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1 Introduction

Higher spin theories in various dimensions have been the object of interest for quite some-

time now [1–6]. They have become a very useful arena for studying the nature of AdS/CFT

dualities. In [7] and [8, 9], the first example of a higher spin AdS/CFT duality was given.

There it was conjectured that a theory of O(N) vector model in 2 + 1 dimensions is dual

to the higher spin theories in AdS4. To be more precise the singlet sector of O(N) vector

models was shown to be dual to the Vasiliev system with only even spins turned on. But

in general these theories have a spectrum consisting of one copy of each spin ranging from

2 to ∞ [6].

In 3 dimensions the complexity reduces quite a bit due to the fact that there are no

bulk propagating degrees of freedom and due to the related fact that the spectrum can

be truncated to any finite maximal spin N. With these simplifications the theories in 3

dimensions serve as good toy models to understand various aspects of both the higher

spin theories and the AdS/CFT dualities. Higher spin theory in 3 space-time dimensions

was studied in [10, 11]. In the latter the SL(2, R)×SL(2, R) Chern-Simons formulation for

gravity in AdS space was extended to SL(N,R)×SL(N,R) theory and it was shown that the
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spectrum is that of fields of spin ranging from 2 to N. The classical asymptotic symmetry

algebra of higher spin theories in AdS3 has been shown to match with W-symmetry algebra

in [12, 13]. See also [14, 15] for further analysis of the asymptotic symmetry algebra. The

first indication that the symmetry is present in the quantum regime was provided in [16],

where the one loop partition function in the bulk was calculated and shown to be equal

to the vacuum character of the W-symmetry enhanced CFTs. Based on this, a duality

between higher spin theories in AdS3 and CFT with W-symmetry was proposed in [17].

Further elaborations of the proposal were done [18–21] and for a review see [22]. The

topologically massive versions of these higher spin theories and their possible dualities to

logarithmic CFTs was shown in [23–26].

1.1 Higher spin black holes in 3 dimensions

In 3 dimensions, the topology of a space-time with asymptotic AdS geometry is that of a

solid torus. The contractible cycle is either spatial or temporal depending on whether we

are in a thermal AdS background or a black hole background. In black holes the spatial

non-contractible cycle points towards the existence of a “horizon”. For Euclidean black

holes the temperature is defined by assuming a periodic time cycle. The periodicity is such

that the horizon has no conical singularities i.e. the horizon is smooth. This periodicity in

time cycle is related to the inverse of the temperature of the black hole.

In higher spin theories the concept of a metric is blurred by the fact that there are

higher spin gauge transformations under which the metric is not invariant. Hence, the

normal procedure of identifying black hole geometries to metrics with horizons doesn’t

work. In [27], a procedure to identify the higher spin black hole geometry in AdS3, in the

Chern-Simons formulation was given. There the black hole geometry was identified with

those configurations where the connection is smooth in the interior of the torus geometry

with a contractible temporal cycle. This is equivalent to demanding a trivial holonomy for

the connection along the temporal cycle (i.e. it falls in the centre of the gauge group). This

ensures that when the contractible cycle is shrunk to zero, the connection comes back to

itself after moving around the cycle once. But this does not ensure that the corresponding

metric will look like that of an ordinary black hole. In [28] a gauge transformation was

found in which the metric obtained resembled that of a conventional black hole. It was

also shown that the RG flow by an irrelevant deformation triggered by a chemical potential

corresponding to a spin 3 operator takes us from the principal embedding of sl(2, R) to

the diagonal embedding of sl(2, R) in sl(3, R). Now, to get a higher spin black black hole

a chemical potential corresponding to the independent charges had to be added so that

the system is stable thermodynamically. So, a black hole solution with higher spin charges

necessarily causes the system to flow from one fixed point to another. In [29] the partition

function for the black hole solution was obtained as a series expansion in spin 3 chemical

potential with hs[λ]×hs[λ] algebra (this gives the higher spin symmetry algebra when the

spin is not truncated to any finite value) and matched with the known CFT results for

free bosonic (λ = 1) and free fermionic case (λ = 0). This answer also matches the one

for general λ obtained from CFT calculations in [37]. A review of these aspects of black

holes in higher spin theories can be found in [32].The λ → ∞ limit for partition function
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was studied in [30], where an exact expression for partition function and spin 4 charge was

obtained for any temperature and spin 3 chemical potential. Analysis of a HS black holes

in presence of spin 4 chemical potential was done in [31].

A different approach to study the thermodynamics of these black holes was carried out

in [33–36]. A good variational principle was obtained by adding proper boundary terms to

Chern Simons theories on manifolds with boundaries. The free energy was obtained from

the on-shell action and an expression for entropy was obtained from that. This expression

for entropy was different from that obtained in [27]. It was also shown that the stress energy

tensor obtained from the variational principle mixes the holomorphic and antiholomorphic

components of the connection. This formalism for obtaining the thermodynamics variables

is referred to as the “canonical formalism” in the literature. The CFT calculations done

in [37] seem to match with the “holomorphic formalism” given in [27], but the canonical

approach seems to be much more physically plausible. In [38] a possible solution to this

discrepancy was suggested,where they changed the bulk to boundary dictionary in a way

suited to the addition of chemical potential which deforms the theory.

In [40], the process of adding chemical potential was unified for the full family of

solutions obtained by modular transformation from the conical defect solution. The black

holes that we talked about is only one member of the family. It was shown that the same

boundary terms need to be added to the action to get a good variational principle for all

members of the family. There the definitions for all thermodynamic quantities for any

arbitrary member of the family were obtained.

1.2 Phase structure of higher spin black holes in AdS3

The phase structure of spin 3 black holes in AdS3 was studied in [42] using the holomorphic

variables. In the principal embedding of sl(2, R) in sl(3, R) (with spectrum consisting of

fields with spin 2 and 3), they found 4 solutions to the equations corresponding to a trivial

holonomy along the time circle. They allowed for a non-zero spin 3 charge even when the

corresponding chemical potential is taken to zero. It was shown there that of the 4 branches

one is unphysical as its entropy is negative. Of the remaining three branches one is the

BTZ branch (here spin 3 charge goes to zero as chemical potential goes to 0), one is the

extremal branch (having a non-zero charge configuration at zero temperature or chemical

potential) and a third branch. The negative specific heat of the extremal branch makes it

an unstable branch. A more analytical treatment of phase structure was done in [41] for

spin 3 and 4̃ black holes.

The phase diagram given there shows that the BTZ and extremal branch exist only

in the low temperature regime, after which the thermodynamic quantities for this two

branches do not remain real. The third branch that is present has real thermodynamic

variables at all temperatures. It is shown there that at low temperatures the thermody-

namics quantities have the correct scaling behaviour with temperature (from the point of

view of a possible dual CFT description) only for the BTZ branch. The third branch, which

exists for all temperatures, does not have the correct scaling behaviour for thermodynamic

quantities at very high temperature. At low enough temperatures where the BTZ and ex-

tremal black hole solution exist, the BTZ branch has the lowest free energy followed by the
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extremal branch and then the third branch. But at higher temperatures the third branch

is the only surviving branch, i.e. the only branch with real thermodynamic quantities.

They then argued that the correct thermodynamics at high temperature is given by

the diagonal embedding. The spectrum in the diagonal embedding has a pair of fields

with spin 3
2 , a pair with spin 1 and a spin 2 field [15]. The diagonal embedding can be

thought of as the starting point of a RG flow initiated by the spin 3
2 chemical potential and

ending in the principal embedding. The temperature scaling behavior the thermodynamic

quantities are found to be correct at high temperature. Near the zero chemical potential

(for spin 3
2) limit, i.e. near the starting point of the RG flow, the holonomy equations

have 2 real solutions; among them the one with a lower free energy was conjectured to be

the “third branch”(from the principal embedding) at the end of the RG flow. This was

done with the assumption that the two solutions which survive at all temperature in the

principal embedding match with these two real solutions at the UV fixed point. The ”third

branch” has the correct scaling behaviour (w.r.t. the thermodynamic quantities in diagonal

embedding) and it was argued that beyond the point where BTZ and extremal branches of

the principal embedding cease to exist, this third branch takes over and it is actually the

black hole solution in the diagonal embedding.

In summary they showed that the principal embedding is the correct IR picture valid

at low temperature regime and diagonal embedding is the correct UV picture valid in the

high temperature regime.

1.3 Our work

In this work we study the phase structure of SL(3, R) × SL(3, R) higher spin system in

the canonical formalism. We will first work in the principal embedding. We will be using

the definitions of thermodynamic quantities for conical surplus solution (which go to the

thermal AdS branch when chemical potential and spin 3 charges are taken to zero) given

in [40]. The conical surplus has a contractible spatial cycle. So, we demand that the

holonomy of connection along this cycle be trivial. Using this condition we are able to get

the undeformed spin 2 and 3 charges in terms of temperature and chemical potential for

spin 3 charge. We use this to study the phase structure of the conical surplus. From the

phase diagram we see that there are 2 branches of solutions with real values for undeformed

spin 2 and spin 3 charges for a given temperature and chemical potential. One of the branch

reduces to the thermal AdS branch (with zero spin 3 charge) when the chemical potential

is taken to zero. The other one is a new branch which like the extremal black holes has a

non-trivial charge configuration even when chemical potential and/or temperature is taken

to be zero. This we call the “extremal thermal AdS” branch. This extremal branch has a

lower free energy for all values of µ and T.

We then move to studying the phase structure of black hole in this embedding. We

again solve for the charges in terms of chemical potential (m) and temperature (T), but

now with the time cycle contractible. Here we get 4 branches of solutions. We find that two

of these branches have negative entropy and hence are unphysical. Among the other two

branches, one is the BTZ branch (which reduces to BTZ black hole when chemical potential

m → 0) and the other is the extremal branch (having a non-trivial charge configuration for
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zero chemical potential and/or temperature). The extremal branch has negative specific

heat and hence is unstable. The BTZ branch is stable, has lower free energy and hence is

the dominant of the two good solutions. Given a chemical potential both the black hole

and the thermal AdS solutions exist till a certain temperature, which is different for the

black hole and thermal AdS. Crossing the respective temperatures leads to complex values

of the thermodynamic quantities.

We then undertake a study of the phase structure for the conical surplus and black

hole together. Between the 3 solutions- the BTZ black hole, the extremal black hole and

the thermal AdS branch we study which branch has the minimum free energy for a given

chemical potential and temperature. We notice that for a particular chemical potential, at

very low temperature the thermal AdS has the lowest free energy and then as we gradually

increase the temperature the BTZ branch starts dominating over the thermal AdS. This

is the analogue of Hawking-page transition. After a particular temperature the extremal

black hole also dominates over the thermal AdS though it is sub-dominant to the BTZ

branch. Increasing the temperature further, the black holes cease to exist and the thermal

AdS is the only solution. So far, we have not considered the extremal thermal AdS branch

which has the lowest free energy of all the branches. If this branch is not absent (due to

some physical reasons that we are unaware of) it will be the thermodynamically dominant

branch all through the low temperature regime. We will comment further about this branch

later in the paper.

Next part of our study involves studying black holes in the diagonal embedding of

sl(2, R) in sl(3, R). There is a consistent truncation where the spin 3
2 fields are put to

zero [45]. But here we don’t want to do this. The reason being that we want to use the

fact that this diagonal embedding is actually the UV limit of the flow initiated in principal

embedding by the spin 3 chemical potential. We want to study the full theory obtained

from this procedure and there all the mentioned fields are present. First of all taking cue

from the map given in [42] and we will be able to give a map between the parameters

that we use at UV and IR fixed points. Also, here we obtain 4 solutions to the holonomy

equations and by similar arguments as above two of them are unphysical. Of the other

two branches the one with the lower free energy is throughout stable. We also showed that

the good solution near IR fixed point actually maps to the bad solution near the UV fixed

point and vice versa. We give a plausible reasoning for this mapping between the good and

bad branches.

1.4 Organization of the paper

In section 2 we give a brief review of the geometry of higher spin theories and their thermo-

dynamics. In the section 3 we give the analysis for the thermodynamics of conical surplus,

black hole and Hawking-Page transition for principal embedding. In section 4 we give a

similar description for black hole in the diagonal embedding. Lastly, we give a summary

of our results in section 5 and some possible directions for future studies in 6.
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2 Review of higher spin geometry in AdS3 and thermodynamics

Let us briefly elaborate on the ’Canonical formalism’ for BTZ Black Holes in higher spin

scenarios. We will mostly follow the conventions given in [34, 40]. In 2 + 1 dimensions

higher spin theories coupled to gravity with negative cosmological constant can be written

as a Chern-Simons theory with gauge group G ≃ SL(N,R) × SL(N,R) [11]. For N = 2

it reduces to ordinary gravity but for N ≥ 3 depending on possible embeddings of the

sl(2, R) subalgebra into sl(N,R) it generates a spectrum of fields with different spins. We

are mostly interested in an Euclidean Chern-Simons theory on a three-dimensional manifold

M with the topology S1 ×D where the S1 factor is associated with the compactified time

direction and ∂D ≃ S1. It is customary to introduce coordinates (ρ, z, z̄) on M , where ρ

is the radial coordinate and ρ → ∞ is the boundary with the topology of a torus where

the z, z̄ coordinates are identified as z(z̄) ≃ z(z̄) + 2π ≃ z(z̄) + 2πτ(τ̄). For Chern-Simons

theory the field strength is zero, so the connection is pure gauge. We will be working in a

gauge where the connections have a radial dependence given by

A = b−1db+ b−1ab Ā = bdb−1 + bāb−1

with b = b(ρ) = eρL0 and a, ā being functions of boundary z, z̄ coordinates only.

The holonomies associated with the identification along the temporal direction are

Holτ,τ̄ (A) = b−1ehb Holτ,τ̄ (Ā) = beh̄b−1 (2.1)

where the matrices h and h̄ are

h = 2π(τaz + τ̄ az̄) h̄ = 2π(τ āz + τ̄ āz̄) (2.2)

Triviality of the holonomy forces it to be an element of the center of the gauge group and

a particularly interesting choice which corresponds to the choice for uncharged BTZ black

hole gives

Tr[h · h] = −8π2 Tr[h · h · h] = 0 (2.3)

A different choice of the center element is synonymous to a scaling of τ and hence is not

very important for us as we focus on a particular member of the centre of the group and

are not interested in a comparative study between various members.

With this setup in mind the Euclidean action is

I(E) = I
(E)
CS + I

(E)
Bdy

where

I
(E)
CS = CS[A]− CS[Ā], CS[A] =

ikcs

4π

∫

M

Tr

[

A ∧ dA+
2

3
A ∧A ∧A

]

For a good variational principal on the manifold we need to add some boundary terms to

the above action. To get a variation of action of the form δI ∼ Qiδµi (for grand canonical

ensemble) we need to add a boundary term of the form

I
(E)
Bdy = −kcs

2π

∫

∂M

d2z Tr [(az − 2L1)az̄]−
kcs

2π

∫

∂M

d2z Tr [(āz̄ − 2L−1)az]

– 6 –
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We will be interested in an asymptotically AdS boundary which will give rise to the

WN algebra as the asymptotic symmetry algebra in the absence of any chemical potential.

This is satisfied by the connections written in the Drinfeld-Sokolov form

a = (L1 +Q) dz − (M + . . .) dz̄ (2.4)

ā =
(

L−1 − Q̄
)

dz̄ +
(

M̄ + . . .
)

dz (2.5)

with [L−1, Q] = [L1,M ] = 0 (and similarly for Q̄, M̄). We adopt a convention that the

highest (lowest) weights in az (āz̄) are linear in the charges, and the highest (lowest) weights

in āz (az̄) are linear in the chemical potentials corresponding to charges other than spin 2.

The convention for definition of chemical potential that we use is given by

Tr [(az − L1)(τ̄ − τ)az̄] =
N
∑

i=3

µiQi (2.6)

Tr [(−āz̄ + L−1)(τ̄ − τ)āz] =

N
∑

i=3

µ̄iQ̄i (2.7)

Varying I(E) on-shell we arrive at

δI(E)
os = − lnZ =− 2πikcs

∫

∂M

d2z

4π2Im(τ)
Tr

[

(az−L1)δ ((τ̄−τ)az̄) +

(

a2z
2
+azaz̄−

ā2z
2

)

δτ

− (−āz̄ + L−1)δ ((τ̄−τ)āz)−
(

ā2z̄
2
+āz̄āz−

a2z̄
2

)

δτ̄

]

=− 2πikcs

∫

∂M

d2z

4π2Im(τ)

(

Tδτ − T̄ δτ̄ +
N
∑

i=3

(

Qiδµi − Q̄iδµ̄i

)

)

(2.8)

So, the added boundary terms are the correct one as we get the desired variation of the

action on-shell.

The black hole geometry that we discussed can be obtained by a SL(2, Z) modular

transformation acting on a conical surplus geometry and vice versa. This property was

used in [40] to show that the variational principle for either geometry (or for that matter

any geometry obtained by a SL(2, Z) transformation on the conical surplus geometry) goes

through correctly if we use the boundary terms given above. This in principle means that

we have the same definition of stress tensor for all the members of the ’SL(2, Z)’ family

and is given by

T = Tr

[

a2z
2

+ azaz̄ −
ā2z
2

]

, T̄ = Tr

[

ā2

2
+ āz̄āz −

a2z̄
2

]

(2.9)

The on-shell action evaluated for a member gives the free energy for that particular member.

Please note that in arriving at equation (2.8) we have to go through an intermediate

coordinate transformation pushing the τ dependence of the periodicity z ≃ z + 2πτ to the

integrand. This is necessary to make sure that the variation does not affect the limits of
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integration. However, this procedure of making periodicities of the coordinates constant is

dependent upon the member of interest in the ’SL(2, Z)’ family. The free energy for any

arbitrary member was evaluated in [40] and is given by

−βF = −Ion−shell

= πikcsTr

[

(

hAhB − h̄Ah̄B
)

− 2i(az − 2L1)az̄ − 2i(āz̄ − 2L−1)āz

]

(2.10)

where hA and hB are respectively the holonomy along the contractible and non-contractible

cycles.

Performing a Legendre transform of the free energy (i.e. from a function of chemical

potentials/sources to function of charges) we arrive at an expression for the entropy. The

expression for entropy of the black hole solution turns out to be

S = −2πikcsTr

[

(az + az̄)(τaz + τ̄ az̄)− (āz + āz̄)(τ āz + τ̄ āz̄)

]

(2.11)

The conical surplus solutions are obtained by adding a chemical potential to thermal AdS

like solutions. So, it is unexpected that they will suddenly develop properties reminiscent

of objects with “horizon” (like having non-zero entropy) under presence of a small defor-

mations. The calculation of entropy using the above method supports this intuition as we

get zero entropy indeed for these solutions.

All the above statements can very easily be generalized to non-principal embedding.

The things that will be different are the value of the label ’k’ associated with different

sl(2, R) embedding in sl(3, R) and the definition of charges and chemical potentials. The

value of k is related to kcs by

kcs =
k

2Tr [Λ0Λ0]
, (2.12)

where kcs is the label associated with the SL(3, R) CS theory. The central charge of the

theory for a particular embedding is given by c = 6k. Λ−1,Λ0,Λ1 are the generators giving

rise to the sl(2, R) sub-algebra in the particular embedding.

3 The principal embedding for sl(3,R)

Here, we give the conventions for connections and the thermodynamic quantities that we

use in our paper here. The connection that we use here are based on [27, 34, 40]. We

will confine our connections in the radial gauge and use the conventions for generators of

SL(3, R) group given in1

a =

(

L1 − 2πLL−1 −
π

2
WW−2

)

dz +
mT

2
(W2 + 4πWL−1 − 4πLW0 + 4π2L2W−2)dz̄,

ā =

(

L−1 − 2πL̄L1 −
π

2
W̄W2

)

dz̄ +
m̄T

2
(W−2 + 4πW̄L−1 − 4πL̄W0 + 4π2L̄2W2)dz.

(3.1)

1Here we redefine our variables to absorb the k appearing in the connections given in [32, 34].
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We are interested in studying only non-rotating solutions, hence we require gzz = gz̄z̄ for

the metric which when converted to the language of connections in radial gauge becomes

Tr[az̄az̄ − 2az̄āz̄ + āz̄āz̄] = Tr[azaz − 2azāz + āzāz]. (3.2)

With our convention this is satisfied if m̄ = −m, W̄ = −W, L̄ = L
These connections automatically satisfy the equations of motion [az, az̄] = 0. With our

conventions the equation (2.6) becomes

Tr[(az − L1)az̄(τ̄ − τ)] = 4imπW. (3.3)

So, demanding that W, which is the measure of spin 3 charge in our conventions be

real, the chemical potential µ3 is imaginary, whose measure is given by ‘im’.

3.1 The conical surplus solution

Here as stated above the contractible cycle is spatial and hence we demand that the holon-

omy of connection defined as eih where h = 2π(az + az̄) to be trivial along the contractible

cycle. It follows the same holonomy equation as that given in (2.3). This choice of center

is the same as that for thermal AdS.

The boundary terms that we use (given by the equation above the Drinfeld-Sokolov

connection in (2.4)) is suited for a study in grand canonical ensemble where, the chemical

potentials and temperature are the parameters of the theory.

The first among the two holonomy equations in (2.3) can be used to get W in terms

of L
WCS =

1

12mπT
+

2L
3mT

+
16

9
mπL2T (3.4)

and using the second equation we get an equation for L in terms of m and T given by

− 1

mT
− 8πL

mT
+

mT

3
− 8

3
mπLT + 64mπ2L2T +

128

9
m3π2L2T 3

−512

3
m3π3L3T 3 +

4096

27
m5π4L4T 5 = 0. (3.5)

From equation (2.9) the stress energy tensor is given by

TCS = 8πL − 12mπWT − 64

3
m2π2L2T 2, (3.6)

and the spin 3 charge which was W in absence of chemical potential is left unchanged

in presence of chemical potential. The free energy given in equation (2.10) in this case

becomes

FCS = 16πL − 8mπWT − 128

3
m2π2L2T 2. (3.7)

Now of the 4 solutions to (3.5), only 2 are real solutions. Using this we can get the

solutions for TCS and FCS in terms of m and T. From equation (3.5) we see that all

relevant quantities are functions of µc = mT . So, the quantities that we use to plot the

phase diagrams are q3(µc) ≡ W(m,T ), t(µc) = TCS(m,T ) and f(µc) = FCS(m,T ) in

figure 1.
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Figure 1. Here the phase diagram of conical surplus solution is given. The horizontal axes in all

the figures is the parameter µc. The vertical axes are respectively the spin 3 charge WCS , stress

tensor TCS and free energy FCS .

From the figure 1 we see that the blue branch is the branch that goes to thermal

AdS (without spin 3 charge) when µc → 0. The other branch in red is a special branch

where as µc → 0 we have W
2
3

L = − 1

6(2π)
2
3

. This special branch starts from an “extremal

point” analogous to black holes discussed in [27] and [42]. Let us call it, the “extremal

branch”. This is a bit of a misnomer as for thermal AdS in any gauge there is no concept

of horizon. The two branches merge at the value of the parameter µc =
3
4

√

3 + 2
√
3, and

after that the conical surplus solution ceases to exist. The “extremal AdS” branch has

an energy which is unbounded from below, but we obtained this branch as a solution to

the holonomy conditions which encode the smoothness of the solution. This branch also

has the lower free energy of the two branches for all values of the chemical potential and

temperature. So, unless we have a physical principle (which we are not aware of) the

“extremal AdS” branch is the most favoured solution and there are no stable solutions to

the conical surplus like geometry in presence of chemical potential for spin 3.

3.2 The black hole solution

The black hole solution is obtained by demanding that the time circle is contractible and

holonomy defined in equation (2.1) satisfy the equations in (2.3). The holonomy equations
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in this case are

2− 32m2L2

3
− 4L

πT 2
− 6mW

πT
= 0,

−128

9
m3L3 +

6m3W2

π
+

3W
2π2T 3

+
16mL2

πT 2
+

12m2LW
πT

= 0. (3.8)

Using the same procedure as after (3.4) we get the final holonomy equation for the

black hole as

4mL
3

− 64

3
m3L3− L

mπ2T 4
+

1

2mπT 2
+
8mL2

πT 2
+
2

3
mπT 2−64

9
m3πL2T 2+

512

27
m5πL4T 2 = 0. (3.9)

The free energy of equation (2.10) in this case is given by

FBH = −16πL − 8mπWT +
128

3
m2π2L2T 2. (3.10)

The entropy defined in equation (2.11) in our case becomes

S =
32πL
T

− 256

3
m2π2L2T. (3.11)

We see that equation (3.9) is an equation for l = L
T 2 in terms of µb = mT 2. So, µb is a

good variable to study the phase structure for the black hole2 The phase diagram for spin

3 black hole is given in figure 2. We denote the 4 branches of solutions with the following

color code- branch-1-Blue,branch-2-Red,branch-3-Orange and branch-4-green.

From the plots we see that branches 3 and 4 are unphysical with negative entropy.

Branches 1 and 2 merge at the point µb = 3
√

−3+2
√
3

8π . Beyond this point the black hole

solutions cease to exist. For branch 2 the stress tensor decreases with µd = mT 2, i.e. it

decreases with T 2 if we keep chemical potential m fixed, so this branch has negative specific

heat and hence is unstable. So, the branches 1 and 2 are in one-to-one correspondence with

the large (stable) and small (unstable) black hole solutions in AdS space [42, 43]. For branch

2, in the limit µ → 0 we get w
2
3

t
= 1

6(
−1
2π )

2

3 , so the branch 2 evolves from the extremal point

having a non trivial configuration at T = 0. The branches 3 and 4 also evolve from the

extremal point, but they evolve to unphysical branches. From the free energy plot we see

that the BTZ black hole branch is the dominant solution in the temperature regime where

it exists for geometries with contractible temporal cycles.

3.3 The “Hawking-Page” transition

We will now study a phase transition first studied for Einstein-Hilbert gravity with negative

cosmological constant on AdS4 in [43]. There it was shown that in asymptotically AdS

space, out of the two phases 1) a gas of gravitons and 2) a black hole, the former dominates

2The variables which will be used to study the phase structure in terms of µb are

t =
T

T 2
, w =

W

T 3
, f =

F

T 2
, s =

S

T
. (3.12)
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Figure 2. This figure gives the phase structure for spin 3 black hole. The horizontal axis is µb and

the vertical axis on the upper panel are respectively the spin 3 charge WBH and stress tensor TBH

and in the lower panel are free energy FBH and entropy S respectively

at low temperature and after a particular temperature the black hole solution becomes more

dominant. The dominant phase was obtained by identifying which solution had the lowest

free energy for a particular temperature. Both pure AdS (gas of gravitons) and black hole

were put at the same temperature by keeping the identification of the time circle at the

same value. The free energy was calculated by calculating the on shell action in Euclidean

signature with proper added boundary terms. For the AdS3 case, the thermal AdS and

BTZ black hole configurations are related by a modular transformation τBTZ = − 1
τAdS

. At

the point of Hawking-Page transition i.e. τBTZ = τAdS, T = 1
2π (putting the AdS radius

to unity). We are studying the phase structure in a grand canonical ensemble and we will

try to find out the regions in parameter space where this phase transition takes place.

Atm = 0 the temperature at which transition takes place is T = 1
2π . Let us introduce a

chemical potential for spin 3 and see how the temperature deviates from this point. Let us

for the moment make an assumption that there is a physical principle behind the ”extremal

AdS” solution being invalid, so that the thermodynamics is still dominated by the thermal

AdS like solution and the black hole solutions. We will only study the branches which go

to BTZ black holes and thermal AdS in the limit m → 0 i.e. the branch 1 in both cases.

We will assume the following form for the transition temperature after the introduction of
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Figure 3. Comparison between free energy of black hole and conical surplus at m=1. The blue

branch is the BTZ branch of black hole and red branch is extremal branch. The brown branch is

the conical surplus branch which goes to pure AdS in absence of chemical potential and the green

branch is the new “extremal branch” of conical surplus.

a non zero chemical potential m.

T =
1

2π
+#1m+#2m

2 +#3m
3 +#4m

4 + . . . . (3.13)

We shall find the difference between the free energy of the black hole given in equa-

tion (3.10) and that of the thermal AdS like solution given in equation (3.7), both at the

same temperature and chemical potential. We then find the temperature where this dif-

ference is zero which will give the various coefficients in (3.13) order by order. Upon doing

this we arrive at the following temperature where the transition takes place to O(m6)

THP =
1

2π
− 1

12π3
m2 +

7

144π5
m4 − 71

1728π7
m6 + . . . . (3.14)

For a chemical potential given by m = 1,3 we plot the free energies of both the black

hole and the conical surplus in figure 3. The color coding is explained in the caption

there. We see that the ”thermal AdS branch” dominates over the black hole for low

temperature and the BTZ branch black hole solutions take over at higher temperatures.

The unstable (extremal) black hole always is the sub-dominant contribution to the free

energy compared to BTZ branch. The extremal black hole branch also starts dominating

over the thermal AdS as we increase the temperature further. Beyond the temperature of

existence of the black hole the thermal AdS like solutions are the only solutions available.

This “phase transition” can be explained by a physical argument based on the fact that

3This is for the purpose of illustration only as this helps in bringing out all the features nicely in a

single diagram. Since the introduction of chemical potential violates the boundary falloff conditions we

want m ≪ 1 if we want the theory to be studied at high enough temperature as the deformation is by a

term of the form mTW2e
2ρ.

– 13 –



J
H
E
P
0
2
(
2
0
1
5
)
0
8
4

all even spin fields are self-attractive and all odd spin fields are self-repulsive.4 So, at very

low temperature when there are very few excitations the thermal AdS is the dominating

solution. As we increase the temperature the number of excitation of both the spin 2 and

3 fields increase but the attractive nature of spin 2 field dominates and the formation of

a black hole is more favourable. Further increasing the temperature causes the number

of excitations to increase further and the repulsive nature of spin 3 dominates over the

attractive nature of spin 2 and makes it unfavourable to form a black hole.

We numerically give the region of dominance of the black hole and thermal AdS like

solutions as well as the region of existence of the solutions in figure 4. We see that the

temperature where the ”Hawking-Page” transition takes place is lower for higher values of

chemical potential.

From the figure 4 we see that at any value of chemical potential for high enough

temperature, the black hole solution ceases to exist and only thermal AdS like solutions

are present. The lower plot in figure 4 puts this in perspective where we plot the region

of existence of the black hole and thermal AdS like solutions . The region of existence of

the thermal AdS like solutions is much larger (the full coloured region)than the black hole

(region bounded by the axes and the blue line boundary).

In all this we have to be careful of the fact that introducing a chemical potential

corresponds to breaking the asymptotic AdS boundary conditions. The asymptotic AdS

falloff conditions which gives rise to the Virasoro symmetry algebra is A − AAdS = O(1),

but by introducing a chemical potential this breaks down to A − AAdS = mTe2ρ.5 So,the

definition of charges that we are using are not valid if we move too far away from the fixed

point. Since, we want to study the property of the system for high enough temperatures

we have to confine ourselves to very small values of chemical potential. Also introduction

of this deformation induces a RG flow which takes us to another non trivial fixed point in

the UV with a completely different spectrum, to be studied next. Hence for large values

of m the parameters of the UV fixed point may be the correct parameters to use.

Across the point of transition we see that not only does the stress energy tensor changes

sign which is expected, but the spin 3 charge also changes sign. This can be inferred from

the fact that in the allowed regime for conical surplus the spin 3 charge is always positive

which can be seen from figure 1, and that for black hole it is always negative as can be

seen in figure 2.

4 The diagonal embedding for sl(3)

The definition of sl(2, R) sub-algebra generators in diagonal embedding in terms of gener-

ators of principal embedding is 1
2L0 and ±1

4W±2 as given in [28, 42]. The spectrum here

consists of fields of spin 2, spin 3
2 and spin 1. The generators for spin 3

2 multiplet in the

bulk are given by (W1, L−1) and (W−1, L1) and that for spin 1 is W0. The highest weight

4This was brought to our notice by Arnab Rudra and the physical argument arose from a discussion

with him.
5We have reintroduced the radial dependence by A = b−1db+ b−1ab.
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Figure 4. In these figures the x axis represents temperature(T) and y axis the chemical poten-

tial(m). For the upper figure pink region is where the conical surplus dominates and the blue region

indicates where black hole dominates. The boundary between this two regions represents the tem-

perature where the “Hawking-Page” transition takes place for a particular chemical potential. The

lower figure represents the region of existence of conical surplus and black holes solutions. The black

hole solutions exist in the region bound by the axes and the blue line boundary and the conical

surplus solution exists in the full coloured region.

gauge connection for this theory is given by

a =

(

1

4
W2 + GL−1 + JW0 + J 2W−2

)

dz +
λTd

2

(

L1 + 2JL−1 −
G
2
W−2

)

dz̄

ā = − λ̄Td

2

(

L−1 + 2J̄L1 −
1

2
ḠW2

)

dz −
(

1

4
W−2 + ḠL1 + J̄W0 + J̄ 2W2

)

dz̄ (4.1)
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The non rotating condition (3.2) applied here gives

Ḡ = −G, J̄ = J , λ̄ = −λ (4.2)

Though this embedding looks like an independent theory by itself. But in [28] it was

shown that after adding a deformation with chemical potential corresponding to spin 3
2 (λ

above), this theory becomes the correct UV behaviour of a theory whose behaviour near

IR fixed point is given by the principal embedding studied earlier. If we reintroduce the

radial dependence in (4.1) the leading term comes from 1
4W2. So, the way to go to the UV

theory from the IR side is to change the coefficient of W2 in z̄ component of connection in

equation (3.1) from mT
2 to 1

4 by a similarity transformation (also found out in [42])

aUV
z = exL0aIRz̄ e−xL0 , aUV

z̄ = exL0aIRz e−xL0 ,

āUV
z = e−xL0 āIRz̄ exL0 , āUV

z̄ = e−xL0 āIRz exL0 where x = ln(
√
2mT ), (4.3)

where aUV is the connection given in equation (4.1) and aIR is the one given in equa-

tion (3.1). We see from the map given in (4.3) that the holomorphic and anti holomorphic

components change into each other in going from the IR to UV picture. Demanding that

equation (4.3) holds we get a relation between parameters of the theories near the UV and

IR fixed points like in [42] given by

G = 2
√
2πW(mT )

3

2 , J = −2πLmT, λTd =

√
2√

mT
(4.4)

The holonomy equation calculated here as in the case of principal embedding is given by

− 8J 3

3π3T 3
d

+
2J
3πTd

− 64J 4

27π3T 5
dλ

2
+

32J 2

9πT 3
dλ

2
− 4π

3Tdλ2
− J 2λ2

π3Td
− Tdλ

2

4π
− J Tdλ

4

8π3
= 0 (4.5)

The value of spin 3
2 charge is obtained in terms of the spin 1 field using the holonomy

condition and is given by

Gdiag = −16J 2

9Tdλ
+

4π2Td

3λ
+

2J Tdλ

3
. (4.6)

The holonomy equation should also evolve along the RG flow from IR to UV, i.e. the

holonomy equation (4.5) should reduce to (3.9), under the transformation of variables given

in (4.4) . This happens if over and above the above transformation we assume that the

definition of temperature on both limits is the same i.e, Td = T and the chemical potentials

are related by λ =
√
2

T
√
mT

.

The definition of the thermodynamic quantities in terms of connection are the same

as they were for principal embedding given in [34, 40]. Here their definition in terms of the

parameters of diagonal embedding are given by

Tdiag =
16J 2

3
− 3GTdλ+ 2J T 2

dλ
2

Fdiag = −32J 2

3
+ 4GTdλ− 4J T 2

dλ
2

Sdiag =
64J 2

3Td
+ 8J Tdλ

2 (4.7)
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Figure 5. Phase structure for spin 3 black hole in diagonal embedding. The horizontal axis is l

parameter that we used.

The equation (4.5) is an equation for J
Td

in l = λ
√
Td. So, The correct parameter for

drawing phase diagram is l and the quantities which are a function of l only, are

g =
G

T
3

2

d

, j =
J
Td

, t =
T
T 2
d

, s =
SCS

Td
, f =

FCS

T 2
d

(4.8)

In the phase diagram for black holes given in figure 5 the 4 branches of solution are

color coded as branch 1-Blue, branch 2-Red, branch 3-Orange and branch 4-Green. From

the phase diagram we see that branches 3 and 4 are unphysical because they have negative

entropy. If we assume that the chemical potential is fixed at some value then these are

plots with respect to square root of temperature. So, if somewhere the gradient of stress

tensor is negative then in those region it decreases with temperature and hence the system

has negative specific heat. The 2nd branch has a region of negative specific heat for lower

temperature but at higher temperatures it is stable for a given chemical potential. The
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branch 1 is the dominant solution when we look at the free energy plot. Another interesting

thing that we notice is that for branch 1 and 2 as λ → 0 we have

G → −2
√
2π

3

2T
3

2

d

3
3

4

, J → −1

2

√
3πTd. (4.9)

So, both the spin 3
2 and spin 1 charges are non-zero even when the chemical potential

corresponding to that charge is zero, i.e. even when the theory is undeformed. This was

also obtained in [42]. This is different than the principal embedding case where spin 3

charge goes to zero when the chemical potential goes to zero for the dominant branch.

This stems from the fact that λ → 0 limit corresponds to m → ∞ limit and hence it is not

exactly an undeformed theory that we are studying but a theory which has been deformed

in IR.

We see that this embedding has a valid high temperature behaviour i.e. as Td → ∞
we have

G → −−λ3T 3
d

2
→ l3T

3

2

d

2
, J → −2λ2T 2

d

8
→ −2l2Td

8
. (4.10)

We see that in the high temperature limit the charges have the correct scaling behaviour

in terms of the only dimensionful parameter (T)6 and they are real. So, to study the high

temperature behaviour the diagonal embedding is the correct theory to use.

In equation (4.4) we have the map between the parameters of the UV and IR theory.

Upon substituting the solutions of branch 1, 2, 3, 4 of the IR theory in this map, it matches

respectively with branches 4, 3, 2, 1 of the UV theory. So, this suggests that along the flow

the good solutions in one end go to the bad solutions in the other and vice versa. This is

easy to see if we plot branches of −2πLmT and the corresponding branches of J with its

parameters λ and Td replaced by m and T using equation (4.4), the two plots merge with

the mentioned identifications of the branches at the two ends. This is expected since from

the expression of entropy given in (2.11) we see that the sign of the expressions changes

if we replace the z-component of connection by z̄ component. Also, since we expect the

RG flow from IR to UV to happen when m goes from 0 to ∞, we see that initially the z̄

component of the connection acts like a perturbation near IR fixed point as can be seen

from equation (3.1), but near UV fixed point due to m → ∞ z̄ component is dominant part.

So, the sign of entropy of the branches changes between the UV and IR fixed points and

hence the good and the bad solutions get swapped. This is the reason for the bad branches

in IR being able to explain the high temperature behaviour of the theory in the UV.

5 Summary and discussions

5.1 Comparison with earlier works

At first glance our analysis may look very similar to [42]. But we differ from [42] in the

following respect

6l is dimensionless as in terms of l all thermodynamic parameters have correct scaling behaviour with

temperature as seen from equation (4.8).
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• Convention:We use a particular set of boundary terms in our bulk action given

in [34] so that the variation of the full action is like δI ∼ T δτ +Qiδm
i which ensures

that our on shell partition function is of the form Z = eτT +miQi . But in [42] they

added a boundary term which made sure that the variation of the on shell action is

of the form δI ∼ Lδτ +Qiδ(τm
i), so that in that case the on shell partition function

is like Z = eτL+τmiQi , with the convention for connection being that of (3.1). In

other words our connection are suited to a convention where the chemical potential

corresponding to the spin 3 charge is given by ’m’ whereas the convention used in [42]

is suited to the chemical potential being proportional to ’τm’. Due to this difference

in convention our physical quantities are not finite in the m → 0 or T → 0, whereas

they are finite for the conventions used in [42]. For a better comparison of our results

with that of [42] we need to add a boundary term to our action so that its variation

becomes δI ∼ T δτ +Qiδ(m
iT ), which we leave for future investigation.

• Qualitative difference in phase structures: We will now detail the qualitative

difference between the phase structure in principal embedding obtained by us in

canonical formalism and obtained in [42] using holomorphic formalism.

– In canonical formalism we obtain two physical and two unphysical (due to neg-

ative entropy) branches but in holomorphic formalism there are 3 physical and

one unphysical branches.

– In holomorphic formalism out of the three physical branches only one (the BTZ

branch) had the correct scaling behaviour with temperature for the thermody-

namic quantities at low temperatures. In our case we showed that all branches

have the correct temperature scaling behaviour when written in terms of correct

dimensionless variables. So, only two of the branches in [42] can have a CFT

like interpretation whereas in our case all branches have a correct CFT like in-

terpretation but two of those branches are unphysical only due to the fact that

they have negative entropy.

• Method of resolution of the high temperature behaviour by invoking di-

agonal embedding: In [42] this was done by stating that the the third branch in

the low temperature regime actually maps to one of the two real solutions in the

high temperature regime (the one with the lower free energy; the one with the higher

free energy is thought of as having its low temperature behaviour defined by the

higher free energy carrying unphysical branch in principal embedding). They showed

that the thermodynamic quantities in this branch when written in terms of diagonal

embedding variables have the correct scaling behaviour with temperature and hence

is the correct high temperature description of a system with SL(3, R) × SL(3, R)

gauge group.

In our work we suggested a slightly different mechanism of how the diagonal em-

bedding comes to the rescue, giving the system a meaningful description in the high

temperature regime. We showed that for any chemical potential the two physical
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branches of the principal embedding only survive upto a particular temperature. But

there are also two unphysical branches which survive at all temperatures though they

have negative entropy. Similarly, for diagonal embedding there are two unphysical

and two physical branches of solution and all of them survive at high temperatures.

We then used the map between the parameters of the theory in the principal and

diagonal embedding given in (4.4) to show that the thermodynamic quantities for the

unphysical branches in principal embedding map to the thermodynamic quantities of

the physical branches in diagonal embedding and vice versa. We then argued that the

the unphysical branches of the principal embedding which survive at all temperatures

actually become the physical branches of the diagonal embedding. This explains the

high temperature behaviour of the system with SL(3, R) × SL(3, R) gauge group.

Since, we have no physical branch in the principal embedding which survives for very

high temperatures, we have no other option but to use the diagonal embedding as

the correct picture at very high temperatures.

• Additional new features mentioned by us: a) In addition to this we studied the

thermodynamics of the thermal AdS like solutions in the principal embedding and in

the process we were able to show that a “ Hawking-Page” like transition takes place

in the low temperature regime. Also, after a certain temperature when the black

hole solutions in the principal embedding cease to exist the thermal AdS like solution

again takes over as for a particular chemical potential its regime of existence extends

to a higher temperature than that of the black hole. As we have stated earlier this

phenomenon happens most probably due to the self repulsive nature of spin 3 fields

due to which at high enough temperatures black hole formation is prevented.

b) We also found out the existence of a second problematic branch in the phase

structure for the thermal AdS like solution in presence of chemical potential. This

we called the ”extremal AdS” branch. At first glance it is thermodynamically the

most stable branch of the two conical surplus like solutions and two physical black

hole like solutions. But this branch has the pathological property of having its energy

unbounded from below. This branch fits in the criteria of allowed solution in terms of

triviality of holonomy along contractible cycles. So, to get rid of this branch we must

figure out some other physical condition which in particular is not satisfied by the

extremal AdS like solutions. We have not been able to find this new physical condition

as yet. In absence of that we must say that this system with gauge group Sl(3, R)×
SL(3, R) do not have thermodynamically stable solutions at low temperatures and

that this system defines only black holes with spectrum in diagonal embedding for

high temperatures. If we manage to come up with a physical criteria to get rid of

this pathological solution then the phase structure of the system will be the one

mentioned in earlier parts of this section.

5.2 The phase structure at arbitrary point in µ-T space

We must mention that we have given the phase structure in regions near µ = 0(λ = ∞)

i.e. the IR fixed point and λ = 0(µ = ∞) i.e. the UV fixed point. It is difficult to
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obtain the phase structure at arbitrary point in the µ− T phase space. The reason being

that only near these two extremum values of µ do we have assymptotic AdS regions and

definitions of charges which follow a W3 algebra for Poisson brackets. Far from these fixed

points we cannot and should not trust the expressions for charges. In [38] it was shown

that for arbitrary values of spin 3 chemical potential they could go back to connections

( by appropriate coordinate transformation followed by gauge transformations) which are

again those of assymptotic AdS in new coordinate system. They however showed that

the coordinate transformation used for the above mentioned procedure breaks down the

boundary light cone structuure for values of µ greater than a threshold value. They showed

that beyond this point the thermodynamic quantities turn out to be complex numbers.

These bounds on chemical potentials exactly matches with the bound that we found on

chemical potential at which branches in our solution space merge and cease to exist after

that (after taking care of different conventions in both works).

5.3 Comparison with Vasiliev system

The system that we studied here is very different from Vasiliev system. Our system consists

solely of one additional higher spin field on top of gravity in 3 dimensions, whereas in

Vasiliev system there is an infinite tower of higher spin fields along with some matter

fields. The phase structure of Vasiliev system in AdS4 was studied in [47] by studying the

dual system of the singlet sector of O(N) vector model on a 3 dimensional sphere. They

observed that the entropy jumps from O(1) to O(N2) at a temperature O(
√
N) instead of

O(1). So, there are no thermodynamically stable large black holes at temperatures of O(1)

in this system. Similar study was undertaken in W∞[0] CFTs in 2 dimensions in [48] and

they found similar results. This was attributed to the presence of a very huge spectrum of

light states in these CFTs which smoothen out the phase transition.

The system that we studied is much closer to the pure gravity system than it is to

the Vasiliev system in its content, so the results that we obtained are much closer to the

pure gravity system in the sense that the transition temperature is close to 1
2π which is the

Hawking Page temperature for pure AdS3. Though a unitary CFT dual to these system

with finite spin is not known (interesting non-unitary CFT dual to finite spin systems have

been worked out in [20, 21]) yet but if we extrapolate the results from the above mentioned

works, then the transition temperature should be O(
√
N) ∼ O(1) which is what we obtain.

Secondly these systems by similar argument cannot have a huge spectrum of light states

which smoothen out these transitions and hence there is no barrier for these transitions to

take place.

6 Further directions

In the the recent paper [39] where it has been proposed that for higher spin theories the

correct way to add chemical potential preserving the Brown-Henneaux fall off conditions

necessary for definition of charges that we are using is to add them along the time compo-

nent of the connection rather than the antiholomorphic component. In the light of this our

analysis should be redone to see if some extra features emerge other than what we have
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already presented. The ideal situation would be to derive the the asymptotic charges in

the presence of a chemical potential exactly.
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