB = dΞ , ∆Ξ = 0 , (11.51)

– 65 –



J
H
E
P
0
2
(
2
0
1
5
)
1
1
1

one can always shift L by an abelian vector multiplet

L → L+ cW , (11.52)

where c is an arbitrary real coefficient. One can check that the constraints (11.40)

and (11.41) are invariant under such transformations.

We can construct an action for an even number of large tensor multiplets LI . To do

so we make use of the superfield Lagrangian

Lij = Lijkin + L
ij
mass , (11.53)

where

Lijmass =
i

2
mIJ

(
2(∇α̂(iLI)∇

j)
α̂L

J + LI∇α̂(i
∇

j)
α̂L

J
)
, mIJ = mJI , (11.54a)

Lijkin =
i

4
kIJ

(
2(∇α̂(iLI)

←→
∆∇

j)
α̂L

J + LI
←→
∆∇

α̂(i
∇

j)
α̂L

J
)
, kIJ = −kJI . (11.54b)

The constant matrices mIJ and kIJ are assumed to be nonsingular. The Lagrangian Lij

may be seen to be a linear multiplet. The component action in supergravity is given in [20].

12 Off-shell (gauged) supergravity

We now turn to an off-shell formulation for 5D minimal supergravity obtained by coupling

the Weyl multiplet to the following compensators: (i) the vector multiplet; and (ii) the O(2)

multiplet. This is the 5D analogue of the off-shell formulation for 4D N = 2 supergravity

proposed by de Wit, Philippe and Van Proeyen [81].31 We will first describe the construc-

tion within superspace and then briefly give the bosonic part of the component action.

12.1 Superspace formulation

The superfield Lagrangian for 5D (gauged) supergravity is analogous to the one for 4D

N = 2 supergravity [83] and reads

L
(2)
SG =

1

4
V H

(2)
VM +G(2) ln

G(2)

iΥ(1)Ῠ(1)
+ κV G(2) ≡ L

(2)
V + L

(2)
L + L

(2)
VL . (12.1)

In the first term, H
(2)
VM denotes the composite O(2) multiplet (5.40). The superspace

action generated by L
(2)
V then leads to the abelian Chern-Simons action, but normalized

with the wrong sign (as usual for a compensator action) and with an additional factor of

3 for later convenience (compare with eq. (9.1)).

Modulo a similar overall sign, the second term in (12.1) denoted by L
(2)
L describes the

dynamics of the O(2) multiplet or, equivalently, linear multiplet without central charge.

The superfield Υ(1)(v) is a covariant weight-one arctic multiplet, and Ῠ(1)(v) its smile-

conjugated antarctic superfield. The action proves to be independent of Υ(1) and Ῠ(1) [83].

31The 4D N = 2 supergravity formulation of [81] makes use of the N = 2 improved tensor multiplet

constructed in terms of N = 1 superfields in Minkowski superspace [82] and then in terms of component

fields in the locally supersymmetric case [81].
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The BF term in (12.1) denoted by L
(2)
VL describes a supersymmetric cosmological term.

For κ = 0 the Lagrangian (12.1) describes pure Poincaré supergravity, while the case κ 6= 0

corresponds to gauged or anti-de Sitter supergravity.

Making use of (7.16), the action generated by L
(2)
V may be rewritten as an integral

over the full superspace,

S[L
(2)
V ] =

1

2π

∮
(v, dv)

∫
d5|8z E C(−4)L(2) =

1

4

∫
d5|8z E VijH

ij
VM , (12.2)

with Vij being Mezincescu’s prepotential. Applying (7.16) once more gives another repre-

sentation

S[L
(2)
V ] =

1

4

∫
d5|8z EΩVMW , (12.3)

where we have introduced the primary superfield

ΩVM =
i

4

(
W∇ijVij − 2(∇α̂iVij)∇

j
α̂W − 2Vij∇

ijW
)
, (12.4)

which is a prepotential forH
(2)
VM in the sense of (7.5b). The representations (12.2) and (12.3)

allow us to compute the variation of S[L
(2)
V ] induced by an arbitrary variation of the vector

multiplet prepotential, either Mezincescu’s or the tropical one,

δS[L
(2)
V ] =

3

4

∫
d5|8z E δVijH

ij
VM (12.5a)

=
3

8π

∮
(v, dv)

∫
d5|8z E C(−4)δV H

(2)
VM . (12.5b)

Making use of (12.5b), we readily find the equation of motion for the vector multiplet in

the supergravity theory (12.1) to be

H
(2)
VM +

4κ

3
G(2) = 0 . (12.6)

We next consider the action generated by L
(2)
L . It may be rewritten as an integral over

the full superspace

S[L
(2)
L ] =

∫
d5|8z E ΩW , (12.7)

where

W := −
i

16π

∮
(v, dv)∇(−2) log

(
G(2)

iΥ(1)Ῠ(1)

)
(12.8)

is a composite vector multiplet field strength obeying the Bianchi identity (7.13). The

direct evaluation of W will be given in section 14.2. The result is

W =
i

16
G∇α̂i∇j

α̂

(
Gij

G2

)
. (12.9)

It may be seen that varying the prepotential Ω leads to the following variation of the action:

δS[L
(2)
L ] =

∫
d5|8z E δΩW . (12.10)
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Finally, we note that the action generated by L
(2)
VL may also be rewritten as an integral

over the full superspace

S[L
(2)
VL] = κ

∫
d5|8z E VijG

ij = κ

∫
d5|8z E ΩW . (12.11)

As a result, the complete (gauged) supergravity action becomes

SSG =

∫
d5|8z E

{
1

4
VijH

ij
VM +ΩW+ κVijG

ij

}
(12.12a)

=

∫
d5|8z E

{
1

4
VijH

ij
VM +ΩW+ κΩW

}
. (12.12b)

Now, from the relations (12.10) and (12.12b) we deduce the supergravity equation of motion

for the O(2) compensator:

W+ κW = 0 . (12.13)

The equation of motion for the Weyl multiplet is

G−W 3 = 0 . (12.14)

It may be shown that, modulo gauge freedom, the Weyl multiplet is described by a single

unconstrained real prepotential U.32 The equation (12.14) is obtained by varying the

supergravity action with respect to U. The meaning of (12.14) is that the supercurrent of

pure supergravity is equal to zero.

In general, given a dynamical system involving (matter) superfields ϕi coupled to

the Weyl multiplet, the supercurrent of this theory is a dimension-3 primary real scalar

superfield defined by

T =
∆

∆U
S[ϕ] , (12.15)

where ∆/∆U denotes a covariantized variational derivative with respect to U. The

variation ∆U is a primary superfield with dimension −2. The supercurrent turns out to

satisfy the conservation equation

∇ijT = 0 (12.16)

provided the dynamical superfields obey their equations of motion, δS[ϕ]/δϕi = 0. This

follows from the fact that ∆U is defined modulo gauge transformations

∆U → ∆U+∇ijΩij , (12.17)

where gauge parameter Ωij is a primary real isovector superfield with dimension −3.

It is an instructive exercise to prove that the left-hand side of (12.14) obeys the con-

straint

∇ij
(
G−W 3

)
= 0 (12.18)

provided the equations (12.6) and (12.13) hold.

The supergravity equations of motion (12.6), (12.13) and (12.14) appeared in [85].

They are analogous to the superfield equations for 4DN = 2 (gauged) supergravity [69, 86].

32This can be done in complete analogy with the case of 4D N = 2 supergravity [84].
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12.2 Component formulation

To complement the superspace discussion, we now present briefly the bosonic part of the

component action for gauged supergravity. The three superspace actions given in (12.1)

can be analyzed in components easily using results given elsewhere in this paper. The first

term L
(2)
V leads to the wrong sign abelian Chern-Simons Lagrangian

LV =
1

8
εâb̂ĉd̂êvâfb̂ĉfd̂ê +

3

4
Wfâb̂f

âb̂ −
3

4
WXijXij +

9

4
wâb̂fâb̂W

2

+
3

2
W (D̂âW )D̂âW −

1

8
R̂W 3 + 4DW 3 +

39

32
wâb̂wâb̂W

3 , (12.19)

where D̂â is defined by eq. (4.32). The second term L
(2)
L leads to the O(2) multiplet

Lagrangian

LL =
1

4
G−1(D̂âG

ij)D̂âGij −
1

2
G−1φâφâ

+
1

12
εâb̂ĉd̂êbĉd̂ê

(
1

2
G−3(D̂âGik)(D̂b̂Gj

k)Gij +G−1R̂(J)âb̂
ijGij

)

−
1

8G
F 2 −

3

8
R̂G− 4DG−

3

32
wâb̂wâb̂G . (12.20)

This Lagrangian is analogous to the 4D improved tensor multiplet Lagrangian [81] and

shares similar features. In particular, the second line of (12.20) involves a BF coupling

between the three-form bâb̂ĉ and a composite two-form constructed from the tensor multiplet

scalars and the SU(2) gauge fields. As discussed in [81], this two-form is closed but not

exact: it has no SU(2)-invariant one-form potential. The third superspace Lagrangian L
(2)
VL

leads to the simple expression

LVL = −κWF − κXijGij − 2κvâφ
â . (12.21)

We now combine all three Lagrangians and eliminate the auxiliary fields using their

equations of motion. The equation of motion for D is

W 3 −G = 0 (12.22)

and corresponds to the lowest component of the superfield equation of motion (12.14).

Similarly, the equations of motion for the vector multiplet auxiliary Xij and the O(2)

multiplet auxiliary F lead, respectively, to

3

2
WXij + κGij = 0 , (12.23)

1

4G
F + κW = 0 , (12.24)

which correspond to the bosonic parts of the lowest components of (12.6) and (12.13),

respectively. Finally, we must impose the equation of motion for wâb̂, which leads to

wâb̂W + fâb̂ = 0 . (12.25)
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This is actually the bosonic part of a higher component of the Weyl superfield equation

of motion; it can be extracted by applying ∇k
(α̂∇β̂)k to (12.14) and taking the lowest

component.

After imposing each of these equations, we finally choose the Weyl gauge W = 1. This

leads to the component Lagrangian

LSG = −
1

2
R̂+

1

8
εâb̂ĉd̂êvâfb̂ĉfd̂ê −

3

8
fâb̂f

âb̂ +
8

3
κ2

+
1

4
(D̂âG

ij)D̂âGij −
1

2
φâφâ − 2κvâφ

â

+
1

12
εâb̂ĉd̂êbĉd̂ê

(
1

2
(D̂âGik)(D̂b̂Gj

k)Gij + R̂(J)âb̂
ijGij

)
. (12.26)

The terms in the second and third lines turn out to lead to auxiliary fields. The easiest

way to see this is to adopt the SU(2) gauge

G12 = i , G11 = G22 = 0 , (12.27)

which breaks the R-symmetry group to U(1). Using

D̂âG
11 = 2iVâ

11 , D̂âG
22 = −2iVâ

22 , D̂âG
12 = 0 , (12.28)

the supergravity Lagrangian can be rewritten as

LSG = −
1

2
R̂+

1

8
εâb̂ĉd̂êvâfb̂ĉfd̂ê −

3

8
fâb̂f

âb̂ +
8

3
κ2

+ 2Vâ
11V â22 −

1

2
φâφâ − 2(κvâ + iVâ

12)φâ . (12.29)

Now one introduces a Lagrange multiplier term φâD̂âλ to enforce the constraint on φâ; the

field λ is eaten by Vâ
12, which fixes the remaining R-symmetry up to a compensating κ-

dependent transformation to counter the graviphoton’s gauge transformation. Integrating

out φâ then gives

LSG = −
1

2
R̂+

1

8
εâb̂ĉd̂êvâfb̂ĉfd̂ê −

3

8
fâb̂f

âb̂ +
8

3
κ2 + (Vâ

ij + κGijvâ)
2 (12.30)

where we have written the auxiliary one-forms in a way which holds for any choice of

constant Gij . The equation of motion for this auxiliary then fixes Vâ
ij = −κGijvâ, which

is ultimately responsible for the κ-dependent minimal coupling between the gravitino and

the graviphoton. Note that the cosmological constant is given in these conventions by

Λ = −
8

3
κ2 < 0 . (12.31)

13 Dilaton Weyl multiplets and superforms

It is possible to construct variant formulations for conformal supergravity by coupling the

standard Weyl multiplet, which is described in sections 2 and 4, to an on-shell abelian

– 70 –



J
H
E
P
0
2
(
2
0
1
5
)
1
1
1

vector multiplet with nowhere vanishing field strength, W 6= 0. The field strength W of

such a vector multiplet satisfies the Bianchi identity (2.49) as well as the equation of motion

H
ij = 0 (13.1)

derived from a gauge invariant action S[W ], see section 6.6.

In this section, we consider a special case of the equation of motion (13.1) that orig-

inates in 5D minimal supergravity with cosmological term realized as conformal super-

gravity coupled to two compensators: (i) the vector multiplet; and (ii) the O(2) multi-

plet. In this case H
ij ≡ H ij

VM, where H ij
VM denotes the composite Yang-Mills O(2) multi-

plet (2.54). In the superspace setting, the supergravity equations of motion [85] are given

by eqs. (12.6), (12.13) and (12.14). In what follows, we will only use eq. (12.6).

13.1 The dilaton Weyl multiplet

The dilaton Weyl multiplet33 [19, 21] is equivalently described as the standard Weyl mul-

tiplet coupled to a vector multiplet compensator obeying the equation of motion

H ij
VM = 0 . (13.2)

The formulation of this multiplet in SU(2) superspace was given in [3]. Eq. (13.2) in SU(2)

superspace is equivalent to

Sij =
i

2W 2

{
(Dα̂(iW )D

j)
α̂ W +

1

2
WDijW

}
. (13.3)

Equation (13.2) tells us that the matter fields of the super Weyl tensor Wâb̂ satisfy

certain constraints that allow one to solve Wâb̂ in terms of a gauge two-form. To see this

we make use of the equivalence between vector and two-form multiplets on the mass shell.

We recall that the two-form multiplet was described in section 11.3 and here we will use

its superform realization.

Ignoring the Chern-Simons couplings to Yang-Mills multiplets, a two-form multiplet

possesses a gauge two-form B with corresponding field strength

H = dB − V ∧∆B . (13.4)

Imposing the on-shell condition for a two-form multiplet, ∆L = 0, allows one to identify L

with a vector multiplet. In fact, we identify both the vector multiplet gauging the central

charge and the two-form multiplet with the same vector multiplet. To do this we make the

replacements

L→ −W , W →W , (13.5)

which requires

∆B = F , F = F , V = V . (13.6)

33The dilaton Weyl multiplet corresponds to the Nishino-Rajpoot version [87] of 5D N = 1 Poincaré

supergravity.
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Note that the gauge transformations become

δV = dΛ , δB = ΛF + dΞ . (13.7)

The field strength H = dB − V ∧ F satisfies the Bianchi identity

dH = −F ∧ F , (13.8)

or, equivalently,

∇[ÂHB̂ĈD̂} +
3

2
T[ÂB̂

Ê
H|Ê|ĈD̂} +

3

2
F[ÂB̂FĈD̂} = 0 . (13.9)

The solution to the above Bianchi identity may be read off of eq. (11.36):

H
i
α̂
j

β̂

k
γ̂ = 0 , (13.10a)

Hâ
j

β̂

k
γ̂ = 2iεjk

(
Γâ)β̂γ̂W

2 , (13.10b)

Hâb̂
k
γ̂ = −2(Σâb̂)γ̂

δ̂∇k
δ̂
W 2 , (13.10c)

Hâb̂ĉ =
i

8
εâb̂ĉd̂ê(Σ

d̂ê)α̂β̂
(
∇k

α̂∇β̂kW
2 + 4iWα̂β̂W

2 + 2(∇k
α̂W )∇β̂kW

)
. (13.10d)

The Bianchi identities are satisfied since we have the on-shell condition (13.2), which is

equivalent to

∇γ̂(i∇
j)
γ̂ W

2 = −2(∇γ̂(iW )∇
j)
γ̂ W . (13.11a)

From the component Hâb̂ĉ one finds the expression for the super Weyl tensor

Wâb̂ =
1

3W 2

(
1

6
εâb̂ĉd̂êH

ĉd̂ê − 2WFâb̂ − i(Σâb̂)
α̂β̂λk

α̂λβ̂k

)
. (13.12)

Due to the above relation we see that we may instead choose the gauge two-form Bâb̂ as

a fundamental component field. This means that the matter fields in the standard Weyl

multiplet become composite. They may be derived directly from the above superspace

expression for Wâb̂.

Using the above relations we can replace the matter fields in the standard Weyl mul-

tiplet:

(Wâb̂, X
i
α̂, Y )→ (W,λi

α̂, Vm̂,Bm̂n̂) . (13.13)

This leads to the dilaton Weyl multiplet, which only differs from the standard Weyl mul-

tiplet in the matter field content. One can check that both Weyl multiplets contain 32+32

degrees of freedom.

The construction of actions involving the dilaton Weyl multiplet may be readily ob-

tained from those involving the standard Weyl multiplet upon making the replacements

in this subsection. One can further construct actions by replacing any vector multiplet Ŵ

with the components of the dilaton Weyl multiplet as follows:

(Ŵ , λ̂i
α̂, V̂m̂, X̂ij)→

(
W,λi

α̂, Vm̂,
i

2W
λiλj

)
. (13.14)

– 72 –



J
H
E
P
0
2
(
2
0
1
5
)
1
1
1

13.2 The deformed dilaton Weyl multiplet

The deformed Weyl multiplet [88] is equivalently described as the standard Weyl multiplet

coupled to a vector multiplet compensator obeying the equation of motion

H ij
VM = −

4κ

3
Gij , (13.15)

which implies

Xij =
i

2W
λiλj −

2κ

3W
Gij . (13.16)

Here the O(2) compensator Gij is considered as a background field.

Just like in the previous case we can give the constrained system a geometric descrip-

tion. We now modify the superform equation to

dH = −F ∧ F −
4κ

3
Φ , (13.17)

where

H = dB − V ∧ F −
4κ

3
B . (13.18)

Here B is the gauge three-form for the O(2) multiplet. From the above we see that we

must modify the gauge transformation of B to be

δB = ΛF + dΞ +
4κ

3
ρ (13.19)

since

δB = dρ . (13.20)

The solution is

H
i
α̂
j

β̂

k
γ̂ = 0 , (13.21a)

Hâ
j

β̂

k
γ̂ = 2iεjk

(
Γâ)β̂γ̂W

2 , (13.21b)

Hâb̂
k
γ̂ = −2(Σâb̂)γ̂

δ̂∇k
δ̂
W 2 , (13.21c)

Hâb̂ĉ =
i

8
εâb̂ĉd̂ê(Σ

d̂ê)α̂β̂
(
∇k

α̂∇β̂kW
2 + 4iWα̂β̂W

2 + 2(∇k
α̂W )∇β̂kW

)
. (13.21d)

From the component Hâb̂ĉ one finds the expression

Wâb̂ =
1

3W 2

(
1

6
εâb̂ĉd̂êH

ĉd̂ê − 2WFâb̂ − i(Σâb̂)
α̂β̂λk

α̂λβ̂k

)
. (13.22)

Again the matter components of the Weyl multiplet may be replaced using the above

expression. The above expression for Wâb̂ looks formally the same as eq. (13.12). However,

it should be kept in mind that W now satisfies the different on-shell constraint

∇γ̂(i∇
j)
γ̂ W

2 = −2(∇γ̂(iW )∇
j)
γ̂ W +

16i

3
κGij . (13.23)
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13.3 The deformed dilaton Weyl multiplet with Chern-Simons couplings

It was mentioned in [26] that one can generalize the construction of the dilaton Weyl

multiplet to include a system of abelian vector multiplets. Using a similar idea we generalize

the deformed dilaton Weyl multiplet of the previous subsection in the presence of Yang-

Mills couplings.

We now modify the superform equation to

dH = −F ∧ F − tr(F ∧ F )−
4κ

3
Φ , (13.24)

where

H = dB − V ∧ F − tr

(
V ∧ F −

i

3
V ∧ V ∧ V

)
−

4κ

3
B . (13.25)

From the above we see that we must modify the gauge transformation of B to be

δB = ΛF + tr(τdV ) + dΞ +
4κ

3
ρ (13.26)

since

δB = dρ , δV = dτ − i[V , τ ] . (13.27)

The superform equation (13.24) is solved by

H
i
α̂
j

β̂

k
γ̂ = 0 , (13.28a)

Hâ
j

β̂

k
γ̂ = 2iεjk(Γâ)β̂γ̂

(
W 2 + tr(W 2)

)
, (13.28b)

Hâb̂
k
γ̂ = −2(Σâb̂)γ̂

δ̂
∇

k
δ̂

(
W 2 + tr(W 2)

)
, (13.28c)

Hâb̂ĉ =
i

8
εâb̂ĉd̂ê(Σ

d̂ê)α̂β̂
(
∇

k
α̂∇β̂k

(
W 2 + tr(W 2)

)
+ 4iWα̂β̂W

2

+ 2tr
(
(∇k

α̂W )∇β̂kW
)
+ 2(∇k

α̂W )∇β̂kW
)
, (13.28d)

where W satisfies the Bianchi identity

∇
γ̂(i

∇
j)
γ̂

(
W 2 + tr(W 2)

)
= −2(∇γ̂(iW )∇

j)
γ̂ W − 2tr

(
(∇γ̂(iW )∇

j)
γ̂ W

)
+

16i

3
κGij , (13.29)

which implies

Xij =
i

2W

(
λiλj + tr(λiλj)

)
−

1

W
tr(WXij)−

2κ

3W
Gij . (13.30)

From the component Hâb̂ĉ one finds the expression

3
(
W 2 + tr(W 2)

)
Wâb̂ =

(
1

6
εâb̂ĉd̂êH

ĉd̂ê − 2WFâb̂ − 2tr(WF âb̂)

− i(Σâb̂)
α̂β̂λk

α̂λβ̂k − i(Σâb̂)
α̂β̂tr(λk

α̂λβ̂k)

)
. (13.31)

If
(
W 2 + tr(W 2)

)
does not vanish then we can again replace the matter fields of the Weyl

multiplet with those of W .
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The supersymmetry transformations of the gauge fields may be obtained from eq. (4.42)

upon using (13.31). We list the supersymmetry transformations of the matter fields below:

δW = iξkλ
k , (13.32a)

δΛi
α̂ = 2ξβ̂i(Fβ̂α̂ +Wβ̂α̂W ) +

i

2W
ξα̂j
(
λ(iλj) + tr(λ(iλj))

)
−

1

W
ξα̂jtr(WXij)

−
2κ

3W
ξα̂jG

ij − ξβ̂i∇β̂α̂W + 2iηiα̂W , (13.32b)

δVm̂ = iξkΓm̂λk + iξjψm̂
jW , (13.32c)

δBm̂n̂ = 2iξkΓ[m̂ψn̂]
k
(
W 2 + tr(W 2)

)
− 4iξkΣm̂n̂λ

kW

− 4iξkΣm̂n̂tr(λ
kW )− 2V[m̂δVn̂] − 2tr

(
V [m̂δV n̂]

)
. (13.32d)

The superconformal field strengths are given by

Fâb̂ = 2eâ
m̂eb̂

n̂∂[m̂Vn̂] − iψ[âkΓb̂]λ
k +

i

2
ψ[â

γ̂
kψb̂]

k
γ̂W , (13.33a)

F âb̂ = 2eâ
m̂eb̂

n̂(∂[m̂V n̂] − iV [m̂V n̂])− iψ[âkΓb̂]λ
k +

i

2
ψ[â

γ̂
kψb̂]

k
γ̂W , (13.33b)

Hâb̂ĉ = eâ
m̂eb̂

n̂eĉ
p̂

(
3∂[m̂Bn̂p̂] − 3V[m̂Fn̂p̂] − tr(3V [m̂F n̂p̂] + 2iV [m̂V n̂V p̂])−

4κ

3
Bm̂n̂p̂

)

+
3i

2
ψ[â

kΓb̂ψĉ]k

(
W 2 + tr(W 2)

)

− 6iWψ[â
kΣb̂ĉ]λk − 6i tr

(
Wψ[â

kΣb̂ĉ]λk

)
. (13.33c)

The supersymmetry transformations for the previous two cases (the dilaton Weyl and

deformed dilaton Weyl multiplets) may be straightforwardly obtained from the above gen-

eral results.

14 Higher derivative couplings

The superspace formalism developed in this paper offers more general tools to construct

composite primary multiplets (that may be used, e.g., to generate higher derivative invari-

ants) than those which have so far been employed within the component approaches [14–23].

This will be demonstrated below.

14.1 Composite primary multiplets and invariants

In section 6 we derived two gauge prepotentials for the abelian vector multiplet: (i) the

tropical prepotential V (v); and (ii) Mezincescu’s prepotential Vij . These constructions lead

to two different procedures to generate composite vector multiplet field strengths.

Associated with a composite weight-0 tropical multiplet V(v) is the following primary

real scalar

Wtropical ≡W [V] = −
i

16π

∮
(v, dv)∇(−2)

V(v) . (14.1)

It obeys the Bianchi identity (7.13). Thus we may think of Wtropical as the field strength

of a composite vector multiplet. An example is provided by

V =
H(2n)

[G(2)]n
, n = 1, 2, . . . , (14.2)
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for an arbitrary real O(2n) multiplet H(2n)(v) and an O(2) multiplet G(2)(v) such that the

scalar G defined by (7.25) is nowhere vanishing. The existence of the latter is assumed in

this section.

Associated with a composite real isovector superfield Vij with dimension −2 is the

following primary real scalar

WMezincescu ≡W [Vij ] = −
3i

40
∇ij∆

ijkl
Vkl . (14.3)

It obeys the Bianchi identity (7.13). As an example, we consider

Vij =
Gij

G5/3
. (14.4)

In section 7 we derived the unconstrained prepotential Ω for the O(2) multiplet. This

construction leads to a procedure to generate composite O(2) multiplets. Associated with

a composite primary dimensionless scalar N is the O(2) multiplet

G
(2) = vivjG

ij ≡ G(2)[N] = −
i

8
∆(4)∇(−2)

N ⇐⇒ G
ij = −

3i

40
∆ijkl∇klN . (14.5)

By construction, Gij obeys the constraint (6.57). An example is provided by

N =

(
W α̂β̂Wα̂β̂

G2/3

)n

, (14.6)

for a positive integer n. Here Wα̂β̂ is the super Weyl tensor.

It is also possible to generate composite O(4 + n) multiplets by making use of the

prepotential construction (7.27), for any non-negative integer n. As an example, consider

the case of an even integer n = 2m. Given a composite O(4 + 2m) multiplet, we can

introduce a composite tropical multiplet of the form (14.2) and then make use of the latter

to generate the composite vector multiplet field strength (14.1).

As concerns the component approaches [14–23], there is essentially only one regular

procedure (the vector-tensor embedding) to generate composite primary multiplets. It

is defined as follows: given a composite vector multiplet field strength W constrained

by (7.13), the following superfield

H
ij
VM ≡ H ij

VM[W] = i(∇α̂(i
W)∇

j)
α̂W+

i

2
W∇α̂(i∇

j)
α̂W (14.7)

is a composite O(2) multiplet.

In addition, there exists the composite O(2) multiplet constructed by Hanaki, Ohashi

and Tachikawa [29] and associated with the Weyl multiplet.34 In superspace, it is given in

terms of the super Weyl tensor as in eq. (2.41).

We are in a position to generate supersymmetric invariants given primary composite

multiplets. If the theory under consideration involves a dynamical vector multiplet, which

34This O(2) multiplet was denoted Lij [W2] in [29].
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is described by a tropical prepotential V (v), and also possesses a composite O(2) multiplet

G
(2), a supersymmetric BF invariant is generated by the Lagrangian

L
(2)
G

= VG
(2) . (14.8)

If the theory involves a dynamical O(2) multiplet, which is described by a prepotential Ω,

and possesses a composite vector multiplet field strength W, then we are able to construct

a supersymmetric invariant of the type (7.23) with the Lagrangian

LW = ΩW . (14.9)

More generally, the action principles (5.35) and (7.23) provide universal procedures to

generate supersymmetric invariants. For instance, supersymmetric R4+2n terms may be

realized as full superspace invariants (7.23) with

L =
(W α̂β̂Wα̂β̂)

2

G

(
W [V]

G1/3

)n

, V :=
H

(2)
Weyl

G(2)
, n = 0, 1, . . . , (14.10)

where W [V] is defined by (14.1).

14.2 Composite vector multiplets

In this subsection we consider several examples of applying the rule (14.1) to generate

composite vector multiplets. Our results are inspired by the four-dimensional analysis

in [69]. Below we denote Wtropical simply as W.

Our first example is

V = log

(
G(2)

iΥ(1)Ῠ(1)

)
, (14.11)

where Υ(1) is a weight-one arctic multiplet. The corresponding composite vector mul-

tiplet (14.1) has already appeared in (12.8). It constitutes the equation of motion for

the theory of a single O(2) multiplet coupled to conformal supergravity. Evaluating the

covariant derivatives gives

W = −
i

16π

∮
(v, dv)

(
∇(−2)G(2)

G(2)
−

(∇(−1)α̂G(2))∇
(−1)
α̂ G(2)

(G(2))2

)
. (14.12)

The contour integral can be explicitly evaluated. To do so we make use of the identities

∇
(−1)
α̂ G(2) = 2ϕ

(1)
α̂ = 2ϕi

α̂vi , (14.13a)

∇(−2)G(2) = −4iF , (14.13b)

where we have introduced the descendant superfields (8.8). Then applying the integration

identities of [69], we obtain

W = −
1

4π

∮

C
(v, dv)

(
F

G(2)
− i

ϕ(1)α̂ϕ
(1)
α̂

G(2)

)
=

1

4G
F −

i

8G3
ϕα̂iϕj

α̂Gij

=
i

48G
∇α̂i∇j

α̂Gij −
i

72G3
Gij(∇

α̂
kG

ik)∇α̂lG
jl . (14.14)
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From the S-supersymmetry transformations of ϕi
α̂ and F ,

Si
α̂ϕ

j

β̂
= −6εα̂β̂G

ij , Si
α̂F = 6iϕi

α̂ , (14.15)

it is straightforward to explicitly check that W is primary.

It is an instructive exercise to show that the composite vector multiplet (14.14) can

also be rewritten in the following compact form

W =
i

16
G∇α̂i∇j

α̂

(
Gij

G2

)
. (14.16)

This expression resembles the one in four dimensions [69]. The vector multiplet (14.16) is

actually well known. At the component level it was first derived by Zucker [89], using a

brute force approach, as an extension of the construction for the improved N = 2 tensor

multiplet in four dimensions [81].

As another example, we consider a composite tropical prepotential of the form

Vn =
H(2n)

[G(2)]n
, n = 1, 2, . . . , (14.17)

whereH(2n) is an arbitrary O(2n) multiplet. The corresponding composite vector multiplet

Wn = −
i

16π

∮

C
(v, dv)∇(−2)

(
H(2n)

(G(2))n

)
(14.18)

can be computed in complete analogy with the 4D N = 2 analysis in [69]. Evaluating the

covariant derivatives gives

Wn = −
i

16π

∮

C
(v, dv)

(
2n− 1

2n+ 1

h(2n−2)

(G(2))n
−

8n2

2n+ 1

Ψ(2n−1)ϕ(1)

(G(2))n+1
+ 4niH(2n) F

(G(2))n+1

+ 4n(n+ 1)H(2n) ϕ(1)ϕ(1)

(G(2))n+2

)
, (14.19)

where we made use of the identities (14.13) and

∇−α̂H
(2n) =

2n

2n+ 1
Ψ

(2n−1)
α̂ , (14.20a)

∇(−2)H(2n) =
2n− 1

2n+ 1
h2n−2 , (14.20b)

with

Ψ
(2n−1)
α̂ = ∇α̂kH

ki1···i2n−1vi1 · · · vi2n−1 , (14.21)

h(2n−2) = ∇klH
kli1···i2n−2vi1 · · · vi2n−2 . (14.22)

Making use of the integration results of [69] gives

Wn =
i(2n)!

22n+2(n!)2

(
n

2(2n+ 1)

hi1···i2n−2G(i1i2 · · ·Gi2n−3i2n−2)

G2n−1

−
2n2

2n+ 1

Ψi1···i2n−1ϕi2nG(i1i2 · · ·Gi2n−1i2n)

G2n+1
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+in
Fhi1···i2nG(i1i2 · · ·Gi2n−1i2n)

G2n+1

+n(2n+ 1)
hi1···i2nϕi2n+1ϕi2n+2G(i1i2 · · ·Gi2n+1i2n+2)

Gn+3

)
. (14.23)

It turns out the above complex expression may be cast in the following simpler form

Wn =
i(2n)!

22n+3(n+ 1)!(n− 1)!
G∇ijRn

ij , (14.24a)

where

Rn
ij =

(
δikδ

j
l −

1

2G2
GijGkl

)
Hkli1···i2n−2G(i1i2 · · ·Gi2n−3i2n−2)

G(2n)
. (14.24b)

The composite vector multiplets (14.24) are new for n > 1. The choice n = 1 is a

special case in the family of composite tropical prepotentials of the form

V = F
(
H

(2)
A

)
, A = 1, . . . ,m , (14.25)

where F(zA) is a homogeneous function of degree zero, F(λzA) = F(zA), and H
(2)
A are O(2)

multiplets, A = 1, . . . ,m. The composite vector multiplet associated with (14.25) can be

computed in complete analogy with the 4D N = 2 analysis in [69] (the latter analysis was

inspired by [90]).

14.3 Ricci squared O(2) multiplet

As discussed above, associated with the super Weyl tensor is the O(2) multiplet (2.41).

In this subsection we discover one more O(2) multiplet associated with the supergravity

dynamical variables. Our analysis is inspired by the construction of chiral invariants in 4D

N = 2 supergravity presented in [50].

In section 7.1 we constructed the prepotential formulation for the O(2) multiplet such

that the prepotential is a primary dimensionless real scalar Ω. It turns out that this

construction can be generalized by replacing Ω with log Φ defined in terms of a primary

nowhere vanishing real scalar Φ of dimension q:

Si
α̂ log Φ = 0 , D log Φ = q . (14.26)

Let us consider the superfield

G(2)[log Φ] = −
i

8
∆(4)∇(−2) log Φ = −

3i

40
vivj∆

ijkl∇kl log Φ . (14.27)

It follows that G(2)[log Φ] is analytic, ∇
(1)
α̂ G(2)[log Φ] = 0, and of dimension 3. As demon-

strated in section 7.1, the superfield G(2) := G(2)[Ω] defined by (7.5) is primary Si
α̂G

(2) = 0.

We observe that exactly the same derivation holds for G(2)[log Φ]. Indeed, in the case of

G(2) we used the fact that DΩ = 0. In computing Si
α̂G

(2)[log Φ], there may be extra terms

due to the fact that D log Φ = q 6= 0. But it can be checked that all these terms are
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actually annihilated by some operator acting on the constant q. Since Si
α̂G

(2)[log Φ] = 0,

we conclude that G(2)[log Φ] is also an O(2) multiplet.

The reason why G(2)[log Φ] is of interest can be made clear once we consider the

degauged versions of (7.5) and (14.27). It is a straightforward, although tedious, exercise

to apply the degauging procedure of section 3 in order to express (7.5) and (14.27) in SU(2)

superspace. Let us denote by G(2) = O
(2)
6 Ω = vivjO

ij
6 Ω the degauged version of (7.5).

Here the sixth-order differential operator O
ij
6 = O

ji
6 is constructed only in terms of DÂ,

Mâb̂, J
ij and the torsion tensors of SU(2) superspace. It can be obtained by iteratively

degauging the six∇-derivatives while moving to the right the Si
α̂, Kâ and D operators to use

Si
α̂Ω = KâΩ = DΩ = 0. For the scope of this paper we do not need the explicit expression

for Oij
6 . Since G(2) is an O(2) multiplet, it holds by construction that D

(1)
α̂ O

(2)
6 Ω = 0 .

The result of degauging G(2)[log Φ], which we denote G(2)[log Φ], is more interesting.

A straightforward but somewhat lengthy calculation leads to the following relation

G(2)[log Φ] = O
(2)
6 log Φ− q H

(2)
Ric . (14.28)

The superfield H
(2)
Ric encodes all the contributions that arise from using D log Φ = q and is

given by

H
(2)
Ric = −

i

128

{
D(2)D(2)F(−2)α̂

α̂ − 12D(2)
(
F(0)α̂

α̂F
(0)β̂

β̂

)
+ 12D(2)

(
F(0)α̂β̂F

(0)

α̂β̂

)

+ 12
(
3(D(1)α̂F

(0)
α̂

[β̂)εγ̂δ̂] + i(Γâ)
β̂γ̂F(1)δ̂ â

)(
D

(1)

β̂
F
(0)

γ̂δ̂
− i(Γb̂)γ̂δ̂F

(1)

β̂b̂

)

− 12
(
3F(0)α̂[β̂εγ̂δ̂] + F(0)δ̂α̂εβ̂γ̂

)
D

(1)
α̂

(
D

(1)

β̂
F
(0)

γ̂δ̂
− i(Γb̂)γ̂δ̂F

(1)

β̂b̂

)

+ 8D(2)(F(2)α̂
α̂F

(−2)β̂
β̂) + 4D(1)α̂

(
F(2)

α̂
β̂D

(1)

β̂
F(−2)γ̂

γ̂ − 6i(Γâ)β̂γ̂F
(1)
α̂âF

(0)

β̂γ̂

)

+ 16F(2)α̂β̂
(
− 2F

(2)

α̂β̂
F(−2)γ̂

γ̂ + 6F
(0)

α̂β̂
F(0)γ̂

γ̂ − 3F
(0)
α̂

γ̂F
(0)

β̂γ̂

+ 3F(0)γ̂
α̂F

(0)

γ̂β̂
+ 12F(0)

α̂
γ̂F

(0)

γ̂β̂

)

+ 16F(2)α̂
α̂

(
2F(2)β̂

β̂F
(−2)γ̂

γ̂ + 3F(0)β̂γ̂F
(0)

β̂γ̂
− 3F(0)β̂

β̂F
(0)γ̂

γ̂

)}
. (14.29)

Here we have introduced the following superfields:

F
(2)

α̂β̂
:= vivjF

i
α̂
j

β̂
, F

(0)

α̂β̂
:=

viuj
(v, u)

Fi
α̂
j

β̂
, F

(−2)

α̂β̂
:=

uiuj
(v, u)2

Fi
α̂
j

β̂
, (14.30a)

F
(1)

α̂β̂γ̂
:= D

(1)
α̂ F

(0)

β̂γ̂
− i(Γb̂)β̂γ̂F

(1)

α̂b̂
. (14.30b)

What is remarkable about (14.28) is that by construction H
(2)
Ric is a composite O(2) mul-

tiplet35 constructed only in terms of the curvature tensors of SU(2) superspace; it is com-

pletely independent of log Φ. As will be discussed in the next two subsections, G(2)[log Φ]

gives rise to a supersymmetric extension of the Ricci squared action.

35It should be pointed out that H
(2)
Ric is a non-primary O(2) multiplet, since its super Weyl transformation

law is inhomogeneous.
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By construction, H
(2)
Ric is independent of ui and can be represented in the form H

(2)
Ric =

vivjH
ij
Ric. From (14.29) we deduce

H ij
Ric = −

i

128

{
3

5
D(ijDkl)Fα̂

k α̂l −
36

5
D(ij

(
Fα̂k

α̂kF
β̂l)

β̂l

)
+

24

5
D(ij(Fα̂kl)

α̂F
β̂
k β̂l)

+
36

5
D(ij

(
Fα̂kβ̂

kF
l)
α̂ β̂l

)
+ 6Dα̂(i

(
2

5
F
j
α̂
β̂kD

l)

β̂
F
γ̂
k γ̂l − 3i(Γâ)β̂γ̂Fj

α̂âF
k)

β̂ γ̂k

)

+ 27(Dα̂(iF
j
α̂
[β̂
k )εγ̂δ̂]

(
4

5
Dk

β̂
F
l)
γ̂ δ̂l − iF

k)

β̂ b̂(Γ
b̂)γ̂δ̂

)

+ 9
(
3Fα̂(i[β̂

k εγ̂δ̂] + Fδ̂(iα̂
k ε

β̂γ̂
)(

iDj
α̂F

k)

β̂ b̂(Γ
b̂)γ̂δ̂ −

4

5
Dj

α̂D
k
β̂
F
l)
γ̂ δ̂l

)

+ 9i(Γâ)
β̂γ̂Fδ̂(iâDj

β̂
F
k)
γ̂ δ̂k − 12(Γâ)β̂

γ̂(Γb̂)γ̂δ̂F
δ̂(iâFβ̂j)b̂

+
48

5
Fα̂(iβ̂j

(
6Fk

α̂β̂kF
γ̂l)

γ̂l − 2Fk
α̂
l)

β̂
F
γ̂
k γ̂l − 3Fk

α̂
γ̂
kF

l)

β̂ γ̂l + 3Fγ̂k
α̂kF

l)
γ̂ β̂l + 12Fk

α̂
γ̂
kF

l)
γ̂ β̂l

)

+
48

5
Fα̂(ij

α̂

(
2Fβ̂kl)

β̂
F
γ̂
k γ̂l + 3Fβ̂kγ̂

kF
l)

β̂ γ̂l − 3Fβ̂k
β̂kF

γ̂l)
γ̂l

)}
. (14.31)

On the other hand, the condition that the expression (14.29) is independent of ui gives the

constraints

0 = D(ijDklFα̂pq)
α̂ − 4D(ij

(
Fα̂kl

α̂F
β̂pq)

β̂

)
+ 12D(ij

(
Fα̂kβ̂lF

p
α̂
q)

β̂

)

+4Dα̂(i
(
F
j
α̂
β̂kDl

β̂
Fγ̂pq)

γ̂

)
+ 36(Dα̂(iF

j
α̂
[β̂k)εγ̂δ̂]Dl

β̂
F
p
γ̂
q)

δ̂

−12
(
3Fα̂(i[β̂jεγ̂δ̂] + Fδ̂(iα̂jεβ̂γ̂

)
Dk

α̂D
l
β̂
F
p
γ̂
q)

δ̂

+16
(
7Fα̂(iβ̂jFk

α̂
l
β̂
Fγ̂pq)

γ̂ − Fα̂(ij
α̂F

β̂kl
β̂
Fγ̂pq)

γ̂ + 12Fα̂(iβ̂jFk
α̂
γ̂lF

p
γ̂
q)

β̂

)
(14.32a)

and

0 =
5

3
D(ijDklFα̂p)

α̂p −
20

3
D(ij(Fα̂kl

α̂F
β̂p)

β̂p) + 20D(ij
(
Fα̂kβ̂lF

p)
α̂ β̂p

)

+4Dα̂(i

(
5

3
F
j
α̂
β̂kDl

β̂
Fγ̂p)

γ̂p − 6i(Γâ)β̂γ̂Fj
α̂âF

k
β̂

l)
γ̂

)

+6(Dα̂(iF
j
α̂
[β̂k)εγ̂δ̂]

(
5Dl

β̂
F
p)
γ̂ δ̂p − 6iF

l)

β̂ b̂(Γ
b̂)γ̂δ̂

)
+ 30(Dα̂(iF

j
α̂
[β̂
p )εγ̂δ̂]Dk

β̂
Fl
γ̂
p)

δ̂

+2
(
3Fα̂(i[β̂jεγ̂δ̂] + Fδ̂(iα̂jεβ̂γ̂

)(
6iDk

α̂F
l)

β̂ b̂(Γ
b̂)γ̂δ̂ − 5Dk

α̂D
l
β̂
F
p)
γ̂ δ̂p

)

−10
(
3Fα̂(i[β̂

p εγ̂δ̂] + Fδ̂(iα̂
p ε

β̂γ̂
)
Dj

α̂D
k
β̂
Fl
γ̂
p)

δ̂
+ 12i(Γâ)

β̂γ̂Fδ̂(iâDj

β̂
Fk
γ̂
l)

δ̂

+
80

3
Fα̂(iβ̂j

(
Fk
α̂
l
β̂
Fγ̂p)

γ̂p + 3Fk
α̂β̂pF

γ̂lp)
γ̂ − 9Fk

α̂
γ̂lF

p)

β̂ γ̂p + 3Fk
α̂
γ̂lF

p)
γ̂ β̂p

)

+
80

3
Fα̂(ij

α̂

(
3Fβ̂kγ̂lF

p)

β̂ γ̂p − Fβ̂kl
β̂
Fγ̂p)

γ̂p

)
, (14.32b)

which have to be satisfied identically.

14.4 Supersymmetric R2 invariants

Supersymmetric extensions of the R2 terms may be realized using the BF action princi-

ple (8.1), in which the tropical prepotential corresponds to the vector multiplet compen-
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sator. There are three invariants associated with the Lagrangians

L
(2)
Weyl = V H

(2)
Weyl , (14.33a)

L
(2)
Ric = −V G(2)[logW ] , (14.33b)

L
(2)
scal = V H

(2)
VM[W] , W =

i

16
G∇α̂i∇j

α̂

(
Gij

G2

)
. (14.33c)

The supersymmetric invariants associated with (14.33a) and (14.33c) are known in the

literature [29–32]. At the component level, they generate the Weyl tensor squared and

scalar curvature squared terms, respectively. The invariant associated with (14.33b) is

new. At the component level, it turns out to generate the Ricci tensor squared term. In

order to achieve a better understanding of this invariant, it is useful to consider a special

case when the vector multiplet compensator W obeys the equation (13.2). As discussed in

section 13.1, this case corresponds to the dilaton Weyl multiplet.

14.5 The supersymmetric Ricci squared term and the dilaton Weyl multiplet

When dealing with the vector multiplet compensator, it is often convenient to impose the

gauge condition (3.2) which fixes the local special conformal symmetry and eliminates the

dilatation connection entirely, thus leading us to SU(2) superspace. In addition, the local

dilatation symmetry can also be fixed by making the gauge choice

W = 1 . (14.34)

We recall that the Bianchi identity for the vector multiplet (2.49) takes the following

form in SU(2) superspace [26]

D
(i
α̂D

j)

β̂
W −

1

4
εα̂β̂D

γ̂(iD
j)
γ̂ W =

i

2
Cα̂β̂

ijW . (14.35)

Then choosing the gauge condition (14.34) gives

Câ
ij = 0 . (14.36a)

We also recall that the equation of motion for the vector multiplet (13.2) turns into (13.3)

in SU(2) superspace. Then imposing the gauge condition (14.34) gives

Sij = 0 . (14.36b)

Under the conditions (14.36), the algebra of covariant derivatives in SU(2) superspace

simplifies drastically. In particular, the anti-commutator of two spinor covariant derivatives

becomes

{Di
α̂,D

j

β̂
} = −2iεijDα̂β̂ − iεα̂β̂ε

ij(W ĉd̂ + Y ĉd̂)Mĉd̂ +
i

2
εijεâb̂ĉd̂ê(Γâ)α̂β̂Yb̂ĉMd̂ê

−12iYα̂β̂J
ij , (14.37)

where Wâb̂ and Yâb̂ satisfy the Bianchi identities

Dk
γ̂Wâb̂ = Wâb̂γ̂

k −
5

2
(Σâb̂)γ̂

δ̂Yk
δ̂
, (14.38a)
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Dk
γ̂Yâb̂ = 2(Γ[â)γ̂

δ̂Yb̂]δ̂
k + (Σâb̂)γ̂

δ̂Yk
δ̂
. (14.38b)

Using the Bianchi identities, at dimension 2 we find the relations

D
(i
α̂D

j)

β̂
Wâb̂ =

5

2
εα̂β̂(Σâb̂)

γ̂δ̂D
(i
γ̂ Y

j)

δ̂
−

5

8
εâb̂ĉd̂ê(Γ

ê)α̂β̂(Σ
ĉd̂)δ̂ρ̂D

(i

δ̂
Y

j)
ρ̂ , (14.39a)

D
(i
α̂D

j)

β̂
Yâb̂ =

5

4
εα̂β̂(Σâb̂)

γ̂δ̂D
(i
γ̂ Y

j)

δ̂
+

5

8
εâb̂ĉd̂ê(Γ

ê)α̂β̂(Σ
ĉd̂)γ̂δ̂D

(i
γ̂ Y

j)

δ̂
. (14.39b)

Furthermore, at dimension 5/2 we derive

D
(i
α̂D

jk)Yâb̂ = 0 , D
(i
α̂D

jk)Wâb̂ = 0 . (14.40)

It can also be seen that the bivector Xâb̂ := Yâb̂ +Wâb̂ satisfies

D
(i
α̂D

j)

β̂
Xâb̂ =

1

4
εα̂β̂D

ijXâb̂ . (14.41)

This relation is reminiscent of the Bianchi identity for the vector multiplet, eq. (2.49). In

the remainder of this section, we will refer to the superspace geometry described as dilaton

SU(2) superspace.

In the dilaton SU(2) superspace, the expressions (14.28) and (14.29) for the O(2)

multiplet on the right of (14.33b) proves to simplify drastically and takes the form:

− G(2)[logW ] = H
(2)
Ric =

15i

8

{
Y α̂β̂D

(1)
α̂ Y

(1)

β̂
−

2

5
Y(1)âα̂Y

(1)
âα̂ −

1

2
Y(1)α̂Y

(1)
α̂

}
. (14.42)

It is now easy to check that the constraints (14.32) are identically satisfied. Now we are

going to show that H
(2)
Ric can be represented as a linear combination of two different O(2)

multiplets.

First of all, let us consider the Weyl squared O(2) multiplet (2.41). In the dilaton

SU(2) superspace it may be rewritten as

H
(2)
Weyl = −

15i

4

{
W α̂β̂D

(1)
α̂ Y

(1)

β̂
+

1

15
W (1)âb̂α̂W

(1)

âb̂α̂
+

5

4
Y(1)α̂Y

(1)
α̂

}
. (14.43)

For the dilaton Weyl multiplet, the BF Lagrangian (14.33a) generates a supersymmetric

extension of the (Câb̂ĉd̂)
2 + 1

6R
2 Lagrangian of [29, 31, 32].

A remarkable feature of the dilaton SU(2) superspace is that the relations (14.40)

and (14.41) imply the existence of one more O(2) multiplet. It is

H
(2)
Riem :=

i

4

{
X âb̂D(2)Xâb̂ + 2(D(1)α̂X âb̂)D

(1)
α̂ Xâb̂

}
, (14.44a)

=
15i

2

{
X γ̂δ̂D

(i
γ̂ Yδ̂

j) +
1

15
W (1)âb̂γ̂W

(1)

âb̂γ̂
−

2

5
Y(1)âα̂Y

(1)
âα̂ +

3

4
Y(1)α̂Y

(1)
α̂

}
. (14.44b)

One may check that D
(1)
α̂ H

(2)
Riem = 0. The structure of H

(2)
Riem resembles the composite

O(2) multiplet built from a vector multiplet, eq. (14.7). It turns out that the O(2) multi-

plet (14.44) generates the supersymmetric extension of the Riemann squared term, (Râb̂ĉd̂)
2,
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constructed in [30]. The construction of [30] was based on a map between the dilaton Weyl

multiplet and the vector multiplet applied to the non-abelian Chern-Simons action.

From the relations (14.42) – (14.44) we deduce

− G(2)[logW ] =
1

2
H

(2)
Weyl +

1

4
H

(2)
Riem . (14.45)

The important point is that the construction of [30] and related works [31, 32] is defined only

for the dilaton Weyl multiplet. Our Ricci squared O(2) multiplet −G(2)[logW ], eq. (14.27),

and the corresponding supersymmetric invariant generated by (14.33b) makes use of the

standard Weyl multiplet coupled to the off-shell vector multiplet compensator. Eq. (14.45)

allows us to define H
(2)
Riem for the standard Weyl multiplet coupled to the off-shell vector

multiplet compensator:

H
(2)
Riem = −4

(
G(2)[logW ] +

1

2
H

(2)
Weyl

)
. (14.46)

15 Concluding remarks

The conformal superspace formalism in five dimensions presented in this work combines

the powerful features of the SU(2) superspace approach [26] and the superconformal tensor

calculus [19–22]. Using this formalism we have reproduced practically all off-shell construc-

tions derived so far. Most importantly, since the superspace setting offers more general

off-shell multiplets than those employed in [19–22], we have developed novel tools to con-

struct composite primary multiplets and, as a consequence, to generate new higher-order

off-shell invariants in supergravity. In addition to full superspace integrals, we have in-

troduced general techniques to build composite O(2) and vector multiplets, which in turn

can be used in the universal BF action. One particular example is the Ricci squared O(2)

multiplet constructed in section 14.3.36

Prior to this paper, the superconformal tensor calculus was used to construct super-

symmetric completions of R2 terms. Hanaki, Ohashi and Tachikawa [29] constructed the

supersymmetric Weyl tensor squared term, while Ozkan and Pang [32] constructed the

supersymmetric scalar curvature squared term. These invariants are generated by the La-

grangians (14.33a) and (14.33c) respectively. An important feature of these invariants is

that they make use of the standard Weyl multiplet coupled to one or two conformal com-

pensators, one of which is always the vector multiplet. Choosing the vector multiplet to

be on-shell leads one to a formulation in the dilaton Weyl multiplet. As concerns a su-

persymmetric completion of the Riemann squared term, it was constructed by Bergshoeff,

Rosseel and Sezgin [30] only in the dilaton Weyl multiplet realization. However, a descrip-

tion of the supersymmetric Riemann squared action in the standard Weyl multiplet was

completely unknown. Our paper has solved this problem with the use of the O(2) mul-

tiplet G(2)[logW ], eq. (14.27), which describes a supersymmetric Ricci squared invariant

36The construction of the Ricci squared O(2) multiplet is analogous to that of the nonlinear kinetic

multiplet presented in [50].
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using the Lagrangian (14.33b). This invariant completes the description of the supersym-

metric R2 invariants within the standard Weyl multiplet. In particular, the analogue of

the supersymmetric Riemann squared action constructed in [30] is generated by (14.46).

We hope to elaborate further the component structure of the action generated by the

Lagrangian (14.33b) in another publication.

The main virtue of the SU(2) superspace approach [26] and its extension given in our

paper is that it offers off-shell descriptions for the most general supergravity-matter sys-

tems. Here we briefly comment on such off-shell descriptions. In section 12, we discussed

the two-derivative supergravity action, corresponding to an O(2) multiplet and an abelian

vector multiplet compensator. It is easy to generalize this to include off-shell hypermul-

tiplets. One takes the same approach as in four dimensions [83] and adds to the pure

supergravity Lagrangian (12.1) a sigma model term37 resulting in

L
(2)
linear =

1

4
V H

(2)
VM +G(2) ln

G(2)

iΥ(1)Ῠ(1)
+ κV G(2) +

1

2
G(2)K(Υ, Ῠ) , (15.1)

where K(Υ, Ῠ) depends on n weight-zero arctic multiplets ΥI and their smile-conjugate

antarctic multiplets ῨĪ . Here K(ϕI , ϕ̄Ī) is chosen to be a real analytic function of n

ordinary complex variables ϕI and their conjugates. The action generated by the La-

grangian (15.1) proves to be invariant under the Kähler transformations

K → K + Λ(Υ) + Λ̄(Ῠ) (15.2)

in accordance with eq. (7.17). This permits the identification of K as the Kähler potential

of a 2n-dimensional Kähler manifoldM2n.

The Lagrangian (15.1) is reminiscent of the general 4D N = 1 new minimal

supergravity-matter Lagrangian, which similarly involves a linear multiplet compensator

coupled to a matter sector described by a Kähler potential, see [64] for a review. As in

that situation, it is possible here to perform a duality transformation exchanging G(2) for

a weight-one arctic multiplet Υ(1) and its smile-conjugate antarctic Ῠ(1). The analogous

consideration in the case of 4D N = 2 supergravity was given in [83]. Following [83], the

Lagrangian dual to (15.1) is

L
(2)
hyper =

1

4
V H

(2)
VM − 2iῨ(1)e−κV−

1
2
K(Υ,Ῠ)Υ(1) . (15.3)

Here the compensator Υ(1) is charged under the U(1) gauge group and transforms under

the Kähler transformations (15.2) as Υ(1) → eΛ/2Υ(1).

This supergravity-matter system may equivalently be described in terms of (n + 1)

weight-one arctic multiplets Υ(1)I and their conjugates Ῠ(1)Ī defined by Υ(1)I = Υ(1) ×

(1,ΥI) for I = 0, · · · , n. The corresponding Lagrangian is

L
(2)
hyper =

1

4
V H

(2)
VM − 2i e−κVK(Υ(1), Ῠ(1)) . (15.4a)

37The normalization of (15.1) is chosen so that in the super Weyl gauge G = 1, it reproduces a canonically

normalized sigma model.
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Here K(Υ(1), Ῠ(1)) obeys the homogeneity conditions

Υ(1)I ∂

∂Υ(1)I
K = K , Ῠ(1)Ī ∂

∂Ῠ(1)Ī
K = K . (15.4b)

In addition, K(ϕI , ϕ̄Ī) is required to be real as a function of (n+1) ordinary complex vari-

ables ϕI and their conjugates. Moreover, the action generated by the Lagrangian (15.4a)

is invariant under the gauge transformations

δV = λ+ λ̆ , δΥ(1)I = κλΥ(1)I , (15.5)

with the gauge parameter λ being an arbitrary weight-zero arctic multiplet.

The Lagrangian (15.1) and each of its dual versions, (15.3) and (15.4), actually de-

scribes a large class of 4n-dimensional quaternion-Kähler sigma models that admit a maxi-

mal 2n-dimensional Kähler submanifold with Kähler potential K [91]. These sigma models

also automatically possess a quaternionic U(1) isometry. To see this latter feature, one ob-

serves that the Lagrangian (15.1) describes a superconformal sigma model coupling the

linear multiplet G(2) to the n weight-zero polar multiplets. When the three-form in the

linear multiplet is dualized, the resulting scalar manifold is a hyperkähler cone with a tri-

holomorphic U(1) isometry. When G(2) is gauge-fixed, the (4n+4)-dimensional hyperkähler

cone becomes a 4n-dimensional quaternion-Kähler space, and the triholomorphic isometry

descends to a quaternionic one.38

The most general 4n-dimensional quaternion-Kähler sigma model is described by a

very similar supergravity-matter Lagrangian (for simplicity we switch off the cosmological

constant)

L
(2)
hyper =

1

4
V H

(2)
VM − 2F(Υ(1), Ῠ(1)) , (15.6)

where F(Υ(1), Ῠ(1)) obeys the homogeneity condition
(
Υ(1)I ∂

∂Υ(1)I
+ Ῠ(1)Ī ∂

∂Ῠ(1)Ī

)
F = 2F . (15.7)

The dynamical system defined by eqs. (15.4a) and (15.4b) with κ = 0 is a special case

of the system under consideration. In the flat superspace limit, the Lagrangian L(2) =

F(Υ(1), Ῠ(1)) describes the most general superconformal sigma model, with its target space

being an arbitrary hyperkähler cone. If the stronger homogeneity conditions (15.4b) hold,

then the corresponding hyperkähler cone possesses a triholomorphic isometry, which is

associated with the rigid U(1) symmetry of the superfield Lagrangian Υ(1)I → eiϕΥ(1)I ,

with ϕ ∈ R. Similar issues have been discussed in the case of the (3,0) supersymmetric

sigma models in AdS3 [94].

The Lagrangian (15.6) can be generalized to include additional abelian vector multi-

plets in a straightforward way,

L(2) =
1

4
CabcV

aH(2)bc − 2F(Υ(1), Ῠ(1)) ,

38The link between triholomorphic isometries on the hyperkähler cone (or Swann bundle) and quaternionic

isometries on the quaternion-Kähler space is known from the mathematics literature [92]. It was discussed

in a physics context in [93].
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H(2)ab := i (∇(1)α̂W a)∇
(1)
α̂ W b +

i

2
W (a∇(1)α̂∇

(1)
α̂ W b) , (15.8)

for real constants Cabc = C(abc), as is well-known from the component literature. The

numerical factors chosen in front of the two terms in (15.8) ensure that the Weyl multiplet

equation of motion and the canonical Weyl gauge are respectively given by

C(W ) := CabcW
aW bW c = K , C(W ) = 1 , (15.9)

where K is the hyperkähler potential constructed from F .39 The component reduction of

the vector multiplet Lagrangian in (15.8) can be derived from the general result for the non-

abelian vector multiplet action given in section 10. The component reduction of the hyper-

multiplet sigma model can be carried out similarly to the 4D N = 2 case worked out in [95].

The SU(2) superspace approach to 5D conformal supergravity coupled to general mat-

ter systems [26] has been extended to locally supersymmetric theories in diverse dimensions:

4D N = 2 supergravity [47], 2D N = (4, 4) supergravity [96, 97], 3D N = 3 and N = 4

supergravity theories [98], and 6D N = (1, 0) supergravity [99]. In four dimensions, N = 2

conformal superspace was formulated in [39], see also [55]. In three dimensions, N -extended

conformal superspace was described in [40]. Interesting open problems are to develop con-

formal superspace settings in other cases such as the 2D N = (4, 4) and 6D N = (1, 0) ones.
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A Notation and conventions

Throughout the paper we follow the 5D notation and conventions in [2]. We summarize

them here and include a number of useful identities.

The 5D gamma-matrices Γâ = (Γa,Γ5), with a = 0, 1, 2, 3, are defined by

{Γâ,Γb̂} = −2ηâb̂1 , (Γâ)
† = Γ0ΓâΓ0 , (A.1)

where the Minkowski metric is

ηâb̂ = diag(−1, 1, 1, 1, 1) . (A.2)

39Our conventions for relating the hyperkähler potential to the Lagrangian F are the same as in [95].

There the potential was denoted K.
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We may choose a representation in which the gamma-matrices take the form [62, 64]

(Γa)α̂
β̂ =

(
0 (σa)αβ̇

(σ̃a)
α̇β 0

)
, (Γ5)α̂

β̂ =


−iδ

β
α 0

0 iδα̇
β̇


 (A.3)

and Γ0Γ1Γ2Γ3Γ5 = 1. The charge conjugation matrix, C = (εα̂β̂), and its inverse, C−1 =

C† = (εα̂β̂) are defined by

CΓâC
−1 = (Γâ)

T , εα̂β̂ =

(
εαβ 0

0 −εα̇β̇

)
, εα̂β̂ =

(
εαβ 0

0 −εα̇β̇

)
, (A.4)

where εα̂β̂ and εα̂β̂ are antisymmetric tensors which are used to raise and lower the four-

component spinor indices.

A Dirac spinor, Ψ = (Ψα̂), and its Dirac conjugate, Ψ̄ = (Ψ̄α̂) = Ψ†Γ0, decompose into

two-component spinors as follows

Ψα̂ =

(
ψα

φ̄α̇

)
, Ψ̄α̂ =

(
φα, ψ̄α̇

)
. (A.5)

One can combine Ψ̄α̂ = (φα, ψ̄α̇) and Ψα̂ = εα̂β̂Ψβ̂ = (ψα,−φ̄α̇) into a SU(2) doublet,

Ψα̂
i = (Ψα

i ,−Ψ̄α̇i) , (Ψα
i ) = Ψ̄α̇i , i = 1, 2 , (A.6)

with Ψα
1 = φα and Ψα

2 = ψα. It is understood that the SU(2) indices are raised and

lowered by εij and εij , ε
12 = ε21 = 1, in the standard fashion: Ψα̂i = εijΨα̂

j . The Dirac

spinor Ψi = (Ψi
α̂) satisfies the pseudo-Majorana reality condition Ψ̄i

T = CΨi. This can be

concisely written as

(Ψi
α̂)
∗ = Ψα̂

i . (A.7)

In defining products of spinors, we occasionally suppress spinor indices. In such cases, the

spinor indices should be understood as contracted from top left to bottom right; that is,

given χα̂ and Ψα̂, we define

χΨ := χα̂Ψα̂ , χΓâΨ := χα̂(Γâ)α̂
β̂Ψβ̂ , χΓâΓb̂Ψ := χα̂(Γâ)α̂

β̂(Γb̂)β̂
γ̂Ψγ̂ , (A.8)

and so forth.

With the definition Σâb̂ = −Σb̂â = −1
4 [Γâ,Γb̂], the matrices {1,Γâ,Σâb̂} form a basis

in the space of 4 × 4 matrices. The matrices εα̂β̂ and (Γâ)α̂β̂ are antisymmetric (with

εα̂β̂(Γâ)α̂β̂ = 0), while the matrices (Σâb̂)α̂β̂ are symmetric.

It is useful to write explicitly the 4D reduction of these matrices

(Γa)α̂β̂ =

(
0 −(σa)α

β̇

(σa)β
α̇ 0

)
, (Γ5)α̂β̂ =

(
iεαβ 0

0 iεα̇β̇

)
, (A.9)

(Σab)α̂
β̂ =

(
(σab)α

β 0

0 (σ̃ab)
α̇
β̇

)
, (Σa5)α̂

β̂ =

(
0 − i

2(σa)αβ̇
i
2(σ̃a)

α̇β 0

)
, (A.10)
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(Σab)α̂β̂ =

(
(σab)αβ 0

0 −(σ̃ab)
α̇β̇

)
, (Σa5)α̂β̂ =

(
0 i

2(σa)α
β̇

i
2(σa)β

α̇ 0

)
, (A.11)

where (σab)α
β = −1

4(σaσ̃b − σbσ̃a)α
β and (σ̃ab)

α̇
β̇ = −1

4(σ̃aσb − σ̃bσa)
α̇
β̇ .

A 5-vector V â and an antisymmetric tensor F âb̂ = −F b̂â can be equivalently rep-

resented as the bi-spinors V = V âΓâ and F = 1
2F

âb̂Σâb̂ respectively with the following

symmetry properties

Vα̂β̂ = −Vβ̂α̂ , εα̂β̂Vα̂β̂ = 0 , Fα̂β̂ = Fβ̂α̂ . (A.12)

The equivalent descriptions of Vâ and Fâb̂ by Vα̂β̂ and Fα̂β̂ are explicitly related as follows:

Vα̂β̂ = V â(Γâ)α̂β̂ , Vâ = −
1

4
(Γâ)

α̂β̂Vα̂β̂ , (A.13a)

Fα̂β̂ =
1

2
F âb̂(Σâb̂)α̂β̂ , Fâb̂ = (Σâb̂)

α̂β̂Fα̂β̂ . (A.13b)

This means that we may decompose an arbitrary tensor with two spinor indices, Tα̂β̂ , as

follows

Tα̂β̂ =
1

2
(Σâb̂)α̂β̂(Σâb̂)

γ̂δ̂Tγ̂δ̂ −
1

4

(
(Γâ)α̂β̂(Γâ)

γ̂δ̂ + εα̂β̂ε
γ̂δ̂
)
Tγ̂δ̂ . (A.14)

These results may be checked using the identities

εα̂β̂γ̂δ̂ = εα̂β̂εγ̂δ̂ + εα̂γ̂εδ̂β̂ + εα̂δ̂εβ̂γ̂

=
1

2
(Γâ)α̂β̂(Γâ)γ̂δ̂ +

1

2
εα̂β̂εγ̂δ̂ , (A.15)

where εα̂β̂γ̂δ̂ is the completely antisymmetric fourth-rank tensor.

The conjugation rules give

(εα̂β̂)
∗ = −εα̂β̂ , (Vα̂β̂)

∗ = V α̂β̂ , (Fα̂β̂)
∗ = F α̂β̂ , (A.16)

provided V â and F âb̂ are real.

One can derive a number of identities involving the contraction of vector indices. These

are listed below:

(Γâ)α̂β̂(Γâ)γ̂δ̂ = εα̂β̂εγ̂δ̂ − 2εα̂γ̂εβ̂δ̂ + 2εα̂δ̂εβ̂γ̂ , (A.17a)

(Σâb̂)α̂β̂(Γ
b̂)γ̂δ̂ =

1

2

(
(Γâ)α̂δ̂εβ̂γ̂ − (Γâ)α̂γ̂εβ̂δ̂ + (Γâ)β̂δ̂εα̂γ̂ − (Γâ)β̂γ̂εα̂δ̂

)
, (A.17b)

(Σâb̂)α̂β̂(Σâb̂)γ̂δ̂ = εα̂γ̂εβ̂δ̂ + εα̂δ̂εβ̂γ̂ , (A.17c)

εâb̂ĉd̂ê(Γ
ĉ)α̂β̂(Σ

d̂ê)γ̂δ̂ = 2εα̂β̂(Σâb̂)γ̂δ̂ + 2εγ̂α̂(Σâb̂)β̂δ̂ + 2εδ̂α̂(Σâb̂)β̂γ̂

− 2εγ̂β̂(Σâb̂)α̂δ̂ − 2εδ̂β̂(Σâb̂)α̂γ̂ , (A.17d)

εâb̂ĉd̂ê(Σ
b̂ĉ)α̂β̂(Σ

d̂ê)γ̂δ̂ = (Γâ)α̂γ̂εβ̂δ̂ + (Γâ)α̂δ̂εβ̂γ̂ + (Γâ)β̂γ̂εα̂δ̂ + (Γâ)β̂δ̂εα̂γ̂ , (A.17e)

where the Levi-Civita tensor εâb̂ĉd̂ê is defined to be completely antisymmetric with normal-

ization

ε01235 = −ε
01235 = 1 . (A.18)
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The Levi-Civita tensor also satisfies the useful identity

εâ1···âr âr+1···a5εb̂1···b̂r âr+1···a5
= −r!(5− r)!δ

[â1

b̂1
· · · δ

âr]

b̂r
. (A.19)

Some other useful relations are given by

(Γ[â)α̂β̂(Γ
b̂])γ̂δ̂ = εα̂γ̂(Σ

âb̂)β̂δ̂ + εβ̂δ̂(Σ
âb̂)α̂γ̂ − εα̂δ̂(Σ

âb̂)β̂γ̂ − εβ̂γ̂(Σ
âb̂)α̂δ̂ , (A.20a)

(Σĉ[â)α̂β̂(Σĉ
b̂])γ̂δ̂ = −

1

4

(
εα̂γ̂(Σ

âb̂)β̂δ̂ + εα̂δ̂(Σ
âb̂)β̂γ̂ + εβ̂γ̂(Σ

âb̂)α̂δ̂ + εβ̂δ̂(Σ
âb̂)α̂γ̂

)
, (A.20b)

and

(ΓâΓb̂)α̂
β̂ = (Γâ)α̂

γ̂(Γb̂)γ̂
β̂ = −ηâb̂δβ̂α̂ − 2(Σâb̂)α̂

β̂ , (A.21a)

(ΓâΓb̂Γĉ)α̂
β̂ =

(
− ηâb̂ηĉd̂ + ηĉâηb̂d̂ − ηb̂ĉηâd̂

)
(Γd̂)α̂

β̂ + εâb̂ĉd̂ê(Σd̂ê)α̂
β̂ , (A.21b)

(ΓâΓb̂ΓĉΓd̂)α̂
β̂ = (ηâb̂ηĉd̂ − ηâĉηb̂d̂ + ηâd̂ηb̂ĉ)δβ̂α̂ − εâb̂ĉd̂ê(Γê)α̂

β̂

+2ηâb̂(Σĉd̂)α̂
β̂ − 2ηâĉ(Σb̂d̂)α̂

β̂ + 2ηb̂ĉ(Σâd̂)α̂
β̂

+2ηd̂ĉ(Σâb̂)α̂
β̂ − 2ηd̂b̂(Σâĉ)α̂

β̂ + 2ηd̂â(Σb̂ĉ)α̂
β̂ , (A.21c)

(ΓâΓb̂ΓĉΓd̂Γê)α̂
β̂ = εâb̂ĉd̂êδβ̂α̂ + (Γâ)α̂

β̂(ηb̂ĉηd̂ê − ηb̂d̂ηĉê + ηĉd̂ηb̂ê)

+(Γb̂)α̂
β̂(−ηĉd̂ηêâ + ηĉêηd̂â − ηd̂êηĉâ)

+(Γĉ)α̂
β̂(ηd̂êηâb̂ − ηd̂âηêb̂ + ηêâηd̂b̂)

+(Γd̂)α̂
β̂(−ηêâηb̂ĉ + ηêb̂ηâĉ − ηâb̂ηêĉ)

+(Γê)α̂
β̂(ηâb̂ηĉd̂ − ηĉâηb̂d̂ + ηb̂ĉηâd̂) + 2εâb̂ĉd̂m̂(Σm̂

ê)α̂
β̂

+(Σm̂n̂)α̂
β̂
(
− ηâb̂εĉd̂êm̂n̂ + ηĉâεb̂d̂êm̂n̂ − ηb̂ĉεâd̂êm̂n̂

− ηd̂âεb̂ĉêm̂n̂ + ηd̂b̂εâĉêm̂n̂ − ηd̂ĉεâb̂êm̂n̂
)
. (A.21d)

B The conformal Killing supervector fields of R5|8

The 5D superconformal algebra F2(4) [27] can be identified with the algebra of conformal

Killing supervector fields of 5D N = 1 Minkowski superspace [33]. In this appendix we

spell out this construction.

Simple Minkowski superspace in five dimensions, R5|8, is parametrized by coordinates

zÂ = (xâ, θα̂i ). The flat covariant derivatives DÂ = (∂â, D
i
α̂)

∂â :=
∂

∂xâ
, Di

α̂ :=
∂

∂θα̂i
− i(Γb̂)α̂β̂θ

β̂i∂b̂ , (B.1)

satisfy the algebra:

{Di
α̂, D

j

β̂
} = −2i(Γâ)α̂β̂∂â , [∂â, D

j

β̂
] = 0 , [∂â, ∂b̂] = 0 . (B.2)

The spinor covariant derivatives satisfy the reality condition (Di
α̂F )∗ = −(−1)ε(F )Dα̂

i F

with F an arbitrary superfield of Grassmann parity ε(F ).
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According to [33], the conformal Killing supervector fields

ξ = ξ̄ = ξâ(z)∂â + ξα̂i (z)D
i
α̂ (B.3)

are defined to satisfy

[ξ,Di
α̂] = −(D

i
α̂ξ

β̂
j )D

j

β̂
, (B.4)

which implies the fundamental equation

Di
α̂ξâ = 2i(Γâ)α̂

β̂ξi
β̂
. (B.5)

From eq. (B.5) one finds

εij(Γâ)α̂β̂∂
âξb̂ = (Γb̂)α̂γ̂D

j

β̂
ξγ̂i + (Γb̂)β̂γ̂D

i
α̂ξ

γ̂j , (B.6)

which gives us the usual equation for a conformal Killing vector field

∂(âξb̂) =
1

5
ηâb̂∂

ĉξĉ . (B.7)

The conformal Killing vector acts on the spinor covariant derivatives as

[ξ,Di
α̂] = −ωα̂

β̂Di
β̂
+ ΛijDα̂j −

1

2
σDi

α̂ , (B.8)

where the parameters ωα̂β̂ , σ and Λij are given by the following expressions:

ωα̂β̂ :=
1

2
Dk

(α̂ξβ̂)k =
1

2
(Σâb̂)α̂β̂∂âξb̂ , (B.9a)

σ :=
1

4
Dα̂

k ξ
k
α̂ =

1

5
∂âξâ , (B.9b)

Λij :=
1

4
D

(i
γ̂ ξ

γ̂j) . (B.9c)

As a consequence of eq. (B.7) we find the parameters satisfy the identities

∂âωb̂ĉ = −2ηâ[b̂∂ĉ]σ , (B.10a)

∂â∂b̂ξĉ = −ηâb̂∂ĉσ + 2ηĉ(â∂b̂)σ . (B.10b)

Furthermore, as a consequence of eq. (B.5) we also find

Dk
γ̂ωα̂β̂ = −2εγ̂(α̂D

k
β̂)
σ , (B.11a)

Di
α̂Λ

jk = 3εi(jD
k)
α̂ σ , (B.11b)

where σ obeys

Di
α̂D

j

β̂
σ = −iεij(Γâ)α̂β̂∂âσ , (B.12)

and

∂âD
j

β̂
σ = 0 . (B.13)

The above results tell us that we can parametrize superconformal Killing vectors as

follows

ξ ≡ ξ(Λ(P )â,Λ(Q)α̂i ,Λ(M)âb̂,Λ(D),Λ(K)â,Λ(S)α̂i) , (B.14)
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where we have defined

Λ(P )â := −ξâ|x=θ=0 , Λ(Q)α̂i = −ξα̂i |x=θ=0 , (B.15a)

Λ(M)âb̂ := ωâb̂|x=θ=0 , Λ(D) := σ|x=θ=0 , (B.15b)

Λ(K)â := −
1

2
∂âσ|x=θ=0 , Λ(S)α̂i := −

1

2
Dα̂iσ|x=θ=0 . (B.15c)

The commutator of two superconformal Killing vectors,

ξ = ξ(Λ(P )â,Λ(Q)α̂i ,Λ(M)âb̂,Λ(D),Λ(K)â,Λ(S)α̂i) (B.16)

and

ξ̃ = ξ(Λ̃(P )â, Λ̃(Q)α̂i , Λ̃(M)âb̂, Λ̃(D), Λ̃(K)â, Λ̃(S)
α̂i) , (B.17)

is another superconformal Killing vector given by

[ξ, ξ̃] = (ξâ∂âξ̃
b̂ − ξ̃â∂âξ

b̂ + ξα̂i D
i
α̂ξ̃

b̂ − ξ̃α̂i D
i
α̂ξ

b̂ + 2iξα̂k ξ̃
β̂k(Γb̂)α̂β̂)∂b̂

+ (ξâ∂âξ̃
β̂
j − ξ̃â∂âξ

β̂
j + ξα̂i D

i
α̂ξ̃

β̂
j − ξ̃α̂i D

i
α̂ξ

β̂
j )D

j

β̂

≡ ξ(Λ̂â(P ), Λ̂α̂
i (Q), Λ̂(M)âb̂, Λ̂(D), Λ̂(K)â, Λ̂(S)α̂i) , (B.18)

where

Λ̂â(P ) := Λ(P )b̂Λ̃b̂
â + Λ(P )âΛ̃(D)− 2iΛ(Q)α̂k Λ̃(Q)β̂k(Γâ)α̂β̂

− Λ̃(P )b̂Λb̂
â − Λ̃(P )âΛ(D) , (B.19a)

Λ̂α̂
i (Q) := −i(Γâ)

α̂β̂Λ(P )âΛ̃(S)β̂i + Λ(Q)β̂i Λ̃(M)β̂
α̂ +

1

2
Λ(Q)α̂i Λ̃(D) + Λ(Q)α̂j Λ̃(J)

j
i

+ i(Γâ)
α̂β̂Λ̃(P )âΛ(S)β̂i−Λ̃(Q)β̂i Λ(M)β̂

α̂−
1

2
Λ̃(Q)α̂i Λ(D)−Λ̃(Q)α̂j Λ(J)

j
i ,

(B.19b)

Λ̂(M)âb̂ := 2Λ(M)ĉ[âΛ̃(M)b̂]ĉ − 4Λ(P )[âΛ̃(K)b̂] + 4Λ̃(P )[âΛ(K)b̂] , (B.19c)

Λ̂(D) := 2Λ(P )âΛ̃(K)â − 2Λ̃(P )âΛ(K)â + 2Λ(S)α̂iΛ̃(Q)α̂i − 2Λ̃(S)α̂iΛ(Q)α̂i , (B.19d)

Λ̂(K)â := Λ(M)âb̂Λ̃(K)b̂ + Λ(D)Λ̃(K)â − 2iΛ(S)α̂k Λ̃(S)
β̂k(Γâ)α̂β̂

− Λ̃(M)âb̂Λ(K)b̂ − Λ̃(D)Λ(K)â , (B.19e)

Λ̂(S)α̂i := i(Γâ)
α̂β̂Λ(K)âΛ̃(Q)i

β̂
+ Λ(S)β̂iΛ̃(M)β̂

α̂ −
1

2
Λ(S)α̂iΛ̃(D) + Λ(S)α̂j Λ̃(J)

ji

− i(Γâ)
α̂β̂Λ̃(K)âΛ(Q)i

β̂
−Λ̃(S)β̂iΛ(M)β̂

α̂+
1

2
Λ̃(S)α̂iΛ(D)−Λ̃(S)α̂j Λ(J)

ji .

(B.19f)

Associating with the superconformal Killing vector ξ the transformation

δξ = Λ(P )âPâ + Λ(Q)α̂i Q
i
α̂ +

1

2
Λ(M)âb̂Mâb̂ + Λ(D)D+ Λ(K)âKâ + Λ(S)α̂iSα̂i (B.20)

and comparing to the above gives us the superconformal algebra (2.1).
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C Modified superspace algebra

In section 4, we introduced a modified definition of the composite vector connections. It

is actually possible to introduce this redefinition directly within the context of superspace.

The modified superspace vector derivative is

∇̂â = ∇â −
1

4
W̃âb̂ĉM

b̂ĉ +
1

8
X β̂i(Γâ)β̂

α̂Sα̂i +
1

64

(
Y + 3W b̂ĉWb̂ĉ

)
Kâ

−
1

4
(∇ĉW̃ĉâ

b̂)Kb̂ −
1

4
Wâd̂W

b̂d̂Kb̂ . (C.1)

The new vector derivative possesses a deformed S-supersymmetry transformation, but it

retains the original K-transformation,

[Sβ̂i, ∇̂â] = i(Γâ)β̂
α̂∇α̂i −

1

2
Wâ

b̂(Γb̂)β̂
α̂Sα̂i +

i

8
(ΓâΓ

b̂)β̂
γ̂Xγ̂iKb̂ −

i

4
Wâb̂β̂iK

b̂ , (C.2)

[Kb̂, ∇̂â] = 2ηâb̂D+ 2Mâb̂ . (C.3)

The spinor derivative remains unchanged, ∇̂i
α̂ = ∇i

α̂.

The new curvature tensors, given in their general form as

[∇̂Â, ∇̂B̂] = −T̂ÂB̂
Ĉ∇̂Ĉ −

1

2
R̂(M)ÂB̂

ĉd̂Mĉd̂ − R̂(D)ÂB̂D

− R̂(J)ÂB̂
ijJij − R̂(S)ÂB̂

α̂iSα̂i − R̂(K)ÂB̂
ĉKĉ , (C.4)

can be found by direct computation. For the algebra of two spinor derivatives, we find

T̂
i
α̂
j

β̂

ĉ = 2iεij(Γĉ)α̂β̂ , (C.5a)

T̂
i
α̂
j

β̂

γ̂
k = 0 , (C.5b)

R̂(M)iα̂
j

β̂

ĉd̂ = 2iεijεα̂β̂W
ĉd̂ + iεij(Γb̂)α̂β̂W̃

b̂ĉd̂ , (C.5c)

R̂(D)iα̂
j

β̂
= 0 , (C.5d)

R̂(J)iα̂
j

β̂

kl = 0 , (C.5e)

R̂(S)iα̂
j

β̂

γ̂k =
3i

4
εijεα̂β̂X

γ̂k + iεijδγ̂[α̂X
k
β̂]
, (C.5f)

R̂(K)iα̂
j

β̂

ĉ = −
i

2
εijεα̂β̂∇̂

b̂Wb̂
ĉ +

i

2
εij(Γâ)α̂β̂∇̂

d̂W̃d̂â
ĉ −

i

32
εij(Γĉ)α̂β̂Y

+
i

4
εijεα̂β̂W̃ĉ

d̂êWd̂ê +
i

2
εij(Γâ)α̂β̂

(
Wâd̂W

ĉd̂ −
3

16
W b̂d̂Wb̂d̂δâ

ĉ

)
. (C.5g)

The spinor-vector commutators lead to

T̂b̂
i
α̂
ĉ = 0 , (C.6a)

T̂b̂
i
α̂
γ̂
k =

1

4
δik

(
3(Γb̂)α̂

β̂Wβ̂
γ̂ −Wα̂

β̂(Γb̂)β̂
γ̂
)
, (C.6b)

R̂(D)b̂
i
α̂ = −

1

4
(Γb̂)α̂

γ̂Xi
γ̂ , (C.6c)
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R̂(J)b̂
i
α̂
jk = −

3

4
(Γb̂)α̂

γ̂εi(jX
k)
γ̂ , (C.6d)

R̂(M)b̂
i
α̂
ĉd̂ = −(Γb̂)α̂

γ̂W ĉd̂i
γ̂ −

1

4
εb̂

ĉd̂êf̂Wêf̂
i
α̂ +

1

2
δ
[ĉ

b̂
(Γd̂])α̂

γ̂Xi
γ̂ , (C.6e)

R̂(S)b̂
i
α̂
γ̂j =

1

16
Xĉd̂

ij(Σĉd̂Γb̂ − 2Γb̂Σ
ĉd̂)α̂

γ̂

−
3i

8
εij ∇̂[b̂Wĉd̂](Σ

ĉd̂)α̂
γ̂ −

i

8
εij ∇̂d̂W

d̂ĉ(Σĉb̂)α̂
γ̂

+
3i

16
εij ∇̂d̂Wd̂b̂ δ

γ̂
α̂ −

i

8
εij ∇̂ĉW̃ĉb̂

d̂(Γd̂)α̂
γ̂

+
i

16
εijW̃ ĉd̂êWd̂ê(Σĉb̂)α̂

γ̂ −
3i

32
εijW̃b̂d̂êW

d̂êδα̂
γ̂

+
i

4
εij Wb̂d̂W

ĉd̂(Γĉ)α̂
γ̂ −

3i

64
εij W ĉd̂Wĉd̂(Γb̂)α̂

γ̂ , (C.6f)

R̂(K)b̂
i
α̂
ĉ =

1

6
(Γĉ)α̂

β̂∇̂d̂Wd̂b̂
i
β̂
+

1

12
(Γb̂)α̂

β̂∇̂d̂W d̂
ĉi
β̂
+

1

6
∇̂α̂

β̂Wb̂
ĉi
β̂
−

1

24
εb̂

ĉd̂êf̂ ∇̂d̂Wêf̂
i
α̂

+
1

8
(Γĉ)α̂

β̂∇̂b̂X
i
β̂
+

1

64
W d̂ê(3Γb̂Σd̂êΓ

ĉ − Σd̂êΓb̂Γ
ĉ)α̂

β̂Xi
β̂

−
1

48
W̃b̂d̂ê(Γ

ĉ)α̂
β̂W d̂êi

β̂
+

1

8
δb̂

ĉW d̂êWd̂ê
i
α̂

+
1

12
(Σb̂

ĉ)α̂
β̂Wd̂ê

i
β̂
W d̂ê −

1

12
W d̂ê(Σd̂ê)α̂

β̂Wb̂
ĉ
β̂
i

+
13

48
Wb̂d̂W

d̂ĉi
α̂ +

11

48
Wb̂d̂

i
α̂W

d̂ĉ −
13

96
(Γb̂)α̂

β̂Wd̂ê
i
β̂
W̃ d̂êĉ . (C.6g)

The vector-vector commutator is given by

T̂âb̂
ĉ = 0 , (C.7a)

T̂âb̂
α̂
i = −

i

2
Wâb̂

α̂
i , (C.7b)

R̂(D)âb̂ = 0 , (C.7c)

R̂(J)âb̂
ij = −

3i

4
Xâb̂

ij , (C.7d)

R̂(M)âb̂
ĉd̂ = −

1

4
(Σâb̂)

α̂β̂(Σĉd̂)γ̂δ̂
(
iWα̂β̂γ̂δ̂ + 3W(α̂β̂Wγ̂δ̂)

)
, (C.7e)

R̂(S)âb̂
i
α̂ = −

1

2
∇̂α̂

β̂Wâb̂β̂
i −

1

2
(Γ[â)α̂

β̂∇̂ĉWb̂]ĉβ̂
i

−
1

8
Wα̂

β̂Wâb̂β̂
i +

1

16
(Σâb̂)α̂

β̂W ĉd̂Wĉd̂β̂
i +

3

8
W ĉ

[âWb̂]ĉα̂
i , (C.7f)

R̂(K)âb̂
ĉ =

1

4
∇̂dR̂(M)âb̂

ĉd̂ −
i

16
Wâb

α̂
j (Γ

ĉ)α̂
β̂Xj

β̂
−

i

8
Wd̂[â

α̂
j (Γb̂])α̂

β̂W ĉd̂
β̂

j

+
i

8
Wâd̂

α̂
i (Γ

ĉ)α̂
β̂Wb̂

d̂
β̂
i . (C.7g)

D Conventions for 5D conformal supergravity

For the convenience of the reader, we provide in table 1 a brief translation scheme between

our conventions and the other groups’. A similar table may be found in [32].
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Our conventions de Wit and Katmadas Bergshoeff et al. Fujita et al.

ηâb̂ ηab ηab −ηab

Γâ −iγa iγa γa

Σâb̂ 1
2
γab 1

2
γab − 1

2
γab

εâb̂ĉd̂ê −iεabcde −εabcde εabcde

ψm̂
i ψµ

i ψµ
i 2ψµ

i

Vm̂
i
j − 1

2
Vµj

i −Vµ
i
j Vµ

i
j

ω̂m̂
âb̂ ωµ

ab −ωµ
ab −ωµ

ab

i φ̂m̂
i φµ

i −φµ
i + 1

3
Tabγ

abψµ
i 2φµ

i − 2
3
vabγ

abψµ
i

f̂m̂
â −fµ

a + 1
3
ψµiγ

aχi −fµ
a + 1

3
ψµ

iγaχi −fµ
a + i

24
ψµ

iγaχi

wâb̂ −4T ab 16
3
T ab 4

3
vab

χi χi χi 1
32
χi

D D D 1
16
(D − 8

3
vabvab)

R̂(Q)âb̂
i 1

2
R(Q)ab

i 1
2
R̂(Q)ab

i R̂(Q)ab
i

R̂(M)âb̂
ĉd̂ R(M)ab

cd −R̂(M)ab
cd −R̂(M)ab

cd

R̂(J)âb̂
i
j − 1

2
R(V)abj

i −R̂(V )ab
i
j R̂(U)ab

i
j

i R̂(S)âb̂
i 1

2
R(S)ab

i − 1
2
R̂(S)ab

i+ 1
6
Tcdγ

cdR̂(Q)ab
i R̂(S)ab

i− 1
3
vcdγ

cdR̂(Q)ab
i

R̂(K)âb̂
ĉ −R(K)ab

c+ 1
3
R(Q)abiγ

cχi −R̂(K)ab
c+ 1

3
R̂(Q)ab

iγcχi −R̂(K)ab
c+ i

24
R̂(Q)ab

iγcχi

Table 1. Conventions for Weyl multiplet.

de Wit and Katmadas Bergshoeff et al. Fujita et al.

εi = 2 ξi εi = 2 ξi εi = ξi

η′i = 2iηi η′i = −2iηi + 2
3Tabγ

abξi η′i = iηi + 1
3vabγ

abξi

Λ′aK = −Λa
K + 2

3ξiγ
aχi Λ′aK = −Λa

K + 2
3ξ

iγaχi Λ′aK = −Λa
K + i

24ξ
iγaχi

Table 2. Conventions for δQ + δS + δK .

We must be careful to note that the definitions of supersymmetry are different between

the various groups, with the differences amounting not only to normalizations but also to

additional field-dependent S and K transformations in the definition of δQ. In other words,

given a transformation δQ + δS + δK in our conventions with respective parameters ξiα̂, η
i
α̂

and Λâ
K , we will find a transformation δ′Q + δ′S + δ′K with new parameters εi, η′i and Λ′aK

given in table 2.

It should be emphasized that each group uses the same vector derivative Da, corre-

sponding to our ∇̂â, modulo differing overall normalizations of the superconformal gen-

erators. The additional gravitino-dependent terms in the S-supersymmetry and special

conformal connections in table 1 cancel against additional terms found within δQ, so that

the vector derivative is unchanged.
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Our conventions de Wit and Katmadas Bergshoeff et al. Fujita et al.

W σ −σ M

λi Ωi ψi −2Ωi

Xij 2Y ij −2Y ij 2Y ij

Table 3. Conventions for vector multiplet.

For completeness, we also give in table 3 the relation between our conventions for the

vector multiplet and the other groups.

E The O(2) multiplet prepotential from harmonic superspace

In this appendix we use the harmonic superspace techniques [59] extended to the 5D N = 1

super-Poincaré case (see [2, 51] for the technical details regarding the N = 1 harmonic

superspace in five dimensions) to derive a prepotential formulation for the O(2) multiplet.

In appendix G, the same techniques will be used to derive unconstrained prepotentials for

the O(4 + n) multiplets, n = 0, 1, . . . , in 5D N = 1 Minkowski superspace.40

We consider an O(2) multiplet Gij(z) in 5DN = 1 Minkowski superspace and associate

with it the analytic superfield G++(z, u+) = Gij(z)u+i u
+
j . The latter is constrained by

D+
α̂G

++ = 0 , D++G++ = 0 , (E.1)

where D++ := u+i∂/∂u−i. As in the 4D N = 2 super-Poincaré case [101], the analytic

projector on the space of O(2) multiplets41 is

Π
(2,2)
L (ζ1, ζ2) = −(D̂

+
1 )

4(D̂+
2 )

4 1

�

δ5|8(z1 − z2)

(u+1 u
+
2 )

2
, (E.2)

where

(D̂+)4 = −
1

32
(D̂+)2 (D̂+)2 , (D̂+)2 = D+α̂D+

α̂ , (E.3)

and ζ denotes the coordinates of the analytic subspace. The properties of Π
(2,2)
T (ζ1, ζ2) are:

D+α̂
1 Π

(2,2)
T (ζ1, ζ2) = D+α̂

2 Π
(2,2)
T (ζ1, ζ2) = 0 , (E.4a)

D++
1 Π

(2,2)
T (ζ1, ζ2) = D++

2 Π
(2,2)
T (ζ1, ζ2) = 0 , (E.4b)∫

dζ
(−4)
3 Π

(2,2)
T (ζ1, ζ3)Π

(2,2)
T (ζ3, ζ2) = Π

(2,2)
T (ζ1, ζ2) , (E.4c)

(
Π

(2,2)
T (ζ1, ζ2)

)T
= Π

(2,2)
T (ζ2, ζ1) . (E.4d)

40The harmonic and projective superspace descriptions of the O(n) multiplets are completely equiva-

lent [100].
41This projector plays an important role in computing the one-loop effective action for N = 4 SYM in

four dimensions [102].

– 96 –



J
H
E
P
0
2
(
2
0
1
5
)
1
1
1

For any O(2) multiplet G++ we have

G++(z1, u
+
1 ) ≡ G++(ζ1) =

∫
dζ

(−4)
2 Π

(2,2)
L (ζ1, ζ2)G

++(ζ2) . (E.5)

Introduce a superfield Ξ−−(z, u) such that (D̂+)4Ξ−− = G++. Then we can rewrite (E.5)

as follows

G++(ζ1) =

∫
d5|8z2 du2Π

(2,2)
L (ζ1, ζ2)Ξ

−−(z2, u2) . (E.6)

In the expression (E.2) we represent

(D̂+
2 )

4δ5|8(z1 − z2) = −
1

32
(D̂+

2 )
2(D̂+

2 )
2δ5|8(z1 − z2)

= −
1

32
(D̂+

2 )
2u+i

2 u+j
2 D̂2 ijδ

5|8(z1 − z2)

= −
1

32
(D̂+

2 )
2u+i

2 u+j
2 D̂1 ijδ

5|8(z1 − z2)

= −
1

32
u+i
2 u+j

2 D̂1 ij(D̂
+
2 )

2δ5|8(z1 − z2) . (E.7)

We plug this expression in (E.2) and make use of the identity

Ψ+
2 = (u+1 u

+
2 )Ψ

−
1 − (u−1 u

+
2 )Ψ

+
1 , Ψ± = Ψi u±i (E.8)

in conjunction with Dα̂+
1 (D̂+

1 )
4 = (D̂+

1 )
4Dα̂+

1 = 0. This gives

Π
(2,2)
L (ζ1, ζ2) =

1

32
(D̂+

1 )
4(D̂−1 )

2(D̂+
2 )

2 1

�
δ5|8(z1 − z2) . (E.9)

As a result, relation (E.6) becomes equivalent to

G++(z, u+) = (D̂+)4(D̂−)2Ω(z) . (E.10)

F Gauge freedom for the O(2) multiplet

Let us show that the gauge transformation of the O(2) multiplet prepotential Ω, eq. (7.10),

leaves invariant the superfield G(2) defined by (7.5). We need to prove that the superfield

Ω(B) = −
i

2
∇k

α̂∇
l
β̂
Bα̂β̂

kl , Bα̂β̂
ij = (Γâ)α̂β̂Bâ

ij , (F.1)

is annihilated by the operator i∆ijkl∇kl. It is useful to employ the equivalent expression

for Ω(B) given by

Ω(B) = −
i

2
∇

(1)
α̂

(
∇

(1)

β̂
Bα̂β̂(−2) − 2∇

(−1)

β̂
Bα̂β̂(0)

)

−
i

2
∇

(−1)
α̂ ∇

(−1)

β̂
Bα̂β̂(2) +∇α̂β̂B

α̂β̂(0) , (F.2a)

B
(2)
â := vivjBâ

ij , B
(0)
â :=

viuj
(v, u)

Bâ
ij , B

(−2)
â :=

uiuj
(v, u)2

Bâ
ij . (F.2b)
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By using

∇(−2)∇
(−1)
α̂ ∇

(−1)

β̂
= −

1

4
εα̂β̂∇

(−2)∇(−2) , (F.3)

and ∆(4)∇
(1)
α̂ = 0, we obtain

i∆(4)∇(−2)Ω(B) = −
1

2
∆(4)[∇

(1)
α̂ ,∇(−2)]

(
∇

(1)

β̂
Bα̂β̂(−2) − 2∇

(−1)

β̂
Bα̂β̂(0)

)

+i∆(4)∇(−2)∇α̂β̂B
α̂β̂(0) . (F.4)

By making use of

[∇α̂β̂ ,∇
j
γ̂ ] = (Γâ)α̂β̂(Γâ)γ̂δ̂[W ,∇δ̂j ] , [∇α̂β̂ ,∇

β̂j ] = −5[W ,∇j
α̂] , (F.5)

it can be seen that

[∇
(1)
α̂ ,∇(−2)] = −4i

(
∇γ̂(−1)∇α̂γ̂ +∇

(−1)
α̂ W − 2[W ,∇

(−1)
α̂ ]

)
. (F.6)

Note that in performing this calculation we will keep implicit as long as possible the

expression (2.30) for the operator W in the covariant derivative algebra (2.27). Plugging

eq. (F.6) into (F.4), after some algebra one can obtain

i∆(4)∇(−2)Ω(B) = i∆(4)
{
tr[ΓâΓb̂Γĉ]

(
4i∇â∇b̂B

(−2)
ĉ − (Γb̂)

γ̂′β̂′
∇

(−1)
γ̂′ ∇

(−1)

β̂′
∇âB

(0)
ĉ

)

−
1

2
tr[ΓâΓb̂Γâ]∇

ρ̂(−1)
(
[W ,∇

(1)
ρ̂ ]B

(−2)

b̂
− 2[W ,∇

(−1)
ρ̂ ]B

(0)

b̂

)

−
1

2
tr[ΓâΓb̂ΓâΓ

ĉ](Γb̂)ρ̂τ̂∇
ρ̂(−1)

(
[W ,∇τ̂(1)]B

(−2)
ĉ − 2[W ,∇τ̂(−1)]B

(0)
ĉ

)

− 4i[W ,∇α̂β̂]B
(−2)

α̂β̂
− 8i∇α̂β̂

W B
(−2)

α̂β̂
+ 2∇

(−1)
α̂ [W ,∇

(1)

β̂
]Bα̂β̂(−2)

− 4∇
(−1)
α̂ ∇

(−1)

β̂
W Bα̂β̂(0) − 4{∇

(1)
α̂ , [∇

(−1)

β̂
,W ]}Bα̂β̂(−2)

+ 4∇
(−1)
α̂ [W ,∇

(−1)

β̂
]Bα̂β̂(0) − 8{[W ,∇

(−1)
α̂ ],∇

(−1)

β̂
}Bα̂β̂(0)

}
. (F.7)

Some terms in the previous expression are identically zero. First of all note that due

to (A.21b) we have

tr[ΓâΓb̂Γĉ] = 0 . (F.8)

Then the first two lines in (F.7) are zero. Moreover, the Bianchi identity (2.28) implies

(Γâ)
α̂β̂{[W ,∇

(−1)
α̂ ],∇

(−1)

β̂
} = 0 , (F.9)

which removes the last term in (F.7). Once we use

tr[ΓâΓb̂ΓĉΓd̂] = 4(ηâb̂ηĉd̂ − ηâĉηb̂d̂ + ηâd̂ηb̂ĉ) , tr[ΓâΓb̂ΓâΓ
ĉ] = −12ηb̂ĉ , (F.10)

which follow from (A.21c), (F.7) can be brought to the following form:

i∆(4)∇(−2)Ω(B) = i∆(4)
{
− 4i[W ,∇α̂β̂]B

(−2)

α̂β̂
− 8i∇α̂β̂

W B
(−2)

α̂β̂

+ 8∇
(−1)
α̂ [W ,∇

(1)

β̂
]Bα̂β̂(−2) − 4{∇

(1)
α̂ , [∇

(−1)

β̂
,W ]}Bα̂β̂(−2)
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− 8∇
(−1)
α̂ [W ,∇

(−1)

β̂
]Bα̂β̂(0) − 4∇

(−1)
α̂ ∇

(−1)

β̂
W Bα̂β̂(0)

}
. (F.11)

As a next step, we can simplify the second term in the second line. In fact, the Bianchi

identity (2.28) implies

(Γâ)
α̂β̂{∇

(1)
α̂ , [∇

(−1)

β̂
,W ]} = −(Γâ)

α̂β̂{∇
(−1)
α̂ , [∇

(1)

β̂
,W ]} , (F.12)

which together with the super-Jacobi identity, can be used to derive the following result

(Γâ)
α̂β̂{∇

(1)
α̂ , [∇

(−1)

β̂
,W ]} = −

1

2
(Γâ)

α̂β̂ [W , {∇
(1)
α̂ ,∇

(−1)

β̂
}] = −i(Γâ)

α̂β̂ [W ,∇α̂β̂] . (F.13)

If we use this expression in (F.11), we arrive at the simple result

i∆(4)∇(−2)Ω(B) = i∆(4)
{
8∇

(−1)
α̂ [W ,∇

(1)

β̂
]Bα̂β̂(−2) − 8∇

(−1)
α̂ [W ,∇

(−1)

β̂
]Bα̂β̂(0)

+ 4∇
(−1)
α̂ ∇

(1)

β̂
W Bα̂β̂(−2) − 4∇

(−1)
α̂ ∇

(−1)

β̂
W Bα̂β̂(0)

}

i∆(4)∇(−2)Ω(B) = −
4iuiuj
(v, u)2

∆(4)
{
2∇

(i
α̂ [W ,∇β̂k]B

α̂β̂ j)k +∇
(i
α̂∇β̂kW Bα̂β̂ j)k

}
. (F.14)

Now we use the explicit expression of W and obtain

W Bα̂β̂ ij = 2W [α̂
γ̂B

β̂]γ̂ ij , (F.15a)

[W ,∇β̂k]B
α̂β̂ jk = −Wβ̂δ̂∇

δ̂
kB

α̂β̂ jk − 5Xβ̂kB
α̂β̂ jk = −∇γ̂

kWγ̂β̂B
α̂β̂ jk . (F.15b)

Equation (F.14) then becomes

i∆(4)∇(−2)Ω(B) = −
8iuiuj
(v, u)2

∆(4)∇i
α̂∇β̂kW

(α̂
γ̂B

β̂)γ̂ jk

i∆(4)∇(−2)Ω(B) = 8i∆(4)∇
(1)
(α̂∇

(−1)

β̂)
W (α̂

γ̂B
β̂)γ̂(−2) ≡ 0 . (F.16)

This completes the proof that the operator ∆(4)∇(−2) annihilates the superfield (F.1).

G Prepotentials for O(4 + n) multiplets, n = 0, 1, . . . , from harmonic

superspace

Here we consider an O(4) multiplet G(4)(z, u) = Gijkl(z)u+i u
+
j u

+
k u

+
l realized in 5D N = 1

harmonic superspace,

D+
α̂G

(4) = 0 , D++G(4) = 0 . (G.1)

It may be represented as

G(4)(u) = (D̂+)4V (u) , (G.2)

where

V (u) = V0 +
∞∑

n=1

V (i1...i2n)u+i1 . . . u
+
in
u−in+1

. . . u−i2n ≡ V0 +V(u) (G.3)

obeys the equation

D++V = D++V = D+α̂Σ+
α̂ , (G.4)
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for some spinor superfield Σ+
α̂ (u). We note that V (u) is defined modulo abelian gauge

transformations of the form:

V → Ṽ = Ṽ0 + Ṽ := V +D+α̂λ−α̂ , (G.5)

where λ−α̂ (u) is arbitrary. We now consider the following harmonic equation

D++λ−α̂ = −Σ+
α̂ , (G.6)

with Σ+
α̂ given. This equation proves to have a unique solution λ−α̂ (u). Upon applying the

above gauge transformation, we obtain

D++Ṽ = 0 =⇒ Ṽ = Ṽ0 . (G.7)

As a result, the O(4) multiplet can always be represented in the form

G(4)(u) = (D̂+)4V , (G.8)

with the prepotential V being harmonic independent.

Given a non-negative integer n = 1, 2, . . . , consider an O(4 + n) multiplet

G(4+n)(z, u) = Gi1...i4+n(z)u+i1 . . . u
+
i4+n

, (G.9)

realized in 5D N = 1 harmonic superspace,

D+
α̂G

(4+n) = 0 , D++G(4+n) = 0 . (G.10)

The superfield G(4+n) may be represented as

G(4+n)(u) = (D̂+)4V (n)(u) , (G.11)

where

V (n)(u) = V0
i1...inu+i1 . . . u

+
in
+
∞∑

m=1

V (i1...in+2m)u+i1 . . . u
+
in+m

u−in+m+1
. . . u−in+2m

≡ V
(n)
0 (u) +V(n)(u) (G.12)

obeys the equation

D++V (n) = D++V(n) = D+α̂Σ
(n+1)
α̂ , (G.13)

for some harmonic superfield Σ
(n+1)
α̂ (u). By construction, the prepotential V (n) is defined

modulo gauge transformations

V (n) → Ṽ (n) = Ṽ
(n)
0 + Ṽ(n) := V (n) +D+α̂λ

(n−1)
α̂ , (G.14)

for an arbitrary harmonic superfield λ
(n−1)
α̂ (u). It is possible to choose the gauge parameter

λ
(n−1)
α̂ (u) to be a solution of the harmonic equation

D++λ
(n−1)
α̂ = −Σ

(n+1)
α̂ . (G.15)

Such a solution always exists and is not unique for n > 0. Upon applying such a finite gauge

transformation, we observe that the transformed prepotential Ṽ (n)(u) is characterized by

D++Ṽ(n) = 0 . (G.16)

We conclude that the O(4 + n) multiplet can be represented in the form:

G(4+n)(u) = (D̂+)4V (n)(u) , V (n)(u) = V i1...inu+i1 . . . u
+
in
. (G.17)
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